1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 #define DRV_KERN "-k" 25 26 #define DRV_VERSION_MAJOR 3 27 #define DRV_VERSION_MINOR 2 28 #define DRV_VERSION_BUILD 3 29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 30 __stringify(DRV_VERSION_MINOR) "." \ 31 __stringify(DRV_VERSION_BUILD) \ 32 DRV_KERN 33 const char iavf_driver_version[] = DRV_VERSION; 34 static const char iavf_copyright[] = 35 "Copyright (c) 2013 - 2018 Intel Corporation."; 36 37 /* iavf_pci_tbl - PCI Device ID Table 38 * 39 * Wildcard entries (PCI_ANY_ID) should come last 40 * Last entry must be all 0s 41 * 42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 43 * Class, Class Mask, private data (not used) } 44 */ 45 static const struct pci_device_id iavf_pci_tbl[] = { 46 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 47 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 48 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 49 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 50 /* required last entry */ 51 {0, } 52 }; 53 54 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 55 56 MODULE_ALIAS("i40evf"); 57 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 58 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 59 MODULE_LICENSE("GPL v2"); 60 MODULE_VERSION(DRV_VERSION); 61 62 static const struct net_device_ops iavf_netdev_ops; 63 struct workqueue_struct *iavf_wq; 64 65 /** 66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 67 * @hw: pointer to the HW structure 68 * @mem: ptr to mem struct to fill out 69 * @size: size of memory requested 70 * @alignment: what to align the allocation to 71 **/ 72 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 73 struct iavf_dma_mem *mem, 74 u64 size, u32 alignment) 75 { 76 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 77 78 if (!mem) 79 return IAVF_ERR_PARAM; 80 81 mem->size = ALIGN(size, alignment); 82 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 83 (dma_addr_t *)&mem->pa, GFP_KERNEL); 84 if (mem->va) 85 return 0; 86 else 87 return IAVF_ERR_NO_MEMORY; 88 } 89 90 /** 91 * iavf_free_dma_mem_d - OS specific memory free for shared code 92 * @hw: pointer to the HW structure 93 * @mem: ptr to mem struct to free 94 **/ 95 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 96 struct iavf_dma_mem *mem) 97 { 98 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 99 100 if (!mem || !mem->va) 101 return IAVF_ERR_PARAM; 102 dma_free_coherent(&adapter->pdev->dev, mem->size, 103 mem->va, (dma_addr_t)mem->pa); 104 return 0; 105 } 106 107 /** 108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 109 * @hw: pointer to the HW structure 110 * @mem: ptr to mem struct to fill out 111 * @size: size of memory requested 112 **/ 113 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 114 struct iavf_virt_mem *mem, u32 size) 115 { 116 if (!mem) 117 return IAVF_ERR_PARAM; 118 119 mem->size = size; 120 mem->va = kzalloc(size, GFP_KERNEL); 121 122 if (mem->va) 123 return 0; 124 else 125 return IAVF_ERR_NO_MEMORY; 126 } 127 128 /** 129 * iavf_free_virt_mem_d - OS specific memory free for shared code 130 * @hw: pointer to the HW structure 131 * @mem: ptr to mem struct to free 132 **/ 133 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 134 struct iavf_virt_mem *mem) 135 { 136 if (!mem) 137 return IAVF_ERR_PARAM; 138 139 /* it's ok to kfree a NULL pointer */ 140 kfree(mem->va); 141 142 return 0; 143 } 144 145 /** 146 * iavf_schedule_reset - Set the flags and schedule a reset event 147 * @adapter: board private structure 148 **/ 149 void iavf_schedule_reset(struct iavf_adapter *adapter) 150 { 151 if (!(adapter->flags & 152 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 153 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 154 queue_work(iavf_wq, &adapter->reset_task); 155 } 156 } 157 158 /** 159 * iavf_tx_timeout - Respond to a Tx Hang 160 * @netdev: network interface device structure 161 **/ 162 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 163 { 164 struct iavf_adapter *adapter = netdev_priv(netdev); 165 166 adapter->tx_timeout_count++; 167 iavf_schedule_reset(adapter); 168 } 169 170 /** 171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 172 * @adapter: board private structure 173 **/ 174 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 175 { 176 struct iavf_hw *hw = &adapter->hw; 177 178 if (!adapter->msix_entries) 179 return; 180 181 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 182 183 iavf_flush(hw); 184 185 synchronize_irq(adapter->msix_entries[0].vector); 186 } 187 188 /** 189 * iavf_misc_irq_enable - Enable default interrupt generation settings 190 * @adapter: board private structure 191 **/ 192 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 193 { 194 struct iavf_hw *hw = &adapter->hw; 195 196 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 197 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 198 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 199 200 iavf_flush(hw); 201 } 202 203 /** 204 * iavf_irq_disable - Mask off interrupt generation on the NIC 205 * @adapter: board private structure 206 **/ 207 static void iavf_irq_disable(struct iavf_adapter *adapter) 208 { 209 int i; 210 struct iavf_hw *hw = &adapter->hw; 211 212 if (!adapter->msix_entries) 213 return; 214 215 for (i = 1; i < adapter->num_msix_vectors; i++) { 216 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 217 synchronize_irq(adapter->msix_entries[i].vector); 218 } 219 iavf_flush(hw); 220 } 221 222 /** 223 * iavf_irq_enable_queues - Enable interrupt for specified queues 224 * @adapter: board private structure 225 * @mask: bitmap of queues to enable 226 **/ 227 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 228 { 229 struct iavf_hw *hw = &adapter->hw; 230 int i; 231 232 for (i = 1; i < adapter->num_msix_vectors; i++) { 233 if (mask & BIT(i - 1)) { 234 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 235 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 236 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 237 } 238 } 239 } 240 241 /** 242 * iavf_irq_enable - Enable default interrupt generation settings 243 * @adapter: board private structure 244 * @flush: boolean value whether to run rd32() 245 **/ 246 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 247 { 248 struct iavf_hw *hw = &adapter->hw; 249 250 iavf_misc_irq_enable(adapter); 251 iavf_irq_enable_queues(adapter, ~0); 252 253 if (flush) 254 iavf_flush(hw); 255 } 256 257 /** 258 * iavf_msix_aq - Interrupt handler for vector 0 259 * @irq: interrupt number 260 * @data: pointer to netdev 261 **/ 262 static irqreturn_t iavf_msix_aq(int irq, void *data) 263 { 264 struct net_device *netdev = data; 265 struct iavf_adapter *adapter = netdev_priv(netdev); 266 struct iavf_hw *hw = &adapter->hw; 267 268 /* handle non-queue interrupts, these reads clear the registers */ 269 rd32(hw, IAVF_VFINT_ICR01); 270 rd32(hw, IAVF_VFINT_ICR0_ENA1); 271 272 /* schedule work on the private workqueue */ 273 queue_work(iavf_wq, &adapter->adminq_task); 274 275 return IRQ_HANDLED; 276 } 277 278 /** 279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 280 * @irq: interrupt number 281 * @data: pointer to a q_vector 282 **/ 283 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 284 { 285 struct iavf_q_vector *q_vector = data; 286 287 if (!q_vector->tx.ring && !q_vector->rx.ring) 288 return IRQ_HANDLED; 289 290 napi_schedule_irqoff(&q_vector->napi); 291 292 return IRQ_HANDLED; 293 } 294 295 /** 296 * iavf_map_vector_to_rxq - associate irqs with rx queues 297 * @adapter: board private structure 298 * @v_idx: interrupt number 299 * @r_idx: queue number 300 **/ 301 static void 302 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 303 { 304 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 305 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 306 struct iavf_hw *hw = &adapter->hw; 307 308 rx_ring->q_vector = q_vector; 309 rx_ring->next = q_vector->rx.ring; 310 rx_ring->vsi = &adapter->vsi; 311 q_vector->rx.ring = rx_ring; 312 q_vector->rx.count++; 313 q_vector->rx.next_update = jiffies + 1; 314 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 315 q_vector->ring_mask |= BIT(r_idx); 316 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 317 q_vector->rx.current_itr >> 1); 318 q_vector->rx.current_itr = q_vector->rx.target_itr; 319 } 320 321 /** 322 * iavf_map_vector_to_txq - associate irqs with tx queues 323 * @adapter: board private structure 324 * @v_idx: interrupt number 325 * @t_idx: queue number 326 **/ 327 static void 328 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 329 { 330 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 331 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 332 struct iavf_hw *hw = &adapter->hw; 333 334 tx_ring->q_vector = q_vector; 335 tx_ring->next = q_vector->tx.ring; 336 tx_ring->vsi = &adapter->vsi; 337 q_vector->tx.ring = tx_ring; 338 q_vector->tx.count++; 339 q_vector->tx.next_update = jiffies + 1; 340 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 341 q_vector->num_ringpairs++; 342 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 343 q_vector->tx.target_itr >> 1); 344 q_vector->tx.current_itr = q_vector->tx.target_itr; 345 } 346 347 /** 348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 349 * @adapter: board private structure to initialize 350 * 351 * This function maps descriptor rings to the queue-specific vectors 352 * we were allotted through the MSI-X enabling code. Ideally, we'd have 353 * one vector per ring/queue, but on a constrained vector budget, we 354 * group the rings as "efficiently" as possible. You would add new 355 * mapping configurations in here. 356 **/ 357 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 358 { 359 int rings_remaining = adapter->num_active_queues; 360 int ridx = 0, vidx = 0; 361 int q_vectors; 362 363 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 364 365 for (; ridx < rings_remaining; ridx++) { 366 iavf_map_vector_to_rxq(adapter, vidx, ridx); 367 iavf_map_vector_to_txq(adapter, vidx, ridx); 368 369 /* In the case where we have more queues than vectors, continue 370 * round-robin on vectors until all queues are mapped. 371 */ 372 if (++vidx >= q_vectors) 373 vidx = 0; 374 } 375 376 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 377 } 378 379 /** 380 * iavf_irq_affinity_notify - Callback for affinity changes 381 * @notify: context as to what irq was changed 382 * @mask: the new affinity mask 383 * 384 * This is a callback function used by the irq_set_affinity_notifier function 385 * so that we may register to receive changes to the irq affinity masks. 386 **/ 387 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 388 const cpumask_t *mask) 389 { 390 struct iavf_q_vector *q_vector = 391 container_of(notify, struct iavf_q_vector, affinity_notify); 392 393 cpumask_copy(&q_vector->affinity_mask, mask); 394 } 395 396 /** 397 * iavf_irq_affinity_release - Callback for affinity notifier release 398 * @ref: internal core kernel usage 399 * 400 * This is a callback function used by the irq_set_affinity_notifier function 401 * to inform the current notification subscriber that they will no longer 402 * receive notifications. 403 **/ 404 static void iavf_irq_affinity_release(struct kref *ref) {} 405 406 /** 407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 408 * @adapter: board private structure 409 * @basename: device basename 410 * 411 * Allocates MSI-X vectors for tx and rx handling, and requests 412 * interrupts from the kernel. 413 **/ 414 static int 415 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 416 { 417 unsigned int vector, q_vectors; 418 unsigned int rx_int_idx = 0, tx_int_idx = 0; 419 int irq_num, err; 420 int cpu; 421 422 iavf_irq_disable(adapter); 423 /* Decrement for Other and TCP Timer vectors */ 424 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 425 426 for (vector = 0; vector < q_vectors; vector++) { 427 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 428 429 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 430 431 if (q_vector->tx.ring && q_vector->rx.ring) { 432 snprintf(q_vector->name, sizeof(q_vector->name), 433 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 434 tx_int_idx++; 435 } else if (q_vector->rx.ring) { 436 snprintf(q_vector->name, sizeof(q_vector->name), 437 "iavf-%s-rx-%d", basename, rx_int_idx++); 438 } else if (q_vector->tx.ring) { 439 snprintf(q_vector->name, sizeof(q_vector->name), 440 "iavf-%s-tx-%d", basename, tx_int_idx++); 441 } else { 442 /* skip this unused q_vector */ 443 continue; 444 } 445 err = request_irq(irq_num, 446 iavf_msix_clean_rings, 447 0, 448 q_vector->name, 449 q_vector); 450 if (err) { 451 dev_info(&adapter->pdev->dev, 452 "Request_irq failed, error: %d\n", err); 453 goto free_queue_irqs; 454 } 455 /* register for affinity change notifications */ 456 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 457 q_vector->affinity_notify.release = 458 iavf_irq_affinity_release; 459 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 460 /* Spread the IRQ affinity hints across online CPUs. Note that 461 * get_cpu_mask returns a mask with a permanent lifetime so 462 * it's safe to use as a hint for irq_set_affinity_hint. 463 */ 464 cpu = cpumask_local_spread(q_vector->v_idx, -1); 465 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 466 } 467 468 return 0; 469 470 free_queue_irqs: 471 while (vector) { 472 vector--; 473 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 474 irq_set_affinity_notifier(irq_num, NULL); 475 irq_set_affinity_hint(irq_num, NULL); 476 free_irq(irq_num, &adapter->q_vectors[vector]); 477 } 478 return err; 479 } 480 481 /** 482 * iavf_request_misc_irq - Initialize MSI-X interrupts 483 * @adapter: board private structure 484 * 485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 486 * vector is only for the admin queue, and stays active even when the netdev 487 * is closed. 488 **/ 489 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 490 { 491 struct net_device *netdev = adapter->netdev; 492 int err; 493 494 snprintf(adapter->misc_vector_name, 495 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 496 dev_name(&adapter->pdev->dev)); 497 err = request_irq(adapter->msix_entries[0].vector, 498 &iavf_msix_aq, 0, 499 adapter->misc_vector_name, netdev); 500 if (err) { 501 dev_err(&adapter->pdev->dev, 502 "request_irq for %s failed: %d\n", 503 adapter->misc_vector_name, err); 504 free_irq(adapter->msix_entries[0].vector, netdev); 505 } 506 return err; 507 } 508 509 /** 510 * iavf_free_traffic_irqs - Free MSI-X interrupts 511 * @adapter: board private structure 512 * 513 * Frees all MSI-X vectors other than 0. 514 **/ 515 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 516 { 517 int vector, irq_num, q_vectors; 518 519 if (!adapter->msix_entries) 520 return; 521 522 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 523 524 for (vector = 0; vector < q_vectors; vector++) { 525 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 526 irq_set_affinity_notifier(irq_num, NULL); 527 irq_set_affinity_hint(irq_num, NULL); 528 free_irq(irq_num, &adapter->q_vectors[vector]); 529 } 530 } 531 532 /** 533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 534 * @adapter: board private structure 535 * 536 * Frees MSI-X vector 0. 