1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 6 #include "iavf.h" 7 #include "iavf_trace.h" 8 #include "iavf_prototype.h" 9 10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 11 u32 td_tag) 12 { 13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 18 } 19 20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 21 22 /** 23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 24 * @ring: the ring that owns the buffer 25 * @tx_buffer: the buffer to free 26 **/ 27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 28 struct iavf_tx_buffer *tx_buffer) 29 { 30 if (tx_buffer->skb) { 31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 32 kfree(tx_buffer->raw_buf); 33 else 34 dev_kfree_skb_any(tx_buffer->skb); 35 if (dma_unmap_len(tx_buffer, len)) 36 dma_unmap_single(ring->dev, 37 dma_unmap_addr(tx_buffer, dma), 38 dma_unmap_len(tx_buffer, len), 39 DMA_TO_DEVICE); 40 } else if (dma_unmap_len(tx_buffer, len)) { 41 dma_unmap_page(ring->dev, 42 dma_unmap_addr(tx_buffer, dma), 43 dma_unmap_len(tx_buffer, len), 44 DMA_TO_DEVICE); 45 } 46 47 tx_buffer->next_to_watch = NULL; 48 tx_buffer->skb = NULL; 49 dma_unmap_len_set(tx_buffer, len, 0); 50 /* tx_buffer must be completely set up in the transmit path */ 51 } 52 53 /** 54 * iavf_clean_tx_ring - Free any empty Tx buffers 55 * @tx_ring: ring to be cleaned 56 **/ 57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 58 { 59 unsigned long bi_size; 60 u16 i; 61 62 /* ring already cleared, nothing to do */ 63 if (!tx_ring->tx_bi) 64 return; 65 66 /* Free all the Tx ring sk_buffs */ 67 for (i = 0; i < tx_ring->count; i++) 68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 69 70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 71 memset(tx_ring->tx_bi, 0, bi_size); 72 73 /* Zero out the descriptor ring */ 74 memset(tx_ring->desc, 0, tx_ring->size); 75 76 tx_ring->next_to_use = 0; 77 tx_ring->next_to_clean = 0; 78 79 if (!tx_ring->netdev) 80 return; 81 82 /* cleanup Tx queue statistics */ 83 netdev_tx_reset_queue(txring_txq(tx_ring)); 84 } 85 86 /** 87 * iavf_free_tx_resources - Free Tx resources per queue 88 * @tx_ring: Tx descriptor ring for a specific queue 89 * 90 * Free all transmit software resources 91 **/ 92 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 93 { 94 iavf_clean_tx_ring(tx_ring); 95 kfree(tx_ring->tx_bi); 96 tx_ring->tx_bi = NULL; 97 98 if (tx_ring->desc) { 99 dma_free_coherent(tx_ring->dev, tx_ring->size, 100 tx_ring->desc, tx_ring->dma); 101 tx_ring->desc = NULL; 102 } 103 } 104 105 /** 106 * iavf_get_tx_pending - how many Tx descriptors not processed 107 * @ring: the ring of descriptors 108 * @in_sw: is tx_pending being checked in SW or HW 109 * 110 * Since there is no access to the ring head register 111 * in XL710, we need to use our local copies 112 **/ 113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 114 { 115 u32 head, tail; 116 117 head = ring->next_to_clean; 118 tail = readl(ring->tail); 119 120 if (head != tail) 121 return (head < tail) ? 122 tail - head : (tail + ring->count - head); 123 124 return 0; 125 } 126 127 /** 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues 129 * @vsi: pointer to vsi struct with tx queues 130 * 131 * VSI has netdev and netdev has TX queues. This function is to check each of 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 133 **/ 134 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 135 { 136 struct iavf_ring *tx_ring = NULL; 137 struct net_device *netdev; 138 unsigned int i; 139 int packets; 140 141 if (!vsi) 142 return; 143 144 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 145 return; 146 147 netdev = vsi->netdev; 148 if (!netdev) 149 return; 150 151 if (!netif_carrier_ok(netdev)) 152 return; 153 154 for (i = 0; i < vsi->back->num_active_queues; i++) { 155 tx_ring = &vsi->back->tx_rings[i]; 156 if (tx_ring && tx_ring->desc) { 157 /* If packet counter has not changed the queue is 158 * likely stalled, so force an interrupt for this 159 * queue. 160 * 161 * prev_pkt_ctr would be negative if there was no 162 * pending work. 163 */ 164 packets = tx_ring->stats.packets & INT_MAX; 165 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 166 iavf_force_wb(vsi, tx_ring->q_vector); 167 continue; 168 } 169 170 /* Memory barrier between read of packet count and call 171 * to iavf_get_tx_pending() 172 */ 173 smp_rmb(); 174 tx_ring->tx_stats.prev_pkt_ctr = 175 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 176 } 177 } 178 } 179 180 #define WB_STRIDE 4 181 182 /** 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes 184 * @vsi: the VSI we care about 185 * @tx_ring: Tx ring to clean 186 * @napi_budget: Used to determine if we are in netpoll 187 * 188 * Returns true if there's any budget left (e.g. the clean is finished) 189 **/ 190 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 191 struct iavf_ring *tx_ring, int napi_budget) 192 { 193 int i = tx_ring->next_to_clean; 194 struct iavf_tx_buffer *tx_buf; 195 struct iavf_tx_desc *tx_desc; 196 unsigned int total_bytes = 0, total_packets = 0; 197 unsigned int budget = IAVF_DEFAULT_IRQ_WORK; 198 199 tx_buf = &tx_ring->tx_bi[i]; 200 tx_desc = IAVF_TX_DESC(tx_ring, i); 201 i -= tx_ring->count; 202 203 do { 204 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 205 206 /* if next_to_watch is not set then there is no work pending */ 207 if (!eop_desc) 208 break; 209 210 /* prevent any other reads prior to eop_desc */ 211 smp_rmb(); 212 213 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 214 /* if the descriptor isn't done, no work yet to do */ 215 if (!(eop_desc->cmd_type_offset_bsz & 216 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 217 break; 218 219 /* clear next_to_watch to prevent false hangs */ 220 tx_buf->next_to_watch = NULL; 221 222 /* update the statistics for this packet */ 223 total_bytes += tx_buf->bytecount; 224 total_packets += tx_buf->gso_segs; 225 226 /* free the skb */ 227 napi_consume_skb(tx_buf->skb, napi_budget); 228 229 /* unmap skb header data */ 230 dma_unmap_single(tx_ring->dev, 231 dma_unmap_addr(tx_buf, dma), 232 dma_unmap_len(tx_buf, len), 233 DMA_TO_DEVICE); 234 235 /* clear tx_buffer data */ 236 tx_buf->skb = NULL; 237 dma_unmap_len_set(tx_buf, len, 0); 238 239 /* unmap remaining buffers */ 240 while (tx_desc != eop_desc) { 241 iavf_trace(clean_tx_irq_unmap, 242 tx_ring, tx_desc, tx_buf); 243 244 tx_buf++; 245 tx_desc++; 246 i++; 247 if (unlikely(!i)) { 248 i -= tx_ring->count; 249 tx_buf = tx_ring->tx_bi; 250 tx_desc = IAVF_TX_DESC(tx_ring, 0); 251 } 252 253 /* unmap any remaining paged data */ 254 if (dma_unmap_len(tx_buf, len)) { 255 dma_unmap_page(tx_ring->dev, 256 dma_unmap_addr(tx_buf, dma), 257 dma_unmap_len(tx_buf, len), 258 DMA_TO_DEVICE); 259 dma_unmap_len_set(tx_buf, len, 0); 260 } 261 } 262 263 /* move us one more past the eop_desc for start of next pkt */ 264 tx_buf++; 265 tx_desc++; 266 i++; 267 if (unlikely(!i)) { 268 i -= tx_ring->count; 269 tx_buf = tx_ring->tx_bi; 270 tx_desc = IAVF_TX_DESC(tx_ring, 0); 271 } 272 273 prefetch(tx_desc); 274 275 /* update budget accounting */ 276 budget--; 277 } while (likely(budget)); 278 279 i += tx_ring->count; 280 tx_ring->next_to_clean = i; 281 u64_stats_update_begin(&tx_ring->syncp); 282 tx_ring->stats.bytes += total_bytes; 283 tx_ring->stats.packets += total_packets; 284 u64_stats_update_end(&tx_ring->syncp); 285 tx_ring->q_vector->tx.total_bytes += total_bytes; 286 tx_ring->q_vector->tx.total_packets += total_packets; 287 288 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 289 /* check to see if there are < 4 descriptors 290 * waiting to be written back, then kick the hardware to force 291 * them to be written back in case we stay in NAPI. 292 * In this mode on X722 we do not enable Interrupt. 293 */ 294 unsigned int j = iavf_get_tx_pending(tx_ring, false); 295 296 if (budget && 297 ((j / WB_STRIDE) == 0) && (j > 0) && 298 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 299 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 300 tx_ring->arm_wb = true; 301 } 302 303 /* notify netdev of completed buffers */ 304 netdev_tx_completed_queue(txring_txq(tx_ring), 305 total_packets, total_bytes); 306 307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 308 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 309 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 310 /* Make sure that anybody stopping the queue after this 311 * sees the new next_to_clean. 312 */ 313 smp_mb(); 314 if (__netif_subqueue_stopped(tx_ring->netdev, 315 tx_ring->queue_index) && 316 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 317 netif_wake_subqueue(tx_ring->netdev, 318 tx_ring->queue_index); 319 ++tx_ring->tx_stats.restart_queue; 320 } 321 } 322 323 return !!budget; 324 } 325 326 /** 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 328 * @vsi: the VSI we care about 329 * @q_vector: the vector on which to enable writeback 330 * 331 **/ 332 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 333 struct iavf_q_vector *q_vector) 334 { 335 u16 flags = q_vector->tx.ring[0].flags; 336 u32 val; 337 338 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 339 return; 340 341 if (q_vector->arm_wb_state) 342 return; 343 344 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 345 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 346 347 wr32(&vsi->back->hw, 348 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 349 q_vector->arm_wb_state = true; 350 } 351 352 /** 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb 354 * @vsi: the VSI we care about 355 * @q_vector: the vector on which to force writeback 356 * 357 **/ 358 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 359 { 360 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 361 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 362 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 363 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 364 /* allow 00 to be written to the index */; 365 366 