1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140 	if (!(adapter->flags &
141 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 		queue_work(iavf_wq, &adapter->reset_task);
144 	}
145 }
146 
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  **/
151 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
152 {
153 	struct iavf_adapter *adapter = netdev_priv(netdev);
154 
155 	adapter->tx_timeout_count++;
156 	iavf_schedule_reset(adapter);
157 }
158 
159 /**
160  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
161  * @adapter: board private structure
162  **/
163 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
164 {
165 	struct iavf_hw *hw = &adapter->hw;
166 
167 	if (!adapter->msix_entries)
168 		return;
169 
170 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
171 
172 	iavf_flush(hw);
173 
174 	synchronize_irq(adapter->msix_entries[0].vector);
175 }
176 
177 /**
178  * iavf_misc_irq_enable - Enable default interrupt generation settings
179  * @adapter: board private structure
180  **/
181 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
182 {
183 	struct iavf_hw *hw = &adapter->hw;
184 
185 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
186 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
187 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
188 
189 	iavf_flush(hw);
190 }
191 
192 /**
193  * iavf_irq_disable - Mask off interrupt generation on the NIC
194  * @adapter: board private structure
195  **/
196 static void iavf_irq_disable(struct iavf_adapter *adapter)
197 {
198 	int i;
199 	struct iavf_hw *hw = &adapter->hw;
200 
201 	if (!adapter->msix_entries)
202 		return;
203 
204 	for (i = 1; i < adapter->num_msix_vectors; i++) {
205 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
206 		synchronize_irq(adapter->msix_entries[i].vector);
207 	}
208 	iavf_flush(hw);
209 }
210 
211 /**
212  * iavf_irq_enable_queues - Enable interrupt for specified queues
213  * @adapter: board private structure
214  * @mask: bitmap of queues to enable
215  **/
216 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
217 {
218 	struct iavf_hw *hw = &adapter->hw;
219 	int i;
220 
221 	for (i = 1; i < adapter->num_msix_vectors; i++) {
222 		if (mask & BIT(i - 1)) {
223 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
224 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
225 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
226 		}
227 	}
228 }
229 
230 /**
231  * iavf_irq_enable - Enable default interrupt generation settings
232  * @adapter: board private structure
233  * @flush: boolean value whether to run rd32()
234  **/
235 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
236 {
237 	struct iavf_hw *hw = &adapter->hw;
238 
239 	iavf_misc_irq_enable(adapter);
240 	iavf_irq_enable_queues(adapter, ~0);
241 
242 	if (flush)
243 		iavf_flush(hw);
244 }
245 
246 /**
247  * iavf_msix_aq - Interrupt handler for vector 0
248  * @irq: interrupt number
249  * @data: pointer to netdev
250  **/
251 static irqreturn_t iavf_msix_aq(int irq, void *data)
252 {
253 	struct net_device *netdev = data;
254 	struct iavf_adapter *adapter = netdev_priv(netdev);
255 	struct iavf_hw *hw = &adapter->hw;
256 
257 	/* handle non-queue interrupts, these reads clear the registers */
258 	rd32(hw, IAVF_VFINT_ICR01);
259 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
260 
261 	/* schedule work on the private workqueue */
262 	queue_work(iavf_wq, &adapter->adminq_task);
263 
264 	return IRQ_HANDLED;
265 }
266 
267 /**
268  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
269  * @irq: interrupt number
270  * @data: pointer to a q_vector
271  **/
272 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
273 {
274 	struct iavf_q_vector *q_vector = data;
275 
276 	if (!q_vector->tx.ring && !q_vector->rx.ring)
277 		return IRQ_HANDLED;
278 
279 	napi_schedule_irqoff(&q_vector->napi);
280 
281 	return IRQ_HANDLED;
282 }
283 
284 /**
285  * iavf_map_vector_to_rxq - associate irqs with rx queues
286  * @adapter: board private structure
287  * @v_idx: interrupt number
288  * @r_idx: queue number
289  **/
290 static void
291 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
292 {
293 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
294 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
295 	struct iavf_hw *hw = &adapter->hw;
296 
297 	rx_ring->q_vector = q_vector;
298 	rx_ring->next = q_vector->rx.ring;
299 	rx_ring->vsi = &adapter->vsi;
300 	q_vector->rx.ring = rx_ring;
301 	q_vector->rx.count++;
302 	q_vector->rx.next_update = jiffies + 1;
303 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
304 	q_vector->ring_mask |= BIT(r_idx);
305 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
306 	     q_vector->rx.current_itr >> 1);
307 	q_vector->rx.current_itr = q_vector->rx.target_itr;
308 }
309 
310 /**
311  * iavf_map_vector_to_txq - associate irqs with tx queues
312  * @adapter: board private structure
313  * @v_idx: interrupt number
314  * @t_idx: queue number
315  **/
316 static void
317 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
318 {
319 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
320 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
321 	struct iavf_hw *hw = &adapter->hw;
322 
323 	tx_ring->q_vector = q_vector;
324 	tx_ring->next = q_vector->tx.ring;
325 	tx_ring->vsi = &adapter->vsi;
326 	q_vector->tx.ring = tx_ring;
327 	q_vector->tx.count++;
328 	q_vector->tx.next_update = jiffies + 1;
329 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
330 	q_vector->num_ringpairs++;
331 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
332 	     q_vector->tx.target_itr >> 1);
333 	q_vector->tx.current_itr = q_vector->tx.target_itr;
334 }
335 
336 /**
337  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
338  * @adapter: board private structure to initialize
339  *
340  * This function maps descriptor rings to the queue-specific vectors
341  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
342  * one vector per ring/queue, but on a constrained vector budget, we
343  * group the rings as "efficiently" as possible.  You would add new
344  * mapping configurations in here.
345  **/
346 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
347 {
348 	int rings_remaining = adapter->num_active_queues;
349 	int ridx = 0, vidx = 0;
350 	int q_vectors;
351 
352 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
353 
354 	for (; ridx < rings_remaining; ridx++) {
355 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
356 		iavf_map_vector_to_txq(adapter, vidx, ridx);
357 
358 		/* In the case where we have more queues than vectors, continue
359 		 * round-robin on vectors until all queues are mapped.
360 		 */
361 		if (++vidx >= q_vectors)
362 			vidx = 0;
363 	}
364 
365 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
366 }
367 
368 /**
369  * iavf_irq_affinity_notify - Callback for affinity changes
370  * @notify: context as to what irq was changed
371  * @mask: the new affinity mask
372  *
373  * This is a callback function used by the irq_set_affinity_notifier function
374  * so that we may register to receive changes to the irq affinity masks.
375  **/
376 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
377 				     const cpumask_t *mask)
378 {
379 	struct iavf_q_vector *q_vector =
380 		container_of(notify, struct iavf_q_vector, affinity_notify);
381 
382 	cpumask_copy(&q_vector->affinity_mask, mask);
383 }
384 
385 /**
386  * iavf_irq_affinity_release - Callback for affinity notifier release
387  * @ref: internal core kernel usage
388  *
389  * This is a callback function used by the irq_set_affinity_notifier function
390  * to inform the current notification subscriber that they will no longer
391  * receive notifications.
392  **/
393 static void iavf_irq_affinity_release(struct kref *ref) {}
394 
395 /**
396  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
397  * @adapter: board private structure
398  * @basename: device basename
399  *
400  * Allocates MSI-X vectors for tx and rx handling, and requests
401  * interrupts from the kernel.
402  **/
403 static int
404 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
405 {
406 	unsigned int vector, q_vectors;
407 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
408 	int irq_num, err;
409 	int cpu;
410 
411 	iavf_irq_disable(adapter);
412 	/* Decrement for Other and TCP Timer vectors */
413 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
414 
415 	for (vector = 0; vector < q_vectors; vector++) {
416 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
417 
418 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
419 
420 		if (q_vector->tx.ring && q_vector->rx.ring) {
421 			snprintf(q_vector->name, sizeof(q_vector->name),
422 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
423 			tx_int_idx++;
424 		} else if (q_vector->rx.ring) {
425 			snprintf(q_vector->name, sizeof(q_vector->name),
426 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
427 		} else if (q_vector->tx.ring) {
428 			snprintf(q_vector->name, sizeof(q_vector->name),
429 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
430 		} else {
431 			/* skip this unused q_vector */
432 			continue;
433 		}
434 		err = request_irq(irq_num,
435 				  iavf_msix_clean_rings,
436 				  0,
437 				  q_vector->name,
438 				  q_vector);
439 		if (err) {
440 			dev_info(&adapter->pdev->dev,
441 				 "Request_irq failed, error: %d\n", err);
442 			goto free_queue_irqs;
443 		}
444 		/* register for affinity change notifications */
445 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
446 		q_vector->affinity_notify.release =
447 						   iavf_irq_affinity_release;
448 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
449 		/* Spread the IRQ affinity hints across online CPUs. Note that
450 		 * get_cpu_mask returns a mask with a permanent lifetime so
451 		 * it's safe to use as a hint for irq_set_affinity_hint.
452 		 */
453 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
454 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
455 	}
456 
457 	return 0;
458 
459 free_queue_irqs:
460 	while (vector) {
461 		vector--;
462 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463 		irq_set_affinity_notifier(irq_num, NULL);
464 		irq_set_affinity_hint(irq_num, NULL);
465 		free_irq(irq_num, &adapter->q_vectors[vector]);
466 	}
467 	return err;
468 }
469 
470 /**
471  * iavf_request_misc_irq - Initialize MSI-X interrupts
472  * @adapter: board private structure
473  *
474  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
475  * vector is only for the admin queue, and stays active even when the netdev
476  * is closed.
477  **/
478 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
479 {
480 	struct net_device *netdev = adapter->netdev;
481 	int err;
482 
483 	snprintf(adapter->misc_vector_name,
484 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
485 		 dev_name(&adapter->pdev->dev));
486 	err = request_irq(adapter->msix_entries[0].vector,
487 			  &iavf_msix_aq, 0,
488 			  adapter->misc_vector_name, netdev);
489 	if (err) {
490 		dev_err(&adapter->pdev->dev,
491 			"request_irq for %s failed: %d\n",
492 			adapter->misc_vector_name, err);
493 		free_irq(adapter->msix_entries[0].vector, netdev);
494 	}
495 	return err;
496 }
497 
498 /**
499  * iavf_free_traffic_irqs - Free MSI-X interrupts
500  * @adapter: board private structure
501  *
502  * Frees all MSI-X vectors other than 0.
503  **/
504 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
505 {
506 	int vector, irq_num, q_vectors;
507 
508 	if (!adapter->msix_entries)
509 		return;
510 
511 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
512 
513 	for (vector = 0; vector < q_vectors; vector++) {
514 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
515 		irq_set_affinity_notifier(irq_num, NULL);
516 		irq_set_affinity_hint(irq_num, NULL);
517 		free_irq(irq_num, &adapter->q_vectors[vector]);
518 	}
519 }
520 
521 /**
522  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
523  * @adapter: board private structure
524  *
525  * Frees MSI-X vector 0.
526  **/
527 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
528 {
529 	struct net_device *netdev = adapter->netdev;
530 
531 	if (!adapter->msix_entries)
532 		return;
533 
534 	free_irq(adapter->msix_entries[0].vector, netdev);
535 }
536 
537 /**
538  * iavf_configure_tx - Configure Transmit Unit after Reset
539  * @adapter: board private structure
540  *
541  * Configure the Tx unit of the MAC after a reset.
542  **/
543 static void iavf_configure_tx(struct iavf_adapter *adapter)
544 {
545 	struct iavf_hw *hw = &adapter->hw;
546 	int i;
547 
548 	for (i = 0; i < adapter->num_active_queues; i++)
549 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
550 }
551 
552 /**
553  * iavf_configure_rx - Configure Receive Unit after Reset
554  * @adapter: board private structure
555  *
556  * Configure the Rx unit of the MAC after a reset.
557  **/
558 static void iavf_configure_rx(struct iavf_adapter *adapter)
559 {
560 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
561 	struct iavf_hw *hw = &adapter->hw;
562 	int i;
563 
564 	/* Legacy Rx will always default to a 2048 buffer size. */
565 #if (PAGE_SIZE < 8192)
566 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
567 		struct net_device *netdev = adapter->netdev;
568 
569 		/* For jumbo frames on systems with 4K pages we have to use
570 		 * an order 1 page, so we might as well increase the size
571 		 * of our Rx buffer to make better use of the available space
572 		 */
573 		rx_buf_len = IAVF_RXBUFFER_3072;
574 
575 		/* We use a 1536 buffer size for configurations with
576 		 * standard Ethernet mtu.  On x86 this gives us enough room
577 		 * for shared info and 192 bytes of padding.
578 		 */
579 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
580 		    (netdev->mtu <= ETH_DATA_LEN))
581 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
582 	}
583 #endif
584 
585 	for (i = 0; i < adapter->num_active_queues; i++) {
586 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
587 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
588 
589 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
590 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
591 		else
592 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
593 	}
594 }
595 
596 /**
597  * iavf_find_vlan - Search filter list for specific vlan filter
598  * @adapter: board private structure
599  * @vlan: vlan tag
600  *
601  * Returns ptr to the filter object or NULL. Must be called while holding the
602  * mac_vlan_list_lock.
603  **/
604 static struct
605 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
606 {
607 	struct iavf_vlan_filter *f;
608 
609 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
610 		if (vlan == f->vlan)
611 			return f;
612 	}
613 	return NULL;
614 }
615 
616 /**
617  * iavf_add_vlan - Add a vlan filter to the list
618  * @adapter: board private structure
619  * @vlan: VLAN tag
620  *
621  * Returns ptr to the filter object or NULL when no memory available.
