1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 
6 #include "iavf.h"
7 #include "iavf_trace.h"
8 #include "iavf_prototype.h"
9 
10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11 				u32 td_tag)
12 {
13 	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14 			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
15 			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16 			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17 			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
18 }
19 
20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21 
22 /**
23  * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24  * @ring:      the ring that owns the buffer
25  * @tx_buffer: the buffer to free
26  **/
27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28 					    struct iavf_tx_buffer *tx_buffer)
29 {
30 	if (tx_buffer->skb) {
31 		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32 			kfree(tx_buffer->raw_buf);
33 		else
34 			dev_kfree_skb_any(tx_buffer->skb);
35 		if (dma_unmap_len(tx_buffer, len))
36 			dma_unmap_single(ring->dev,
37 					 dma_unmap_addr(tx_buffer, dma),
38 					 dma_unmap_len(tx_buffer, len),
39 					 DMA_TO_DEVICE);
40 	} else if (dma_unmap_len(tx_buffer, len)) {
41 		dma_unmap_page(ring->dev,
42 			       dma_unmap_addr(tx_buffer, dma),
43 			       dma_unmap_len(tx_buffer, len),
44 			       DMA_TO_DEVICE);
45 	}
46 
47 	tx_buffer->next_to_watch = NULL;
48 	tx_buffer->skb = NULL;
49 	dma_unmap_len_set(tx_buffer, len, 0);
50 	/* tx_buffer must be completely set up in the transmit path */
51 }
52 
53 /**
54  * iavf_clean_tx_ring - Free any empty Tx buffers
55  * @tx_ring: ring to be cleaned
56  **/
57 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58 {
59 	unsigned long bi_size;
60 	u16 i;
61 
62 	/* ring already cleared, nothing to do */
63 	if (!tx_ring->tx_bi)
64 		return;
65 
66 	/* Free all the Tx ring sk_buffs */
67 	for (i = 0; i < tx_ring->count; i++)
68 		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69 
70 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71 	memset(tx_ring->tx_bi, 0, bi_size);
72 
73 	/* Zero out the descriptor ring */
74 	memset(tx_ring->desc, 0, tx_ring->size);
75 
76 	tx_ring->next_to_use = 0;
77 	tx_ring->next_to_clean = 0;
78 
79 	if (!tx_ring->netdev)
80 		return;
81 
82 	/* cleanup Tx queue statistics */
83 	netdev_tx_reset_queue(txring_txq(tx_ring));
84 }
85 
86 /**
87  * iavf_free_tx_resources - Free Tx resources per queue
88  * @tx_ring: Tx descriptor ring for a specific queue
89  *
90  * Free all transmit software resources
91  **/
92 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93 {
94 	iavf_clean_tx_ring(tx_ring);
95 	kfree(tx_ring->tx_bi);
96 	tx_ring->tx_bi = NULL;
97 
98 	if (tx_ring->desc) {
99 		dma_free_coherent(tx_ring->dev, tx_ring->size,
100 				  tx_ring->desc, tx_ring->dma);
101 		tx_ring->desc = NULL;
102 	}
103 }
104 
105 /**
106  * iavf_get_tx_pending - how many Tx descriptors not processed
107  * @ring: the ring of descriptors
108  * @in_sw: is tx_pending being checked in SW or HW
109  *
110  * Since there is no access to the ring head register
111  * in XL710, we need to use our local copies
112  **/
113 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114 {
115 	u32 head, tail;
116 
117 	/* underlying hardware might not allow access and/or always return
118 	 * 0 for the head/tail registers so just use the cached values
119 	 */
120 	head = ring->next_to_clean;
121 	tail = ring->next_to_use;
122 
123 	if (head != tail)
124 		return (head < tail) ?
125 			tail - head : (tail + ring->count - head);
126 
127 	return 0;
128 }
129 
130 /**
131  * iavf_force_wb - Issue SW Interrupt so HW does a wb
132  * @vsi: the VSI we care about
133  * @q_vector: the vector on which to force writeback
134  **/
135 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
136 {
137 	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
138 		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
139 		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
140 		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
141 		  /* allow 00 to be written to the index */;
142 
143 	wr32(&vsi->back->hw,
144 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
145 	     val);
146 }
147 
148 /**
149  * iavf_detect_recover_hung - Function to detect and recover hung_queues
150  * @vsi:  pointer to vsi struct with tx queues
151  *
152  * VSI has netdev and netdev has TX queues. This function is to check each of
153  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
154  **/
155 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
156 {
157 	struct iavf_ring *tx_ring = NULL;
158 	struct net_device *netdev;
159 	unsigned int i;
160 	int packets;
161 
162 	if (!vsi)
163 		return;
164 
165 	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
166 		return;
167 
168 	netdev = vsi->netdev;
169 	if (!netdev)
170 		return;
171 
172 	if (!netif_carrier_ok(netdev))
173 		return;
174 
175 	for (i = 0; i < vsi->back->num_active_queues; i++) {
176 		tx_ring = &vsi->back->tx_rings[i];
177 		if (tx_ring && tx_ring->desc) {
178 			/* If packet counter has not changed the queue is
179 			 * likely stalled, so force an interrupt for this
180 			 * queue.
181 			 *
182 			 * prev_pkt_ctr would be negative if there was no
183 			 * pending work.
184 			 */
185 			packets = tx_ring->stats.packets & INT_MAX;
186 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
187 				iavf_force_wb(vsi, tx_ring->q_vector);
188 				continue;
189 			}
190 
191 			/* Memory barrier between read of packet count and call
192 			 * to iavf_get_tx_pending()
193 			 */
194 			smp_rmb();
195 			tx_ring->tx_stats.prev_pkt_ctr =
196 			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
197 		}
198 	}
199 }
200 
201 #define WB_STRIDE 4
202 
203 /**
204  * iavf_clean_tx_irq - Reclaim resources after transmit completes
205  * @vsi: the VSI we care about
206  * @tx_ring: Tx ring to clean
207  * @napi_budget: Used to determine if we are in netpoll
208  *
209  * Returns true if there's any budget left (e.g. the clean is finished)
210  **/
211 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
212 			      struct iavf_ring *tx_ring, int napi_budget)
213 {
214 	int i = tx_ring->next_to_clean;
215 	struct iavf_tx_buffer *tx_buf;
216 	struct iavf_tx_desc *tx_desc;
217 	unsigned int total_bytes = 0, total_packets = 0;
218 	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
219 
220 	tx_buf = &tx_ring->tx_bi[i];
221 	tx_desc = IAVF_TX_DESC(tx_ring, i);
222 	i -= tx_ring->count;
223 
224 	do {
225 		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
226 
227 		/* if next_to_watch is not set then there is no work pending */
228 		if (!eop_desc)
229 			break;
230 
231 		/* prevent any other reads prior to eop_desc */
232 		smp_rmb();
233 
234 		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
235 		/* if the descriptor isn't done, no work yet to do */
236 		if (!(eop_desc->cmd_type_offset_bsz &
237 		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
238 			break;
239 
240 		/* clear next_to_watch to prevent false hangs */
241 		tx_buf->next_to_watch = NULL;
242 
243 		/* update the statistics for this packet */
244 		total_bytes += tx_buf->bytecount;
245 		total_packets += tx_buf->gso_segs;
246 
247 		/* free the skb */
248 		napi_consume_skb(tx_buf->skb, napi_budget);
249 
250 		/* unmap skb header data */
251 		dma_unmap_single(tx_ring->dev,
252 				 dma_unmap_addr(tx_buf, dma),
253 				 dma_unmap_len(tx_buf, len),
254 				 DMA_TO_DEVICE);
255 
256 		/* clear tx_buffer data */
257 		tx_buf->skb = NULL;
258 		dma_unmap_len_set(tx_buf, len, 0);
259 
260 		/* unmap remaining buffers */
261 		while (tx_desc != eop_desc) {
262 			iavf_trace(clean_tx_irq_unmap,
263 				   tx_ring, tx_desc, tx_buf);
264 
265 			tx_buf++;
266 			tx_desc++;
267 			i++;
268 			if (unlikely(!i)) {
269 				i -= tx_ring->count;
270 				tx_buf = tx_ring->tx_bi;
271 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
272 			}
273 
274 			/* unmap any remaining paged data */
275 			if (dma_unmap_len(tx_buf, len)) {
276 				dma_unmap_page(tx_ring->dev,
277 					       dma_unmap_addr(tx_buf, dma),
278 					       dma_unmap_len(tx_buf, len),
279 					       DMA_TO_DEVICE);
280 				dma_unmap_len_set(tx_buf, len, 0);
281 			}
282 		}
283 
284 		/* move us one more past the eop_desc for start of next pkt */
285 		tx_buf++;
286 		tx_desc++;
287 		i++;
288 		if (unlikely(!i)) {
289 			i -= tx_ring->count;
290 			tx_buf = tx_ring->tx_bi;
291 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
292 		}
293 
294 		prefetch(tx_desc);
295 
296 		/* update budget accounting */
297 		budget--;
298 	} while (likely(budget));
299 
300 	i += tx_ring->count;
301 	tx_ring->next_to_clean = i;
302 	u64_stats_update_begin(&tx_ring->syncp);
303 	tx_ring->stats.bytes += total_bytes;
304 	tx_ring->stats.packets += total_packets;
305 	u64_stats_update_end(&tx_ring->syncp);
306 	tx_ring->q_vector->tx.total_bytes += total_bytes;
307 	tx_ring->q_vector->tx.total_packets += total_packets;
308 
309 	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
310 		/* check to see if there are < 4 descriptors
311 		 * waiting to be written back, then kick the hardware to force
312 		 * them to be written back in case we stay in NAPI.
313 		 * In this mode on X722 we do not enable Interrupt.
