1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 6 #include "iavf.h" 7 #include "iavf_trace.h" 8 #include "iavf_prototype.h" 9 10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 11 u32 td_tag) 12 { 13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 18 } 19 20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 21 22 /** 23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 24 * @ring: the ring that owns the buffer 25 * @tx_buffer: the buffer to free 26 **/ 27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 28 struct iavf_tx_buffer *tx_buffer) 29 { 30 if (tx_buffer->skb) { 31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 32 kfree(tx_buffer->raw_buf); 33 else 34 dev_kfree_skb_any(tx_buffer->skb); 35 if (dma_unmap_len(tx_buffer, len)) 36 dma_unmap_single(ring->dev, 37 dma_unmap_addr(tx_buffer, dma), 38 dma_unmap_len(tx_buffer, len), 39 DMA_TO_DEVICE); 40 } else if (dma_unmap_len(tx_buffer, len)) { 41 dma_unmap_page(ring->dev, 42 dma_unmap_addr(tx_buffer, dma), 43 dma_unmap_len(tx_buffer, len), 44 DMA_TO_DEVICE); 45 } 46 47 tx_buffer->next_to_watch = NULL; 48 tx_buffer->skb = NULL; 49 dma_unmap_len_set(tx_buffer, len, 0); 50 /* tx_buffer must be completely set up in the transmit path */ 51 } 52 53 /** 54 * iavf_clean_tx_ring - Free any empty Tx buffers 55 * @tx_ring: ring to be cleaned 56 **/ 57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 58 { 59 unsigned long bi_size; 60 u16 i; 61 62 /* ring already cleared, nothing to do */ 63 if (!tx_ring->tx_bi) 64 return; 65 66 /* Free all the Tx ring sk_buffs */ 67 for (i = 0; i < tx_ring->count; i++) 68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 69 70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 71 memset(tx_ring->tx_bi, 0, bi_size); 72 73 /* Zero out the descriptor ring */ 74 memset(tx_ring->desc, 0, tx_ring->size); 75 76 tx_ring->next_to_use = 0; 77 tx_ring->next_to_clean = 0; 78 79 if (!tx_ring->netdev) 80 return; 81 82 /* cleanup Tx queue statistics */ 83 netdev_tx_reset_queue(txring_txq(tx_ring)); 84 } 85 86 /** 87 * iavf_free_tx_resources - Free Tx resources per queue 88 * @tx_ring: Tx descriptor ring for a specific queue 89 * 90 * Free all transmit software resources 91 **/ 92 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 93 { 94 iavf_clean_tx_ring(tx_ring); 95 kfree(tx_ring->tx_bi); 96 tx_ring->tx_bi = NULL; 97 98 if (tx_ring->desc) { 99 dma_free_coherent(tx_ring->dev, tx_ring->size, 100 tx_ring->desc, tx_ring->dma); 101 tx_ring->desc = NULL; 102 } 103 } 104 105 /** 106 * iavf_get_tx_pending - how many Tx descriptors not processed 107 * @ring: the ring of descriptors 108 * @in_sw: is tx_pending being checked in SW or HW 109 * 110 * Since there is no access to the ring head register 111 * in XL710, we need to use our local copies 112 **/ 113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 114 { 115 u32 head, tail; 116 117 head = ring->next_to_clean; 118 tail = readl(ring->tail); 119 120 if (head != tail) 121 return (head < tail) ? 122 tail - head : (tail + ring->count - head); 123 124 return 0; 125 } 126 127 /** 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues 129 * @vsi: pointer to vsi struct with tx queues 130 * 131 * VSI has netdev and netdev has TX queues. This function is to check each of 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 133 **/ 134 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 135 { 136 struct iavf_ring *tx_ring = NULL; 137 struct net_device *netdev; 138 unsigned int i; 139 int packets; 140 141 if (!vsi) 142 return; 143 144 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 145 return; 146 147 netdev = vsi->netdev; 148 if (!netdev) 149 return; 150 151 if (!netif_carrier_ok(netdev)) 152 return; 153 154 for (i = 0; i < vsi->back->num_active_queues; i++) { 155 tx_ring = &vsi->back->tx_rings[i]; 156 if (tx_ring && tx_ring->desc) { 157 /* If packet counter has not changed the queue is 158 * likely stalled, so force an interrupt for this 159 * queue. 160 * 161 * prev_pkt_ctr would be negative if there was no 162 * pending work. 163 */ 164 packets = tx_ring->stats.packets & INT_MAX; 165 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 166 iavf_force_wb(vsi, tx_ring->q_vector); 167 continue; 168 } 169 170 /* Memory barrier between read of packet count and call 171 * to iavf_get_tx_pending() 172 */ 173 smp_rmb(); 174 tx_ring->tx_stats.prev_pkt_ctr = 175 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 176 } 177 } 178 } 179 180 #define WB_STRIDE 4 181 182 /** 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes 184 * @vsi: the VSI we care about 185 * @tx_ring: Tx ring to clean 186 * @napi_budget: Used to determine if we are in netpoll 187 * 188 * Returns true if there's any budget left (e.g. the clean is finished) 189 **/ 190 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 191 struct iavf_ring *tx_ring, int napi_budget) 192 { 193 int i = tx_ring->next_to_clean; 194 struct iavf_tx_buffer *tx_buf; 195 struct iavf_tx_desc *tx_desc; 196 unsigned int total_bytes = 0, total_packets = 0; 197 unsigned int budget = vsi->work_limit; 198 199 tx_buf = &tx_ring->tx_bi[i]; 200 tx_desc = IAVF_TX_DESC(tx_ring, i); 201 i -= tx_ring->count; 202 203 do { 204 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 205 206 /* if next_to_watch is not set then there is no work pending */ 207 if (!eop_desc) 208 break; 209 210 /* prevent any other reads prior to eop_desc */ 211 smp_rmb(); 212 213 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 214 /* if the descriptor isn't done, no work yet to do */ 215 if (!(eop_desc->cmd_type_offset_bsz & 216 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 217 break; 218 219 /* clear next_to_watch to prevent false hangs */ 220 tx_buf->next_to_watch = NULL; 221 222 /* update the statistics for this packet */ 223 total_bytes += tx_buf->bytecount; 224 total_packets += tx_buf->gso_segs; 225 226 /* free the skb */ 227 napi_consume_skb(tx_buf->skb, napi_budget); 228 229 /* unmap skb header data */ 230 dma_unmap_single(tx_ring->dev, 231 dma_unmap_addr(tx_buf, dma), 232 dma_unmap_len(tx_buf, len), 233 DMA_TO_DEVICE); 234 235 /* clear tx_buffer data */ 236 tx_buf->skb = NULL; 237 dma_unmap_len_set(tx_buf, len, 0); 238 239 /* unmap remaining buffers */ 240 while (tx_desc != eop_desc) { 241 iavf_trace(clean_tx_irq_unmap, 242 tx_ring, tx_desc, tx_buf); 243 244 tx_buf++; 245 tx_desc++; 246 i++; 247 if (unlikely(!i)) { 248 i -= tx_ring->count; 249 tx_buf = tx_ring->tx_bi; 250 tx_desc = IAVF_TX_DESC(tx_ring, 0); 251 } 252 253 /* unmap any remaining paged data */ 254 if (dma_unmap_len(tx_buf, len)) { 255 dma_unmap_page(tx_ring->dev, 256 dma_unmap_addr(tx_buf, dma), 257 dma_unmap_len(tx_buf, len), 258 DMA_TO_DEVICE); 259 dma_unmap_len_set(tx_buf, len, 0); 260 } 261 } 262 263 /* move us one more past the eop_desc for start of next pkt */ 264 tx_buf++; 265 tx_desc++; 266 i++; 267 if (unlikely(!i)) { 268 i -= tx_ring->count; 269 tx_buf = tx_ring->tx_bi; 270 tx_desc = IAVF_TX_DESC(tx_ring, 0); 271 } 272 273 prefetch(tx_desc); 274 275 /* update budget accounting */ 276 budget--; 277 } while (likely(budget)); 278 279 i += tx_ring->count; 280 tx_ring->next_to_clean = i; 281 u64_stats_update_begin(&tx_ring->syncp); 282 tx_ring->stats.bytes += total_bytes; 283 tx_ring->stats.packets += total_packets; 284 u64_stats_update_end(&tx_ring->syncp); 285 tx_ring->q_vector->tx.total_bytes += total_bytes; 286 tx_ring->q_vector->tx.total_packets += total_packets; 287 288 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 289 /* check to see if there are < 4 descriptors 290 * waiting to be written back, then kick the hardware to force 291 * them to be written back in case we stay in NAPI. 292 * In this mode on X722 we do not enable Interrupt. 293 */ 294 unsigned int j = iavf_get_tx_pending(tx_ring, false); 295 296 if (budget && 297 ((j / WB_STRIDE) == 0) && (j > 0) && 298 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 299 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 300 tx_ring->arm_wb = true; 301 } 302 303 /* notify netdev of completed buffers */ 304 netdev_tx_completed_queue(txring_txq(tx_ring), 305 total_packets, total_bytes); 306 307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 308 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 309 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 310 /* Make sure that anybody stopping the queue after this 311 * sees the new next_to_clean. 