537 **/ 538 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 539 { 540 struct net_device *netdev = adapter->netdev; 541 542 if (!adapter->msix_entries) 543 return; 544 545 free_irq(adapter->msix_entries[0].vector, netdev); 546 } 547 548 /** 549 * iavf_configure_tx - Configure Transmit Unit after Reset 550 * @adapter: board private structure 551 * 552 * Configure the Tx unit of the MAC after a reset. 553 **/ 554 static void iavf_configure_tx(struct iavf_adapter *adapter) 555 { 556 struct iavf_hw *hw = &adapter->hw; 557 int i; 558 559 for (i = 0; i < adapter->num_active_queues; i++) 560 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 561 } 562 563 /** 564 * iavf_configure_rx - Configure Receive Unit after Reset 565 * @adapter: board private structure 566 * 567 * Configure the Rx unit of the MAC after a reset. 568 **/ 569 static void iavf_configure_rx(struct iavf_adapter *adapter) 570 { 571 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 572 struct iavf_hw *hw = &adapter->hw; 573 int i; 574 575 /* Legacy Rx will always default to a 2048 buffer size. */ 576 #if (PAGE_SIZE < 8192) 577 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 578 struct net_device *netdev = adapter->netdev; 579 580 /* For jumbo frames on systems with 4K pages we have to use 581 * an order 1 page, so we might as well increase the size 582 * of our Rx buffer to make better use of the available space 583 */ 584 rx_buf_len = IAVF_RXBUFFER_3072; 585 586 /* We use a 1536 buffer size for configurations with 587 * standard Ethernet mtu. On x86 this gives us enough room 588 * for shared info and 192 bytes of padding. 589 */ 590 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 591 (netdev->mtu <= ETH_DATA_LEN)) 592 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 593 } 594 #endif 595 596 for (i = 0; i < adapter->num_active_queues; i++) { 597 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 598 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 599 600 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 601 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 602 else 603 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 604 } 605 } 606 607 /** 608 * iavf_find_vlan - Search filter list for specific vlan filter 609 * @adapter: board private structure 610 * @vlan: vlan tag 611 * 612 * Returns ptr to the filter object or NULL. Must be called while holding the 613 * mac_vlan_list_lock. 614 **/ 615 static struct 616 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 617 { 618 struct iavf_vlan_filter *f; 619 620 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 621 if (vlan == f->vlan) 622 return f; 623 } 624 return NULL; 625 } 626 627 /** 628 * iavf_add_vlan - Add a vlan filter to the list 629 * @adapter: board private structure 630 * @vlan: VLAN tag 631 * 632 * Returns ptr to the filter object or NULL when no memory available. 633 **/ 634 static struct 635 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 636 { 637 struct iavf_vlan_filter *f = NULL; 638 639 spin_lock_bh(&adapter->mac_vlan_list_lock); 640 641 f = iavf_find_vlan(adapter, vlan); 642 if (!f) { 643 f = kzalloc(sizeof(*f), GFP_ATOMIC); 644 if (!f) 645 goto clearout; 646 647 f->vlan = vlan; 648 649 list_add_tail(&f->list, &adapter->vlan_filter_list); 650 f->add = true; 651 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 652 } 653 654 clearout: 655 spin_unlock_bh(&adapter->mac_vlan_list_lock); 656 return f; 657 } 658 659 /** 660 * iavf_del_vlan - Remove a vlan filter from the list 661 * @adapter: board private structure 662 * @vlan: VLAN tag 663 **/ 664 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 665 { 666 struct iavf_vlan_filter *f; 667 668 spin_lock_bh(&adapter->mac_vlan_list_lock); 669 670 f = iavf_find_vlan(adapter, vlan); 671 if (f) { 672 f->remove = true; 673 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 674 } 675 676 spin_unlock_bh(&adapter->mac_vlan_list_lock); 677 } 678 679 /** 680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 681 * @netdev: network device struct 682 * @proto: unused protocol data 683 * @vid: VLAN tag 684 **/ 685 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 686 __always_unused __be16 proto, u16 vid) 687 { 688 struct iavf_adapter *adapter = netdev_priv(netdev); 689 690 if (!VLAN_ALLOWED(adapter)) 691 return -EIO; 692 if (iavf_add_vlan(adapter, vid) == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 699 * @netdev: network device struct 700 * @proto: unused protocol data 701 * @vid: VLAN tag 702 **/ 703 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 704 __always_unused __be16 proto, u16 vid) 705 { 706 struct iavf_adapter *adapter = netdev_priv(netdev); 707 708 if (VLAN_ALLOWED(adapter)) { 709 iavf_del_vlan(adapter, vid); 710 return 0; 711 } 712 return -EIO; 713 } 714 715 /** 716 * iavf_find_filter - Search filter list for specific mac filter 717 * @adapter: board private structure 718 * @macaddr: the MAC address 719 * 720 * Returns ptr to the filter object or NULL. Must be called while holding the 721 * mac_vlan_list_lock. 722 **/ 723 static struct 724 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 725 const u8 *macaddr) 726 { 727 struct iavf_mac_filter *f; 728 729 if (!macaddr) 730 return NULL; 731 732 list_for_each_entry(f, &adapter->mac_filter_list, list) { 733 if (ether_addr_equal(macaddr, f->macaddr)) 734 return f; 735 } 736 return NULL; 737 } 738 739 /** 740 * iavf_add_filter - Add a mac filter to the filter list 741 * @adapter: board private structure 742 * @macaddr: the MAC address 743 * 744 * Returns ptr to the filter object or NULL when no memory available. 745 **/ 746 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 747 const u8 *macaddr) 748 { 749 struct iavf_mac_filter *f; 750 751 if (!macaddr) 752 return NULL; 753 754 f = iavf_find_filter(adapter, macaddr); 755 if (!f) { 756 f = kzalloc(sizeof(*f), GFP_ATOMIC); 757 if (!f) 758 return f; 759 760 ether_addr_copy(f->macaddr, macaddr); 761 762 list_add_tail(&f->list, &adapter->mac_filter_list); 763 f->add = true; 764 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 765 } else { 766 f->remove = false; 767 } 768 769 return f; 770 } 771 772 /** 773 * iavf_set_mac - NDO callback to set port mac address 774 * @netdev: network interface device structure 775 * @p: pointer to an address structure 776 * 777 * Returns 0 on success, negative on failure 778 **/ 779 static int iavf_set_mac(struct net_device *netdev, void *p) 780 { 781 struct iavf_adapter *adapter = netdev_priv(netdev); 782 struct iavf_hw *hw = &adapter->hw; 783 struct iavf_mac_filter *f; 784 struct sockaddr *addr = p; 785 786 if (!is_valid_ether_addr(addr->sa_data)) 787 return -EADDRNOTAVAIL; 788 789 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 790 return 0; 791 792 spin_lock_bh(&adapter->mac_vlan_list_lock); 793 794 f = iavf_find_filter(adapter, hw->mac.addr); 795 if (f) { 796 f->remove = true; 797 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 798 } 799 800 f = iavf_add_filter(adapter, addr->sa_data); 801 802 spin_unlock_bh(&adapter->mac_vlan_list_lock); 803 804 if (f) { 805 ether_addr_copy(hw->mac.addr, addr->sa_data); 806 } 807 808 return (f == NULL) ? -ENOMEM : 0; 809 } 810 811 /** 812 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 813 * @netdev: the netdevice 814 * @addr: address to add 815 * 816 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 817 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 818 */ 819 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 820 { 821 struct iavf_adapter *adapter = netdev_priv(netdev); 822 823 if (iavf_add_filter(adapter, addr)) 824 return 0; 825 else 826 return -ENOMEM; 827 } 828 829 /** 830 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 831 * @netdev: the netdevice 832 * @addr: address to add 833 * 834 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 835 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 836 */ 837 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 838 { 839 struct iavf_adapter *adapter = netdev_priv(netdev); 840 struct iavf_mac_filter *f; 841 842 /* Under some circumstances, we might receive a request to delete 843 * our own device address from our uc list. Because we store the 844 * device address in the VSI's MAC/VLAN filter list, we need to ignore 845 * such requests and not delete our device address from this list. 846 */ 847 if (ether_addr_equal(addr, netdev->dev_addr)) 848 return 0; 849 850 f = iavf_find_filter(adapter, addr); 851 if (f) { 852 f->remove = true; 853 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 854 } 855 return 0; 856 } 857 858 /** 859 * iavf_set_rx_mode - NDO callback to set the netdev filters 860 * @netdev: network interface device structure 861 **/ 862 static void iavf_set_rx_mode(struct net_device *netdev) 863 { 864 struct iavf_adapter *adapter = netdev_priv(netdev); 865 866 spin_lock_bh(&adapter->mac_vlan_list_lock); 867 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 868 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 869 spin_unlock_bh(&adapter->mac_vlan_list_lock); 870 871 if (netdev->flags & IFF_PROMISC && 872 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 873 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 874 else if (!(netdev->flags & IFF_PROMISC) && 875 adapter->flags & IAVF_FLAG_PROMISC_ON) 876 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 877 878 if (netdev->flags & IFF_ALLMULTI && 879 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 880 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 881 else if (!(netdev->flags & IFF_ALLMULTI) && 882 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 883 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 884 } 885 886 /** 887 * iavf_napi_enable_all - enable NAPI on all queue vectors 888 * @adapter: board private structure 889 **/ 890 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 891 { 892 int q_idx; 893 struct iavf_q_vector *q_vector; 894 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 895 896 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 897 struct napi_struct *napi; 898 899 q_vector = &adapter->q_vectors[q_idx]; 900 napi = &q_vector->napi; 901 napi_enable(napi); 902 } 903 } 904 905 /** 906 * iavf_napi_disable_all - disable NAPI on all queue vectors 907 * @adapter: board private structure 908 **/ 909 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 910 { 911 int q_idx; 912 struct iavf_q_vector *q_vector; 913 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 914 915 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 916 q_vector = &adapter->q_vectors[q_idx]; 917 napi_disable(&q_vector->napi); 918 } 919 } 920 921 /** 922 * iavf_configure - set up transmit and receive data structures 923 * @adapter: board private structure 924 **/ 925 static void iavf_configure(struct iavf_adapter *adapter) 926 { 927 struct net_device *netdev = adapter->netdev; 928 int i; 929 930 iavf_set_rx_mode(netdev); 931 932 iavf_configure_tx(adapter); 933 iavf_configure_rx(adapter); 934 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 935 936 for (i = 0; i < adapter->num_active_queues; i++) { 937 struct iavf_ring *ring = &adapter->rx_rings[i]; 938 939 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 940 } 941 } 942 943 /** 944 * iavf_up_complete - Finish the last steps of bringing up a connection 945 * @adapter: board private structure 946 * 947 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 948 **/ 949 static void iavf_up_complete(struct iavf_adapter *adapter) 950 { 951 adapter->state = __IAVF_RUNNING; 952 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 953 954 iavf_napi_enable_all(adapter); 955 956 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 957 if (CLIENT_ENABLED(adapter)) 958 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 959 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 960 } 961 962 /** 963 * iavf_down - Shutdown the connection processing 964 * @adapter: board private structure 965 * 966 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 967 **/ 968 void iavf_down(struct iavf_adapter *adapter) 969 { 970 struct net_device *netdev = adapter->netdev; 971 struct iavf_vlan_filter *vlf; 972 struct iavf_mac_filter *f; 973 struct iavf_cloud_filter *cf; 974 975 if (adapter->state <= __IAVF_DOWN_PENDING) 976 return; 977 978 netif_carrier_off(netdev); 979 netif_tx_disable(netdev); 980 adapter->link_up = false; 981 iavf_napi_disable_all(adapter); 982 iavf_irq_disable(adapter); 983 984 spin_lock_bh(&adapter->mac_vlan_list_lock); 985 986 /* clear the sync flag on all filters */ 987 __dev_uc_unsync(adapter->netdev, NULL); 988 __dev_mc_unsync(adapter->netdev, NULL); 989 990 /* remove all MAC filters */ 991 list_for_each_entry(f, &adapter->mac_filter_list, list) { 992 f->remove = true; 993 } 994 995 /* remove all VLAN filters */ 996 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 997 vlf->remove = true; 998 } 999 1000 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1001 1002 /* remove all cloud filters */ 1003 spin_lock_bh(&adapter->cloud_filter_list_lock); 1004 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1005 cf->del = true; 1006 } 1007 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1008 1009 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1010 adapter->state != __IAVF_RESETTING) { 1011 /* cancel any current operation */ 1012 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1013 /* Schedule operations to close down the HW. Don't wait 1014 * here for this to complete. The watchdog is still running 1015 * and it will take care of this. 1016 */ 1017 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1019 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1020 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1021 } 1022 1023 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1024 } 1025 1026 /** 1027 * iavf_acquire_msix_vectors - Setup the MSIX capability 1028 * @adapter: board private structure 1029 * @vectors: number of vectors to request 1030 * 1031 * Work with the OS to set up the MSIX vectors needed. 1032 * 1033 * Returns 0 on success, negative on failure 1034 **/ 1035 static int 1036 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1037 { 1038 int err, vector_threshold; 1039 1040 /* We'll want at least 3 (vector_threshold): 1041 * 0) Other (Admin Queue and link, mostly) 1042 * 1) TxQ[0] Cleanup 1043 * 2) RxQ[0] Cleanup 1044 */ 1045 vector_threshold = MIN_MSIX_COUNT; 1046 1047 /* The more we get, the more we will assign to Tx/Rx Cleanup 1048 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1049 * Right now, we simply care about how many we'll get; we'll 1050 * set them up later while requesting irq's. 1051 */ 1052 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1053 vector_threshold, vectors); 1054 if (err < 0) { 1055 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1056 kfree(adapter->msix_entries); 1057 adapter->msix_entries = NULL; 1058 return err; 1059 } 1060 1061 /* Adjust for only the vectors we'll use, which is minimum 1062 * of max_msix_q_vectors + NONQ_VECS, or the number of 1063 * vectors we were allocated. 