xref: /openbmc/linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision f4083a752a3b7dc2076432129c8469d02c25318e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_lock_timeout - try to set bit but give up after timeout
136  * @adapter: board private structure
137  * @bit: bit to set
138  * @msecs: timeout in msecs
139  *
140  * Returns 0 on success, negative on failure
141  **/
142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 			     enum iavf_critical_section_t bit,
144 			     unsigned int msecs)
145 {
146 	unsigned int wait, delay = 10;
147 
148 	for (wait = 0; wait < msecs; wait += delay) {
149 		if (!test_and_set_bit(bit, &adapter->crit_section))
150 			return 0;
151 
152 		msleep(delay);
153 	}
154 
155 	return -1;
156 }
157 
158 /**
159  * iavf_schedule_reset - Set the flags and schedule a reset event
160  * @adapter: board private structure
161  **/
162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 	if (!(adapter->flags &
165 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 		queue_work(iavf_wq, &adapter->reset_task);
168 	}
169 }
170 
171 /**
172  * iavf_tx_timeout - Respond to a Tx Hang
173  * @netdev: network interface device structure
174  * @txqueue: queue number that is timing out
175  **/
176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 	struct iavf_adapter *adapter = netdev_priv(netdev);
179 
180 	adapter->tx_timeout_count++;
181 	iavf_schedule_reset(adapter);
182 }
183 
184 /**
185  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186  * @adapter: board private structure
187  **/
188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 	struct iavf_hw *hw = &adapter->hw;
191 
192 	if (!adapter->msix_entries)
193 		return;
194 
195 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196 
197 	iavf_flush(hw);
198 
199 	synchronize_irq(adapter->msix_entries[0].vector);
200 }
201 
202 /**
203  * iavf_misc_irq_enable - Enable default interrupt generation settings
204  * @adapter: board private structure
205  **/
206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 	struct iavf_hw *hw = &adapter->hw;
209 
210 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213 
214 	iavf_flush(hw);
215 }
216 
217 /**
218  * iavf_irq_disable - Mask off interrupt generation on the NIC
219  * @adapter: board private structure
220  **/
221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 	int i;
224 	struct iavf_hw *hw = &adapter->hw;
225 
226 	if (!adapter->msix_entries)
227 		return;
228 
229 	for (i = 1; i < adapter->num_msix_vectors; i++) {
230 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 		synchronize_irq(adapter->msix_entries[i].vector);
232 	}
233 	iavf_flush(hw);
234 }
235 
236 /**
237  * iavf_irq_enable_queues - Enable interrupt for specified queues
238  * @adapter: board private structure
239  * @mask: bitmap of queues to enable
240  **/
241 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
242 {
243 	struct iavf_hw *hw = &adapter->hw;
244 	int i;
245 
246 	for (i = 1; i < adapter->num_msix_vectors; i++) {
247 		if (mask & BIT(i - 1)) {
248 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
249 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
250 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
251 		}
252 	}
253 }
254 
255 /**
256  * iavf_irq_enable - Enable default interrupt generation settings
257  * @adapter: board private structure
258  * @flush: boolean value whether to run rd32()
259  **/
260 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
261 {
262 	struct iavf_hw *hw = &adapter->hw;
263 
264 	iavf_misc_irq_enable(adapter);
265 	iavf_irq_enable_queues(adapter, ~0);
266 
267 	if (flush)
268 		iavf_flush(hw);
269 }
270 
271 /**
272  * iavf_msix_aq - Interrupt handler for vector 0
273  * @irq: interrupt number
274  * @data: pointer to netdev
275  **/
276 static irqreturn_t iavf_msix_aq(int irq, void *data)
277 {
278 	struct net_device *netdev = data;
279 	struct iavf_adapter *adapter = netdev_priv(netdev);
280 	struct iavf_hw *hw = &adapter->hw;
281 
282 	/* handle non-queue interrupts, these reads clear the registers */
283 	rd32(hw, IAVF_VFINT_ICR01);
284 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
285 
286 	/* schedule work on the private workqueue */
287 	queue_work(iavf_wq, &adapter->adminq_task);
288 
289 	return IRQ_HANDLED;
290 }
291 
292 /**
293  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
294  * @irq: interrupt number
295  * @data: pointer to a q_vector
296  **/
297 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
298 {
299 	struct iavf_q_vector *q_vector = data;
300 
301 	if (!q_vector->tx.ring && !q_vector->rx.ring)
302 		return IRQ_HANDLED;
303 
304 	napi_schedule_irqoff(&q_vector->napi);
305 
306 	return IRQ_HANDLED;
307 }
308 
309 /**
310  * iavf_map_vector_to_rxq - associate irqs with rx queues
311  * @adapter: board private structure
312  * @v_idx: interrupt number
313  * @r_idx: queue number
314  **/
315 static void
316 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
317 {
318 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
319 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
320 	struct iavf_hw *hw = &adapter->hw;
321 
322 	rx_ring->q_vector = q_vector;
323 	rx_ring->next = q_vector->rx.ring;
324 	rx_ring->vsi = &adapter->vsi;
325 	q_vector->rx.ring = rx_ring;
326 	q_vector->rx.count++;
327 	q_vector->rx.next_update = jiffies + 1;
328 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
329 	q_vector->ring_mask |= BIT(r_idx);
330 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
331 	     q_vector->rx.current_itr >> 1);
332 	q_vector->rx.current_itr = q_vector->rx.target_itr;
333 }
334 
335 /**
336  * iavf_map_vector_to_txq - associate irqs with tx queues
337  * @adapter: board private structure
338  * @v_idx: interrupt number
339  * @t_idx: queue number
340  **/
341 static void
342 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
343 {
344 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
345 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
346 	struct iavf_hw *hw = &adapter->hw;
347 
348 	tx_ring->q_vector = q_vector;
349 	tx_ring->next = q_vector->tx.ring;
350 	tx_ring->vsi = &adapter->vsi;
351 	q_vector->tx.ring = tx_ring;
352 	q_vector->tx.count++;
353 	q_vector->tx.next_update = jiffies + 1;
354 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
355 	q_vector->num_ringpairs++;
356 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
357 	     q_vector->tx.target_itr >> 1);
358 	q_vector->tx.current_itr = q_vector->tx.target_itr;
359 }
360 
361 /**
362  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
363  * @adapter: board private structure to initialize
364  *
365  * This function maps descriptor rings to the queue-specific vectors
366  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
367  * one vector per ring/queue, but on a constrained vector budget, we
368  * group the rings as "efficiently" as possible.  You would add new
369  * mapping configurations in here.
370  **/
371 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
372 {
373 	int rings_remaining = adapter->num_active_queues;
374 	int ridx = 0, vidx = 0;
375 	int q_vectors;
376 
377 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
378 
379 	for (; ridx < rings_remaining; ridx++) {
380 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
381 		iavf_map_vector_to_txq(adapter, vidx, ridx);
382 
383 		/* In the case where we have more queues than vectors, continue
384 		 * round-robin on vectors until all queues are mapped.
385 		 */
386 		if (++vidx >= q_vectors)
387 			vidx = 0;
388 	}
389 
390 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
391 }
392 
393 /**
394  * iavf_irq_affinity_notify - Callback for affinity changes
395  * @notify: context as to what irq was changed
396  * @mask: the new affinity mask
397  *
398  * This is a callback function used by the irq_set_affinity_notifier function
399  * so that we may register to receive changes to the irq affinity masks.
400  **/
401 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
402 				     const cpumask_t *mask)
403 {
404 	struct iavf_q_vector *q_vector =
405 		container_of(notify, struct iavf_q_vector, affinity_notify);
406 
407 	cpumask_copy(&q_vector->affinity_mask, mask);
408 }
409 
410 /**
411  * iavf_irq_affinity_release - Callback for affinity notifier release
412  * @ref: internal core kernel usage
413  *
414  * This is a callback function used by the irq_set_affinity_notifier function
415  * to inform the current notification subscriber that they will no longer
416  * receive notifications.
417  **/
418 static void iavf_irq_affinity_release(struct kref *ref) {}
419 
420 /**
421  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
422  * @adapter: board private structure
423  * @basename: device basename
424  *
425  * Allocates MSI-X vectors for tx and rx handling, and requests
426  * interrupts from the kernel.
427  **/
428 static int
429 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
430 {
431 	unsigned int vector, q_vectors;
432 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
433 	int irq_num, err;
434 	int cpu;
435 
436 	iavf_irq_disable(adapter);
437 	/* Decrement for Other and TCP Timer vectors */
438 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
439 
440 	for (vector = 0; vector < q_vectors; vector++) {
441 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
442 
443 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
444 
445 		if (q_vector->tx.ring && q_vector->rx.ring) {
446 			snprintf(q_vector->name, sizeof(q_vector->name),
447 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
448 			tx_int_idx++;
449 		} else if (q_vector->rx.ring) {
450 			snprintf(q_vector->name, sizeof(q_vector->name),
451 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
452 		} else if (q_vector->tx.ring) {
453 			snprintf(q_vector->name, sizeof(q_vector->name),
454 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
455 		} else {
456 			/* skip this unused q_vector */
457 			continue;
458 		}
459 		err = request_irq(irq_num,
460 				  iavf_msix_clean_rings,
461 				  0,
462 				  q_vector->name,
463 				  q_vector);
464 		if (err) {
465 			dev_info(&adapter->pdev->dev,
466 				 "Request_irq failed, error: %d\n", err);
467 			goto free_queue_irqs;
468 		}
469 		/* register for affinity change notifications */
470 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
471 		q_vector->affinity_notify.release =
472 						   iavf_irq_affinity_release;
473 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
474 		/* Spread the IRQ affinity hints across online CPUs. Note that
475 		 * get_cpu_mask returns a mask with a permanent lifetime so
476 		 * it's safe to use as a hint for irq_set_affinity_hint.
477 		 */
478 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
479 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
480 	}
481 
482 	return 0;
483 
484 free_queue_irqs:
485 	while (vector) {
486 		vector--;
487 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
488 		irq_set_affinity_notifier(irq_num, NULL);
489 		irq_set_affinity_hint(irq_num, NULL);
490 		free_irq(irq_num, &adapter->q_vectors[vector]);
491 	}
492 	return err;
493 }
494 
495 /**
496  * iavf_request_misc_irq - Initialize MSI-X interrupts
497  * @adapter: board private structure
498  *
499  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
500  * vector is only for the admin queue, and stays active even when the netdev
501  * is closed.