312 */ 313 smp_mb(); 314 if (__netif_subqueue_stopped(tx_ring->netdev, 315 tx_ring->queue_index) && 316 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 317 netif_wake_subqueue(tx_ring->netdev, 318 tx_ring->queue_index); 319 ++tx_ring->tx_stats.restart_queue; 320 } 321 } 322 323 return !!budget; 324 } 325 326 /** 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 328 * @vsi: the VSI we care about 329 * @q_vector: the vector on which to enable writeback 330 * 331 **/ 332 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 333 struct iavf_q_vector *q_vector) 334 { 335 u16 flags = q_vector->tx.ring[0].flags; 336 u32 val; 337 338 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 339 return; 340 341 if (q_vector->arm_wb_state) 342 return; 343 344 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 345 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 346 347 wr32(&vsi->back->hw, 348 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 349 q_vector->arm_wb_state = true; 350 } 351 352 /** 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb 354 * @vsi: the VSI we care about 355 * @q_vector: the vector on which to force writeback 356 * 357 **/ 358 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 359 { 360 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 361 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 362 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 363 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 364 /* allow 00 to be written to the index */; 365 366 wr32(&vsi->back->hw, 367 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 368 val); 369 } 370 371 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 372 struct iavf_ring_container *rc) 373 { 374 return &q_vector->rx == rc; 375 } 376 377 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector) 378 { 379 unsigned int divisor; 380 381 switch (q_vector->adapter->link_speed) { 382 case VIRTCHNL_LINK_SPEED_40GB: 383 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024; 384 break; 385 case VIRTCHNL_LINK_SPEED_25GB: 386 case VIRTCHNL_LINK_SPEED_20GB: 387 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512; 388 break; 389 default: 390 case VIRTCHNL_LINK_SPEED_10GB: 391 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256; 392 break; 393 case VIRTCHNL_LINK_SPEED_1GB: 394 case VIRTCHNL_LINK_SPEED_100MB: 395 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32; 396 break; 397 } 398 399 return divisor; 400 } 401 402 /** 403 * iavf_update_itr - update the dynamic ITR value based on statistics 404 * @q_vector: structure containing interrupt and ring information 405 * @rc: structure containing ring performance data 406 * 407 * Stores a new ITR value based on packets and byte 408 * counts during the last interrupt. The advantage of per interrupt 409 * computation is faster updates and more accurate ITR for the current 410 * traffic pattern. Constants in this function were computed 411 * based on theoretical maximum wire speed and thresholds were set based 412 * on testing data as well as attempting to minimize response time 413 * while increasing bulk throughput. 414 **/ 415 static void iavf_update_itr(struct iavf_q_vector *q_vector, 416 struct iavf_ring_container *rc) 417 { 418 unsigned int avg_wire_size, packets, bytes, itr; 419 unsigned long next_update = jiffies; 420 421 /* If we don't have any rings just leave ourselves set for maximum 422 * possible latency so we take ourselves out of the equation. 423 */ 424 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 425 return; 426 427 /* For Rx we want to push the delay up and default to low latency. 428 * for Tx we want to pull the delay down and default to high latency. 429 */ 430 itr = iavf_container_is_rx(q_vector, rc) ? 431 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 432 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 433 434 /* If we didn't update within up to 1 - 2 jiffies we can assume 435 * that either packets are coming in so slow there hasn't been 436 * any work, or that there is so much work that NAPI is dealing 437 * with interrupt moderation and we don't need to do anything. 438 */ 439 if (time_after(next_update, rc->next_update)) 440 goto clear_counts; 441 442 /* If itr_countdown is set it means we programmed an ITR within 443 * the last 4 interrupt cycles. This has a side effect of us 444 * potentially firing an early interrupt. In order to work around 445 * this we need to throw out any data received for a few 446 * interrupts following the update. 447 */ 448 if (q_vector->itr_countdown) { 449 itr = rc->target_itr; 450 goto clear_counts; 451 } 452 453 packets = rc->total_packets; 454 bytes = rc->total_bytes; 455 456 if (iavf_container_is_rx(q_vector, rc)) { 457 /* If Rx there are 1 to 4 packets and bytes are less than 458 * 9000 assume insufficient data to use bulk rate limiting 459 * approach unless Tx is already in bulk rate limiting. We 460 * are likely latency driven. 461 */ 462 if (packets && packets < 4 && bytes < 9000 && 463 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 464 itr = IAVF_ITR_ADAPTIVE_LATENCY; 465 goto adjust_by_size; 466 } 467 } else if (packets < 4) { 468 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 469 * bulk mode and we are receiving 4 or fewer packets just 470 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 471 * that the Rx can relax. 472 */ 473 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 474 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 475 IAVF_ITR_ADAPTIVE_MAX_USECS) 476 goto clear_counts; 477 } else if (packets > 32) { 478 /* If we have processed over 32 packets in a single interrupt 479 * for Tx assume we need to switch over to "bulk" mode. 480 */ 481 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 482 } 483 484 /* We have no packets to actually measure against. This means 485 * either one of the other queues on this vector is active or 486 * we are a Tx queue doing TSO with too high of an interrupt rate. 487 * 488 * Between 4 and 56 we can assume that our current interrupt delay 489 * is only slightly too low. As such we should increase it by a small 490 * fixed amount. 491 */ 492 if (packets < 56) { 493 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 494 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 495 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 496 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 497 } 498 goto clear_counts; 499 } 500 501 if (packets <= 256) { 502 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 503 itr &= IAVF_ITR_MASK; 504 505 /* Between 56 and 112 is our "goldilocks" zone where we are 506 * working out "just right". Just report that our current 507 * ITR is good for us. 508 */ 509 if (packets <= 112) 510 goto clear_counts; 511 512 /* If packet count is 128 or greater we are likely looking 513 * at a slight overrun of the delay we want. Try halving 514 * our delay to see if that will cut the number of packets 515 * in half per interrupt. 516 */ 517 itr /= 2; 518 itr &= IAVF_ITR_MASK; 519 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 520 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 521 522 goto clear_counts; 523 } 524 525 /* The paths below assume we are dealing with a bulk ITR since 526 * number of packets is greater than 256. We are just going to have 527 * to compute a value and try to bring the count under control, 528 * though for smaller packet sizes there isn't much we can do as 529 * NAPI polling will likely be kicking in sooner rather than later. 530 */ 531 itr = IAVF_ITR_ADAPTIVE_BULK; 532 533 adjust_by_size: 534 /* If packet counts are 256 or greater we can assume we have a gross 535 * overestimation of what the rate should be. Instead of trying to fine 536 * tune it just use the formula below to try and dial in an exact value 537 * give the current packet size of the frame. 538 */ 539 avg_wire_size = bytes / packets; 540 541 /* The following is a crude approximation of: 542 * wmem_default / (size + overhead) = desired_pkts_per_int 543 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 544 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 545 * 546 * Assuming wmem_default is 212992 and overhead is 640 bytes per 547 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 548 * formula down to 549 * 550 * (170 * (size + 24)) / (size + 640) = ITR 551 * 552 * We first do some math on the packet size and then finally bitshift 553 * by 8 after rounding up. We also have to account for PCIe link speed 554 * difference as ITR scales based on this. 555 */ 556 if (avg_wire_size <= 60) { 557 /* Start at 250k ints/sec */ 558 avg_wire_size = 4096; 559 } else if (avg_wire_size <= 380) { 560 /* 250K ints/sec to 60K ints/sec */ 561 avg_wire_size *= 40; 562 avg_wire_size += 1696; 563 } else if (avg_wire_size <= 1084) { 564 /* 60K ints/sec to 36K ints/sec */ 565 avg_wire_size *= 15; 566 avg_wire_size += 11452; 567 } else if (avg_wire_size <= 1980) { 568 /* 36K ints/sec to 30K ints/sec */ 569 avg_wire_size *= 5; 570 avg_wire_size += 22420; 571 } else { 572 /* plateau at a limit of 30K ints/sec */ 573 avg_wire_size = 32256; 574 } 575 576 /* If we are in low latency mode halve our delay which doubles the 577 * rate to somewhere between 100K to 16K ints/sec 578 */ 579 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 580 avg_wire_size /= 2; 581 582 /* Resultant value is 256 times larger than it needs to be. This 583 * gives us room to adjust the value as needed to either increase 584 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 585 * 586 * Use addition as we have already recorded the new latency flag 587 * for the ITR value. 588 */ 589 itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) * 590 IAVF_ITR_ADAPTIVE_MIN_INC; 591 592 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 593 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 594 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 595 } 596 597 clear_counts: 598 /* write back value */ 599 rc->target_itr = itr; 600 601 /* next update should occur within next jiffy */ 602 rc->next_update = next_update + 1; 603 604 rc->total_bytes = 0; 605 rc->total_packets = 0; 606 } 607 608 /** 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 610 * @tx_ring: the tx ring to set up 611 * 612 * Return 0 on success, negative on error 613 **/ 614 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 615 { 616 struct device *dev = tx_ring->dev; 617 int bi_size; 618 619 if (!dev) 620 return -ENOMEM; 621 622 /* warn if we are about to overwrite the pointer */ 623 WARN_ON(tx_ring->tx_bi); 624 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 625 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 626 if (!tx_ring->tx_bi) 627 goto err; 628 629 /* round up to nearest 4K */ 630 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 631 tx_ring->size = ALIGN(tx_ring->size, 4096); 632 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 633 &tx_ring->dma, GFP_KERNEL); 634 if (!tx_ring->desc) { 635 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 636 tx_ring->size); 637 goto err; 638 } 639 640 tx_ring->next_to_use = 0; 641 tx_ring->next_to_clean = 0; 642 tx_ring->tx_stats.prev_pkt_ctr = -1; 643 return 0; 644 645 err: 646 kfree(tx_ring->tx_bi); 647 tx_ring->tx_bi = NULL; 648 return -ENOMEM; 649 } 650 651 /** 652 * iavf_clean_rx_ring - Free Rx buffers 653 * @rx_ring: ring to be cleaned 654 **/ 655 void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 656 { 657 unsigned long bi_size; 658 u16 i; 659 660 /* ring already cleared, nothing to do */ 661 if (!rx_ring->rx_bi) 662 return; 663 664 if (rx_ring->skb) { 665 dev_kfree_skb(rx_ring->skb); 666 rx_ring->skb = NULL; 667 } 668 669 /* Free all the Rx ring sk_buffs */ 670 for (i = 0; i < rx_ring->count; i++) { 671 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 672 673 if (!rx_bi->page) 674 continue; 675 676 /* Invalidate cache lines that may have been written to by 677 * device so that we avoid corrupting memory. 