1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 6 #include "iavf.h" 7 #include "iavf_trace.h" 8 #include "iavf_prototype.h" 9 10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 11 u32 td_tag) 12 { 13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 18 } 19 20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 21 22 /** 23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 24 * @ring: the ring that owns the buffer 25 * @tx_buffer: the buffer to free 26 **/ 27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 28 struct iavf_tx_buffer *tx_buffer) 29 { 30 if (tx_buffer->skb) { 31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 32 kfree(tx_buffer->raw_buf); 33 else 34 dev_kfree_skb_any(tx_buffer->skb); 35 if (dma_unmap_len(tx_buffer, len)) 36 dma_unmap_single(ring->dev, 37 dma_unmap_addr(tx_buffer, dma), 38 dma_unmap_len(tx_buffer, len), 39 DMA_TO_DEVICE); 40 } else if (dma_unmap_len(tx_buffer, len)) { 41 dma_unmap_page(ring->dev, 42 dma_unmap_addr(tx_buffer, dma), 43 dma_unmap_len(tx_buffer, len), 44 DMA_TO_DEVICE); 45 } 46 47 tx_buffer->next_to_watch = NULL; 48 tx_buffer->skb = NULL; 49 dma_unmap_len_set(tx_buffer, len, 0); 50 /* tx_buffer must be completely set up in the transmit path */ 51 } 52 53 /** 54 * iavf_clean_tx_ring - Free any empty Tx buffers 55 * @tx_ring: ring to be cleaned 56 **/ 57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 58 { 59 unsigned long bi_size; 60 u16 i; 61 62 /* ring already cleared, nothing to do */ 63 if (!tx_ring->tx_bi) 64 return; 65 66 /* Free all the Tx ring sk_buffs */ 67 for (i = 0; i < tx_ring->count; i++) 68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 69 70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 71 memset(tx_ring->tx_bi, 0, bi_size); 72 73 /* Zero out the descriptor ring */ 74 memset(tx_ring->desc, 0, tx_ring->size); 75 76 tx_ring->next_to_use = 0; 77 tx_ring->next_to_clean = 0; 78 79 if (!tx_ring->netdev) 80 return; 81 82 /* cleanup Tx queue statistics */ 83 netdev_tx_reset_queue(txring_txq(tx_ring)); 84 } 85 86 /** 87 * iavf_free_tx_resources - Free Tx resources per queue 88 * @tx_ring: Tx descriptor ring for a specific queue 89 * 90 * Free all transmit software resources 91 **/ 92 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 93 { 94 iavf_clean_tx_ring(tx_ring); 95 kfree(tx_ring->tx_bi); 96 tx_ring->tx_bi = NULL; 97 98 if (tx_ring->desc) { 99 dma_free_coherent(tx_ring->dev, tx_ring->size, 100 tx_ring->desc, tx_ring->dma); 101 tx_ring->desc = NULL; 102 } 103 } 104 105 /** 106 * iavf_get_tx_pending - how many Tx descriptors not processed 107 * @ring: the ring of descriptors 108 * @in_sw: is tx_pending being checked in SW or HW 109 * 110 * Since there is no access to the ring head register 111 * in XL710, we need to use our local copies 112 **/ 113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 114 { 115 u32 head, tail; 116 117 head = ring->next_to_clean; 118 tail = readl(ring->tail); 119 120 if (head != tail) 121 return (head < tail) ? 122 tail - head : (tail + ring->count - head); 123 124 return 0; 125 } 126 127 /** 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues 129 * @vsi: pointer to vsi struct with tx queues 130 * 131 * VSI has netdev and netdev has TX queues. This function is to check each of 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 133 **/ 134 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 135 { 136 struct iavf_ring *tx_ring = NULL; 137 struct net_device *netdev; 138 unsigned int i; 139 int packets; 140 141 if (!vsi) 142 return; 143 144 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 145 return; 146 147 netdev = vsi->netdev; 148 if (!netdev) 149 return; 150 151 if (!netif_carrier_ok(netdev)) 152 return; 153 154 for (i = 0; i < vsi->back->num_active_queues; i++) { 155 tx_ring = &vsi->back->tx_rings[i]; 156 if (tx_ring && tx_ring->desc) { 157 /* If packet counter has not changed the queue is 158 * likely stalled, so force an interrupt for this 159 * queue. 160 * 161 * prev_pkt_ctr would be negative if there was no 162 * pending work. 163 */ 164 packets = tx_ring->stats.packets & INT_MAX; 165 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 166 iavf_force_wb(vsi, tx_ring->q_vector); 167 continue; 168 } 169 170 /* Memory barrier between read of packet count and call 171 * to iavf_get_tx_pending() 172 */ 173 smp_rmb(); 174 tx_ring->tx_stats.prev_pkt_ctr = 175 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 176 } 177 } 178 } 179 180 #define WB_STRIDE 4 181 182 /** 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes 184 * @vsi: the VSI we care about 185 * @tx_ring: Tx ring to clean 186 * @napi_budget: Used to determine if we are in netpoll 187 * 188 * Returns true if there's any budget left (e.g. the clean is finished) 189 **/ 190 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 191 struct iavf_ring *tx_ring, int napi_budget) 192 { 193 int i = tx_ring->next_to_clean; 194 struct iavf_tx_buffer *tx_buf; 195 struct iavf_tx_desc *tx_desc; 196 unsigned int total_bytes = 0, total_packets = 0; 197 unsigned int budget = vsi->work_limit; 198 199 tx_buf = &tx_ring->tx_bi[i]; 200 tx_desc = IAVF_TX_DESC(tx_ring, i); 201 i -= tx_ring->count; 202 203 do { 204 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 205 206 /* if next_to_watch is not set then there is no work pending */ 207 if (!eop_desc) 208 break; 209 210 /* prevent any other reads prior to eop_desc */ 211 smp_rmb(); 212 213 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 214 /* if the descriptor isn't done, no work yet to do */ 215 if (!(eop_desc->cmd_type_offset_bsz & 216 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 217 break; 218 219 /* clear next_to_watch to prevent false hangs */ 220 tx_buf->next_to_watch = NULL; 221 222 /* update the statistics for this packet */ 223 total_bytes += tx_buf->bytecount; 224 total_packets += tx_buf->gso_segs; 225 226 /* free the skb */ 227 napi_consume_skb(tx_buf->skb, napi_budget); 228 229 /* unmap skb header data */ 230 dma_unmap_single(tx_ring->dev, 231 dma_unmap_addr(tx_buf, dma), 232 dma_unmap_len(tx_buf, len), 233 DMA_TO_DEVICE); 234 235 /* clear tx_buffer data */ 236 tx_buf->skb = NULL; 237 dma_unmap_len_set(tx_buf, len, 0); 238 239 /* unmap remaining buffers */ 240 while (tx_desc != eop_desc) { 241 iavf_trace(clean_tx_irq_unmap, 242 tx_ring, tx_desc, tx_buf); 243 244 tx_buf++; 245 tx_desc++; 246 i++; 247 if (unlikely(!i)) { 248 i -= tx_ring->count; 249 tx_buf = tx_ring->tx_bi; 250 tx_desc = IAVF_TX_DESC(tx_ring, 0); 251 } 252 253 /* unmap any remaining paged data */ 254 if (dma_unmap_len(tx_buf, len)) { 255 dma_unmap_page(tx_ring->dev, 256 dma_unmap_addr(tx_buf, dma), 257 dma_unmap_len(tx_buf, len), 258 DMA_TO_DEVICE); 259 dma_unmap_len_set(tx_buf, len, 0); 260 } 261 } 262 263 /* move us one more past the eop_desc for start of next pkt */ 264 tx_buf++; 265 tx_desc++; 266 i++; 267 if (unlikely(!i)) { 268 i -= tx_ring->count; 269 tx_buf = tx_ring->tx_bi; 270 tx_desc = IAVF_TX_DESC(tx_ring, 0); 271 } 272 273 prefetch(tx_desc); 274 275 /* update budget accounting */ 276 budget--; 277 } while (likely(budget)); 278 279 i += tx_ring->count; 280 tx_ring->next_to_clean = i; 281 u64_stats_update_begin(&tx_ring->syncp); 282 tx_ring->stats.bytes += total_bytes; 283 tx_ring->stats.packets += total_packets; 284 u64_stats_update_end(&tx_ring->syncp); 285 tx_ring->q_vector->tx.total_bytes += total_bytes; 286 tx_ring->q_vector->tx.total_packets += total_packets; 287 288 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 289 /* check to see if there are < 4 descriptors 290 * waiting to be written back, then kick the hardware to force 291 * them to be written back in case we stay in NAPI. 292 * In this mode on X722 we do not enable Interrupt. 293 */ 294 unsigned int j = iavf_get_tx_pending(tx_ring, false); 295 296 if (budget && 297 ((j / WB_STRIDE) == 0) && (j > 0) && 298 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 299 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 300 tx_ring->arm_wb = true; 301 } 302 303 /* notify netdev of completed buffers */ 304 netdev_tx_completed_queue(txring_txq(tx_ring), 305 total_packets, total_bytes); 306 307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 308 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 309 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 310 /* Make sure that anybody stopping the queue after this 311 * sees the new next_to_clean. 