1064 */ 1065 adapter->num_msix_vectors = err; 1066 return 0; 1067 } 1068 1069 /** 1070 * iavf_free_queues - Free memory for all rings 1071 * @adapter: board private structure to initialize 1072 * 1073 * Free all of the memory associated with queue pairs. 1074 **/ 1075 static void iavf_free_queues(struct iavf_adapter *adapter) 1076 { 1077 if (!adapter->vsi_res) 1078 return; 1079 adapter->num_active_queues = 0; 1080 kfree(adapter->tx_rings); 1081 adapter->tx_rings = NULL; 1082 kfree(adapter->rx_rings); 1083 adapter->rx_rings = NULL; 1084 } 1085 1086 /** 1087 * iavf_alloc_queues - Allocate memory for all rings 1088 * @adapter: board private structure to initialize 1089 * 1090 * We allocate one ring per queue at run-time since we don't know the 1091 * number of queues at compile-time. The polling_netdev array is 1092 * intended for Multiqueue, but should work fine with a single queue. 1093 **/ 1094 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1095 { 1096 int i, num_active_queues; 1097 1098 /* If we're in reset reallocating queues we don't actually know yet for 1099 * certain the PF gave us the number of queues we asked for but we'll 1100 * assume it did. Once basic reset is finished we'll confirm once we 1101 * start negotiating config with PF. 1102 */ 1103 if (adapter->num_req_queues) 1104 num_active_queues = adapter->num_req_queues; 1105 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1106 adapter->num_tc) 1107 num_active_queues = adapter->ch_config.total_qps; 1108 else 1109 num_active_queues = min_t(int, 1110 adapter->vsi_res->num_queue_pairs, 1111 (int)(num_online_cpus())); 1112 1113 1114 adapter->tx_rings = kcalloc(num_active_queues, 1115 sizeof(struct iavf_ring), GFP_KERNEL); 1116 if (!adapter->tx_rings) 1117 goto err_out; 1118 adapter->rx_rings = kcalloc(num_active_queues, 1119 sizeof(struct iavf_ring), GFP_KERNEL); 1120 if (!adapter->rx_rings) 1121 goto err_out; 1122 1123 for (i = 0; i < num_active_queues; i++) { 1124 struct iavf_ring *tx_ring; 1125 struct iavf_ring *rx_ring; 1126 1127 tx_ring = &adapter->tx_rings[i]; 1128 1129 tx_ring->queue_index = i; 1130 tx_ring->netdev = adapter->netdev; 1131 tx_ring->dev = &adapter->pdev->dev; 1132 tx_ring->count = adapter->tx_desc_count; 1133 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1134 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1135 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1136 1137 rx_ring = &adapter->rx_rings[i]; 1138 rx_ring->queue_index = i; 1139 rx_ring->netdev = adapter->netdev; 1140 rx_ring->dev = &adapter->pdev->dev; 1141 rx_ring->count = adapter->rx_desc_count; 1142 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1143 } 1144 1145 adapter->num_active_queues = num_active_queues; 1146 1147 return 0; 1148 1149 err_out: 1150 iavf_free_queues(adapter); 1151 return -ENOMEM; 1152 } 1153 1154 /** 1155 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1156 * @adapter: board private structure to initialize 1157 * 1158 * Attempt to configure the interrupts using the best available 1159 * capabilities of the hardware and the kernel. 1160 **/ 1161 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1162 { 1163 int vector, v_budget; 1164 int pairs = 0; 1165 int err = 0; 1166 1167 if (!adapter->vsi_res) { 1168 err = -EIO; 1169 goto out; 1170 } 1171 pairs = adapter->num_active_queues; 1172 1173 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1174 * us much good if we have more vectors than CPUs. However, we already 1175 * limit the total number of queues by the number of CPUs so we do not 1176 * need any further limiting here. 1177 */ 1178 v_budget = min_t(int, pairs + NONQ_VECS, 1179 (int)adapter->vf_res->max_vectors); 1180 1181 adapter->msix_entries = kcalloc(v_budget, 1182 sizeof(struct msix_entry), GFP_KERNEL); 1183 if (!adapter->msix_entries) { 1184 err = -ENOMEM; 1185 goto out; 1186 } 1187 1188 for (vector = 0; vector < v_budget; vector++) 1189 adapter->msix_entries[vector].entry = vector; 1190 1191 err = iavf_acquire_msix_vectors(adapter, v_budget); 1192 1193 out: 1194 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1195 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1196 return err; 1197 } 1198 1199 /** 1200 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1201 * @adapter: board private structure 1202 * 1203 * Return 0 on success, negative on failure 1204 **/ 1205 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1206 { 1207 struct iavf_aqc_get_set_rss_key_data *rss_key = 1208 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1209 struct iavf_hw *hw = &adapter->hw; 1210 int ret = 0; 1211 1212 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1213 /* bail because we already have a command pending */ 1214 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1215 adapter->current_op); 1216 return -EBUSY; 1217 } 1218 1219 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1220 if (ret) { 1221 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1222 iavf_stat_str(hw, ret), 1223 iavf_aq_str(hw, hw->aq.asq_last_status)); 1224 return ret; 1225 1226 } 1227 1228 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1229 adapter->rss_lut, adapter->rss_lut_size); 1230 if (ret) { 1231 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1232 iavf_stat_str(hw, ret), 1233 iavf_aq_str(hw, hw->aq.asq_last_status)); 1234 } 1235 1236 return ret; 1237 1238 } 1239 1240 /** 1241 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1242 * @adapter: board private structure 1243 * 1244 * Returns 0 on success, negative on failure 1245 **/ 1246 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1247 { 1248 struct iavf_hw *hw = &adapter->hw; 1249 u32 *dw; 1250 u16 i; 1251 1252 dw = (u32 *)adapter->rss_key; 1253 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1254 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1255 1256 dw = (u32 *)adapter->rss_lut; 1257 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1258 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1259 1260 iavf_flush(hw); 1261 1262 return 0; 1263 } 1264 1265 /** 1266 * iavf_config_rss - Configure RSS keys and lut 1267 * @adapter: board private structure 1268 * 1269 * Returns 0 on success, negative on failure 1270 **/ 1271 int iavf_config_rss(struct iavf_adapter *adapter) 1272 { 1273 1274 if (RSS_PF(adapter)) { 1275 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1276 IAVF_FLAG_AQ_SET_RSS_KEY; 1277 return 0; 1278 } else if (RSS_AQ(adapter)) { 1279 return iavf_config_rss_aq(adapter); 1280 } else { 1281 return iavf_config_rss_reg(adapter); 1282 } 1283 } 1284 1285 /** 1286 * iavf_fill_rss_lut - Fill the lut with default values 1287 * @adapter: board private structure 1288 **/ 1289 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1290 { 1291 u16 i; 1292 1293 for (i = 0; i < adapter->rss_lut_size; i++) 1294 adapter->rss_lut[i] = i % adapter->num_active_queues; 1295 } 1296 1297 /** 1298 * iavf_init_rss - Prepare for RSS 1299 * @adapter: board private structure 1300 * 1301 * Return 0 on success, negative on failure 1302 **/ 1303 static int iavf_init_rss(struct iavf_adapter *adapter) 1304 { 1305 struct iavf_hw *hw = &adapter->hw; 1306 int ret; 1307 1308 if (!RSS_PF(adapter)) { 1309 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1310 if (adapter->vf_res->vf_cap_flags & 1311 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1312 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1313 else 1314 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1315 1316 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1317 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1318 } 1319 1320 iavf_fill_rss_lut(adapter); 1321 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1322 ret = iavf_config_rss(adapter); 1323 1324 return ret; 1325 } 1326 1327 /** 1328 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1329 * @adapter: board private structure to initialize 1330 * 1331 * We allocate one q_vector per queue interrupt. If allocation fails we 1332 * return -ENOMEM. 1333 **/ 1334 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1335 { 1336 int q_idx = 0, num_q_vectors; 1337 struct iavf_q_vector *q_vector; 1338 1339 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1340 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1341 GFP_KERNEL); 1342 if (!adapter->q_vectors) 1343 return -ENOMEM; 1344 1345 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1346 q_vector = &adapter->q_vectors[q_idx]; 1347 q_vector->adapter = adapter; 1348 q_vector->vsi = &adapter->vsi; 1349 q_vector->v_idx = q_idx; 1350 q_vector->reg_idx = q_idx; 1351 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1352 netif_napi_add(adapter->netdev, &q_vector->napi, 1353 iavf_napi_poll, NAPI_POLL_WEIGHT); 1354 } 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1361 * @adapter: board private structure to initialize 1362 * 1363 * This function frees the memory allocated to the q_vectors. In addition if 1364 * NAPI is enabled it will delete any references to the NAPI struct prior 1365 * to freeing the q_vector. 1366 **/ 1367 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1368 { 1369 int q_idx, num_q_vectors; 1370 int napi_vectors; 1371 1372 if (!adapter->q_vectors) 1373 return; 1374 1375 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1376 napi_vectors = adapter->num_active_queues; 1377 1378 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1379 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1380 1381 if (q_idx < napi_vectors) 1382 netif_napi_del(&q_vector->napi); 1383 } 1384 kfree(adapter->q_vectors); 1385 adapter->q_vectors = NULL; 1386 } 1387 1388 /** 1389 * iavf_reset_interrupt_capability - Reset MSIX setup 1390 * @adapter: board private structure 1391 * 1392 **/ 1393 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1394 { 1395 if (!adapter->msix_entries) 1396 return; 1397 1398 pci_disable_msix(adapter->pdev); 1399 kfree(adapter->msix_entries); 1400 adapter->msix_entries = NULL; 1401 } 1402 1403 /** 1404 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1405 * @adapter: board private structure to initialize 1406 * 1407 **/ 1408 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1409 { 1410 int err; 1411 1412 err = iavf_alloc_queues(adapter); 1413 if (err) { 1414 dev_err(&adapter->pdev->dev, 1415 "Unable to allocate memory for queues\n"); 1416 goto err_alloc_queues; 1417 } 1418 1419 rtnl_lock(); 1420 err = iavf_set_interrupt_capability(adapter); 1421 rtnl_unlock(); 1422 if (err) { 1423 dev_err(&adapter->pdev->dev, 1424 "Unable to setup interrupt capabilities\n"); 1425 goto err_set_interrupt; 1426 } 1427 1428 err = iavf_alloc_q_vectors(adapter); 1429 if (err) { 1430 dev_err(&adapter->pdev->dev, 1431 "Unable to allocate memory for queue vectors\n"); 1432 goto err_alloc_q_vectors; 1433 } 1434 1435 /* If we've made it so far while ADq flag being ON, then we haven't 1436 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1437 * resources have been allocated in the reset path. 1438 * Now we can truly claim that ADq is enabled. 1439 */ 1440 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1441 adapter->num_tc) 1442 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1443 adapter->num_tc); 1444 1445 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1446 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1447 adapter->num_active_queues); 1448 1449 return 0; 1450 err_alloc_q_vectors: 1451 iavf_reset_interrupt_capability(adapter); 1452 err_set_interrupt: 1453 iavf_free_queues(adapter); 1454 err_alloc_queues: 1455 return err; 1456 } 1457 1458 /** 1459 * iavf_free_rss - Free memory used by RSS structs 1460 * @adapter: board private structure 1461 **/ 1462 static void iavf_free_rss(struct iavf_adapter *adapter) 1463 { 1464 kfree(adapter->rss_key); 1465 adapter->rss_key = NULL; 1466 1467 kfree(adapter->rss_lut); 1468 adapter->rss_lut = NULL; 1469 } 1470 1471 /** 1472 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1473 * @adapter: board private structure 1474 * 1475 * Returns 0 on success, negative on failure 1476 **/ 1477 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1478 { 1479 struct net_device *netdev = adapter->netdev; 1480 int err; 1481 1482 if (netif_running(netdev)) 1483 iavf_free_traffic_irqs(adapter); 1484 iavf_free_misc_irq(adapter); 1485 iavf_reset_interrupt_capability(adapter); 1486 iavf_free_q_vectors(adapter); 1487 iavf_free_queues(adapter); 1488 1489 err = iavf_init_interrupt_scheme(adapter); 1490 if (err) 1491 goto err; 1492 1493 netif_tx_stop_all_queues(netdev); 1494 1495 err = iavf_request_misc_irq(adapter); 1496 if (err) 1497 goto err; 1498 1499 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1500 1501 iavf_map_rings_to_vectors(adapter); 1502 1503 if (RSS_AQ(adapter)) 1504 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1505 else 1506 err = iavf_init_rss(adapter); 1507 err: 1508 return err; 1509 } 1510 1511 /** 1512 * iavf_process_aq_command - process aq_required flags 1513 * and sends aq command 1514 * @adapter: pointer to iavf adapter structure 1515 * 1516 * Returns 0 on success 1517 * Returns error code if no command was sent 1518 * or error code if the command failed. 