502  **/
503 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
504 {
505 	struct net_device *netdev = adapter->netdev;
506 	int err;
507 
508 	snprintf(adapter->misc_vector_name,
509 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
510 		 dev_name(&adapter->pdev->dev));
511 	err = request_irq(adapter->msix_entries[0].vector,
512 			  &iavf_msix_aq, 0,
513 			  adapter->misc_vector_name, netdev);
514 	if (err) {
515 		dev_err(&adapter->pdev->dev,
516 			"request_irq for %s failed: %d\n",
517 			adapter->misc_vector_name, err);
518 		free_irq(adapter->msix_entries[0].vector, netdev);
519 	}
520 	return err;
521 }
522 
523 /**
524  * iavf_free_traffic_irqs - Free MSI-X interrupts
525  * @adapter: board private structure
526  *
527  * Frees all MSI-X vectors other than 0.
528  **/
529 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
530 {
531 	int vector, irq_num, q_vectors;
532 
533 	if (!adapter->msix_entries)
534 		return;
535 
536 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
537 
538 	for (vector = 0; vector < q_vectors; vector++) {
539 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
540 		irq_set_affinity_notifier(irq_num, NULL);
541 		irq_set_affinity_hint(irq_num, NULL);
542 		free_irq(irq_num, &adapter->q_vectors[vector]);
543 	}
544 }
545 
546 /**
547  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
548  * @adapter: board private structure
549  *
550  * Frees MSI-X vector 0.
551  **/
552 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
553 {
554 	struct net_device *netdev = adapter->netdev;
555 
556 	if (!adapter->msix_entries)
557 		return;
558 
559 	free_irq(adapter->msix_entries[0].vector, netdev);
560 }
561 
562 /**
563  * iavf_configure_tx - Configure Transmit Unit after Reset
564  * @adapter: board private structure
565  *
566  * Configure the Tx unit of the MAC after a reset.
567  **/
568 static void iavf_configure_tx(struct iavf_adapter *adapter)
569 {
570 	struct iavf_hw *hw = &adapter->hw;
571 	int i;
572 
573 	for (i = 0; i < adapter->num_active_queues; i++)
574 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
575 }
576 
577 /**
578  * iavf_configure_rx - Configure Receive Unit after Reset
579  * @adapter: board private structure
580  *
581  * Configure the Rx unit of the MAC after a reset.
582  **/
583 static void iavf_configure_rx(struct iavf_adapter *adapter)
584 {
585 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
586 	struct iavf_hw *hw = &adapter->hw;
587 	int i;
588 
589 	/* Legacy Rx will always default to a 2048 buffer size. */
590 #if (PAGE_SIZE < 8192)
591 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
592 		struct net_device *netdev = adapter->netdev;
593 
594 		/* For jumbo frames on systems with 4K pages we have to use
595 		 * an order 1 page, so we might as well increase the size
596 		 * of our Rx buffer to make better use of the available space
597 		 */
598 		rx_buf_len = IAVF_RXBUFFER_3072;
599 
600 		/* We use a 1536 buffer size for configurations with
601 		 * standard Ethernet mtu.  On x86 this gives us enough room
602 		 * for shared info and 192 bytes of padding.
603 		 */
604 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
605 		    (netdev->mtu <= ETH_DATA_LEN))
606 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
607 	}
608 #endif
609 
610 	for (i = 0; i < adapter->num_active_queues; i++) {
611 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
612 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
613 
614 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
615 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
616 		else
617 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
618 	}
619 }
620 
621 /**
622  * iavf_find_vlan - Search filter list for specific vlan filter
623  * @adapter: board private structure
624  * @vlan: vlan tag
625  *
626  * Returns ptr to the filter object or NULL. Must be called while holding the
627  * mac_vlan_list_lock.
628  **/
629 static struct
630 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
631 {
632 	struct iavf_vlan_filter *f;
633 
634 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
635 		if (vlan == f->vlan)
636 			return f;
637 	}
638 	return NULL;
639 }
640 
641 /**
642  * iavf_add_vlan - Add a vlan filter to the list
643  * @adapter: board private structure
644  * @vlan: VLAN tag
645  *
646  * Returns ptr to the filter object or NULL when no memory available.
647  **/
648 static struct
649 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
650 {
651 	struct iavf_vlan_filter *f = NULL;
652 
653 	spin_lock_bh(&adapter->mac_vlan_list_lock);
654 
655 	f = iavf_find_vlan(adapter, vlan);
656 	if (!f) {
657 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
658 		if (!f)
659 			goto clearout;
660 
661 		f->vlan = vlan;
662 
663 		list_add_tail(&f->list, &adapter->vlan_filter_list);
664 		f->add = true;
665 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
666 	}
667 
668 clearout:
669 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
670 	return f;
671 }
672 
673 /**
674  * iavf_del_vlan - Remove a vlan filter from the list
675  * @adapter: board private structure
676  * @vlan: VLAN tag
677  **/
678 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
679 {
680 	struct iavf_vlan_filter *f;
681 
682 	spin_lock_bh(&adapter->mac_vlan_list_lock);
683 
684 	f = iavf_find_vlan(adapter, vlan);
685 	if (f) {
686 		f->remove = true;
687 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
688 	}
689 
690 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
691 }
692 
693 /**
694  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
695  * @netdev: network device struct
696  * @proto: unused protocol data
697  * @vid: VLAN tag
698  **/
699 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
700 				__always_unused __be16 proto, u16 vid)
701 {
702 	struct iavf_adapter *adapter = netdev_priv(netdev);
703 
704 	if (!VLAN_ALLOWED(adapter))
705 		return -EIO;
706 	if (iavf_add_vlan(adapter, vid) == NULL)
707 		return -ENOMEM;
708 	return 0;
709 }
710 
711 /**
712  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
713  * @netdev: network device struct
714  * @proto: unused protocol data
715  * @vid: VLAN tag
716  **/
717 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
718 				 __always_unused __be16 proto, u16 vid)
719 {
720 	struct iavf_adapter *adapter = netdev_priv(netdev);
721 
722 	if (VLAN_ALLOWED(adapter)) {
723 		iavf_del_vlan(adapter, vid);
724 		return 0;
725 	}
726 	return -EIO;
727 }
728 
729 /**
730  * iavf_find_filter - Search filter list for specific mac filter
731  * @adapter: board private structure
732  * @macaddr: the MAC address
733  *
734  * Returns ptr to the filter object or NULL. Must be called while holding the
735  * mac_vlan_list_lock.
736  **/
737 static struct
738 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
739 				  const u8 *macaddr)
740 {
741 	struct iavf_mac_filter *f;
742 
743 	if (!macaddr)
744 		return NULL;
745 
746 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
747 		if (ether_addr_equal(macaddr, f->macaddr))
748 			return f;
749 	}
750 	return NULL;
751 }
752 
753 /**
754  * iavf_add_filter - Add a mac filter to the filter list
755  * @adapter: board private structure
756  * @macaddr: the MAC address
757  *
758  * Returns ptr to the filter object or NULL when no memory available.
759  **/
760 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
761 					const u8 *macaddr)
762 {
763 	struct iavf_mac_filter *f;
764 
765 	if (!macaddr)
766 		return NULL;
767 
768 	f = iavf_find_filter(adapter, macaddr);
769 	if (!f) {
770 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
771 		if (!f)
772 			return f;
773 
774 		ether_addr_copy(f->macaddr, macaddr);
775 
776 		list_add_tail(&f->list, &adapter->mac_filter_list);
777 		f->add = true;
778 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
779 	} else {
780 		f->remove = false;
781 	}
782 
783 	return f;
784 }
785 
786 /**
787  * iavf_set_mac - NDO callback to set port mac address
788  * @netdev: network interface device structure
789  * @p: pointer to an address structure
790  *
791  * Returns 0 on success, negative on failure
792  **/
793 static int iavf_set_mac(struct net_device *netdev, void *p)
794 {
795 	struct iavf_adapter *adapter = netdev_priv(netdev);
796 	struct iavf_hw *hw = &adapter->hw;
797 	struct iavf_mac_filter *f;
798 	struct sockaddr *addr = p;
799 
800 	if (!is_valid_ether_addr(addr->sa_data))
801 		return -EADDRNOTAVAIL;
802 
803 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
804 		return 0;
805 
806 	spin_lock_bh(&adapter->mac_vlan_list_lock);
807 
808 	f = iavf_find_filter(adapter, hw->mac.addr);
809 	if (f) {
810 		f->remove = true;
811 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
812 	}
813 
814 	f = iavf_add_filter(adapter, addr->sa_data);
815 
816 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
817 
818 	if (f) {
819 		ether_addr_copy(hw->mac.addr, addr->sa_data);
820 	}
821 
822 	return (f == NULL) ? -ENOMEM : 0;
823 }
824 
825 /**
826  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
827  * @netdev: the netdevice
828  * @addr: address to add
829  *
830  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
831  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
832  */
833 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
834 {
835 	struct iavf_adapter *adapter = netdev_priv(netdev);
836 
837 	if (iavf_add_filter(adapter, addr))
838 		return 0;
839 	else
840 		return -ENOMEM;
841 }
842 
843 /**
844  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
845  * @netdev: the netdevice
846  * @addr: address to add
847  *
848  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
849  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
850  */
851 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
852 {
853 	struct iavf_adapter *adapter = netdev_priv(netdev);
854 	struct iavf_mac_filter *f;
855 
856 	/* Under some circumstances, we might receive a request to delete
857 	 * our own device address from our uc list. Because we store the
858 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
859 	 * such requests and not delete our device address from this list.