314 		 */
315 		unsigned int j = iavf_get_tx_pending(tx_ring, false);
316 
317 		if (budget &&
318 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
319 		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
320 		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
321 			tx_ring->arm_wb = true;
322 	}
323 
324 	/* notify netdev of completed buffers */
325 	netdev_tx_completed_queue(txring_txq(tx_ring),
326 				  total_packets, total_bytes);
327 
328 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
329 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
330 		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
331 		/* Make sure that anybody stopping the queue after this
332 		 * sees the new next_to_clean.
333 		 */
334 		smp_mb();
335 		if (__netif_subqueue_stopped(tx_ring->netdev,
336 					     tx_ring->queue_index) &&
337 		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
338 			netif_wake_subqueue(tx_ring->netdev,
339 					    tx_ring->queue_index);
340 			++tx_ring->tx_stats.restart_queue;
341 		}
342 	}
343 
344 	return !!budget;
345 }
346 
347 /**
348  * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
349  * @vsi: the VSI we care about
350  * @q_vector: the vector on which to enable writeback
351  *
352  **/
353 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
354 				  struct iavf_q_vector *q_vector)
355 {
356 	u16 flags = q_vector->tx.ring[0].flags;
357 	u32 val;
358 
359 	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
360 		return;
361 
362 	if (q_vector->arm_wb_state)
363 		return;
364 
365 	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
366 	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
367 
368 	wr32(&vsi->back->hw,
369 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
370 	q_vector->arm_wb_state = true;
371 }
372 
373 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
374 					struct iavf_ring_container *rc)
375 {
376 	return &q_vector->rx == rc;
377 }
378 
379 #define IAVF_AIM_MULTIPLIER_100G	2560
380 #define IAVF_AIM_MULTIPLIER_50G		1280
381 #define IAVF_AIM_MULTIPLIER_40G		1024
382 #define IAVF_AIM_MULTIPLIER_20G		512
383 #define IAVF_AIM_MULTIPLIER_10G		256
384 #define IAVF_AIM_MULTIPLIER_1G		32
385 
386 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
387 {
388 	switch (speed_mbps) {
389 	case SPEED_100000:
390 		return IAVF_AIM_MULTIPLIER_100G;
391 	case SPEED_50000:
392 		return IAVF_AIM_MULTIPLIER_50G;
393 	case SPEED_40000:
394 		return IAVF_AIM_MULTIPLIER_40G;
395 	case SPEED_25000:
396 	case SPEED_20000:
397 		return IAVF_AIM_MULTIPLIER_20G;
398 	case SPEED_10000:
399 	default:
400 		return IAVF_AIM_MULTIPLIER_10G;
401 	case SPEED_1000:
402 	case SPEED_100:
403 		return IAVF_AIM_MULTIPLIER_1G;
404 	}
405 }
406 
407 static unsigned int
408 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
409 {
410 	switch (speed_virtchnl) {
411 	case VIRTCHNL_LINK_SPEED_40GB:
412 		return IAVF_AIM_MULTIPLIER_40G;
413 	case VIRTCHNL_LINK_SPEED_25GB:
414 	case VIRTCHNL_LINK_SPEED_20GB:
415 		return IAVF_AIM_MULTIPLIER_20G;
416 	case VIRTCHNL_LINK_SPEED_10GB:
417 	default:
418 		return IAVF_AIM_MULTIPLIER_10G;
419 	case VIRTCHNL_LINK_SPEED_1GB:
420 	case VIRTCHNL_LINK_SPEED_100MB:
421 		return IAVF_AIM_MULTIPLIER_1G;
422 	}
423 }
424 
425 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
426 {
427 	if (ADV_LINK_SUPPORT(adapter))
428 		return IAVF_ITR_ADAPTIVE_MIN_INC *
429 			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
430 	else
431 		return IAVF_ITR_ADAPTIVE_MIN_INC *
432 			iavf_virtchnl_itr_multiplier(adapter->link_speed);
433 }
434 
435 /**
436  * iavf_update_itr - update the dynamic ITR value based on statistics
437  * @q_vector: structure containing interrupt and ring information
438  * @rc: structure containing ring performance data
439  *
440  * Stores a new ITR value based on packets and byte
441  * counts during the last interrupt.  The advantage of per interrupt
442  * computation is faster updates and more accurate ITR for the current
443  * traffic pattern.  Constants in this function were computed
444  * based on theoretical maximum wire speed and thresholds were set based
445  * on testing data as well as attempting to minimize response time
446  * while increasing bulk throughput.
447  **/
448 static void iavf_update_itr(struct iavf_q_vector *q_vector,
449 			    struct iavf_ring_container *rc)
450 {
451 	unsigned int avg_wire_size, packets, bytes, itr;
452 	unsigned long next_update = jiffies;
453 
454 	/* If we don't have any rings just leave ourselves set for maximum
455 	 * possible latency so we take ourselves out of the equation.
456 	 */
457 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
458 		return;
459 
460 	/* For Rx we want to push the delay up and default to low latency.
461 	 * for Tx we want to pull the delay down and default to high latency.
462 	 */
463 	itr = iavf_container_is_rx(q_vector, rc) ?
464 	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
465 	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
466 
467 	/* If we didn't update within up to 1 - 2 jiffies we can assume
468 	 * that either packets are coming in so slow there hasn't been
469 	 * any work, or that there is so much work that NAPI is dealing
470 	 * with interrupt moderation and we don't need to do anything.
471 	 */
472 	if (time_after(next_update, rc->next_update))
473 		goto clear_counts;
474 
475 	/* If itr_countdown is set it means we programmed an ITR within
476 	 * the last 4 interrupt cycles. This has a side effect of us
477 	 * potentially firing an early interrupt. In order to work around
478 	 * this we need to throw out any data received for a few
479 	 * interrupts following the update.
480 	 */
481 	if (q_vector->itr_countdown) {
482 		itr = rc->target_itr;
483 		goto clear_counts;
484 	}
485 
486 	packets = rc->total_packets;
487 	bytes = rc->total_bytes;
488 
489 	if (iavf_container_is_rx(q_vector, rc)) {
490 		/* If Rx there are 1 to 4 packets and bytes are less than
491 		 * 9000 assume insufficient data to use bulk rate limiting
492 		 * approach unless Tx is already in bulk rate limiting. We
493 		 * are likely latency driven.
494 		 */
495 		if (packets && packets < 4 && bytes < 9000 &&
496 		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
497 			itr = IAVF_ITR_ADAPTIVE_LATENCY;
498 			goto adjust_by_size;
499 		}
500 	} else if (packets < 4) {
501 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
502 		 * bulk mode and we are receiving 4 or fewer packets just
503 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
504 		 * that the Rx can relax.
505 		 */
506 		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
507 		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
508 		     IAVF_ITR_ADAPTIVE_MAX_USECS)
509 			goto clear_counts;
510 	} else if (packets > 32) {
511 		/* If we have processed over 32 packets in a single interrupt
512 		 * for Tx assume we need to switch over to "bulk" mode.
513 		 */
514 		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
515 	}
516 
517 	/* We have no packets to actually measure against. This means
518 	 * either one of the other queues on this vector is active or
519 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
520 	 *
521 	 * Between 4 and 56 we can assume that our current interrupt delay
522 	 * is only slightly too low. As such we should increase it by a small
523 	 * fixed amount.
524 	 */
525 	if (packets < 56) {
526 		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
527 		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
528 			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
529 			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
530 		}
531 		goto clear_counts;
532 	}
533 
534 	if (packets <= 256) {
535 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
536 		itr &= IAVF_ITR_MASK;
537 
538 		/* Between 56 and 112 is our "goldilocks" zone where we are
539 		 * working out "just right". Just report that our current
540 		 * ITR is good for us.
541 		 */
542 		if (packets <= 112)
543 			goto clear_counts;
544 
545 		/* If packet count is 128 or greater we are likely looking
546 		 * at a slight overrun of the delay we want. Try halving
547 		 * our delay to see if that will cut the number of packets
548 		 * in half per interrupt.
549 		 */
550 		itr /= 2;
551 		itr &= IAVF_ITR_MASK;
552 		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
553 			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
554 
555 		goto clear_counts;
556 	}
557 
558 	/* The paths below assume we are dealing with a bulk ITR since
559 	 * number of packets is greater than 256. We are just going to have
560 	 * to compute a value and try to bring the count under control,
561 	 * though for smaller packet sizes there isn't much we can do as
562 	 * NAPI polling will likely be kicking in sooner rather than later.
563 	 */
564 	itr = IAVF_ITR_ADAPTIVE_BULK;
565 
566 adjust_by_size:
567 	/* If packet counts are 256 or greater we can assume we have a gross
568 	 * overestimation of what the rate should be. Instead of trying to fine
569 	 * tune it just use the formula below to try and dial in an exact value
570 	 * give the current packet size of the frame.
571 	 */
572 	avg_wire_size = bytes / packets;
573 
574 	/* The following is a crude approximation of:
575 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
576 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
577 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
578 	 *
579 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
580 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
581 	 * formula down to
582 	 *
583 	 *  (170 * (size + 24)) / (size + 640) = ITR
584 	 *
585 	 * We first do some math on the packet size and then finally bitshift
586 	 * by 8 after rounding up. We also have to account for PCIe link speed
587 	 * difference as ITR scales based on this.
588 	 */
589 	if (avg_wire_size <= 60) {
590 		/* Start at 250k ints/sec */
591 		avg_wire_size = 4096;
592 	} else if (avg_wire_size <= 380) {
593 		/* 250K ints/sec to 60K ints/sec */
594 		avg_wire_size *= 40;
595 		avg_wire_size += 1696;
596 	} else if (avg_wire_size <= 1084) {
597 		/* 60K ints/sec to 36K ints/sec */
598 		avg_wire_size *= 15;
599 		avg_wire_size += 11452;
600 	} else if (avg_wire_size <= 1980) {
601 		/* 36K ints/sec to 30K ints/sec */
602 		avg_wire_size *= 5;
603 		avg_wire_size += 22420;
604 	} else {
605 		/* plateau at a limit of 30K ints/sec */
606 		avg_wire_size = 32256;
607 	}
608 
609 	/* If we are in low latency mode halve our delay which doubles the
610 	 * rate to somewhere between 100K to 16K ints/sec
611 	 */
612 	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
613 		avg_wire_size /= 2;
614 
615 	/* Resultant value is 256 times larger than it needs to be. This
616 	 * gives us room to adjust the value as needed to either increase
617 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
618 	 *
619 	 * Use addition as we have already recorded the new latency flag
620 	 * for the ITR value.