312 */ 313 smp_mb(); 314 if (__netif_subqueue_stopped(tx_ring->netdev, 315 tx_ring->queue_index) && 316 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 317 netif_wake_subqueue(tx_ring->netdev, 318 tx_ring->queue_index); 319 ++tx_ring->tx_stats.restart_queue; 320 } 321 } 322 323 return !!budget; 324 } 325 326 /** 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 328 * @vsi: the VSI we care about 329 * @q_vector: the vector on which to enable writeback 330 * 331 **/ 332 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 333 struct iavf_q_vector *q_vector) 334 { 335 u16 flags = q_vector->tx.ring[0].flags; 336 u32 val; 337 338 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 339 return; 340 341 if (q_vector->arm_wb_state) 342 return; 343 344 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 345 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 346 347 wr32(&vsi->back->hw, 348 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 349 q_vector->arm_wb_state = true; 350 } 351 352 /** 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb 354 * @vsi: the VSI we care about 355 * @q_vector: the vector on which to force writeback 356 * 357 **/ 358 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 359 { 360 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 361 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 362 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 363 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 364 /* allow 00 to be written to the index */; 365 366 wr32(&vsi->back->hw, 367 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 368 val); 369 } 370 371 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 372 struct iavf_ring_container *rc) 373 { 374 return &q_vector->rx == rc; 375 } 376 377 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector) 378 { 379 unsigned int divisor; 380 381 switch (q_vector->adapter->link_speed) { 382 case VIRTCHNL_LINK_SPEED_40GB: 383 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024; 384 break; 385 case VIRTCHNL_LINK_SPEED_25GB: 386 case VIRTCHNL_LINK_SPEED_20GB: 387 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512; 388 break; 389 default: 390 case VIRTCHNL_LINK_SPEED_10GB: 391 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256; 392 break; 393 case VIRTCHNL_LINK_SPEED_1GB: 394 case VIRTCHNL_LINK_SPEED_100MB: 395 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32; 396 break; 397 } 398 399 return divisor; 400 } 401 402 /** 403 * iavf_update_itr - update the dynamic ITR value based on statistics 404 * @q_vector: structure containing interrupt and ring information 405 * @rc: structure containing ring performance data 406 * 407 * Stores a new ITR value based on packets and byte 408 * counts during the last interrupt. The advantage of per interrupt 409 * computation is faster updates and more accurate ITR for the current 410 * traffic pattern. Constants in this function were computed 411 * based on theoretical maximum wire speed and thresholds were set based 412 * on testing data as well as attempting to minimize response time 413 * while increasing bulk throughput. 414 **/ 415 static void iavf_update_itr(struct iavf_q_vector *q_vector, 416 struct iavf_ring_container *rc) 417 { 418 unsigned int avg_wire_size, packets, bytes, itr; 419 unsigned long next_update = jiffies; 420 421 /* If we don't have any rings just leave ourselves set for maximum 422 * possible latency so we take ourselves out of the equation. 423 */ 424 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 425 return; 426 427 /* For Rx we want to push the delay up and default to low latency. 428 * for Tx we want to pull the delay down and default to high latency. 429 */ 430 itr = iavf_container_is_rx(q_vector, rc) ? 431 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 432 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 433 434 /* If we didn't update within up to 1 - 2 jiffies we can assume 435 * that either packets are coming in so slow there hasn't been 436 * any work, or that there is so much work that NAPI is dealing 437 * with interrupt moderation and we don't need to do anything. 438 */ 439 if (time_after(next_update, rc->next_update)) 440 goto clear_counts; 441 442 /* If itr_countdown is set it means we programmed an ITR within 443 * the last 4 interrupt cycles. This has a side effect of us 444 * potentially firing an early interrupt. In order to work around 445 * this we need to throw out any data received for a few 446 * interrupts following the update. 447 */ 448 if (q_vector->itr_countdown) { 449 itr = rc->target_itr; 450 goto clear_counts; 451 } 452 453 packets = rc->total_packets; 454 bytes = rc->total_bytes; 455 456 if (iavf_container_is_rx(q_vector, rc)) { 457 /* If Rx there are 1 to 4 packets and bytes are less than 458 * 9000 assume insufficient data to use bulk rate limiting 459 * approach unless Tx is already in bulk rate limiting. We 460 * are likely latency driven. 461 */ 462 if (packets && packets < 4 && bytes < 9000 && 463 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 464 itr = IAVF_ITR_ADAPTIVE_LATENCY; 465 goto adjust_by_size; 466 } 467 } else if (packets < 4) { 468 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 469 * bulk mode and we are receiving 4 or fewer packets just 470 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 471 * that the Rx can relax. 472 */ 473 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 474 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 475 IAVF_ITR_ADAPTIVE_MAX_USECS) 476 goto clear_counts; 477 } else if (packets > 32) { 478 /* If we have processed over 32 packets in a single interrupt 479 * for Tx assume we need to switch over to "bulk" mode. 480 */ 481 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 482 } 483 484 /* We have no packets to actually measure against. This means 485 * either one of the other queues on this vector is active or 486 * we are a Tx queue doing TSO with too high of an interrupt rate. 487 * 488 * Between 4 and 56 we can assume that our current interrupt delay 489 * is only slightly too low. As such we should increase it by a small 490 * fixed amount. 491 */ 492 if (packets < 56) { 493 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 494 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 495 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 496 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 497 } 498 goto clear_counts; 499 } 500 501 if (packets <= 256) { 502 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 503 itr &= IAVF_ITR_MASK; 504 505 /* Between 56 and 112 is our "goldilocks" zone where we are 506 * working out "just right". Just report that our current 507 * ITR is good for us. 508 */ 509 if (packets <= 112) 510 goto clear_counts; 511 512 /* If packet count is 128 or greater we are likely looking 513 * at a slight overrun of the delay we want. Try halving 514 * our delay to see if that will cut the number of packets 515 * in half per interrupt. 516 */ 517 itr /= 2; 518 itr &= IAVF_ITR_MASK; 519 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 520 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 521 522 goto clear_counts; 523 } 524 525 /* The paths below assume we are dealing with a bulk ITR since 526 * number of packets is greater than 256. We are just going to have 527 * to compute a value and try to bring the count under control, 528 * though for smaller packet sizes there isn't much we can do as 529 * NAPI polling will likely be kicking in sooner rather than later. 530 */ 531 itr = IAVF_ITR_ADAPTIVE_BULK; 532 533 adjust_by_size: 534 /* If packet counts are 256 or greater we can assume we have a gross 535 * overestimation of what the rate should be. Instead of trying to fine 536 * tune it just use the formula below to try and dial in an exact value 537 * give the current packet size of the frame. 538 */ 539 avg_wire_size = bytes / packets; 540 541 /* The following is a crude approximation of: 542 * wmem_default / (size + overhead) = desired_pkts_per_int 543 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 544 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 545 * 546 * Assuming wmem_default is 212992 and overhead is 640 bytes per 547 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 548 * formula down to 549 * 550 * (170 * (size + 24)) / (size + 640) = ITR 551 * 552 * We first do some math on the packet size and then finally bitshift 553 * by 8 after rounding up. We also have to account for PCIe link speed 554 * difference as ITR scales based on this. 555 */ 556 if (avg_wire_size <= 60) { 557 /* Start at 250k ints/sec */ 558 avg_wire_size = 4096; 559 } else if (avg_wire_size <= 380) { 560 /* 250K ints/sec to 60K ints/sec */ 561 avg_wire_size *= 40; 562 avg_wire_size += 1696; 563 } else if (avg_wire_size <= 1084) { 564 /* 60K ints/sec to 36K ints/sec */ 565 avg_wire_size *= 15; 566 avg_wire_size += 11452; 567 } else if (avg_wire_size <= 1980) { 568 /* 36K ints/sec to 30K ints/sec */ 569 avg_wire_size *= 5; 570 avg_wire_size += 22420; 571 } else { 572 /* plateau at a limit of 30K ints/sec */ 573 avg_wire_size = 32256; 574 } 575 576 /* If we are in low latency mode halve our delay which doubles the 577 * rate to somewhere between 100K to 16K ints/sec 578 */ 579 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 580 avg_wire_size /= 2; 581 582 /* Resultant value is 256 times larger than it needs to be. This 583 * gives us room to adjust the value as needed to either increase 584 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 585 * 586 * Use addition as we have already recorded the new latency flag 587 * for the ITR value. 588 */ 589 itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) * 590 IAVF_ITR_ADAPTIVE_MIN_INC; 591 592 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 593 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 594 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 595 } 596 597 clear_counts: 598 /* write back value */ 599 rc->target_itr = itr; 600 601 /* next update should occur within next jiffy */ 602 rc->next_update = next_update + 1; 603 604 rc->total_bytes = 0; 605 rc->total_packets = 0; 606 } 607 608 /** 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 610 * @tx_ring: the tx ring to set up 611 * 612 * Return 0 on success, negative on error 613 **/ 614 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 615 { 616 struct device *dev = tx_ring->dev; 617 int bi_size; 618 619 if (!dev) 620 return -ENOMEM; 621 622 /* warn if we are about to overwrite the pointer */ 623 WARN_ON(tx_ring->tx_bi); 624 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 625 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 626 if (!tx_ring->tx_bi) 627 goto err; 628 629 /* round up to nearest 4K */ 630 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 631 tx_ring->size = ALIGN(tx_ring->size, 4096); 632 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 633 &tx_ring->dma, GFP_KERNEL); 634 if (!tx_ring->desc) { 635 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 636 tx_ring->size); 637 goto err; 638 } 639 640 tx_ring->next_to_use = 0; 641 tx_ring->next_to_clean = 0; 642 tx_ring->tx_stats.prev_pkt_ctr = -1; 643 return 0; 644 645 err: 646 kfree(tx_ring->tx_bi); 647 tx_ring->tx_bi = NULL; 648 return -ENOMEM; 649 } 650 651 /** 652 * iavf_clean_rx_ring - Free Rx buffers 653 * @rx_ring: ring to be cleaned 654 **/ 655 void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 656 { 657 unsigned long bi_size; 658 u16 i; 659 660 /* ring already cleared, nothing to do */ 661 if (!rx_ring->rx_bi) 662 return; 663 664 if (rx_ring->skb) { 665 dev_kfree_skb(rx_ring->skb); 666 rx_ring->skb = NULL; 667 } 668 669 /* Free all the Rx ring sk_buffs */ 670 for (i = 0; i < rx_ring->count; i++) { 671 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 672 673 if (!rx_bi->page) 674 continue; 675 676 /* Invalidate cache lines that may have been written to by 677 * device so that we avoid corrupting memory. 