860 	 */
861 	if (ether_addr_equal(addr, netdev->dev_addr))
862 		return 0;
863 
864 	f = iavf_find_filter(adapter, addr);
865 	if (f) {
866 		f->remove = true;
867 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
868 	}
869 	return 0;
870 }
871 
872 /**
873  * iavf_set_rx_mode - NDO callback to set the netdev filters
874  * @netdev: network interface device structure
875  **/
876 static void iavf_set_rx_mode(struct net_device *netdev)
877 {
878 	struct iavf_adapter *adapter = netdev_priv(netdev);
879 
880 	spin_lock_bh(&adapter->mac_vlan_list_lock);
881 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
882 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
883 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
884 
885 	if (netdev->flags & IFF_PROMISC &&
886 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
887 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
888 	else if (!(netdev->flags & IFF_PROMISC) &&
889 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
890 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
891 
892 	if (netdev->flags & IFF_ALLMULTI &&
893 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
894 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
895 	else if (!(netdev->flags & IFF_ALLMULTI) &&
896 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
897 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
898 }
899 
900 /**
901  * iavf_napi_enable_all - enable NAPI on all queue vectors
902  * @adapter: board private structure
903  **/
904 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
905 {
906 	int q_idx;
907 	struct iavf_q_vector *q_vector;
908 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
909 
910 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
911 		struct napi_struct *napi;
912 
913 		q_vector = &adapter->q_vectors[q_idx];
914 		napi = &q_vector->napi;
915 		napi_enable(napi);
916 	}
917 }
918 
919 /**
920  * iavf_napi_disable_all - disable NAPI on all queue vectors
921  * @adapter: board private structure
922  **/
923 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
924 {
925 	int q_idx;
926 	struct iavf_q_vector *q_vector;
927 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
928 
929 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
930 		q_vector = &adapter->q_vectors[q_idx];
931 		napi_disable(&q_vector->napi);
932 	}
933 }
934 
935 /**
936  * iavf_configure - set up transmit and receive data structures
937  * @adapter: board private structure
938  **/
939 static void iavf_configure(struct iavf_adapter *adapter)
940 {
941 	struct net_device *netdev = adapter->netdev;
942 	int i;
943 
944 	iavf_set_rx_mode(netdev);
945 
946 	iavf_configure_tx(adapter);
947 	iavf_configure_rx(adapter);
948 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
949 
950 	for (i = 0; i < adapter->num_active_queues; i++) {
951 		struct iavf_ring *ring = &adapter->rx_rings[i];
952 
953 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
954 	}
955 }
956 
957 /**
958  * iavf_up_complete - Finish the last steps of bringing up a connection
959  * @adapter: board private structure
960  *
961  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
962  **/
963 static void iavf_up_complete(struct iavf_adapter *adapter)
964 {
965 	adapter->state = __IAVF_RUNNING;
966 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
967 
968 	iavf_napi_enable_all(adapter);
969 
970 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
971 	if (CLIENT_ENABLED(adapter))
972 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
973 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
974 }
975 
976 /**
977  * iavf_down - Shutdown the connection processing
978  * @adapter: board private structure
979  *
980  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
981  **/
982 void iavf_down(struct iavf_adapter *adapter)
983 {
984 	struct net_device *netdev = adapter->netdev;
985 	struct iavf_vlan_filter *vlf;
986 	struct iavf_cloud_filter *cf;
987 	struct iavf_fdir_fltr *fdir;
988 	struct iavf_mac_filter *f;
989 	struct iavf_adv_rss *rss;
990 
991 	if (adapter->state <= __IAVF_DOWN_PENDING)
992 		return;
993 
994 	netif_carrier_off(netdev);
995 	netif_tx_disable(netdev);
996 	adapter->link_up = false;
997 	iavf_napi_disable_all(adapter);
998 	iavf_irq_disable(adapter);
999 
1000 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1001 
1002 	/* clear the sync flag on all filters */
1003 	__dev_uc_unsync(adapter->netdev, NULL);
1004 	__dev_mc_unsync(adapter->netdev, NULL);
1005 
1006 	/* remove all MAC filters */
1007 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1008 		f->remove = true;
1009 	}
1010 
1011 	/* remove all VLAN filters */
1012 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1013 		vlf->remove = true;
1014 	}
1015 
1016 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1017 
1018 	/* remove all cloud filters */
1019 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1020 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1021 		cf->del = true;
1022 	}
1023 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1024 
1025 	/* remove all Flow Director filters */
1026 	spin_lock_bh(&adapter->fdir_fltr_lock);
1027 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1028 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1029 	}
1030 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1031 
1032 	/* remove all advance RSS configuration */
1033 	spin_lock_bh(&adapter->adv_rss_lock);
1034 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1035 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1036 	spin_unlock_bh(&adapter->adv_rss_lock);
1037 
1038 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1039 	    adapter->state != __IAVF_RESETTING) {
1040 		/* cancel any current operation */
1041 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1042 		/* Schedule operations to close down the HW. Don't wait
1043 		 * here for this to complete. The watchdog is still running
1044 		 * and it will take care of this.
1045 		 */
1046 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1047 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1048 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1049 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1050 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1051 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1052 	}
1053 
1054 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1055 }
1056 
1057 /**
1058  * iavf_acquire_msix_vectors - Setup the MSIX capability
1059  * @adapter: board private structure
1060  * @vectors: number of vectors to request
1061  *
1062  * Work with the OS to set up the MSIX vectors needed.
1063  *
1064  * Returns 0 on success, negative on failure
1065  **/
1066 static int
1067 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1068 {
1069 	int err, vector_threshold;
1070 
1071 	/* We'll want at least 3 (vector_threshold):
1072 	 * 0) Other (Admin Queue and link, mostly)
1073 	 * 1) TxQ[0] Cleanup
1074 	 * 2) RxQ[0] Cleanup
1075 	 */
1076 	vector_threshold = MIN_MSIX_COUNT;
1077 
1078 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1079 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1080 	 * Right now, we simply care about how many we'll get; we'll
1081 	 * set them up later while requesting irq's.
1082 	 */
1083 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1084 				    vector_threshold, vectors);
1085 	if (err < 0) {
1086 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1087 		kfree(adapter->msix_entries);
1088 		adapter->msix_entries = NULL;
1089 		return err;
1090 	}
1091 
1092 	/* Adjust for only the vectors we'll use, which is minimum
1093 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1094 	 * vectors we were allocated.
1095 	 */
1096 	adapter->num_msix_vectors = err;
1097 	return 0;
1098 }
1099 
1100 /**
1101  * iavf_free_queues - Free memory for all rings
1102  * @adapter: board private structure to initialize
1103  *
1104  * Free all of the memory associated with queue pairs.
1105  **/
1106 static void iavf_free_queues(struct iavf_adapter *adapter)
1107 {
1108 	if (!adapter->vsi_res)
1109 		return;
1110 	adapter->num_active_queues = 0;
1111 	kfree(adapter->tx_rings);
1112 	adapter->tx_rings = NULL;
1113 	kfree(adapter->rx_rings);
1114 	adapter->rx_rings = NULL;
1115 }
1116 
1117 /**
1118  * iavf_alloc_queues - Allocate memory for all rings
1119  * @adapter: board private structure to initialize
1120  *
1121  * We allocate one ring per queue at run-time since we don't know the
1122  * number of queues at compile-time.  The polling_netdev array is
1123  * intended for Multiqueue, but should work fine with a single queue.
1124  **/
1125 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1126 {
1127 	int i, num_active_queues;
1128 
1129 	/* If we're in reset reallocating queues we don't actually know yet for
1130 	 * certain the PF gave us the number of queues we asked for but we'll
1131 	 * assume it did.  Once basic reset is finished we'll confirm once we
1132 	 * start negotiating config with PF.
1133 	 */
1134 	if (adapter->num_req_queues)
1135 		num_active_queues = adapter->num_req_queues;
1136 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1137 		 adapter->num_tc)
1138 		num_active_queues = adapter->ch_config.total_qps;
1139 	else
1140 		num_active_queues = min_t(int,
1141 					  adapter->vsi_res->num_queue_pairs,
1142 					  (int)(num_online_cpus()));
1143 
1144 
1145 	adapter->tx_rings = kcalloc(num_active_queues,
1146 				    sizeof(struct iavf_ring), GFP_KERNEL);
1147 	if (!adapter->tx_rings)
1148 		goto err_out;
1149 	adapter->rx_rings = kcalloc(num_active_queues,
1150 				    sizeof(struct iavf_ring), GFP_KERNEL);
1151 	if (!adapter->rx_rings)
1152 		goto err_out;
1153 
1154 	for (i = 0; i < num_active_queues; i++) {
1155 		struct iavf_ring *tx_ring;
1156 		struct iavf_ring *rx_ring;
1157 
1158 		tx_ring = &adapter->tx_rings[i];
1159 
1160 		tx_ring->queue_index = i;
1161 		tx_ring->netdev = adapter->netdev;
1162 		tx_ring->dev = &adapter->pdev->dev;
1163 		tx_ring->count = adapter->tx_desc_count;
1164 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1165 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1166 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1167 
1168 		rx_ring = &adapter->rx_rings[i];
1169 		rx_ring->queue_index = i;
1170 		rx_ring->netdev = adapter->netdev;
1171 		rx_ring->dev = &adapter->pdev->dev;
1172 		rx_ring->count = adapter->rx_desc_count;
1173 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1174 	}
1175 
1176 	adapter->num_active_queues = num_active_queues;
1177 
1178 	return 0;
1179 
1180 err_out:
1181 	iavf_free_queues(adapter);
1182 	return -ENOMEM;
1183 }
1184 
1185 /**
1186  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1187  * @adapter: board private structure to initialize
1188  *
1189  * Attempt to configure the interrupts using the best available
1190  * capabilities of the hardware and the kernel.
1191  **/
1192 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1193 {
1194 	int vector, v_budget;
1195 	int pairs = 0;
1196 	int err = 0;
1197 
1198 	if (!adapter->vsi_res) {
1199 		err = -EIO;
1200 		goto out;
1201 	}
1202 	pairs = adapter->num_active_queues;
1203 
1204 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1205 	 * us much good if we have more vectors than CPUs. However, we already
1206 	 * limit the total number of queues by the number of CPUs so we do not
1207 	 * need any further limiting here.