622  **/
623 static struct
624 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
625 {
626 	struct iavf_vlan_filter *f = NULL;
627 
628 	spin_lock_bh(&adapter->mac_vlan_list_lock);
629 
630 	f = iavf_find_vlan(adapter, vlan);
631 	if (!f) {
632 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
633 		if (!f)
634 			goto clearout;
635 
636 		f->vlan = vlan;
637 
638 		list_add_tail(&f->list, &adapter->vlan_filter_list);
639 		f->add = true;
640 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
641 	}
642 
643 clearout:
644 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
645 	return f;
646 }
647 
648 /**
649  * iavf_del_vlan - Remove a vlan filter from the list
650  * @adapter: board private structure
651  * @vlan: VLAN tag
652  **/
653 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
654 {
655 	struct iavf_vlan_filter *f;
656 
657 	spin_lock_bh(&adapter->mac_vlan_list_lock);
658 
659 	f = iavf_find_vlan(adapter, vlan);
660 	if (f) {
661 		f->remove = true;
662 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
663 	}
664 
665 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
666 }
667 
668 /**
669  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
670  * @netdev: network device struct
671  * @proto: unused protocol data
672  * @vid: VLAN tag
673  **/
674 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
675 				__always_unused __be16 proto, u16 vid)
676 {
677 	struct iavf_adapter *adapter = netdev_priv(netdev);
678 
679 	if (!VLAN_ALLOWED(adapter))
680 		return -EIO;
681 	if (iavf_add_vlan(adapter, vid) == NULL)
682 		return -ENOMEM;
683 	return 0;
684 }
685 
686 /**
687  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
688  * @netdev: network device struct
689  * @proto: unused protocol data
690  * @vid: VLAN tag
691  **/
692 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
693 				 __always_unused __be16 proto, u16 vid)
694 {
695 	struct iavf_adapter *adapter = netdev_priv(netdev);
696 
697 	if (VLAN_ALLOWED(adapter)) {
698 		iavf_del_vlan(adapter, vid);
699 		return 0;
700 	}
701 	return -EIO;
702 }
703 
704 /**
705  * iavf_find_filter - Search filter list for specific mac filter
706  * @adapter: board private structure
707  * @macaddr: the MAC address
708  *
709  * Returns ptr to the filter object or NULL. Must be called while holding the
710  * mac_vlan_list_lock.
711  **/
712 static struct
713 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
714 				  const u8 *macaddr)
715 {
716 	struct iavf_mac_filter *f;
717 
718 	if (!macaddr)
719 		return NULL;
720 
721 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
722 		if (ether_addr_equal(macaddr, f->macaddr))
723 			return f;
724 	}
725 	return NULL;
726 }
727 
728 /**
729  * iavf_add_filter - Add a mac filter to the filter list
730  * @adapter: board private structure
731  * @macaddr: the MAC address
732  *
733  * Returns ptr to the filter object or NULL when no memory available.
734  **/
735 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
736 					const u8 *macaddr)
737 {
738 	struct iavf_mac_filter *f;
739 
740 	if (!macaddr)
741 		return NULL;
742 
743 	f = iavf_find_filter(adapter, macaddr);
744 	if (!f) {
745 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
746 		if (!f)
747 			return f;
748 
749 		ether_addr_copy(f->macaddr, macaddr);
750 
751 		list_add_tail(&f->list, &adapter->mac_filter_list);
752 		f->add = true;
753 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
754 	} else {
755 		f->remove = false;
756 	}
757 
758 	return f;
759 }
760 
761 /**
762  * iavf_set_mac - NDO callback to set port mac address
763  * @netdev: network interface device structure
764  * @p: pointer to an address structure
765  *
766  * Returns 0 on success, negative on failure
767  **/
768 static int iavf_set_mac(struct net_device *netdev, void *p)
769 {
770 	struct iavf_adapter *adapter = netdev_priv(netdev);
771 	struct iavf_hw *hw = &adapter->hw;
772 	struct iavf_mac_filter *f;
773 	struct sockaddr *addr = p;
774 
775 	if (!is_valid_ether_addr(addr->sa_data))
776 		return -EADDRNOTAVAIL;
777 
778 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
779 		return 0;
780 
781 	spin_lock_bh(&adapter->mac_vlan_list_lock);
782 
783 	f = iavf_find_filter(adapter, hw->mac.addr);
784 	if (f) {
785 		f->remove = true;
786 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
787 	}
788 
789 	f = iavf_add_filter(adapter, addr->sa_data);
790 
791 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
792 
793 	if (f) {
794 		ether_addr_copy(hw->mac.addr, addr->sa_data);
795 	}
796 
797 	return (f == NULL) ? -ENOMEM : 0;
798 }
799 
800 /**
801  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
802  * @netdev: the netdevice
803  * @addr: address to add
804  *
805  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
806  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
807  */
808 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
809 {
810 	struct iavf_adapter *adapter = netdev_priv(netdev);
811 
812 	if (iavf_add_filter(adapter, addr))
813 		return 0;
814 	else
815 		return -ENOMEM;
816 }
817 
818 /**
819  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
820  * @netdev: the netdevice
821  * @addr: address to add
822  *
823  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
824  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
825  */
826 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
827 {
828 	struct iavf_adapter *adapter = netdev_priv(netdev);
829 	struct iavf_mac_filter *f;
830 
831 	/* Under some circumstances, we might receive a request to delete
832 	 * our own device address from our uc list. Because we store the
833 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
834 	 * such requests and not delete our device address from this list.
835 	 */
836 	if (ether_addr_equal(addr, netdev->dev_addr))
837 		return 0;
838 
839 	f = iavf_find_filter(adapter, addr);
840 	if (f) {
841 		f->remove = true;
842 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
843 	}
844 	return 0;
845 }
846 
847 /**
848  * iavf_set_rx_mode - NDO callback to set the netdev filters
849  * @netdev: network interface device structure
850  **/
851 static void iavf_set_rx_mode(struct net_device *netdev)
852 {
853 	struct iavf_adapter *adapter = netdev_priv(netdev);
854 
855 	spin_lock_bh(&adapter->mac_vlan_list_lock);
856 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
857 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
859 
860 	if (netdev->flags & IFF_PROMISC &&
861 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
862 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
863 	else if (!(netdev->flags & IFF_PROMISC) &&
864 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
865 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
866 
867 	if (netdev->flags & IFF_ALLMULTI &&
868 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
869 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
870 	else if (!(netdev->flags & IFF_ALLMULTI) &&
871 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
872 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
873 }
874 
875 /**
876  * iavf_napi_enable_all - enable NAPI on all queue vectors
877  * @adapter: board private structure
878  **/
879 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
880 {
881 	int q_idx;
882 	struct iavf_q_vector *q_vector;
883 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
884 
885 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
886 		struct napi_struct *napi;
887 
888 		q_vector = &adapter->q_vectors[q_idx];
889 		napi = &q_vector->napi;
890 		napi_enable(napi);
891 	}
892 }
893 
894 /**
895  * iavf_napi_disable_all - disable NAPI on all queue vectors
896  * @adapter: board private structure
897  **/
898 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
899 {
900 	int q_idx;
901 	struct iavf_q_vector *q_vector;
902 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
903 
904 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
905 		q_vector = &adapter->q_vectors[q_idx];
906 		napi_disable(&q_vector->napi);
907 	}
908 }
909 
910 /**
911  * iavf_configure - set up transmit and receive data structures
912  * @adapter: board private structure
913  **/
914 static void iavf_configure(struct iavf_adapter *adapter)
915 {
916 	struct net_device *netdev = adapter->netdev;
917 	int i;
918 
919 	iavf_set_rx_mode(netdev);
920 
921 	iavf_configure_tx(adapter);
922 	iavf_configure_rx(adapter);
923 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
924 
925 	for (i = 0; i < adapter->num_active_queues; i++) {
926 		struct iavf_ring *ring = &adapter->rx_rings[i];
927 
928 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
929 	}
930 }
931 
932 /**
933  * iavf_up_complete - Finish the last steps of bringing up a connection
934  * @adapter: board private structure
935  *
936  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
937  **/
938 static void iavf_up_complete(struct iavf_adapter *adapter)
939 {
940 	adapter->state = __IAVF_RUNNING;
941 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
942 
943 	iavf_napi_enable_all(adapter);
944 
945 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
946 	if (CLIENT_ENABLED(adapter))
947 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
948 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
949 }
950 
951 /**
952  * iavf_down - Shutdown the connection processing
953  * @adapter: board private structure
954  *
955  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
956  **/
957 void iavf_down(struct iavf_adapter *adapter)
958 {
959 	struct net_device *netdev = adapter->netdev;
960 	struct iavf_vlan_filter *vlf;
961 	struct iavf_mac_filter *f;
962 	struct iavf_cloud_filter *cf;
963 
964 	if (adapter->state <= __IAVF_DOWN_PENDING)
965 		return;
966 
967 	netif_carrier_off(netdev);
968 	netif_tx_disable(netdev);
969 	adapter->link_up = false;
970 	iavf_napi_disable_all(adapter);
971 	iavf_irq_disable(adapter);
972 
973 	spin_lock_bh(&adapter->mac_vlan_list_lock);
974 
975 	/* clear the sync flag on all filters */
976 	__dev_uc_unsync(adapter->netdev, NULL);
977 	__dev_mc_unsync(adapter->netdev, NULL);
978 
979 	/* remove all MAC filters */
980 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
981 		f->remove = true;
982 	}
983 
984 	/* remove all VLAN filters */
985 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
986 		vlf->remove = true;
987 	}
988 
989 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
990 
991 	/* remove all cloud filters */
992 	spin_lock_bh(&adapter->cloud_filter_list_lock);
993 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
994 		cf->del = true;
995 	}
996 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
997 
998 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
999 	    adapter->state != __IAVF_RESETTING) {
1000 		/* cancel any current operation */
1001 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1002 		/* Schedule operations to close down the HW. Don't wait
1003 		 * here for this to complete. The watchdog is still running
1004 		 * and it will take care of this.
1005 		 */
1006 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1007 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1008 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1009 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1010 	}
1011 
1012 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1013 }
1014 
1015 /**
1016  * iavf_acquire_msix_vectors - Setup the MSIX capability
1017  * @adapter: board private structure
1018  * @vectors: number of vectors to request
1019  *
1020  * Work with the OS to set up the MSIX vectors needed.
1021  *
1022  * Returns 0 on success, negative on failure
1023  **/
1024 static int
1025 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1026 {
1027 	int err, vector_threshold;
1028 
1029 	/* We'll want at least 3 (vector_threshold):
1030 	 * 0) Other (Admin Queue and link, mostly)
1031 	 * 1) TxQ[0] Cleanup
1032 	 * 2) RxQ[0] Cleanup
1033 	 */
1034 	vector_threshold = MIN_MSIX_COUNT;
1035 
1036 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1037 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1038 	 * Right now, we simply care about how many we'll get; we'll
1039 	 * set them up later while requesting irq's.
1040 	 */
1041 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1042 				    vector_threshold, vectors);
1043 	if (err < 0) {
1044 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1045 		kfree(adapter->msix_entries);
1046 		adapter->msix_entries = NULL;
1047 		return err;
1048 	}
1049 
1050 	/* Adjust for only the vectors we'll use, which is minimum
1051 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1052 	 * vectors we were allocated.
1053 	 */
1054 	adapter->num_msix_vectors = err;
1055 	return 0;
1056 }
1057 
1058 /**
1059  * iavf_free_queues - Free memory for all rings
1060  * @adapter: board private structure to initialize
1061  *
1062  * Free all of the memory associated with queue pairs.
1063  **/
1064 static void iavf_free_queues(struct iavf_adapter *adapter)
1065 {
1066 	if (!adapter->vsi_res)
1067 		return;
1068 	adapter->num_active_queues = 0;
1069 	kfree(adapter->tx_rings);
1070 	adapter->tx_rings = NULL;
1071 	kfree(adapter->rx_rings);
1072 	adapter->rx_rings = NULL;
1073 }
1074 
1075 /**
1076  * iavf_alloc_queues - Allocate memory for all rings
1077  * @adapter: board private structure to initialize
1078  *
1079  * We allocate one ring per queue at run-time since we don't know the
1080  * number of queues at compile-time.  The polling_netdev array is
1081  * intended for Multiqueue, but should work fine with a single queue.
1082  **/
1083 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1084 {
1085 	int i, num_active_queues;
1086 
1087 	/* If we're in reset reallocating queues we don't actually know yet for
1088 	 * certain the PF gave us the number of queues we asked for but we'll
1089 	 * assume it did.  Once basic reset is finished we'll confirm once we
1090 	 * start negotiating config with PF.
1091 	 */
1092 	if (adapter->num_req_queues)
1093 		num_active_queues = adapter->num_req_queues;
1094 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1095 		 adapter->num_tc)
1096 		num_active_queues = adapter->ch_config.total_qps;
1097 	else
1098 		num_active_queues = min_t(int,
1099 					  adapter->vsi_res->num_queue_pairs,
1100 					  (int)(num_online_cpus()));
1101 
1102 
1103 	adapter->tx_rings = kcalloc(num_active_queues,
1104 				    sizeof(struct iavf_ring), GFP_KERNEL);
1105 	if (!adapter->tx_rings)
1106 		goto err_out;
1107 	adapter->rx_rings = kcalloc(num_active_queues,
1108 				    sizeof(struct iavf_ring), GFP_KERNEL);
1109 	if (!adapter->rx_rings)
1110 		goto err_out;
1111 
1112 	for (i = 0; i < num_active_queues; i++) {
1113 		struct iavf_ring *tx_ring;
1114 		struct iavf_ring *rx_ring;
1115 
1116 		tx_ring = &adapter->tx_rings[i];
1117 
1118 		tx_ring->queue_index = i;
1119 		tx_ring->netdev = adapter->netdev;
1120 		tx_ring->dev = &adapter->pdev->dev;
1121 		tx_ring->count = adapter->tx_desc_count;
1122 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1123 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1124 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1125 
1126 		rx_ring = &adapter->rx_rings[i];
1127 		rx_ring->queue_index = i;
1128 		rx_ring->netdev = adapter->netdev;
1129 		rx_ring->dev = &adapter->pdev->dev;
1130 		rx_ring->count = adapter->rx_desc_count;
1131 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1132 	}
1133 
1134 	adapter->num_active_queues = num_active_queues;
1135 
1136 	return 0;
1137 
1138 err_out:
1139 	iavf_free_queues(adapter);
1140 	return -ENOMEM;
1141 }
1142 
1143 /**
1144  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1145  * @adapter: board private structure to initialize
1146  *
1147  * Attempt to configure the interrupts using the best available
1148  * capabilities of the hardware and the kernel.