678 */ 679 dma_sync_single_range_for_cpu(rx_ring->dev, 680 rx_bi->dma, 681 rx_bi->page_offset, 682 rx_ring->rx_buf_len, 683 DMA_FROM_DEVICE); 684 685 /* free resources associated with mapping */ 686 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 687 iavf_rx_pg_size(rx_ring), 688 DMA_FROM_DEVICE, 689 IAVF_RX_DMA_ATTR); 690 691 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 692 693 rx_bi->page = NULL; 694 rx_bi->page_offset = 0; 695 } 696 697 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 698 memset(rx_ring->rx_bi, 0, bi_size); 699 700 /* Zero out the descriptor ring */ 701 memset(rx_ring->desc, 0, rx_ring->size); 702 703 rx_ring->next_to_alloc = 0; 704 rx_ring->next_to_clean = 0; 705 rx_ring->next_to_use = 0; 706 } 707 708 /** 709 * iavf_free_rx_resources - Free Rx resources 710 * @rx_ring: ring to clean the resources from 711 * 712 * Free all receive software resources 713 **/ 714 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 715 { 716 iavf_clean_rx_ring(rx_ring); 717 kfree(rx_ring->rx_bi); 718 rx_ring->rx_bi = NULL; 719 720 if (rx_ring->desc) { 721 dma_free_coherent(rx_ring->dev, rx_ring->size, 722 rx_ring->desc, rx_ring->dma); 723 rx_ring->desc = NULL; 724 } 725 } 726 727 /** 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 730 * 731 * Returns 0 on success, negative on failure 732 **/ 733 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 734 { 735 struct device *dev = rx_ring->dev; 736 int bi_size; 737 738 /* warn if we are about to overwrite the pointer */ 739 WARN_ON(rx_ring->rx_bi); 740 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 741 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 742 if (!rx_ring->rx_bi) 743 goto err; 744 745 u64_stats_init(&rx_ring->syncp); 746 747 /* Round up to nearest 4K */ 748 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 749 rx_ring->size = ALIGN(rx_ring->size, 4096); 750 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 751 &rx_ring->dma, GFP_KERNEL); 752 753 if (!rx_ring->desc) { 754 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 755 rx_ring->size); 756 goto err; 757 } 758 759 rx_ring->next_to_alloc = 0; 760 rx_ring->next_to_clean = 0; 761 rx_ring->next_to_use = 0; 762 763 return 0; 764 err: 765 kfree(rx_ring->rx_bi); 766 rx_ring->rx_bi = NULL; 767 return -ENOMEM; 768 } 769 770 /** 771 * iavf_release_rx_desc - Store the new tail and head values 772 * @rx_ring: ring to bump 773 * @val: new head index 774 **/ 775 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 776 { 777 rx_ring->next_to_use = val; 778 779 /* update next to alloc since we have filled the ring */ 780 rx_ring->next_to_alloc = val; 781 782 /* Force memory writes to complete before letting h/w 783 * know there are new descriptors to fetch. (Only 784 * applicable for weak-ordered memory model archs, 785 * such as IA-64). 786 */ 787 wmb(); 788 writel(val, rx_ring->tail); 789 } 790 791 /** 792 * iavf_rx_offset - Return expected offset into page to access data 793 * @rx_ring: Ring we are requesting offset of 794 * 795 * Returns the offset value for ring into the data buffer. 796 */ 797 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) 798 { 799 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; 800 } 801 802 /** 803 * iavf_alloc_mapped_page - recycle or make a new page 804 * @rx_ring: ring to use 805 * @bi: rx_buffer struct to modify 806 * 807 * Returns true if the page was successfully allocated or 808 * reused. 809 **/ 810 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, 811 struct iavf_rx_buffer *bi) 812 { 813 struct page *page = bi->page; 814 dma_addr_t dma; 815 816 /* since we are recycling buffers we should seldom need to alloc */ 817 if (likely(page)) { 818 rx_ring->rx_stats.page_reuse_count++; 819 return true; 820 } 821 822 /* alloc new page for storage */ 823 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); 824 if (unlikely(!page)) { 825 rx_ring->rx_stats.alloc_page_failed++; 826 return false; 827 } 828 829 /* map page for use */ 830 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 831 iavf_rx_pg_size(rx_ring), 832 DMA_FROM_DEVICE, 833 IAVF_RX_DMA_ATTR); 834 835 /* if mapping failed free memory back to system since 836 * there isn't much point in holding memory we can't use 837 */ 838 if (dma_mapping_error(rx_ring->dev, dma)) { 839 __free_pages(page, iavf_rx_pg_order(rx_ring)); 840 rx_ring->rx_stats.alloc_page_failed++; 841 return false; 842 } 843 844 bi->dma = dma; 845 bi->page = page; 846 bi->page_offset = iavf_rx_offset(rx_ring); 847 848 /* initialize pagecnt_bias to 1 representing we fully own page */ 849 bi->pagecnt_bias = 1; 850 851 return true; 852 } 853 854 /** 855 * iavf_receive_skb - Send a completed packet up the stack 856 * @rx_ring: rx ring in play 857 * @skb: packet to send up 858 * @vlan_tag: vlan tag for packet 859 **/ 860 static void iavf_receive_skb(struct iavf_ring *rx_ring, 861 struct sk_buff *skb, u16 vlan_tag) 862 { 863 struct iavf_q_vector *q_vector = rx_ring->q_vector; 864 865 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 866 (vlan_tag & VLAN_VID_MASK)) 867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 868 869 napi_gro_receive(&q_vector->napi, skb); 870 } 871 872 /** 873 * iavf_alloc_rx_buffers - Replace used receive buffers 874 * @rx_ring: ring to place buffers on 875 * @cleaned_count: number of buffers to replace 876 * 877 * Returns false if all allocations were successful, true if any fail 878 **/ 879 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 880 { 881 u16 ntu = rx_ring->next_to_use; 882 union iavf_rx_desc *rx_desc; 883 struct iavf_rx_buffer *bi; 884 885 /* do nothing if no valid netdev defined */ 886 if (!rx_ring->netdev || !cleaned_count) 887 return false; 888 889 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 890 bi = &rx_ring->rx_bi[ntu]; 891 892 do { 893 if (!iavf_alloc_mapped_page(rx_ring, bi)) 894 goto no_buffers; 895 896 /* sync the buffer for use by the device */ 897 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 898 bi->page_offset, 899 rx_ring->rx_buf_len, 900 DMA_FROM_DEVICE); 901 902 /* Refresh the desc even if buffer_addrs didn't change 903 * because each write-back erases this info. 904 */ 905 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 906 907 rx_desc++; 908 bi++; 909 ntu++; 910 if (unlikely(ntu == rx_ring->count)) { 911 rx_desc = IAVF_RX_DESC(rx_ring, 0); 912 bi = rx_ring->rx_bi; 913 ntu = 0; 914 } 915 916 /* clear the status bits for the next_to_use descriptor */ 917 rx_desc->wb.qword1.status_error_len = 0; 918 919 cleaned_count--; 920 } while (cleaned_count); 921 922 if (rx_ring->next_to_use != ntu) 923 iavf_release_rx_desc(rx_ring, ntu); 924 925 return false; 926 927 no_buffers: 928 if (rx_ring->next_to_use != ntu) 929 iavf_release_rx_desc(rx_ring, ntu); 930 931 /* make sure to come back via polling to try again after 932 * allocation failure 933 */ 934 return true; 935 } 936 937 /** 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 939 * @vsi: the VSI we care about 940 * @skb: skb currently being received and modified 941 * @rx_desc: the receive descriptor 942 **/ 943 static inline void iavf_rx_checksum(struct iavf_vsi *vsi, 944 struct sk_buff *skb, 945 union iavf_rx_desc *rx_desc) 946 { 947 struct iavf_rx_ptype_decoded decoded; 948 u32 rx_error, rx_status; 949 bool ipv4, ipv6; 950 u8 ptype; 951 u64 qword; 952 953 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 954 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; 955 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> 956 IAVF_RXD_QW1_ERROR_SHIFT; 957 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> 958 IAVF_RXD_QW1_STATUS_SHIFT; 959 decoded = decode_rx_desc_ptype(ptype); 960 961 skb->ip_summed = CHECKSUM_NONE; 962 963 skb_checksum_none_assert(skb); 964 965 /* Rx csum enabled and ip headers found? */ 966 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 967 return; 968 969 /* did the hardware decode the packet and checksum? */ 970 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 971 return; 972 973 /* both known and outer_ip must be set for the below code to work */ 974 if (!