1208 	 */
1209 	v_budget = min_t(int, pairs + NONQ_VECS,
1210 			 (int)adapter->vf_res->max_vectors);
1211 
1212 	adapter->msix_entries = kcalloc(v_budget,
1213 					sizeof(struct msix_entry), GFP_KERNEL);
1214 	if (!adapter->msix_entries) {
1215 		err = -ENOMEM;
1216 		goto out;
1217 	}
1218 
1219 	for (vector = 0; vector < v_budget; vector++)
1220 		adapter->msix_entries[vector].entry = vector;
1221 
1222 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1223 
1224 out:
1225 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1226 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1227 	return err;
1228 }
1229 
1230 /**
1231  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1232  * @adapter: board private structure
1233  *
1234  * Return 0 on success, negative on failure
1235  **/
1236 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1237 {
1238 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1239 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1240 	struct iavf_hw *hw = &adapter->hw;
1241 	int ret = 0;
1242 
1243 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1244 		/* bail because we already have a command pending */
1245 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1246 			adapter->current_op);
1247 		return -EBUSY;
1248 	}
1249 
1250 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1251 	if (ret) {
1252 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1253 			iavf_stat_str(hw, ret),
1254 			iavf_aq_str(hw, hw->aq.asq_last_status));
1255 		return ret;
1256 
1257 	}
1258 
1259 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1260 				  adapter->rss_lut, adapter->rss_lut_size);
1261 	if (ret) {
1262 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1263 			iavf_stat_str(hw, ret),
1264 			iavf_aq_str(hw, hw->aq.asq_last_status));
1265 	}
1266 
1267 	return ret;
1268 
1269 }
1270 
1271 /**
1272  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1273  * @adapter: board private structure
1274  *
1275  * Returns 0 on success, negative on failure
1276  **/
1277 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1278 {
1279 	struct iavf_hw *hw = &adapter->hw;
1280 	u32 *dw;
1281 	u16 i;
1282 
1283 	dw = (u32 *)adapter->rss_key;
1284 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1285 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1286 
1287 	dw = (u32 *)adapter->rss_lut;
1288 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1289 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1290 
1291 	iavf_flush(hw);
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * iavf_config_rss - Configure RSS keys and lut
1298  * @adapter: board private structure
1299  *
1300  * Returns 0 on success, negative on failure
1301  **/
1302 int iavf_config_rss(struct iavf_adapter *adapter)
1303 {
1304 
1305 	if (RSS_PF(adapter)) {
1306 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1307 					IAVF_FLAG_AQ_SET_RSS_KEY;
1308 		return 0;
1309 	} else if (RSS_AQ(adapter)) {
1310 		return iavf_config_rss_aq(adapter);
1311 	} else {
1312 		return iavf_config_rss_reg(adapter);
1313 	}
1314 }
1315 
1316 /**
1317  * iavf_fill_rss_lut - Fill the lut with default values
1318  * @adapter: board private structure
1319  **/
1320 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1321 {
1322 	u16 i;
1323 
1324 	for (i = 0; i < adapter->rss_lut_size; i++)
1325 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1326 }
1327 
1328 /**
1329  * iavf_init_rss - Prepare for RSS
1330  * @adapter: board private structure
1331  *
1332  * Return 0 on success, negative on failure
1333  **/
1334 static int iavf_init_rss(struct iavf_adapter *adapter)
1335 {
1336 	struct iavf_hw *hw = &adapter->hw;
1337 	int ret;
1338 
1339 	if (!RSS_PF(adapter)) {
1340 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1341 		if (adapter->vf_res->vf_cap_flags &
1342 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1343 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1344 		else
1345 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1346 
1347 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1348 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1349 	}
1350 
1351 	iavf_fill_rss_lut(adapter);
1352 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1353 	ret = iavf_config_rss(adapter);
1354 
1355 	return ret;
1356 }
1357 
1358 /**
1359  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1360  * @adapter: board private structure to initialize
1361  *
1362  * We allocate one q_vector per queue interrupt.  If allocation fails we
1363  * return -ENOMEM.
1364  **/
1365 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1366 {
1367 	int q_idx = 0, num_q_vectors;
1368 	struct iavf_q_vector *q_vector;
1369 
1370 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1371 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1372 				     GFP_KERNEL);
1373 	if (!adapter->q_vectors)
1374 		return -ENOMEM;
1375 
1376 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1377 		q_vector = &adapter->q_vectors[q_idx];
1378 		q_vector->adapter = adapter;
1379 		q_vector->vsi = &adapter->vsi;
1380 		q_vector->v_idx = q_idx;
1381 		q_vector->reg_idx = q_idx;
1382 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1383 		netif_napi_add(adapter->netdev, &q_vector->napi,
1384 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 /**
1391  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1392  * @adapter: board private structure to initialize
1393  *
1394  * This function frees the memory allocated to the q_vectors.  In addition if
1395  * NAPI is enabled it will delete any references to the NAPI struct prior
1396  * to freeing the q_vector.
1397  **/
1398 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1399 {
1400 	int q_idx, num_q_vectors;
1401 	int napi_vectors;
1402 
1403 	if (!adapter->q_vectors)
1404 		return;
1405 
1406 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1407 	napi_vectors = adapter->num_active_queues;
1408 
1409 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1410 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1411 
1412 		if (q_idx < napi_vectors)
1413 			netif_napi_del(&q_vector->napi);
1414 	}
1415 	kfree(adapter->q_vectors);
1416 	adapter->q_vectors = NULL;
1417 }
1418 
1419 /**
1420  * iavf_reset_interrupt_capability - Reset MSIX setup
1421  * @adapter: board private structure
1422  *
1423  **/
1424 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1425 {
1426 	if (!adapter->msix_entries)
1427 		return;
1428 
1429 	pci_disable_msix(adapter->pdev);
1430 	kfree(adapter->msix_entries);
1431 	adapter->msix_entries = NULL;
1432 }
1433 
1434 /**
1435  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1436  * @adapter: board private structure to initialize
1437  *
1438  **/
1439 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1440 {
1441 	int err;
1442 
1443 	err = iavf_alloc_queues(adapter);
1444 	if (err) {
1445 		dev_err(&adapter->pdev->dev,
1446 			"Unable to allocate memory for queues\n");
1447 		goto err_alloc_queues;
1448 	}
1449 
1450 	rtnl_lock();
1451 	err = iavf_set_interrupt_capability(adapter);
1452 	rtnl_unlock();
1453 	if (err) {
1454 		dev_err(&adapter->pdev->dev,
1455 			"Unable to setup interrupt capabilities\n");
1456 		goto err_set_interrupt;
1457 	}
1458 
1459 	err = iavf_alloc_q_vectors(adapter);
1460 	if (err) {
1461 		dev_err(&adapter->pdev->dev,
1462 			"Unable to allocate memory for queue vectors\n");
1463 		goto err_alloc_q_vectors;
1464 	}
1465 
1466 	/* If we've made it so far while ADq flag being ON, then we haven't
1467 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1468 	 * resources have been allocated in the reset path.
1469 	 * Now we can truly claim that ADq is enabled.
1470 	 */
1471 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1472 	    adapter->num_tc)
1473 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1474 			 adapter->num_tc);
1475 
1476 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1477 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1478 		 adapter->num_active_queues);
1479 
1480 	return 0;
1481 err_alloc_q_vectors:
1482 	iavf_reset_interrupt_capability(adapter);
1483 err_set_interrupt:
1484 	iavf_free_queues(adapter);
1485 err_alloc_queues:
1486 	return err;
1487 }
1488 
1489 /**
1490  * iavf_free_rss - Free memory used by RSS structs
1491  * @adapter: board private structure
1492  **/
1493 static void iavf_free_rss(struct iavf_adapter *adapter)
1494 {
1495 	kfree(adapter->rss_key);
1496 	adapter->rss_key = NULL;
1497 
1498 	kfree(adapter->rss_lut);
1499 	adapter->rss_lut = NULL;
1500 }
1501 
1502 /**
1503  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1504  * @adapter: board private structure
1505  *
1506  * Returns 0 on success, negative on failure
1507  **/
1508 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1509 {
1510 	struct net_device *netdev = adapter->netdev;
1511 	int err;
1512 
1513 	if (netif_running(netdev))
1514 		iavf_free_traffic_irqs(adapter);
1515 	iavf_free_misc_irq(adapter);
1516 	iavf_reset_interrupt_capability(adapter);
1517 	iavf_free_q_vectors(adapter);
1518 	iavf_free_queues(adapter);
1519 
1520 	err =  iavf_init_interrupt_scheme(adapter);
1521 	if (err)
1522 		goto err;
1523 
1524 	netif_tx_stop_all_queues(netdev);
1525 
1526 	err = iavf_request_misc_irq(adapter);
1527 	if (err)
1528 		goto err;
1529 
1530 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1531 
1532 	iavf_map_rings_to_vectors(adapter);
1533 err:
1534 	return err;
1535 }
1536 
1537 /**
1538  * iavf_process_aq_command - process aq_required flags
1539  * and sends aq command
1540  * @adapter: pointer to iavf adapter structure
1541  *
1542  * Returns 0 on success
1543  * Returns error code if no command was sent
1544  * or error code if the command failed.
1545  **/
1546 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1547 {
1548 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1549 		return iavf_send_vf_config_msg(adapter);
1550 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1551 		iavf_disable_queues(adapter);
1552 		return 0;
1553 	}
1554 
1555 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1556 		iavf_map_queues(adapter);
1557 		return 0;
1558 	}
1559 
1560 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1561 		iavf_add_ether_addrs(adapter);
1562 		return 0;
1563 	}
1564 
1565 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1566 		iavf_add_vlans(adapter);
1567 		return 0;
1568 	}
1569 
1570 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1571 		iavf_del_ether_addrs(adapter);
1572 		return 0;
1573 	}
1574 
1575 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1576 		iavf_del_vlans(adapter);
1577 		return 0;
1578 	}
1579 
1580 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1581 		iavf_enable_vlan_stripping(adapter);
1582 		return 0;
1583 	}
1584 
1585 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1586 		iavf_disable_vlan_stripping(adapter);
1587 		return 0;
1588 	}
1589 
1590 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1591 		iavf_configure_queues(adapter);
1592 		return 0;
1593 	}
1594 
1595 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1596 		iavf_enable_queues(adapter);
1597 		return 0;
1598 	}
1599 
1600 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1601 		/* This message goes straight to the firmware, not the
1602 		 * PF, so we don't have to set current_op as we will
1603 		 * not get a response through the ARQ.