678 */ 679 dma_sync_single_range_for_cpu(rx_ring->dev, 680 rx_bi->dma, 681 rx_bi->page_offset, 682 rx_ring->rx_buf_len, 683 DMA_FROM_DEVICE); 684 685 /* free resources associated with mapping */ 686 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 687 iavf_rx_pg_size(rx_ring), 688 DMA_FROM_DEVICE, 689 IAVF_RX_DMA_ATTR); 690 691 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 692 693 rx_bi->page = NULL; 694 rx_bi->page_offset = 0; 695 } 696 697 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 698 memset(rx_ring->rx_bi, 0, bi_size); 699 700 /* Zero out the descriptor ring */ 701 memset(rx_ring->desc, 0, rx_ring->size); 702 703 rx_ring->next_to_alloc = 0; 704 rx_ring->next_to_clean = 0; 705 rx_ring->next_to_use = 0; 706 } 707 708 /** 709 * iavf_free_rx_resources - Free Rx resources 710 * @rx_ring: ring to clean the resources from 711 * 712 * Free all receive software resources 713 **/ 714 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 715 { 716 iavf_clean_rx_ring(rx_ring); 717 kfree(rx_ring->rx_bi); 718 rx_ring->rx_bi = NULL; 719 720 if (rx_ring->desc) { 721 dma_free_coherent(rx_ring->dev, rx_ring->size, 722 rx_ring->desc, rx_ring->dma); 723 rx_ring->desc = NULL; 724 } 725 } 726 727 /** 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 730 * 731 * Returns 0 on success, negative on failure 732 **/ 733 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 734 { 735 struct device *dev = rx_ring->dev; 736 int bi_size; 737 738 /* warn if we are about to overwrite the pointer */ 739 WARN_ON(rx_ring->rx_bi); 740 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 741 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 742 if (!rx_ring->rx_bi) 743 goto err; 744 745 u64_stats_init(&rx_ring->syncp); 746 747 /* Round up to nearest 4K */ 748 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 749 rx_ring->size = ALIGN(rx_ring->size, 4096); 750 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 751 &rx_ring->dma, GFP_KERNEL); 752 753 if (!rx_ring->desc) { 754 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 755 rx_ring->size); 756 goto err; 757 } 758 759 rx_ring->next_to_alloc = 0; 760 rx_ring->next_to_clean = 0; 761 rx_ring->next_to_use = 0; 762 763 return 0; 764 err: 765 kfree(rx_ring->rx_bi); 766 rx_ring->rx_bi = NULL; 767 return -ENOMEM; 768 } 769 770 /** 771 * iavf_release_rx_desc - Store the new tail and head values 772 * @rx_ring: ring to bump 773 * @val: new head index 774 **/ 775 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 776 { 777 rx_ring->next_to_use = val; 778 779 /* update next to alloc since we have filled the ring */ 780 rx_ring->next_to_alloc = val; 781 782 /* Force memory writes to complete before letting h/w 783 * know there are new descriptors to fetch. (Only 784 * applicable for weak-ordered memory model archs, 785 * such as IA-64). 786 */ 787 wmb(); 788 writel(val, rx_ring->tail); 789 } 790 791 /** 792 * iavf_rx_offset - Return expected offset into page to access data 793 * @rx_ring: Ring we are requesting offset of 794 * 795 * Returns the offset value for ring into the data buffer. 796 */ 797 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) 798 { 799 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; 800 } 801 802 /** 803 * iavf_alloc_mapped_page - recycle or make a new page 804 * @rx_ring: ring to use 805 * @bi: rx_buffer struct to modify 806 * 807 * Returns true if the page was successfully allocated or 808 * reused. 809 **/ 810 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, 811 struct iavf_rx_buffer *bi) 812 { 813 struct page *page = bi->page; 814 dma_addr_t dma; 815 816 /* since we are recycling buffers we should seldom need to alloc */ 817 if (likely(page)) { 818 rx_ring->rx_stats.page_reuse_count++; 819 return true; 820 } 821 822 /* alloc new page for storage */ 823 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); 824 if (unlikely(!page)) { 825 rx_ring->rx_stats.alloc_page_failed++; 826 return false; 827 } 828 829 /* map page for use */ 830 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 831 iavf_rx_pg_size(rx_ring), 832 DMA_FROM_DEVICE, 833 IAVF_RX_DMA_ATTR); 834 835 /* if mapping failed free memory back to system since 836 * there isn't much point in holding memory we can't use 837 */ 838 if (dma_mapping_error(rx_ring->dev, dma)) { 839 __free_pages(page, iavf_rx_pg_order(rx_ring)); 840 rx_ring->rx_stats.alloc_page_failed++; 841 return false; 842 } 843 844 bi->dma = dma; 845 bi->page = page; 846 bi->page_offset = iavf_rx_offset(rx_ring); 847 848 /* initialize pagecnt_bias to 1 representing we fully own page */ 849 bi->pagecnt_bias = 1; 850 851 return true; 852 } 853 854 /** 855 * iavf_receive_skb - Send a completed packet up the stack 856 * @rx_ring: rx ring in play 857 * @skb: packet to send up 858 * @vlan_tag: vlan tag for packet 859 **/ 860 static void iavf_receive_skb(struct iavf_ring *rx_ring, 861 struct sk_buff *skb, u16 vlan_tag) 862 { 863 struct iavf_q_vector *q_vector = rx_ring->q_vector; 864 865 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 866 (vlan_tag & VLAN_VID_MASK)) 867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 868 869 napi_gro_receive(&q_vector->napi, skb); 870 } 871 872 /** 873 * iavf_alloc_rx_buffers - Replace used receive buffers 874 * @rx_ring: ring to place buffers on 875 * @cleaned_count: number of buffers to replace 876 * 877 * Returns false if all allocations were successful, true if any fail 878 **/ 879 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 880 { 881 u16 ntu = rx_ring->next_to_use; 882 union iavf_rx_desc *rx_desc; 883 struct iavf_rx_buffer *bi; 884 885 /* do nothing if no valid netdev defined */ 886 if (!rx_ring->netdev || !cleaned_count) 887 return false; 888 889 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 890 bi = &rx_ring->rx_bi[ntu]; 891 892 do { 893 if (!iavf_alloc_mapped_page(rx_ring, bi)) 894 goto no_buffers; 895 896 /* sync the buffer for use by the device */ 897 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 898 bi->page_offset, 899 rx_ring->rx_buf_len, 900 DMA_FROM_DEVICE); 901 902 /* Refresh the desc even if buffer_addrs didn't change 903 * because each write-back erases this info. 904 */ 905 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 906 907 rx_desc++; 908 bi++; 909 ntu++; 910 if (unlikely(ntu == rx_ring->count)) { 911 rx_desc = IAVF_RX_DESC(rx_ring, 0); 912 bi = rx_ring->rx_bi; 913 ntu = 0; 914 } 915 916 /* clear the status bits for the next_to_use descriptor */ 917 rx_desc->wb.qword1.status_error_len = 0; 918 919 cleaned_count--; 920 } while (cleaned_count); 921 922 if (rx_ring->next_to_use != ntu) 923 iavf_release_rx_desc(rx_ring, ntu); 924 925 return false; 926 927 no_buffers: 928 if (rx_ring->next_to_use != ntu) 929 iavf_release_rx_desc(rx_ring, ntu); 930 931 /* make sure to come back via polling to try again after 932 * allocation failure 933 */ 934 return true; 935 } 936 937 /** 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 939 * @vsi: the VSI we care about 940 * @skb: skb currently being received and modified 941 * @rx_desc: the receive descriptor 942 **/ 943 static inline void iavf_rx_checksum(struct iavf_vsi *vsi, 944 struct sk_buff *skb, 945 union iavf_rx_desc *rx_desc) 946 { 947 struct iavf_rx_ptype_decoded decoded; 948 u32 rx_error, rx_status; 949 bool ipv4, ipv6; 950 u8 ptype; 951 u64 qword; 952 953 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 954 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; 955 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> 956 IAVF_RXD_QW1_ERROR_SHIFT; 957 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> 958 IAVF_RXD_QW1_STATUS_SHIFT; 959 decoded = decode_rx_desc_ptype(ptype); 960 961 skb->ip_summed = CHECKSUM_NONE; 962 963 skb_checksum_none_assert(skb); 964 965 /* Rx csum enabled and ip headers found? */ 966 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 967 return; 968 969 /* did the hardware decode the packet and checksum? */ 970 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 971 return; 972 973 /* both known and outer_ip must be set for the below code to work */ 974 if (!