1149  **/
1150 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1151 {
1152 	int vector, v_budget;
1153 	int pairs = 0;
1154 	int err = 0;
1155 
1156 	if (!adapter->vsi_res) {
1157 		err = -EIO;
1158 		goto out;
1159 	}
1160 	pairs = adapter->num_active_queues;
1161 
1162 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1163 	 * us much good if we have more vectors than CPUs. However, we already
1164 	 * limit the total number of queues by the number of CPUs so we do not
1165 	 * need any further limiting here.
1166 	 */
1167 	v_budget = min_t(int, pairs + NONQ_VECS,
1168 			 (int)adapter->vf_res->max_vectors);
1169 
1170 	adapter->msix_entries = kcalloc(v_budget,
1171 					sizeof(struct msix_entry), GFP_KERNEL);
1172 	if (!adapter->msix_entries) {
1173 		err = -ENOMEM;
1174 		goto out;
1175 	}
1176 
1177 	for (vector = 0; vector < v_budget; vector++)
1178 		adapter->msix_entries[vector].entry = vector;
1179 
1180 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1181 
1182 out:
1183 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1184 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1185 	return err;
1186 }
1187 
1188 /**
1189  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1190  * @adapter: board private structure
1191  *
1192  * Return 0 on success, negative on failure
1193  **/
1194 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1195 {
1196 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1197 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1198 	struct iavf_hw *hw = &adapter->hw;
1199 	int ret = 0;
1200 
1201 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1202 		/* bail because we already have a command pending */
1203 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1204 			adapter->current_op);
1205 		return -EBUSY;
1206 	}
1207 
1208 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1209 	if (ret) {
1210 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1211 			iavf_stat_str(hw, ret),
1212 			iavf_aq_str(hw, hw->aq.asq_last_status));
1213 		return ret;
1214 
1215 	}
1216 
1217 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1218 				  adapter->rss_lut, adapter->rss_lut_size);
1219 	if (ret) {
1220 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1221 			iavf_stat_str(hw, ret),
1222 			iavf_aq_str(hw, hw->aq.asq_last_status));
1223 	}
1224 
1225 	return ret;
1226 
1227 }
1228 
1229 /**
1230  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1231  * @adapter: board private structure
1232  *
1233  * Returns 0 on success, negative on failure
1234  **/
1235 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1236 {
1237 	struct iavf_hw *hw = &adapter->hw;
1238 	u32 *dw;
1239 	u16 i;
1240 
1241 	dw = (u32 *)adapter->rss_key;
1242 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1243 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1244 
1245 	dw = (u32 *)adapter->rss_lut;
1246 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1247 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1248 
1249 	iavf_flush(hw);
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * iavf_config_rss - Configure RSS keys and lut
1256  * @adapter: board private structure
1257  *
1258  * Returns 0 on success, negative on failure
1259  **/
1260 int iavf_config_rss(struct iavf_adapter *adapter)
1261 {
1262 
1263 	if (RSS_PF(adapter)) {
1264 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1265 					IAVF_FLAG_AQ_SET_RSS_KEY;
1266 		return 0;
1267 	} else if (RSS_AQ(adapter)) {
1268 		return iavf_config_rss_aq(adapter);
1269 	} else {
1270 		return iavf_config_rss_reg(adapter);
1271 	}
1272 }
1273 
1274 /**
1275  * iavf_fill_rss_lut - Fill the lut with default values
1276  * @adapter: board private structure
1277  **/
1278 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1279 {
1280 	u16 i;
1281 
1282 	for (i = 0; i < adapter->rss_lut_size; i++)
1283 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1284 }
1285 
1286 /**
1287  * iavf_init_rss - Prepare for RSS
1288  * @adapter: board private structure
1289  *
1290  * Return 0 on success, negative on failure
1291  **/
1292 static int iavf_init_rss(struct iavf_adapter *adapter)
1293 {
1294 	struct iavf_hw *hw = &adapter->hw;
1295 	int ret;
1296 
1297 	if (!RSS_PF(adapter)) {
1298 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1299 		if (adapter->vf_res->vf_cap_flags &
1300 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1301 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1302 		else
1303 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1304 
1305 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1306 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1307 	}
1308 
1309 	iavf_fill_rss_lut(adapter);
1310 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1311 	ret = iavf_config_rss(adapter);
1312 
1313 	return ret;
1314 }
1315 
1316 /**
1317  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1318  * @adapter: board private structure to initialize
1319  *
1320  * We allocate one q_vector per queue interrupt.  If allocation fails we
1321  * return -ENOMEM.
1322  **/
1323 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1324 {
1325 	int q_idx = 0, num_q_vectors;
1326 	struct iavf_q_vector *q_vector;
1327 
1328 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1329 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1330 				     GFP_KERNEL);
1331 	if (!adapter->q_vectors)
1332 		return -ENOMEM;
1333 
1334 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1335 		q_vector = &adapter->q_vectors[q_idx];
1336 		q_vector->adapter = adapter;
1337 		q_vector->vsi = &adapter->vsi;
1338 		q_vector->v_idx = q_idx;
1339 		q_vector->reg_idx = q_idx;
1340 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1341 		netif_napi_add(adapter->netdev, &q_vector->napi,
1342 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 /**
1349  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1350  * @adapter: board private structure to initialize
1351  *
1352  * This function frees the memory allocated to the q_vectors.  In addition if
1353  * NAPI is enabled it will delete any references to the NAPI struct prior
1354  * to freeing the q_vector.
1355  **/
1356 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1357 {
1358 	int q_idx, num_q_vectors;
1359 	int napi_vectors;
1360 
1361 	if (!adapter->q_vectors)
1362 		return;
1363 
1364 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365 	napi_vectors = adapter->num_active_queues;
1366 
1367 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1368 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1369 
1370 		if (q_idx < napi_vectors)
1371 			netif_napi_del(&q_vector->napi);
1372 	}
1373 	kfree(adapter->q_vectors);
1374 	adapter->q_vectors = NULL;
1375 }
1376 
1377 /**
1378  * iavf_reset_interrupt_capability - Reset MSIX setup
1379  * @adapter: board private structure
1380  *
1381  **/
1382 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1383 {
1384 	if (!adapter->msix_entries)
1385 		return;
1386 
1387 	pci_disable_msix(adapter->pdev);
1388 	kfree(adapter->msix_entries);
1389 	adapter->msix_entries = NULL;
1390 }
1391 
1392 /**
1393  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1394  * @adapter: board private structure to initialize
1395  *
1396  **/
1397 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1398 {
1399 	int err;
1400 
1401 	err = iavf_alloc_queues(adapter);
1402 	if (err) {
1403 		dev_err(&adapter->pdev->dev,
1404 			"Unable to allocate memory for queues\n");
1405 		goto err_alloc_queues;
1406 	}
1407 
1408 	rtnl_lock();
1409 	err = iavf_set_interrupt_capability(adapter);
1410 	rtnl_unlock();
1411 	if (err) {
1412 		dev_err(&adapter->pdev->dev,
1413 			"Unable to setup interrupt capabilities\n");
1414 		goto err_set_interrupt;
1415 	}
1416 
1417 	err = iavf_alloc_q_vectors(adapter);
1418 	if (err) {
1419 		dev_err(&adapter->pdev->dev,
1420 			"Unable to allocate memory for queue vectors\n");
1421 		goto err_alloc_q_vectors;
1422 	}
1423 
1424 	/* If we've made it so far while ADq flag being ON, then we haven't
1425 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1426 	 * resources have been allocated in the reset path.
1427 	 * Now we can truly claim that ADq is enabled.
1428 	 */
1429 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1430 	    adapter->num_tc)
1431 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1432 			 adapter->num_tc);
1433 
1434 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1435 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1436 		 adapter->num_active_queues);
1437 
1438 	return 0;
1439 err_alloc_q_vectors:
1440 	iavf_reset_interrupt_capability(adapter);
1441 err_set_interrupt:
1442 	iavf_free_queues(adapter);
1443 err_alloc_queues:
1444 	return err;
1445 }
1446 
1447 /**
1448  * iavf_free_rss - Free memory used by RSS structs
1449  * @adapter: board private structure
1450  **/
1451 static void iavf_free_rss(struct iavf_adapter *adapter)
1452 {
1453 	kfree(adapter->rss_key);
1454 	adapter->rss_key = NULL;
1455 
1456 	kfree(adapter->rss_lut);
1457 	adapter->rss_lut = NULL;
1458 }
1459 
1460 /**
1461  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1462  * @adapter: board private structure
1463  *
1464  * Returns 0 on success, negative on failure
1465  **/
1466 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1467 {
1468 	struct net_device *netdev = adapter->netdev;
1469 	int err;
1470 
1471 	if (netif_running(netdev))
1472 		iavf_free_traffic_irqs(adapter);
1473 	iavf_free_misc_irq(adapter);
1474 	iavf_reset_interrupt_capability(adapter);
1475 	iavf_free_q_vectors(adapter);
1476 	iavf_free_queues(adapter);
1477 
1478 	err =  iavf_init_interrupt_scheme(adapter);
1479 	if (err)
1480 		goto err;
1481 
1482 	netif_tx_stop_all_queues(netdev);
1483 
1484 	err = iavf_request_misc_irq(adapter);
1485 	if (err)
1486 		goto err;
1487 
1488 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1489 
1490 	iavf_map_rings_to_vectors(adapter);
1491 
1492 	if (RSS_AQ(adapter))
1493 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1494 	else
1495 		err = iavf_init_rss(adapter);
1496 err:
1497 	return err;
1498 }
1499 
1500 /**
1501  * iavf_process_aq_command - process aq_required flags
1502  * and sends aq command
1503  * @adapter: pointer to iavf adapter structure
1504  *
1505  * Returns 0 on success
1506  * Returns error code if no command was sent
1507  * or error code if the command failed.
1508  **/
1509 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1510 {
1511 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1512 		return iavf_send_vf_config_msg(adapter);
1513 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1514 		iavf_disable_queues(adapter);
1515 		return 0;
1516 	}
1517 
1518 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1519 		iavf_map_queues(adapter);
1520 		return 0;
1521 	}
1522 
1523 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1524 		iavf_add_ether_addrs(adapter);
1525 		return 0;
1526 	}
1527 
1528 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1529 		iavf_add_vlans(adapter);
1530 		return 0;
1531 	}
1532 
1533 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1534 		iavf_del_ether_addrs(adapter);
1535 		return 0;
1536 	}
1537 
1538 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1539 		iavf_del_vlans(adapter);
1540 		return 0;
1541 	}
1542 
1543 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1544 		iavf_enable_vlan_stripping(adapter);
1545 		return 0;
1546 	}
1547 
1548 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1549 		iavf_disable_vlan_stripping(adapter);
1550 		return 0;
1551 	}
1552 
1553 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1554 		iavf_configure_queues(adapter);
1555 		return 0;
1556 	}
1557 
1558 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1559 		iavf_enable_queues(adapter);
1560 		return 0;
1561 	}
1562 
1563 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1564 		/* This message goes straight to the firmware, not the
1565 		 * PF, so we don't have to set current_op as we will
1566 		 * not get a response through the ARQ.
1567 		 */
1568 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1569 		return 0;
1570 	}
1571 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1572 		iavf_get_hena(adapter);
1573 		return 0;
1574 	}
1575 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1576 		iavf_set_hena(adapter);
1577 		return 0;
1578 	}
1579 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1580 		iavf_set_rss_key(adapter);
1581 		return 0;
1582 	}
1583 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1584 		iavf_set_rss_lut(adapter);
1585 		return 0;
1586 	}
1587 
1588 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1589 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1590 				       FLAG_VF_MULTICAST_PROMISC);
1591 		return 0;
1592 	}
1593 
1594 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1595 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1596 		return 0;
1597 	}
1598 
1599 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1600 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1601 		iavf_set_promiscuous(adapter, 0);
1602 		return 0;
1603 	}
1604 
1605 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1606 		iavf_enable_channels(adapter);
1607 		return 0;
1608 	}
1609 
1610 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1611 		iavf_disable_channels(adapter);
1612 		return 0;
1613 	}
1614 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1615 		iavf_add_cloud_filter(adapter);
1616 		return 0;
1617 	}
1618 
1619 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1620 		iavf_del_cloud_filter(adapter);
1621 		return 0;
1622 	}
1623 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1624 		iavf_del_cloud_filter(adapter);
1625 		return 0;
1626 	}
1627 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628 		iavf_add_cloud_filter(adapter);
1629 		return 0;
1630 	}
1631 	return -EAGAIN;
1632 }
1633 
1634 /**
1635  * iavf_startup - first step of driver startup
1636  * @adapter: board private structure
1637  *
1638  * Function process __IAVF_STARTUP driver state.