1604 		 */
1605 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1606 		return 0;
1607 	}
1608 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1609 		iavf_get_hena(adapter);
1610 		return 0;
1611 	}
1612 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1613 		iavf_set_hena(adapter);
1614 		return 0;
1615 	}
1616 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1617 		iavf_set_rss_key(adapter);
1618 		return 0;
1619 	}
1620 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1621 		iavf_set_rss_lut(adapter);
1622 		return 0;
1623 	}
1624 
1625 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1626 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1627 				       FLAG_VF_MULTICAST_PROMISC);
1628 		return 0;
1629 	}
1630 
1631 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1632 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1633 		return 0;
1634 	}
1635 
1636 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1637 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1638 		iavf_set_promiscuous(adapter, 0);
1639 		return 0;
1640 	}
1641 
1642 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1643 		iavf_enable_channels(adapter);
1644 		return 0;
1645 	}
1646 
1647 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1648 		iavf_disable_channels(adapter);
1649 		return 0;
1650 	}
1651 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1652 		iavf_add_cloud_filter(adapter);
1653 		return 0;
1654 	}
1655 
1656 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1657 		iavf_del_cloud_filter(adapter);
1658 		return 0;
1659 	}
1660 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1661 		iavf_del_cloud_filter(adapter);
1662 		return 0;
1663 	}
1664 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1665 		iavf_add_cloud_filter(adapter);
1666 		return 0;
1667 	}
1668 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1669 		iavf_add_fdir_filter(adapter);
1670 		return IAVF_SUCCESS;
1671 	}
1672 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1673 		iavf_del_fdir_filter(adapter);
1674 		return IAVF_SUCCESS;
1675 	}
1676 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1677 		iavf_add_adv_rss_cfg(adapter);
1678 		return 0;
1679 	}
1680 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1681 		iavf_del_adv_rss_cfg(adapter);
1682 		return 0;
1683 	}
1684 	return -EAGAIN;
1685 }
1686 
1687 /**
1688  * iavf_startup - first step of driver startup
1689  * @adapter: board private structure
1690  *
1691  * Function process __IAVF_STARTUP driver state.
1692  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1693  * when fails it returns -EAGAIN
1694  **/
1695 static int iavf_startup(struct iavf_adapter *adapter)
1696 {
1697 	struct pci_dev *pdev = adapter->pdev;
1698 	struct iavf_hw *hw = &adapter->hw;
1699 	int err;
1700 
1701 	WARN_ON(adapter->state != __IAVF_STARTUP);
1702 
1703 	/* driver loaded, probe complete */
1704 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1705 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1706 	err = iavf_set_mac_type(hw);
1707 	if (err) {
1708 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1709 		goto err;
1710 	}
1711 
1712 	err = iavf_check_reset_complete(hw);
1713 	if (err) {
1714 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1715 			 err);
1716 		goto err;
1717 	}
1718 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1719 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1720 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1721 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1722 
1723 	err = iavf_init_adminq(hw);
1724 	if (err) {
1725 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1726 		goto err;
1727 	}
1728 	err = iavf_send_api_ver(adapter);
1729 	if (err) {
1730 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1731 		iavf_shutdown_adminq(hw);
1732 		goto err;
1733 	}
1734 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1735 err:
1736 	return err;
1737 }
1738 
1739 /**
1740  * iavf_init_version_check - second step of driver startup
1741  * @adapter: board private structure
1742  *
1743  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1744  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1745  * when fails it returns -EAGAIN
1746  **/
1747 static int iavf_init_version_check(struct iavf_adapter *adapter)
1748 {
1749 	struct pci_dev *pdev = adapter->pdev;
1750 	struct iavf_hw *hw = &adapter->hw;
1751 	int err = -EAGAIN;
1752 
1753 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1754 
1755 	if (!iavf_asq_done(hw)) {
1756 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1757 		iavf_shutdown_adminq(hw);
1758 		adapter->state = __IAVF_STARTUP;
1759 		goto err;
1760 	}
1761 
1762 	/* aq msg sent, awaiting reply */
1763 	err = iavf_verify_api_ver(adapter);
1764 	if (err) {
1765 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1766 			err = iavf_send_api_ver(adapter);
1767 		else
1768 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1769 				adapter->pf_version.major,
1770 				adapter->pf_version.minor,
1771 				VIRTCHNL_VERSION_MAJOR,
1772 				VIRTCHNL_VERSION_MINOR);
1773 		goto err;
1774 	}
1775 	err = iavf_send_vf_config_msg(adapter);
1776 	if (err) {
1777 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1778 			err);
1779 		goto err;
1780 	}
1781 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1782 
1783 err:
1784 	return err;
1785 }
1786 
1787 /**
1788  * iavf_init_get_resources - third step of driver startup
1789  * @adapter: board private structure
1790  *
1791  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1792  * finishes driver initialization procedure.
1793  * When success the state is changed to __IAVF_DOWN
1794  * when fails it returns -EAGAIN
1795  **/
1796 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1797 {
1798 	struct net_device *netdev = adapter->netdev;
1799 	struct pci_dev *pdev = adapter->pdev;
1800 	struct iavf_hw *hw = &adapter->hw;
1801 	int err;
1802 
1803 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1804 	/* aq msg sent, awaiting reply */
1805 	if (!adapter->vf_res) {
1806 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1807 					  GFP_KERNEL);
1808 		if (!adapter->vf_res) {
1809 			err = -ENOMEM;
1810 			goto err;
1811 		}
1812 	}
1813 	err = iavf_get_vf_config(adapter);
1814 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1815 		err = iavf_send_vf_config_msg(adapter);
1816 		goto err;
1817 	} else if (err == IAVF_ERR_PARAM) {
1818 		/* We only get ERR_PARAM if the device is in a very bad
1819 		 * state or if we've been disabled for previous bad
1820 		 * behavior. Either way, we're done now.
1821 		 */
1822 		iavf_shutdown_adminq(hw);
1823 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1824 		return 0;
1825 	}
1826 	if (err) {
1827 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1828 		goto err_alloc;
1829 	}
1830 
1831 	err = iavf_process_config(adapter);
1832 	if (err)
1833 		goto err_alloc;
1834 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1835 
1836 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1837 
1838 	netdev->netdev_ops = &iavf_netdev_ops;
1839 	iavf_set_ethtool_ops(netdev);
1840 	netdev->watchdog_timeo = 5 * HZ;
1841 
1842 	/* MTU range: 68 - 9710 */
1843 	netdev->min_mtu = ETH_MIN_MTU;
1844 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1845 
1846 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1847 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1848 			 adapter->hw.mac.addr);
1849 		eth_hw_addr_random(netdev);
1850 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1851 	} else {
1852 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1853 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1854 	}
1855 
1856 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1857 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1858 	err = iavf_init_interrupt_scheme(adapter);
1859 	if (err)
1860 		goto err_sw_init;
1861 	iavf_map_rings_to_vectors(adapter);
1862 	if (adapter->vf_res->vf_cap_flags &
1863 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1864 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1865 
1866 	err = iavf_request_misc_irq(adapter);
1867 	if (err)
1868 		goto err_sw_init;
1869 
1870 	netif_carrier_off(netdev);
1871 	adapter->link_up = false;
1872 
1873 	/* set the semaphore to prevent any callbacks after device registration
1874 	 * up to time when state of driver will be set to __IAVF_DOWN
1875 	 */
1876 	rtnl_lock();
1877 	if (!adapter->netdev_registered) {
1878 		err = register_netdevice(netdev);
1879 		if (err) {
1880 			rtnl_unlock();
1881 			goto err_register;
1882 		}
1883 	}
1884 
1885 	adapter->netdev_registered = true;
1886 
1887 	netif_tx_stop_all_queues(netdev);
1888 	if (CLIENT_ALLOWED(adapter)) {
1889 		err = iavf_lan_add_device(adapter);
1890 		if (err)
1891 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1892 				 err);
1893 	}
1894 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1895 	if (netdev->features & NETIF_F_GRO)
1896 		dev_info(&pdev->dev, "GRO is enabled\n");
1897 
1898 	adapter->state = __IAVF_DOWN;
1899 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1900 	rtnl_unlock();
1901 
1902 	iavf_misc_irq_enable(adapter);
1903 	wake_up(&adapter->down_waitqueue);
1904 
1905 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1906 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1907 	if (!adapter->rss_key || !adapter->rss_lut) {
1908 		err = -ENOMEM;
1909 		goto err_mem;
1910 	}
1911 	if (RSS_AQ(adapter))
1912 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1913 	else
1914 		iavf_init_rss(adapter);
1915 
1916 	return err;
1917 err_mem:
1918 	iavf_free_rss(adapter);
1919 err_register:
1920 	iavf_free_misc_irq(adapter);
1921 err_sw_init:
1922 	iavf_reset_interrupt_capability(adapter);
1923 err_alloc:
1924 	kfree(adapter->vf_res);
1925 	adapter->vf_res = NULL;
1926 err:
1927 	return err;
1928 }
1929 
1930 /**
1931  * iavf_watchdog_task - Periodic call-back task
1932  * @work: pointer to work_struct
1933  **/
1934 static void iavf_watchdog_task(struct work_struct *work)
1935 {
1936 	struct iavf_adapter *adapter = container_of(work,
1937 						    struct iavf_adapter,
1938 						    watchdog_task.work);
1939 	struct iavf_hw *hw = &adapter->hw;
1940 	u32 reg_val;
1941 
1942 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1943 		goto restart_watchdog;
1944 
1945 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1946 		adapter->state = __IAVF_COMM_FAILED;
1947 
1948 	switch (adapter->state) {
1949 	case __IAVF_COMM_FAILED:
1950 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1951 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1952 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1953 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1954 			/* A chance for redemption! */
1955 			dev_err(&adapter->pdev->dev,
1956 				"Hardware came out of reset. Attempting reinit.\n");
1957 			adapter->state = __IAVF_STARTUP;
1958 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1959 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1960 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1961 				  &adapter->crit_section);
1962 			/* Don't reschedule the watchdog, since we've restarted
1963 			 * the init task. When init_task contacts the PF and
1964 			 * gets everything set up again, it'll restart the
1965 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1966 			 */
1967 			return;
1968 		}
1969 		adapter->aq_required = 0;
1970 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1971 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1972 			  &adapter->crit_section);
1973 		queue_delayed_work(iavf_wq,
1974 				   &adapter->watchdog_task,
1975 				   msecs_to_jiffies(10));
1976 		goto watchdog_done;
1977 	case __IAVF_RESETTING:
1978 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1979 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1980 		return;
1981 	case __IAVF_DOWN:
1982 	case __IAVF_DOWN_PENDING:
1983 	case __IAVF_TESTING:
1984 	case __IAVF_RUNNING:
1985 		if (adapter->current_op) {
1986 			if (!iavf_asq_done(hw)) {
1987 				dev_dbg(&adapter->pdev->dev,
1988 					"Admin queue timeout\n");
1989 				iavf_send_api_ver(adapter);
1990 			}
1991 		} else {
1992 			/* An error will be returned if no commands were
1993 			 * processed; use this opportunity to update stats
1994 			 */
1995 			if (iavf_process_aq_command(adapter) &&
1996 			    adapter->state == __IAVF_RUNNING)
1997 				iavf_request_stats(adapter);
1998 		}
1999 		break;
2000 	case __IAVF_REMOVE:
2001 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2002 		return;
2003 	default:
2004 		goto restart_watchdog;
2005 	}
2006 
2007 		/* check for hw reset */
2008 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2009 	if (!reg_val) {
2010 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2011 		adapter->aq_required = 0;
2012 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2013 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2014 		queue_work(iavf_wq, &adapter->reset_task);
2015 		goto watchdog_done;
2016 	}
2017 
2018 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2019 watchdog_done:
2020 	if (adapter->state == __IAVF_RUNNING ||
2021 	    adapter->state == __IAVF_COMM_FAILED)
2022 		iavf_detect_recover_hung(&adapter->vsi);
2023 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2024 restart_watchdog:
2025 	if (adapter->aq_required)
2026 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2027 				   msecs_to_jiffies(20));
2028 	else
2029 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2030 	queue_work(iavf_wq, &adapter->adminq_task);
2031 }
2032 
2033 static void iavf_disable_vf(struct iavf_adapter *adapter)
2034 {
2035 	struct iavf_mac_filter *f, *ftmp;
2036 	struct iavf_vlan_filter *fv, *fvtmp;
2037 	struct iavf_cloud_filter *cf, *cftmp;
2038 
2039 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2040 
2041 	/* We don't use netif_running() because it may be true prior to
2042 	 * ndo_open() returning, so we can't assume it means all our open
2043 	 * tasks have finished, since we're not holding the rtnl_lock here.