wr32(&vsi->back->hw, 367 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 368 val); 369 } 370 371 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 372 struct iavf_ring_container *rc) 373 { 374 return &q_vector->rx == rc; 375 } 376 377 #define IAVF_AIM_MULTIPLIER_100G 2560 378 #define IAVF_AIM_MULTIPLIER_50G 1280 379 #define IAVF_AIM_MULTIPLIER_40G 1024 380 #define IAVF_AIM_MULTIPLIER_20G 512 381 #define IAVF_AIM_MULTIPLIER_10G 256 382 #define IAVF_AIM_MULTIPLIER_1G 32 383 384 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps) 385 { 386 switch (speed_mbps) { 387 case SPEED_100000: 388 return IAVF_AIM_MULTIPLIER_100G; 389 case SPEED_50000: 390 return IAVF_AIM_MULTIPLIER_50G; 391 case SPEED_40000: 392 return IAVF_AIM_MULTIPLIER_40G; 393 case SPEED_25000: 394 case SPEED_20000: 395 return IAVF_AIM_MULTIPLIER_20G; 396 case SPEED_10000: 397 default: 398 return IAVF_AIM_MULTIPLIER_10G; 399 case SPEED_1000: 400 case SPEED_100: 401 return IAVF_AIM_MULTIPLIER_1G; 402 } 403 } 404 405 static unsigned int 406 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl) 407 { 408 switch (speed_virtchnl) { 409 case VIRTCHNL_LINK_SPEED_40GB: 410 return IAVF_AIM_MULTIPLIER_40G; 411 case VIRTCHNL_LINK_SPEED_25GB: 412 case VIRTCHNL_LINK_SPEED_20GB: 413 return IAVF_AIM_MULTIPLIER_20G; 414 case VIRTCHNL_LINK_SPEED_10GB: 415 default: 416 return IAVF_AIM_MULTIPLIER_10G; 417 case VIRTCHNL_LINK_SPEED_1GB: 418 case VIRTCHNL_LINK_SPEED_100MB: 419 return IAVF_AIM_MULTIPLIER_1G; 420 } 421 } 422 423 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter) 424 { 425 if (ADV_LINK_SUPPORT(adapter)) 426 return IAVF_ITR_ADAPTIVE_MIN_INC * 427 iavf_mbps_itr_multiplier(adapter->link_speed_mbps); 428 else 429 return IAVF_ITR_ADAPTIVE_MIN_INC * 430 iavf_virtchnl_itr_multiplier(adapter->link_speed); 431 } 432 433 /** 434 * iavf_update_itr - update the dynamic ITR value based on statistics 435 * @q_vector: structure containing interrupt and ring information 436 * @rc: structure containing ring performance data 437 * 438 * Stores a new ITR value based on packets and byte 439 * counts during the last interrupt. The advantage of per interrupt 440 * computation is faster updates and more accurate ITR for the current 441 * traffic pattern. Constants in this function were computed 442 * based on theoretical maximum wire speed and thresholds were set based 443 * on testing data as well as attempting to minimize response time 444 * while increasing bulk throughput. 445 **/ 446 static void iavf_update_itr(struct iavf_q_vector *q_vector, 447 struct iavf_ring_container *rc) 448 { 449 unsigned int avg_wire_size, packets, bytes, itr; 450 unsigned long next_update = jiffies; 451 452 /* If we don't have any rings just leave ourselves set for maximum 453 * possible latency so we take ourselves out of the equation. 454 */ 455 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 456 return; 457 458 /* For Rx we want to push the delay up and default to low latency. 459 * for Tx we want to pull the delay down and default to high latency. 460 */ 461 itr = iavf_container_is_rx(q_vector, rc) ? 462 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 463 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 464 465 /* If we didn't update within up to 1 - 2 jiffies we can assume 466 * that either packets are coming in so slow there hasn't been 467 * any work, or that there is so much work that NAPI is dealing 468 * with interrupt moderation and we don't need to do anything. 469 */ 470 if (time_after(next_update, rc->next_update)) 471 goto clear_counts; 472 473 /* If itr_countdown is set it means we programmed an ITR within 474 * the last 4 interrupt cycles. This has a side effect of us 475 * potentially firing an early interrupt. In order to work around 476 * this we need to throw out any data received for a few 477 * interrupts following the update. 478 */ 479 if (q_vector->itr_countdown) { 480 itr = rc->target_itr; 481 goto clear_counts; 482 } 483 484 packets = rc->total_packets; 485 bytes = rc->total_bytes; 486 487 if (iavf_container_is_rx(q_vector, rc)) { 488 /* If Rx there are 1 to 4 packets and bytes are less than 489 * 9000 assume insufficient data to use bulk rate limiting 490 * approach unless Tx is already in bulk rate limiting. We 491 * are likely latency driven. 492 */ 493 if (packets && packets < 4 && bytes < 9000 && 494 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 495 itr = IAVF_ITR_ADAPTIVE_LATENCY; 496 goto adjust_by_size; 497 } 498 } else if (packets < 4) { 499 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 500 * bulk mode and we are receiving 4 or fewer packets just 501 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 502 * that the Rx can relax. 503 */ 504 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 505 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 506 IAVF_ITR_ADAPTIVE_MAX_USECS) 507 goto clear_counts; 508 } else if (packets > 32) { 509 /* If we have processed over 32 packets in a single interrupt 510 * for Tx assume we need to switch over to "bulk" mode. 511 */ 512 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 513 } 514 515 /* We have no packets to actually measure against. This means 516 * either one of the other queues on this vector is active or 517 * we are a Tx queue doing TSO with too high of an interrupt rate. 518 * 519 * Between 4 and 56 we can assume that our current interrupt delay 520 * is only slightly too low. As such we should increase it by a small 521 * fixed amount. 522 */ 523 if (packets < 56) { 524 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 525 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 526 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 527 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 528 } 529 goto clear_counts; 530 } 531 532 if (packets <= 256) { 533 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 534 itr &= IAVF_ITR_MASK; 535 536 /* Between 56 and 112 is our "goldilocks" zone where we are 537 * working out "just right". Just report that our current 538 * ITR is good for us. 539 */ 540 if (packets <= 112) 541 goto clear_counts; 542 543 /* If packet count is 128 or greater we are likely looking 544 * at a slight overrun of the delay we want. Try halving 545 * our delay to see if that will cut the number of packets 546 * in half per interrupt. 547 */ 548 itr /= 2; 549 itr &= IAVF_ITR_MASK; 550 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 551 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 552 553 goto clear_counts; 554 } 555 556 /* The paths below assume we are dealing with a bulk ITR since 557 * number of packets is greater than 256. We are just going to have 558 * to compute a value and try to bring the count under control, 559 * though for smaller packet sizes there isn't much we can do as 560 * NAPI polling will likely be kicking in sooner rather than later. 561 */ 562 itr = IAVF_ITR_ADAPTIVE_BULK; 563 564 adjust_by_size: 565 /* If packet counts are 256 or greater we can assume we have a gross 566 * overestimation of what the rate should be. Instead of trying to fine 567 * tune it just use the formula below to try and dial in an exact value 568 * give the current packet size of the frame. 569 */ 570 avg_wire_size = bytes / packets; 571 572 /* The following is a crude approximation of: 573 * wmem_default / (size + overhead) = desired_pkts_per_int 574 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 575 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 576 * 577 * Assuming wmem_default is 212992 and overhead is 640 bytes per 578 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 579 * formula down to 580 * 581 * (170 * (size + 24)) / (size + 640) = ITR 582 * 583 * We first do some math on the packet size and then finally bitshift 584 * by 8 after rounding up. We also have to account for PCIe link speed 585 * difference as ITR scales based on this. 586 */ 587 if (avg_wire_size <= 60) { 588 /* Start at 250k ints/sec */ 589 avg_wire_size = 4096; 590 } else if (avg_wire_size <= 380) { 591 /* 250K ints/sec to 60K ints/sec */ 592 avg_wire_size *= 40; 593 avg_wire_size += 1696; 594 } else if (avg_wire_size <= 1084) { 595 /* 60K ints/sec to 36K ints/sec */ 596 avg_wire_size *= 15; 597 avg_wire_size += 11452; 598 } else if (avg_wire_size <= 1980) { 599 /* 36K ints/sec to 30K ints/sec */ 600 avg_wire_size *= 5; 601 avg_wire_size += 22420; 602 } else { 603 /* plateau at a limit of 30K ints/sec */ 604 avg_wire_size = 32256; 605 } 606 607 /* If we are in low latency mode halve our delay which doubles the 608 * rate to somewhere between 100K to 16K ints/sec 609 */ 610 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 611 avg_wire_size /= 2; 612 613 /* Resultant value is 256 times larger than it needs to be. This 614 * gives us room to adjust the value as needed to either increase 615 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 616 * 617 * Use addition as we have already recorded the new latency flag 618 * for the ITR value. 