1639  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1640  * when fails it returns -EAGAIN
1641  **/
1642 static int iavf_startup(struct iavf_adapter *adapter)
1643 {
1644 	struct pci_dev *pdev = adapter->pdev;
1645 	struct iavf_hw *hw = &adapter->hw;
1646 	int err;
1647 
1648 	WARN_ON(adapter->state != __IAVF_STARTUP);
1649 
1650 	/* driver loaded, probe complete */
1651 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1652 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1653 	err = iavf_set_mac_type(hw);
1654 	if (err) {
1655 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1656 		goto err;
1657 	}
1658 
1659 	err = iavf_check_reset_complete(hw);
1660 	if (err) {
1661 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1662 			 err);
1663 		goto err;
1664 	}
1665 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1666 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1667 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1668 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669 
1670 	err = iavf_init_adminq(hw);
1671 	if (err) {
1672 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1673 		goto err;
1674 	}
1675 	err = iavf_send_api_ver(adapter);
1676 	if (err) {
1677 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1678 		iavf_shutdown_adminq(hw);
1679 		goto err;
1680 	}
1681 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1682 err:
1683 	return err;
1684 }
1685 
1686 /**
1687  * iavf_init_version_check - second step of driver startup
1688  * @adapter: board private structure
1689  *
1690  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1691  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1692  * when fails it returns -EAGAIN
1693  **/
1694 static int iavf_init_version_check(struct iavf_adapter *adapter)
1695 {
1696 	struct pci_dev *pdev = adapter->pdev;
1697 	struct iavf_hw *hw = &adapter->hw;
1698 	int err = -EAGAIN;
1699 
1700 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1701 
1702 	if (!iavf_asq_done(hw)) {
1703 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1704 		iavf_shutdown_adminq(hw);
1705 		adapter->state = __IAVF_STARTUP;
1706 		goto err;
1707 	}
1708 
1709 	/* aq msg sent, awaiting reply */
1710 	err = iavf_verify_api_ver(adapter);
1711 	if (err) {
1712 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1713 			err = iavf_send_api_ver(adapter);
1714 		else
1715 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1716 				adapter->pf_version.major,
1717 				adapter->pf_version.minor,
1718 				VIRTCHNL_VERSION_MAJOR,
1719 				VIRTCHNL_VERSION_MINOR);
1720 		goto err;
1721 	}
1722 	err = iavf_send_vf_config_msg(adapter);
1723 	if (err) {
1724 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1725 			err);
1726 		goto err;
1727 	}
1728 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1729 
1730 err:
1731 	return err;
1732 }
1733 
1734 /**
1735  * iavf_init_get_resources - third step of driver startup
1736  * @adapter: board private structure
1737  *
1738  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1739  * finishes driver initialization procedure.
1740  * When success the state is changed to __IAVF_DOWN
1741  * when fails it returns -EAGAIN
1742  **/
1743 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1744 {
1745 	struct net_device *netdev = adapter->netdev;
1746 	struct pci_dev *pdev = adapter->pdev;
1747 	struct iavf_hw *hw = &adapter->hw;
1748 	int err;
1749 
1750 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1751 	/* aq msg sent, awaiting reply */
1752 	if (!adapter->vf_res) {
1753 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1754 					  GFP_KERNEL);
1755 		if (!adapter->vf_res) {
1756 			err = -ENOMEM;
1757 			goto err;
1758 		}
1759 	}
1760 	err = iavf_get_vf_config(adapter);
1761 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1762 		err = iavf_send_vf_config_msg(adapter);
1763 		goto err;
1764 	} else if (err == IAVF_ERR_PARAM) {
1765 		/* We only get ERR_PARAM if the device is in a very bad
1766 		 * state or if we've been disabled for previous bad
1767 		 * behavior. Either way, we're done now.
1768 		 */
1769 		iavf_shutdown_adminq(hw);
1770 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1771 		return 0;
1772 	}
1773 	if (err) {
1774 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1775 		goto err_alloc;
1776 	}
1777 
1778 	if (iavf_process_config(adapter))
1779 		goto err_alloc;
1780 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1781 
1782 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1783 
1784 	netdev->netdev_ops = &iavf_netdev_ops;
1785 	iavf_set_ethtool_ops(netdev);
1786 	netdev->watchdog_timeo = 5 * HZ;
1787 
1788 	/* MTU range: 68 - 9710 */
1789 	netdev->min_mtu = ETH_MIN_MTU;
1790 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1791 
1792 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1793 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1794 			 adapter->hw.mac.addr);
1795 		eth_hw_addr_random(netdev);
1796 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1797 	} else {
1798 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1799 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1800 	}
1801 
1802 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1803 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1804 	err = iavf_init_interrupt_scheme(adapter);
1805 	if (err)
1806 		goto err_sw_init;
1807 	iavf_map_rings_to_vectors(adapter);
1808 	if (adapter->vf_res->vf_cap_flags &
1809 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1810 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1811 
1812 	err = iavf_request_misc_irq(adapter);
1813 	if (err)
1814 		goto err_sw_init;
1815 
1816 	netif_carrier_off(netdev);
1817 	adapter->link_up = false;
1818 
1819 	/* set the semaphore to prevent any callbacks after device registration
1820 	 * up to time when state of driver will be set to __IAVF_DOWN
1821 	 */
1822 	rtnl_lock();
1823 	if (!adapter->netdev_registered) {
1824 		err = register_netdevice(netdev);
1825 		if (err) {
1826 			rtnl_unlock();
1827 			goto err_register;
1828 		}
1829 	}
1830 
1831 	adapter->netdev_registered = true;
1832 
1833 	netif_tx_stop_all_queues(netdev);
1834 	if (CLIENT_ALLOWED(adapter)) {
1835 		err = iavf_lan_add_device(adapter);
1836 		if (err) {
1837 			rtnl_unlock();
1838 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839 				 err);
1840 		}
1841 	}
1842 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1843 	if (netdev->features & NETIF_F_GRO)
1844 		dev_info(&pdev->dev, "GRO is enabled\n");
1845 
1846 	adapter->state = __IAVF_DOWN;
1847 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1848 	rtnl_unlock();
1849 
1850 	iavf_misc_irq_enable(adapter);
1851 	wake_up(&adapter->down_waitqueue);
1852 
1853 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1854 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1855 	if (!adapter->rss_key || !adapter->rss_lut) {
1856 		err = -ENOMEM;
1857 		goto err_mem;
1858 	}
1859 	if (RSS_AQ(adapter))
1860 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1861 	else
1862 		iavf_init_rss(adapter);
1863 
1864 	return err;
1865 err_mem:
1866 	iavf_free_rss(adapter);
1867 err_register:
1868 	iavf_free_misc_irq(adapter);
1869 err_sw_init:
1870 	iavf_reset_interrupt_capability(adapter);
1871 err_alloc:
1872 	kfree(adapter->vf_res);
1873 	adapter->vf_res = NULL;
1874 err:
1875 	return err;
1876 }
1877 
1878 /**
1879  * iavf_watchdog_task - Periodic call-back task
1880  * @work: pointer to work_struct
1881  **/
1882 static void iavf_watchdog_task(struct work_struct *work)
1883 {
1884 	struct iavf_adapter *adapter = container_of(work,
1885 						    struct iavf_adapter,
1886 						    watchdog_task.work);
1887 	struct iavf_hw *hw = &adapter->hw;
1888 	u32 reg_val;
1889 
1890 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1891 		goto restart_watchdog;
1892 
1893 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1894 		adapter->state = __IAVF_COMM_FAILED;
1895 
1896 	switch (adapter->state) {
1897 	case __IAVF_COMM_FAILED:
1898 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1899 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1900 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1901 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1902 			/* A chance for redemption! */
1903 			dev_err(&adapter->pdev->dev,
1904 				"Hardware came out of reset. Attempting reinit.\n");
1905 			adapter->state = __IAVF_STARTUP;
1906 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1907 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1908 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1909 				  &adapter->crit_section);
1910 			/* Don't reschedule the watchdog, since we've restarted
1911 			 * the init task. When init_task contacts the PF and
1912 			 * gets everything set up again, it'll restart the
1913 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1914 			 */
1915 			return;
1916 		}
1917 		adapter->aq_required = 0;
1918 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1919 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1920 			  &adapter->crit_section);
1921 		queue_delayed_work(iavf_wq,
1922 				   &adapter->watchdog_task,
1923 				   msecs_to_jiffies(10));
1924 		goto watchdog_done;
1925 	case __IAVF_RESETTING:
1926 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1927 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1928 		return;
1929 	case __IAVF_DOWN:
1930 	case __IAVF_DOWN_PENDING:
1931 	case __IAVF_TESTING:
1932 	case __IAVF_RUNNING:
1933 		if (adapter->current_op) {
1934 			if (!iavf_asq_done(hw)) {
1935 				dev_dbg(&adapter->pdev->dev,
1936 					"Admin queue timeout\n");
1937 				iavf_send_api_ver(adapter);
1938 			}
1939 		} else {
1940 			/* An error will be returned if no commands were
1941 			 * processed; use this opportunity to update stats
1942 			 */
1943 			if (iavf_process_aq_command(adapter) &&
1944 			    adapter->state == __IAVF_RUNNING)
1945 				iavf_request_stats(adapter);
1946 		}
1947 		break;
1948 	case __IAVF_REMOVE:
1949 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1950 		return;
1951 	default:
1952 		goto restart_watchdog;
1953 	}
1954 
1955 		/* check for hw reset */
1956 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1957 	if (!reg_val) {
1958 		adapter->state = __IAVF_RESETTING;
1959 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1960 		adapter->aq_required = 0;
1961 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1962 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1963 		queue_work(iavf_wq, &adapter->reset_task);
1964 		goto watchdog_done;
1965 	}
1966 
1967 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1968 watchdog_done:
1969 	if (adapter->state == __IAVF_RUNNING ||
1970 	    adapter->state == __IAVF_COMM_FAILED)
1971 		iavf_detect_recover_hung(&adapter->vsi);
1972 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1973 restart_watchdog:
1974 	if (adapter->aq_required)
1975 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1976 				   msecs_to_jiffies(20));
1977 	else
1978 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1979 	queue_work(iavf_wq, &adapter->adminq_task);
1980 }
1981 
1982 static void iavf_disable_vf(struct iavf_adapter *adapter)
1983 {
1984 	struct iavf_mac_filter *f, *ftmp;
1985 	struct iavf_vlan_filter *fv, *fvtmp;
1986 	struct iavf_cloud_filter *cf, *cftmp;
1987 
1988 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1989 
1990 	/* We don't use netif_running() because it may be true prior to
1991 	 * ndo_open() returning, so we can't assume it means all our open
1992 	 * tasks have finished, since we're not holding the rtnl_lock here.
1993 	 */
1994 	if (adapter->state == __IAVF_RUNNING) {
1995 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1996 		netif_carrier_off(adapter->netdev);
1997 		netif_tx_disable(adapter->netdev);
1998 		adapter->link_up = false;
1999 		iavf_napi_disable_all(adapter);
2000 		iavf_irq_disable(adapter);
2001 		iavf_free_traffic_irqs(adapter);
2002 		iavf_free_all_tx_resources(adapter);
2003 		iavf_free_all_rx_resources(adapter);
2004 	}
2005 
2006 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2007 
2008 	/* Delete all of the filters */
2009 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2010 		list_del(&f->list);
2011 		kfree(f);
2012 	}
2013 
2014 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2015 		list_del(&fv->list);
2016 		kfree(fv);
2017 	}
2018 
2019 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2020 
2021 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2022 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2023 		list_del(&cf->list);
2024 		kfree(cf);
2025 		adapter->num_cloud_filters--;
2026 	}
2027 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2028 
2029 	iavf_free_misc_irq(adapter);
2030 	iavf_reset_interrupt_capability(adapter);
2031 	iavf_free_queues(adapter);
2032 	iavf_free_q_vectors(adapter);
2033 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2034 	iavf_shutdown_adminq(&adapter->hw);
2035 	adapter->netdev->flags &= ~IFF_UP;
2036 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2037 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2038 	adapter->state = __IAVF_DOWN;
2039 	wake_up(&adapter->down_waitqueue);
2040 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2041 }
2042 
2043 /**
2044  * iavf_reset_task - Call-back task to handle hardware reset
2045  * @work: pointer to work_struct
2046  *
2047  * During reset we need to shut down and reinitialize the admin queue
2048  * before we can use it to communicate with the PF again. We also clear
2049  * and reinit the rings because that context is lost as well.
2050  **/
2051 static void iavf_reset_task(struct work_struct *work)
2052 {
2053 	struct iavf_adapter *adapter = container_of(work,
2054 						      struct iavf_adapter,
2055 						      reset_task);
2056 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2057 	struct net_device *netdev = adapter->netdev;
2058 	struct iavf_hw *hw = &adapter->hw;
2059 	struct iavf_mac_filter *f, *ftmp;
2060 	struct iavf_vlan_filter *vlf;
2061 	struct iavf_cloud_filter *cf;
2062 	u32 reg_val;
2063 	int i = 0, err;
2064 	bool running;
2065 
2066 	/* When device is being removed it doesn't make sense to run the reset
2067 	 * task, just return in such a case.
2068 	 */
2069 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2070 		return;
2071 
2072 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2073 				&adapter->crit_section))
2074 		usleep_range(500, 1000);
2075 	if (CLIENT_ENABLED(adapter)) {
2076 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2077 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2078 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2079 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2080 		cancel_delayed_work_sync(&adapter->client_task);
2081 		iavf_notify_client_close(&adapter->vsi, true);
2082 	}
2083 	iavf_misc_irq_disable(adapter);
2084 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2085 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2086 		/* Restart the AQ here. If we have been reset but didn't
2087 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2088 		 */
2089 		iavf_shutdown_adminq(hw);
2090 		iavf_init_adminq(hw);
2091 		iavf_request_reset(adapter);
2092 	}
2093 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2094 
2095 	/* poll until we see the reset actually happen */
2096 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2097 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2098 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2099 		if (!reg_val)
2100 			break;
2101 		usleep_range(5000, 10000);
2102 	}
2103 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2104 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2105 		goto continue_reset; /* act like the reset happened */
2106 	}
2107 
2108 	/* wait until the reset is complete and the PF is responding to us */
2109 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2110 		/* sleep first to make sure a minimum wait time is met */
2111 		msleep(IAVF_RESET_WAIT_MS);
2112 
2113 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2114 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2115 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2116 			break;
2117 	}
2118 
2119 	pci_set_master(adapter->pdev);
2120 
2121 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2122 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2123 			reg_val);
2124 		iavf_disable_vf(adapter);
2125 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2126 		return; /* Do not attempt to reinit. It's dead, Jim. */
2127 	}
2128 
2129 continue_reset:
2130 	/* We don't use netif_running() because it may be true prior to
2131 	 * ndo_open() returning, so we can't assume it means all our open
2132 	 * tasks have finished, since we're not holding the rtnl_lock here.