2044 	 */
2045 	if (adapter->state == __IAVF_RUNNING) {
2046 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2047 		netif_carrier_off(adapter->netdev);
2048 		netif_tx_disable(adapter->netdev);
2049 		adapter->link_up = false;
2050 		iavf_napi_disable_all(adapter);
2051 		iavf_irq_disable(adapter);
2052 		iavf_free_traffic_irqs(adapter);
2053 		iavf_free_all_tx_resources(adapter);
2054 		iavf_free_all_rx_resources(adapter);
2055 	}
2056 
2057 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2058 
2059 	/* Delete all of the filters */
2060 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2061 		list_del(&f->list);
2062 		kfree(f);
2063 	}
2064 
2065 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2066 		list_del(&fv->list);
2067 		kfree(fv);
2068 	}
2069 
2070 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2071 
2072 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2073 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2074 		list_del(&cf->list);
2075 		kfree(cf);
2076 		adapter->num_cloud_filters--;
2077 	}
2078 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2079 
2080 	iavf_free_misc_irq(adapter);
2081 	iavf_reset_interrupt_capability(adapter);
2082 	iavf_free_queues(adapter);
2083 	iavf_free_q_vectors(adapter);
2084 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2085 	iavf_shutdown_adminq(&adapter->hw);
2086 	adapter->netdev->flags &= ~IFF_UP;
2087 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2088 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2089 	adapter->state = __IAVF_DOWN;
2090 	wake_up(&adapter->down_waitqueue);
2091 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2092 }
2093 
2094 /**
2095  * iavf_reset_task - Call-back task to handle hardware reset
2096  * @work: pointer to work_struct
2097  *
2098  * During reset we need to shut down and reinitialize the admin queue
2099  * before we can use it to communicate with the PF again. We also clear
2100  * and reinit the rings because that context is lost as well.
2101  **/
2102 static void iavf_reset_task(struct work_struct *work)
2103 {
2104 	struct iavf_adapter *adapter = container_of(work,
2105 						      struct iavf_adapter,
2106 						      reset_task);
2107 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2108 	struct net_device *netdev = adapter->netdev;
2109 	struct iavf_hw *hw = &adapter->hw;
2110 	struct iavf_mac_filter *f, *ftmp;
2111 	struct iavf_vlan_filter *vlf;
2112 	struct iavf_cloud_filter *cf;
2113 	u32 reg_val;
2114 	int i = 0, err;
2115 	bool running;
2116 
2117 	/* When device is being removed it doesn't make sense to run the reset
2118 	 * task, just return in such a case.
2119 	 */
2120 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2121 		return;
2122 
2123 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2124 		schedule_work(&adapter->reset_task);
2125 		return;
2126 	}
2127 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2128 				&adapter->crit_section))
2129 		usleep_range(500, 1000);
2130 	if (CLIENT_ENABLED(adapter)) {
2131 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2132 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2133 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2134 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2135 		cancel_delayed_work_sync(&adapter->client_task);
2136 		iavf_notify_client_close(&adapter->vsi, true);
2137 	}
2138 	iavf_misc_irq_disable(adapter);
2139 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2140 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2141 		/* Restart the AQ here. If we have been reset but didn't
2142 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2143 		 */
2144 		iavf_shutdown_adminq(hw);
2145 		iavf_init_adminq(hw);
2146 		iavf_request_reset(adapter);
2147 	}
2148 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2149 
2150 	/* poll until we see the reset actually happen */
2151 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2152 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2153 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2154 		if (!reg_val)
2155 			break;
2156 		usleep_range(5000, 10000);
2157 	}
2158 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2159 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2160 		goto continue_reset; /* act like the reset happened */
2161 	}
2162 
2163 	/* wait until the reset is complete and the PF is responding to us */
2164 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2165 		/* sleep first to make sure a minimum wait time is met */
2166 		msleep(IAVF_RESET_WAIT_MS);
2167 
2168 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2169 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2170 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2171 			break;
2172 	}
2173 
2174 	pci_set_master(adapter->pdev);
2175 
2176 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2177 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2178 			reg_val);
2179 		iavf_disable_vf(adapter);
2180 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2181 		return; /* Do not attempt to reinit. It's dead, Jim. */
2182 	}
2183 
2184 continue_reset:
2185 	/* We don't use netif_running() because it may be true prior to
2186 	 * ndo_open() returning, so we can't assume it means all our open
2187 	 * tasks have finished, since we're not holding the rtnl_lock here.
2188 	 */
2189 	running = ((adapter->state == __IAVF_RUNNING) ||
2190 		   (adapter->state == __IAVF_RESETTING));
2191 
2192 	if (running) {
2193 		netif_carrier_off(netdev);
2194 		netif_tx_stop_all_queues(netdev);
2195 		adapter->link_up = false;
2196 		iavf_napi_disable_all(adapter);
2197 	}
2198 	iavf_irq_disable(adapter);
2199 
2200 	adapter->state = __IAVF_RESETTING;
2201 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2202 
2203 	/* free the Tx/Rx rings and descriptors, might be better to just
2204 	 * re-use them sometime in the future
2205 	 */
2206 	iavf_free_all_rx_resources(adapter);
2207 	iavf_free_all_tx_resources(adapter);
2208 
2209 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2210 	/* kill and reinit the admin queue */
2211 	iavf_shutdown_adminq(hw);
2212 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2213 	err = iavf_init_adminq(hw);
2214 	if (err)
2215 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2216 			 err);
2217 	adapter->aq_required = 0;
2218 
2219 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2220 		err = iavf_reinit_interrupt_scheme(adapter);
2221 		if (err)
2222 			goto reset_err;
2223 	}
2224 
2225 	if (RSS_AQ(adapter)) {
2226 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2227 	} else {
2228 		err = iavf_init_rss(adapter);
2229 		if (err)
2230 			goto reset_err;
2231 	}
2232 
2233 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2234 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2235 
2236 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2237 
2238 	/* Delete filter for the current MAC address, it could have
2239 	 * been changed by the PF via administratively set MAC.
2240 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2241 	 */
2242 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2243 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2244 			list_del(&f->list);
2245 			kfree(f);
2246 		}
2247 	}
2248 	/* re-add all MAC filters */
2249 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2250 		f->add = true;
2251 	}
2252 	/* re-add all VLAN filters */
2253 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2254 		vlf->add = true;
2255 	}
2256 
2257 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2258 
2259 	/* check if TCs are running and re-add all cloud filters */
2260 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2261 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2262 	    adapter->num_tc) {
2263 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2264 			cf->add = true;
2265 		}
2266 	}
2267 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2268 
2269 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2270 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2271 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2272 	iavf_misc_irq_enable(adapter);
2273 
2274 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2275 
2276 	/* We were running when the reset started, so we need to restore some
2277 	 * state here.
2278 	 */
2279 	if (running) {
2280 		/* allocate transmit descriptors */
2281 		err = iavf_setup_all_tx_resources(adapter);
2282 		if (err)
2283 			goto reset_err;
2284 
2285 		/* allocate receive descriptors */
2286 		err = iavf_setup_all_rx_resources(adapter);
2287 		if (err)
2288 			goto reset_err;
2289 
2290 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2291 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2292 			if (err)
2293 				goto reset_err;
2294 
2295 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2296 		}
2297 
2298 		iavf_configure(adapter);
2299 
2300 		iavf_up_complete(adapter);
2301 
2302 		iavf_irq_enable(adapter, true);
2303 	} else {
2304 		adapter->state = __IAVF_DOWN;
2305 		wake_up(&adapter->down_waitqueue);
2306 	}
2307 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2308 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2309 
2310 	return;
2311 reset_err:
2312 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2313 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2314 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2315 	iavf_close(netdev);
2316 }
2317 
2318 /**
2319  * iavf_adminq_task - worker thread to clean the admin queue
2320  * @work: pointer to work_struct containing our data
2321  **/
2322 static void iavf_adminq_task(struct work_struct *work)
2323 {
2324 	struct iavf_adapter *adapter =
2325 		container_of(work, struct iavf_adapter, adminq_task);
2326 	struct iavf_hw *hw = &adapter->hw;
2327 	struct iavf_arq_event_info event;
2328 	enum virtchnl_ops v_op;
2329 	enum iavf_status ret, v_ret;
2330 	u32 val, oldval;
2331 	u16 pending;
2332 
2333 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2334 		goto out;
2335 
2336 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2337 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2338 	if (!event.msg_buf)
2339 		goto out;
2340 
2341 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2342 		goto freedom;
2343 	do {
2344 		ret = iavf_clean_arq_element(hw, &event, &pending);
2345 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2346 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2347 
2348 		if (ret || !v_op)
2349 			break; /* No event to process or error cleaning ARQ */
2350 
2351 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2352 					 event.msg_len);
2353 		if (pending != 0)
2354 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2355 	} while (pending);
2356 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2357 
2358 	if ((adapter->flags &
2359 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2360 	    adapter->state == __IAVF_RESETTING)
2361 		goto freedom;
2362 
2363 	/* check for error indications */
2364 	val = rd32(hw, hw->aq.arq.len);
2365 	if (val == 0xdeadbeef) /* indicates device in reset */
2366 		goto freedom;
2367 	oldval = val;
2368 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2369 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2370 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2371 	}
2372 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2373 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2374 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2375 	}
2376 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2377 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2378 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2379 	}
2380 	if (oldval != val)
2381 		wr32(hw, hw->aq.arq.len, val);
2382 
2383 	val = rd32(hw, hw->aq.asq.len);
2384 	oldval = val;
2385 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2386 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2387 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2388 	}
2389 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2390 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2391 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2392 	}
2393 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2394 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2395 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2396 	}
2397 	if (oldval != val)
2398 		wr32(hw, hw->aq.asq.len, val);
2399 
2400 freedom:
2401 	kfree(event.msg_buf);
2402 out:
2403 	/* re-enable Admin queue interrupt cause */
2404 	iavf_misc_irq_enable(adapter);
2405 }
2406 
2407 /**
2408  * iavf_client_task - worker thread to perform client work
2409  * @work: pointer to work_struct containing our data
2410  *
2411  * This task handles client interactions. Because client calls can be
2412  * reentrant, we can't handle them in the watchdog.