1519 **/ 1520 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1521 { 1522 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1523 return iavf_send_vf_config_msg(adapter); 1524 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1525 iavf_disable_queues(adapter); 1526 return 0; 1527 } 1528 1529 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1530 iavf_map_queues(adapter); 1531 return 0; 1532 } 1533 1534 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1535 iavf_add_ether_addrs(adapter); 1536 return 0; 1537 } 1538 1539 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1540 iavf_add_vlans(adapter); 1541 return 0; 1542 } 1543 1544 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1545 iavf_del_ether_addrs(adapter); 1546 return 0; 1547 } 1548 1549 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1550 iavf_del_vlans(adapter); 1551 return 0; 1552 } 1553 1554 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1555 iavf_enable_vlan_stripping(adapter); 1556 return 0; 1557 } 1558 1559 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1560 iavf_disable_vlan_stripping(adapter); 1561 return 0; 1562 } 1563 1564 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1565 iavf_configure_queues(adapter); 1566 return 0; 1567 } 1568 1569 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1570 iavf_enable_queues(adapter); 1571 return 0; 1572 } 1573 1574 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1575 /* This message goes straight to the firmware, not the 1576 * PF, so we don't have to set current_op as we will 1577 * not get a response through the ARQ. 1578 */ 1579 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1580 return 0; 1581 } 1582 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1583 iavf_get_hena(adapter); 1584 return 0; 1585 } 1586 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1587 iavf_set_hena(adapter); 1588 return 0; 1589 } 1590 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1591 iavf_set_rss_key(adapter); 1592 return 0; 1593 } 1594 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1595 iavf_set_rss_lut(adapter); 1596 return 0; 1597 } 1598 1599 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1600 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1601 FLAG_VF_MULTICAST_PROMISC); 1602 return 0; 1603 } 1604 1605 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1606 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1607 return 0; 1608 } 1609 1610 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1611 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1612 iavf_set_promiscuous(adapter, 0); 1613 return 0; 1614 } 1615 1616 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1617 iavf_enable_channels(adapter); 1618 return 0; 1619 } 1620 1621 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1622 iavf_disable_channels(adapter); 1623 return 0; 1624 } 1625 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1626 iavf_add_cloud_filter(adapter); 1627 return 0; 1628 } 1629 1630 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1631 iavf_del_cloud_filter(adapter); 1632 return 0; 1633 } 1634 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1635 iavf_del_cloud_filter(adapter); 1636 return 0; 1637 } 1638 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1639 iavf_add_cloud_filter(adapter); 1640 return 0; 1641 } 1642 return -EAGAIN; 1643 } 1644 1645 /** 1646 * iavf_startup - first step of driver startup 1647 * @adapter: board private structure 1648 * 1649 * Function process __IAVF_STARTUP driver state. 1650 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1651 * when fails it returns -EAGAIN 1652 **/ 1653 static int iavf_startup(struct iavf_adapter *adapter) 1654 { 1655 struct pci_dev *pdev = adapter->pdev; 1656 struct iavf_hw *hw = &adapter->hw; 1657 int err; 1658 1659 WARN_ON(adapter->state != __IAVF_STARTUP); 1660 1661 /* driver loaded, probe complete */ 1662 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1663 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1664 err = iavf_set_mac_type(hw); 1665 if (err) { 1666 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1667 goto err; 1668 } 1669 1670 err = iavf_check_reset_complete(hw); 1671 if (err) { 1672 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1673 err); 1674 goto err; 1675 } 1676 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1677 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1678 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1679 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1680 1681 err = iavf_init_adminq(hw); 1682 if (err) { 1683 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1684 goto err; 1685 } 1686 err = iavf_send_api_ver(adapter); 1687 if (err) { 1688 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1689 iavf_shutdown_adminq(hw); 1690 goto err; 1691 } 1692 adapter->state = __IAVF_INIT_VERSION_CHECK; 1693 err: 1694 return err; 1695 } 1696 1697 /** 1698 * iavf_init_version_check - second step of driver startup 1699 * @adapter: board private structure 1700 * 1701 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1702 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1703 * when fails it returns -EAGAIN 1704 **/ 1705 static int iavf_init_version_check(struct iavf_adapter *adapter) 1706 { 1707 struct pci_dev *pdev = adapter->pdev; 1708 struct iavf_hw *hw = &adapter->hw; 1709 int err = -EAGAIN; 1710 1711 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1712 1713 if (!iavf_asq_done(hw)) { 1714 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1715 iavf_shutdown_adminq(hw); 1716 adapter->state = __IAVF_STARTUP; 1717 goto err; 1718 } 1719 1720 /* aq msg sent, awaiting reply */ 1721 err = iavf_verify_api_ver(adapter); 1722 if (err) { 1723 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1724 err = iavf_send_api_ver(adapter); 1725 else 1726 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1727 adapter->pf_version.major, 1728 adapter->pf_version.minor, 1729 VIRTCHNL_VERSION_MAJOR, 1730 VIRTCHNL_VERSION_MINOR); 1731 goto err; 1732 } 1733 err = iavf_send_vf_config_msg(adapter); 1734 if (err) { 1735 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1736 err); 1737 goto err; 1738 } 1739 adapter->state = __IAVF_INIT_GET_RESOURCES; 1740 1741 err: 1742 return err; 1743 } 1744 1745 /** 1746 * iavf_init_get_resources - third step of driver startup 1747 * @adapter: board private structure 1748 * 1749 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1750 * finishes driver initialization procedure. 1751 * When success the state is changed to __IAVF_DOWN 1752 * when fails it returns -EAGAIN 1753 **/ 1754 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1755 { 1756 struct net_device *netdev = adapter->netdev; 1757 struct pci_dev *pdev = adapter->pdev; 1758 struct iavf_hw *hw = &adapter->hw; 1759 int err = 0, bufsz; 1760 1761 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1762 /* aq msg sent, awaiting reply */ 1763 if (!adapter->vf_res) { 1764 bufsz = sizeof(struct virtchnl_vf_resource) + 1765 (IAVF_MAX_VF_VSI * 1766 sizeof(struct virtchnl_vsi_resource)); 1767 adapter->vf_res = kzalloc(bufsz, GFP_KERNEL); 1768 if (!adapter->vf_res) 1769 goto err; 1770 } 1771 err = iavf_get_vf_config(adapter); 1772 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1773 err = iavf_send_vf_config_msg(adapter); 1774 goto err; 1775 } else if (err == IAVF_ERR_PARAM) { 1776 /* We only get ERR_PARAM if the device is in a very bad 1777 * state or if we've been disabled for previous bad 1778 * behavior. Either way, we're done now. 1779 */ 1780 iavf_shutdown_adminq(hw); 1781 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1782 return 0; 1783 } 1784 if (err) { 1785 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1786 goto err_alloc; 1787 } 1788 1789 if (iavf_process_config(adapter)) 1790 goto err_alloc; 1791 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1792 1793 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1794 1795 netdev->netdev_ops = &iavf_netdev_ops; 1796 iavf_set_ethtool_ops(netdev); 1797 netdev->watchdog_timeo = 5 * HZ; 1798 1799 /* MTU range: 68 - 9710 */ 1800 netdev->min_mtu = ETH_MIN_MTU; 1801 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1802 1803 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1804 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1805 adapter->hw.mac.addr); 1806 eth_hw_addr_random(netdev); 1807 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1808 } else { 1809 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1810 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1811 } 1812 1813 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1814 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1815 err = iavf_init_interrupt_scheme(adapter); 1816 if (err) 1817 goto err_sw_init; 1818 iavf_map_rings_to_vectors(adapter); 1819 if (adapter->vf_res->vf_cap_flags & 1820 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1821 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1822 1823 err = iavf_request_misc_irq(adapter); 1824 if (err) 1825 goto err_sw_init; 1826 1827 netif_carrier_off(netdev); 1828 adapter->link_up = false; 1829 1830 /* set the semaphore to prevent any callbacks after device registration 1831 * up to time when state of driver will be set to __IAVF_DOWN 1832 */ 1833 rtnl_lock(); 1834 if (!adapter->netdev_registered) { 1835 err = register_netdevice(netdev); 1836 if (err) { 1837 rtnl_unlock(); 1838 goto err_register; 1839 } 1840 } 1841 1842 adapter->netdev_registered = true; 1843 1844 netif_tx_stop_all_queues(netdev); 1845 if (CLIENT_ALLOWED(adapter)) { 1846 err = iavf_lan_add_device(adapter); 1847 if (err) { 1848 rtnl_unlock(); 1849 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1850 err); 1851 } 1852 } 1853 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1854 if (netdev->features & NETIF_F_GRO) 1855 dev_info(&pdev->dev, "GRO is enabled\n"); 1856 1857 adapter->state = __IAVF_DOWN; 1858 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1859 rtnl_unlock(); 1860 1861 iavf_misc_irq_enable(adapter); 1862 wake_up(&adapter->down_waitqueue); 1863 1864 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1865 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1866 if (!adapter->rss_key || !adapter->rss_lut) 1867 goto err_mem; 1868 if (RSS_AQ(adapter)) 1869 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1870 else 1871 iavf_init_rss(adapter); 1872 1873 return err; 1874 err_mem: 1875 iavf_free_rss(adapter); 1876 err_register: 1877 iavf_free_misc_irq(adapter); 1878 err_sw_init: 1879 iavf_reset_interrupt_capability(adapter); 1880 err_alloc: 1881 kfree(adapter->vf_res); 1882 adapter->vf_res = NULL; 1883 err: 1884 return err; 1885 } 1886 1887 /** 1888 * iavf_watchdog_task - Periodic call-back task 1889 * @work: pointer to work_struct 1890 **/ 1891 static void iavf_watchdog_task(struct work_struct *work) 1892 { 1893 struct iavf_adapter *adapter = container_of(work, 1894 struct iavf_adapter, 1895 watchdog_task.work); 1896 struct iavf_hw *hw = &adapter->hw; 1897 u32 reg_val; 1898 1899 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) 1900 goto restart_watchdog; 1901 1902 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1903 adapter->state = __IAVF_COMM_FAILED; 1904 1905 switch (adapter->state) { 1906 case __IAVF_COMM_FAILED: 1907 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1908 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1909 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1910 reg_val == VIRTCHNL_VFR_COMPLETED) { 1911 /* A chance for redemption! */ 1912 dev_err(&adapter->pdev->dev, 1913 "Hardware came out of reset. Attempting reinit.\n"); 1914 adapter->state = __IAVF_STARTUP; 1915 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1916 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1917 clear_bit(__IAVF_IN_CRITICAL_TASK, 1918 &adapter->crit_section); 1919 /* Don't reschedule the watchdog, since we've restarted 1920 * the init task. When init_task contacts the PF and 1921 * gets everything set up again, it'll restart the 1922 * watchdog for us. Down, boy. Sit. Stay. Woof. 1923 */ 1924 return; 1925 } 1926 adapter->aq_required = 0; 1927 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1928 clear_bit(__IAVF_IN_CRITICAL_TASK, 1929 &adapter->crit_section); 1930 queue_delayed_work(iavf_wq, 1931 &adapter->watchdog_task, 1932 msecs_to_jiffies(10)); 1933 goto watchdog_done; 1934 case __IAVF_RESETTING: 1935 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1936 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1937 return; 1938 case __IAVF_DOWN: 1939 case __IAVF_DOWN_PENDING: 1940 case __IAVF_TESTING: 1941 case __IAVF_RUNNING: 1942 if (adapter->current_op) { 1943 if (!iavf_asq_done(hw)) { 1944 dev_dbg(&adapter->pdev->dev, 1945 "Admin queue timeout\n"); 1946 iavf_send_api_ver(adapter); 1947 } 1948 } else { 1949 if (!iavf_process_aq_command(adapter) && 1950 adapter->state == __IAVF_RUNNING) 1951 iavf_request_stats(adapter); 1952 } 1953 break; 1954 case __IAVF_REMOVE: 1955 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1956 return; 1957 default: 1958 goto restart_watchdog; 1959 } 1960 1961 /* check for hw reset */ 1962 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1963 if (!reg_val) { 1964 adapter->state = __IAVF_RESETTING; 1965 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1966 adapter->aq_required = 0; 1967 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1968 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 1969 queue_work(iavf_wq, &adapter->reset_task); 1970 goto watchdog_done; 1971 } 1972 1973 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 1974 watchdog_done: 1975 if (adapter->state == __IAVF_RUNNING || 1976 adapter->state == __IAVF_COMM_FAILED) 1977 iavf_detect_recover_hung(&adapter->vsi); 1978 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1979 restart_watchdog: 1980 if (adapter->aq_required) 1981 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 1982 msecs_to_jiffies(20)); 1983 else 1984 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1985 queue_work(iavf_wq, &adapter->adminq_task); 1986 } 1987 1988 static void iavf_disable_vf(struct iavf_adapter *adapter) 1989 { 1990 struct iavf_mac_filter *f, *ftmp; 1991 struct iavf_vlan_filter *fv, *fvtmp; 1992 struct iavf_cloud_filter *cf, *cftmp; 1993 1994 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 1995 1996 /* We don't use netif_running() because it may be true prior to 1997 * ndo_open() returning, so we can't assume it means all our open 1998 * tasks have finished, since we're not holding the rtnl_lock here. 1999 */ 2000 if (adapter->state == __IAVF_RUNNING) { 2001 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2002 netif_carrier_off(adapter->netdev); 2003 netif_tx_disable(adapter->netdev); 2004 adapter->link_up = false; 2005 iavf_napi_disable_all(adapter); 2006 iavf_irq_disable(adapter); 2007 iavf_free_traffic_irqs(adapter); 2008 iavf_free_all_tx_resources(adapter); 2009 iavf_free_all_rx_resources(adapter); 2010 } 2011 2012 spin_lock_bh(&adapter->mac_vlan_list_lock); 2013 2014 /* Delete all of the filters */ 2015 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2016 list_del(&f->list); 2017 kfree(f); 2018 } 2019 2020 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2021 list_del(&fv->list); 2022 kfree(fv); 2023 } 2024 2025 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2026 2027 spin_lock_bh(&adapter->cloud_filter_list_lock); 2028 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2029 list_del(&cf->list); 2030 kfree(cf); 2031 adapter->num_cloud_filters--; 2032 } 2033 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2034 2035 iavf_free_misc_irq(adapter); 2036 iavf_reset_interrupt_capability(adapter); 2037 iavf_free_queues(adapter); 2038 iavf_free_q_vectors(adapter); 2039 kfree(adapter->vf_res); 2040 iavf_shutdown_adminq(&adapter->hw); 2041 adapter->netdev->flags &= ~IFF_UP; 2042 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2043 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2044 adapter->state = __IAVF_DOWN; 2045 wake_up(&adapter->down_waitqueue); 2046 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2047 } 2048 2049 #define IAVF_RESET_WAIT_MS 10 2050 #define IAVF_RESET_WAIT_COUNT 500 2051 /** 2052 * iavf_reset_task - Call-back task to handle hardware reset 2053 * @work: pointer to work_struct 2054 * 2055 * During reset we need to shut down and reinitialize the admin queue 2056 * before we can use it to communicate with the PF again. We also clear 2057 * and reinit the rings because that context is lost as well. 2058 **/ 2059 static void iavf_reset_task(struct work_struct *work) 2060 { 2061 struct iavf_adapter *adapter = container_of(work, 2062 struct iavf_adapter, 2063 reset_task); 2064 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2065 struct net_device *netdev = adapter->netdev; 2066 struct iavf_hw *hw = &adapter->hw; 2067 struct iavf_mac_filter *f, *ftmp; 2068 struct iavf_vlan_filter *vlf; 2069 struct iavf_cloud_filter *cf; 2070 u32 reg_val; 2071 int i = 0, err; 2072 bool running; 2073 2074 /* When device is being removed it doesn't make sense to run the reset 2075 * task, just return in such a case. 2076 */ 2077 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2078 return; 2079 2080 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, 2081 &adapter->crit_section)) 2082 usleep_range(500, 1000); 2083 if (CLIENT_ENABLED(adapter)) { 2084 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2085 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2086 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2087 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2088 cancel_delayed_work_sync(&adapter->client_task); 2089 iavf_notify_client_close(&adapter->vsi, true); 2090 } 2091 iavf_misc_irq_disable(adapter); 2092 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2093 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2094 /* Restart the AQ here. If we have been reset but didn't 2095 * detect it, or if the PF had to reinit, our AQ will be hosed. 