621 	 */
622 	itr += DIV_ROUND_UP(avg_wire_size,
623 			    iavf_itr_divisor(q_vector->adapter)) *
624 		IAVF_ITR_ADAPTIVE_MIN_INC;
625 
626 	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
627 		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
628 		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
629 	}
630 
631 clear_counts:
632 	/* write back value */
633 	rc->target_itr = itr;
634 
635 	/* next update should occur within next jiffy */
636 	rc->next_update = next_update + 1;
637 
638 	rc->total_bytes = 0;
639 	rc->total_packets = 0;
640 }
641 
642 /**
643  * iavf_setup_tx_descriptors - Allocate the Tx descriptors
644  * @tx_ring: the tx ring to set up
645  *
646  * Return 0 on success, negative on error
647  **/
648 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
649 {
650 	struct device *dev = tx_ring->dev;
651 	int bi_size;
652 
653 	if (!dev)
654 		return -ENOMEM;
655 
656 	/* warn if we are about to overwrite the pointer */
657 	WARN_ON(tx_ring->tx_bi);
658 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
659 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
660 	if (!tx_ring->tx_bi)
661 		goto err;
662 
663 	/* round up to nearest 4K */
664 	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
665 	tx_ring->size = ALIGN(tx_ring->size, 4096);
666 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
667 					   &tx_ring->dma, GFP_KERNEL);
668 	if (!tx_ring->desc) {
669 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
670 			 tx_ring->size);
671 		goto err;
672 	}
673 
674 	tx_ring->next_to_use = 0;
675 	tx_ring->next_to_clean = 0;
676 	tx_ring->tx_stats.prev_pkt_ctr = -1;
677 	return 0;
678 
679 err:
680 	kfree(tx_ring->tx_bi);
681 	tx_ring->tx_bi = NULL;
682 	return -ENOMEM;
683 }
684 
685 /**
686  * iavf_clean_rx_ring - Free Rx buffers
687  * @rx_ring: ring to be cleaned
688  **/
689 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
690 {
691 	unsigned long bi_size;
692 	u16 i;
693 
694 	/* ring already cleared, nothing to do */
695 	if (!rx_ring->rx_bi)
696 		return;
697 
698 	if (rx_ring->skb) {
699 		dev_kfree_skb(rx_ring->skb);
700 		rx_ring->skb = NULL;
701 	}
702 
703 	/* Free all the Rx ring sk_buffs */
704 	for (i = 0; i < rx_ring->count; i++) {
705 		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
706 
707 		if (!rx_bi->page)
708 			continue;
709 
710 		/* Invalidate cache lines that may have been written to by
711 		 * device so that we avoid corrupting memory.
712 		 */
713 		dma_sync_single_range_for_cpu(rx_ring->dev,
714 					      rx_bi->dma,
715 					      rx_bi->page_offset,
716 					      rx_ring->rx_buf_len,
717 					      DMA_FROM_DEVICE);
718 
719 		/* free resources associated with mapping */
720 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
721 				     iavf_rx_pg_size(rx_ring),
722 				     DMA_FROM_DEVICE,
723 				     IAVF_RX_DMA_ATTR);
724 
725 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
726 
727 		rx_bi->page = NULL;
728 		rx_bi->page_offset = 0;
729 	}
730 
731 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
732 	memset(rx_ring->rx_bi, 0, bi_size);
733 
734 	/* Zero out the descriptor ring */
735 	memset(rx_ring->desc, 0, rx_ring->size);
736 
737 	rx_ring->next_to_alloc = 0;
738 	rx_ring->next_to_clean = 0;
739 	rx_ring->next_to_use = 0;
740 }
741 
742 /**
743  * iavf_free_rx_resources - Free Rx resources
744  * @rx_ring: ring to clean the resources from
745  *
746  * Free all receive software resources
747  **/
748 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
749 {
750 	iavf_clean_rx_ring(rx_ring);
751 	kfree(rx_ring->rx_bi);
752 	rx_ring->rx_bi = NULL;
753 
754 	if (rx_ring->desc) {
755 		dma_free_coherent(rx_ring->dev, rx_ring->size,
756 				  rx_ring->desc, rx_ring->dma);
757 		rx_ring->desc = NULL;
758 	}
759 }
760 
761 /**
762  * iavf_setup_rx_descriptors - Allocate Rx descriptors
763  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
764  *
765  * Returns 0 on success, negative on failure
766  **/
767 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
768 {
769 	struct device *dev = rx_ring->dev;
770 	int bi_size;
771 
772 	/* warn if we are about to overwrite the pointer */
773 	WARN_ON(rx_ring->rx_bi);
774 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
775 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
776 	if (!rx_ring->rx_bi)
777 		goto err;
778 
779 	u64_stats_init(&rx_ring->syncp);
780 
781 	/* Round up to nearest 4K */
782 	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
783 	rx_ring->size = ALIGN(rx_ring->size, 4096);
784 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
785 					   &rx_ring->dma, GFP_KERNEL);
786 
787 	if (!rx_ring->desc) {
788 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
789 			 rx_ring->size);
790 		goto err;
791 	}
792 
793 	rx_ring->next_to_alloc = 0;
794 	rx_ring->next_to_clean = 0;
795 	rx_ring->next_to_use = 0;
796 
797 	return 0;
798 err:
799 	kfree(rx_ring->rx_bi);
800 	rx_ring->rx_bi = NULL;
801 	return -ENOMEM;
802 }
803 
804 /**
805  * iavf_release_rx_desc - Store the new tail and head values
806  * @rx_ring: ring to bump
807  * @val: new head index
808  **/
809 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
810 {
811 	rx_ring->next_to_use = val;
812 
813 	/* update next to alloc since we have filled the ring */
814 	rx_ring->next_to_alloc = val;
815 
816 	/* Force memory writes to complete before letting h/w
817 	 * know there are new descriptors to fetch.  (Only
818 	 * applicable for weak-ordered memory model archs,
819 	 * such as IA-64).
820 	 */
821 	wmb();
822 	writel(val, rx_ring->tail);
823 }
824 
825 /**
826  * iavf_rx_offset - Return expected offset into page to access data
827  * @rx_ring: Ring we are requesting offset of
828  *
829  * Returns the offset value for ring into the data buffer.
830  */
831 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
832 {
833 	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
834 }
835 
836 /**
837  * iavf_alloc_mapped_page - recycle or make a new page
838  * @rx_ring: ring to use
839  * @bi: rx_buffer struct to modify
840  *
841  * Returns true if the page was successfully allocated or
842  * reused.
843  **/
844 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
845 				   struct iavf_rx_buffer *bi)
846 {
847 	struct page *page = bi->page;
848 	dma_addr_t dma;
849 
850 	/* since we are recycling buffers we should seldom need to alloc */
851 	if (likely(page)) {
852 		rx_ring->rx_stats.page_reuse_count++;
853 		return true;
854 	}
855 
856 	/* alloc new page for storage */
857 	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
858 	if (unlikely(!page)) {
859 		rx_ring->rx_stats.alloc_page_failed++;
860 		return false;
861 	}
862 
863 	/* map page for use */
864 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
865 				 iavf_rx_pg_size(rx_ring),
866 				 DMA_FROM_DEVICE,
867 				 IAVF_RX_DMA_ATTR);
868 
869 	/* if mapping failed free memory back to system since
870 	 * there isn't much point in holding memory we can't use
871 	 */
872 	if (dma_mapping_error(rx_ring->dev, dma)) {
873 		__free_pages(page, iavf_rx_pg_order(rx_ring));
874 		rx_ring->rx_stats.alloc_page_failed++;
875 		return false;
876 	}
877 
878 	bi->dma = dma;
879 	bi->page = page;
880 	bi->page_offset = iavf_rx_offset(rx_ring);
881 
882 	/* initialize pagecnt_bias to 1 representing we fully own page */
883 	bi->pagecnt_bias = 1;
884 
885 	return true;
886 }
887 
888 /**
889  * iavf_receive_skb - Send a completed packet up the stack
890  * @rx_ring:  rx ring in play
891  * @skb: packet to send up
892  * @vlan_tag: vlan tag for packet
893  **/
894 static void iavf_receive_skb(struct iavf_ring *rx_ring,
895 			     struct sk_buff *skb, u16 vlan_tag)
896 {
897 	struct iavf_q_vector *q_vector = rx_ring->q_vector;
898 
899 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
900 	    (vlan_tag & VLAN_VID_MASK))
901 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
902 	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
903 		 vlan_tag & VLAN_VID_MASK)
904 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
905 
906 	napi_gro_receive(&q_vector->napi, skb);
907 }
908 
909 /**
910  * iavf_alloc_rx_buffers - Replace used receive buffers
911  * @rx_ring: ring to place buffers on
912  * @cleaned_count: number of buffers to replace
913  *
914  * Returns false if all allocations were successful, true if any fail
915  **/
916 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
917 {
918 	u16 ntu = rx_ring->next_to_use;
919 	union iavf_rx_desc *rx_desc;
920 	struct iavf_rx_buffer *bi;
921 
922 	/* do nothing if no valid netdev defined */
923 	if (!rx_ring->netdev || !cleaned_count)
924 		return false;
925 
926 	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
927 	bi = &rx_ring->rx_bi[ntu];
928 
929 	do {
930 		if (!iavf_alloc_mapped_page(rx_ring, bi))
931 			goto no_buffers;
932 
933 		/* sync the buffer for use by the device */
934 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
935 						 bi->page_offset,
936 						 rx_ring->rx_buf_len,
937 						 DMA_FROM_DEVICE);
938 
939 		/* Refresh the desc even if buffer_addrs didn't change
940 		 * because each write-back erases this info.