2133 	 */
2134 	running = ((adapter->state == __IAVF_RUNNING) ||
2135 		   (adapter->state == __IAVF_RESETTING));
2136 
2137 	if (running) {
2138 		netif_carrier_off(netdev);
2139 		netif_tx_stop_all_queues(netdev);
2140 		adapter->link_up = false;
2141 		iavf_napi_disable_all(adapter);
2142 	}
2143 	iavf_irq_disable(adapter);
2144 
2145 	adapter->state = __IAVF_RESETTING;
2146 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2147 
2148 	/* free the Tx/Rx rings and descriptors, might be better to just
2149 	 * re-use them sometime in the future
2150 	 */
2151 	iavf_free_all_rx_resources(adapter);
2152 	iavf_free_all_tx_resources(adapter);
2153 
2154 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2155 	/* kill and reinit the admin queue */
2156 	iavf_shutdown_adminq(hw);
2157 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2158 	err = iavf_init_adminq(hw);
2159 	if (err)
2160 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2161 			 err);
2162 	adapter->aq_required = 0;
2163 
2164 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2165 		err = iavf_reinit_interrupt_scheme(adapter);
2166 		if (err)
2167 			goto reset_err;
2168 	}
2169 
2170 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2171 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2172 
2173 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2174 
2175 	/* Delete filter for the current MAC address, it could have
2176 	 * been changed by the PF via administratively set MAC.
2177 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2178 	 */
2179 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2180 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2181 			list_del(&f->list);
2182 			kfree(f);
2183 		}
2184 	}
2185 	/* re-add all MAC filters */
2186 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2187 		f->add = true;
2188 	}
2189 	/* re-add all VLAN filters */
2190 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2191 		vlf->add = true;
2192 	}
2193 
2194 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2195 
2196 	/* check if TCs are running and re-add all cloud filters */
2197 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2198 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2199 	    adapter->num_tc) {
2200 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2201 			cf->add = true;
2202 		}
2203 	}
2204 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2205 
2206 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2207 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2208 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2209 	iavf_misc_irq_enable(adapter);
2210 
2211 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2212 
2213 	/* We were running when the reset started, so we need to restore some
2214 	 * state here.
2215 	 */
2216 	if (running) {
2217 		/* allocate transmit descriptors */
2218 		err = iavf_setup_all_tx_resources(adapter);
2219 		if (err)
2220 			goto reset_err;
2221 
2222 		/* allocate receive descriptors */
2223 		err = iavf_setup_all_rx_resources(adapter);
2224 		if (err)
2225 			goto reset_err;
2226 
2227 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2228 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2229 			if (err)
2230 				goto reset_err;
2231 
2232 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2233 		}
2234 
2235 		iavf_configure(adapter);
2236 
2237 		iavf_up_complete(adapter);
2238 
2239 		iavf_irq_enable(adapter, true);
2240 	} else {
2241 		adapter->state = __IAVF_DOWN;
2242 		wake_up(&adapter->down_waitqueue);
2243 	}
2244 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2245 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2246 
2247 	return;
2248 reset_err:
2249 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2250 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2251 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2252 	iavf_close(netdev);
2253 }
2254 
2255 /**
2256  * iavf_adminq_task - worker thread to clean the admin queue
2257  * @work: pointer to work_struct containing our data
2258  **/
2259 static void iavf_adminq_task(struct work_struct *work)
2260 {
2261 	struct iavf_adapter *adapter =
2262 		container_of(work, struct iavf_adapter, adminq_task);
2263 	struct iavf_hw *hw = &adapter->hw;
2264 	struct iavf_arq_event_info event;
2265 	enum virtchnl_ops v_op;
2266 	enum iavf_status ret, v_ret;
2267 	u32 val, oldval;
2268 	u16 pending;
2269 
2270 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2271 		goto out;
2272 
2273 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2274 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2275 	if (!event.msg_buf)
2276 		goto out;
2277 
2278 	do {
2279 		ret = iavf_clean_arq_element(hw, &event, &pending);
2280 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2281 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2282 
2283 		if (ret || !v_op)
2284 			break; /* No event to process or error cleaning ARQ */
2285 
2286 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2287 					 event.msg_len);
2288 		if (pending != 0)
2289 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2290 	} while (pending);
2291 
2292 	if ((adapter->flags &
2293 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2294 	    adapter->state == __IAVF_RESETTING)
2295 		goto freedom;
2296 
2297 	/* check for error indications */
2298 	val = rd32(hw, hw->aq.arq.len);
2299 	if (val == 0xdeadbeef) /* indicates device in reset */
2300 		goto freedom;
2301 	oldval = val;
2302 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2303 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2304 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2305 	}
2306 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2307 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2308 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2309 	}
2310 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2311 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2312 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2313 	}
2314 	if (oldval != val)
2315 		wr32(hw, hw->aq.arq.len, val);
2316 
2317 	val = rd32(hw, hw->aq.asq.len);
2318 	oldval = val;
2319 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2320 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2321 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2322 	}
2323 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2324 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2325 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2326 	}
2327 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2328 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2329 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2330 	}
2331 	if (oldval != val)
2332 		wr32(hw, hw->aq.asq.len, val);
2333 
2334 freedom:
2335 	kfree(event.msg_buf);
2336 out:
2337 	/* re-enable Admin queue interrupt cause */
2338 	iavf_misc_irq_enable(adapter);
2339 }
2340 
2341 /**
2342  * iavf_client_task - worker thread to perform client work
2343  * @work: pointer to work_struct containing our data
2344  *
2345  * This task handles client interactions. Because client calls can be
2346  * reentrant, we can't handle them in the watchdog.
2347  **/
2348 static void iavf_client_task(struct work_struct *work)
2349 {
2350 	struct iavf_adapter *adapter =
2351 		container_of(work, struct iavf_adapter, client_task.work);
2352 
2353 	/* If we can't get the client bit, just give up. We'll be rescheduled
2354 	 * later.
2355 	 */
2356 
2357 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2358 		return;
2359 
2360 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2361 		iavf_client_subtask(adapter);
2362 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2363 		goto out;
2364 	}
2365 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2366 		iavf_notify_client_l2_params(&adapter->vsi);
2367 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2368 		goto out;
2369 	}
2370 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2371 		iavf_notify_client_close(&adapter->vsi, false);
2372 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2373 		goto out;
2374 	}
2375 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2376 		iavf_notify_client_open(&adapter->vsi);
2377 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2378 	}
2379 out:
2380 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2381 }
2382 
2383 /**
2384  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2385  * @adapter: board private structure
2386  *
2387  * Free all transmit software resources
2388  **/
2389 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2390 {
2391 	int i;
2392 
2393 	if (!adapter->tx_rings)
2394 		return;
2395 
2396 	for (i = 0; i < adapter->num_active_queues; i++)
2397 		if (adapter->tx_rings[i].desc)
2398 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2399 }
2400 
2401 /**
2402  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2403  * @adapter: board private structure
2404  *
2405  * If this function returns with an error, then it's possible one or
2406  * more of the rings is populated (while the rest are not).  It is the
2407  * callers duty to clean those orphaned rings.
2408  *
2409  * Return 0 on success, negative on failure
2410  **/
2411 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2412 {
2413 	int i, err = 0;
2414 
2415 	for (i = 0; i < adapter->num_active_queues; i++) {
2416 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2417 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2418 		if (!err)
2419 			continue;
2420 		dev_err(&adapter->pdev->dev,
2421 			"Allocation for Tx Queue %u failed\n", i);
2422 		break;
2423 	}
2424 
2425 	return err;
2426 }
2427 
2428 /**
2429  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2430  * @adapter: board private structure
2431  *
2432  * If this function returns with an error, then it's possible one or
2433  * more of the rings is populated (while the rest are not).  It is the
2434  * callers duty to clean those orphaned rings.
2435  *
2436  * Return 0 on success, negative on failure
2437  **/
2438 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2439 {
2440 	int i, err = 0;
2441 
2442 	for (i = 0; i < adapter->num_active_queues; i++) {
2443 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2444 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2445 		if (!err)
2446 			continue;
2447 		dev_err(&adapter->pdev->dev,
2448 			"Allocation for Rx Queue %u failed\n", i);
2449 		break;
2450 	}
2451 	return err;
2452 }
2453 
2454 /**
2455  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2456  * @adapter: board private structure
2457  *
2458  * Free all receive software resources
2459  **/
2460 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2461 {
2462 	int i;
2463 
2464 	if (!adapter->rx_rings)
2465 		return;
2466 
2467 	for (i = 0; i < adapter->num_active_queues; i++)
2468 		if (adapter->rx_rings[i].desc)
2469 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2470 }
2471 
2472 /**
2473  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2474  * @adapter: board private structure
2475  * @max_tx_rate: max Tx bw for a tc
2476  **/
2477 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2478 				      u64 max_tx_rate)
2479 {
2480 	int speed = 0, ret = 0;
2481 
2482 	if (ADV_LINK_SUPPORT(adapter)) {
2483 		if (adapter->link_speed_mbps < U32_MAX) {
2484 			speed = adapter->link_speed_mbps;
2485 			goto validate_bw;
2486 		} else {
2487 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2488 			return -EINVAL;
2489 		}
2490 	}
2491 
2492 	switch (adapter->link_speed) {
2493 	case VIRTCHNL_LINK_SPEED_40GB:
2494 		speed = SPEED_40000;
2495 		break;
2496 	case VIRTCHNL_LINK_SPEED_25GB:
2497 		speed = SPEED_25000;
2498 		break;
2499 	case VIRTCHNL_LINK_SPEED_20GB:
2500 		speed = SPEED_20000;
2501 		break;
2502 	case VIRTCHNL_LINK_SPEED_10GB:
2503 		speed = SPEED_10000;
2504 		break;
2505 	case VIRTCHNL_LINK_SPEED_5GB:
2506 		speed = SPEED_5000;
2507 		break;
2508 	case VIRTCHNL_LINK_SPEED_2_5GB:
2509 		speed = SPEED_2500;
2510 		break;
2511 	case VIRTCHNL_LINK_SPEED_1GB:
2512 		speed = SPEED_1000;
2513 		break;
2514 	case VIRTCHNL_LINK_SPEED_100MB:
2515 		speed = SPEED_100;
2516 		break;
2517 	default:
2518 		break;
2519 	}
2520 
2521 validate_bw:
2522 	if (max_tx_rate > speed) {
2523 		dev_err(&adapter->pdev->dev,
2524 			"Invalid tx rate specified\n");
2525 		ret = -EINVAL;
2526 	}
2527 
2528 	return ret;
2529 }
2530 
2531 /**
2532  * iavf_validate_channel_config - validate queue mapping info
2533  * @adapter: board private structure
2534  * @mqprio_qopt: queue parameters
2535  *
2536  * This function validates if the config provided by the user to
2537  * configure queue channels is valid or not. Returns 0 on a valid
2538  * config.
2539  **/
2540 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2541 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2542 {
2543 	u64 total_max_rate = 0;
2544 	int i, num_qps = 0;
2545 	u64 tx_rate = 0;
2546 	int ret = 0;
2547 
2548 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2549 	    mqprio_qopt->qopt.num_tc < 1)
2550 		return -EINVAL;
2551 
2552 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2553 		if (!mqprio_qopt->qopt.count[i] ||
2554 		    mqprio_qopt->qopt.offset[i] != num_qps)
2555 			return -EINVAL;
2556 		if (mqprio_qopt->min_rate[i]) {
2557 			dev_err(&adapter->pdev->dev,
2558 				"Invalid min tx rate (greater than 0) specified\n");
2559 			return -EINVAL;
2560 		}
2561 		/*convert to Mbps */
2562 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2563 				  IAVF_MBPS_DIVISOR);
2564 		total_max_rate += tx_rate;
2565 		num_qps += mqprio_qopt->qopt.count[i];
2566 	}
2567 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2568 		return -EINVAL;
2569 
2570 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2571 	return ret;
2572 }
2573 
2574 /**
2575  * iavf_del_all_cloud_filters - delete all cloud filters
2576  * on the traffic classes
2577  **/
2578 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2579 {
2580 	struct iavf_cloud_filter *cf, *cftmp;
2581 
2582 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2583 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2584 				 list) {
2585 		list_del(&cf->list);
2586 		kfree(cf);
2587 		adapter->num_cloud_filters--;
2588 	}
2589 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590 }
2591 
2592 /**
2593  * __iavf_setup_tc - configure multiple traffic classes
2594  * @netdev: network interface device structure
2595  * @type_date: tc offload data
2596  *
2597  * This function processes the config information provided by the
2598  * user to configure traffic classes/queue channels and packages the
2599  * information to request the PF to setup traffic classes.
2600  *
2601  * Returns 0 on success.