(decoded.known && decoded.outer_ip)) 975 return; 976 977 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 978 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); 979 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 980 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); 981 982 if (ipv4 && 983 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 984 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 985 goto checksum_fail; 986 987 /* likely incorrect csum if alternate IP extension headers found */ 988 if (ipv6 && 989 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 990 /* don't increment checksum err here, non-fatal err */ 991 return; 992 993 /* there was some L4 error, count error and punt packet to the stack */ 994 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 995 goto checksum_fail; 996 997 /* handle packets that were not able to be checksummed due 998 * to arrival speed, in this case the stack can compute 999 * the csum. 1000 */ 1001 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 1002 return; 1003 1004 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1005 switch (decoded.inner_prot) { 1006 case IAVF_RX_PTYPE_INNER_PROT_TCP: 1007 case IAVF_RX_PTYPE_INNER_PROT_UDP: 1008 case IAVF_RX_PTYPE_INNER_PROT_SCTP: 1009 skb->ip_summed = CHECKSUM_UNNECESSARY; 1010 fallthrough; 1011 default: 1012 break; 1013 } 1014 1015 return; 1016 1017 checksum_fail: 1018 vsi->back->hw_csum_rx_error++; 1019 } 1020 1021 /** 1022 * iavf_ptype_to_htype - get a hash type 1023 * @ptype: the ptype value from the descriptor 1024 * 1025 * Returns a hash type to be used by skb_set_hash 1026 **/ 1027 static inline int iavf_ptype_to_htype(u8 ptype) 1028 { 1029 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1030 1031 if (!decoded.known) 1032 return PKT_HASH_TYPE_NONE; 1033 1034 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1035 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1036 return PKT_HASH_TYPE_L4; 1037 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1038 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1039 return PKT_HASH_TYPE_L3; 1040 else 1041 return PKT_HASH_TYPE_L2; 1042 } 1043 1044 /** 1045 * iavf_rx_hash - set the hash value in the skb 1046 * @ring: descriptor ring 1047 * @rx_desc: specific descriptor 1048 * @skb: skb currently being received and modified 1049 * @rx_ptype: Rx packet type 1050 **/ 1051 static inline void iavf_rx_hash(struct iavf_ring *ring, 1052 union iavf_rx_desc *rx_desc, 1053 struct sk_buff *skb, 1054 u8 rx_ptype) 1055 { 1056 u32 hash; 1057 const __le64 rss_mask = 1058 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 1059 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 1060 1061 if (ring->netdev->features & NETIF_F_RXHASH) 1062 return; 1063 1064 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1065 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1066 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); 1067 } 1068 } 1069 1070 /** 1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 1072 * @rx_ring: rx descriptor ring packet is being transacted on 1073 * @rx_desc: pointer to the EOP Rx descriptor 1074 * @skb: pointer to current skb being populated 1075 * @rx_ptype: the packet type decoded by hardware 1076 * 1077 * This function checks the ring, descriptor, and packet information in 1078 * order to populate the hash, checksum, VLAN, protocol, and 1079 * other fields within the skb. 1080 **/ 1081 static inline 1082 void iavf_process_skb_fields(struct iavf_ring *rx_ring, 1083 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1084 u8 rx_ptype) 1085 { 1086 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1087 1088 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1089 1090 skb_record_rx_queue(skb, rx_ring->queue_index); 1091 1092 /* modifies the skb - consumes the enet header */ 1093 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1094 } 1095 1096 /** 1097 * iavf_cleanup_headers - Correct empty headers 1098 * @rx_ring: rx descriptor ring packet is being transacted on 1099 * @skb: pointer to current skb being fixed 1100 * 1101 * Also address the case where we are pulling data in on pages only 1102 * and as such no data is present in the skb header. 1103 * 1104 * In addition if skb is not at least 60 bytes we need to pad it so that 1105 * it is large enough to qualify as a valid Ethernet frame. 1106 * 1107 * Returns true if an error was encountered and skb was freed. 1108 **/ 1109 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1110 { 1111 /* if eth_skb_pad returns an error the skb was freed */ 1112 if (eth_skb_pad(skb)) 1113 return true; 1114 1115 return false; 1116 } 1117 1118 /** 1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring 1120 * @rx_ring: rx descriptor ring to store buffers on 1121 * @old_buff: donor buffer to have page reused 1122 * 1123 * Synchronizes page for reuse by the adapter 1124 **/ 1125 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, 1126 struct iavf_rx_buffer *old_buff) 1127 { 1128 struct iavf_rx_buffer *new_buff; 1129 u16 nta = rx_ring->next_to_alloc; 1130 1131 new_buff = &rx_ring->rx_bi[nta]; 1132 1133 /* update, and store next to alloc */ 1134 nta++; 1135 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1136 1137 /* transfer page from old buffer to new buffer */ 1138 new_buff->dma = old_buff->dma; 1139 new_buff->page = old_buff->page; 1140 new_buff->page_offset = old_buff->page_offset; 1141 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1142 } 1143 1144 /** 1145 * iavf_can_reuse_rx_page - Determine if this page can be reused by 1146 * the adapter for another receive 1147 * 1148 * @rx_buffer: buffer containing the page 1149 * 1150 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1151 * an unused region in the page. 1152 * 1153 * For small pages, @truesize will be a constant value, half the size 1154 * of the memory at page. We'll attempt to alternate between high and 1155 * low halves of the page, with one half ready for use by the hardware 1156 * and the other half being consumed by the stack. We use the page 1157 * ref count to determine whether the stack has finished consuming the 1158 * portion of this page that was passed up with a previous packet. If 1159 * the page ref count is >1, we'll assume the "other" half page is 1160 * still busy, and this page cannot be reused. 1161 * 1162 * For larger pages, @truesize will be the actual space used by the 1163 * received packet (adjusted upward to an even multiple of the cache 1164 * line size). This will advance through the page by the amount 1165 * actually consumed by the received packets while there is still 1166 * space for a buffer. Each region of larger pages will be used at 1167 * most once, after which the page will not be reused. 1168 * 1169 * In either case, if the page is reusable its refcount is increased. 1170 **/ 1171 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) 1172 { 1173 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1174 struct page *page = rx_buffer->page; 1175 1176 /* Is any reuse possible? */ 1177 if (!dev_page_is_reusable(page)) 1178 return false; 1179 1180 #if (PAGE_SIZE < 8192) 1181 /* if we are only owner of page we can reuse it */ 1182 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1183 return false; 1184 #else 1185 #define IAVF_LAST_OFFSET \ 1186 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) 1187 if (rx_buffer->page_offset > IAVF_LAST_OFFSET) 1188 return false; 1189 #endif 1190 1191 /* If we have drained the page fragment pool we need to update 1192 * the pagecnt_bias and page count so that we fully restock the 1193 * number of references the driver holds. 1194 */ 1195 if (unlikely(!pagecnt_bias)) { 1196 page_ref_add(page, USHRT_MAX); 1197 rx_buffer->pagecnt_bias = USHRT_MAX; 1198 } 1199 1200 return true; 1201 } 1202 1203 /** 1204 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1205 * @rx_ring: rx descriptor ring to transact packets on 1206 * @rx_buffer: buffer containing page to add 1207 * @skb: sk_buff to place the data into 1208 * @size: packet length from rx_desc 1209 * 1210 * This function will add the data contained in rx_buffer->page to the skb. 1211 * It will just attach the page as a frag to the skb. 1212 * 1213 * The function will then update the page offset. 1214 **/ 1215 static void iavf_add_rx_frag(struct iavf_ring *rx_ring, 1216 struct iavf_rx_buffer *rx_buffer, 1217 struct sk_buff *skb, 1218 unsigned int size) 1219 { 1220 #if (PAGE_SIZE < 8192) 1221 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1222 #else 1223 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); 1224 #endif 1225 1226 if (!size) 1227 return; 1228 1229 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1230 rx_buffer->page_offset, size, truesize); 1231 1232 /* page is being used so we must update the page offset */ 1233 #if (PAGE_SIZE < 8192) 1234 rx_buffer->page_offset ^= truesize; 1235 #else 1236 rx_buffer->page_offset += truesize; 1237 #endif 1238 } 1239 1240 /** 1241 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1242 * @rx_ring: rx descriptor ring to transact packets on 1243 * @size: size of buffer to add to skb 1244 * 1245 * This function will pull an Rx buffer from the ring and synchronize it 1246 * for use by the CPU. 1247 */ 1248 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, 1249 const unsigned int size) 1250 { 1251 struct iavf_rx_buffer *rx_buffer; 1252 1253 if (!size) 1254 return NULL; 1255 1256 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1257 prefetchw(rx_buffer->page); 1258 1259 /* we are reusing so sync this buffer for CPU use */ 1260 dma_sync_single_range_for_cpu(rx_ring->dev, 1261 rx_buffer->dma, 1262 rx_buffer->page_offset, 1263 size, 1264 DMA_FROM_DEVICE); 1265 1266 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1267 rx_buffer->pagecnt_bias--; 1268 1269 return rx_buffer; 1270 } 1271 1272 /** 1273 * iavf_construct_skb - Allocate skb and populate it 1274 * @rx_ring: rx descriptor ring to transact packets on 1275 * @rx_buffer: rx buffer to pull data from 1276 * @size: size of buffer to add to skb 1277 * 1278 * This function allocates an skb. It then populates it with the page 1279 * data from the current receive descriptor, taking care to set up the 1280 * skb correctly. 