941 		 */
942 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
943 
944 		rx_desc++;
945 		bi++;
946 		ntu++;
947 		if (unlikely(ntu == rx_ring->count)) {
948 			rx_desc = IAVF_RX_DESC(rx_ring, 0);
949 			bi = rx_ring->rx_bi;
950 			ntu = 0;
951 		}
952 
953 		/* clear the status bits for the next_to_use descriptor */
954 		rx_desc->wb.qword1.status_error_len = 0;
955 
956 		cleaned_count--;
957 	} while (cleaned_count);
958 
959 	if (rx_ring->next_to_use != ntu)
960 		iavf_release_rx_desc(rx_ring, ntu);
961 
962 	return false;
963 
964 no_buffers:
965 	if (rx_ring->next_to_use != ntu)
966 		iavf_release_rx_desc(rx_ring, ntu);
967 
968 	/* make sure to come back via polling to try again after
969 	 * allocation failure
970 	 */
971 	return true;
972 }
973 
974 /**
975  * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
976  * @vsi: the VSI we care about
977  * @skb: skb currently being received and modified
978  * @rx_desc: the receive descriptor
979  **/
980 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
981 				    struct sk_buff *skb,
982 				    union iavf_rx_desc *rx_desc)
983 {
984 	struct iavf_rx_ptype_decoded decoded;
985 	u32 rx_error, rx_status;
986 	bool ipv4, ipv6;
987 	u8 ptype;
988 	u64 qword;
989 
990 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
991 	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
992 	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
993 		   IAVF_RXD_QW1_ERROR_SHIFT;
994 	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
995 		    IAVF_RXD_QW1_STATUS_SHIFT;
996 	decoded = decode_rx_desc_ptype(ptype);
997 
998 	skb->ip_summed = CHECKSUM_NONE;
999 
1000 	skb_checksum_none_assert(skb);
1001 
1002 	/* Rx csum enabled and ip headers found? */
1003 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1004 		return;
1005 
1006 	/* did the hardware decode the packet and checksum? */
1007 	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1008 		return;
1009 
1010 	/* both known and outer_ip must be set for the below code to work */
1011 	if (!(decoded.known && decoded.outer_ip))
1012 		return;
1013 
1014 	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1015 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1016 	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1017 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1018 
1019 	if (ipv4 &&
1020 	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1021 			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1022 		goto checksum_fail;
1023 
1024 	/* likely incorrect csum if alternate IP extension headers found */
1025 	if (ipv6 &&
1026 	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1027 		/* don't increment checksum err here, non-fatal err */
1028 		return;
1029 
1030 	/* there was some L4 error, count error and punt packet to the stack */
1031 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1032 		goto checksum_fail;
1033 
1034 	/* handle packets that were not able to be checksummed due
1035 	 * to arrival speed, in this case the stack can compute
1036 	 * the csum.
1037 	 */
1038 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1039 		return;
1040 
1041 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1042 	switch (decoded.inner_prot) {
1043 	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1044 	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1045 	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1046 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1047 		fallthrough;
1048 	default:
1049 		break;
1050 	}
1051 
1052 	return;
1053 
1054 checksum_fail:
1055 	vsi->back->hw_csum_rx_error++;
1056 }
1057 
1058 /**
1059  * iavf_ptype_to_htype - get a hash type
1060  * @ptype: the ptype value from the descriptor
1061  *
1062  * Returns a hash type to be used by skb_set_hash
1063  **/
1064 static inline int iavf_ptype_to_htype(u8 ptype)
1065 {
1066 	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1067 
1068 	if (!decoded.known)
1069 		return PKT_HASH_TYPE_NONE;
1070 
1071 	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1072 	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1073 		return PKT_HASH_TYPE_L4;
1074 	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1075 		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1076 		return PKT_HASH_TYPE_L3;
1077 	else
1078 		return PKT_HASH_TYPE_L2;
1079 }
1080 
1081 /**
1082  * iavf_rx_hash - set the hash value in the skb
1083  * @ring: descriptor ring
1084  * @rx_desc: specific descriptor
1085  * @skb: skb currently being received and modified
1086  * @rx_ptype: Rx packet type
1087  **/
1088 static inline void iavf_rx_hash(struct iavf_ring *ring,
1089 				union iavf_rx_desc *rx_desc,
1090 				struct sk_buff *skb,
1091 				u8 rx_ptype)
1092 {
1093 	u32 hash;
1094 	const __le64 rss_mask =
1095 		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1096 			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1097 
1098 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1099 		return;
1100 
1101 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1102 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1103 		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1104 	}
1105 }
1106 
1107 /**
1108  * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1109  * @rx_ring: rx descriptor ring packet is being transacted on
1110  * @rx_desc: pointer to the EOP Rx descriptor
1111  * @skb: pointer to current skb being populated
1112  * @rx_ptype: the packet type decoded by hardware
1113  *
1114  * This function checks the ring, descriptor, and packet information in
1115  * order to populate the hash, checksum, VLAN, protocol, and
1116  * other fields within the skb.
1117  **/
1118 static inline
1119 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1120 			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1121 			     u8 rx_ptype)
1122 {
1123 	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1124 
1125 	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1126 
1127 	skb_record_rx_queue(skb, rx_ring->queue_index);
1128 
1129 	/* modifies the skb - consumes the enet header */
1130 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1131 }
1132 
1133 /**
1134  * iavf_cleanup_headers - Correct empty headers
1135  * @rx_ring: rx descriptor ring packet is being transacted on
1136  * @skb: pointer to current skb being fixed
1137  *
1138  * Also address the case where we are pulling data in on pages only
1139  * and as such no data is present in the skb header.
1140  *
1141  * In addition if skb is not at least 60 bytes we need to pad it so that
1142  * it is large enough to qualify as a valid Ethernet frame.
1143  *
1144  * Returns true if an error was encountered and skb was freed.
1145  **/
1146 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1147 {
1148 	/* if eth_skb_pad returns an error the skb was freed */
1149 	if (eth_skb_pad(skb))
1150 		return true;
1151 
1152 	return false;
1153 }
1154 
1155 /**
1156  * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1157  * @rx_ring: rx descriptor ring to store buffers on
1158  * @old_buff: donor buffer to have page reused
1159  *
1160  * Synchronizes page for reuse by the adapter
1161  **/
1162 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1163 			       struct iavf_rx_buffer *old_buff)
1164 {
1165 	struct iavf_rx_buffer *new_buff;
1166 	u16 nta = rx_ring->next_to_alloc;
1167 
1168 	new_buff = &rx_ring->rx_bi[nta];
1169 
1170 	/* update, and store next to alloc */
1171 	nta++;
1172 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1173 
1174 	/* transfer page from old buffer to new buffer */
1175 	new_buff->dma		= old_buff->dma;
1176 	new_buff->page		= old_buff->page;
1177 	new_buff->page_offset	= old_buff->page_offset;
1178 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1179 }
1180 
1181 /**
1182  * iavf_can_reuse_rx_page - Determine if this page can be reused by
1183  * the adapter for another receive
1184  *
1185  * @rx_buffer: buffer containing the page
1186  *
1187  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1188  * an unused region in the page.
1189  *
1190  * For small pages, @truesize will be a constant value, half the size
1191  * of the memory at page.  We'll attempt to alternate between high and
1192  * low halves of the page, with one half ready for use by the hardware
1193  * and the other half being consumed by the stack.  We use the page
1194  * ref count to determine whether the stack has finished consuming the
1195  * portion of this page that was passed up with a previous packet.  If
1196  * the page ref count is >1, we'll assume the "other" half page is
1197  * still busy, and this page cannot be reused.
1198  *
1199  * For larger pages, @truesize will be the actual space used by the
1200  * received packet (adjusted upward to an even multiple of the cache
1201  * line size).  This will advance through the page by the amount
1202  * actually consumed by the received packets while there is still
1203  * space for a buffer.  Each region of larger pages will be used at
1204  * most once, after which the page will not be reused.
1205  *
1206  * In either case, if the page is reusable its refcount is increased.
1207  **/
1208 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1209 {
1210 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1211 	struct page *page = rx_buffer->page;
1212 
1213 	/* Is any reuse possible? */
1214 	if (!dev_page_is_reusable(page))
1215 		return false;
1216 
1217 #if (PAGE_SIZE < 8192)
1218 	/* if we are only owner of page we can reuse it */
1219 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1220 		return false;
1221 #else
1222 #define IAVF_LAST_OFFSET \
1223 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1224 	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1225 		return false;
1226 #endif
1227 
1228 	/* If we have drained the page fragment pool we need to update
1229 	 * the pagecnt_bias and page count so that we fully restock the
1230 	 * number of references the driver holds.
1231 	 */
1232 	if (unlikely(!pagecnt_bias)) {
1233 		page_ref_add(page, USHRT_MAX);
1234 		rx_buffer->pagecnt_bias = USHRT_MAX;
1235 	}
1236 
1237 	return true;
1238 }
1239 
1240 /**
1241  * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1242  * @rx_ring: rx descriptor ring to transact packets on
1243  * @rx_buffer: buffer containing page to add
1244  * @skb: sk_buff to place the data into
1245  * @size: packet length from rx_desc
1246  *
1247  * This function will add the data contained in rx_buffer->page to the skb.
1248  * It will just attach the page as a frag to the skb.
1249  *
1250  * The function will then update the page offset.
1251  **/
1252 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1253 			     struct iavf_rx_buffer *rx_buffer,
1254 			     struct sk_buff *skb,
1255 			     unsigned int size)
1256 {
1257 #if (PAGE_SIZE < 8192)
1258 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1259 #else
1260 	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1261 #endif
1262 
1263 	if (!size)
1264 		return;
1265 
1266 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1267 			rx_buffer->page_offset, size, truesize);
1268 
1269 	/* page is being used so we must update the page offset */
1270 #if (PAGE_SIZE < 8192)
1271 	rx_buffer->page_offset ^= truesize;
1272 #else
1273 	rx_buffer->page_offset += truesize;
1274 #endif
1275 }
1276 
1277 /**
1278  * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1279  * @rx_ring: rx descriptor ring to transact packets on
1280  * @size: size of buffer to add to skb
1281  *
1282  * This function will pull an Rx buffer from the ring and synchronize it
1283  * for use by the CPU.