2096 */ 2097 iavf_shutdown_adminq(hw); 2098 iavf_init_adminq(hw); 2099 iavf_request_reset(adapter); 2100 } 2101 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2102 2103 /* poll until we see the reset actually happen */ 2104 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { 2105 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2106 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2107 if (!reg_val) 2108 break; 2109 usleep_range(5000, 10000); 2110 } 2111 if (i == IAVF_RESET_WAIT_COUNT) { 2112 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2113 goto continue_reset; /* act like the reset happened */ 2114 } 2115 2116 /* wait until the reset is complete and the PF is responding to us */ 2117 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { 2118 /* sleep first to make sure a minimum wait time is met */ 2119 msleep(IAVF_RESET_WAIT_MS); 2120 2121 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2122 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2123 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2124 break; 2125 } 2126 2127 pci_set_master(adapter->pdev); 2128 2129 if (i == IAVF_RESET_WAIT_COUNT) { 2130 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2131 reg_val); 2132 iavf_disable_vf(adapter); 2133 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2134 return; /* Do not attempt to reinit. It's dead, Jim. */ 2135 } 2136 2137 continue_reset: 2138 /* We don't use netif_running() because it may be true prior to 2139 * ndo_open() returning, so we can't assume it means all our open 2140 * tasks have finished, since we're not holding the rtnl_lock here. 2141 */ 2142 running = ((adapter->state == __IAVF_RUNNING) || 2143 (adapter->state == __IAVF_RESETTING)); 2144 2145 if (running) { 2146 netif_carrier_off(netdev); 2147 netif_tx_stop_all_queues(netdev); 2148 adapter->link_up = false; 2149 iavf_napi_disable_all(adapter); 2150 } 2151 iavf_irq_disable(adapter); 2152 2153 adapter->state = __IAVF_RESETTING; 2154 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2155 2156 /* free the Tx/Rx rings and descriptors, might be better to just 2157 * re-use them sometime in the future 2158 */ 2159 iavf_free_all_rx_resources(adapter); 2160 iavf_free_all_tx_resources(adapter); 2161 2162 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2163 /* kill and reinit the admin queue */ 2164 iavf_shutdown_adminq(hw); 2165 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2166 err = iavf_init_adminq(hw); 2167 if (err) 2168 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2169 err); 2170 adapter->aq_required = 0; 2171 2172 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2173 err = iavf_reinit_interrupt_scheme(adapter); 2174 if (err) 2175 goto reset_err; 2176 } 2177 2178 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2179 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2180 2181 spin_lock_bh(&adapter->mac_vlan_list_lock); 2182 2183 /* Delete filter for the current MAC address, it could have 2184 * been changed by the PF via administratively set MAC. 2185 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2186 */ 2187 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2188 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2189 list_del(&f->list); 2190 kfree(f); 2191 } 2192 } 2193 /* re-add all MAC filters */ 2194 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2195 f->add = true; 2196 } 2197 /* re-add all VLAN filters */ 2198 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2199 vlf->add = true; 2200 } 2201 2202 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2203 2204 /* check if TCs are running and re-add all cloud filters */ 2205 spin_lock_bh(&adapter->cloud_filter_list_lock); 2206 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2207 adapter->num_tc) { 2208 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2209 cf->add = true; 2210 } 2211 } 2212 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2213 2214 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2215 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2216 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2217 iavf_misc_irq_enable(adapter); 2218 2219 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2220 2221 /* We were running when the reset started, so we need to restore some 2222 * state here. 2223 */ 2224 if (running) { 2225 /* allocate transmit descriptors */ 2226 err = iavf_setup_all_tx_resources(adapter); 2227 if (err) 2228 goto reset_err; 2229 2230 /* allocate receive descriptors */ 2231 err = iavf_setup_all_rx_resources(adapter); 2232 if (err) 2233 goto reset_err; 2234 2235 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2236 err = iavf_request_traffic_irqs(adapter, netdev->name); 2237 if (err) 2238 goto reset_err; 2239 2240 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2241 } 2242 2243 iavf_configure(adapter); 2244 2245 iavf_up_complete(adapter); 2246 2247 iavf_irq_enable(adapter, true); 2248 } else { 2249 adapter->state = __IAVF_DOWN; 2250 wake_up(&adapter->down_waitqueue); 2251 } 2252 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2253 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2254 2255 return; 2256 reset_err: 2257 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2258 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2259 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2260 iavf_close(netdev); 2261 } 2262 2263 /** 2264 * iavf_adminq_task - worker thread to clean the admin queue 2265 * @work: pointer to work_struct containing our data 2266 **/ 2267 static void iavf_adminq_task(struct work_struct *work) 2268 { 2269 struct iavf_adapter *adapter = 2270 container_of(work, struct iavf_adapter, adminq_task); 2271 struct iavf_hw *hw = &adapter->hw; 2272 struct iavf_arq_event_info event; 2273 enum virtchnl_ops v_op; 2274 enum iavf_status ret, v_ret; 2275 u32 val, oldval; 2276 u16 pending; 2277 2278 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2279 goto out; 2280 2281 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2282 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2283 if (!event.msg_buf) 2284 goto out; 2285 2286 do { 2287 ret = iavf_clean_arq_element(hw, &event, &pending); 2288 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2289 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2290 2291 if (ret || !v_op) 2292 break; /* No event to process or error cleaning ARQ */ 2293 2294 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2295 event.msg_len); 2296 if (pending != 0) 2297 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2298 } while (pending); 2299 2300 if ((adapter->flags & 2301 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2302 adapter->state == __IAVF_RESETTING) 2303 goto freedom; 2304 2305 /* check for error indications */ 2306 val = rd32(hw, hw->aq.arq.len); 2307 if (val == 0xdeadbeef) /* indicates device in reset */ 2308 goto freedom; 2309 oldval = val; 2310 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2311 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2312 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2313 } 2314 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2315 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2316 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2317 } 2318 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2319 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2320 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2321 } 2322 if (oldval != val) 2323 wr32(hw, hw->aq.arq.len, val); 2324 2325 val = rd32(hw, hw->aq.asq.len); 2326 oldval = val; 2327 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2328 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2329 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2330 } 2331 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2332 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2333 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2334 } 2335 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2336 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2337 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2338 } 2339 if (oldval != val) 2340 wr32(hw, hw->aq.asq.len, val); 2341 2342 freedom: 2343 kfree(event.msg_buf); 2344 out: 2345 /* re-enable Admin queue interrupt cause */ 2346 iavf_misc_irq_enable(adapter); 2347 } 2348 2349 /** 2350 * iavf_client_task - worker thread to perform client work 2351 * @work: pointer to work_struct containing our data 2352 * 2353 * This task handles client interactions. Because client calls can be 2354 * reentrant, we can't handle them in the watchdog. 2355 **/ 2356 static void iavf_client_task(struct work_struct *work) 2357 { 2358 struct iavf_adapter *adapter = 2359 container_of(work, struct iavf_adapter, client_task.work); 2360 2361 /* If we can't get the client bit, just give up. We'll be rescheduled 2362 * later. 2363 */ 2364 2365 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) 2366 return; 2367 2368 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2369 iavf_client_subtask(adapter); 2370 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2371 goto out; 2372 } 2373 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2374 iavf_notify_client_l2_params(&adapter->vsi); 2375 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2376 goto out; 2377 } 2378 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2379 iavf_notify_client_close(&adapter->vsi, false); 2380 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2381 goto out; 2382 } 2383 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2384 iavf_notify_client_open(&adapter->vsi); 2385 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2386 } 2387 out: 2388 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2389 } 2390 2391 /** 2392 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2393 * @adapter: board private structure 2394 * 2395 * Free all transmit software resources 2396 **/ 2397 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2398 { 2399 int i; 2400 2401 if (!adapter->tx_rings) 2402 return; 2403 2404 for (i = 0; i < adapter->num_active_queues; i++) 2405 if (adapter->tx_rings[i].desc) 2406 iavf_free_tx_resources(&adapter->tx_rings[i]); 2407 } 2408 2409 /** 2410 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2411 * @adapter: board private structure 2412 * 2413 * If this function returns with an error, then it's possible one or 2414 * more of the rings is populated (while the rest are not). It is the 2415 * callers duty to clean those orphaned rings. 2416 * 2417 * Return 0 on success, negative on failure 2418 **/ 2419 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2420 { 2421 int i, err = 0; 2422 2423 for (i = 0; i < adapter->num_active_queues; i++) { 2424 adapter->tx_rings[i].count = adapter->tx_desc_count; 2425 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2426 if (!err) 2427 continue; 2428 dev_err(&adapter->pdev->dev, 2429 "Allocation for Tx Queue %u failed\n", i); 2430 break; 2431 } 2432 2433 return err; 2434 } 2435 2436 /** 2437 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2438 * @adapter: board private structure 2439 * 2440 * If this function returns with an error, then it's possible one or 2441 * more of the rings is populated (while the rest are not). It is the 2442 * callers duty to clean those orphaned rings. 2443 * 2444 * Return 0 on success, negative on failure 2445 **/ 2446 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2447 { 2448 int i, err = 0; 2449 2450 for (i = 0; i < adapter->num_active_queues; i++) { 2451 adapter->rx_rings[i].count = adapter->rx_desc_count; 2452 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2453 if (!err) 2454 continue; 2455 dev_err(&adapter->pdev->dev, 2456 "Allocation for Rx Queue %u failed\n", i); 2457 break; 2458 } 2459 return err; 2460 } 2461 2462 /** 2463 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2464 * @adapter: board private structure 2465 * 2466 * Free all receive software resources 2467 **/ 2468 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2469 { 2470 int i; 2471 2472 if (!adapter->rx_rings) 2473 return; 2474 2475 for (i = 0; i < adapter->num_active_queues; i++) 2476 if (adapter->rx_rings[i].desc) 2477 iavf_free_rx_resources(&adapter->rx_rings[i]); 2478 } 2479 2480 /** 2481 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2482 * @adapter: board private structure 2483 * @max_tx_rate: max Tx bw for a tc 2484 **/ 2485 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2486 u64 max_tx_rate) 2487 { 2488 int speed = 0, ret = 0; 2489 2490 switch (adapter->link_speed) { 2491 case IAVF_LINK_SPEED_40GB: 2492 speed = 40000; 2493 break; 2494 case IAVF_LINK_SPEED_25GB: 2495 speed = 25000; 2496 break; 2497 case IAVF_LINK_SPEED_20GB: 2498 speed = 20000; 2499 break; 2500 case IAVF_LINK_SPEED_10GB: 2501 speed = 10000; 2502 break; 2503 case IAVF_LINK_SPEED_1GB: 2504 speed = 1000; 2505 break; 2506 case IAVF_LINK_SPEED_100MB: 2507 speed = 100; 2508 break; 2509 default: 2510 break; 2511 } 2512 2513 if (max_tx_rate > speed) { 2514 dev_err(&adapter->pdev->dev, 2515 "Invalid tx rate specified\n"); 2516 ret = -EINVAL; 2517 } 2518 2519 return ret; 2520 } 2521 2522 /** 2523 * iavf_validate_channel_config - validate queue mapping info 2524 * @adapter: board private structure 2525 * @mqprio_qopt: queue parameters 2526 * 2527 * This function validates if the config provided by the user to 2528 * configure queue channels is valid or not. Returns 0 on a valid 2529 * config. 