(decoded.known && decoded.outer_ip)) 975 return; 976 977 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 978 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); 979 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 980 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); 981 982 if (ipv4 && 983 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 984 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 985 goto checksum_fail; 986 987 /* likely incorrect csum if alternate IP extension headers found */ 988 if (ipv6 && 989 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 990 /* don't increment checksum err here, non-fatal err */ 991 return; 992 993 /* there was some L4 error, count error and punt packet to the stack */ 994 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 995 goto checksum_fail; 996 997 /* handle packets that were not able to be checksummed due 998 * to arrival speed, in this case the stack can compute 999 * the csum. 1000 */ 1001 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 1002 return; 1003 1004 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1005 switch (decoded.inner_prot) { 1006 case IAVF_RX_PTYPE_INNER_PROT_TCP: 1007 case IAVF_RX_PTYPE_INNER_PROT_UDP: 1008 case IAVF_RX_PTYPE_INNER_PROT_SCTP: 1009 skb->ip_summed = CHECKSUM_UNNECESSARY; 1010 fallthrough; 1011 default: 1012 break; 1013 } 1014 1015 return; 1016 1017 checksum_fail: 1018 vsi->back->hw_csum_rx_error++; 1019 } 1020 1021 /** 1022 * iavf_ptype_to_htype - get a hash type 1023 * @ptype: the ptype value from the descriptor 1024 * 1025 * Returns a hash type to be used by skb_set_hash 1026 **/ 1027 static inline int iavf_ptype_to_htype(u8 ptype) 1028 { 1029 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1030 1031 if (!decoded.known) 1032 return PKT_HASH_TYPE_NONE; 1033 1034 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1035 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1036 return PKT_HASH_TYPE_L4; 1037 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1038 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1039 return PKT_HASH_TYPE_L3; 1040 else 1041 return PKT_HASH_TYPE_L2; 1042 } 1043 1044 /** 1045 * iavf_rx_hash - set the hash value in the skb 1046 * @ring: descriptor ring 1047 * @rx_desc: specific descriptor 1048 * @skb: skb currently being received and modified 1049 * @rx_ptype: Rx packet type 1050 **/ 1051 static inline void iavf_rx_hash(struct iavf_ring *ring, 1052 union iavf_rx_desc *rx_desc, 1053 struct sk_buff *skb, 1054 u8 rx_ptype) 1055 { 1056 u32 hash; 1057 const __le64 rss_mask = 1058 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 1059 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 1060 1061 if (ring->netdev->features & NETIF_F_RXHASH) 1062 return; 1063 1064 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1065 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1066 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); 1067 } 1068 } 1069 1070 /** 1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 1072 * @rx_ring: rx descriptor ring packet is being transacted on 1073 * @rx_desc: pointer to the EOP Rx descriptor 1074 * @skb: pointer to current skb being populated 1075 * @rx_ptype: the packet type decoded by hardware 1076 * 1077 * This function checks the ring, descriptor, and packet information in 1078 * order to populate the hash, checksum, VLAN, protocol, and 1079 * other fields within the skb. 1080 **/ 1081 static inline 1082 void iavf_process_skb_fields(struct iavf_ring *rx_ring, 1083 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1084 u8 rx_ptype) 1085 { 1086 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1087 1088 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1089 1090 skb_record_rx_queue(skb, rx_ring->queue_index); 1091 1092 /* modifies the skb - consumes the enet header */ 1093 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1094 } 1095 1096 /** 1097 * iavf_cleanup_headers - Correct empty headers 1098 * @rx_ring: rx descriptor ring packet is being transacted on 1099 * @skb: pointer to current skb being fixed 1100 * 1101 * Also address the case where we are pulling data in on pages only 1102 * and as such no data is present in the skb header. 1103 * 1104 * In addition if skb is not at least 60 bytes we need to pad it so that 1105 * it is large enough to qualify as a valid Ethernet frame. 1106 * 1107 * Returns true if an error was encountered and skb was freed. 1108 **/ 1109 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1110 { 1111 /* if eth_skb_pad returns an error the skb was freed */ 1112 if (eth_skb_pad(skb)) 1113 return true; 1114 1115 return false; 1116 } 1117 1118 /** 1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring 1120 * @rx_ring: rx descriptor ring to store buffers on 1121 * @old_buff: donor buffer to have page reused 1122 * 1123 * Synchronizes page for reuse by the adapter 1124 **/ 1125 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, 1126 struct iavf_rx_buffer *old_buff) 1127 { 1128 struct iavf_rx_buffer *new_buff; 1129 u16 nta = rx_ring->next_to_alloc; 1130 1131 new_buff = &rx_ring->rx_bi[nta]; 1132 1133 /* update, and store next to alloc */ 1134 nta++; 1135 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1136 1137 /* transfer page from old buffer to new buffer */ 1138 new_buff->dma = old_buff->dma; 1139 new_buff->page = old_buff->page; 1140 new_buff->page_offset = old_buff->page_offset; 1141 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1142 } 1143 1144 /** 1145 * iavf_page_is_reusable - check if any reuse is possible 1146 * @page: page struct to check 1147 * 1148 * A page is not reusable if it was allocated under low memory 1149 * conditions, or it's not in the same NUMA node as this CPU. 1150 */ 1151 static inline bool iavf_page_is_reusable(struct page *page) 1152 { 1153 return (page_to_nid(page) == numa_mem_id()) && 1154 !page_is_pfmemalloc(page); 1155 } 1156 1157 /** 1158 * iavf_can_reuse_rx_page - Determine if this page can be reused by 1159 * the adapter for another receive 1160 * 1161 * @rx_buffer: buffer containing the page 1162 * 1163 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1164 * an unused region in the page. 1165 * 1166 * For small pages, @truesize will be a constant value, half the size 1167 * of the memory at page. We'll attempt to alternate between high and 1168 * low halves of the page, with one half ready for use by the hardware 1169 * and the other half being consumed by the stack. We use the page 1170 * ref count to determine whether the stack has finished consuming the 1171 * portion of this page that was passed up with a previous packet. If 1172 * the page ref count is >1, we'll assume the "other" half page is 1173 * still busy, and this page cannot be reused. 1174 * 1175 * For larger pages, @truesize will be the actual space used by the 1176 * received packet (adjusted upward to an even multiple of the cache 1177 * line size). This will advance through the page by the amount 1178 * actually consumed by the received packets while there is still 1179 * space for a buffer. Each region of larger pages will be used at 1180 * most once, after which the page will not be reused. 1181 * 1182 * In either case, if the page is reusable its refcount is increased. 1183 **/ 1184 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) 1185 { 1186 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1187 struct page *page = rx_buffer->page; 1188 1189 /* Is any reuse possible? */ 1190 if (unlikely(!iavf_page_is_reusable(page))) 1191 return false; 1192 1193 #if (PAGE_SIZE < 8192) 1194 /* if we are only owner of page we can reuse it */ 1195 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1196 return false; 1197 #else 1198 #define IAVF_LAST_OFFSET \ 1199 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) 1200 if (rx_buffer->page_offset > IAVF_LAST_OFFSET) 1201 return false; 1202 #endif 1203 1204 /* If we have drained the page fragment pool we need to update 1205 * the pagecnt_bias and page count so that we fully restock the 1206 * number of references the driver holds. 1207 */ 1208 if (unlikely(!pagecnt_bias)) { 1209 page_ref_add(page, USHRT_MAX); 1210 rx_buffer->pagecnt_bias = USHRT_MAX; 1211 } 1212 1213 return true; 1214 } 1215 1216 /** 1217 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1218 * @rx_ring: rx descriptor ring to transact packets on 1219 * @rx_buffer: buffer containing page to add 1220 * @skb: sk_buff to place the data into 1221 * @size: packet length from rx_desc 1222 * 1223 * This function will add the data contained in rx_buffer->page to the skb. 1224 * It will just attach the page as a frag to the skb. 1225 * 1226 * The function will then update the page offset. 1227 **/ 1228 static void iavf_add_rx_frag(struct iavf_ring *rx_ring, 1229 struct iavf_rx_buffer *rx_buffer, 1230 struct sk_buff *skb, 1231 unsigned int size) 1232 { 1233 #if (PAGE_SIZE < 8192) 1234 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1235 #else 1236 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); 1237 #endif 1238 1239 if (!size) 1240 return; 1241 1242 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1243 rx_buffer->page_offset, size, truesize); 1244 1245 /* page is being used so we must update the page offset */ 1246 #if (PAGE_SIZE < 8192) 1247 rx_buffer->page_offset ^= truesize; 1248 #else 1249 rx_buffer->page_offset += truesize; 1250 #endif 1251 } 1252 1253 /** 1254 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1255 * @rx_ring: rx descriptor ring to transact packets on 1256 * @size: size of buffer to add to skb 1257 * 1258 * This function will pull an Rx buffer from the ring and synchronize it 1259 * for use by the CPU. 1260 */ 1261 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, 1262 const unsigned int size) 1263 { 1264 struct iavf_rx_buffer *rx_buffer; 1265 1266 if (!size) 1267 return NULL; 1268 1269 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1270 prefetchw(rx_buffer->page); 1271 1272 /* we are reusing so sync this buffer for CPU use */ 1273 dma_sync_single_range_for_cpu(rx_ring->dev, 1274 rx_buffer->dma, 1275 rx_buffer->page_offset, 1276 size, 1277 DMA_FROM_DEVICE); 1278 1279 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1280 rx_buffer->pagecnt_bias--; 1281 1282 return rx_buffer; 1283 } 1284 1285 /** 1286 * iavf_construct_skb - Allocate skb and populate it 1287 * @rx_ring: rx descriptor ring to transact packets on 1288 * @rx_buffer: rx buffer to pull data from 1289 * @size: size of buffer to add to skb 1290 * 1291 * This function allocates an skb. It then populates it with the page 1292 * data from the current receive descriptor, taking care to set up the 1293 * skb correctly. 