2602  **/
2603 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2604 {
2605 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2606 	struct iavf_adapter *adapter = netdev_priv(netdev);
2607 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2608 	u8 num_tc = 0, total_qps = 0;
2609 	int ret = 0, netdev_tc = 0;
2610 	u64 max_tx_rate;
2611 	u16 mode;
2612 	int i;
2613 
2614 	num_tc = mqprio_qopt->qopt.num_tc;
2615 	mode = mqprio_qopt->mode;
2616 
2617 	/* delete queue_channel */
2618 	if (!mqprio_qopt->qopt.hw) {
2619 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2620 			/* reset the tc configuration */
2621 			netdev_reset_tc(netdev);
2622 			adapter->num_tc = 0;
2623 			netif_tx_stop_all_queues(netdev);
2624 			netif_tx_disable(netdev);
2625 			iavf_del_all_cloud_filters(adapter);
2626 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2627 			goto exit;
2628 		} else {
2629 			return -EINVAL;
2630 		}
2631 	}
2632 
2633 	/* add queue channel */
2634 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2635 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2636 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2637 			return -EOPNOTSUPP;
2638 		}
2639 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2640 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2641 			return -EINVAL;
2642 		}
2643 
2644 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2645 		if (ret)
2646 			return ret;
2647 		/* Return if same TC config is requested */
2648 		if (adapter->num_tc == num_tc)
2649 			return 0;
2650 		adapter->num_tc = num_tc;
2651 
2652 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2653 			if (i < num_tc) {
2654 				adapter->ch_config.ch_info[i].count =
2655 					mqprio_qopt->qopt.count[i];
2656 				adapter->ch_config.ch_info[i].offset =
2657 					mqprio_qopt->qopt.offset[i];
2658 				total_qps += mqprio_qopt->qopt.count[i];
2659 				max_tx_rate = mqprio_qopt->max_rate[i];
2660 				/* convert to Mbps */
2661 				max_tx_rate = div_u64(max_tx_rate,
2662 						      IAVF_MBPS_DIVISOR);
2663 				adapter->ch_config.ch_info[i].max_tx_rate =
2664 					max_tx_rate;
2665 			} else {
2666 				adapter->ch_config.ch_info[i].count = 1;
2667 				adapter->ch_config.ch_info[i].offset = 0;
2668 			}
2669 		}
2670 		adapter->ch_config.total_qps = total_qps;
2671 		netif_tx_stop_all_queues(netdev);
2672 		netif_tx_disable(netdev);
2673 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2674 		netdev_reset_tc(netdev);
2675 		/* Report the tc mapping up the stack */
2676 		netdev_set_num_tc(adapter->netdev, num_tc);
2677 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2678 			u16 qcount = mqprio_qopt->qopt.count[i];
2679 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2680 
2681 			if (i < num_tc)
2682 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2683 						    qoffset);
2684 		}
2685 	}
2686 exit:
2687 	return ret;
2688 }
2689 
2690 /**
2691  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2692  * @adapter: board private structure
2693  * @cls_flower: pointer to struct flow_cls_offload
2694  * @filter: pointer to cloud filter structure
2695  */
2696 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2697 				 struct flow_cls_offload *f,
2698 				 struct iavf_cloud_filter *filter)
2699 {
2700 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2701 	struct flow_dissector *dissector = rule->match.dissector;
2702 	u16 n_proto_mask = 0;
2703 	u16 n_proto_key = 0;
2704 	u8 field_flags = 0;
2705 	u16 addr_type = 0;
2706 	u16 n_proto = 0;
2707 	int i = 0;
2708 	struct virtchnl_filter *vf = &filter->f;
2709 
2710 	if (dissector->used_keys &
2711 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2712 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2713 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2714 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2715 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2716 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2717 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2718 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2719 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2720 			dissector->used_keys);
2721 		return -EOPNOTSUPP;
2722 	}
2723 
2724 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2725 		struct flow_match_enc_keyid match;
2726 
2727 		flow_rule_match_enc_keyid(rule, &match);
2728 		if (match.mask->keyid != 0)
2729 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2730 	}
2731 
2732 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2733 		struct flow_match_basic match;
2734 
2735 		flow_rule_match_basic(rule, &match);
2736 		n_proto_key = ntohs(match.key->n_proto);
2737 		n_proto_mask = ntohs(match.mask->n_proto);
2738 
2739 		if (n_proto_key == ETH_P_ALL) {
2740 			n_proto_key = 0;
2741 			n_proto_mask = 0;
2742 		}
2743 		n_proto = n_proto_key & n_proto_mask;
2744 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2745 			return -EINVAL;
2746 		if (n_proto == ETH_P_IPV6) {
2747 			/* specify flow type as TCP IPv6 */
2748 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2749 		}
2750 
2751 		if (match.key->ip_proto != IPPROTO_TCP) {
2752 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2753 			return -EINVAL;
2754 		}
2755 	}
2756 
2757 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2758 		struct flow_match_eth_addrs match;
2759 
2760 		flow_rule_match_eth_addrs(rule, &match);
2761 
2762 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2763 		if (!is_zero_ether_addr(match.mask->dst)) {
2764 			if (is_broadcast_ether_addr(match.mask->dst)) {
2765 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2766 			} else {
2767 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2768 					match.mask->dst);
2769 				return IAVF_ERR_CONFIG;
2770 			}
2771 		}
2772 
2773 		if (!is_zero_ether_addr(match.mask->src)) {
2774 			if (is_broadcast_ether_addr(match.mask->src)) {
2775 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2776 			} else {
2777 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2778 					match.mask->src);
2779 				return IAVF_ERR_CONFIG;
2780 			}
2781 		}
2782 
2783 		if (!is_zero_ether_addr(match.key->dst))
2784 			if (is_valid_ether_addr(match.key->dst) ||
2785 			    is_multicast_ether_addr(match.key->dst)) {
2786 				/* set the mask if a valid dst_mac address */
2787 				for (i = 0; i < ETH_ALEN; i++)
2788 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2789 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2790 						match.key->dst);
2791 			}
2792 
2793 		if (!is_zero_ether_addr(match.key->src))
2794 			if (is_valid_ether_addr(match.key->src) ||
2795 			    is_multicast_ether_addr(match.key->src)) {
2796 				/* set the mask if a valid dst_mac address */
2797 				for (i = 0; i < ETH_ALEN; i++)
2798 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2799 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2800 						match.key->src);
2801 		}
2802 	}
2803 
2804 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2805 		struct flow_match_vlan match;
2806 
2807 		flow_rule_match_vlan(rule, &match);
2808 		if (match.mask->vlan_id) {
2809 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2810 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2811 			} else {
2812 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2813 					match.mask->vlan_id);
2814 				return IAVF_ERR_CONFIG;
2815 			}
2816 		}
2817 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2818 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2819 	}
2820 
2821 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2822 		struct flow_match_control match;
2823 
2824 		flow_rule_match_control(rule, &match);
2825 		addr_type = match.key->addr_type;
2826 	}
2827 
2828 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2829 		struct flow_match_ipv4_addrs match;
2830 
2831 		flow_rule_match_ipv4_addrs(rule, &match);
2832 		if (match.mask->dst) {
2833 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2834 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2835 			} else {
2836 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2837 					be32_to_cpu(match.mask->dst));
2838 				return IAVF_ERR_CONFIG;
2839 			}
2840 		}
2841 
2842 		if (match.mask->src) {
2843 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2844 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2845 			} else {
2846 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2847 					be32_to_cpu(match.mask->dst));
2848 				return IAVF_ERR_CONFIG;
2849 			}
2850 		}
2851 
2852 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2853 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2854 			return IAVF_ERR_CONFIG;
2855 		}
2856 		if (match.key->dst) {
2857 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2858 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2859 		}
2860 		if (match.key->src) {
2861 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2862 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2863 		}
2864 	}
2865 
2866 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2867 		struct flow_match_ipv6_addrs match;
2868 
2869 		flow_rule_match_ipv6_addrs(rule, &match);
2870 
2871 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2872 		if (ipv6_addr_any(&match.mask->dst)) {
2873 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2874 				IPV6_ADDR_ANY);
2875 			return IAVF_ERR_CONFIG;
2876 		}
2877 
2878 		/* src and dest IPv6 address should not be LOOPBACK
2879 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2880 		 */
2881 		if (ipv6_addr_loopback(&match.key->dst) ||
2882 		    ipv6_addr_loopback(&match.key->src)) {
2883 			dev_err(&adapter->pdev->dev,
2884 				"ipv6 addr should not be loopback\n");
2885 			return IAVF_ERR_CONFIG;
2886 		}
2887 		if (!ipv6_addr_any(&match.mask->dst) ||
2888 		    !ipv6_addr_any(&match.mask->src))
2889 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2890 
2891 		for (i = 0; i < 4; i++)
2892 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2893 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2894 		       sizeof(vf->data.tcp_spec.dst_ip));
2895 		for (i = 0; i < 4; i++)
2896 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2897 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2898 		       sizeof(vf->data.tcp_spec.src_ip));
2899 	}
2900 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2901 		struct flow_match_ports match;
2902 
2903 		flow_rule_match_ports(rule, &match);
2904 		if (match.mask->src) {
2905 			if (match.mask->src == cpu_to_be16(0xffff)) {
2906 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2907 			} else {
2908 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2909 					be16_to_cpu(match.mask->src));
2910 				return IAVF_ERR_CONFIG;
2911 			}
2912 		}
2913 
2914 		if (match.mask->dst) {
2915 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2916 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2917 			} else {
2918 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2919 					be16_to_cpu(match.mask->dst));
2920 				return IAVF_ERR_CONFIG;
2921 			}
2922 		}
2923 		if (match.key->dst) {
2924 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2925 			vf->data.tcp_spec.dst_port = match.key->dst;
2926 		}
2927 
2928 		if (match.key->src) {
2929 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2930 			vf->data.tcp_spec.src_port = match.key->src;
2931 		}
2932 	}
2933 	vf->field_flags = field_flags;
2934 
2935 	return 0;
2936 }
2937 
2938 /**
2939  * iavf_handle_tclass - Forward to a traffic class on the device
2940  * @adapter: board private structure
2941  * @tc: traffic class index on the device
2942  * @filter: pointer to cloud filter structure
2943  */
2944 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2945 			      struct iavf_cloud_filter *filter)
2946 {
2947 	if (tc == 0)
2948 		return 0;
2949 	if (tc < adapter->num_tc) {
2950 		if (!filter->f.data.tcp_spec.dst_port) {
2951 			dev_err(&adapter->pdev->dev,
2952 				"Specify destination port to redirect to traffic class other than TC0\n");
2953 			return -EINVAL;
2954 		}
2955 	}
2956 	/* redirect to a traffic class on the same device */
2957 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2958 	filter->f.action_meta = tc;
2959 	return 0;
2960 }
2961 
2962 /**
2963  * iavf_configure_clsflower - Add tc flower filters
2964  * @adapter: board private structure
2965  * @cls_flower: Pointer to struct flow_cls_offload
2966  */
2967 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2968 				    struct flow_cls_offload *cls_flower)
2969 {
2970 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2971 	struct iavf_cloud_filter *filter = NULL;
2972 	int err = -EINVAL, count = 50;
2973 
2974 	if (tc < 0) {
2975 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2976 		return -EINVAL;
2977 	}
2978 
2979 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2980 	if (!filter)
2981 		return -ENOMEM;
2982 
2983 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2984 				&adapter->crit_section)) {
2985 		if (--count == 0)
2986 			goto err;
2987 		udelay(1);
2988 	}
2989 
2990 	filter->cookie = cls_flower->cookie;
2991 
2992 	/* set the mask to all zeroes to begin with */
2993 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2994 	/* start out with flow type and eth type IPv4 to begin with */
2995 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2996 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2997 	if (err < 0)
2998 		goto err;
2999 
3000 	err = iavf_handle_tclass(adapter, tc, filter);
3001 	if (err < 0)
3002 		goto err;
3003 
3004 	/* add filter to the list */
3005 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3006 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3007 	adapter->num_cloud_filters++;
3008 	filter->add = true;
3009 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3010 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3011 err:
3012 	if (err)
3013 		kfree(filter);
3014 
3015 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3016 	return err;
3017 }
3018 
3019 /* iavf_find_cf - Find the cloud filter in the list
3020  * @adapter: Board private structure
3021  * @cookie: filter specific cookie
3022  *
3023  * Returns ptr to the filter object or NULL. Must be called while holding the
3024  * cloud_filter_list_lock.
3025  */
3026 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3027 					      unsigned long *cookie)
3028 {
3029 	struct iavf_cloud_filter *filter = NULL;
3030 
3031 	if (!cookie)
3032 		return NULL;
3033 
3034 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3035 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3036 			return filter;
3037 	}
3038 	return NULL;
3039 }
3040 
3041 /**
3042  * iavf_delete_clsflower - Remove tc flower filters
3043  * @adapter: board private structure
3044  * @cls_flower: Pointer to struct flow_cls_offload
3045  */
3046 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3047 				 struct flow_cls_offload *cls_flower)
3048 {
3049 	struct iavf_cloud_filter *filter = NULL;
3050 	int err = 0;
3051 
3052 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3053 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3054 	if (filter) {
3055 		filter->del = true;
3056 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3057 	} else {
3058 		err = -EINVAL;
3059 	}
3060 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3061 
3062 	return err;
3063 }
3064 
3065 /**
3066  * iavf_setup_tc_cls_flower - flower classifier offloads
3067  * @netdev: net device to configure
3068  * @type_data: offload data
3069  */
3070 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3071 				    struct flow_cls_offload *cls_flower)
3072 {
3073 	switch (cls_flower->command) {
3074 	case FLOW_CLS_REPLACE:
3075 		return iavf_configure_clsflower(adapter, cls_flower);
3076 	case FLOW_CLS_DESTROY:
3077 		return iavf_delete_clsflower(adapter, cls_flower);
3078 	case FLOW_CLS_STATS:
3079 		return -EOPNOTSUPP;
3080 	default:
3081 		return -EOPNOTSUPP;
3082 	}
3083 }
3084 
3085 /**
3086  * iavf_setup_tc_block_cb - block callback for tc
3087  * @type: type of offload
3088  * @type_data: offload data
3089  * @cb_priv:
3090  *
3091  * This function is the block callback for traffic classes
3092  **/
3093 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3094 				  void *cb_priv)
3095 {
3096 	struct iavf_adapter *adapter = cb_priv;
3097 
3098 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3099 		return -EOPNOTSUPP;
3100 
3101 	switch (type) {
3102 	case TC_SETUP_CLSFLOWER:
3103 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3104 	default:
3105 		return -EOPNOTSUPP;
3106 	}
3107 }
3108 
3109 static LIST_HEAD(iavf_block_cb_list);
3110 
3111 /**
3112  * iavf_setup_tc - configure multiple traffic classes
3113  * @netdev: network interface device structure
3114  * @type: type of offload
3115  * @type_date: tc offload data
3116  *
3117  * This function is the callback to ndo_setup_tc in the
3118  * netdev_ops.