1281 */ 1282 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, 1283 struct iavf_rx_buffer *rx_buffer, 1284 unsigned int size) 1285 { 1286 void *va; 1287 #if (PAGE_SIZE < 8192) 1288 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1289 #else 1290 unsigned int truesize = SKB_DATA_ALIGN(size); 1291 #endif 1292 unsigned int headlen; 1293 struct sk_buff *skb; 1294 1295 if (!rx_buffer) 1296 return NULL; 1297 /* prefetch first cache line of first page */ 1298 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1299 net_prefetch(va); 1300 1301 /* allocate a skb to store the frags */ 1302 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1303 IAVF_RX_HDR_SIZE, 1304 GFP_ATOMIC | __GFP_NOWARN); 1305 if (unlikely(!skb)) 1306 return NULL; 1307 1308 /* Determine available headroom for copy */ 1309 headlen = size; 1310 if (headlen > IAVF_RX_HDR_SIZE) 1311 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE); 1312 1313 /* align pull length to size of long to optimize memcpy performance */ 1314 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1315 1316 /* update all of the pointers */ 1317 size -= headlen; 1318 if (size) { 1319 skb_add_rx_frag(skb, 0, rx_buffer->page, 1320 rx_buffer->page_offset + headlen, 1321 size, truesize); 1322 1323 /* buffer is used by skb, update page_offset */ 1324 #if (PAGE_SIZE < 8192) 1325 rx_buffer->page_offset ^= truesize; 1326 #else 1327 rx_buffer->page_offset += truesize; 1328 #endif 1329 } else { 1330 /* buffer is unused, reset bias back to rx_buffer */ 1331 rx_buffer->pagecnt_bias++; 1332 } 1333 1334 return skb; 1335 } 1336 1337 /** 1338 * iavf_build_skb - Build skb around an existing buffer 1339 * @rx_ring: Rx descriptor ring to transact packets on 1340 * @rx_buffer: Rx buffer to pull data from 1341 * @size: size of buffer to add to skb 1342 * 1343 * This function builds an skb around an existing Rx buffer, taking care 1344 * to set up the skb correctly and avoid any memcpy overhead. 1345 */ 1346 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, 1347 struct iavf_rx_buffer *rx_buffer, 1348 unsigned int size) 1349 { 1350 void *va; 1351 #if (PAGE_SIZE < 8192) 1352 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1353 #else 1354 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1355 SKB_DATA_ALIGN(IAVF_SKB_PAD + size); 1356 #endif 1357 struct sk_buff *skb; 1358 1359 if (!rx_buffer) 1360 return NULL; 1361 /* prefetch first cache line of first page */ 1362 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1363 net_prefetch(va); 1364 1365 /* build an skb around the page buffer */ 1366 skb = build_skb(va - IAVF_SKB_PAD, truesize); 1367 if (unlikely(!skb)) 1368 return NULL; 1369 1370 /* update pointers within the skb to store the data */ 1371 skb_reserve(skb, IAVF_SKB_PAD); 1372 __skb_put(skb, size); 1373 1374 /* buffer is used by skb, update page_offset */ 1375 #if (PAGE_SIZE < 8192) 1376 rx_buffer->page_offset ^= truesize; 1377 #else 1378 rx_buffer->page_offset += truesize; 1379 #endif 1380 1381 return skb; 1382 } 1383 1384 /** 1385 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free 1386 * @rx_ring: rx descriptor ring to transact packets on 1387 * @rx_buffer: rx buffer to pull data from 1388 * 1389 * This function will clean up the contents of the rx_buffer. It will 1390 * either recycle the buffer or unmap it and free the associated resources. 1391 */ 1392 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, 1393 struct iavf_rx_buffer *rx_buffer) 1394 { 1395 if (!rx_buffer) 1396 return; 1397 1398 if (iavf_can_reuse_rx_page(rx_buffer)) { 1399 /* hand second half of page back to the ring */ 1400 iavf_reuse_rx_page(rx_ring, rx_buffer); 1401 rx_ring->rx_stats.page_reuse_count++; 1402 } else { 1403 /* we are not reusing the buffer so unmap it */ 1404 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1405 iavf_rx_pg_size(rx_ring), 1406 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); 1407 __page_frag_cache_drain(rx_buffer->page, 1408 rx_buffer->pagecnt_bias); 1409 } 1410 1411 /* clear contents of buffer_info */ 1412 rx_buffer->page = NULL; 1413 } 1414 1415 /** 1416 * iavf_is_non_eop - process handling of non-EOP buffers 1417 * @rx_ring: Rx ring being processed 1418 * @rx_desc: Rx descriptor for current buffer 1419 * @skb: Current socket buffer containing buffer in progress 1420 * 1421 * This function updates next to clean. If the buffer is an EOP buffer 1422 * this function exits returning false, otherwise it will place the 1423 * sk_buff in the next buffer to be chained and return true indicating 1424 * that this is in fact a non-EOP buffer. 1425 **/ 1426 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1427 union iavf_rx_desc *rx_desc, 1428 struct sk_buff *skb) 1429 { 1430 u32 ntc = rx_ring->next_to_clean + 1; 1431 1432 /* fetch, update, and store next to clean */ 1433 ntc = (ntc < rx_ring->count) ? ntc : 0; 1434 rx_ring->next_to_clean = ntc; 1435 1436 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1437 1438 /* if we are the last buffer then there is nothing else to do */ 1439 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1440 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1441 return false; 1442 1443 rx_ring->rx_stats.non_eop_descs++; 1444 1445 return true; 1446 } 1447 1448 /** 1449 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1450 * @rx_ring: rx descriptor ring to transact packets on 1451 * @budget: Total limit on number of packets to process 1452 * 1453 * This function provides a "bounce buffer" approach to Rx interrupt 1454 * processing. The advantage to this is that on systems that have 1455 * expensive overhead for IOMMU access this provides a means of avoiding 1456 * it by maintaining the mapping of the page to the system. 1457 * 1458 * Returns amount of work completed 1459 **/ 1460 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1461 { 1462 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1463 struct sk_buff *skb = rx_ring->skb; 1464 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1465 bool failure = false; 1466 1467 while (likely(total_rx_packets < (unsigned int)budget)) { 1468 struct iavf_rx_buffer *rx_buffer; 1469 union iavf_rx_desc *rx_desc; 1470 unsigned int size; 1471 u16 vlan_tag; 1472 u8 rx_ptype; 1473 u64 qword; 1474 1475 /* return some buffers to hardware, one at a time is too slow */ 1476 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1477 failure = failure || 1478 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1479 cleaned_count = 0; 1480 } 1481 1482 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1483 1484 /* status_error_len will always be zero for unused descriptors 1485 * because it's cleared in cleanup, and overlaps with hdr_addr 1486 * which is always zero because packet split isn't used, if the 1487 * hardware wrote DD then the length will be non-zero 1488 */ 1489 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1490 1491 /* This memory barrier is needed to keep us from reading 1492 * any other fields out of the rx_desc until we have 1493 * verified the descriptor has been written back. 1494 */ 1495 dma_rmb(); 1496 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) 1497 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) 1498 break; 1499 1500 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> 1501 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; 1502 1503 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1504 rx_buffer = iavf_get_rx_buffer(rx_ring, size); 1505 1506 /* retrieve a buffer from the ring */ 1507 if (skb) 1508 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1509 else if (ring_uses_build_skb(rx_ring)) 1510 skb = iavf_build_skb(rx_ring, rx_buffer, size); 1511 else 1512 skb = iavf_construct_skb(rx_ring, rx_buffer, size); 1513 1514 /* exit if we failed to retrieve a buffer */ 1515 if (!skb) { 1516 rx_ring->rx_stats.alloc_buff_failed++; 1517 if (rx_buffer) 1518 rx_buffer->pagecnt_bias++; 1519 break; 1520 } 1521 1522 iavf_put_rx_buffer(rx_ring, rx_buffer); 1523 cleaned_count++; 1524 1525 if (iavf_is_non_eop(rx_ring, rx_desc, skb)) 1526 continue; 1527 1528 /* ERR_MASK will only have valid bits if EOP set, and 1529 * what we are doing here is actually checking 1530 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1531 * the error field 1532 */ 1533 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1534 dev_kfree_skb_any(skb); 1535 skb = NULL; 1536 continue; 1537 } 1538 1539 if (iavf_cleanup_headers(rx_ring, skb)) { 1540 skb = NULL; 1541 continue; 1542 } 1543 1544 /* probably a little skewed due to removing CRC */ 1545 total_rx_bytes += skb->len; 1546 1547 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1548 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> 1549 IAVF_RXD_QW1_PTYPE_SHIFT; 1550 1551 /* populate checksum, VLAN, and protocol */ 1552 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1553 1554 1555 vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 1556 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 1557 1558 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1559 iavf_receive_skb(rx_ring, skb, vlan_tag); 1560 skb = NULL; 1561 1562 /* update budget accounting */ 1563 total_rx_packets++; 1564 } 1565 1566 rx_ring->skb = skb; 1567 1568 u64_stats_update_begin(&rx_ring->syncp); 1569 rx_ring->stats.packets += total_rx_packets; 1570 rx_ring->stats.bytes += total_rx_bytes; 1571 u64_stats_update_end(&rx_ring->syncp); 1572 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1573 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1574 1575 /* guarantee a trip back through this routine if there was a failure */ 1576 return failure ? budget : (int)total_rx_packets; 1577 } 1578 1579 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1580 { 1581 u32 val; 1582 1583 /* We don't bother with setting the CLEARPBA bit as the data sheet 1584 * points out doing so is "meaningless since it was already 1585 * auto-cleared". The auto-clearing happens when the interrupt is 1586 * asserted. 1587 * 1588 * Hardware errata 28 for also indicates that writing to a 1589 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1590 * an event in the PBA anyway so we need to rely on the automask 1591 * to hold pending events for us until the interrupt is re-enabled 1592 * 1593 * The itr value is reported in microseconds, and the register 1594 * value is recorded in 2 microsecond units. For this reason we 1595 * only need to shift by the interval shift - 1 instead of the 1596 * full value. 