1294 */ 1295 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, 1296 struct iavf_rx_buffer *rx_buffer, 1297 unsigned int size) 1298 { 1299 void *va; 1300 #if (PAGE_SIZE < 8192) 1301 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1302 #else 1303 unsigned int truesize = SKB_DATA_ALIGN(size); 1304 #endif 1305 unsigned int headlen; 1306 struct sk_buff *skb; 1307 1308 if (!rx_buffer) 1309 return NULL; 1310 /* prefetch first cache line of first page */ 1311 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1312 net_prefetch(va); 1313 1314 /* allocate a skb to store the frags */ 1315 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1316 IAVF_RX_HDR_SIZE, 1317 GFP_ATOMIC | __GFP_NOWARN); 1318 if (unlikely(!skb)) 1319 return NULL; 1320 1321 /* Determine available headroom for copy */ 1322 headlen = size; 1323 if (headlen > IAVF_RX_HDR_SIZE) 1324 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE); 1325 1326 /* align pull length to size of long to optimize memcpy performance */ 1327 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1328 1329 /* update all of the pointers */ 1330 size -= headlen; 1331 if (size) { 1332 skb_add_rx_frag(skb, 0, rx_buffer->page, 1333 rx_buffer->page_offset + headlen, 1334 size, truesize); 1335 1336 /* buffer is used by skb, update page_offset */ 1337 #if (PAGE_SIZE < 8192) 1338 rx_buffer->page_offset ^= truesize; 1339 #else 1340 rx_buffer->page_offset += truesize; 1341 #endif 1342 } else { 1343 /* buffer is unused, reset bias back to rx_buffer */ 1344 rx_buffer->pagecnt_bias++; 1345 } 1346 1347 return skb; 1348 } 1349 1350 /** 1351 * iavf_build_skb - Build skb around an existing buffer 1352 * @rx_ring: Rx descriptor ring to transact packets on 1353 * @rx_buffer: Rx buffer to pull data from 1354 * @size: size of buffer to add to skb 1355 * 1356 * This function builds an skb around an existing Rx buffer, taking care 1357 * to set up the skb correctly and avoid any memcpy overhead. 1358 */ 1359 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, 1360 struct iavf_rx_buffer *rx_buffer, 1361 unsigned int size) 1362 { 1363 void *va; 1364 #if (PAGE_SIZE < 8192) 1365 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1366 #else 1367 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1368 SKB_DATA_ALIGN(IAVF_SKB_PAD + size); 1369 #endif 1370 struct sk_buff *skb; 1371 1372 if (!rx_buffer) 1373 return NULL; 1374 /* prefetch first cache line of first page */ 1375 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1376 net_prefetch(va); 1377 1378 /* build an skb around the page buffer */ 1379 skb = build_skb(va - IAVF_SKB_PAD, truesize); 1380 if (unlikely(!skb)) 1381 return NULL; 1382 1383 /* update pointers within the skb to store the data */ 1384 skb_reserve(skb, IAVF_SKB_PAD); 1385 __skb_put(skb, size); 1386 1387 /* buffer is used by skb, update page_offset */ 1388 #if (PAGE_SIZE < 8192) 1389 rx_buffer->page_offset ^= truesize; 1390 #else 1391 rx_buffer->page_offset += truesize; 1392 #endif 1393 1394 return skb; 1395 } 1396 1397 /** 1398 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free 1399 * @rx_ring: rx descriptor ring to transact packets on 1400 * @rx_buffer: rx buffer to pull data from 1401 * 1402 * This function will clean up the contents of the rx_buffer. It will 1403 * either recycle the buffer or unmap it and free the associated resources. 1404 */ 1405 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, 1406 struct iavf_rx_buffer *rx_buffer) 1407 { 1408 if (!rx_buffer) 1409 return; 1410 1411 if (iavf_can_reuse_rx_page(rx_buffer)) { 1412 /* hand second half of page back to the ring */ 1413 iavf_reuse_rx_page(rx_ring, rx_buffer); 1414 rx_ring->rx_stats.page_reuse_count++; 1415 } else { 1416 /* we are not reusing the buffer so unmap it */ 1417 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1418 iavf_rx_pg_size(rx_ring), 1419 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); 1420 __page_frag_cache_drain(rx_buffer->page, 1421 rx_buffer->pagecnt_bias); 1422 } 1423 1424 /* clear contents of buffer_info */ 1425 rx_buffer->page = NULL; 1426 } 1427 1428 /** 1429 * iavf_is_non_eop - process handling of non-EOP buffers 1430 * @rx_ring: Rx ring being processed 1431 * @rx_desc: Rx descriptor for current buffer 1432 * @skb: Current socket buffer containing buffer in progress 1433 * 1434 * This function updates next to clean. If the buffer is an EOP buffer 1435 * this function exits returning false, otherwise it will place the 1436 * sk_buff in the next buffer to be chained and return true indicating 1437 * that this is in fact a non-EOP buffer. 1438 **/ 1439 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1440 union iavf_rx_desc *rx_desc, 1441 struct sk_buff *skb) 1442 { 1443 u32 ntc = rx_ring->next_to_clean + 1; 1444 1445 /* fetch, update, and store next to clean */ 1446 ntc = (ntc < rx_ring->count) ? ntc : 0; 1447 rx_ring->next_to_clean = ntc; 1448 1449 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1450 1451 /* if we are the last buffer then there is nothing else to do */ 1452 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1453 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1454 return false; 1455 1456 rx_ring->rx_stats.non_eop_descs++; 1457 1458 return true; 1459 } 1460 1461 /** 1462 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1463 * @rx_ring: rx descriptor ring to transact packets on 1464 * @budget: Total limit on number of packets to process 1465 * 1466 * This function provides a "bounce buffer" approach to Rx interrupt 1467 * processing. The advantage to this is that on systems that have 1468 * expensive overhead for IOMMU access this provides a means of avoiding 1469 * it by maintaining the mapping of the page to the system. 1470 * 1471 * Returns amount of work completed 1472 **/ 1473 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1474 { 1475 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1476 struct sk_buff *skb = rx_ring->skb; 1477 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1478 bool failure = false; 1479 1480 while (likely(total_rx_packets < (unsigned int)budget)) { 1481 struct iavf_rx_buffer *rx_buffer; 1482 union iavf_rx_desc *rx_desc; 1483 unsigned int size; 1484 u16 vlan_tag; 1485 u8 rx_ptype; 1486 u64 qword; 1487 1488 /* return some buffers to hardware, one at a time is too slow */ 1489 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1490 failure = failure || 1491 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1492 cleaned_count = 0; 1493 } 1494 1495 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1496 1497 /* status_error_len will always be zero for unused descriptors 1498 * because it's cleared in cleanup, and overlaps with hdr_addr 1499 * which is always zero because packet split isn't used, if the 1500 * hardware wrote DD then the length will be non-zero 1501 */ 1502 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1503 1504 /* This memory barrier is needed to keep us from reading 1505 * any other fields out of the rx_desc until we have 1506 * verified the descriptor has been written back. 1507 */ 1508 dma_rmb(); 1509 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) 1510 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) 1511 break; 1512 1513 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> 1514 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; 1515 1516 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1517 rx_buffer = iavf_get_rx_buffer(rx_ring, size); 1518 1519 /* retrieve a buffer from the ring */ 1520 if (skb) 1521 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1522 else if (ring_uses_build_skb(rx_ring)) 1523 skb = iavf_build_skb(rx_ring, rx_buffer, size); 1524 else 1525 skb = iavf_construct_skb(rx_ring, rx_buffer, size); 1526 1527 /* exit if we failed to retrieve a buffer */ 1528 if (!skb) { 1529 rx_ring->rx_stats.alloc_buff_failed++; 1530 if (rx_buffer) 1531 rx_buffer->pagecnt_bias++; 1532 break; 1533 } 1534 1535 iavf_put_rx_buffer(rx_ring, rx_buffer); 1536 cleaned_count++; 1537 1538 if (iavf_is_non_eop(rx_ring, rx_desc, skb)) 1539 continue; 1540 1541 /* ERR_MASK will only have valid bits if EOP set, and 1542 * what we are doing here is actually checking 1543 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1544 * the error field 1545 */ 1546 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1547 dev_kfree_skb_any(skb); 1548 skb = NULL; 1549 continue; 1550 } 1551 1552 if (iavf_cleanup_headers(rx_ring, skb)) { 1553 skb = NULL; 1554 continue; 1555 } 1556 1557 /* probably a little skewed due to removing CRC */ 1558 total_rx_bytes += skb->len; 1559 1560 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1561 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> 1562 IAVF_RXD_QW1_PTYPE_SHIFT; 1563 1564 /* populate checksum, VLAN, and protocol */ 1565 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1566 1567 1568 vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 1569 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 1570 1571 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1572 iavf_receive_skb(rx_ring, skb, vlan_tag); 1573 skb = NULL; 1574 1575 /* update budget accounting */ 1576 total_rx_packets++; 1577 } 1578 1579 rx_ring->skb = skb; 1580 1581 u64_stats_update_begin(&rx_ring->syncp); 1582 rx_ring->stats.packets += total_rx_packets; 1583 rx_ring->stats.bytes += total_rx_bytes; 1584 u64_stats_update_end(&rx_ring->syncp); 1585 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1586 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1587 1588 /* guarantee a trip back through this routine if there was a failure */ 1589 return failure ? budget : (int)total_rx_packets; 1590 } 1591 1592 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1593 { 1594 u32 val; 1595 1596 /* We don't bother with setting the CLEARPBA bit as the data sheet 1597 * points out doing so is "meaningless since it was already 1598 * auto-cleared". The auto-clearing happens when the interrupt is 1599 * asserted. 