1284  */
1285 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1286 						 const unsigned int size)
1287 {
1288 	struct iavf_rx_buffer *rx_buffer;
1289 
1290 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1291 	prefetchw(rx_buffer->page);
1292 	if (!size)
1293 		return rx_buffer;
1294 
1295 	/* we are reusing so sync this buffer for CPU use */
1296 	dma_sync_single_range_for_cpu(rx_ring->dev,
1297 				      rx_buffer->dma,
1298 				      rx_buffer->page_offset,
1299 				      size,
1300 				      DMA_FROM_DEVICE);
1301 
1302 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1303 	rx_buffer->pagecnt_bias--;
1304 
1305 	return rx_buffer;
1306 }
1307 
1308 /**
1309  * iavf_construct_skb - Allocate skb and populate it
1310  * @rx_ring: rx descriptor ring to transact packets on
1311  * @rx_buffer: rx buffer to pull data from
1312  * @size: size of buffer to add to skb
1313  *
1314  * This function allocates an skb.  It then populates it with the page
1315  * data from the current receive descriptor, taking care to set up the
1316  * skb correctly.
1317  */
1318 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1319 					  struct iavf_rx_buffer *rx_buffer,
1320 					  unsigned int size)
1321 {
1322 	void *va;
1323 #if (PAGE_SIZE < 8192)
1324 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1325 #else
1326 	unsigned int truesize = SKB_DATA_ALIGN(size);
1327 #endif
1328 	unsigned int headlen;
1329 	struct sk_buff *skb;
1330 
1331 	if (!rx_buffer)
1332 		return NULL;
1333 	/* prefetch first cache line of first page */
1334 	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1335 	net_prefetch(va);
1336 
1337 	/* allocate a skb to store the frags */
1338 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1339 			       IAVF_RX_HDR_SIZE,
1340 			       GFP_ATOMIC | __GFP_NOWARN);
1341 	if (unlikely(!skb))
1342 		return NULL;
1343 
1344 	/* Determine available headroom for copy */
1345 	headlen = size;
1346 	if (headlen > IAVF_RX_HDR_SIZE)
1347 		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1348 
1349 	/* align pull length to size of long to optimize memcpy performance */
1350 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1351 
1352 	/* update all of the pointers */
1353 	size -= headlen;
1354 	if (size) {
1355 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1356 				rx_buffer->page_offset + headlen,
1357 				size, truesize);
1358 
1359 		/* buffer is used by skb, update page_offset */
1360 #if (PAGE_SIZE < 8192)
1361 		rx_buffer->page_offset ^= truesize;
1362 #else
1363 		rx_buffer->page_offset += truesize;
1364 #endif
1365 	} else {
1366 		/* buffer is unused, reset bias back to rx_buffer */
1367 		rx_buffer->pagecnt_bias++;
1368 	}
1369 
1370 	return skb;
1371 }
1372 
1373 /**
1374  * iavf_build_skb - Build skb around an existing buffer
1375  * @rx_ring: Rx descriptor ring to transact packets on
1376  * @rx_buffer: Rx buffer to pull data from
1377  * @size: size of buffer to add to skb
1378  *
1379  * This function builds an skb around an existing Rx buffer, taking care
1380  * to set up the skb correctly and avoid any memcpy overhead.
1381  */
1382 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1383 				      struct iavf_rx_buffer *rx_buffer,
1384 				      unsigned int size)
1385 {
1386 	void *va;
1387 #if (PAGE_SIZE < 8192)
1388 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1389 #else
1390 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1391 				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1392 #endif
1393 	struct sk_buff *skb;
1394 
1395 	if (!rx_buffer || !size)
1396 		return NULL;
1397 	/* prefetch first cache line of first page */
1398 	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1399 	net_prefetch(va);
1400 
1401 	/* build an skb around the page buffer */
1402 	skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1403 	if (unlikely(!skb))
1404 		return NULL;
1405 
1406 	/* update pointers within the skb to store the data */
1407 	skb_reserve(skb, IAVF_SKB_PAD);
1408 	__skb_put(skb, size);
1409 
1410 	/* buffer is used by skb, update page_offset */
1411 #if (PAGE_SIZE < 8192)
1412 	rx_buffer->page_offset ^= truesize;
1413 #else
1414 	rx_buffer->page_offset += truesize;
1415 #endif
1416 
1417 	return skb;
1418 }
1419 
1420 /**
1421  * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1422  * @rx_ring: rx descriptor ring to transact packets on
1423  * @rx_buffer: rx buffer to pull data from
1424  *
1425  * This function will clean up the contents of the rx_buffer.  It will
1426  * either recycle the buffer or unmap it and free the associated resources.
1427  */
1428 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1429 			       struct iavf_rx_buffer *rx_buffer)
1430 {
1431 	if (!rx_buffer)
1432 		return;
1433 
1434 	if (iavf_can_reuse_rx_page(rx_buffer)) {
1435 		/* hand second half of page back to the ring */
1436 		iavf_reuse_rx_page(rx_ring, rx_buffer);
1437 		rx_ring->rx_stats.page_reuse_count++;
1438 	} else {
1439 		/* we are not reusing the buffer so unmap it */
1440 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1441 				     iavf_rx_pg_size(rx_ring),
1442 				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1443 		__page_frag_cache_drain(rx_buffer->page,
1444 					rx_buffer->pagecnt_bias);
1445 	}
1446 
1447 	/* clear contents of buffer_info */
1448 	rx_buffer->page = NULL;
1449 }
1450 
1451 /**
1452  * iavf_is_non_eop - process handling of non-EOP buffers
1453  * @rx_ring: Rx ring being processed
1454  * @rx_desc: Rx descriptor for current buffer
1455  * @skb: Current socket buffer containing buffer in progress
1456  *
1457  * This function updates next to clean.  If the buffer is an EOP buffer
1458  * this function exits returning false, otherwise it will place the
1459  * sk_buff in the next buffer to be chained and return true indicating
1460  * that this is in fact a non-EOP buffer.
1461  **/
1462 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1463 			    union iavf_rx_desc *rx_desc,
1464 			    struct sk_buff *skb)
1465 {
1466 	u32 ntc = rx_ring->next_to_clean + 1;
1467 
1468 	/* fetch, update, and store next to clean */
1469 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1470 	rx_ring->next_to_clean = ntc;
1471 
1472 	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1473 
1474 	/* if we are the last buffer then there is nothing else to do */
1475 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1476 	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1477 		return false;
1478 
1479 	rx_ring->rx_stats.non_eop_descs++;
1480 
1481 	return true;
1482 }
1483 
1484 /**
1485  * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1486  * @rx_ring: rx descriptor ring to transact packets on
1487  * @budget: Total limit on number of packets to process
1488  *
1489  * This function provides a "bounce buffer" approach to Rx interrupt
1490  * processing.  The advantage to this is that on systems that have
1491  * expensive overhead for IOMMU access this provides a means of avoiding
1492  * it by maintaining the mapping of the page to the system.
1493  *
1494  * Returns amount of work completed
1495  **/
1496 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1497 {
1498 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1499 	struct sk_buff *skb = rx_ring->skb;
1500 	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1501 	bool failure = false;
1502 
1503 	while (likely(total_rx_packets < (unsigned int)budget)) {
1504 		struct iavf_rx_buffer *rx_buffer;
1505 		union iavf_rx_desc *rx_desc;
1506 		unsigned int size;
1507 		u16 vlan_tag = 0;
1508 		u8 rx_ptype;
1509 		u64 qword;
1510 
1511 		/* return some buffers to hardware, one at a time is too slow */
1512 		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1513 			failure = failure ||
1514 				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1515 			cleaned_count = 0;
1516 		}
1517 
1518 		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1519 
1520 		/* status_error_len will always be zero for unused descriptors
1521 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1522 		 * which is always zero because packet split isn't used, if the
1523 		 * hardware wrote DD then the length will be non-zero
1524 		 */
1525 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1526 
1527 		/* This memory barrier is needed to keep us from reading
1528 		 * any other fields out of the rx_desc until we have
1529 		 * verified the descriptor has been written back.
1530 		 */
1531 		dma_rmb();
1532 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1533 		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1534 			break;
1535 
1536 		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1537 		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1538 
1539 		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1540 		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1541 
1542 		/* retrieve a buffer from the ring */
1543 		if (skb)
1544 			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1545 		else if (ring_uses_build_skb(rx_ring))
1546 			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1547 		else
1548 			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1549 
1550 		/* exit if we failed to retrieve a buffer */
1551 		if (!skb) {
1552 			rx_ring->rx_stats.alloc_buff_failed++;
1553 			if (rx_buffer && size)
1554 				rx_buffer->pagecnt_bias++;
1555 			break;
1556 		}
1557 
1558 		iavf_put_rx_buffer(rx_ring, rx_buffer);
1559 		cleaned_count++;
1560 
1561 		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1562 			continue;
1563 
1564 		/* ERR_MASK will only have valid bits if EOP set, and
1565 		 * what we are doing here is actually checking
1566 		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1567 		 * the error field
1568 		 */
1569 		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1570 			dev_kfree_skb_any(skb);
1571 			skb = NULL;
1572 			continue;
1573 		}
1574 
1575 		if (iavf_cleanup_headers(rx_ring, skb)) {
1576 			skb = NULL;
1577 			continue;
1578 		}
1579 
1580 		/* probably a little skewed due to removing CRC */
1581 		total_rx_bytes += skb->len;
1582 
1583 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1584 		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1585 			   IAVF_RXD_QW1_PTYPE_SHIFT;
1586 
1587 		/* populate checksum, VLAN, and protocol */
1588 		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1589 
1590 		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1591 		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1592 			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1593 		if (rx_desc->wb.qword2.ext_status &
1594 		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1595 		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1596 			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1597 
1598 		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1599 		iavf_receive_skb(rx_ring, skb, vlan_tag);
1600 		skb = NULL;
1601 
1602 		/* update budget accounting */
1603 		total_rx_packets++;
1604 	}
1605 
1606 	rx_ring->skb = skb;
1607 
1608 	u64_stats_update_begin(&rx_ring->syncp);
1609 	rx_ring->stats.packets += total_rx_packets;
1610 	rx_ring->stats.bytes += total_rx_bytes;
1611 	u64_stats_update_end(&rx_ring->syncp);
1612 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1613 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1614 
1615 	/* guarantee a trip back through this routine if there was a failure */
1616 	return failure ? budget : (int)total_rx_packets;
1617 }
1618 
1619 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1620 {
1621 	u32 val;
1622 
1623 	/* We don't bother with setting the CLEARPBA bit as the data sheet
1624 	 * points out doing so is "meaningless since it was already
1625 	 * auto-cleared". The auto-clearing happens when the interrupt is
1626 	 * asserted.