1597 */ 1598 itr &= IAVF_ITR_MASK; 1599 1600 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1601 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1602 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1603 1604 return val; 1605 } 1606 1607 /* a small macro to shorten up some long lines */ 1608 #define INTREG IAVF_VFINT_DYN_CTLN1 1609 1610 /* The act of updating the ITR will cause it to immediately trigger. In order 1611 * to prevent this from throwing off adaptive update statistics we defer the 1612 * update so that it can only happen so often. So after either Tx or Rx are 1613 * updated we make the adaptive scheme wait until either the ITR completely 1614 * expires via the next_update expiration or we have been through at least 1615 * 3 interrupts. 1616 */ 1617 #define ITR_COUNTDOWN_START 3 1618 1619 /** 1620 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1621 * @vsi: the VSI we care about 1622 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1623 * 1624 **/ 1625 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, 1626 struct iavf_q_vector *q_vector) 1627 { 1628 struct iavf_hw *hw = &vsi->back->hw; 1629 u32 intval; 1630 1631 /* These will do nothing if dynamic updates are not enabled */ 1632 iavf_update_itr(q_vector, &q_vector->tx); 1633 iavf_update_itr(q_vector, &q_vector->rx); 1634 1635 /* This block of logic allows us to get away with only updating 1636 * one ITR value with each interrupt. The idea is to perform a 1637 * pseudo-lazy update with the following criteria. 1638 * 1639 * 1. Rx is given higher priority than Tx if both are in same state 1640 * 2. If we must reduce an ITR that is given highest priority. 1641 * 3. We then give priority to increasing ITR based on amount. 1642 */ 1643 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1644 /* Rx ITR needs to be reduced, this is highest priority */ 1645 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1646 q_vector->rx.target_itr); 1647 q_vector->rx.current_itr = q_vector->rx.target_itr; 1648 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1649 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1650 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1651 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1652 /* Tx ITR needs to be reduced, this is second priority 1653 * Tx ITR needs to be increased more than Rx, fourth priority 1654 */ 1655 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1656 q_vector->tx.target_itr); 1657 q_vector->tx.current_itr = q_vector->tx.target_itr; 1658 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1659 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1660 /* Rx ITR needs to be increased, third priority */ 1661 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1662 q_vector->rx.target_itr); 1663 q_vector->rx.current_itr = q_vector->rx.target_itr; 1664 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1665 } else { 1666 /* No ITR update, lowest priority */ 1667 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1668 if (q_vector->itr_countdown) 1669 q_vector->itr_countdown--; 1670 } 1671 1672 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1673 wr32(hw, INTREG(q_vector->reg_idx), intval); 1674 } 1675 1676 /** 1677 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1678 * @napi: napi struct with our devices info in it 1679 * @budget: amount of work driver is allowed to do this pass, in packets 1680 * 1681 * This function will clean all queues associated with a q_vector. 1682 * 1683 * Returns the amount of work done 1684 **/ 1685 int iavf_napi_poll(struct napi_struct *napi, int budget) 1686 { 1687 struct iavf_q_vector *q_vector = 1688 container_of(napi, struct iavf_q_vector, napi); 1689 struct iavf_vsi *vsi = q_vector->vsi; 1690 struct iavf_ring *ring; 1691 bool clean_complete = true; 1692 bool arm_wb = false; 1693 int budget_per_ring; 1694 int work_done = 0; 1695 1696 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1697 napi_complete(napi); 1698 return 0; 1699 } 1700 1701 /* Since the actual Tx work is minimal, we can give the Tx a larger 1702 * budget and be more aggressive about cleaning up the Tx descriptors. 1703 */ 1704 iavf_for_each_ring(ring, q_vector->tx) { 1705 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1706 clean_complete = false; 1707 continue; 1708 } 1709 arm_wb |= ring->arm_wb; 1710 ring->arm_wb = false; 1711 } 1712 1713 /* Handle case where we are called by netpoll with a budget of 0 */ 1714 if (budget <= 0) 1715 goto tx_only; 1716 1717 /* We attempt to distribute budget to each Rx queue fairly, but don't 1718 * allow the budget to go below 1 because that would exit polling early. 1719 */ 1720 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1721 1722 iavf_for_each_ring(ring, q_vector->rx) { 1723 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1724 1725 work_done += cleaned; 1726 /* if we clean as many as budgeted, we must not be done */ 1727 if (cleaned >= budget_per_ring) 1728 clean_complete = false; 1729 } 1730 1731 /* If work not completed, return budget and polling will return */ 1732 if (!clean_complete) { 1733 int cpu_id = smp_processor_id(); 1734 1735 /* It is possible that the interrupt affinity has changed but, 1736 * if the cpu is pegged at 100%, polling will never exit while 1737 * traffic continues and the interrupt will be stuck on this 1738 * cpu. We check to make sure affinity is correct before we 1739 * continue to poll, otherwise we must stop polling so the 1740 * interrupt can move to the correct cpu. 1741 */ 1742 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1743 /* Tell napi that we are done polling */ 1744 napi_complete_done(napi, work_done); 1745 1746 /* Force an interrupt */ 1747 iavf_force_wb(vsi, q_vector); 1748 1749 /* Return budget-1 so that polling stops */ 1750 return budget - 1; 1751 } 1752 tx_only: 1753 if (arm_wb) { 1754 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1755 iavf_enable_wb_on_itr(vsi, q_vector); 1756 } 1757 return budget; 1758 } 1759 1760 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1761 q_vector->arm_wb_state = false; 1762 1763 /* Exit the polling mode, but don't re-enable interrupts if stack might 1764 * poll us due to busy-polling 1765 */ 1766 if (likely(napi_complete_done(napi, work_done))) 1767 iavf_update_enable_itr(vsi, q_vector); 1768 1769 return min(work_done, budget - 1); 1770 } 1771 1772 /** 1773 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1774 * @skb: send buffer 1775 * @tx_ring: ring to send buffer on 1776 * @flags: the tx flags to be set 1777 * 1778 * Checks the skb and set up correspondingly several generic transmit flags 1779 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1780 * 1781 * Returns error code indicate the frame should be dropped upon error and the 1782 * otherwise returns 0 to indicate the flags has been set properly. 1783 **/ 1784 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1785 struct iavf_ring *tx_ring, 1786 u32 *flags) 1787 { 1788 __be16 protocol = skb->protocol; 1789 u32 tx_flags = 0; 1790 1791 if (protocol == htons(ETH_P_8021Q) && 1792 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1793 /* When HW VLAN acceleration is turned off by the user the 1794 * stack sets the protocol to 8021q so that the driver 1795 * can take any steps required to support the SW only 1796 * VLAN handling. In our case the driver doesn't need 1797 * to take any further steps so just set the protocol 1798 * to the encapsulated ethertype. 1799 */ 1800 skb->protocol = vlan_get_protocol(skb); 1801 goto out; 1802 } 1803 1804 /* if we have a HW VLAN tag being added, default to the HW one */ 1805 if (skb_vlan_tag_present(skb)) { 1806 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1807 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1808 /* else if it is a SW VLAN, check the next protocol and store the tag */ 1809 } else if (protocol == htons(ETH_P_8021Q)) { 1810 struct vlan_hdr *vhdr, _vhdr; 1811 1812 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 1813 if (!vhdr) 1814 return -EINVAL; 1815 1816 protocol = vhdr->h_vlan_encapsulated_proto; 1817 tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT; 1818 tx_flags |= IAVF_TX_FLAGS_SW_VLAN; 1819 } 1820 1821 out: 1822 *flags = tx_flags; 1823 return 0; 1824 } 1825 1826 /** 1827 * iavf_tso - set up the tso context descriptor 1828 * @first: pointer to first Tx buffer for xmit 1829 * @hdr_len: ptr to the size of the packet header 1830 * @cd_type_cmd_tso_mss: Quad Word 1 1831 * 1832 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1833 **/ 1834 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1835 u64 *cd_type_cmd_tso_mss) 1836 { 1837 struct sk_buff *skb = first->skb; 1838 u64 cd_cmd, cd_tso_len, cd_mss; 1839 union { 1840 struct iphdr *v4; 1841 struct ipv6hdr *v6; 1842 unsigned char *hdr; 1843 } ip; 1844 union { 1845 struct tcphdr *tcp; 1846 struct udphdr *udp; 1847 unsigned char *hdr; 1848 } l4; 1849 u32 paylen, l4_offset; 1850 u16 gso_segs, gso_size; 1851 int err; 1852 1853 if (skb->ip_summed != CHECKSUM_PARTIAL) 1854 return 0; 1855 1856 if (!skb_is_gso(skb)) 1857 return 0; 1858 1859 err = skb_cow_head(skb, 0); 1860 if (err < 0) 1861 return err; 1862 1863 ip.hdr = skb_network_header(skb); 1864 l4.hdr = skb_transport_header(skb); 1865 1866 /* initialize outer IP header fields */ 1867 if (ip.v4->version == 4) { 1868 ip.v4->tot_len = 0; 1869 ip.v4->check = 0; 1870 } else { 1871 ip.v6->payload_len = 0; 1872 } 1873 1874 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1875 SKB_GSO_GRE_CSUM | 1876 SKB_GSO_IPXIP4 | 1877 SKB_GSO_IPXIP6 | 1878 SKB_GSO_UDP_TUNNEL | 1879 SKB_GSO_UDP_TUNNEL_CSUM)) { 1880 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1881 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1882 