1600 * 1601 * Hardware errata 28 for also indicates that writing to a 1602 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1603 * an event in the PBA anyway so we need to rely on the automask 1604 * to hold pending events for us until the interrupt is re-enabled 1605 * 1606 * The itr value is reported in microseconds, and the register 1607 * value is recorded in 2 microsecond units. For this reason we 1608 * only need to shift by the interval shift - 1 instead of the 1609 * full value. 1610 */ 1611 itr &= IAVF_ITR_MASK; 1612 1613 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1614 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1615 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1616 1617 return val; 1618 } 1619 1620 /* a small macro to shorten up some long lines */ 1621 #define INTREG IAVF_VFINT_DYN_CTLN1 1622 1623 /* The act of updating the ITR will cause it to immediately trigger. In order 1624 * to prevent this from throwing off adaptive update statistics we defer the 1625 * update so that it can only happen so often. So after either Tx or Rx are 1626 * updated we make the adaptive scheme wait until either the ITR completely 1627 * expires via the next_update expiration or we have been through at least 1628 * 3 interrupts. 1629 */ 1630 #define ITR_COUNTDOWN_START 3 1631 1632 /** 1633 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1634 * @vsi: the VSI we care about 1635 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1636 * 1637 **/ 1638 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, 1639 struct iavf_q_vector *q_vector) 1640 { 1641 struct iavf_hw *hw = &vsi->back->hw; 1642 u32 intval; 1643 1644 /* These will do nothing if dynamic updates are not enabled */ 1645 iavf_update_itr(q_vector, &q_vector->tx); 1646 iavf_update_itr(q_vector, &q_vector->rx); 1647 1648 /* This block of logic allows us to get away with only updating 1649 * one ITR value with each interrupt. The idea is to perform a 1650 * pseudo-lazy update with the following criteria. 1651 * 1652 * 1. Rx is given higher priority than Tx if both are in same state 1653 * 2. If we must reduce an ITR that is given highest priority. 1654 * 3. We then give priority to increasing ITR based on amount. 1655 */ 1656 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1657 /* Rx ITR needs to be reduced, this is highest priority */ 1658 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1659 q_vector->rx.target_itr); 1660 q_vector->rx.current_itr = q_vector->rx.target_itr; 1661 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1662 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1663 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1664 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1665 /* Tx ITR needs to be reduced, this is second priority 1666 * Tx ITR needs to be increased more than Rx, fourth priority 1667 */ 1668 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1669 q_vector->tx.target_itr); 1670 q_vector->tx.current_itr = q_vector->tx.target_itr; 1671 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1672 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1673 /* Rx ITR needs to be increased, third priority */ 1674 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1675 q_vector->rx.target_itr); 1676 q_vector->rx.current_itr = q_vector->rx.target_itr; 1677 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1678 } else { 1679 /* No ITR update, lowest priority */ 1680 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1681 if (q_vector->itr_countdown) 1682 q_vector->itr_countdown--; 1683 } 1684 1685 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1686 wr32(hw, INTREG(q_vector->reg_idx), intval); 1687 } 1688 1689 /** 1690 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1691 * @napi: napi struct with our devices info in it 1692 * @budget: amount of work driver is allowed to do this pass, in packets 1693 * 1694 * This function will clean all queues associated with a q_vector. 1695 * 1696 * Returns the amount of work done 1697 **/ 1698 int iavf_napi_poll(struct napi_struct *napi, int budget) 1699 { 1700 struct iavf_q_vector *q_vector = 1701 container_of(napi, struct iavf_q_vector, napi); 1702 struct iavf_vsi *vsi = q_vector->vsi; 1703 struct iavf_ring *ring; 1704 bool clean_complete = true; 1705 bool arm_wb = false; 1706 int budget_per_ring; 1707 int work_done = 0; 1708 1709 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1710 napi_complete(napi); 1711 return 0; 1712 } 1713 1714 /* Since the actual Tx work is minimal, we can give the Tx a larger 1715 * budget and be more aggressive about cleaning up the Tx descriptors. 1716 */ 1717 iavf_for_each_ring(ring, q_vector->tx) { 1718 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1719 clean_complete = false; 1720 continue; 1721 } 1722 arm_wb |= ring->arm_wb; 1723 ring->arm_wb = false; 1724 } 1725 1726 /* Handle case where we are called by netpoll with a budget of 0 */ 1727 if (budget <= 0) 1728 goto tx_only; 1729 1730 /* We attempt to distribute budget to each Rx queue fairly, but don't 1731 * allow the budget to go below 1 because that would exit polling early. 1732 */ 1733 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1734 1735 iavf_for_each_ring(ring, q_vector->rx) { 1736 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1737 1738 work_done += cleaned; 1739 /* if we clean as many as budgeted, we must not be done */ 1740 if (cleaned >= budget_per_ring) 1741 clean_complete = false; 1742 } 1743 1744 /* If work not completed, return budget and polling will return */ 1745 if (!clean_complete) { 1746 int cpu_id = smp_processor_id(); 1747 1748 /* It is possible that the interrupt affinity has changed but, 1749 * if the cpu is pegged at 100%, polling will never exit while 1750 * traffic continues and the interrupt will be stuck on this 1751 * cpu. We check to make sure affinity is correct before we 1752 * continue to poll, otherwise we must stop polling so the 1753 * interrupt can move to the correct cpu. 1754 */ 1755 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1756 /* Tell napi that we are done polling */ 1757 napi_complete_done(napi, work_done); 1758 1759 /* Force an interrupt */ 1760 iavf_force_wb(vsi, q_vector); 1761 1762 /* Return budget-1 so that polling stops */ 1763 return budget - 1; 1764 } 1765 tx_only: 1766 if (arm_wb) { 1767 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1768 iavf_enable_wb_on_itr(vsi, q_vector); 1769 } 1770 return budget; 1771 } 1772 1773 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1774 q_vector->arm_wb_state = false; 1775 1776 /* Exit the polling mode, but don't re-enable interrupts if stack might 1777 * poll us due to busy-polling 1778 */ 1779 if (likely(napi_complete_done(napi, work_done))) 1780 iavf_update_enable_itr(vsi, q_vector); 1781 1782 return min(work_done, budget - 1); 1783 } 1784 1785 /** 1786 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1787 * @skb: send buffer 1788 * @tx_ring: ring to send buffer on 1789 * @flags: the tx flags to be set 1790 * 1791 * Checks the skb and set up correspondingly several generic transmit flags 1792 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1793 * 1794 * Returns error code indicate the frame should be dropped upon error and the 1795 * otherwise returns 0 to indicate the flags has been set properly. 1796 **/ 1797 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1798 struct iavf_ring *tx_ring, 1799 u32 *flags) 1800 { 1801 __be16 protocol = skb->protocol; 1802 u32 tx_flags = 0; 1803 1804 if (protocol == htons(ETH_P_8021Q) && 1805 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1806 /* When HW VLAN acceleration is turned off by the user the 1807 * stack sets the protocol to 8021q so that the driver 1808 * can take any steps required to support the SW only 1809 * VLAN handling. In our case the driver doesn't need 1810 * to take any further steps so just set the protocol 1811 * to the encapsulated ethertype. 1812 */ 1813 skb->protocol = vlan_get_protocol(skb); 1814 goto out; 1815 } 1816 1817 /* if we have a HW VLAN tag being added, default to the HW one */ 1818 if (skb_vlan_tag_present(skb)) { 1819 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1820 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1821 /* else if it is a SW VLAN, check the next protocol and store the tag */ 1822 } else if (protocol == htons(ETH_P_8021Q)) { 1823 struct vlan_hdr *vhdr, _vhdr; 1824 1825 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 1826 if (!vhdr) 1827 return -EINVAL; 1828 1829 protocol = vhdr->h_vlan_encapsulated_proto; 1830 tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT; 1831 tx_flags |= IAVF_TX_FLAGS_SW_VLAN; 1832 } 1833 1834 out: 1835 *flags = tx_flags; 1836 return 0; 1837 } 1838 1839 /** 1840 * iavf_tso - set up the tso context descriptor 1841 * @first: pointer to first Tx buffer for xmit 1842 * @hdr_len: ptr to the size of the packet header 1843 * @cd_type_cmd_tso_mss: Quad Word 1 1844 * 1845 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1846 **/ 1847 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1848 u64 *cd_type_cmd_tso_mss) 1849 { 1850 struct sk_buff *skb = first->skb; 1851 u64 cd_cmd, cd_tso_len, cd_mss; 1852 union { 1853 struct iphdr *v4; 1854 struct ipv6hdr *v6; 1855 unsigned char *hdr; 1856 } ip; 1857 union { 1858 struct tcphdr *tcp; 1859 struct udphdr *udp; 1860 unsigned char *hdr; 1861 } l4; 1862 u32 paylen, l4_offset; 1863 u16 gso_segs, gso_size; 1864 int err; 1865 1866 if (skb->ip_summed != CHECKSUM_PARTIAL) 1867 return 0; 1868 1869 if (!skb_is_gso(skb)) 1870 return 0; 1871 1872 err = skb_cow_head(skb, 0); 1873 if (err < 0) 1874 return err; 1875 1876 ip.hdr = skb_network_header(skb); 1877 l4.hdr = skb_transport_header(skb); 1878 1879 /* initialize outer IP header fields */ 1880 if (ip.v4->version == 4) { 1881 ip.v4->tot_len = 0; 1882 ip.v4->check = 0; 1883 } else { 1884 