2413  **/
2414 static void iavf_client_task(struct work_struct *work)
2415 {
2416 	struct iavf_adapter *adapter =
2417 		container_of(work, struct iavf_adapter, client_task.work);
2418 
2419 	/* If we can't get the client bit, just give up. We'll be rescheduled
2420 	 * later.
2421 	 */
2422 
2423 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2424 		return;
2425 
2426 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2427 		iavf_client_subtask(adapter);
2428 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2429 		goto out;
2430 	}
2431 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2432 		iavf_notify_client_l2_params(&adapter->vsi);
2433 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2434 		goto out;
2435 	}
2436 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2437 		iavf_notify_client_close(&adapter->vsi, false);
2438 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2439 		goto out;
2440 	}
2441 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2442 		iavf_notify_client_open(&adapter->vsi);
2443 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2444 	}
2445 out:
2446 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2447 }
2448 
2449 /**
2450  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2451  * @adapter: board private structure
2452  *
2453  * Free all transmit software resources
2454  **/
2455 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2456 {
2457 	int i;
2458 
2459 	if (!adapter->tx_rings)
2460 		return;
2461 
2462 	for (i = 0; i < adapter->num_active_queues; i++)
2463 		if (adapter->tx_rings[i].desc)
2464 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2465 }
2466 
2467 /**
2468  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2469  * @adapter: board private structure
2470  *
2471  * If this function returns with an error, then it's possible one or
2472  * more of the rings is populated (while the rest are not).  It is the
2473  * callers duty to clean those orphaned rings.
2474  *
2475  * Return 0 on success, negative on failure
2476  **/
2477 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2478 {
2479 	int i, err = 0;
2480 
2481 	for (i = 0; i < adapter->num_active_queues; i++) {
2482 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2483 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2484 		if (!err)
2485 			continue;
2486 		dev_err(&adapter->pdev->dev,
2487 			"Allocation for Tx Queue %u failed\n", i);
2488 		break;
2489 	}
2490 
2491 	return err;
2492 }
2493 
2494 /**
2495  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2496  * @adapter: board private structure
2497  *
2498  * If this function returns with an error, then it's possible one or
2499  * more of the rings is populated (while the rest are not).  It is the
2500  * callers duty to clean those orphaned rings.
2501  *
2502  * Return 0 on success, negative on failure
2503  **/
2504 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2505 {
2506 	int i, err = 0;
2507 
2508 	for (i = 0; i < adapter->num_active_queues; i++) {
2509 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2510 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2511 		if (!err)
2512 			continue;
2513 		dev_err(&adapter->pdev->dev,
2514 			"Allocation for Rx Queue %u failed\n", i);
2515 		break;
2516 	}
2517 	return err;
2518 }
2519 
2520 /**
2521  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2522  * @adapter: board private structure
2523  *
2524  * Free all receive software resources
2525  **/
2526 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2527 {
2528 	int i;
2529 
2530 	if (!adapter->rx_rings)
2531 		return;
2532 
2533 	for (i = 0; i < adapter->num_active_queues; i++)
2534 		if (adapter->rx_rings[i].desc)
2535 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2536 }
2537 
2538 /**
2539  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2540  * @adapter: board private structure
2541  * @max_tx_rate: max Tx bw for a tc
2542  **/
2543 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2544 				      u64 max_tx_rate)
2545 {
2546 	int speed = 0, ret = 0;
2547 
2548 	if (ADV_LINK_SUPPORT(adapter)) {
2549 		if (adapter->link_speed_mbps < U32_MAX) {
2550 			speed = adapter->link_speed_mbps;
2551 			goto validate_bw;
2552 		} else {
2553 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2554 			return -EINVAL;
2555 		}
2556 	}
2557 
2558 	switch (adapter->link_speed) {
2559 	case VIRTCHNL_LINK_SPEED_40GB:
2560 		speed = SPEED_40000;
2561 		break;
2562 	case VIRTCHNL_LINK_SPEED_25GB:
2563 		speed = SPEED_25000;
2564 		break;
2565 	case VIRTCHNL_LINK_SPEED_20GB:
2566 		speed = SPEED_20000;
2567 		break;
2568 	case VIRTCHNL_LINK_SPEED_10GB:
2569 		speed = SPEED_10000;
2570 		break;
2571 	case VIRTCHNL_LINK_SPEED_5GB:
2572 		speed = SPEED_5000;
2573 		break;
2574 	case VIRTCHNL_LINK_SPEED_2_5GB:
2575 		speed = SPEED_2500;
2576 		break;
2577 	case VIRTCHNL_LINK_SPEED_1GB:
2578 		speed = SPEED_1000;
2579 		break;
2580 	case VIRTCHNL_LINK_SPEED_100MB:
2581 		speed = SPEED_100;
2582 		break;
2583 	default:
2584 		break;
2585 	}
2586 
2587 validate_bw:
2588 	if (max_tx_rate > speed) {
2589 		dev_err(&adapter->pdev->dev,
2590 			"Invalid tx rate specified\n");
2591 		ret = -EINVAL;
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 /**
2598  * iavf_validate_ch_config - validate queue mapping info
2599  * @adapter: board private structure
2600  * @mqprio_qopt: queue parameters
2601  *
2602  * This function validates if the config provided by the user to
2603  * configure queue channels is valid or not. Returns 0 on a valid
2604  * config.
2605  **/
2606 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2607 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2608 {
2609 	u64 total_max_rate = 0;
2610 	int i, num_qps = 0;
2611 	u64 tx_rate = 0;
2612 	int ret = 0;
2613 
2614 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2615 	    mqprio_qopt->qopt.num_tc < 1)
2616 		return -EINVAL;
2617 
2618 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2619 		if (!mqprio_qopt->qopt.count[i] ||
2620 		    mqprio_qopt->qopt.offset[i] != num_qps)
2621 			return -EINVAL;
2622 		if (mqprio_qopt->min_rate[i]) {
2623 			dev_err(&adapter->pdev->dev,
2624 				"Invalid min tx rate (greater than 0) specified\n");
2625 			return -EINVAL;
2626 		}
2627 		/*convert to Mbps */
2628 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2629 				  IAVF_MBPS_DIVISOR);
2630 		total_max_rate += tx_rate;
2631 		num_qps += mqprio_qopt->qopt.count[i];
2632 	}
2633 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2634 		return -EINVAL;
2635 
2636 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2637 	return ret;
2638 }
2639 
2640 /**
2641  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2642  * @adapter: board private structure
2643  **/
2644 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2645 {
2646 	struct iavf_cloud_filter *cf, *cftmp;
2647 
2648 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2649 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2650 				 list) {
2651 		list_del(&cf->list);
2652 		kfree(cf);
2653 		adapter->num_cloud_filters--;
2654 	}
2655 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2656 }
2657 
2658 /**
2659  * __iavf_setup_tc - configure multiple traffic classes
2660  * @netdev: network interface device structure
2661  * @type_data: tc offload data
2662  *
2663  * This function processes the config information provided by the
2664  * user to configure traffic classes/queue channels and packages the
2665  * information to request the PF to setup traffic classes.
2666  *
2667  * Returns 0 on success.