l4.udp->len = 0; 1883 1884 /* determine offset of outer transport header */ 1885 l4_offset = l4.hdr - skb->data; 1886 1887 /* remove payload length from outer checksum */ 1888 paylen = skb->len - l4_offset; 1889 csum_replace_by_diff(&l4.udp->check, 1890 (__force __wsum)htonl(paylen)); 1891 } 1892 1893 /* reset pointers to inner headers */ 1894 ip.hdr = skb_inner_network_header(skb); 1895 l4.hdr = skb_inner_transport_header(skb); 1896 1897 /* initialize inner IP header fields */ 1898 if (ip.v4->version == 4) { 1899 ip.v4->tot_len = 0; 1900 ip.v4->check = 0; 1901 } else { 1902 ip.v6->payload_len = 0; 1903 } 1904 } 1905 1906 /* determine offset of inner transport header */ 1907 l4_offset = l4.hdr - skb->data; 1908 /* remove payload length from inner checksum */ 1909 paylen = skb->len - l4_offset; 1910 1911 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1912 csum_replace_by_diff(&l4.udp->check, 1913 (__force __wsum)htonl(paylen)); 1914 /* compute length of UDP segmentation header */ 1915 *hdr_len = (u8)sizeof(l4.udp) + l4_offset; 1916 } else { 1917 csum_replace_by_diff(&l4.tcp->check, 1918 (__force __wsum)htonl(paylen)); 1919 /* compute length of TCP segmentation header */ 1920 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset); 1921 } 1922 1923 /* pull values out of skb_shinfo */ 1924 gso_size = skb_shinfo(skb)->gso_size; 1925 gso_segs = skb_shinfo(skb)->gso_segs; 1926 1927 /* update GSO size and bytecount with header size */ 1928 first->gso_segs = gso_segs; 1929 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1930 1931 /* find the field values */ 1932 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1933 cd_tso_len = skb->len - *hdr_len; 1934 cd_mss = gso_size; 1935 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1936 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1937 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1938 return 1; 1939 } 1940 1941 /** 1942 * iavf_tx_enable_csum - Enable Tx checksum offloads 1943 * @skb: send buffer 1944 * @tx_flags: pointer to Tx flags currently set 1945 * @td_cmd: Tx descriptor command bits to set 1946 * @td_offset: Tx descriptor header offsets to set 1947 * @tx_ring: Tx descriptor ring 1948 * @cd_tunneling: ptr to context desc bits 1949 **/ 1950 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1951 u32 *td_cmd, u32 *td_offset, 1952 struct iavf_ring *tx_ring, 1953 u32 *cd_tunneling) 1954 { 1955 union { 1956 struct iphdr *v4; 1957 struct ipv6hdr *v6; 1958 unsigned char *hdr; 1959 } ip; 1960 union { 1961 struct tcphdr *tcp; 1962 struct udphdr *udp; 1963 unsigned char *hdr; 1964 } l4; 1965 unsigned char *exthdr; 1966 u32 offset, cmd = 0; 1967 __be16 frag_off; 1968 u8 l4_proto = 0; 1969 1970 if (skb->ip_summed != CHECKSUM_PARTIAL) 1971 return 0; 1972 1973 ip.hdr = skb_network_header(skb); 1974 l4.hdr = skb_transport_header(skb); 1975 1976 /* compute outer L2 header size */ 1977 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 1978 1979 if (skb->encapsulation) { 1980 u32 tunnel = 0; 1981 /* define outer network header type */ 1982 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 1983 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 1984 IAVF_TX_CTX_EXT_IP_IPV4 : 1985 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 1986 1987 l4_proto = ip.v4->protocol; 1988 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 1989 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 1990 1991 exthdr = ip.hdr + sizeof(*ip.v6); 1992 l4_proto = ip.v6->nexthdr; 1993 if (l4.hdr != exthdr) 1994 ipv6_skip_exthdr(skb, exthdr - skb->data, 1995 &l4_proto, &frag_off); 1996 } 1997 1998 /* define outer transport */ 1999 switch (l4_proto) { 2000 case IPPROTO_UDP: 2001 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 2002 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2003 break; 2004 case IPPROTO_GRE: 2005 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 2006 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2007 break; 2008 case IPPROTO_IPIP: 2009 case IPPROTO_IPV6: 2010 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2011 l4.hdr = skb_inner_network_header(skb); 2012 break; 2013 default: 2014 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2015 return -1; 2016 2017 skb_checksum_help(skb); 2018 return 0; 2019 } 2020 2021 /* compute outer L3 header size */ 2022 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2023 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2024 2025 /* switch IP header pointer from outer to inner header */ 2026 ip.hdr = skb_inner_network_header(skb); 2027 2028 /* compute tunnel header size */ 2029 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2030 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 2031 2032 /* indicate if we need to offload outer UDP header */ 2033 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 2034 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2035 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2036 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 2037 2038 /* record tunnel offload values */ 2039 *cd_tunneling |= tunnel; 2040 2041 /* switch L4 header pointer from outer to inner */ 2042 l4.hdr = skb_inner_transport_header(skb); 2043 l4_proto = 0; 2044 2045 /* reset type as we transition from outer to inner headers */ 2046 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 2047 if (ip.v4->version == 4) 2048 *tx_flags |= IAVF_TX_FLAGS_IPV4; 2049 if (ip.v6->version == 6) 2050 *tx_flags |= IAVF_TX_FLAGS_IPV6; 2051 } 2052 2053 /* Enable IP checksum offloads */ 2054 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2055 l4_proto = ip.v4->protocol; 2056 /* the stack computes the IP header already, the only time we 2057 * need the hardware to recompute it is in the case of TSO. 2058 */ 2059 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2060 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 2061 IAVF_TX_DESC_CMD_IIPT_IPV4; 2062 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2063 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 2064 2065 exthdr = ip.hdr + sizeof(*ip.v6); 2066 l4_proto = ip.v6->nexthdr; 2067 if (l4.hdr != exthdr) 2068 ipv6_skip_exthdr(skb, exthdr - skb->data, 2069 &l4_proto, &frag_off); 2070 } 2071 2072 /* compute inner L3 header size */ 2073 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 2074 2075 /* Enable L4 checksum offloads */ 2076 switch (l4_proto) { 2077 case IPPROTO_TCP: 2078 /* enable checksum offloads */ 2079 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 2080 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2081 break; 2082 case IPPROTO_SCTP: 2083 /* enable SCTP checksum offload */ 2084 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 2085 offset |= (sizeof(struct sctphdr) >> 2) << 2086 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2087 break; 2088 case IPPROTO_UDP: 2089 /* enable UDP checksum offload */ 2090 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 2091 offset |= (sizeof(struct udphdr) >> 2) << 2092 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2093 break; 2094 default: 2095 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2096 return -1; 2097 skb_checksum_help(skb); 2098 return 0; 2099 } 2100 2101 *td_cmd |= cmd; 2102 *td_offset |= offset; 2103 2104 return 1; 2105 } 2106 2107 /** 2108 * iavf_create_tx_ctx - Build the Tx context descriptor 2109 * @tx_ring: ring to create the descriptor on 2110 * @cd_type_cmd_tso_mss: Quad Word 1 2111 * @cd_tunneling: Quad Word 0 - bits 0-31 2112 * @cd_l2tag2: Quad Word 0 - bits 32-63 2113 **/ 2114 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 2115 const u64 cd_type_cmd_tso_mss, 2116 const u32 cd_tunneling, const u32 cd_l2tag2) 2117 { 2118 struct iavf_tx_context_desc *context_desc; 2119 int i = tx_ring->next_to_use; 2120 2121 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 2122 !cd_tunneling && !cd_l2tag2) 2123 return; 2124 2125 /* grab the next descriptor */ 2126 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 2127 2128 i++; 2129 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2130 2131 /* cpu_to_le32 and assign to struct fields */ 2132 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2133 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2134 context_desc->rsvd = cpu_to_le16(0); 2135 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2136 } 2137 2138 /** 2139 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 2140 * @skb: send buffer 2141 * 2142 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 2143 * and so we need to figure out the cases where we need to linearize the skb. 2144 * 2145 * For TSO we need to count the TSO header and segment payload separately. 2146 * As such we need to check cases where we have 7 fragments or more as we 2147 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2148 * the segment payload in the first descriptor, and another 7 for the 2149 * fragments. 2150 **/ 2151 bool __iavf_chk_linearize(struct sk_buff *skb) 2152 { 2153 const skb_frag_t *frag, *stale; 2154 int nr_frags, sum; 2155 2156 /* no need to check if number of frags is less than 7 */ 2157 nr_frags = skb_shinfo(skb)->nr_frags; 2158 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 2159 return false; 2160 2161 /* We need to walk through the list and validate that each group 2162 * of 6 fragments totals at least gso_size. 2163 */ 2164 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 2165 frag = &skb_shinfo(skb)->frags[0]; 2166 2167 /* Initialize size to the negative value of gso_size minus 1. We 2168 * use this as the worst case scenerio in which the frag ahead 2169 * of us only provides one byte which is why we are limited to 6 2170 * descriptors for a single transmit as the header and previous 2171 * fragment are already consuming 2 descriptors. 