ip.v6->payload_len = 0; 1885 } 1886 1887 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1888 SKB_GSO_GRE_CSUM | 1889 SKB_GSO_IPXIP4 | 1890 SKB_GSO_IPXIP6 | 1891 SKB_GSO_UDP_TUNNEL | 1892 SKB_GSO_UDP_TUNNEL_CSUM)) { 1893 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1894 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1895 l4.udp->len = 0; 1896 1897 /* determine offset of outer transport header */ 1898 l4_offset = l4.hdr - skb->data; 1899 1900 /* remove payload length from outer checksum */ 1901 paylen = skb->len - l4_offset; 1902 csum_replace_by_diff(&l4.udp->check, 1903 (__force __wsum)htonl(paylen)); 1904 } 1905 1906 /* reset pointers to inner headers */ 1907 ip.hdr = skb_inner_network_header(skb); 1908 l4.hdr = skb_inner_transport_header(skb); 1909 1910 /* initialize inner IP header fields */ 1911 if (ip.v4->version == 4) { 1912 ip.v4->tot_len = 0; 1913 ip.v4->check = 0; 1914 } else { 1915 ip.v6->payload_len = 0; 1916 } 1917 } 1918 1919 /* determine offset of inner transport header */ 1920 l4_offset = l4.hdr - skb->data; 1921 1922 /* remove payload length from inner checksum */ 1923 paylen = skb->len - l4_offset; 1924 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 1925 1926 /* compute length of segmentation header */ 1927 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1928 1929 /* pull values out of skb_shinfo */ 1930 gso_size = skb_shinfo(skb)->gso_size; 1931 gso_segs = skb_shinfo(skb)->gso_segs; 1932 1933 /* update GSO size and bytecount with header size */ 1934 first->gso_segs = gso_segs; 1935 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1936 1937 /* find the field values */ 1938 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1939 cd_tso_len = skb->len - *hdr_len; 1940 cd_mss = gso_size; 1941 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1942 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1943 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1944 return 1; 1945 } 1946 1947 /** 1948 * iavf_tx_enable_csum - Enable Tx checksum offloads 1949 * @skb: send buffer 1950 * @tx_flags: pointer to Tx flags currently set 1951 * @td_cmd: Tx descriptor command bits to set 1952 * @td_offset: Tx descriptor header offsets to set 1953 * @tx_ring: Tx descriptor ring 1954 * @cd_tunneling: ptr to context desc bits 1955 **/ 1956 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1957 u32 *td_cmd, u32 *td_offset, 1958 struct iavf_ring *tx_ring, 1959 u32 *cd_tunneling) 1960 { 1961 union { 1962 struct iphdr *v4; 1963 struct ipv6hdr *v6; 1964 unsigned char *hdr; 1965 } ip; 1966 union { 1967 struct tcphdr *tcp; 1968 struct udphdr *udp; 1969 unsigned char *hdr; 1970 } l4; 1971 unsigned char *exthdr; 1972 u32 offset, cmd = 0; 1973 __be16 frag_off; 1974 u8 l4_proto = 0; 1975 1976 if (skb->ip_summed != CHECKSUM_PARTIAL) 1977 return 0; 1978 1979 ip.hdr = skb_network_header(skb); 1980 l4.hdr = skb_transport_header(skb); 1981 1982 /* compute outer L2 header size */ 1983 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 1984 1985 if (skb->encapsulation) { 1986 u32 tunnel = 0; 1987 /* define outer network header type */ 1988 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 1989 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 1990 IAVF_TX_CTX_EXT_IP_IPV4 : 1991 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 1992 1993 l4_proto = ip.v4->protocol; 1994 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 1995 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 1996 1997 exthdr = ip.hdr + sizeof(*ip.v6); 1998 l4_proto = ip.v6->nexthdr; 1999 if (l4.hdr != exthdr) 2000 ipv6_skip_exthdr(skb, exthdr - skb->data, 2001 &l4_proto, &frag_off); 2002 } 2003 2004 /* define outer transport */ 2005 switch (l4_proto) { 2006 case IPPROTO_UDP: 2007 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 2008 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2009 break; 2010 case IPPROTO_GRE: 2011 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 2012 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2013 break; 2014 case IPPROTO_IPIP: 2015 case IPPROTO_IPV6: 2016 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2017 l4.hdr = skb_inner_network_header(skb); 2018 break; 2019 default: 2020 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2021 return -1; 2022 2023 skb_checksum_help(skb); 2024 return 0; 2025 } 2026 2027 /* compute outer L3 header size */ 2028 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2029 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2030 2031 /* switch IP header pointer from outer to inner header */ 2032 ip.hdr = skb_inner_network_header(skb); 2033 2034 /* compute tunnel header size */ 2035 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2036 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 2037 2038 /* indicate if we need to offload outer UDP header */ 2039 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 2040 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2041 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2042 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 2043 2044 /* record tunnel offload values */ 2045 *cd_tunneling |= tunnel; 2046 2047 /* switch L4 header pointer from outer to inner */ 2048 l4.hdr = skb_inner_transport_header(skb); 2049 l4_proto = 0; 2050 2051 /* reset type as we transition from outer to inner headers */ 2052 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 2053 if (ip.v4->version == 4) 2054 *tx_flags |= IAVF_TX_FLAGS_IPV4; 2055 if (ip.v6->version == 6) 2056 *tx_flags |= IAVF_TX_FLAGS_IPV6; 2057 } 2058 2059 /* Enable IP checksum offloads */ 2060 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2061 l4_proto = ip.v4->protocol; 2062 /* the stack computes the IP header already, the only time we 2063 * need the hardware to recompute it is in the case of TSO. 2064 */ 2065 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2066 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 2067 IAVF_TX_DESC_CMD_IIPT_IPV4; 2068 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2069 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 2070 2071 exthdr = ip.hdr + sizeof(*ip.v6); 2072 l4_proto = ip.v6->nexthdr; 2073 if (l4.hdr != exthdr) 2074 ipv6_skip_exthdr(skb, exthdr - skb->data, 2075 &l4_proto, &frag_off); 2076 } 2077 2078 /* compute inner L3 header size */ 2079 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 2080 2081 /* Enable L4 checksum offloads */ 2082 switch (l4_proto) { 2083 case IPPROTO_TCP: 2084 /* enable checksum offloads */ 2085 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 2086 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2087 break; 2088 case IPPROTO_SCTP: 2089 /* enable SCTP checksum offload */ 2090 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 2091 offset |= (sizeof(struct sctphdr) >> 2) << 2092 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2093 break; 2094 case IPPROTO_UDP: 2095 /* enable UDP checksum offload */ 2096 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 2097 offset |= (sizeof(struct udphdr) >> 2) << 2098 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2099 break; 2100 default: 2101 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2102 return -1; 2103 skb_checksum_help(skb); 2104 return 0; 2105 } 2106 2107 *td_cmd |= cmd; 2108 *td_offset |= offset; 2109 2110 return 1; 2111 } 2112 2113 /** 2114 * iavf_create_tx_ctx Build the Tx context descriptor 2115 * @tx_ring: ring to create the descriptor on 2116 * @cd_type_cmd_tso_mss: Quad Word 1 2117 * @cd_tunneling: Quad Word 0 - bits 0-31 2118 * @cd_l2tag2: Quad Word 0 - bits 32-63 2119 **/ 2120 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 2121 const u64 cd_type_cmd_tso_mss, 2122 const u32 cd_tunneling, const u32 cd_l2tag2) 2123 { 2124 struct iavf_tx_context_desc *context_desc; 2125 int i = tx_ring->next_to_use; 2126 2127 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 2128 !cd_tunneling && !cd_l2tag2) 2129 return; 2130 2131 /* grab the next descriptor */ 2132 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 2133 2134 i++; 2135 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2136 2137 /* cpu_to_le32 and assign to struct fields */ 2138 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2139 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2140 context_desc->rsvd = cpu_to_le16(0); 2141 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2142 } 2143 2144 /** 2145 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 2146 * @skb: send buffer 2147 * 2148 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 2149 * and so we need to figure out the cases where we need to linearize the skb. 2150 * 2151 * For TSO we need to count the TSO header and segment payload separately. 2152 * As such we need to check cases where we have 7 fragments or more as we 2153 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2154 * the segment payload in the first descriptor, and another 7 for the 2155 * fragments. 2156 **/ 2157 bool __iavf_chk_linearize(struct sk_buff *skb) 2158 { 2159 const skb_frag_t *frag, *stale; 2160 int nr_frags, sum; 2161 2162 /* no need to check if number of frags is less than 7 */ 2163 nr_frags = skb_shinfo(skb)->nr_frags; 2164 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 2165 return false; 2166 2167 /* We need to walk through the list and validate that each group 2168 * of 6 fragments totals at least gso_size. 2169 */ 2170 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 2171 frag = &skb_shinfo(skb)->frags[0]; 2172 2173 /* Initialize size to the negative value of gso_size minus 1. We 2174 * use this as the worst case scenerio in which the frag ahead 2175 * of us only provides one byte which is why we are limited to 6 2176 * descriptors for a single transmit as the header and previous 2177 * fragment are already consuming 2 descriptors. 