619 */ 620 itr += DIV_ROUND_UP(avg_wire_size, 621 iavf_itr_divisor(q_vector->adapter)) * 622 IAVF_ITR_ADAPTIVE_MIN_INC; 623 624 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 625 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 626 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 627 } 628 629 clear_counts: 630 /* write back value */ 631 rc->target_itr = itr; 632 633 /* next update should occur within next jiffy */ 634 rc->next_update = next_update + 1; 635 636 rc->total_bytes = 0; 637 rc->total_packets = 0; 638 } 639 640 /** 641 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 642 * @tx_ring: the tx ring to set up 643 * 644 * Return 0 on success, negative on error 645 **/ 646 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 647 { 648 struct device *dev = tx_ring->dev; 649 int bi_size; 650 651 if (!dev) 652 return -ENOMEM; 653 654 /* warn if we are about to overwrite the pointer */ 655 WARN_ON(tx_ring->tx_bi); 656 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 657 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 658 if (!tx_ring->tx_bi) 659 goto err; 660 661 /* round up to nearest 4K */ 662 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 663 tx_ring->size = ALIGN(tx_ring->size, 4096); 664 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 665 &tx_ring->dma, GFP_KERNEL); 666 if (!tx_ring->desc) { 667 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 668 tx_ring->size); 669 goto err; 670 } 671 672 tx_ring->next_to_use = 0; 673 tx_ring->next_to_clean = 0; 674 tx_ring->tx_stats.prev_pkt_ctr = -1; 675 return 0; 676 677 err: 678 kfree(tx_ring->tx_bi); 679 tx_ring->tx_bi = NULL; 680 return -ENOMEM; 681 } 682 683 /** 684 * iavf_clean_rx_ring - Free Rx buffers 685 * @rx_ring: ring to be cleaned 686 **/ 687 void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 688 { 689 unsigned long bi_size; 690 u16 i; 691 692 /* ring already cleared, nothing to do */ 693 if (!rx_ring->rx_bi) 694 return; 695 696 if (rx_ring->skb) { 697 dev_kfree_skb(rx_ring->skb); 698 rx_ring->skb = NULL; 699 } 700 701 /* Free all the Rx ring sk_buffs */ 702 for (i = 0; i < rx_ring->count; i++) { 703 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 704 705 if (!rx_bi->page) 706 continue; 707 708 /* Invalidate cache lines that may have been written to by 709 * device so that we avoid corrupting memory. 710 */ 711 dma_sync_single_range_for_cpu(rx_ring->dev, 712 rx_bi->dma, 713 rx_bi->page_offset, 714 rx_ring->rx_buf_len, 715 DMA_FROM_DEVICE); 716 717 /* free resources associated with mapping */ 718 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 719 iavf_rx_pg_size(rx_ring), 720 DMA_FROM_DEVICE, 721 IAVF_RX_DMA_ATTR); 722 723 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 724 725 rx_bi->page = NULL; 726 rx_bi->page_offset = 0; 727 } 728 729 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 730 memset(rx_ring->rx_bi, 0, bi_size); 731 732 /* Zero out the descriptor ring */ 733 memset(rx_ring->desc, 0, rx_ring->size); 734 735 rx_ring->next_to_alloc = 0; 736 rx_ring->next_to_clean = 0; 737 rx_ring->next_to_use = 0; 738 } 739 740 /** 741 * iavf_free_rx_resources - Free Rx resources 742 * @rx_ring: ring to clean the resources from 743 * 744 * Free all receive software resources 745 **/ 746 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 747 { 748 iavf_clean_rx_ring(rx_ring); 749 kfree(rx_ring->rx_bi); 750 rx_ring->rx_bi = NULL; 751 752 if (rx_ring->desc) { 753 dma_free_coherent(rx_ring->dev, rx_ring->size, 754 rx_ring->desc, rx_ring->dma); 755 rx_ring->desc = NULL; 756 } 757 } 758 759 /** 760 * iavf_setup_rx_descriptors - Allocate Rx descriptors 761 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 762 * 763 * Returns 0 on success, negative on failure 764 **/ 765 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 766 { 767 struct device *dev = rx_ring->dev; 768 int bi_size; 769 770 /* warn if we are about to overwrite the pointer */ 771 WARN_ON(rx_ring->rx_bi); 772 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 773 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 774 if (!rx_ring->rx_bi) 775 goto err; 776 777 u64_stats_init(&rx_ring->syncp); 778 779 /* Round up to nearest 4K */ 780 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 781 rx_ring->size = ALIGN(rx_ring->size, 4096); 782 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 783 &rx_ring->dma, GFP_KERNEL); 784 785 if (!rx_ring->desc) { 786 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 787 rx_ring->size); 788 goto err; 789 } 790 791 rx_ring->next_to_alloc = 0; 792 rx_ring->next_to_clean = 0; 793 rx_ring->next_to_use = 0; 794 795 return 0; 796 err: 797 kfree(rx_ring->rx_bi); 798 rx_ring->rx_bi = NULL; 799 return -ENOMEM; 800 } 801 802 /** 803 * iavf_release_rx_desc - Store the new tail and head values 804 * @rx_ring: ring to bump 805 * @val: new head index 806 **/ 807 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 808 { 809 rx_ring->next_to_use = val; 810 811 /* update next to alloc since we have filled the ring */ 812 rx_ring->next_to_alloc = val; 813 814 /* Force memory writes to complete before letting h/w 815 * know there are new descriptors to fetch. (Only 816 * applicable for weak-ordered memory model archs, 817 * such as IA-64). 818 */ 819 wmb(); 820 writel(val, rx_ring->tail); 821 } 822 823 /** 824 * iavf_rx_offset - Return expected offset into page to access data 825 * @rx_ring: Ring we are requesting offset of 826 * 827 * Returns the offset value for ring into the data buffer. 828 */ 829 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) 830 { 831 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; 832 } 833 834 /** 835 * iavf_alloc_mapped_page - recycle or make a new page 836 * @rx_ring: ring to use 837 * @bi: rx_buffer struct to modify 838 * 839 * Returns true if the page was successfully allocated or 840 * reused. 841 **/ 842 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, 843 struct iavf_rx_buffer *bi) 844 { 845 struct page *page = bi->page; 846 dma_addr_t dma; 847 848 /* since we are recycling buffers we should seldom need to alloc */ 849 if (likely(page)) { 850 rx_ring->rx_stats.page_reuse_count++; 851 return true; 852 } 853 854 /* alloc new page for storage */ 855 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); 856 if (unlikely(!page)) { 857 rx_ring->rx_stats.alloc_page_failed++; 858 return false; 859 } 860 861 /* map page for use */ 862 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 863 iavf_rx_pg_size(rx_ring), 864 DMA_FROM_DEVICE, 865 IAVF_RX_DMA_ATTR); 866 867 /* if mapping failed free memory back to system since 868 * there isn't much point in holding memory we can't use 869 */ 870 if (dma_mapping_error(rx_ring->dev, dma)) { 871 __free_pages(page, iavf_rx_pg_order(rx_ring)); 872 rx_ring->rx_stats.alloc_page_failed++; 873 return false; 874 } 875 876 bi->dma = dma; 877 bi->page = page; 878 bi->page_offset = iavf_rx_offset(rx_ring); 879 880 /* initialize pagecnt_bias to 1 representing we fully own page */ 881 bi->pagecnt_bias = 1; 882 883 return true; 884 } 885 886 /** 887 * iavf_receive_skb - Send a completed packet up the stack 888 * @rx_ring: rx ring in play 889 * @skb: packet to send up 890 * @vlan_tag: vlan tag for packet 891 **/ 892 static void iavf_receive_skb(struct iavf_ring *rx_ring, 893 struct sk_buff *skb, u16 vlan_tag) 894 { 895 struct iavf_q_vector *q_vector = rx_ring->q_vector; 896 897 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 898 (vlan_tag & VLAN_VID_MASK)) 899 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 900 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) && 901 vlan_tag & VLAN_VID_MASK) 902 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag); 903 904 napi_gro_receive(&q_vector->napi, skb); 905 } 906 907 /** 908 * iavf_alloc_rx_buffers - Replace used receive buffers 909 * @rx_ring: ring to place buffers on 910 * @cleaned_count: number of buffers to replace 911 * 912 * Returns false if all allocations were successful, true if any fail 913 **/ 914 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 915 { 916 u16 ntu = rx_ring->next_to_use; 917 union iavf_rx_desc *rx_desc; 918 struct iavf_rx_buffer *bi; 919 920 /* do nothing if no valid netdev defined */ 921 if (!rx_ring->netdev || !cleaned_count) 922 return false; 923 924 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 925 bi = &rx_ring->rx_bi[ntu]; 926 927 do { 928 if (!iavf_alloc_mapped_page(rx_ring, bi)) 929 goto no_buffers; 930 931 /* sync the buffer for use by the device */ 932 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 933 bi->page_offset, 934 rx_ring->rx_buf_len, 935 DMA_FROM_DEVICE); 936 937 /* Refresh the desc even if buffer_addrs didn't change 938 * because each write-back erases this info. 939 */ 940 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 941 942 rx_desc++; 943 bi++; 944 ntu++; 945 if (unlikely(ntu == rx_ring->count)) { 946 rx_desc = IAVF_RX_DESC(rx_ring, 0); 947 bi = rx_ring->rx_bi; 948 ntu = 0; 949 } 950 951 /* clear the status bits for the next_to_use descriptor */ 952 rx_desc->wb.qword1.status_error_len = 0; 953 954 cleaned_count--; 955 } while (cleaned_count); 956 957 if (rx_ring->next_to_use != ntu) 958 iavf_release_rx_desc(rx_ring, ntu); 959 960 return false; 961 962 no_buffers: 963 if (rx_ring->next_to_use != ntu) 964 iavf_release_rx_desc(rx_ring, ntu); 965 966 /* make sure to come back via polling to try again after 967 * allocation failure 968 */ 969 return true; 970 } 971 972 /** 973 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 974 * @vsi: the VSI we care about 975 * @skb: skb currently being received and modified 976 * @rx_desc: the receive descriptor 977 **/ 978 static inline void iavf_rx_checksum(struct iavf_vsi *vsi, 979 struct sk_buff *skb, 980 union iavf_rx_desc *rx_desc) 981 { 982 struct iavf_rx_ptype_decoded decoded; 983 u32 rx_error, rx_status; 984 bool ipv4, ipv6; 985 u8 ptype; 986 u64 qword; 987 988 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 989 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; 990 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> 991 IAVF_RXD_QW1_ERROR_SHIFT; 992 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> 993 IAVF_RXD_QW1_STATUS_SHIFT; 994 decoded = decode_rx_desc_ptype(ptype); 995 996 skb->ip_summed = CHECKSUM_NONE; 997 998 skb_checksum_none_assert(skb); 999 1000 /* Rx csum enabled and ip headers found? */ 1001 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1002 return; 1003 1004 /* did the hardware decode the packet and checksum? */ 1005 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 1006 return; 1007 1008 /* both known and outer_ip must be set for the below code to work */ 1009 if (!