2530 **/ 2531 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2532 struct tc_mqprio_qopt_offload *mqprio_qopt) 2533 { 2534 u64 total_max_rate = 0; 2535 int i, num_qps = 0; 2536 u64 tx_rate = 0; 2537 int ret = 0; 2538 2539 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2540 mqprio_qopt->qopt.num_tc < 1) 2541 return -EINVAL; 2542 2543 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2544 if (!mqprio_qopt->qopt.count[i] || 2545 mqprio_qopt->qopt.offset[i] != num_qps) 2546 return -EINVAL; 2547 if (mqprio_qopt->min_rate[i]) { 2548 dev_err(&adapter->pdev->dev, 2549 "Invalid min tx rate (greater than 0) specified\n"); 2550 return -EINVAL; 2551 } 2552 /*convert to Mbps */ 2553 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2554 IAVF_MBPS_DIVISOR); 2555 total_max_rate += tx_rate; 2556 num_qps += mqprio_qopt->qopt.count[i]; 2557 } 2558 if (num_qps > IAVF_MAX_REQ_QUEUES) 2559 return -EINVAL; 2560 2561 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2562 return ret; 2563 } 2564 2565 /** 2566 * iavf_del_all_cloud_filters - delete all cloud filters 2567 * on the traffic classes 2568 **/ 2569 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2570 { 2571 struct iavf_cloud_filter *cf, *cftmp; 2572 2573 spin_lock_bh(&adapter->cloud_filter_list_lock); 2574 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2575 list) { 2576 list_del(&cf->list); 2577 kfree(cf); 2578 adapter->num_cloud_filters--; 2579 } 2580 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2581 } 2582 2583 /** 2584 * __iavf_setup_tc - configure multiple traffic classes 2585 * @netdev: network interface device structure 2586 * @type_date: tc offload data 2587 * 2588 * This function processes the config information provided by the 2589 * user to configure traffic classes/queue channels and packages the 2590 * information to request the PF to setup traffic classes. 2591 * 2592 * Returns 0 on success. 2593 **/ 2594 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2595 { 2596 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2597 struct iavf_adapter *adapter = netdev_priv(netdev); 2598 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2599 u8 num_tc = 0, total_qps = 0; 2600 int ret = 0, netdev_tc = 0; 2601 u64 max_tx_rate; 2602 u16 mode; 2603 int i; 2604 2605 num_tc = mqprio_qopt->qopt.num_tc; 2606 mode = mqprio_qopt->mode; 2607 2608 /* delete queue_channel */ 2609 if (!mqprio_qopt->qopt.hw) { 2610 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2611 /* reset the tc configuration */ 2612 netdev_reset_tc(netdev); 2613 adapter->num_tc = 0; 2614 netif_tx_stop_all_queues(netdev); 2615 netif_tx_disable(netdev); 2616 iavf_del_all_cloud_filters(adapter); 2617 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2618 goto exit; 2619 } else { 2620 return -EINVAL; 2621 } 2622 } 2623 2624 /* add queue channel */ 2625 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2626 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2627 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2628 return -EOPNOTSUPP; 2629 } 2630 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2631 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2632 return -EINVAL; 2633 } 2634 2635 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2636 if (ret) 2637 return ret; 2638 /* Return if same TC config is requested */ 2639 if (adapter->num_tc == num_tc) 2640 return 0; 2641 adapter->num_tc = num_tc; 2642 2643 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2644 if (i < num_tc) { 2645 adapter->ch_config.ch_info[i].count = 2646 mqprio_qopt->qopt.count[i]; 2647 adapter->ch_config.ch_info[i].offset = 2648 mqprio_qopt->qopt.offset[i]; 2649 total_qps += mqprio_qopt->qopt.count[i]; 2650 max_tx_rate = mqprio_qopt->max_rate[i]; 2651 /* convert to Mbps */ 2652 max_tx_rate = div_u64(max_tx_rate, 2653 IAVF_MBPS_DIVISOR); 2654 adapter->ch_config.ch_info[i].max_tx_rate = 2655 max_tx_rate; 2656 } else { 2657 adapter->ch_config.ch_info[i].count = 1; 2658 adapter->ch_config.ch_info[i].offset = 0; 2659 } 2660 } 2661 adapter->ch_config.total_qps = total_qps; 2662 netif_tx_stop_all_queues(netdev); 2663 netif_tx_disable(netdev); 2664 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2665 netdev_reset_tc(netdev); 2666 /* Report the tc mapping up the stack */ 2667 netdev_set_num_tc(adapter->netdev, num_tc); 2668 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2669 u16 qcount = mqprio_qopt->qopt.count[i]; 2670 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2671 2672 if (i < num_tc) 2673 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2674 qoffset); 2675 } 2676 } 2677 exit: 2678 return ret; 2679 } 2680 2681 /** 2682 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2683 * @adapter: board private structure 2684 * @cls_flower: pointer to struct flow_cls_offload 2685 * @filter: pointer to cloud filter structure 2686 */ 2687 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2688 struct flow_cls_offload *f, 2689 struct iavf_cloud_filter *filter) 2690 { 2691 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2692 struct flow_dissector *dissector = rule->match.dissector; 2693 u16 n_proto_mask = 0; 2694 u16 n_proto_key = 0; 2695 u8 field_flags = 0; 2696 u16 addr_type = 0; 2697 u16 n_proto = 0; 2698 int i = 0; 2699 struct virtchnl_filter *vf = &filter->f; 2700 2701 if (dissector->used_keys & 2702 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2703 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2704 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2705 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2706 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2707 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2708 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2709 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2710 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2711 dissector->used_keys); 2712 return -EOPNOTSUPP; 2713 } 2714 2715 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2716 struct flow_match_enc_keyid match; 2717 2718 flow_rule_match_enc_keyid(rule, &match); 2719 if (match.mask->keyid != 0) 2720 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2721 } 2722 2723 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2724 struct flow_match_basic match; 2725 2726 flow_rule_match_basic(rule, &match); 2727 n_proto_key = ntohs(match.key->n_proto); 2728 n_proto_mask = ntohs(match.mask->n_proto); 2729 2730 if (n_proto_key == ETH_P_ALL) { 2731 n_proto_key = 0; 2732 n_proto_mask = 0; 2733 } 2734 n_proto = n_proto_key & n_proto_mask; 2735 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2736 return -EINVAL; 2737 if (n_proto == ETH_P_IPV6) { 2738 /* specify flow type as TCP IPv6 */ 2739 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2740 } 2741 2742 if (match.key->ip_proto != IPPROTO_TCP) { 2743 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2744 return -EINVAL; 2745 } 2746 } 2747 2748 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2749 struct flow_match_eth_addrs match; 2750 2751 flow_rule_match_eth_addrs(rule, &match); 2752 2753 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2754 if (!is_zero_ether_addr(match.mask->dst)) { 2755 if (is_broadcast_ether_addr(match.mask->dst)) { 2756 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2757 } else { 2758 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2759 match.mask->dst); 2760 return IAVF_ERR_CONFIG; 2761 } 2762 } 2763 2764 if (!is_zero_ether_addr(match.mask->src)) { 2765 if (is_broadcast_ether_addr(match.mask->src)) { 2766 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2767 } else { 2768 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2769 match.mask->src); 2770 return IAVF_ERR_CONFIG; 2771 } 2772 } 2773 2774 if (!is_zero_ether_addr(match.key->dst)) 2775 if (is_valid_ether_addr(match.key->dst) || 2776 is_multicast_ether_addr(match.key->dst)) { 2777 /* set the mask if a valid dst_mac address */ 2778 for (i = 0; i < ETH_ALEN; i++) 2779 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2780 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2781 match.key->dst); 2782 } 2783 2784 if (!is_zero_ether_addr(match.key->src)) 2785 if (is_valid_ether_addr(match.key->src) || 2786 is_multicast_ether_addr(match.key->src)) { 2787 /* set the mask if a valid dst_mac address */ 2788 for (i = 0; i < ETH_ALEN; i++) 2789 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2790 ether_addr_copy(vf->data.tcp_spec.src_mac, 2791 match.key->src); 2792 } 2793 } 2794 2795 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2796 struct flow_match_vlan match; 2797 2798 flow_rule_match_vlan(rule, &match); 2799 if (match.mask->vlan_id) { 2800 if (match.mask->vlan_id == VLAN_VID_MASK) { 2801 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2802 } else { 2803 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2804 match.mask->vlan_id); 2805 return IAVF_ERR_CONFIG; 2806 } 2807 } 2808 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2809 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2810 } 2811 2812 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2813 struct flow_match_control match; 2814 2815 flow_rule_match_control(rule, &match); 2816 addr_type = match.key->addr_type; 2817 } 2818 2819 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2820 struct flow_match_ipv4_addrs match; 2821 2822 flow_rule_match_ipv4_addrs(rule, &match); 2823 if (match.mask->dst) { 2824 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2825 field_flags |= IAVF_CLOUD_FIELD_IIP; 2826 } else { 2827 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2828 be32_to_cpu(match.mask->dst)); 2829 return IAVF_ERR_CONFIG; 2830 } 2831 } 2832 2833 if (match.mask->src) { 2834 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2835 field_flags |= IAVF_CLOUD_FIELD_IIP; 2836 } else { 2837 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2838 be32_to_cpu(match.mask->dst)); 2839 return IAVF_ERR_CONFIG; 2840 } 2841 } 2842 2843 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2844 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2845 return IAVF_ERR_CONFIG; 2846 } 2847 if (match.key->dst) { 2848 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2849 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2850 } 2851 if (match.key->src) { 2852 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2853 vf->data.tcp_spec.src_ip[0] = match.key->src; 2854 } 2855 } 2856 2857 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2858 struct flow_match_ipv6_addrs match; 2859 2860 flow_rule_match_ipv6_addrs(rule, &match); 2861 2862 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2863 if (ipv6_addr_any(&match.mask->dst)) { 2864 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2865 IPV6_ADDR_ANY); 2866 return IAVF_ERR_CONFIG; 2867 } 2868 2869 /* src and dest IPv6 address should not be LOOPBACK 2870 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2871 */ 2872 if (ipv6_addr_loopback(&match.key->dst) || 2873 ipv6_addr_loopback(&match.key->src)) { 2874 dev_err(&adapter->pdev->dev, 2875 "ipv6 addr should not be loopback\n"); 2876 return IAVF_ERR_CONFIG; 2877 } 2878 if (!ipv6_addr_any(&match.mask->dst) || 2879 !ipv6_addr_any(&match.mask->src)) 2880 field_flags |= IAVF_CLOUD_FIELD_IIP; 2881 2882 for (i = 0; i < 4; i++) 2883 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2884 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2885 sizeof(vf->data.tcp_spec.dst_ip)); 2886 for (i = 0; i < 4; i++) 2887 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2888 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2889 sizeof(vf->data.tcp_spec.src_ip)); 2890 } 2891 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2892 struct flow_match_ports match; 2893 2894 flow_rule_match_ports(rule, &match); 2895 if (match.mask->src) { 2896 if (match.mask->src == cpu_to_be16(0xffff)) { 2897 field_flags |= IAVF_CLOUD_FIELD_IIP; 2898 } else { 2899 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2900 be16_to_cpu(match.mask->src)); 2901 return IAVF_ERR_CONFIG; 2902 } 2903 } 2904 2905 if (match.mask->dst) { 2906 if (match.mask->dst == cpu_to_be16(0xffff)) { 2907 field_flags |= IAVF_CLOUD_FIELD_IIP; 2908 } else { 2909 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2910 be16_to_cpu(match.mask->dst)); 2911 return IAVF_ERR_CONFIG; 2912 } 2913 } 2914 if (match.key->dst) { 2915 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2916 vf->data.tcp_spec.dst_port = match.key->dst; 2917 } 2918 2919 if (match.key->src) { 2920 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2921 vf->data.tcp_spec.src_port = match.key->src; 2922 } 2923 } 2924 vf->field_flags = field_flags; 2925 2926 return 0; 2927 } 2928 2929 /** 2930 * iavf_handle_tclass - Forward to a traffic class on the device 2931 * @adapter: board private structure 2932 * @tc: traffic class index on the device 2933 * @filter: pointer to cloud filter structure 2934 */ 2935 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 2936 struct iavf_cloud_filter *filter) 2937 { 2938 if (tc == 0) 2939 return 0; 2940 if (tc < adapter->num_tc) { 2941 if (!filter->f.data.tcp_spec.dst_port) { 2942 dev_err(&adapter->pdev->dev, 2943 "Specify destination port to redirect to traffic class other than TC0\n"); 2944 return -EINVAL; 2945 } 2946 } 2947 /* redirect to a traffic class on the same device */ 2948 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 2949 filter->f.action_meta = tc; 2950 return 0; 2951 } 2952 2953 /** 2954 * iavf_configure_clsflower - Add tc flower filters 2955 * @adapter: board private structure 2956 * @cls_flower: Pointer to struct flow_cls_offload 2957 */ 2958 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 2959 struct flow_cls_offload *cls_flower) 2960 { 2961 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2962 struct iavf_cloud_filter *filter = NULL; 2963 int err = -EINVAL, count = 50; 2964 2965 if (tc < 0) { 2966 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 2967 return -EINVAL; 2968 } 2969 2970 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2971 if (!filter) 2972 return -ENOMEM; 2973 2974 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 2975 &adapter->crit_section)) { 2976 if (--count == 0) 2977 goto err; 2978 udelay(1); 2979 } 2980 2981 filter->cookie = cls_flower->cookie; 2982 2983 /* set the mask to all zeroes to begin with */ 2984 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 2985 /* start out with flow type and eth type IPv4 to begin with */ 2986 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 2987 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 2988 if (err < 0) 2989 goto err; 2990 2991 err = iavf_handle_tclass(adapter, tc, filter); 2992 if (err < 0) 2993 goto err; 2994 2995 /* add filter to the list */ 2996 spin_lock_bh(&adapter->cloud_filter_list_lock); 2997 list_add_tail(&filter->list, &adapter->cloud_filter_list); 2998 adapter->num_cloud_filters++; 2999 filter->add = true; 3000 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3001 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3002 err: 3003 if (err) 3004 kfree(filter); 3005 3006 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3007 return err; 3008 } 3009 3010 /* iavf_find_cf - Find the cloud filter in the list 3011 * @adapter: Board private structure 3012 * @cookie: filter specific cookie 3013 * 3014 * Returns ptr to the filter object or