2172 */ 2173 sum = 1 - skb_shinfo(skb)->gso_size; 2174 2175 /* Add size of frags 0 through 4 to create our initial sum */ 2176 sum += skb_frag_size(frag++); 2177 sum += skb_frag_size(frag++); 2178 sum += skb_frag_size(frag++); 2179 sum += skb_frag_size(frag++); 2180 sum += skb_frag_size(frag++); 2181 2182 /* Walk through fragments adding latest fragment, testing it, and 2183 * then removing stale fragments from the sum. 2184 */ 2185 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2186 int stale_size = skb_frag_size(stale); 2187 2188 sum += skb_frag_size(frag++); 2189 2190 /* The stale fragment may present us with a smaller 2191 * descriptor than the actual fragment size. To account 2192 * for that we need to remove all the data on the front and 2193 * figure out what the remainder would be in the last 2194 * descriptor associated with the fragment. 2195 */ 2196 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 2197 int align_pad = -(skb_frag_off(stale)) & 2198 (IAVF_MAX_READ_REQ_SIZE - 1); 2199 2200 sum -= align_pad; 2201 stale_size -= align_pad; 2202 2203 do { 2204 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2205 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2206 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 2207 } 2208 2209 /* if sum is negative we failed to make sufficient progress */ 2210 if (sum < 0) 2211 return true; 2212 2213 if (!nr_frags--) 2214 break; 2215 2216 sum -= stale_size; 2217 } 2218 2219 return false; 2220 } 2221 2222 /** 2223 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 2224 * @tx_ring: the ring to be checked 2225 * @size: the size buffer we want to assure is available 2226 * 2227 * Returns -EBUSY if a stop is needed, else 0 2228 **/ 2229 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 2230 { 2231 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2232 /* Memory barrier before checking head and tail */ 2233 smp_mb(); 2234 2235 /* Check again in a case another CPU has just made room available. */ 2236 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 2237 return -EBUSY; 2238 2239 /* A reprieve! - use start_queue because it doesn't call schedule */ 2240 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2241 ++tx_ring->tx_stats.restart_queue; 2242 return 0; 2243 } 2244 2245 /** 2246 * iavf_tx_map - Build the Tx descriptor 2247 * @tx_ring: ring to send buffer on 2248 * @skb: send buffer 2249 * @first: first buffer info buffer to use 2250 * @tx_flags: collected send information 2251 * @hdr_len: size of the packet header 2252 * @td_cmd: the command field in the descriptor 2253 * @td_offset: offset for checksum or crc 2254 **/ 2255 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 2256 struct iavf_tx_buffer *first, u32 tx_flags, 2257 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2258 { 2259 unsigned int data_len = skb->data_len; 2260 unsigned int size = skb_headlen(skb); 2261 skb_frag_t *frag; 2262 struct iavf_tx_buffer *tx_bi; 2263 struct iavf_tx_desc *tx_desc; 2264 u16 i = tx_ring->next_to_use; 2265 u32 td_tag = 0; 2266 dma_addr_t dma; 2267 2268 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 2269 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 2270 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2271 IAVF_TX_FLAGS_VLAN_SHIFT; 2272 } 2273 2274 first->tx_flags = tx_flags; 2275 2276 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2277 2278 tx_desc = IAVF_TX_DESC(tx_ring, i); 2279 tx_bi = first; 2280 2281 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2282 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2283 2284 if (dma_mapping_error(tx_ring->dev, dma)) 2285 goto dma_error; 2286 2287 /* record length, and DMA address */ 2288 dma_unmap_len_set(tx_bi, len, size); 2289 dma_unmap_addr_set(tx_bi, dma, dma); 2290 2291 /* align size to end of page */ 2292 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 2293 tx_desc->buffer_addr = cpu_to_le64(dma); 2294 2295 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 2296 tx_desc->cmd_type_offset_bsz = 2297 build_ctob(td_cmd, td_offset, 2298 max_data, td_tag); 2299 2300 tx_desc++; 2301 i++; 2302 2303 if (i == tx_ring->count) { 2304 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2305 i = 0; 2306 } 2307 2308 dma += max_data; 2309 size -= max_data; 2310 2311 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2312 tx_desc->buffer_addr = cpu_to_le64(dma); 2313 } 2314 2315 if (likely(!data_len)) 2316 break; 2317 2318 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2319 size, td_tag); 2320 2321 tx_desc++; 2322 i++; 2323 2324 if (i == tx_ring->count) { 2325 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2326 i = 0; 2327 } 2328 2329 size = skb_frag_size(frag); 2330 data_len -= size; 2331 2332 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2333 DMA_TO_DEVICE); 2334 2335 tx_bi = &tx_ring->tx_bi[i]; 2336 } 2337 2338 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 2339 2340 i++; 2341 if (i == tx_ring->count) 2342 i = 0; 2343 2344 tx_ring->next_to_use = i; 2345 2346 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2347 2348 /* write last descriptor with RS and EOP bits */ 2349 td_cmd |= IAVF_TXD_CMD; 2350 tx_desc->cmd_type_offset_bsz = 2351 build_ctob(td_cmd, td_offset, size, td_tag); 2352 2353 skb_tx_timestamp(skb); 2354 2355 /* Force memory writes to complete before letting h/w know there 2356 * are new descriptors to fetch. 2357 * 2358 * We also use this memory barrier to make certain all of the 2359 * status bits have been updated before next_to_watch is written. 2360 */ 2361 wmb(); 2362 2363 /* set next_to_watch value indicating a packet is present */ 2364 first->next_to_watch = tx_desc; 2365 2366 /* notify HW of packet */ 2367 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 2368 writel(i, tx_ring->tail); 2369 } 2370 2371 return; 2372 2373 dma_error: 2374 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2375 2376 /* clear dma mappings for failed tx_bi map */ 2377 for (;;) { 2378 tx_bi = &tx_ring->tx_bi[i]; 2379 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2380 if (tx_bi == first) 2381 break; 2382 if (i == 0) 2383 i = tx_ring->count; 2384 i--; 2385 } 2386 2387 tx_ring->next_to_use = i; 2388 } 2389 2390 /** 2391 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2392 * @skb: send buffer 2393 * @tx_ring: ring to send buffer on 2394 * 2395 * Returns NETDEV_TX_OK if sent, else an error code 2396 **/ 2397 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2398 struct iavf_ring *tx_ring) 2399 { 2400 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2401 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2402 struct iavf_tx_buffer *first; 2403 u32 td_offset = 0; 2404 u32 tx_flags = 0; 2405 __be16 protocol; 2406 u32 td_cmd = 0; 2407 u8 hdr_len = 0; 2408 int tso, count; 2409 2410 /* prefetch the data, we'll need it later */ 2411 prefetch(skb->data); 2412 2413 iavf_trace(xmit_frame_ring, skb, tx_ring); 2414 2415 count = iavf_xmit_descriptor_count(skb); 2416 if (iavf_chk_linearize(skb, count)) { 2417 if (__skb_linearize(skb)) { 2418 dev_kfree_skb_any(skb); 2419 return NETDEV_TX_OK; 2420 } 2421 count = iavf_txd_use_count(skb->len); 2422 tx_ring->tx_stats.tx_linearize++; 2423 } 2424 2425 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2426 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2427 * + 4 desc gap to avoid the cache line where head is, 2428 * + 1 desc for context descriptor, 2429 * otherwise try next time 2430 */ 2431 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2432 tx_ring->tx_stats.tx_busy++; 2433 return NETDEV_TX_BUSY; 2434 } 2435 2436 /* record the location of the first descriptor for this packet */ 2437 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2438 first->skb = skb; 2439 first->bytecount = skb->len; 2440 first->gso_segs = 1; 2441 2442 /* prepare the xmit flags */ 2443 if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 2444 goto out_drop; 2445 2446 /* obtain protocol of skb */ 2447 protocol = vlan_get_protocol(skb); 2448 2449 /* setup IPv4/IPv6 offloads */ 2450 if (protocol == htons(ETH_P_IP)) 2451 tx_flags |= IAVF_TX_FLAGS_IPV4; 2452 else if (protocol == htons(ETH_P_IPV6)) 2453 tx_flags |= IAVF_TX_FLAGS_IPV6; 2454 2455 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2456 2457 if (tso < 0) 2458 goto out_drop; 2459 else if (tso) 2460 tx_flags |= IAVF_TX_FLAGS_TSO; 2461 2462 /* Always offload the checksum, since it's in the data descriptor */ 2463 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2464 tx_ring, &cd_tunneling); 2465 if (tso < 0) 2466 goto out_drop; 2467 2468 /* always enable CRC insertion offload */ 2469 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2470 2471 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2472 cd_tunneling, cd_l2tag2); 2473 2474 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2475 td_cmd, td_offset); 2476 2477 return NETDEV_TX_OK; 2478 2479 out_drop: 2480 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2481 dev_kfree_skb_any(first->skb); 2482 first->skb = NULL; 2483 return NETDEV_TX_OK; 2484 } 2485 2486 /** 2487 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2488 * @skb: send buffer 2489 * @netdev: network interface device structure 2490 * 2491 * Returns NETDEV_TX_OK if sent, else an error code 2492 **/ 2493 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2494 { 2495 struct iavf_adapter *adapter = netdev_priv(netdev); 2496 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2497 2498 /* hardware can't handle really short frames, hardware padding works 2499 * beyond this point 2500 */ 2501 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2502 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2503 return NETDEV_TX_OK; 2504 skb->len = IAVF_MIN_TX_LEN; 2505 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2506 } 2507 2508 return iavf_xmit_frame_ring(skb, tx_ring); 2509 } 2510