(decoded.known && decoded.outer_ip)) 1010 return; 1011 1012 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 1013 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); 1014 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 1015 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); 1016 1017 if (ipv4 && 1018 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 1019 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 1020 goto checksum_fail; 1021 1022 /* likely incorrect csum if alternate IP extension headers found */ 1023 if (ipv6 && 1024 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1025 /* don't increment checksum err here, non-fatal err */ 1026 return; 1027 1028 /* there was some L4 error, count error and punt packet to the stack */ 1029 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 1030 goto checksum_fail; 1031 1032 /* handle packets that were not able to be checksummed due 1033 * to arrival speed, in this case the stack can compute 1034 * the csum. 1035 */ 1036 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 1037 return; 1038 1039 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1040 switch (decoded.inner_prot) { 1041 case IAVF_RX_PTYPE_INNER_PROT_TCP: 1042 case IAVF_RX_PTYPE_INNER_PROT_UDP: 1043 case IAVF_RX_PTYPE_INNER_PROT_SCTP: 1044 skb->ip_summed = CHECKSUM_UNNECESSARY; 1045 fallthrough; 1046 default: 1047 break; 1048 } 1049 1050 return; 1051 1052 checksum_fail: 1053 vsi->back->hw_csum_rx_error++; 1054 } 1055 1056 /** 1057 * iavf_ptype_to_htype - get a hash type 1058 * @ptype: the ptype value from the descriptor 1059 * 1060 * Returns a hash type to be used by skb_set_hash 1061 **/ 1062 static inline int iavf_ptype_to_htype(u8 ptype) 1063 { 1064 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1065 1066 if (!decoded.known) 1067 return PKT_HASH_TYPE_NONE; 1068 1069 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1070 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1071 return PKT_HASH_TYPE_L4; 1072 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1073 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1074 return PKT_HASH_TYPE_L3; 1075 else 1076 return PKT_HASH_TYPE_L2; 1077 } 1078 1079 /** 1080 * iavf_rx_hash - set the hash value in the skb 1081 * @ring: descriptor ring 1082 * @rx_desc: specific descriptor 1083 * @skb: skb currently being received and modified 1084 * @rx_ptype: Rx packet type 1085 **/ 1086 static inline void iavf_rx_hash(struct iavf_ring *ring, 1087 union iavf_rx_desc *rx_desc, 1088 struct sk_buff *skb, 1089 u8 rx_ptype) 1090 { 1091 u32 hash; 1092 const __le64 rss_mask = 1093 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 1094 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 1095 1096 if (ring->netdev->features & NETIF_F_RXHASH) 1097 return; 1098 1099 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1100 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1101 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); 1102 } 1103 } 1104 1105 /** 1106 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 1107 * @rx_ring: rx descriptor ring packet is being transacted on 1108 * @rx_desc: pointer to the EOP Rx descriptor 1109 * @skb: pointer to current skb being populated 1110 * @rx_ptype: the packet type decoded by hardware 1111 * 1112 * This function checks the ring, descriptor, and packet information in 1113 * order to populate the hash, checksum, VLAN, protocol, and 1114 * other fields within the skb. 1115 **/ 1116 static inline 1117 void iavf_process_skb_fields(struct iavf_ring *rx_ring, 1118 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1119 u8 rx_ptype) 1120 { 1121 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1122 1123 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1124 1125 skb_record_rx_queue(skb, rx_ring->queue_index); 1126 1127 /* modifies the skb - consumes the enet header */ 1128 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1129 } 1130 1131 /** 1132 * iavf_cleanup_headers - Correct empty headers 1133 * @rx_ring: rx descriptor ring packet is being transacted on 1134 * @skb: pointer to current skb being fixed 1135 * 1136 * Also address the case where we are pulling data in on pages only 1137 * and as such no data is present in the skb header. 1138 * 1139 * In addition if skb is not at least 60 bytes we need to pad it so that 1140 * it is large enough to qualify as a valid Ethernet frame. 1141 * 1142 * Returns true if an error was encountered and skb was freed. 1143 **/ 1144 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1145 { 1146 /* if eth_skb_pad returns an error the skb was freed */ 1147 if (eth_skb_pad(skb)) 1148 return true; 1149 1150 return false; 1151 } 1152 1153 /** 1154 * iavf_reuse_rx_page - page flip buffer and store it back on the ring 1155 * @rx_ring: rx descriptor ring to store buffers on 1156 * @old_buff: donor buffer to have page reused 1157 * 1158 * Synchronizes page for reuse by the adapter 1159 **/ 1160 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, 1161 struct iavf_rx_buffer *old_buff) 1162 { 1163 struct iavf_rx_buffer *new_buff; 1164 u16 nta = rx_ring->next_to_alloc; 1165 1166 new_buff = &rx_ring->rx_bi[nta]; 1167 1168 /* update, and store next to alloc */ 1169 nta++; 1170 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1171 1172 /* transfer page from old buffer to new buffer */ 1173 new_buff->dma = old_buff->dma; 1174 new_buff->page = old_buff->page; 1175 new_buff->page_offset = old_buff->page_offset; 1176 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1177 } 1178 1179 /** 1180 * iavf_can_reuse_rx_page - Determine if this page can be reused by 1181 * the adapter for another receive 1182 * 1183 * @rx_buffer: buffer containing the page 1184 * 1185 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1186 * an unused region in the page. 1187 * 1188 * For small pages, @truesize will be a constant value, half the size 1189 * of the memory at page. We'll attempt to alternate between high and 1190 * low halves of the page, with one half ready for use by the hardware 1191 * and the other half being consumed by the stack. We use the page 1192 * ref count to determine whether the stack has finished consuming the 1193 * portion of this page that was passed up with a previous packet. If 1194 * the page ref count is >1, we'll assume the "other" half page is 1195 * still busy, and this page cannot be reused. 1196 * 1197 * For larger pages, @truesize will be the actual space used by the 1198 * received packet (adjusted upward to an even multiple of the cache 1199 * line size). This will advance through the page by the amount 1200 * actually consumed by the received packets while there is still 1201 * space for a buffer. Each region of larger pages will be used at 1202 * most once, after which the page will not be reused. 1203 * 1204 * In either case, if the page is reusable its refcount is increased. 1205 **/ 1206 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) 1207 { 1208 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1209 struct page *page = rx_buffer->page; 1210 1211 /* Is any reuse possible? */ 1212 if (!dev_page_is_reusable(page)) 1213 return false; 1214 1215 #if (PAGE_SIZE < 8192) 1216 /* if we are only owner of page we can reuse it */ 1217 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1218 return false; 1219 #else 1220 #define IAVF_LAST_OFFSET \ 1221 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) 1222 if (rx_buffer->page_offset > IAVF_LAST_OFFSET) 1223 return false; 1224 #endif 1225 1226 /* If we have drained the page fragment pool we need to update 1227 * the pagecnt_bias and page count so that we fully restock the 1228 * number of references the driver holds. 1229 */ 1230 if (unlikely(!pagecnt_bias)) { 1231 page_ref_add(page, USHRT_MAX); 1232 rx_buffer->pagecnt_bias = USHRT_MAX; 1233 } 1234 1235 return true; 1236 } 1237 1238 /** 1239 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1240 * @rx_ring: rx descriptor ring to transact packets on 1241 * @rx_buffer: buffer containing page to add 1242 * @skb: sk_buff to place the data into 1243 * @size: packet length from rx_desc 1244 * 1245 * This function will add the data contained in rx_buffer->page to the skb. 1246 * It will just attach the page as a frag to the skb. 1247 * 1248 * The function will then update the page offset. 1249 **/ 1250 static void iavf_add_rx_frag(struct iavf_ring *rx_ring, 1251 struct iavf_rx_buffer *rx_buffer, 1252 struct sk_buff *skb, 1253 unsigned int size) 1254 { 1255 #if (PAGE_SIZE < 8192) 1256 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1257 #else 1258 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); 1259 #endif 1260 1261 if (!size) 1262 return; 1263 1264 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1265 rx_buffer->page_offset, size, truesize); 1266 1267 /* page is being used so we must update the page offset */ 1268 #if (PAGE_SIZE < 8192) 1269 rx_buffer->page_offset ^= truesize; 1270 #else 1271 rx_buffer->page_offset += truesize; 1272 #endif 1273 } 1274 1275 /** 1276 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1277 * @rx_ring: rx descriptor ring to transact packets on 1278 * @size: size of buffer to add to skb 1279 * 1280 * This function will pull an Rx buffer from the ring and synchronize it 1281 * for use by the CPU. 1282 */ 1283 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, 1284 const unsigned int size) 1285 { 1286 struct iavf_rx_buffer *rx_buffer; 1287 1288 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1289 prefetchw(rx_buffer->page); 1290 if (!size) 1291 return rx_buffer; 1292 1293 /* we are reusing so sync this buffer for CPU use */ 1294 dma_sync_single_range_for_cpu(rx_ring->dev, 1295 rx_buffer->dma, 1296 rx_buffer->page_offset, 1297 size, 1298 DMA_FROM_DEVICE); 1299 1300 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1301 rx_buffer->pagecnt_bias--; 1302 1303 return rx_buffer; 1304 } 1305 1306 /** 1307 * iavf_construct_skb - Allocate skb and populate it 1308 * @rx_ring: rx descriptor ring to transact packets on 1309 * @rx_buffer: rx buffer to pull data from 1310 * @size: size of buffer to add to skb 1311 * 1312 * This function allocates an skb. It then populates it with the page 1313 * data from the current receive descriptor, taking care to set up the 1314 * skb correctly. 