1627 	 *
1628 	 * Hardware errata 28 for also indicates that writing to a
1629 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1630 	 * an event in the PBA anyway so we need to rely on the automask
1631 	 * to hold pending events for us until the interrupt is re-enabled
1632 	 *
1633 	 * The itr value is reported in microseconds, and the register
1634 	 * value is recorded in 2 microsecond units. For this reason we
1635 	 * only need to shift by the interval shift - 1 instead of the
1636 	 * full value.
1637 	 */
1638 	itr &= IAVF_ITR_MASK;
1639 
1640 	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1641 	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1642 	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1643 
1644 	return val;
1645 }
1646 
1647 /* a small macro to shorten up some long lines */
1648 #define INTREG IAVF_VFINT_DYN_CTLN1
1649 
1650 /* The act of updating the ITR will cause it to immediately trigger. In order
1651  * to prevent this from throwing off adaptive update statistics we defer the
1652  * update so that it can only happen so often. So after either Tx or Rx are
1653  * updated we make the adaptive scheme wait until either the ITR completely
1654  * expires via the next_update expiration or we have been through at least
1655  * 3 interrupts.
1656  */
1657 #define ITR_COUNTDOWN_START 3
1658 
1659 /**
1660  * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1661  * @vsi: the VSI we care about
1662  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1663  *
1664  **/
1665 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1666 					  struct iavf_q_vector *q_vector)
1667 {
1668 	struct iavf_hw *hw = &vsi->back->hw;
1669 	u32 intval;
1670 
1671 	/* These will do nothing if dynamic updates are not enabled */
1672 	iavf_update_itr(q_vector, &q_vector->tx);
1673 	iavf_update_itr(q_vector, &q_vector->rx);
1674 
1675 	/* This block of logic allows us to get away with only updating
1676 	 * one ITR value with each interrupt. The idea is to perform a
1677 	 * pseudo-lazy update with the following criteria.
1678 	 *
1679 	 * 1. Rx is given higher priority than Tx if both are in same state
1680 	 * 2. If we must reduce an ITR that is given highest priority.
1681 	 * 3. We then give priority to increasing ITR based on amount.
1682 	 */
1683 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1684 		/* Rx ITR needs to be reduced, this is highest priority */
1685 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1686 					   q_vector->rx.target_itr);
1687 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1688 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1689 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1690 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1691 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1692 		/* Tx ITR needs to be reduced, this is second priority
1693 		 * Tx ITR needs to be increased more than Rx, fourth priority
1694 		 */
1695 		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1696 					   q_vector->tx.target_itr);
1697 		q_vector->tx.current_itr = q_vector->tx.target_itr;
1698 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1699 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1700 		/* Rx ITR needs to be increased, third priority */
1701 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1702 					   q_vector->rx.target_itr);
1703 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1704 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1705 	} else {
1706 		/* No ITR update, lowest priority */
1707 		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1708 		if (q_vector->itr_countdown)
1709 			q_vector->itr_countdown--;
1710 	}
1711 
1712 	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1713 		wr32(hw, INTREG(q_vector->reg_idx), intval);
1714 }
1715 
1716 /**
1717  * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1718  * @napi: napi struct with our devices info in it
1719  * @budget: amount of work driver is allowed to do this pass, in packets
1720  *
1721  * This function will clean all queues associated with a q_vector.
1722  *
1723  * Returns the amount of work done
1724  **/
1725 int iavf_napi_poll(struct napi_struct *napi, int budget)
1726 {
1727 	struct iavf_q_vector *q_vector =
1728 			       container_of(napi, struct iavf_q_vector, napi);
1729 	struct iavf_vsi *vsi = q_vector->vsi;
1730 	struct iavf_ring *ring;
1731 	bool clean_complete = true;
1732 	bool arm_wb = false;
1733 	int budget_per_ring;
1734 	int work_done = 0;
1735 
1736 	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1737 		napi_complete(napi);
1738 		return 0;
1739 	}
1740 
1741 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1742 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1743 	 */
1744 	iavf_for_each_ring(ring, q_vector->tx) {
1745 		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1746 			clean_complete = false;
1747 			continue;
1748 		}
1749 		arm_wb |= ring->arm_wb;
1750 		ring->arm_wb = false;
1751 	}
1752 
1753 	/* Handle case where we are called by netpoll with a budget of 0 */
1754 	if (budget <= 0)
1755 		goto tx_only;
1756 
1757 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1758 	 * allow the budget to go below 1 because that would exit polling early.
1759 	 */
1760 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1761 
1762 	iavf_for_each_ring(ring, q_vector->rx) {
1763 		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1764 
1765 		work_done += cleaned;
1766 		/* if we clean as many as budgeted, we must not be done */
1767 		if (cleaned >= budget_per_ring)
1768 			clean_complete = false;
1769 	}
1770 
1771 	/* If work not completed, return budget and polling will return */
1772 	if (!clean_complete) {
1773 		int cpu_id = smp_processor_id();
1774 
1775 		/* It is possible that the interrupt affinity has changed but,
1776 		 * if the cpu is pegged at 100%, polling will never exit while
1777 		 * traffic continues and the interrupt will be stuck on this
1778 		 * cpu.  We check to make sure affinity is correct before we
1779 		 * continue to poll, otherwise we must stop polling so the
1780 		 * interrupt can move to the correct cpu.
1781 		 */
1782 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1783 			/* Tell napi that we are done polling */
1784 			napi_complete_done(napi, work_done);
1785 
1786 			/* Force an interrupt */
1787 			iavf_force_wb(vsi, q_vector);
1788 
1789 			/* Return budget-1 so that polling stops */
1790 			return budget - 1;
1791 		}
1792 tx_only:
1793 		if (arm_wb) {
1794 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1795 			iavf_enable_wb_on_itr(vsi, q_vector);
1796 		}
1797 		return budget;
1798 	}
1799 
1800 	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1801 		q_vector->arm_wb_state = false;
1802 
1803 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1804 	 * poll us due to busy-polling
1805 	 */
1806 	if (likely(napi_complete_done(napi, work_done)))
1807 		iavf_update_enable_itr(vsi, q_vector);
1808 
1809 	return min_t(int, work_done, budget - 1);
1810 }
1811 
1812 /**
1813  * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1814  * @skb:     send buffer
1815  * @tx_ring: ring to send buffer on
1816  * @flags:   the tx flags to be set
1817  *
1818  * Checks the skb and set up correspondingly several generic transmit flags
1819  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1820  *
1821  * Returns error code indicate the frame should be dropped upon error and the
1822  * otherwise  returns 0 to indicate the flags has been set properly.