3119  *
3120  * Returns 0 on success
3121  **/
3122 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3123 			 void *type_data)
3124 {
3125 	struct iavf_adapter *adapter = netdev_priv(netdev);
3126 
3127 	switch (type) {
3128 	case TC_SETUP_QDISC_MQPRIO:
3129 		return __iavf_setup_tc(netdev, type_data);
3130 	case TC_SETUP_BLOCK:
3131 		return flow_block_cb_setup_simple(type_data,
3132 						  &iavf_block_cb_list,
3133 						  iavf_setup_tc_block_cb,
3134 						  adapter, adapter, true);
3135 	default:
3136 		return -EOPNOTSUPP;
3137 	}
3138 }
3139 
3140 /**
3141  * iavf_open - Called when a network interface is made active
3142  * @netdev: network interface device structure
3143  *
3144  * Returns 0 on success, negative value on failure
3145  *
3146  * The open entry point is called when a network interface is made
3147  * active by the system (IFF_UP).  At this point all resources needed
3148  * for transmit and receive operations are allocated, the interrupt
3149  * handler is registered with the OS, the watchdog is started,
3150  * and the stack is notified that the interface is ready.
3151  **/
3152 static int iavf_open(struct net_device *netdev)
3153 {
3154 	struct iavf_adapter *adapter = netdev_priv(netdev);
3155 	int err;
3156 
3157 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3158 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3159 		return -EIO;
3160 	}
3161 
3162 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3163 				&adapter->crit_section))
3164 		usleep_range(500, 1000);
3165 
3166 	if (adapter->state != __IAVF_DOWN) {
3167 		err = -EBUSY;
3168 		goto err_unlock;
3169 	}
3170 
3171 	/* allocate transmit descriptors */
3172 	err = iavf_setup_all_tx_resources(adapter);
3173 	if (err)
3174 		goto err_setup_tx;
3175 
3176 	/* allocate receive descriptors */
3177 	err = iavf_setup_all_rx_resources(adapter);
3178 	if (err)
3179 		goto err_setup_rx;
3180 
3181 	/* clear any pending interrupts, may auto mask */
3182 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3183 	if (err)
3184 		goto err_req_irq;
3185 
3186 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3187 
3188 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3189 
3190 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3191 
3192 	iavf_configure(adapter);
3193 
3194 	iavf_up_complete(adapter);
3195 
3196 	iavf_irq_enable(adapter, true);
3197 
3198 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3199 
3200 	return 0;
3201 
3202 err_req_irq:
3203 	iavf_down(adapter);
3204 	iavf_free_traffic_irqs(adapter);
3205 err_setup_rx:
3206 	iavf_free_all_rx_resources(adapter);
3207 err_setup_tx:
3208 	iavf_free_all_tx_resources(adapter);
3209 err_unlock:
3210 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3211 
3212 	return err;
3213 }
3214 
3215 /**
3216  * iavf_close - Disables a network interface
3217  * @netdev: network interface device structure
3218  *
3219  * Returns 0, this is not allowed to fail
3220  *
3221  * The close entry point is called when an interface is de-activated
3222  * by the OS.  The hardware is still under the drivers control, but
3223  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3224  * are freed, along with all transmit and receive resources.
3225  **/
3226 static int iavf_close(struct net_device *netdev)
3227 {
3228 	struct iavf_adapter *adapter = netdev_priv(netdev);
3229 	int status;
3230 
3231 	if (adapter->state <= __IAVF_DOWN_PENDING)
3232 		return 0;
3233 
3234 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3235 				&adapter->crit_section))
3236 		usleep_range(500, 1000);
3237 
3238 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3239 	if (CLIENT_ENABLED(adapter))
3240 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3241 
3242 	iavf_down(adapter);
3243 	adapter->state = __IAVF_DOWN_PENDING;
3244 	iavf_free_traffic_irqs(adapter);
3245 
3246 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247 
3248 	/* We explicitly don't free resources here because the hardware is
3249 	 * still active and can DMA into memory. Resources are cleared in
3250 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3251 	 * driver that the rings have been stopped.
3252 	 *
3253 	 * Also, we wait for state to transition to __IAVF_DOWN before
3254 	 * returning. State change occurs in iavf_virtchnl_completion() after
3255 	 * VF resources are released (which occurs after PF driver processes and
3256 	 * responds to admin queue commands).
3257 	 */
3258 
3259 	status = wait_event_timeout(adapter->down_waitqueue,
3260 				    adapter->state == __IAVF_DOWN,
3261 				    msecs_to_jiffies(500));
3262 	if (!status)
3263 		netdev_warn(netdev, "Device resources not yet released\n");
3264 	return 0;
3265 }
3266 
3267 /**
3268  * iavf_change_mtu - Change the Maximum Transfer Unit
3269  * @netdev: network interface device structure
3270  * @new_mtu: new value for maximum frame size
3271  *
3272  * Returns 0 on success, negative on failure
3273  **/
3274 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3275 {
3276 	struct iavf_adapter *adapter = netdev_priv(netdev);
3277 
3278 	netdev->mtu = new_mtu;
3279 	if (CLIENT_ENABLED(adapter)) {
3280 		iavf_notify_client_l2_params(&adapter->vsi);
3281 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3282 	}
3283 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3284 	queue_work(iavf_wq, &adapter->reset_task);
3285 
3286 	return 0;
3287 }
3288 
3289 /**
3290  * iavf_set_features - set the netdev feature flags
3291  * @netdev: ptr to the netdev being adjusted
3292  * @features: the feature set that the stack is suggesting
3293  * Note: expects to be called while under rtnl_lock()
3294  **/
3295 static int iavf_set_features(struct net_device *netdev,
3296 			     netdev_features_t features)
3297 {
3298 	struct iavf_adapter *adapter = netdev_priv(netdev);
3299 
3300 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3301 	 * of VLAN offload
3302 	 */
3303 	if (!VLAN_ALLOWED(adapter)) {
3304 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3305 			return -EINVAL;
3306 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3307 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3308 			adapter->aq_required |=
3309 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3310 		else
3311 			adapter->aq_required |=
3312 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 /**
3319  * iavf_features_check - Validate encapsulated packet conforms to limits
3320  * @skb: skb buff
3321  * @dev: This physical port's netdev
3322  * @features: Offload features that the stack believes apply
3323  **/
3324 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3325 					     struct net_device *dev,
3326 					     netdev_features_t features)
3327 {
3328 	size_t len;
3329 
3330 	/* No point in doing any of this if neither checksum nor GSO are
3331 	 * being requested for this frame.  We can rule out both by just
3332 	 * checking for CHECKSUM_PARTIAL
3333 	 */
3334 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3335 		return features;
3336 
3337 	/* We cannot support GSO if the MSS is going to be less than
3338 	 * 64 bytes.  If it is then we need to drop support for GSO.
3339 	 */
3340 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3341 		features &= ~NETIF_F_GSO_MASK;
3342 
3343 	/* MACLEN can support at most 63 words */
3344 	len = skb_network_header(skb) - skb->data;
3345 	if (len & ~(63 * 2))
3346 		goto out_err;
3347 
3348 	/* IPLEN and EIPLEN can support at most 127 dwords */
3349 	len = skb_transport_header(skb) - skb_network_header(skb);
3350 	if (len & ~(127 * 4))
3351 		goto out_err;
3352 
3353 	if (skb->encapsulation) {
3354 		/* L4TUNLEN can support 127 words */
3355 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3356 		if (len & ~(127 * 2))
3357 			goto out_err;
3358 
3359 		/* IPLEN can support at most 127 dwords */
3360 		len = skb_inner_transport_header(skb) -
3361 		      skb_inner_network_header(skb);
3362 		if (len & ~(127 * 4))
3363 			goto out_err;
3364 	}
3365 
3366 	/* No need to validate L4LEN as TCP is the only protocol with a
3367 	 * a flexible value and we support all possible values supported
3368 	 * by TCP, which is at most 15 dwords
3369 	 */
3370 
3371 	return features;
3372 out_err:
3373 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374 }
3375 
3376 /**
3377  * iavf_fix_features - fix up the netdev feature bits
3378  * @netdev: our net device
3379  * @features: desired feature bits
3380  *
3381  * Returns fixed-up features bits
3382  **/
3383 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3384 					   netdev_features_t features)
3385 {
3386 	struct iavf_adapter *adapter = netdev_priv(netdev);
3387 
3388 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3389 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3390 			      NETIF_F_HW_VLAN_CTAG_RX |
3391 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3392 
3393 	return features;
3394 }
3395 
3396 static const struct net_device_ops iavf_netdev_ops = {
3397 	.ndo_open		= iavf_open,
3398 	.ndo_stop		= iavf_close,
3399 	.ndo_start_xmit		= iavf_xmit_frame,
3400 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3401 	.ndo_validate_addr	= eth_validate_addr,
3402 	.ndo_set_mac_address	= iavf_set_mac,
3403 	.ndo_change_mtu		= iavf_change_mtu,
3404 	.ndo_tx_timeout		= iavf_tx_timeout,
3405 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3406 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3407 	.ndo_features_check	= iavf_features_check,
3408 	.ndo_fix_features	= iavf_fix_features,
3409 	.ndo_set_features	= iavf_set_features,
3410 	.ndo_setup_tc		= iavf_setup_tc,
3411 };
3412 
3413 /**
3414  * iavf_check_reset_complete - check that VF reset is complete
3415  * @hw: pointer to hw struct
3416  *
3417  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3418  **/
3419 static int iavf_check_reset_complete(struct iavf_hw *hw)
3420 {
3421 	u32 rstat;
3422 	int i;
3423 
3424 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3425 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3426 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3427 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3428 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3429 			return 0;
3430 		usleep_range(10, 20);
3431 	}
3432 	return -EBUSY;
3433 }
3434 
3435 /**
3436  * iavf_process_config - Process the config information we got from the PF
3437  * @adapter: board private structure
3438  *
3439  * Verify that we have a valid config struct, and set up our netdev features
3440  * and our VSI struct.
3441  **/
3442 int iavf_process_config(struct iavf_adapter *adapter)
3443 {
3444 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3445 	int i, num_req_queues = adapter->num_req_queues;
3446 	struct net_device *netdev = adapter->netdev;
3447 	struct iavf_vsi *vsi = &adapter->vsi;
3448 	netdev_features_t hw_enc_features;
3449 	netdev_features_t hw_features;
3450 
3451 	/* got VF config message back from PF, now we can parse it */
3452 	for (i = 0; i < vfres->num_vsis; i++) {
3453 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3454 			adapter->vsi_res = &vfres->vsi_res[i];
3455 	}
3456 	if (!adapter->vsi_res) {
3457 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3458 		return -ENODEV;
3459 	}
3460 
3461 	if (num_req_queues &&
3462 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3463 		/* Problem.  The PF gave us fewer queues than what we had
3464 		 * negotiated in our request.  Need a reset to see if we can't
3465 		 * get back to a working state.
3466 		 */
3467 		dev_err(&adapter->pdev->dev,
3468 			"Requested %d queues, but PF only gave us %d.\n",
3469 			num_req_queues,
3470 			adapter->vsi_res->num_queue_pairs);
3471 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3472 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3473 		iavf_schedule_reset(adapter);
3474 		return -ENODEV;
3475 	}
3476 	adapter->num_req_queues = 0;
3477 
3478 	hw_enc_features = NETIF_F_SG			|
3479 			  NETIF_F_IP_CSUM		|
3480 			  NETIF_F_IPV6_CSUM		|
3481 			  NETIF_F_HIGHDMA		|
3482 			  NETIF_F_SOFT_FEATURES	|
3483 			  NETIF_F_TSO			|
3484 			  NETIF_F_TSO_ECN		|
3485 			  NETIF_F_TSO6			|
3486 			  NETIF_F_SCTP_CRC		|
3487 			  NETIF_F_RXHASH		|
3488 			  NETIF_F_RXCSUM		|
3489 			  0;
3490 
3491 	/* advertise to stack only if offloads for encapsulated packets is
3492 	 * supported
3493 	 */
3494 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3495 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3496 				   NETIF_F_GSO_GRE		|
3497 				   NETIF_F_GSO_GRE_CSUM		|
3498 				   NETIF_F_GSO_IPXIP4		|
3499 				   NETIF_F_GSO_IPXIP6		|
3500 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3501 				   NETIF_F_GSO_PARTIAL		|
3502 				   0;
3503 
3504 		if (!(vfres->vf_cap_flags &
3505 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3506 			netdev->gso_partial_features |=
3507 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3508 
3509 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3510 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3511 		netdev->hw_enc_features |= hw_enc_features;
3512 	}
3513 	/* record features VLANs can make use of */
3514 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3515 
3516 	/* Write features and hw_features separately to avoid polluting
3517 	 * with, or dropping, features that are set when we registered.
3518 	 */
3519 	hw_features = hw_enc_features;
3520 
3521 	/* Enable VLAN features if supported */
3522 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3524 				NETIF_F_HW_VLAN_CTAG_RX);
3525 	/* Enable cloud filter if ADQ is supported */
3526 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3527 		hw_features |= NETIF_F_HW_TC;
3528 
3529 	netdev->hw_features |= hw_features;
3530 
3531 	netdev->features |= hw_features;
3532 
3533 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3534 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3535 
3536 	netdev->priv_flags |= IFF_UNICAST_FLT;
3537 
3538 	/* Do not turn on offloads when they are requested to be turned off.
3539 	 * TSO needs minimum 576 bytes to work correctly.
3540 	 */
3541 	if (netdev->wanted_features) {
3542 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3543 		    netdev->mtu < 576)
3544 			netdev->features &= ~NETIF_F_TSO;
3545 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3546 		    netdev->mtu < 576)
3547 			netdev->features &= ~NETIF_F_TSO6;
3548 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3549 			netdev->features &= ~NETIF_F_TSO_ECN;
3550 		if (!(netdev->wanted_features & NETIF_F_GRO))
3551 			netdev->features &= ~NETIF_F_GRO;
3552 		if (!(netdev->wanted_features & NETIF_F_GSO))
3553 			netdev->features &= ~NETIF_F_GSO;
3554 	}
3555 
3556 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3557 
3558 	adapter->vsi.back = adapter;
3559 	adapter->vsi.base_vector = 1;
3560 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3561 	vsi->netdev = adapter->netdev;
3562 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3563 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3564 		adapter->rss_key_size = vfres->rss_key_size;
3565 		adapter->rss_lut_size = vfres->rss_lut_size;
3566 	} else {
3567 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3568 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 /**
3575  * iavf_init_task - worker thread to perform delayed initialization
3576  * @work: pointer to work_struct containing our data
3577  *
3578  * This task completes the work that was begun in probe. Due to the nature
3579  * of VF-PF communications, we may need to wait tens of milliseconds to get
3580  * responses back from the PF. Rather than busy-wait in probe and bog down the
3581  * whole system, we'll do it in a task so we can sleep.