1315 */ 1316 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, 1317 struct iavf_rx_buffer *rx_buffer, 1318 unsigned int size) 1319 { 1320 void *va; 1321 #if (PAGE_SIZE < 8192) 1322 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1323 #else 1324 unsigned int truesize = SKB_DATA_ALIGN(size); 1325 #endif 1326 unsigned int headlen; 1327 struct sk_buff *skb; 1328 1329 if (!rx_buffer) 1330 return NULL; 1331 /* prefetch first cache line of first page */ 1332 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1333 net_prefetch(va); 1334 1335 /* allocate a skb to store the frags */ 1336 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1337 IAVF_RX_HDR_SIZE, 1338 GFP_ATOMIC | __GFP_NOWARN); 1339 if (unlikely(!skb)) 1340 return NULL; 1341 1342 /* Determine available headroom for copy */ 1343 headlen = size; 1344 if (headlen > IAVF_RX_HDR_SIZE) 1345 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE); 1346 1347 /* align pull length to size of long to optimize memcpy performance */ 1348 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1349 1350 /* update all of the pointers */ 1351 size -= headlen; 1352 if (size) { 1353 skb_add_rx_frag(skb, 0, rx_buffer->page, 1354 rx_buffer->page_offset + headlen, 1355 size, truesize); 1356 1357 /* buffer is used by skb, update page_offset */ 1358 #if (PAGE_SIZE < 8192) 1359 rx_buffer->page_offset ^= truesize; 1360 #else 1361 rx_buffer->page_offset += truesize; 1362 #endif 1363 } else { 1364 /* buffer is unused, reset bias back to rx_buffer */ 1365 rx_buffer->pagecnt_bias++; 1366 } 1367 1368 return skb; 1369 } 1370 1371 /** 1372 * iavf_build_skb - Build skb around an existing buffer 1373 * @rx_ring: Rx descriptor ring to transact packets on 1374 * @rx_buffer: Rx buffer to pull data from 1375 * @size: size of buffer to add to skb 1376 * 1377 * This function builds an skb around an existing Rx buffer, taking care 1378 * to set up the skb correctly and avoid any memcpy overhead. 1379 */ 1380 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, 1381 struct iavf_rx_buffer *rx_buffer, 1382 unsigned int size) 1383 { 1384 void *va; 1385 #if (PAGE_SIZE < 8192) 1386 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1387 #else 1388 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1389 SKB_DATA_ALIGN(IAVF_SKB_PAD + size); 1390 #endif 1391 struct sk_buff *skb; 1392 1393 if (!rx_buffer) 1394 return NULL; 1395 /* prefetch first cache line of first page */ 1396 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1397 net_prefetch(va); 1398 1399 /* build an skb around the page buffer */ 1400 skb = napi_build_skb(va - IAVF_SKB_PAD, truesize); 1401 if (unlikely(!skb)) 1402 return NULL; 1403 1404 /* update pointers within the skb to store the data */ 1405 skb_reserve(skb, IAVF_SKB_PAD); 1406 __skb_put(skb, size); 1407 1408 /* buffer is used by skb, update page_offset */ 1409 #if (PAGE_SIZE < 8192) 1410 rx_buffer->page_offset ^= truesize; 1411 #else 1412 rx_buffer->page_offset += truesize; 1413 #endif 1414 1415 return skb; 1416 } 1417 1418 /** 1419 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free 1420 * @rx_ring: rx descriptor ring to transact packets on 1421 * @rx_buffer: rx buffer to pull data from 1422 * 1423 * This function will clean up the contents of the rx_buffer. It will 1424 * either recycle the buffer or unmap it and free the associated resources. 1425 */ 1426 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, 1427 struct iavf_rx_buffer *rx_buffer) 1428 { 1429 if (!rx_buffer) 1430 return; 1431 1432 if (iavf_can_reuse_rx_page(rx_buffer)) { 1433 /* hand second half of page back to the ring */ 1434 iavf_reuse_rx_page(rx_ring, rx_buffer); 1435 rx_ring->rx_stats.page_reuse_count++; 1436 } else { 1437 /* we are not reusing the buffer so unmap it */ 1438 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1439 iavf_rx_pg_size(rx_ring), 1440 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); 1441 __page_frag_cache_drain(rx_buffer->page, 1442 rx_buffer->pagecnt_bias); 1443 } 1444 1445 /* clear contents of buffer_info */ 1446 rx_buffer->page = NULL; 1447 } 1448 1449 /** 1450 * iavf_is_non_eop - process handling of non-EOP buffers 1451 * @rx_ring: Rx ring being processed 1452 * @rx_desc: Rx descriptor for current buffer 1453 * @skb: Current socket buffer containing buffer in progress 1454 * 1455 * This function updates next to clean. If the buffer is an EOP buffer 1456 * this function exits returning false, otherwise it will place the 1457 * sk_buff in the next buffer to be chained and return true indicating 1458 * that this is in fact a non-EOP buffer. 1459 **/ 1460 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1461 union iavf_rx_desc *rx_desc, 1462 struct sk_buff *skb) 1463 { 1464 u32 ntc = rx_ring->next_to_clean + 1; 1465 1466 /* fetch, update, and store next to clean */ 1467 ntc = (ntc < rx_ring->count) ? ntc : 0; 1468 rx_ring->next_to_clean = ntc; 1469 1470 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1471 1472 /* if we are the last buffer then there is nothing else to do */ 1473 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1474 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1475 return false; 1476 1477 rx_ring->rx_stats.non_eop_descs++; 1478 1479 return true; 1480 } 1481 1482 /** 1483 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1484 * @rx_ring: rx descriptor ring to transact packets on 1485 * @budget: Total limit on number of packets to process 1486 * 1487 * This function provides a "bounce buffer" approach to Rx interrupt 1488 * processing. The advantage to this is that on systems that have 1489 * expensive overhead for IOMMU access this provides a means of avoiding 1490 * it by maintaining the mapping of the page to the system. 1491 * 1492 * Returns amount of work completed 1493 **/ 1494 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1495 { 1496 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1497 struct sk_buff *skb = rx_ring->skb; 1498 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1499 bool failure = false; 1500 1501 while (likely(total_rx_packets < (unsigned int)budget)) { 1502 struct iavf_rx_buffer *rx_buffer; 1503 union iavf_rx_desc *rx_desc; 1504 unsigned int size; 1505 u16 vlan_tag = 0; 1506 u8 rx_ptype; 1507 u64 qword; 1508 1509 /* return some buffers to hardware, one at a time is too slow */ 1510 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1511 failure = failure || 1512 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1513 cleaned_count = 0; 1514 } 1515 1516 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1517 1518 /* status_error_len will always be zero for unused descriptors 1519 * because it's cleared in cleanup, and overlaps with hdr_addr 1520 * which is always zero because packet split isn't used, if the 1521 * hardware wrote DD then the length will be non-zero 1522 */ 1523 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1524 1525 /* This memory barrier is needed to keep us from reading 1526 * any other fields out of the rx_desc until we have 1527 * verified the descriptor has been written back. 1528 */ 1529 dma_rmb(); 1530 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) 1531 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) 1532 break; 1533 1534 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> 1535 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; 1536 1537 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1538 rx_buffer = iavf_get_rx_buffer(rx_ring, size); 1539 1540 /* retrieve a buffer from the ring */ 1541 if (skb) 1542 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1543 else if (ring_uses_build_skb(rx_ring)) 1544 skb = iavf_build_skb(rx_ring, rx_buffer, size); 1545 else 1546 skb = iavf_construct_skb(rx_ring, rx_buffer, size); 1547 1548 /* exit if we failed to retrieve a buffer */ 1549 if (!skb) { 1550 rx_ring->rx_stats.alloc_buff_failed++; 1551 if (rx_buffer) 1552 rx_buffer->pagecnt_bias++; 1553 break; 1554 } 1555 1556 iavf_put_rx_buffer(rx_ring, rx_buffer); 1557 cleaned_count++; 1558 1559 if (iavf_is_non_eop(rx_ring, rx_desc, skb)) 1560 continue; 1561 1562 /* ERR_MASK will only have valid bits if EOP set, and 1563 * what we are doing here is actually checking 1564 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1565 * the error field 1566 */ 1567 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1568 dev_kfree_skb_any(skb); 1569 skb = NULL; 1570 continue; 1571 } 1572 1573 if (iavf_cleanup_headers(rx_ring, skb)) { 1574 skb = NULL; 1575 continue; 1576 } 1577 1578 /* probably a little skewed due to removing CRC */ 1579 total_rx_bytes += skb->len; 1580 1581 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1582 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> 1583 IAVF_RXD_QW1_PTYPE_SHIFT; 1584 1585 /* populate checksum, VLAN, and protocol */ 1586 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1587 1588 if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) && 1589 rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) 1590 vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1); 1591 if (rx_desc->wb.qword2.ext_status & 1592 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) && 1593 rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) 1594 vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2); 1595 1596 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1597 iavf_receive_skb(rx_ring, skb, vlan_tag); 1598 skb = NULL; 1599 1600 /* update budget accounting */ 1601 total_rx_packets++; 1602 } 1603 1604 rx_ring->skb = skb; 1605 1606 u64_stats_update_begin(&rx_ring->syncp); 1607 rx_ring->stats.packets += total_rx_packets; 1608 rx_ring->stats.bytes += total_rx_bytes; 1609 u64_stats_update_end(&rx_ring->syncp); 1610 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1611 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1612 1613 /* guarantee a trip back through this routine if there was a failure */ 1614 return failure ? budget : (int)total_rx_packets; 1615 } 1616 1617 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1618 { 1619 u32 val; 1620 1621 /* We don't bother with setting the CLEARPBA bit as the data sheet 1622 * points out doing so is "meaningless since it was already 1623 * auto-cleared". The auto-clearing happens when the interrupt is 1624 * asserted. 