1823  **/
1824 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1825 				       struct iavf_ring *tx_ring, u32 *flags)
1826 {
1827 	u32  tx_flags = 0;
1828 
1829 
1830 	/* stack will only request hardware VLAN insertion offload for protocols
1831 	 * that the driver supports and has enabled
1832 	 */
1833 	if (!skb_vlan_tag_present(skb))
1834 		return;
1835 
1836 	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1837 	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1838 		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1839 	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1840 		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1841 	} else {
1842 		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1843 		return;
1844 	}
1845 
1846 	*flags = tx_flags;
1847 }
1848 
1849 /**
1850  * iavf_tso - set up the tso context descriptor
1851  * @first:    pointer to first Tx buffer for xmit
1852  * @hdr_len:  ptr to the size of the packet header
1853  * @cd_type_cmd_tso_mss: Quad Word 1
1854  *
1855  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1856  **/
1857 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1858 		    u64 *cd_type_cmd_tso_mss)
1859 {
1860 	struct sk_buff *skb = first->skb;
1861 	u64 cd_cmd, cd_tso_len, cd_mss;
1862 	union {
1863 		struct iphdr *v4;
1864 		struct ipv6hdr *v6;
1865 		unsigned char *hdr;
1866 	} ip;
1867 	union {
1868 		struct tcphdr *tcp;
1869 		struct udphdr *udp;
1870 		unsigned char *hdr;
1871 	} l4;
1872 	u32 paylen, l4_offset;
1873 	u16 gso_segs, gso_size;
1874 	int err;
1875 
1876 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1877 		return 0;
1878 
1879 	if (!skb_is_gso(skb))
1880 		return 0;
1881 
1882 	err = skb_cow_head(skb, 0);
1883 	if (err < 0)
1884 		return err;
1885 
1886 	ip.hdr = skb_network_header(skb);
1887 	l4.hdr = skb_transport_header(skb);
1888 
1889 	/* initialize outer IP header fields */
1890 	if (ip.v4->version == 4) {
1891 		ip.v4->tot_len = 0;
1892 		ip.v4->check = 0;
1893 	} else {
1894 		ip.v6->payload_len = 0;
1895 	}
1896 
1897 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1898 					 SKB_GSO_GRE_CSUM |
1899 					 SKB_GSO_IPXIP4 |
1900 					 SKB_GSO_IPXIP6 |
1901 					 SKB_GSO_UDP_TUNNEL |
1902 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1903 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1904 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1905 			l4.udp->len = 0;
1906 
1907 			/* determine offset of outer transport header */
1908 			l4_offset = l4.hdr - skb->data;
1909 
1910 			/* remove payload length from outer checksum */
1911 			paylen = skb->len - l4_offset;
1912 			csum_replace_by_diff(&l4.udp->check,
1913 					     (__force __wsum)htonl(paylen));
1914 		}
1915 
1916 		/* reset pointers to inner headers */
1917 		ip.hdr = skb_inner_network_header(skb);
1918 		l4.hdr = skb_inner_transport_header(skb);
1919 
1920 		/* initialize inner IP header fields */
1921 		if (ip.v4->version == 4) {
1922 			ip.v4->tot_len = 0;
1923 			ip.v4->check = 0;
1924 		} else {
1925 			ip.v6->payload_len = 0;
1926 		}
1927 	}
1928 
1929 	/* determine offset of inner transport header */
1930 	l4_offset = l4.hdr - skb->data;
1931 	/* remove payload length from inner checksum */
1932 	paylen = skb->len - l4_offset;
1933 
1934 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1935 		csum_replace_by_diff(&l4.udp->check,
1936 				     (__force __wsum)htonl(paylen));
1937 		/* compute length of UDP segmentation header */
1938 		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1939 	} else {
1940 		csum_replace_by_diff(&l4.tcp->check,
1941 				     (__force __wsum)htonl(paylen));
1942 		/* compute length of TCP segmentation header */
1943 		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1944 	}
1945 
1946 	/* pull values out of skb_shinfo */
1947 	gso_size = skb_shinfo(skb)->gso_size;
1948 	gso_segs = skb_shinfo(skb)->gso_segs;
1949 
1950 	/* update GSO size and bytecount with header size */
1951 	first->gso_segs = gso_segs;
1952 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1953 
1954 	/* find the field values */
1955 	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1956 	cd_tso_len = skb->len - *hdr_len;
1957 	cd_mss = gso_size;
1958 	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1959 				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1960 				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1961 	return 1;
1962 }
1963 
1964 /**
1965  * iavf_tx_enable_csum - Enable Tx checksum offloads
1966  * @skb: send buffer
1967  * @tx_flags: pointer to Tx flags currently set
1968  * @td_cmd: Tx descriptor command bits to set
1969  * @td_offset: Tx descriptor header offsets to set
1970  * @tx_ring: Tx descriptor ring
1971  * @cd_tunneling: ptr to context desc bits
1972  **/
1973 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1974 			       u32 *td_cmd, u32 *td_offset,
1975 			       struct iavf_ring *tx_ring,
1976 			       u32 *cd_tunneling)
1977 {
1978 	union {
1979 		struct iphdr *v4;
1980 		struct ipv6hdr *v6;
1981 		unsigned char *hdr;
1982 	} ip;
1983 	union {
1984 		struct tcphdr *tcp;
1985 		struct udphdr *udp;
1986 		unsigned char *hdr;
1987 	} l4;
1988 	unsigned char *exthdr;
1989 	u32 offset, cmd = 0;
1990 	__be16 frag_off;
1991 	u8 l4_proto = 0;
1992 
1993 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1994 		return 0;
1995 
1996 	ip.hdr = skb_network_header(skb);
1997 	l4.hdr = skb_transport_header(skb);
1998 
1999 	/* compute outer L2 header size */
2000 	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2001 
2002 	if (skb->encapsulation) {
2003 		u32 tunnel = 0;
2004 		/* define outer network header type */
2005 		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2006 			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2007 				  IAVF_TX_CTX_EXT_IP_IPV4 :
2008 				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2009 
2010 			l4_proto = ip.v4->protocol;
2011 		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2012 			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2013 
2014 			exthdr = ip.hdr + sizeof(*ip.v6);
2015 			l4_proto = ip.v6->nexthdr;
2016 			if (l4.hdr != exthdr)
2017 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2018 						 &l4_proto, &frag_off);
2019 		}
2020 
2021 		/* define outer transport */
2022 		switch (l4_proto) {
2023 		case IPPROTO_UDP:
2024 			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2025 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2026 			break;
2027 		case IPPROTO_GRE:
2028 			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2029 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2030 			break;
2031 		case IPPROTO_IPIP:
2032 		case IPPROTO_IPV6:
2033 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2034 			l4.hdr = skb_inner_network_header(skb);
2035 			break;
2036 		default:
2037 			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2038 				return -1;
2039 
2040 			skb_checksum_help(skb);
2041 			return 0;
2042 		}
2043 
2044 		/* compute outer L3 header size */
2045 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2046 			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2047 
2048 		/* switch IP header pointer from outer to inner header */
2049 		ip.hdr = skb_inner_network_header(skb);
2050 
2051 		/* compute tunnel header size */
2052 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2053 			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2054 
2055 		/* indicate if we need to offload outer UDP header */
2056 		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2057 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2058 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2059 			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2060 
2061 		/* record tunnel offload values */
2062 		*cd_tunneling |= tunnel;
2063 
2064 		/* switch L4 header pointer from outer to inner */
2065 		l4.hdr = skb_inner_transport_header(skb);
2066 		l4_proto = 0;
2067 
2068 		/* reset type as we transition from outer to inner headers */
2069 		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2070 		if (ip.v4->version == 4)
2071 			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2072 		if (ip.v6->version == 6)
2073 			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2074 	}
2075 
2076 	/* Enable IP checksum offloads */
2077 	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2078 		l4_proto = ip.v4->protocol;
2079 		/* the stack computes the IP header already, the only time we
2080 		 * need the hardware to recompute it is in the case of TSO.
2081 		 */
2082 		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2083 		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2084 		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2085 	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2086 		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2087 
2088 		exthdr = ip.hdr + sizeof(*ip.v6);
2089 		l4_proto = ip.v6->nexthdr;
2090 		if (l4.hdr != exthdr)
2091 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2092 					 &l4_proto, &frag_off);
2093 	}
2094 
2095 	/* compute inner L3 header size */
2096 	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2097 
2098 	/* Enable L4 checksum offloads */
2099 	switch (l4_proto) {
2100 	case IPPROTO_TCP:
2101 		/* enable checksum offloads */
2102 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2103 		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2104 		break;
2105 	case IPPROTO_SCTP:
2106 		/* enable SCTP checksum offload */
2107 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2108 		offset |= (sizeof(struct sctphdr) >> 2) <<
2109 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2110 		break;
2111 	case IPPROTO_UDP:
2112 		/* enable UDP checksum offload */
2113 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2114 		offset |= (sizeof(struct udphdr) >> 2) <<
2115 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2116 		break;
2117 	default:
2118 		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2119 			return -1;
2120 		skb_checksum_help(skb);
2121 		return 0;
2122 	}
2123 
2124 	*td_cmd |= cmd;
2125 	*td_offset |= offset;
2126 
2127 	return 1;
2128 }
2129 
2130 /**
2131  * iavf_create_tx_ctx - Build the Tx context descriptor
2132  * @tx_ring:  ring to create the descriptor on
2133  * @cd_type_cmd_tso_mss: Quad Word 1
2134  * @cd_tunneling: Quad Word 0 - bits 0-31
2135  * @cd_l2tag2: Quad Word 0 - bits 32-63
2136  **/
2137 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2138 			       const u64 cd_type_cmd_tso_mss,
2139 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2140 {
2141 	struct iavf_tx_context_desc *context_desc;
2142 	int i = tx_ring->next_to_use;
2143 
2144 	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2145 	    !cd_tunneling && !cd_l2tag2)
2146 		return;
2147 
2148 	/* grab the next descriptor */
2149 	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2150 
2151 	i++;
2152 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2153 
2154 	/* cpu_to_le32 and assign to struct fields */
2155 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2156 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2157 	context_desc->rsvd = cpu_to_le16(0);
2158 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2159 }
2160 
2161 /**
2162  * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2163  * @skb:      send buffer
2164  *
2165  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2166  * and so we need to figure out the cases where we need to linearize the skb.
2167  *
2168  * For TSO we need to count the TSO header and segment payload separately.
2169  * As such we need to check cases where we have 7 fragments or more as we
2170  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2171  * the segment payload in the first descriptor, and another 7 for the
2172  * fragments.
2173  **/
2174 bool __iavf_chk_linearize(struct sk_buff *skb)
2175 {
2176 	const skb_frag_t *frag, *stale;
2177 	int nr_frags, sum;
2178 
2179 	/* no need to check if number of frags is less than 7 */
2180 	nr_frags = skb_shinfo(skb)->nr_frags;
2181 	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2182 		return false;
2183 
2184 	/* We need to walk through the list and validate that each group
2185 	 * of 6 fragments totals at least gso_size.
2186 	 */
2187 	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2188 	frag = &skb_shinfo(skb)->frags[0];
2189 
2190 	/* Initialize size to the negative value of gso_size minus 1.  We
2191 	 * use this as the worst case scenerio in which the frag ahead
2192 	 * of us only provides one byte which is why we are limited to 6
2193 	 * descriptors for a single transmit as the header and previous
2194 	 * fragment are already consuming 2 descriptors.
2195 	 */
2196 	sum = 1 - skb_shinfo(skb)->gso_size;
2197 
2198 	/* Add size of frags 0 through 4 to create our initial sum */
2199 	sum += skb_frag_size(frag++);
2200 	sum += skb_frag_size(frag++);
2201 	sum += skb_frag_size(frag++);
2202 	sum += skb_frag_size(frag++);
2203 	sum += skb_frag_size(frag++);
2204 
2205 	/* Walk through fragments adding latest fragment, testing it, and
2206 	 * then removing stale fragments from the sum.