2178 */ 2179 sum = 1 - skb_shinfo(skb)->gso_size; 2180 2181 /* Add size of frags 0 through 4 to create our initial sum */ 2182 sum += skb_frag_size(frag++); 2183 sum += skb_frag_size(frag++); 2184 sum += skb_frag_size(frag++); 2185 sum += skb_frag_size(frag++); 2186 sum += skb_frag_size(frag++); 2187 2188 /* Walk through fragments adding latest fragment, testing it, and 2189 * then removing stale fragments from the sum. 2190 */ 2191 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2192 int stale_size = skb_frag_size(stale); 2193 2194 sum += skb_frag_size(frag++); 2195 2196 /* The stale fragment may present us with a smaller 2197 * descriptor than the actual fragment size. To account 2198 * for that we need to remove all the data on the front and 2199 * figure out what the remainder would be in the last 2200 * descriptor associated with the fragment. 2201 */ 2202 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 2203 int align_pad = -(skb_frag_off(stale)) & 2204 (IAVF_MAX_READ_REQ_SIZE - 1); 2205 2206 sum -= align_pad; 2207 stale_size -= align_pad; 2208 2209 do { 2210 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2211 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2212 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 2213 } 2214 2215 /* if sum is negative we failed to make sufficient progress */ 2216 if (sum < 0) 2217 return true; 2218 2219 if (!nr_frags--) 2220 break; 2221 2222 sum -= stale_size; 2223 } 2224 2225 return false; 2226 } 2227 2228 /** 2229 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 2230 * @tx_ring: the ring to be checked 2231 * @size: the size buffer we want to assure is available 2232 * 2233 * Returns -EBUSY if a stop is needed, else 0 2234 **/ 2235 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 2236 { 2237 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2238 /* Memory barrier before checking head and tail */ 2239 smp_mb(); 2240 2241 /* Check again in a case another CPU has just made room available. */ 2242 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 2243 return -EBUSY; 2244 2245 /* A reprieve! - use start_queue because it doesn't call schedule */ 2246 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2247 ++tx_ring->tx_stats.restart_queue; 2248 return 0; 2249 } 2250 2251 /** 2252 * iavf_tx_map - Build the Tx descriptor 2253 * @tx_ring: ring to send buffer on 2254 * @skb: send buffer 2255 * @first: first buffer info buffer to use 2256 * @tx_flags: collected send information 2257 * @hdr_len: size of the packet header 2258 * @td_cmd: the command field in the descriptor 2259 * @td_offset: offset for checksum or crc 2260 **/ 2261 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 2262 struct iavf_tx_buffer *first, u32 tx_flags, 2263 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2264 { 2265 unsigned int data_len = skb->data_len; 2266 unsigned int size = skb_headlen(skb); 2267 skb_frag_t *frag; 2268 struct iavf_tx_buffer *tx_bi; 2269 struct iavf_tx_desc *tx_desc; 2270 u16 i = tx_ring->next_to_use; 2271 u32 td_tag = 0; 2272 dma_addr_t dma; 2273 2274 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 2275 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 2276 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2277 IAVF_TX_FLAGS_VLAN_SHIFT; 2278 } 2279 2280 first->tx_flags = tx_flags; 2281 2282 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2283 2284 tx_desc = IAVF_TX_DESC(tx_ring, i); 2285 tx_bi = first; 2286 2287 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2288 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2289 2290 if (dma_mapping_error(tx_ring->dev, dma)) 2291 goto dma_error; 2292 2293 /* record length, and DMA address */ 2294 dma_unmap_len_set(tx_bi, len, size); 2295 dma_unmap_addr_set(tx_bi, dma, dma); 2296 2297 /* align size to end of page */ 2298 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 2299 tx_desc->buffer_addr = cpu_to_le64(dma); 2300 2301 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 2302 tx_desc->cmd_type_offset_bsz = 2303 build_ctob(td_cmd, td_offset, 2304 max_data, td_tag); 2305 2306 tx_desc++; 2307 i++; 2308 2309 if (i == tx_ring->count) { 2310 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2311 i = 0; 2312 } 2313 2314 dma += max_data; 2315 size -= max_data; 2316 2317 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2318 tx_desc->buffer_addr = cpu_to_le64(dma); 2319 } 2320 2321 if (likely(!data_len)) 2322 break; 2323 2324 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2325 size, td_tag); 2326 2327 tx_desc++; 2328 i++; 2329 2330 if (i == tx_ring->count) { 2331 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2332 i = 0; 2333 } 2334 2335 size = skb_frag_size(frag); 2336 data_len -= size; 2337 2338 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2339 DMA_TO_DEVICE); 2340 2341 tx_bi = &tx_ring->tx_bi[i]; 2342 } 2343 2344 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 2345 2346 i++; 2347 if (i == tx_ring->count) 2348 i = 0; 2349 2350 tx_ring->next_to_use = i; 2351 2352 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2353 2354 /* write last descriptor with RS and EOP bits */ 2355 td_cmd |= IAVF_TXD_CMD; 2356 tx_desc->cmd_type_offset_bsz = 2357 build_ctob(td_cmd, td_offset, size, td_tag); 2358 2359 skb_tx_timestamp(skb); 2360 2361 /* Force memory writes to complete before letting h/w know there 2362 * are new descriptors to fetch. 2363 * 2364 * We also use this memory barrier to make certain all of the 2365 * status bits have been updated before next_to_watch is written. 2366 */ 2367 wmb(); 2368 2369 /* set next_to_watch value indicating a packet is present */ 2370 first->next_to_watch = tx_desc; 2371 2372 /* notify HW of packet */ 2373 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 2374 writel(i, tx_ring->tail); 2375 } 2376 2377 return; 2378 2379 dma_error: 2380 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2381 2382 /* clear dma mappings for failed tx_bi map */ 2383 for (;;) { 2384 tx_bi = &tx_ring->tx_bi[i]; 2385 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2386 if (tx_bi == first) 2387 break; 2388 if (i == 0) 2389 i = tx_ring->count; 2390 i--; 2391 } 2392 2393 tx_ring->next_to_use = i; 2394 } 2395 2396 /** 2397 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2398 * @skb: send buffer 2399 * @tx_ring: ring to send buffer on 2400 * 2401 * Returns NETDEV_TX_OK if sent, else an error code 2402 **/ 2403 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2404 struct iavf_ring *tx_ring) 2405 { 2406 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2407 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2408 struct iavf_tx_buffer *first; 2409 u32 td_offset = 0; 2410 u32 tx_flags = 0; 2411 __be16 protocol; 2412 u32 td_cmd = 0; 2413 u8 hdr_len = 0; 2414 int tso, count; 2415 2416 /* prefetch the data, we'll need it later */ 2417 prefetch(skb->data); 2418 2419 iavf_trace(xmit_frame_ring, skb, tx_ring); 2420 2421 count = iavf_xmit_descriptor_count(skb); 2422 if (iavf_chk_linearize(skb, count)) { 2423 if (__skb_linearize(skb)) { 2424 dev_kfree_skb_any(skb); 2425 return NETDEV_TX_OK; 2426 } 2427 count = iavf_txd_use_count(skb->len); 2428 tx_ring->tx_stats.tx_linearize++; 2429 } 2430 2431 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2432 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2433 * + 4 desc gap to avoid the cache line where head is, 2434 * + 1 desc for context descriptor, 2435 * otherwise try next time 2436 */ 2437 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2438 tx_ring->tx_stats.tx_busy++; 2439 return NETDEV_TX_BUSY; 2440 } 2441 2442 /* record the location of the first descriptor for this packet */ 2443 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2444 first->skb = skb; 2445 first->bytecount = skb->len; 2446 first->gso_segs = 1; 2447 2448 /* prepare the xmit flags */ 2449 if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 2450 goto out_drop; 2451 2452 /* obtain protocol of skb */ 2453 protocol = vlan_get_protocol(skb); 2454 2455 /* setup IPv4/IPv6 offloads */ 2456 if (protocol == htons(ETH_P_IP)) 2457 tx_flags |= IAVF_TX_FLAGS_IPV4; 2458 else if (protocol == htons(ETH_P_IPV6)) 2459 tx_flags |= IAVF_TX_FLAGS_IPV6; 2460 2461 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2462 2463 if (tso < 0) 2464 goto out_drop; 2465 else if (tso) 2466 tx_flags |= IAVF_TX_FLAGS_TSO; 2467 2468 /* Always offload the checksum, since it's in the data descriptor */ 2469 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2470 tx_ring, &cd_tunneling); 2471 if (tso < 0) 2472 goto out_drop; 2473 2474 /* always enable CRC insertion offload */ 2475 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2476 2477 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2478 cd_tunneling, cd_l2tag2); 2479 2480 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2481 td_cmd, td_offset); 2482 2483 return NETDEV_TX_OK; 2484 2485 out_drop: 2486 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2487 dev_kfree_skb_any(first->skb); 2488 first->skb = NULL; 2489 return NETDEV_TX_OK; 2490 } 2491 2492 /** 2493 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2494 * @skb: send buffer 2495 * @netdev: network interface device structure 2496 * 2497 * Returns NETDEV_TX_OK if sent, else an error code 2498 **/ 2499 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2500 { 2501 struct iavf_adapter *adapter = netdev_priv(netdev); 2502 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2503 2504 /* hardware can't handle really short frames, hardware padding works 2505 * beyond this point 2506 */ 2507 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2508 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2509 return NETDEV_TX_OK; 2510 skb->len = IAVF_MIN_TX_LEN; 2511 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2512 } 2513 2514 return iavf_xmit_frame_ring(skb, tx_ring); 2515 } 2516