1625 * 1626 * Hardware errata 28 for also indicates that writing to a 1627 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1628 * an event in the PBA anyway so we need to rely on the automask 1629 * to hold pending events for us until the interrupt is re-enabled 1630 * 1631 * The itr value is reported in microseconds, and the register 1632 * value is recorded in 2 microsecond units. For this reason we 1633 * only need to shift by the interval shift - 1 instead of the 1634 * full value. 1635 */ 1636 itr &= IAVF_ITR_MASK; 1637 1638 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1639 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1640 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1641 1642 return val; 1643 } 1644 1645 /* a small macro to shorten up some long lines */ 1646 #define INTREG IAVF_VFINT_DYN_CTLN1 1647 1648 /* The act of updating the ITR will cause it to immediately trigger. In order 1649 * to prevent this from throwing off adaptive update statistics we defer the 1650 * update so that it can only happen so often. So after either Tx or Rx are 1651 * updated we make the adaptive scheme wait until either the ITR completely 1652 * expires via the next_update expiration or we have been through at least 1653 * 3 interrupts. 1654 */ 1655 #define ITR_COUNTDOWN_START 3 1656 1657 /** 1658 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1659 * @vsi: the VSI we care about 1660 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1661 * 1662 **/ 1663 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, 1664 struct iavf_q_vector *q_vector) 1665 { 1666 struct iavf_hw *hw = &vsi->back->hw; 1667 u32 intval; 1668 1669 /* These will do nothing if dynamic updates are not enabled */ 1670 iavf_update_itr(q_vector, &q_vector->tx); 1671 iavf_update_itr(q_vector, &q_vector->rx); 1672 1673 /* This block of logic allows us to get away with only updating 1674 * one ITR value with each interrupt. The idea is to perform a 1675 * pseudo-lazy update with the following criteria. 1676 * 1677 * 1. Rx is given higher priority than Tx if both are in same state 1678 * 2. If we must reduce an ITR that is given highest priority. 1679 * 3. We then give priority to increasing ITR based on amount. 1680 */ 1681 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1682 /* Rx ITR needs to be reduced, this is highest priority */ 1683 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1684 q_vector->rx.target_itr); 1685 q_vector->rx.current_itr = q_vector->rx.target_itr; 1686 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1687 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1688 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1689 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1690 /* Tx ITR needs to be reduced, this is second priority 1691 * Tx ITR needs to be increased more than Rx, fourth priority 1692 */ 1693 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1694 q_vector->tx.target_itr); 1695 q_vector->tx.current_itr = q_vector->tx.target_itr; 1696 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1697 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1698 /* Rx ITR needs to be increased, third priority */ 1699 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1700 q_vector->rx.target_itr); 1701 q_vector->rx.current_itr = q_vector->rx.target_itr; 1702 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1703 } else { 1704 /* No ITR update, lowest priority */ 1705 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1706 if (q_vector->itr_countdown) 1707 q_vector->itr_countdown--; 1708 } 1709 1710 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1711 wr32(hw, INTREG(q_vector->reg_idx), intval); 1712 } 1713 1714 /** 1715 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1716 * @napi: napi struct with our devices info in it 1717 * @budget: amount of work driver is allowed to do this pass, in packets 1718 * 1719 * This function will clean all queues associated with a q_vector. 1720 * 1721 * Returns the amount of work done 1722 **/ 1723 int iavf_napi_poll(struct napi_struct *napi, int budget) 1724 { 1725 struct iavf_q_vector *q_vector = 1726 container_of(napi, struct iavf_q_vector, napi); 1727 struct iavf_vsi *vsi = q_vector->vsi; 1728 struct iavf_ring *ring; 1729 bool clean_complete = true; 1730 bool arm_wb = false; 1731 int budget_per_ring; 1732 int work_done = 0; 1733 1734 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1735 napi_complete(napi); 1736 return 0; 1737 } 1738 1739 /* Since the actual Tx work is minimal, we can give the Tx a larger 1740 * budget and be more aggressive about cleaning up the Tx descriptors. 1741 */ 1742 iavf_for_each_ring(ring, q_vector->tx) { 1743 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1744 clean_complete = false; 1745 continue; 1746 } 1747 arm_wb |= ring->arm_wb; 1748 ring->arm_wb = false; 1749 } 1750 1751 /* Handle case where we are called by netpoll with a budget of 0 */ 1752 if (budget <= 0) 1753 goto tx_only; 1754 1755 /* We attempt to distribute budget to each Rx queue fairly, but don't 1756 * allow the budget to go below 1 because that would exit polling early. 1757 */ 1758 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1759 1760 iavf_for_each_ring(ring, q_vector->rx) { 1761 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1762 1763 work_done += cleaned; 1764 /* if we clean as many as budgeted, we must not be done */ 1765 if (cleaned >= budget_per_ring) 1766 clean_complete = false; 1767 } 1768 1769 /* If work not completed, return budget and polling will return */ 1770 if (!clean_complete) { 1771 int cpu_id = smp_processor_id(); 1772 1773 /* It is possible that the interrupt affinity has changed but, 1774 * if the cpu is pegged at 100%, polling will never exit while 1775 * traffic continues and the interrupt will be stuck on this 1776 * cpu. We check to make sure affinity is correct before we 1777 * continue to poll, otherwise we must stop polling so the 1778 * interrupt can move to the correct cpu. 1779 */ 1780 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1781 /* Tell napi that we are done polling */ 1782 napi_complete_done(napi, work_done); 1783 1784 /* Force an interrupt */ 1785 iavf_force_wb(vsi, q_vector); 1786 1787 /* Return budget-1 so that polling stops */ 1788 return budget - 1; 1789 } 1790 tx_only: 1791 if (arm_wb) { 1792 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1793 iavf_enable_wb_on_itr(vsi, q_vector); 1794 } 1795 return budget; 1796 } 1797 1798 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1799 q_vector->arm_wb_state = false; 1800 1801 /* Exit the polling mode, but don't re-enable interrupts if stack might 1802 * poll us due to busy-polling 1803 */ 1804 if (likely(napi_complete_done(napi, work_done))) 1805 iavf_update_enable_itr(vsi, q_vector); 1806 1807 return min_t(int, work_done, budget - 1); 1808 } 1809 1810 /** 1811 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1812 * @skb: send buffer 1813 * @tx_ring: ring to send buffer on 1814 * @flags: the tx flags to be set 1815 * 1816 * Checks the skb and set up correspondingly several generic transmit flags 1817 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1818 * 1819 * Returns error code indicate the frame should be dropped upon error and the 1820 * otherwise returns 0 to indicate the flags has been set properly. 1821 **/ 1822 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1823 struct iavf_ring *tx_ring, u32 *flags) 1824 { 1825 u32 tx_flags = 0; 1826 1827 1828 /* stack will only request hardware VLAN insertion offload for protocols 1829 * that the driver supports and has enabled 1830 */ 1831 if (!skb_vlan_tag_present(skb)) 1832 return; 1833 1834 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1835 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) { 1836 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1837 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) { 1838 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1839 } else { 1840 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n"); 1841 return; 1842 } 1843 1844 *flags = tx_flags; 1845 } 1846 1847 /** 1848 * iavf_tso - set up the tso context descriptor 1849 * @first: pointer to first Tx buffer for xmit 1850 * @hdr_len: ptr to the size of the packet header 1851 * @cd_type_cmd_tso_mss: Quad Word 1 1852 * 1853 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1854 **/ 1855 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1856 u64 *cd_type_cmd_tso_mss) 1857 { 1858 struct sk_buff *skb = first->skb; 1859 u64 cd_cmd, cd_tso_len, cd_mss; 1860 union { 1861 struct iphdr *v4; 1862 struct ipv6hdr *v6; 1863 unsigned char *hdr; 1864 } ip; 1865 union { 1866 struct tcphdr *tcp; 1867 struct udphdr *udp; 1868 unsigned char *hdr; 1869 } l4; 1870 u32 paylen, l4_offset; 1871 u16 gso_segs, gso_size; 1872 int err; 1873 1874 if (skb->ip_summed != CHECKSUM_PARTIAL) 1875 return 0; 1876 1877 if (!skb_is_gso(skb)) 1878 return 0; 1879 1880 err = skb_cow_head(skb, 0); 1881 if (err < 0) 1882 return err; 1883 1884 ip.hdr = skb_network_header(skb); 1885 l4.hdr = skb_transport_header(skb); 1886 1887 /* initialize outer IP header fields */ 1888 if (ip.v4->version == 4) { 1889 ip.v4->tot_len = 0; 1890 ip.v4->check = 0; 1891 } else { 1892 ip.v6->payload_len = 0; 1893 } 1894 1895 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1896 SKB_GSO_GRE_CSUM | 1897 SKB_GSO_IPXIP4 | 1898 SKB_GSO_IPXIP6 | 1899 SKB_GSO_UDP_TUNNEL | 1900 SKB_GSO_UDP_TUNNEL_CSUM)) { 1901 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1902 