NULL. Must be called while holding the 3015 * cloud_filter_list_lock. 3016 */ 3017 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3018 unsigned long *cookie) 3019 { 3020 struct iavf_cloud_filter *filter = NULL; 3021 3022 if (!cookie) 3023 return NULL; 3024 3025 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3026 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3027 return filter; 3028 } 3029 return NULL; 3030 } 3031 3032 /** 3033 * iavf_delete_clsflower - Remove tc flower filters 3034 * @adapter: board private structure 3035 * @cls_flower: Pointer to struct flow_cls_offload 3036 */ 3037 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3038 struct flow_cls_offload *cls_flower) 3039 { 3040 struct iavf_cloud_filter *filter = NULL; 3041 int err = 0; 3042 3043 spin_lock_bh(&adapter->cloud_filter_list_lock); 3044 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3045 if (filter) { 3046 filter->del = true; 3047 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3048 } else { 3049 err = -EINVAL; 3050 } 3051 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3052 3053 return err; 3054 } 3055 3056 /** 3057 * iavf_setup_tc_cls_flower - flower classifier offloads 3058 * @netdev: net device to configure 3059 * @type_data: offload data 3060 */ 3061 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3062 struct flow_cls_offload *cls_flower) 3063 { 3064 if (cls_flower->common.chain_index) 3065 return -EOPNOTSUPP; 3066 3067 switch (cls_flower->command) { 3068 case FLOW_CLS_REPLACE: 3069 return iavf_configure_clsflower(adapter, cls_flower); 3070 case FLOW_CLS_DESTROY: 3071 return iavf_delete_clsflower(adapter, cls_flower); 3072 case FLOW_CLS_STATS: 3073 return -EOPNOTSUPP; 3074 default: 3075 return -EOPNOTSUPP; 3076 } 3077 } 3078 3079 /** 3080 * iavf_setup_tc_block_cb - block callback for tc 3081 * @type: type of offload 3082 * @type_data: offload data 3083 * @cb_priv: 3084 * 3085 * This function is the block callback for traffic classes 3086 **/ 3087 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3088 void *cb_priv) 3089 { 3090 switch (type) { 3091 case TC_SETUP_CLSFLOWER: 3092 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3093 default: 3094 return -EOPNOTSUPP; 3095 } 3096 } 3097 3098 static LIST_HEAD(iavf_block_cb_list); 3099 3100 /** 3101 * iavf_setup_tc - configure multiple traffic classes 3102 * @netdev: network interface device structure 3103 * @type: type of offload 3104 * @type_date: tc offload data 3105 * 3106 * This function is the callback to ndo_setup_tc in the 3107 * netdev_ops. 3108 * 3109 * Returns 0 on success 3110 **/ 3111 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3112 void *type_data) 3113 { 3114 struct iavf_adapter *adapter = netdev_priv(netdev); 3115 3116 switch (type) { 3117 case TC_SETUP_QDISC_MQPRIO: 3118 return __iavf_setup_tc(netdev, type_data); 3119 case TC_SETUP_BLOCK: 3120 return flow_block_cb_setup_simple(type_data, 3121 &iavf_block_cb_list, 3122 iavf_setup_tc_block_cb, 3123 adapter, adapter, true); 3124 default: 3125 return -EOPNOTSUPP; 3126 } 3127 } 3128 3129 /** 3130 * iavf_open - Called when a network interface is made active 3131 * @netdev: network interface device structure 3132 * 3133 * Returns 0 on success, negative value on failure 3134 * 3135 * The open entry point is called when a network interface is made 3136 * active by the system (IFF_UP). At this point all resources needed 3137 * for transmit and receive operations are allocated, the interrupt 3138 * handler is registered with the OS, the watchdog is started, 3139 * and the stack is notified that the interface is ready. 3140 **/ 3141 static int iavf_open(struct net_device *netdev) 3142 { 3143 struct iavf_adapter *adapter = netdev_priv(netdev); 3144 int err; 3145 3146 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3147 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3148 return -EIO; 3149 } 3150 3151 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3152 &adapter->crit_section)) 3153 usleep_range(500, 1000); 3154 3155 if (adapter->state != __IAVF_DOWN) { 3156 err = -EBUSY; 3157 goto err_unlock; 3158 } 3159 3160 /* allocate transmit descriptors */ 3161 err = iavf_setup_all_tx_resources(adapter); 3162 if (err) 3163 goto err_setup_tx; 3164 3165 /* allocate receive descriptors */ 3166 err = iavf_setup_all_rx_resources(adapter); 3167 if (err) 3168 goto err_setup_rx; 3169 3170 /* clear any pending interrupts, may auto mask */ 3171 err = iavf_request_traffic_irqs(adapter, netdev->name); 3172 if (err) 3173 goto err_req_irq; 3174 3175 spin_lock_bh(&adapter->mac_vlan_list_lock); 3176 3177 iavf_add_filter(adapter, adapter->hw.mac.addr); 3178 3179 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3180 3181 iavf_configure(adapter); 3182 3183 iavf_up_complete(adapter); 3184 3185 iavf_irq_enable(adapter, true); 3186 3187 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3188 3189 return 0; 3190 3191 err_req_irq: 3192 iavf_down(adapter); 3193 iavf_free_traffic_irqs(adapter); 3194 err_setup_rx: 3195 iavf_free_all_rx_resources(adapter); 3196 err_setup_tx: 3197 iavf_free_all_tx_resources(adapter); 3198 err_unlock: 3199 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3200 3201 return err; 3202 } 3203 3204 /** 3205 * iavf_close - Disables a network interface 3206 * @netdev: network interface device structure 3207 * 3208 * Returns 0, this is not allowed to fail 3209 * 3210 * The close entry point is called when an interface is de-activated 3211 * by the OS. The hardware is still under the drivers control, but 3212 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3213 * are freed, along with all transmit and receive resources. 3214 **/ 3215 static int iavf_close(struct net_device *netdev) 3216 { 3217 struct iavf_adapter *adapter = netdev_priv(netdev); 3218 int status; 3219 3220 if (adapter->state <= __IAVF_DOWN_PENDING) 3221 return 0; 3222 3223 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3224 &adapter->crit_section)) 3225 usleep_range(500, 1000); 3226 3227 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3228 if (CLIENT_ENABLED(adapter)) 3229 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3230 3231 iavf_down(adapter); 3232 adapter->state = __IAVF_DOWN_PENDING; 3233 iavf_free_traffic_irqs(adapter); 3234 3235 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3236 3237 /* We explicitly don't free resources here because the hardware is 3238 * still active and can DMA into memory. Resources are cleared in 3239 * iavf_virtchnl_completion() after we get confirmation from the PF 3240 * driver that the rings have been stopped. 3241 * 3242 * Also, we wait for state to transition to __IAVF_DOWN before 3243 * returning. State change occurs in iavf_virtchnl_completion() after 3244 * VF resources are released (which occurs after PF driver processes and 3245 * responds to admin queue commands). 3246 */ 3247 3248 status = wait_event_timeout(adapter->down_waitqueue, 3249 adapter->state == __IAVF_DOWN, 3250 msecs_to_jiffies(500)); 3251 if (!status) 3252 netdev_warn(netdev, "Device resources not yet released\n"); 3253 return 0; 3254 } 3255 3256 /** 3257 * iavf_change_mtu - Change the Maximum Transfer Unit 3258 * @netdev: network interface device structure 3259 * @new_mtu: new value for maximum frame size 3260 * 3261 * Returns 0 on success, negative on failure 3262 **/ 3263 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3264 { 3265 struct iavf_adapter *adapter = netdev_priv(netdev); 3266 3267 netdev->mtu = new_mtu; 3268 if (CLIENT_ENABLED(adapter)) { 3269 iavf_notify_client_l2_params(&adapter->vsi); 3270 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3271 } 3272 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3273 queue_work(iavf_wq, &adapter->reset_task); 3274 3275 return 0; 3276 } 3277 3278 /** 3279 * iavf_set_features - set the netdev feature flags 3280 * @netdev: ptr to the netdev being adjusted 3281 * @features: the feature set that the stack is suggesting 3282 * Note: expects to be called while under rtnl_lock() 3283 **/ 3284 static int iavf_set_features(struct net_device *netdev, 3285 netdev_features_t features) 3286 { 3287 struct iavf_adapter *adapter = netdev_priv(netdev); 3288 3289 /* Don't allow changing VLAN_RX flag when adapter is not capable 3290 * of VLAN offload 3291 */ 3292 if (!VLAN_ALLOWED(adapter)) { 3293 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3294 return -EINVAL; 3295 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3296 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3297 adapter->aq_required |= 3298 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3299 else 3300 adapter->aq_required |= 3301 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3302 } 3303 3304 return 0; 3305 } 3306 3307 /** 3308 * iavf_features_check - Validate encapsulated packet conforms to limits 3309 * @skb: skb buff 3310 * @dev: This physical port's netdev 3311 * @features: Offload features that the stack believes apply 3312 **/ 3313 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3314 struct net_device *dev, 3315 netdev_features_t features) 3316 { 3317 size_t len; 3318 3319 /* No point in doing any of this if neither checksum nor GSO are 3320 * being requested for this frame. We can rule out both by just 3321 * checking for CHECKSUM_PARTIAL 3322 */ 3323 if (skb->ip_summed != CHECKSUM_PARTIAL) 3324 return features; 3325 3326 /* We cannot support GSO if the MSS is going to be less than 3327 * 64 bytes. If it is then we need to drop support for GSO. 3328 */ 3329 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3330 features &= ~NETIF_F_GSO_MASK; 3331 3332 /* MACLEN can support at most 63 words */ 3333 len = skb_network_header(skb) - skb->data; 3334 if (len & ~(63 * 2)) 3335 goto out_err; 3336 3337 /* IPLEN and EIPLEN can support at most 127 dwords */ 3338 len = skb_transport_header(skb) - skb_network_header(skb); 3339 if (len & ~(127 * 4)) 3340 goto out_err; 3341 3342 if (skb->encapsulation) { 3343 /* L4TUNLEN can support 127 words */ 3344 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3345 if (len & ~(127 * 2)) 3346 goto out_err; 3347 3348 /* IPLEN can support at most 127 dwords */ 3349 len = skb_inner_transport_header(skb) - 3350 skb_inner_network_header(skb); 3351 if (len & ~(127 * 4)) 3352 goto out_err; 3353 } 3354 3355 /* No need to validate L4LEN as TCP is the only protocol with a 3356 * a flexible value and we support all possible values supported 3357 * by TCP, which is at most 15 dwords 3358 */ 3359 3360 return features; 3361 out_err: 3362 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3363 } 3364 3365 /** 3366 * iavf_fix_features - fix up the netdev feature bits 3367 * @netdev: our net device 3368 * @features: desired feature bits 3369 * 3370 * Returns fixed-up features bits 3371 **/ 3372 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3373 netdev_features_t features) 3374 { 3375 struct iavf_adapter *adapter = netdev_priv(netdev); 3376 3377 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3378 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3379 NETIF_F_HW_VLAN_CTAG_RX | 3380 NETIF_F_HW_VLAN_CTAG_FILTER); 3381 3382 return features; 3383 } 3384 3385 static const struct net_device_ops iavf_netdev_ops = { 3386 .ndo_open = iavf_open, 3387 .ndo_stop = iavf_close, 3388 .ndo_start_xmit = iavf_xmit_frame, 3389 .ndo_set_rx_mode = iavf_set_rx_mode, 3390 .ndo_validate_addr = eth_validate_addr, 3391 .ndo_set_mac_address = iavf_set_mac, 3392 .ndo_change_mtu = iavf_change_mtu, 3393 .ndo_tx_timeout = iavf_tx_timeout, 3394 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3395 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3396 .ndo_features_check = iavf_features_check, 3397 .ndo_fix_features = iavf_fix_features, 3398 .ndo_set_features = iavf_set_features, 3399 .ndo_setup_tc = iavf_setup_tc, 3400 }; 3401 3402 /** 3403 * iavf_check_reset_complete - check that VF reset is complete 3404 * @hw: pointer to hw struct 3405 * 3406 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3407 **/ 3408 static int iavf_check_reset_complete(struct iavf_hw *hw) 3409 { 3410 u32 rstat; 3411 int i; 3412 3413 for (i = 0; i < 100; i++) { 3414 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3415 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3416 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3417 (rstat == VIRTCHNL_VFR_COMPLETED)) 3418 return 0; 3419 usleep_range(10, 20); 3420 } 3421 return -EBUSY; 3422 } 3423 3424 /** 3425 * iavf_process_config - Process the config information we got from the PF 3426 * @adapter: board private structure 3427 * 3428 * Verify that we have a valid config struct, and set up our netdev features 3429 * and our VSI struct. 3430 **/ 3431 int iavf_process_config(struct iavf_adapter *adapter) 3432 { 3433 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3434 int i, num_req_queues = adapter->num_req_queues; 3435 struct net_device *netdev = adapter->netdev; 3436 struct iavf_vsi *vsi = &adapter->vsi; 3437 netdev_features_t hw_enc_features; 3438 netdev_features_t hw_features; 3439 3440 /* got VF config message back from PF, now we can parse it */ 3441 for (i = 0; i < vfres->num_vsis; i++) { 3442 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3443 adapter->vsi_res = &vfres->vsi_res[i]; 3444 } 3445 if (!adapter->vsi_res) { 3446 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3447 return -ENODEV; 3448 } 3449 3450 if (num_req_queues && 3451 num_req_queues != adapter->vsi_res->num_queue_pairs) { 3452 /* Problem. The PF gave us fewer queues than what we had 3453 * negotiated in our request. Need a reset to see if we can't 3454 * get back to a working state. 3455 */ 3456 dev_err(&adapter->pdev->dev, 3457 "Requested %d queues, but PF only gave us %d.\n", 3458 num_req_queues, 3459 adapter->vsi_res->num_queue_pairs); 3460 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3461 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3462 iavf_schedule_reset(adapter); 3463 return -ENODEV; 3464 } 3465 adapter->num_req_queues = 0; 3466 3467 hw_enc_features = NETIF_F_SG | 3468 NETIF_F_IP_CSUM | 3469 NETIF_F_IPV6_CSUM | 3470 NETIF_F_HIGHDMA | 3471 NETIF_F_SOFT_FEATURES | 3472 NETIF_F_TSO | 3473 NETIF_F_TSO_ECN | 3474 NETIF_F_TSO6 | 3475 NETIF_F_SCTP_CRC | 3476 NETIF_F_RXHASH | 3477 NETIF_F_RXCSUM | 3478 0; 3479 3480 /* advertise to stack only if offloads for encapsulated packets is 3481 * supported 3482 */ 3483 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3484 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3485 NETIF_F_GSO_GRE | 3486 NETIF_F_GSO_GRE_CSUM | 3487 NETIF_F_GSO_IPXIP4 | 3488 NETIF_F_GSO_IPXIP6 | 3489 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3490 NETIF_F_GSO_PARTIAL | 3491 0; 3492 3493 if (!(vfres->vf_cap_flags & 3494 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3495 netdev->gso_partial_features |= 3496 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3497 3498 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3499 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3500 netdev->hw_enc_features |= hw_enc_features; 3501 } 3502 /* record features VLANs can make use of */ 3503 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3504 3505 /* Write features and hw_features separately to avoid polluting 3506 * with, or dropping, features that are set when we registered. 