3582  * This task only runs during driver init. Once we've established
3583  * communications with the PF driver and set up our netdev, the watchdog
3584  * takes over.
3585  **/
3586 static void iavf_init_task(struct work_struct *work)
3587 {
3588 	struct iavf_adapter *adapter = container_of(work,
3589 						    struct iavf_adapter,
3590 						    init_task.work);
3591 	struct iavf_hw *hw = &adapter->hw;
3592 
3593 	switch (adapter->state) {
3594 	case __IAVF_STARTUP:
3595 		if (iavf_startup(adapter) < 0)
3596 			goto init_failed;
3597 		break;
3598 	case __IAVF_INIT_VERSION_CHECK:
3599 		if (iavf_init_version_check(adapter) < 0)
3600 			goto init_failed;
3601 		break;
3602 	case __IAVF_INIT_GET_RESOURCES:
3603 		if (iavf_init_get_resources(adapter) < 0)
3604 			goto init_failed;
3605 		return;
3606 	default:
3607 		goto init_failed;
3608 	}
3609 
3610 	queue_delayed_work(iavf_wq, &adapter->init_task,
3611 			   msecs_to_jiffies(30));
3612 	return;
3613 init_failed:
3614 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3615 		dev_err(&adapter->pdev->dev,
3616 			"Failed to communicate with PF; waiting before retry\n");
3617 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3618 		iavf_shutdown_adminq(hw);
3619 		adapter->state = __IAVF_STARTUP;
3620 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3621 		return;
3622 	}
3623 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3624 }
3625 
3626 /**
3627  * iavf_shutdown - Shutdown the device in preparation for a reboot
3628  * @pdev: pci device structure
3629  **/
3630 static void iavf_shutdown(struct pci_dev *pdev)
3631 {
3632 	struct net_device *netdev = pci_get_drvdata(pdev);
3633 	struct iavf_adapter *adapter = netdev_priv(netdev);
3634 
3635 	netif_device_detach(netdev);
3636 
3637 	if (netif_running(netdev))
3638 		iavf_close(netdev);
3639 
3640 	/* Prevent the watchdog from running. */
3641 	adapter->state = __IAVF_REMOVE;
3642 	adapter->aq_required = 0;
3643 
3644 #ifdef CONFIG_PM
3645 	pci_save_state(pdev);
3646 
3647 #endif
3648 	pci_disable_device(pdev);
3649 }
3650 
3651 /**
3652  * iavf_probe - Device Initialization Routine
3653  * @pdev: PCI device information struct
3654  * @ent: entry in iavf_pci_tbl
3655  *
3656  * Returns 0 on success, negative on failure
3657  *
3658  * iavf_probe initializes an adapter identified by a pci_dev structure.
3659  * The OS initialization, configuring of the adapter private structure,
3660  * and a hardware reset occur.
3661  **/
3662 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3663 {
3664 	struct net_device *netdev;
3665 	struct iavf_adapter *adapter = NULL;
3666 	struct iavf_hw *hw = NULL;
3667 	int err;
3668 
3669 	err = pci_enable_device(pdev);
3670 	if (err)
3671 		return err;
3672 
3673 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3674 	if (err) {
3675 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3676 		if (err) {
3677 			dev_err(&pdev->dev,
3678 				"DMA configuration failed: 0x%x\n", err);
3679 			goto err_dma;
3680 		}
3681 	}
3682 
3683 	err = pci_request_regions(pdev, iavf_driver_name);
3684 	if (err) {
3685 		dev_err(&pdev->dev,
3686 			"pci_request_regions failed 0x%x\n", err);
3687 		goto err_pci_reg;
3688 	}
3689 
3690 	pci_enable_pcie_error_reporting(pdev);
3691 
3692 	pci_set_master(pdev);
3693 
3694 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3695 				   IAVF_MAX_REQ_QUEUES);
3696 	if (!netdev) {
3697 		err = -ENOMEM;
3698 		goto err_alloc_etherdev;
3699 	}
3700 
3701 	SET_NETDEV_DEV(netdev, &pdev->dev);
3702 
3703 	pci_set_drvdata(pdev, netdev);
3704 	adapter = netdev_priv(netdev);
3705 
3706 	adapter->netdev = netdev;
3707 	adapter->pdev = pdev;
3708 
3709 	hw = &adapter->hw;
3710 	hw->back = adapter;
3711 
3712 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3713 	adapter->state = __IAVF_STARTUP;
3714 
3715 	/* Call save state here because it relies on the adapter struct. */
3716 	pci_save_state(pdev);
3717 
3718 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3719 			      pci_resource_len(pdev, 0));
3720 	if (!hw->hw_addr) {
3721 		err = -EIO;
3722 		goto err_ioremap;
3723 	}
3724 	hw->vendor_id = pdev->vendor;
3725 	hw->device_id = pdev->device;
3726 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3727 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3728 	hw->subsystem_device_id = pdev->subsystem_device;
3729 	hw->bus.device = PCI_SLOT(pdev->devfn);
3730 	hw->bus.func = PCI_FUNC(pdev->devfn);
3731 	hw->bus.bus_id = pdev->bus->number;
3732 
3733 	/* set up the locks for the AQ, do this only once in probe
3734 	 * and destroy them only once in remove
3735 	 */
3736 	mutex_init(&hw->aq.asq_mutex);
3737 	mutex_init(&hw->aq.arq_mutex);
3738 
3739 	spin_lock_init(&adapter->mac_vlan_list_lock);
3740 	spin_lock_init(&adapter->cloud_filter_list_lock);
3741 
3742 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3743 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3744 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3745 
3746 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3747 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3748 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3749 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3750 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3751 	queue_delayed_work(iavf_wq, &adapter->init_task,
3752 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3753 
3754 	/* Setup the wait queue for indicating transition to down status */
3755 	init_waitqueue_head(&adapter->down_waitqueue);
3756 
3757 	return 0;
3758 
3759 err_ioremap:
3760 	free_netdev(netdev);
3761 err_alloc_etherdev:
3762 	pci_release_regions(pdev);
3763 err_pci_reg:
3764 err_dma:
3765 	pci_disable_device(pdev);
3766 	return err;
3767 }
3768 
3769 /**
3770  * iavf_suspend - Power management suspend routine
3771  * @pdev: PCI device information struct
3772  * @state: unused
3773  *
3774  * Called when the system (VM) is entering sleep/suspend.
3775  **/
3776 static int __maybe_unused iavf_suspend(struct device *dev_d)
3777 {
3778 	struct net_device *netdev = dev_get_drvdata(dev_d);
3779 	struct iavf_adapter *adapter = netdev_priv(netdev);
3780 
3781 	netif_device_detach(netdev);
3782 
3783 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784 				&adapter->crit_section))
3785 		usleep_range(500, 1000);
3786 
3787 	if (netif_running(netdev)) {
3788 		rtnl_lock();
3789 		iavf_down(adapter);
3790 		rtnl_unlock();
3791 	}
3792 	iavf_free_misc_irq(adapter);
3793 	iavf_reset_interrupt_capability(adapter);
3794 
3795 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796 
3797 	return 0;
3798 }
3799 
3800 /**
3801  * iavf_resume - Power management resume routine
3802  * @pdev: PCI device information struct
3803  *
3804  * Called when the system (VM) is resumed from sleep/suspend.
3805  **/
3806 static int __maybe_unused iavf_resume(struct device *dev_d)
3807 {
3808 	struct pci_dev *pdev = to_pci_dev(dev_d);
3809 	struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3810 	struct net_device *netdev = adapter->netdev;
3811 	u32 err;
3812 
3813 	pci_set_master(pdev);
3814 
3815 	rtnl_lock();
3816 	err = iavf_set_interrupt_capability(adapter);
3817 	if (err) {
3818 		rtnl_unlock();
3819 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820 		return err;
3821 	}
3822 	err = iavf_request_misc_irq(adapter);
3823 	rtnl_unlock();
3824 	if (err) {
3825 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826 		return err;
3827 	}
3828 
3829 	queue_work(iavf_wq, &adapter->reset_task);
3830 
3831 	netif_device_attach(netdev);
3832 
3833 	return err;
3834 }
3835 
3836 /**
3837  * iavf_remove - Device Removal Routine
3838  * @pdev: PCI device information struct
3839  *
3840  * iavf_remove is called by the PCI subsystem to alert the driver
3841  * that it should release a PCI device.  The could be caused by a
3842  * Hot-Plug event, or because the driver is going to be removed from
3843  * memory.
3844  **/
3845 static void iavf_remove(struct pci_dev *pdev)
3846 {
3847 	struct net_device *netdev = pci_get_drvdata(pdev);
3848 	struct iavf_adapter *adapter = netdev_priv(netdev);
3849 	struct iavf_vlan_filter *vlf, *vlftmp;
3850 	struct iavf_mac_filter *f, *ftmp;
3851 	struct iavf_cloud_filter *cf, *cftmp;
3852 	struct iavf_hw *hw = &adapter->hw;
3853 	int err;
3854 	/* Indicate we are in remove and not to run reset_task */
3855 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 	cancel_delayed_work_sync(&adapter->init_task);
3857 	cancel_work_sync(&adapter->reset_task);
3858 	cancel_delayed_work_sync(&adapter->client_task);
3859 	if (adapter->netdev_registered) {
3860 		unregister_netdev(netdev);
3861 		adapter->netdev_registered = false;
3862 	}
3863 	if (CLIENT_ALLOWED(adapter)) {
3864 		err = iavf_lan_del_device(adapter);
3865 		if (err)
3866 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 				 err);
3868 	}
3869 
3870 	/* Shut down all the garbage mashers on the detention level */
3871 	adapter->state = __IAVF_REMOVE;
3872 	adapter->aq_required = 0;
3873 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 	iavf_request_reset(adapter);
3875 	msleep(50);
3876 	/* If the FW isn't responding, kick it once, but only once. */
3877 	if (!iavf_asq_done(hw)) {
3878 		iavf_request_reset(adapter);
3879 		msleep(50);
3880 	}
3881 	iavf_free_all_tx_resources(adapter);
3882 	iavf_free_all_rx_resources(adapter);
3883 	iavf_misc_irq_disable(adapter);
3884 	iavf_free_misc_irq(adapter);
3885 	iavf_reset_interrupt_capability(adapter);
3886 	iavf_free_q_vectors(adapter);
3887 
3888 	cancel_delayed_work_sync(&adapter->watchdog_task);
3889 
3890 	cancel_work_sync(&adapter->adminq_task);
3891 
3892 	iavf_free_rss(adapter);
3893 
3894 	if (hw->aq.asq.count)
3895 		iavf_shutdown_adminq(hw);
3896 
3897 	/* destroy the locks only once, here */
3898 	mutex_destroy(&hw->aq.arq_mutex);
3899 	mutex_destroy(&hw->aq.asq_mutex);
3900 
3901 	iounmap(hw->hw_addr);
3902 	pci_release_regions(pdev);
3903 	iavf_free_all_tx_resources(adapter);
3904 	iavf_free_all_rx_resources(adapter);
3905 	iavf_free_queues(adapter);
3906 	kfree(adapter->vf_res);
3907 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 	/* If we got removed before an up/down sequence, we've got a filter
3909 	 * hanging out there that we need to get rid of.
3910 	 */
3911 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 		list_del(&f->list);
3913 		kfree(f);
3914 	}
3915 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 				 list) {
3917 		list_del(&vlf->list);
3918 		kfree(vlf);
3919 	}
3920 
3921 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922 
3923 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 		list_del(&cf->list);
3926 		kfree(cf);
3927 	}
3928 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929 
3930 	free_netdev(netdev);
3931 
3932 	pci_disable_pcie_error_reporting(pdev);
3933 
3934 	pci_disable_device(pdev);
3935 }
3936 
3937 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938 
3939 static struct pci_driver iavf_driver = {
3940 	.name      = iavf_driver_name,
3941 	.id_table  = iavf_pci_tbl,
3942 	.probe     = iavf_probe,
3943 	.remove    = iavf_remove,
3944 	.driver.pm = &iavf_pm_ops,
3945 	.shutdown  = iavf_shutdown,
3946 };
3947 
3948 /**
3949  * iavf_init_module - Driver Registration Routine
3950  *
3951  * iavf_init_module is the first routine called when the driver is
3952  * loaded. All it does is register with the PCI subsystem.
3953  **/
3954 static int __init iavf_init_module(void)
3955 {
3956 	int ret;
3957 
3958 	pr_info("iavf: %s\n", iavf_driver_string);
3959 
3960 	pr_info("%s\n", iavf_copyright);
3961 
3962 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963 				  iavf_driver_name);
3964 	if (!iavf_wq) {
3965 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966 		return -ENOMEM;
3967 	}
3968 	ret = pci_register_driver(&iavf_driver);
3969 	return ret;
3970 }
3971 
3972 module_init(iavf_init_module);
3973 
3974 /**
3975  * iavf_exit_module - Driver Exit Cleanup Routine
3976  *
3977  * iavf_exit_module is called just before the driver is removed
3978  * from memory.
3979  **/
3980 static void __exit iavf_exit_module(void)
3981 {
3982 	pci_unregister_driver(&iavf_driver);
3983 	destroy_workqueue(iavf_wq);
3984 }
3985 
3986 module_exit(iavf_exit_module);
3987 
3988 /* iavf_main.c */
3989