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1903 l4.udp->len = 0; 1904 1905 /* determine offset of outer transport header */ 1906 l4_offset = l4.hdr - skb->data; 1907 1908 /* remove payload length from outer checksum */ 1909 paylen = skb->len - l4_offset; 1910 csum_replace_by_diff(&l4.udp->check, 1911 (__force __wsum)htonl(paylen)); 1912 } 1913 1914 /* reset pointers to inner headers */ 1915 ip.hdr = skb_inner_network_header(skb); 1916 l4.hdr = skb_inner_transport_header(skb); 1917 1918 /* initialize inner IP header fields */ 1919 if (ip.v4->version == 4) { 1920 ip.v4->tot_len = 0; 1921 ip.v4->check = 0; 1922 } else { 1923 ip.v6->payload_len = 0; 1924 } 1925 } 1926 1927 /* determine offset of inner transport header */ 1928 l4_offset = l4.hdr - skb->data; 1929 /* remove payload length from inner checksum */ 1930 paylen = skb->len - l4_offset; 1931 1932 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1933 csum_replace_by_diff(&l4.udp->check, 1934 (__force __wsum)htonl(paylen)); 1935 /* compute length of UDP segmentation header */ 1936 *hdr_len = (u8)sizeof(l4.udp) + l4_offset; 1937 } else { 1938 csum_replace_by_diff(&l4.tcp->check, 1939 (__force __wsum)htonl(paylen)); 1940 /* compute length of TCP segmentation header */ 1941 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset); 1942 } 1943 1944 /* pull values out of skb_shinfo */ 1945 gso_size = skb_shinfo(skb)->gso_size; 1946 gso_segs = skb_shinfo(skb)->gso_segs; 1947 1948 /* update GSO size and bytecount with header size */ 1949 first->gso_segs = gso_segs; 1950 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1951 1952 /* find the field values */ 1953 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1954 cd_tso_len = skb->len - *hdr_len; 1955 cd_mss = gso_size; 1956 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1957 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1958 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1959 return 1; 1960 } 1961 1962 /** 1963 * iavf_tx_enable_csum - Enable Tx checksum offloads 1964 * @skb: send buffer 1965 * @tx_flags: pointer to Tx flags currently set 1966 * @td_cmd: Tx descriptor command bits to set 1967 * @td_offset: Tx descriptor header offsets to set 1968 * @tx_ring: Tx descriptor ring 1969 * @cd_tunneling: ptr to context desc bits 1970 **/ 1971 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1972 u32 *td_cmd, u32 *td_offset, 1973 struct iavf_ring *tx_ring, 1974 u32 *cd_tunneling) 1975 { 1976 union { 1977 struct iphdr *v4; 1978 struct ipv6hdr *v6; 1979 unsigned char *hdr; 1980 } ip; 1981 union { 1982 struct tcphdr *tcp; 1983 struct udphdr *udp; 1984 unsigned char *hdr; 1985 } l4; 1986 unsigned char *exthdr; 1987 u32 offset, cmd = 0; 1988 __be16 frag_off; 1989 u8 l4_proto = 0; 1990 1991 if (skb->ip_summed != CHECKSUM_PARTIAL) 1992 return 0; 1993 1994 ip.hdr = skb_network_header(skb); 1995 l4.hdr = skb_transport_header(skb); 1996 1997 /* compute outer L2 header size */ 1998 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 1999 2000 if (skb->encapsulation) { 2001 u32 tunnel = 0; 2002 /* define outer network header type */ 2003 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2004 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2005 IAVF_TX_CTX_EXT_IP_IPV4 : 2006 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 2007 2008 l4_proto = ip.v4->protocol; 2009 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2010 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 2011 2012 exthdr = ip.hdr + sizeof(*ip.v6); 2013 l4_proto = ip.v6->nexthdr; 2014 if (l4.hdr != exthdr) 2015 ipv6_skip_exthdr(skb, exthdr - skb->data, 2016 &l4_proto, &frag_off); 2017 } 2018 2019 /* define outer transport */ 2020 switch (l4_proto) { 2021 case IPPROTO_UDP: 2022 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 2023 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2024 break; 2025 case IPPROTO_GRE: 2026 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 2027 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2028 break; 2029 case IPPROTO_IPIP: 2030 case IPPROTO_IPV6: 2031 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2032 l4.hdr = skb_inner_network_header(skb); 2033 break; 2034 default: 2035 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2036 return -1; 2037 2038 skb_checksum_help(skb); 2039 return 0; 2040 } 2041 2042 /* compute outer L3 header size */ 2043 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2044 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2045 2046 /* switch IP header pointer from outer to inner header */ 2047 ip.hdr = skb_inner_network_header(skb); 2048 2049 /* compute tunnel header size */ 2050 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2051 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 2052 2053 /* indicate if we need to offload outer UDP header */ 2054 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 2055 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2056 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2057 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 2058 2059 /* record tunnel offload values */ 2060 *cd_tunneling |= tunnel; 2061 2062 /* switch L4 header pointer from outer to inner */ 2063 l4.hdr = skb_inner_transport_header(skb); 2064 l4_proto = 0; 2065 2066 /* reset type as we transition from outer to inner headers */ 2067 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 2068 if (ip.v4->version == 4) 2069 *tx_flags |= IAVF_TX_FLAGS_IPV4; 2070 if (ip.v6->version == 6) 2071 *tx_flags |= IAVF_TX_FLAGS_IPV6; 2072 } 2073 2074 /* Enable IP checksum offloads */ 2075 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2076 l4_proto = ip.v4->protocol; 2077 /* the stack computes the IP header already, the only time we 2078 * need the hardware to recompute it is in the case of TSO. 2079 */ 2080 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2081 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 2082 IAVF_TX_DESC_CMD_IIPT_IPV4; 2083 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2084 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 2085 2086 exthdr = ip.hdr + sizeof(*ip.v6); 2087 l4_proto = ip.v6->nexthdr; 2088 if (l4.hdr != exthdr) 2089 ipv6_skip_exthdr(skb, exthdr - skb->data, 2090 &l4_proto, &frag_off); 2091 } 2092 2093 /* compute inner L3 header size */ 2094 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 2095 2096 /* Enable L4 checksum offloads */ 2097 switch (l4_proto) { 2098 case IPPROTO_TCP: 2099 /* enable checksum offloads */ 2100 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 2101 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2102 break; 2103 case IPPROTO_SCTP: 2104 /* enable SCTP checksum offload */ 2105 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 2106 offset |= (sizeof(struct sctphdr) >> 2) << 2107 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2108 break; 2109 case IPPROTO_UDP: 2110 /* enable UDP checksum offload */ 2111 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 2112 offset |= (sizeof(struct udphdr) >> 2) << 2113 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2114 break; 2115 default: 2116 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2117 return -1; 2118 skb_checksum_help(skb); 2119 return 0; 2120 } 2121 2122 *td_cmd |= cmd; 2123 *td_offset |= offset; 2124 2125 return 1; 2126 } 2127 2128 /** 2129 * iavf_create_tx_ctx - Build the Tx context descriptor 2130 * @tx_ring: ring to create the descriptor on 2131 * @cd_type_cmd_tso_mss: Quad Word 1 2132 * @cd_tunneling: Quad Word 0 - bits 0-31 2133 * @cd_l2tag2: Quad Word 0 - bits 32-63 2134 **/ 2135 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 2136 const u64 cd_type_cmd_tso_mss, 2137 const u32 cd_tunneling, const u32 cd_l2tag2) 2138 { 2139 struct iavf_tx_context_desc *context_desc; 2140 int i = tx_ring->next_to_use; 2141 2142 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 2143 !cd_tunneling && !cd_l2tag2) 2144 return; 2145 2146 /* grab the next descriptor */ 2147 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 2148 2149 i++; 2150 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2151 2152 /* cpu_to_le32 and assign to struct fields */ 2153 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2154 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2155 context_desc->rsvd = cpu_to_le16(0); 2156 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2157 } 2158 2159 /** 2160 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 2161 * @skb: send buffer 2162 * 2163 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 2164 * and so we need to figure out the cases where we need to linearize the skb. 2165 * 2166 * For TSO we need to count the TSO header and segment payload separately. 2167 * As such we need to check cases where we have 7 fragments or more as we 2168 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2169 * the segment payload in the first descriptor, and another 7 for the 2170 * fragments. 2171 **/ 2172 bool __iavf_chk_linearize(struct sk_buff *skb) 2173 { 2174 const skb_frag_t *frag, *stale; 2175 int nr_frags, sum; 2176 2177 /* no need to check if number of frags is less than 7 */ 2178 nr_frags = skb_shinfo(skb)->nr_frags; 2179 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 2180 return false; 2181 2182 /* We need to walk through the list and validate that each group 2183 * of 6 fragments totals at least gso_size. 2184 */ 2185 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 2186 frag = &skb_shinfo(skb)->frags[0]; 2187 2188 /* Initialize size to the negative value of gso_size minus 1. We 2189 * use this as the worst case scenerio in which the frag ahead 2190 * of us only provides one byte which is why we are limited to 6 2191 * descriptors for a single transmit as the header and previous 2192 * fragment are already consuming 2 descriptors. 