3507 */ 3508 hw_features = hw_enc_features; 3509 3510 /* Enable VLAN features if supported */ 3511 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3512 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3513 NETIF_F_HW_VLAN_CTAG_RX); 3514 /* Enable cloud filter if ADQ is supported */ 3515 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3516 hw_features |= NETIF_F_HW_TC; 3517 3518 netdev->hw_features |= hw_features; 3519 3520 netdev->features |= hw_features; 3521 3522 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3523 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3524 3525 netdev->priv_flags |= IFF_UNICAST_FLT; 3526 3527 /* Do not turn on offloads when they are requested to be turned off. 3528 * TSO needs minimum 576 bytes to work correctly. 3529 */ 3530 if (netdev->wanted_features) { 3531 if (!(netdev->wanted_features & NETIF_F_TSO) || 3532 netdev->mtu < 576) 3533 netdev->features &= ~NETIF_F_TSO; 3534 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3535 netdev->mtu < 576) 3536 netdev->features &= ~NETIF_F_TSO6; 3537 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3538 netdev->features &= ~NETIF_F_TSO_ECN; 3539 if (!(netdev->wanted_features & NETIF_F_GRO)) 3540 netdev->features &= ~NETIF_F_GRO; 3541 if (!(netdev->wanted_features & NETIF_F_GSO)) 3542 netdev->features &= ~NETIF_F_GSO; 3543 } 3544 3545 adapter->vsi.id = adapter->vsi_res->vsi_id; 3546 3547 adapter->vsi.back = adapter; 3548 adapter->vsi.base_vector = 1; 3549 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3550 vsi->netdev = adapter->netdev; 3551 vsi->qs_handle = adapter->vsi_res->qset_handle; 3552 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3553 adapter->rss_key_size = vfres->rss_key_size; 3554 adapter->rss_lut_size = vfres->rss_lut_size; 3555 } else { 3556 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3557 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3558 } 3559 3560 return 0; 3561 } 3562 3563 /** 3564 * iavf_init_task - worker thread to perform delayed initialization 3565 * @work: pointer to work_struct containing our data 3566 * 3567 * This task completes the work that was begun in probe. Due to the nature 3568 * of VF-PF communications, we may need to wait tens of milliseconds to get 3569 * responses back from the PF. Rather than busy-wait in probe and bog down the 3570 * whole system, we'll do it in a task so we can sleep. 3571 * This task only runs during driver init. Once we've established 3572 * communications with the PF driver and set up our netdev, the watchdog 3573 * takes over. 3574 **/ 3575 static void iavf_init_task(struct work_struct *work) 3576 { 3577 struct iavf_adapter *adapter = container_of(work, 3578 struct iavf_adapter, 3579 init_task.work); 3580 struct iavf_hw *hw = &adapter->hw; 3581 3582 switch (adapter->state) { 3583 case __IAVF_STARTUP: 3584 if (iavf_startup(adapter) < 0) 3585 goto init_failed; 3586 break; 3587 case __IAVF_INIT_VERSION_CHECK: 3588 if (iavf_init_version_check(adapter) < 0) 3589 goto init_failed; 3590 break; 3591 case __IAVF_INIT_GET_RESOURCES: 3592 if (iavf_init_get_resources(adapter) < 0) 3593 goto init_failed; 3594 return; 3595 default: 3596 goto init_failed; 3597 } 3598 3599 queue_delayed_work(iavf_wq, &adapter->init_task, 3600 msecs_to_jiffies(30)); 3601 return; 3602 init_failed: 3603 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3604 dev_err(&adapter->pdev->dev, 3605 "Failed to communicate with PF; waiting before retry\n"); 3606 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3607 iavf_shutdown_adminq(hw); 3608 adapter->state = __IAVF_STARTUP; 3609 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3610 return; 3611 } 3612 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3613 } 3614 3615 /** 3616 * iavf_shutdown - Shutdown the device in preparation for a reboot 3617 * @pdev: pci device structure 3618 **/ 3619 static void iavf_shutdown(struct pci_dev *pdev) 3620 { 3621 struct net_device *netdev = pci_get_drvdata(pdev); 3622 struct iavf_adapter *adapter = netdev_priv(netdev); 3623 3624 netif_device_detach(netdev); 3625 3626 if (netif_running(netdev)) 3627 iavf_close(netdev); 3628 3629 /* Prevent the watchdog from running. */ 3630 adapter->state = __IAVF_REMOVE; 3631 adapter->aq_required = 0; 3632 3633 #ifdef CONFIG_PM 3634 pci_save_state(pdev); 3635 3636 #endif 3637 pci_disable_device(pdev); 3638 } 3639 3640 /** 3641 * iavf_probe - Device Initialization Routine 3642 * @pdev: PCI device information struct 3643 * @ent: entry in iavf_pci_tbl 3644 * 3645 * Returns 0 on success, negative on failure 3646 * 3647 * iavf_probe initializes an adapter identified by a pci_dev structure. 3648 * The OS initialization, configuring of the adapter private structure, 3649 * and a hardware reset occur. 3650 **/ 3651 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3652 { 3653 struct net_device *netdev; 3654 struct iavf_adapter *adapter = NULL; 3655 struct iavf_hw *hw = NULL; 3656 int err; 3657 3658 err = pci_enable_device(pdev); 3659 if (err) 3660 return err; 3661 3662 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3663 if (err) { 3664 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3665 if (err) { 3666 dev_err(&pdev->dev, 3667 "DMA configuration failed: 0x%x\n", err); 3668 goto err_dma; 3669 } 3670 } 3671 3672 err = pci_request_regions(pdev, iavf_driver_name); 3673 if (err) { 3674 dev_err(&pdev->dev, 3675 "pci_request_regions failed 0x%x\n", err); 3676 goto err_pci_reg; 3677 } 3678 3679 pci_enable_pcie_error_reporting(pdev); 3680 3681 pci_set_master(pdev); 3682 3683 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3684 IAVF_MAX_REQ_QUEUES); 3685 if (!netdev) { 3686 err = -ENOMEM; 3687 goto err_alloc_etherdev; 3688 } 3689 3690 SET_NETDEV_DEV(netdev, &pdev->dev); 3691 3692 pci_set_drvdata(pdev, netdev); 3693 adapter = netdev_priv(netdev); 3694 3695 adapter->netdev = netdev; 3696 adapter->pdev = pdev; 3697 3698 hw = &adapter->hw; 3699 hw->back = adapter; 3700 3701 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3702 adapter->state = __IAVF_STARTUP; 3703 3704 /* Call save state here because it relies on the adapter struct. */ 3705 pci_save_state(pdev); 3706 3707 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3708 pci_resource_len(pdev, 0)); 3709 if (!hw->hw_addr) { 3710 err = -EIO; 3711 goto err_ioremap; 3712 } 3713 hw->vendor_id = pdev->vendor; 3714 hw->device_id = pdev->device; 3715 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3716 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3717 hw->subsystem_device_id = pdev->subsystem_device; 3718 hw->bus.device = PCI_SLOT(pdev->devfn); 3719 hw->bus.func = PCI_FUNC(pdev->devfn); 3720 hw->bus.bus_id = pdev->bus->number; 3721 3722 /* set up the locks for the AQ, do this only once in probe 3723 * and destroy them only once in remove 3724 */ 3725 mutex_init(&hw->aq.asq_mutex); 3726 mutex_init(&hw->aq.arq_mutex); 3727 3728 spin_lock_init(&adapter->mac_vlan_list_lock); 3729 spin_lock_init(&adapter->cloud_filter_list_lock); 3730 3731 INIT_LIST_HEAD(&adapter->mac_filter_list); 3732 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3733 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3734 3735 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3736 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3737 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3738 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3739 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3740 queue_delayed_work(iavf_wq, &adapter->init_task, 3741 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3742 3743 /* Setup the wait queue for indicating transition to down status */ 3744 init_waitqueue_head(&adapter->down_waitqueue); 3745 3746 return 0; 3747 3748 err_ioremap: 3749 free_netdev(netdev); 3750 err_alloc_etherdev: 3751 pci_release_regions(pdev); 3752 err_pci_reg: 3753 err_dma: 3754 pci_disable_device(pdev); 3755 return err; 3756 } 3757 3758 #ifdef CONFIG_PM 3759 /** 3760 * iavf_suspend - Power management suspend routine 3761 * @pdev: PCI device information struct 3762 * @state: unused 3763 * 3764 * Called when the system (VM) is entering sleep/suspend. 3765 **/ 3766 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state) 3767 { 3768 struct net_device *netdev = pci_get_drvdata(pdev); 3769 struct iavf_adapter *adapter = netdev_priv(netdev); 3770 int retval = 0; 3771 3772 netif_device_detach(netdev); 3773 3774 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3775 &adapter->crit_section)) 3776 usleep_range(500, 1000); 3777 3778 if (netif_running(netdev)) { 3779 rtnl_lock(); 3780 iavf_down(adapter); 3781 rtnl_unlock(); 3782 } 3783 iavf_free_misc_irq(adapter); 3784 iavf_reset_interrupt_capability(adapter); 3785 3786 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3787 3788 retval = pci_save_state(pdev); 3789 if (retval) 3790 return retval; 3791 3792 pci_disable_device(pdev); 3793 3794 return 0; 3795 } 3796 3797 /** 3798 * iavf_resume - Power management resume routine 3799 * @pdev: PCI device information struct 3800 * 3801 * Called when the system (VM) is resumed from sleep/suspend. 3802 **/ 3803 static int iavf_resume(struct pci_dev *pdev) 3804 { 3805 struct iavf_adapter *adapter = pci_get_drvdata(pdev); 3806 struct net_device *netdev = adapter->netdev; 3807 u32 err; 3808 3809 pci_set_power_state(pdev, PCI_D0); 3810 pci_restore_state(pdev); 3811 /* pci_restore_state clears dev->state_saved so call 3812 * pci_save_state to restore it. 3813 */ 3814 pci_save_state(pdev); 3815 3816 err = pci_enable_device_mem(pdev); 3817 if (err) { 3818 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n"); 3819 return err; 3820 } 3821 pci_set_master(pdev); 3822 3823 rtnl_lock(); 3824 err = iavf_set_interrupt_capability(adapter); 3825 if (err) { 3826 rtnl_unlock(); 3827 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3828 return err; 3829 } 3830 err = iavf_request_misc_irq(adapter); 3831 rtnl_unlock(); 3832 if (err) { 3833 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3834 return err; 3835 } 3836 3837 queue_work(iavf_wq, &adapter->reset_task); 3838 3839 netif_device_attach(netdev); 3840 3841 return err; 3842 } 3843 3844 #endif /* CONFIG_PM */ 3845 /** 3846 * iavf_remove - Device Removal Routine 3847 * @pdev: PCI device information struct 3848 * 3849 * iavf_remove is called by the PCI subsystem to alert the driver 3850 * that it should release a PCI device. The could be caused by a 3851 * Hot-Plug event, or because the driver is going to be removed from 3852 * memory. 3853 **/ 3854 static void iavf_remove(struct pci_dev *pdev) 3855 { 3856 struct net_device *netdev = pci_get_drvdata(pdev); 3857 struct iavf_adapter *adapter = netdev_priv(netdev); 3858 struct iavf_vlan_filter *vlf, *vlftmp; 3859 struct iavf_mac_filter *f, *ftmp; 3860 struct iavf_cloud_filter *cf, *cftmp; 3861 struct iavf_hw *hw = &adapter->hw; 3862 int err; 3863 /* Indicate we are in remove and not to run reset_task */ 3864 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 3865 cancel_delayed_work_sync(&adapter->init_task); 3866 cancel_work_sync(&adapter->reset_task); 3867 cancel_delayed_work_sync(&adapter->client_task); 3868 if (adapter->netdev_registered) { 3869 unregister_netdev(netdev); 3870 adapter->netdev_registered = false; 3871 } 3872 if (CLIENT_ALLOWED(adapter)) { 3873 err = iavf_lan_del_device(adapter); 3874 if (err) 3875 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3876 err); 3877 } 3878 3879 /* Shut down all the garbage mashers on the detention level */ 3880 adapter->state = __IAVF_REMOVE; 3881 adapter->aq_required = 0; 3882 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3883 iavf_request_reset(adapter); 3884 msleep(50); 3885 /* If the FW isn't responding, kick it once, but only once. */ 3886 if (!iavf_asq_done(hw)) { 3887 iavf_request_reset(adapter); 3888 msleep(50); 3889 } 3890 iavf_free_all_tx_resources(adapter); 3891 iavf_free_all_rx_resources(adapter); 3892 iavf_misc_irq_disable(adapter); 3893 iavf_free_misc_irq(adapter); 3894 iavf_reset_interrupt_capability(adapter); 3895 iavf_free_q_vectors(adapter); 3896 3897 cancel_delayed_work_sync(&adapter->watchdog_task); 3898 3899 cancel_work_sync(&adapter->adminq_task); 3900 3901 iavf_free_rss(adapter); 3902 3903 if (hw->aq.asq.count) 3904 iavf_shutdown_adminq(hw); 3905 3906 /* destroy the locks only once, here */ 3907 mutex_destroy(&hw->aq.arq_mutex); 3908 mutex_destroy(&hw->aq.asq_mutex); 3909 3910 iounmap(hw->hw_addr); 3911 pci_release_regions(pdev); 3912 iavf_free_all_tx_resources(adapter); 3913 iavf_free_all_rx_resources(adapter); 3914 iavf_free_queues(adapter); 3915 kfree(adapter->vf_res); 3916 spin_lock_bh(&adapter->mac_vlan_list_lock); 3917 /* If we got removed before an up/down sequence, we've got a filter 3918 * hanging out there that we need to get rid of. 3919 */ 3920 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3921 list_del(&f->list); 3922 kfree(f); 3923 } 3924 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3925 list) { 3926 list_del(&vlf->list); 3927 kfree(vlf); 3928 } 3929 3930 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3931 3932 spin_lock_bh(&adapter->cloud_filter_list_lock); 3933 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3934 list_del(&cf->list); 3935 kfree(cf); 3936 } 3937 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3938 3939 free_netdev(netdev); 3940 3941 pci_disable_pcie_error_reporting(pdev); 3942 3943 pci_disable_device(pdev); 3944 } 3945 3946 static struct pci_driver iavf_driver = { 3947 .name = iavf_driver_name, 3948 .id_table = iavf_pci_tbl, 3949 .probe = iavf_probe, 3950 .remove = iavf_remove, 3951 #ifdef CONFIG_PM 3952 .suspend = iavf_suspend, 3953 .resume = iavf_resume, 3954 #endif 3955 .shutdown = iavf_shutdown, 3956 }; 3957 3958 /** 3959 * iavf_init_module - Driver Registration Routine 3960 * 3961 * iavf_init_module is the first routine called when the driver is 3962 * loaded. All it does is register with the PCI subsystem. 3963 **/ 3964 static int __init iavf_init_module(void) 3965 { 3966 int ret; 3967 3968 pr_info("iavf: %s - version %s\n", iavf_driver_string, 3969 iavf_driver_version); 3970 3971 pr_info("%s\n", iavf_copyright); 3972 3973 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 3974 iavf_driver_name); 3975 if (!iavf_wq) { 3976 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 3977 return -ENOMEM; 3978 } 3979 ret = pci_register_driver(&iavf_driver); 3980 return ret; 3981 } 3982 3983 module_init(iavf_init_module); 3984 3985 /** 3986 * iavf_exit_module - Driver Exit Cleanup Routine 3987 * 3988 * iavf_exit_module is called just before the driver is removed 3989 * from memory. 3990 **/ 3991 static void __exit iavf_exit_module(void) 3992 { 3993 pci_unregister_driver(&iavf_driver); 3994 destroy_workqueue(iavf_wq); 3995 } 3996 3997 module_exit(iavf_exit_module); 3998 3999 /* iavf_main.c */ 4000