2207 	 */
2208 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2209 		int stale_size = skb_frag_size(stale);
2210 
2211 		sum += skb_frag_size(frag++);
2212 
2213 		/* The stale fragment may present us with a smaller
2214 		 * descriptor than the actual fragment size. To account
2215 		 * for that we need to remove all the data on the front and
2216 		 * figure out what the remainder would be in the last
2217 		 * descriptor associated with the fragment.
2218 		 */
2219 		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2220 			int align_pad = -(skb_frag_off(stale)) &
2221 					(IAVF_MAX_READ_REQ_SIZE - 1);
2222 
2223 			sum -= align_pad;
2224 			stale_size -= align_pad;
2225 
2226 			do {
2227 				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2228 				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2229 			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2230 		}
2231 
2232 		/* if sum is negative we failed to make sufficient progress */
2233 		if (sum < 0)
2234 			return true;
2235 
2236 		if (!nr_frags--)
2237 			break;
2238 
2239 		sum -= stale_size;
2240 	}
2241 
2242 	return false;
2243 }
2244 
2245 /**
2246  * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2247  * @tx_ring: the ring to be checked
2248  * @size:    the size buffer we want to assure is available
2249  *
2250  * Returns -EBUSY if a stop is needed, else 0
2251  **/
2252 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2253 {
2254 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2255 	/* Memory barrier before checking head and tail */
2256 	smp_mb();
2257 
2258 	/* Check again in a case another CPU has just made room available. */
2259 	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2260 		return -EBUSY;
2261 
2262 	/* A reprieve! - use start_queue because it doesn't call schedule */
2263 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2264 	++tx_ring->tx_stats.restart_queue;
2265 	return 0;
2266 }
2267 
2268 /**
2269  * iavf_tx_map - Build the Tx descriptor
2270  * @tx_ring:  ring to send buffer on
2271  * @skb:      send buffer
2272  * @first:    first buffer info buffer to use
2273  * @tx_flags: collected send information
2274  * @hdr_len:  size of the packet header
2275  * @td_cmd:   the command field in the descriptor
2276  * @td_offset: offset for checksum or crc
2277  **/
2278 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2279 			       struct iavf_tx_buffer *first, u32 tx_flags,
2280 			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2281 {
2282 	unsigned int data_len = skb->data_len;
2283 	unsigned int size = skb_headlen(skb);
2284 	skb_frag_t *frag;
2285 	struct iavf_tx_buffer *tx_bi;
2286 	struct iavf_tx_desc *tx_desc;
2287 	u16 i = tx_ring->next_to_use;
2288 	u32 td_tag = 0;
2289 	dma_addr_t dma;
2290 
2291 	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2292 		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2293 		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2294 			 IAVF_TX_FLAGS_VLAN_SHIFT;
2295 	}
2296 
2297 	first->tx_flags = tx_flags;
2298 
2299 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2300 
2301 	tx_desc = IAVF_TX_DESC(tx_ring, i);
2302 	tx_bi = first;
2303 
2304 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2305 		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2306 
2307 		if (dma_mapping_error(tx_ring->dev, dma))
2308 			goto dma_error;
2309 
2310 		/* record length, and DMA address */
2311 		dma_unmap_len_set(tx_bi, len, size);
2312 		dma_unmap_addr_set(tx_bi, dma, dma);
2313 
2314 		/* align size to end of page */
2315 		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2316 		tx_desc->buffer_addr = cpu_to_le64(dma);
2317 
2318 		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2319 			tx_desc->cmd_type_offset_bsz =
2320 				build_ctob(td_cmd, td_offset,
2321 					   max_data, td_tag);
2322 
2323 			tx_desc++;
2324 			i++;
2325 
2326 			if (i == tx_ring->count) {
2327 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2328 				i = 0;
2329 			}
2330 
2331 			dma += max_data;
2332 			size -= max_data;
2333 
2334 			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2335 			tx_desc->buffer_addr = cpu_to_le64(dma);
2336 		}
2337 
2338 		if (likely(!data_len))
2339 			break;
2340 
2341 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2342 							  size, td_tag);
2343 
2344 		tx_desc++;
2345 		i++;
2346 
2347 		if (i == tx_ring->count) {
2348 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2349 			i = 0;
2350 		}
2351 
2352 		size = skb_frag_size(frag);
2353 		data_len -= size;
2354 
2355 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2356 				       DMA_TO_DEVICE);
2357 
2358 		tx_bi = &tx_ring->tx_bi[i];
2359 	}
2360 
2361 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2362 
2363 	i++;
2364 	if (i == tx_ring->count)
2365 		i = 0;
2366 
2367 	tx_ring->next_to_use = i;
2368 
2369 	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2370 
2371 	/* write last descriptor with RS and EOP bits */
2372 	td_cmd |= IAVF_TXD_CMD;
2373 	tx_desc->cmd_type_offset_bsz =
2374 			build_ctob(td_cmd, td_offset, size, td_tag);
2375 
2376 	skb_tx_timestamp(skb);
2377 
2378 	/* Force memory writes to complete before letting h/w know there
2379 	 * are new descriptors to fetch.
2380 	 *
2381 	 * We also use this memory barrier to make certain all of the
2382 	 * status bits have been updated before next_to_watch is written.
2383 	 */
2384 	wmb();
2385 
2386 	/* set next_to_watch value indicating a packet is present */
2387 	first->next_to_watch = tx_desc;
2388 
2389 	/* notify HW of packet */
2390 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2391 		writel(i, tx_ring->tail);
2392 	}
2393 
2394 	return;
2395 
2396 dma_error:
2397 	dev_info(tx_ring->dev, "TX DMA map failed\n");
2398 
2399 	/* clear dma mappings for failed tx_bi map */
2400 	for (;;) {
2401 		tx_bi = &tx_ring->tx_bi[i];
2402 		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2403 		if (tx_bi == first)
2404 			break;
2405 		if (i == 0)
2406 			i = tx_ring->count;
2407 		i--;
2408 	}
2409 
2410 	tx_ring->next_to_use = i;
2411 }
2412 
2413 /**
2414  * iavf_xmit_frame_ring - Sends buffer on Tx ring
2415  * @skb:     send buffer
2416  * @tx_ring: ring to send buffer on
2417  *
2418  * Returns NETDEV_TX_OK if sent, else an error code
2419  **/
2420 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2421 					struct iavf_ring *tx_ring)
2422 {
2423 	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2424 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2425 	struct iavf_tx_buffer *first;
2426 	u32 td_offset = 0;
2427 	u32 tx_flags = 0;
2428 	__be16 protocol;
2429 	u32 td_cmd = 0;
2430 	u8 hdr_len = 0;
2431 	int tso, count;
2432 
2433 	/* prefetch the data, we'll need it later */
2434 	prefetch(skb->data);
2435 
2436 	iavf_trace(xmit_frame_ring, skb, tx_ring);
2437 
2438 	count = iavf_xmit_descriptor_count(skb);
2439 	if (iavf_chk_linearize(skb, count)) {
2440 		if (__skb_linearize(skb)) {
2441 			dev_kfree_skb_any(skb);
2442 			return NETDEV_TX_OK;
2443 		}
2444 		count = iavf_txd_use_count(skb->len);
2445 		tx_ring->tx_stats.tx_linearize++;
2446 	}
2447 
2448 	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2449 	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2450 	 *       + 4 desc gap to avoid the cache line where head is,
2451 	 *       + 1 desc for context descriptor,
2452 	 * otherwise try next time
2453 	 */
2454 	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2455 		tx_ring->tx_stats.tx_busy++;
2456 		return NETDEV_TX_BUSY;
2457 	}
2458 
2459 	/* record the location of the first descriptor for this packet */
2460 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2461 	first->skb = skb;
2462 	first->bytecount = skb->len;
2463 	first->gso_segs = 1;
2464 
2465 	/* prepare the xmit flags */
2466 	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2467 	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2468 		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2469 			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2470 		cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2471 			IAVF_TX_FLAGS_VLAN_SHIFT;
2472 	}
2473 
2474 	/* obtain protocol of skb */
2475 	protocol = vlan_get_protocol(skb);
2476 
2477 	/* setup IPv4/IPv6 offloads */
2478 	if (protocol == htons(ETH_P_IP))
2479 		tx_flags |= IAVF_TX_FLAGS_IPV4;
2480 	else if (protocol == htons(ETH_P_IPV6))
2481 		tx_flags |= IAVF_TX_FLAGS_IPV6;
2482 
2483 	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2484 
2485 	if (tso < 0)
2486 		goto out_drop;
2487 	else if (tso)
2488 		tx_flags |= IAVF_TX_FLAGS_TSO;
2489 
2490 	/* Always offload the checksum, since it's in the data descriptor */
2491 	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2492 				  tx_ring, &cd_tunneling);
2493 	if (tso < 0)
2494 		goto out_drop;
2495 
2496 	/* always enable CRC insertion offload */
2497 	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2498 
2499 	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2500 			   cd_tunneling, cd_l2tag2);
2501 
2502 	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2503 		    td_cmd, td_offset);
2504 
2505 	return NETDEV_TX_OK;
2506 
2507 out_drop:
2508 	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2509 	dev_kfree_skb_any(first->skb);
2510 	first->skb = NULL;
2511 	return NETDEV_TX_OK;
2512 }
2513 
2514 /**
2515  * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2516  * @skb:    send buffer
2517  * @netdev: network interface device structure
2518  *
2519  * Returns NETDEV_TX_OK if sent, else an error code
2520  **/
2521 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2522 {
2523 	struct iavf_adapter *adapter = netdev_priv(netdev);
2524 	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2525 
2526 	/* hardware can't handle really short frames, hardware padding works
2527 	 * beyond this point
2528 	 */
2529 	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2530 		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2531 			return NETDEV_TX_OK;
2532 		skb->len = IAVF_MIN_TX_LEN;
2533 		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2534 	}
2535 
2536 	return iavf_xmit_frame_ring(skb, tx_ring);
2537 }
2538