2193 */ 2194 sum = 1 - skb_shinfo(skb)->gso_size; 2195 2196 /* Add size of frags 0 through 4 to create our initial sum */ 2197 sum += skb_frag_size(frag++); 2198 sum += skb_frag_size(frag++); 2199 sum += skb_frag_size(frag++); 2200 sum += skb_frag_size(frag++); 2201 sum += skb_frag_size(frag++); 2202 2203 /* Walk through fragments adding latest fragment, testing it, and 2204 * then removing stale fragments from the sum. 2205 */ 2206 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2207 int stale_size = skb_frag_size(stale); 2208 2209 sum += skb_frag_size(frag++); 2210 2211 /* The stale fragment may present us with a smaller 2212 * descriptor than the actual fragment size. To account 2213 * for that we need to remove all the data on the front and 2214 * figure out what the remainder would be in the last 2215 * descriptor associated with the fragment. 2216 */ 2217 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 2218 int align_pad = -(skb_frag_off(stale)) & 2219 (IAVF_MAX_READ_REQ_SIZE - 1); 2220 2221 sum -= align_pad; 2222 stale_size -= align_pad; 2223 2224 do { 2225 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2226 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2227 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 2228 } 2229 2230 /* if sum is negative we failed to make sufficient progress */ 2231 if (sum < 0) 2232 return true; 2233 2234 if (!nr_frags--) 2235 break; 2236 2237 sum -= stale_size; 2238 } 2239 2240 return false; 2241 } 2242 2243 /** 2244 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 2245 * @tx_ring: the ring to be checked 2246 * @size: the size buffer we want to assure is available 2247 * 2248 * Returns -EBUSY if a stop is needed, else 0 2249 **/ 2250 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 2251 { 2252 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2253 /* Memory barrier before checking head and tail */ 2254 smp_mb(); 2255 2256 /* Check again in a case another CPU has just made room available. */ 2257 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 2258 return -EBUSY; 2259 2260 /* A reprieve! - use start_queue because it doesn't call schedule */ 2261 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2262 ++tx_ring->tx_stats.restart_queue; 2263 return 0; 2264 } 2265 2266 /** 2267 * iavf_tx_map - Build the Tx descriptor 2268 * @tx_ring: ring to send buffer on 2269 * @skb: send buffer 2270 * @first: first buffer info buffer to use 2271 * @tx_flags: collected send information 2272 * @hdr_len: size of the packet header 2273 * @td_cmd: the command field in the descriptor 2274 * @td_offset: offset for checksum or crc 2275 **/ 2276 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 2277 struct iavf_tx_buffer *first, u32 tx_flags, 2278 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2279 { 2280 unsigned int data_len = skb->data_len; 2281 unsigned int size = skb_headlen(skb); 2282 skb_frag_t *frag; 2283 struct iavf_tx_buffer *tx_bi; 2284 struct iavf_tx_desc *tx_desc; 2285 u16 i = tx_ring->next_to_use; 2286 u32 td_tag = 0; 2287 dma_addr_t dma; 2288 2289 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 2290 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 2291 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2292 IAVF_TX_FLAGS_VLAN_SHIFT; 2293 } 2294 2295 first->tx_flags = tx_flags; 2296 2297 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2298 2299 tx_desc = IAVF_TX_DESC(tx_ring, i); 2300 tx_bi = first; 2301 2302 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2303 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2304 2305 if (dma_mapping_error(tx_ring->dev, dma)) 2306 goto dma_error; 2307 2308 /* record length, and DMA address */ 2309 dma_unmap_len_set(tx_bi, len, size); 2310 dma_unmap_addr_set(tx_bi, dma, dma); 2311 2312 /* align size to end of page */ 2313 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 2314 tx_desc->buffer_addr = cpu_to_le64(dma); 2315 2316 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 2317 tx_desc->cmd_type_offset_bsz = 2318 build_ctob(td_cmd, td_offset, 2319 max_data, td_tag); 2320 2321 tx_desc++; 2322 i++; 2323 2324 if (i == tx_ring->count) { 2325 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2326 i = 0; 2327 } 2328 2329 dma += max_data; 2330 size -= max_data; 2331 2332 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2333 tx_desc->buffer_addr = cpu_to_le64(dma); 2334 } 2335 2336 if (likely(!data_len)) 2337 break; 2338 2339 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2340 size, td_tag); 2341 2342 tx_desc++; 2343 i++; 2344 2345 if (i == tx_ring->count) { 2346 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2347 i = 0; 2348 } 2349 2350 size = skb_frag_size(frag); 2351 data_len -= size; 2352 2353 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2354 DMA_TO_DEVICE); 2355 2356 tx_bi = &tx_ring->tx_bi[i]; 2357 } 2358 2359 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 2360 2361 i++; 2362 if (i == tx_ring->count) 2363 i = 0; 2364 2365 tx_ring->next_to_use = i; 2366 2367 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2368 2369 /* write last descriptor with RS and EOP bits */ 2370 td_cmd |= IAVF_TXD_CMD; 2371 tx_desc->cmd_type_offset_bsz = 2372 build_ctob(td_cmd, td_offset, size, td_tag); 2373 2374 skb_tx_timestamp(skb); 2375 2376 /* Force memory writes to complete before letting h/w know there 2377 * are new descriptors to fetch. 2378 * 2379 * We also use this memory barrier to make certain all of the 2380 * status bits have been updated before next_to_watch is written. 2381 */ 2382 wmb(); 2383 2384 /* set next_to_watch value indicating a packet is present */ 2385 first->next_to_watch = tx_desc; 2386 2387 /* notify HW of packet */ 2388 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 2389 writel(i, tx_ring->tail); 2390 } 2391 2392 return; 2393 2394 dma_error: 2395 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2396 2397 /* clear dma mappings for failed tx_bi map */ 2398 for (;;) { 2399 tx_bi = &tx_ring->tx_bi[i]; 2400 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2401 if (tx_bi == first) 2402 break; 2403 if (i == 0) 2404 i = tx_ring->count; 2405 i--; 2406 } 2407 2408 tx_ring->next_to_use = i; 2409 } 2410 2411 /** 2412 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2413 * @skb: send buffer 2414 * @tx_ring: ring to send buffer on 2415 * 2416 * Returns NETDEV_TX_OK if sent, else an error code 2417 **/ 2418 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2419 struct iavf_ring *tx_ring) 2420 { 2421 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2422 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2423 struct iavf_tx_buffer *first; 2424 u32 td_offset = 0; 2425 u32 tx_flags = 0; 2426 __be16 protocol; 2427 u32 td_cmd = 0; 2428 u8 hdr_len = 0; 2429 int tso, count; 2430 2431 /* prefetch the data, we'll need it later */ 2432 prefetch(skb->data); 2433 2434 iavf_trace(xmit_frame_ring, skb, tx_ring); 2435 2436 count = iavf_xmit_descriptor_count(skb); 2437 if (iavf_chk_linearize(skb, count)) { 2438 if (__skb_linearize(skb)) { 2439 dev_kfree_skb_any(skb); 2440 return NETDEV_TX_OK; 2441 } 2442 count = iavf_txd_use_count(skb->len); 2443 tx_ring->tx_stats.tx_linearize++; 2444 } 2445 2446 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2447 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2448 * + 4 desc gap to avoid the cache line where head is, 2449 * + 1 desc for context descriptor, 2450 * otherwise try next time 2451 */ 2452 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2453 tx_ring->tx_stats.tx_busy++; 2454 return NETDEV_TX_BUSY; 2455 } 2456 2457 /* record the location of the first descriptor for this packet */ 2458 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2459 first->skb = skb; 2460 first->bytecount = skb->len; 2461 first->gso_segs = 1; 2462 2463 /* prepare the xmit flags */ 2464 iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags); 2465 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2466 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 << 2467 IAVF_TXD_CTX_QW1_CMD_SHIFT; 2468 cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2469 IAVF_TX_FLAGS_VLAN_SHIFT; 2470 } 2471 2472 /* obtain protocol of skb */ 2473 protocol = vlan_get_protocol(skb); 2474 2475 /* setup IPv4/IPv6 offloads */ 2476 if (protocol == htons(ETH_P_IP)) 2477 tx_flags |= IAVF_TX_FLAGS_IPV4; 2478 else if (protocol == htons(ETH_P_IPV6)) 2479 tx_flags |= IAVF_TX_FLAGS_IPV6; 2480 2481 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2482 2483 if (tso < 0) 2484 goto out_drop; 2485 else if (tso) 2486 tx_flags |= IAVF_TX_FLAGS_TSO; 2487 2488 /* Always offload the checksum, since it's in the data descriptor */ 2489 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2490 tx_ring, &cd_tunneling); 2491 if (tso < 0) 2492 goto out_drop; 2493 2494 /* always enable CRC insertion offload */ 2495 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2496 2497 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2498 cd_tunneling, cd_l2tag2); 2499 2500 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2501 td_cmd, td_offset); 2502 2503 return NETDEV_TX_OK; 2504 2505 out_drop: 2506 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2507 dev_kfree_skb_any(first->skb); 2508 first->skb = NULL; 2509 return NETDEV_TX_OK; 2510 } 2511 2512 /** 2513 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2514 * @skb: send buffer 2515 * @netdev: network interface device structure 2516 * 2517 * Returns NETDEV_TX_OK if sent, else an error code 2518 **/ 2519 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2520 { 2521 struct iavf_adapter *adapter = netdev_priv(netdev); 2522 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2523 2524 /* hardware can't handle really short frames, hardware padding works 2525 * beyond this point 2526 */ 2527 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2528 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2529 return NETDEV_TX_OK; 2530 skb->len = IAVF_MIN_TX_LEN; 2531 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2532 } 2533 2534 return iavf_xmit_frame_ring(skb, tx_ring); 2535 } 2536