2668  **/
2669 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2670 {
2671 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2672 	struct iavf_adapter *adapter = netdev_priv(netdev);
2673 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2674 	u8 num_tc = 0, total_qps = 0;
2675 	int ret = 0, netdev_tc = 0;
2676 	u64 max_tx_rate;
2677 	u16 mode;
2678 	int i;
2679 
2680 	num_tc = mqprio_qopt->qopt.num_tc;
2681 	mode = mqprio_qopt->mode;
2682 
2683 	/* delete queue_channel */
2684 	if (!mqprio_qopt->qopt.hw) {
2685 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2686 			/* reset the tc configuration */
2687 			netdev_reset_tc(netdev);
2688 			adapter->num_tc = 0;
2689 			netif_tx_stop_all_queues(netdev);
2690 			netif_tx_disable(netdev);
2691 			iavf_del_all_cloud_filters(adapter);
2692 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2693 			goto exit;
2694 		} else {
2695 			return -EINVAL;
2696 		}
2697 	}
2698 
2699 	/* add queue channel */
2700 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2701 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2702 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2703 			return -EOPNOTSUPP;
2704 		}
2705 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2706 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2707 			return -EINVAL;
2708 		}
2709 
2710 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2711 		if (ret)
2712 			return ret;
2713 		/* Return if same TC config is requested */
2714 		if (adapter->num_tc == num_tc)
2715 			return 0;
2716 		adapter->num_tc = num_tc;
2717 
2718 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2719 			if (i < num_tc) {
2720 				adapter->ch_config.ch_info[i].count =
2721 					mqprio_qopt->qopt.count[i];
2722 				adapter->ch_config.ch_info[i].offset =
2723 					mqprio_qopt->qopt.offset[i];
2724 				total_qps += mqprio_qopt->qopt.count[i];
2725 				max_tx_rate = mqprio_qopt->max_rate[i];
2726 				/* convert to Mbps */
2727 				max_tx_rate = div_u64(max_tx_rate,
2728 						      IAVF_MBPS_DIVISOR);
2729 				adapter->ch_config.ch_info[i].max_tx_rate =
2730 					max_tx_rate;
2731 			} else {
2732 				adapter->ch_config.ch_info[i].count = 1;
2733 				adapter->ch_config.ch_info[i].offset = 0;
2734 			}
2735 		}
2736 		adapter->ch_config.total_qps = total_qps;
2737 		netif_tx_stop_all_queues(netdev);
2738 		netif_tx_disable(netdev);
2739 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2740 		netdev_reset_tc(netdev);
2741 		/* Report the tc mapping up the stack */
2742 		netdev_set_num_tc(adapter->netdev, num_tc);
2743 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2744 			u16 qcount = mqprio_qopt->qopt.count[i];
2745 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2746 
2747 			if (i < num_tc)
2748 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2749 						    qoffset);
2750 		}
2751 	}
2752 exit:
2753 	return ret;
2754 }
2755 
2756 /**
2757  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2758  * @adapter: board private structure
2759  * @f: pointer to struct flow_cls_offload
2760  * @filter: pointer to cloud filter structure
2761  */
2762 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2763 				 struct flow_cls_offload *f,
2764 				 struct iavf_cloud_filter *filter)
2765 {
2766 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2767 	struct flow_dissector *dissector = rule->match.dissector;
2768 	u16 n_proto_mask = 0;
2769 	u16 n_proto_key = 0;
2770 	u8 field_flags = 0;
2771 	u16 addr_type = 0;
2772 	u16 n_proto = 0;
2773 	int i = 0;
2774 	struct virtchnl_filter *vf = &filter->f;
2775 
2776 	if (dissector->used_keys &
2777 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2778 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2779 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2780 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2781 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2782 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2783 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2784 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2785 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2786 			dissector->used_keys);
2787 		return -EOPNOTSUPP;
2788 	}
2789 
2790 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2791 		struct flow_match_enc_keyid match;
2792 
2793 		flow_rule_match_enc_keyid(rule, &match);
2794 		if (match.mask->keyid != 0)
2795 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2796 	}
2797 
2798 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2799 		struct flow_match_basic match;
2800 
2801 		flow_rule_match_basic(rule, &match);
2802 		n_proto_key = ntohs(match.key->n_proto);
2803 		n_proto_mask = ntohs(match.mask->n_proto);
2804 
2805 		if (n_proto_key == ETH_P_ALL) {
2806 			n_proto_key = 0;
2807 			n_proto_mask = 0;
2808 		}
2809 		n_proto = n_proto_key & n_proto_mask;
2810 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2811 			return -EINVAL;
2812 		if (n_proto == ETH_P_IPV6) {
2813 			/* specify flow type as TCP IPv6 */
2814 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2815 		}
2816 
2817 		if (match.key->ip_proto != IPPROTO_TCP) {
2818 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2819 			return -EINVAL;
2820 		}
2821 	}
2822 
2823 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2824 		struct flow_match_eth_addrs match;
2825 
2826 		flow_rule_match_eth_addrs(rule, &match);
2827 
2828 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2829 		if (!is_zero_ether_addr(match.mask->dst)) {
2830 			if (is_broadcast_ether_addr(match.mask->dst)) {
2831 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2832 			} else {
2833 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2834 					match.mask->dst);
2835 				return IAVF_ERR_CONFIG;
2836 			}
2837 		}
2838 
2839 		if (!is_zero_ether_addr(match.mask->src)) {
2840 			if (is_broadcast_ether_addr(match.mask->src)) {
2841 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2842 			} else {
2843 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2844 					match.mask->src);
2845 				return IAVF_ERR_CONFIG;
2846 			}
2847 		}
2848 
2849 		if (!is_zero_ether_addr(match.key->dst))
2850 			if (is_valid_ether_addr(match.key->dst) ||
2851 			    is_multicast_ether_addr(match.key->dst)) {
2852 				/* set the mask if a valid dst_mac address */
2853 				for (i = 0; i < ETH_ALEN; i++)
2854 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2855 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2856 						match.key->dst);
2857 			}
2858 
2859 		if (!is_zero_ether_addr(match.key->src))
2860 			if (is_valid_ether_addr(match.key->src) ||
2861 			    is_multicast_ether_addr(match.key->src)) {
2862 				/* set the mask if a valid dst_mac address */
2863 				for (i = 0; i < ETH_ALEN; i++)
2864 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2865 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2866 						match.key->src);
2867 		}
2868 	}
2869 
2870 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2871 		struct flow_match_vlan match;
2872 
2873 		flow_rule_match_vlan(rule, &match);
2874 		if (match.mask->vlan_id) {
2875 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2876 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2877 			} else {
2878 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2879 					match.mask->vlan_id);
2880 				return IAVF_ERR_CONFIG;
2881 			}
2882 		}
2883 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2884 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2885 	}
2886 
2887 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2888 		struct flow_match_control match;
2889 
2890 		flow_rule_match_control(rule, &match);
2891 		addr_type = match.key->addr_type;
2892 	}
2893 
2894 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2895 		struct flow_match_ipv4_addrs match;
2896 
2897 		flow_rule_match_ipv4_addrs(rule, &match);
2898 		if (match.mask->dst) {
2899 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2900 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2901 			} else {
2902 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2903 					be32_to_cpu(match.mask->dst));
2904 				return IAVF_ERR_CONFIG;
2905 			}
2906 		}
2907 
2908 		if (match.mask->src) {
2909 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2910 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2911 			} else {
2912 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2913 					be32_to_cpu(match.mask->dst));
2914 				return IAVF_ERR_CONFIG;
2915 			}
2916 		}
2917 
2918 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2919 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2920 			return IAVF_ERR_CONFIG;
2921 		}
2922 		if (match.key->dst) {
2923 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2924 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2925 		}
2926 		if (match.key->src) {
2927 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2928 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2929 		}
2930 	}
2931 
2932 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2933 		struct flow_match_ipv6_addrs match;
2934 
2935 		flow_rule_match_ipv6_addrs(rule, &match);
2936 
2937 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2938 		if (ipv6_addr_any(&match.mask->dst)) {
2939 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2940 				IPV6_ADDR_ANY);
2941 			return IAVF_ERR_CONFIG;
2942 		}
2943 
2944 		/* src and dest IPv6 address should not be LOOPBACK
2945 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2946 		 */
2947 		if (ipv6_addr_loopback(&match.key->dst) ||
2948 		    ipv6_addr_loopback(&match.key->src)) {
2949 			dev_err(&adapter->pdev->dev,
2950 				"ipv6 addr should not be loopback\n");
2951 			return IAVF_ERR_CONFIG;
2952 		}
2953 		if (!ipv6_addr_any(&match.mask->dst) ||
2954 		    !ipv6_addr_any(&match.mask->src))
2955 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2956 
2957 		for (i = 0; i < 4; i++)
2958 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2959 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2960 		       sizeof(vf->data.tcp_spec.dst_ip));
2961 		for (i = 0; i < 4; i++)
2962 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2963 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2964 		       sizeof(vf->data.tcp_spec.src_ip));
2965 	}
2966 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2967 		struct flow_match_ports match;
2968 
2969 		flow_rule_match_ports(rule, &match);
2970 		if (match.mask->src) {
2971 			if (match.mask->src == cpu_to_be16(0xffff)) {
2972 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2973 			} else {
2974 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2975 					be16_to_cpu(match.mask->src));
2976 				return IAVF_ERR_CONFIG;
2977 			}
2978 		}
2979 
2980 		if (match.mask->dst) {
2981 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2982 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2983 			} else {
2984 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2985 					be16_to_cpu(match.mask->dst));
2986 				return IAVF_ERR_CONFIG;
2987 			}
2988 		}
2989 		if (match.key->dst) {
2990 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2991 			vf->data.tcp_spec.dst_port = match.key->dst;
2992 		}
2993 
2994 		if (match.key->src) {
2995 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2996 			vf->data.tcp_spec.src_port = match.key->src;
2997 		}
2998 	}
2999 	vf->field_flags = field_flags;
3000 
3001 	return 0;
3002 }
3003 
3004 /**
3005  * iavf_handle_tclass - Forward to a traffic class on the device
3006  * @adapter: board private structure
3007  * @tc: traffic class index on the device
3008  * @filter: pointer to cloud filter structure
3009  */
3010 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3011 			      struct iavf_cloud_filter *filter)
3012 {
3013 	if (tc == 0)
3014 		return 0;
3015 	if (tc < adapter->num_tc) {
3016 		if (!filter->f.data.tcp_spec.dst_port) {
3017 			dev_err(&adapter->pdev->dev,
3018 				"Specify destination port to redirect to traffic class other than TC0\n");
3019 			return -EINVAL;
3020 		}
3021 	}
3022 	/* redirect to a traffic class on the same device */
3023 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3024 	filter->f.action_meta = tc;
3025 	return 0;
3026 }
3027 
3028 /**
3029  * iavf_configure_clsflower - Add tc flower filters
3030  * @adapter: board private structure
3031  * @cls_flower: Pointer to struct flow_cls_offload
3032  */
3033 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3034 				    struct flow_cls_offload *cls_flower)
3035 {
3036 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3037 	struct iavf_cloud_filter *filter = NULL;
3038 	int err = -EINVAL, count = 50;
3039 
3040 	if (tc < 0) {
3041 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3042 		return -EINVAL;
3043 	}
3044 
3045 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3046 	if (!filter)
3047 		return -ENOMEM;
3048 
3049 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3050 				&adapter->crit_section)) {
3051 		if (--count == 0)
3052 			goto err;
3053 		udelay(1);
3054 	}
3055 
3056 	filter->cookie = cls_flower->cookie;
3057 
3058 	/* set the mask to all zeroes to begin with */
3059 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3060 	/* start out with flow type and eth type IPv4 to begin with */
3061 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3062 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3063 	if (err < 0)
3064 		goto err;
3065 
3066 	err = iavf_handle_tclass(adapter, tc, filter);
3067 	if (err < 0)
3068 		goto err;
3069 
3070 	/* add filter to the list */
3071 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3072 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3073 	adapter->num_cloud_filters++;
3074 	filter->add = true;
3075 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3076 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3077 err:
3078 	if (err)
3079 		kfree(filter);
3080 
3081 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3082 	return err;
3083 }
3084 
3085 /* iavf_find_cf - Find the cloud filter in the list
3086  * @adapter: Board private structure
3087  * @cookie: filter specific cookie
3088  *
3089  * Returns ptr to the filter object or NULL. Must be called while holding the
3090  * cloud_filter_list_lock.
3091  */
3092 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3093 					      unsigned long *cookie)
3094 {
3095 	struct iavf_cloud_filter *filter = NULL;
3096 
3097 	if (!cookie)
3098 		return NULL;
3099 
3100 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3101 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3102 			return filter;
3103 	}
3104 	return NULL;
3105 }
3106 
3107 /**
3108  * iavf_delete_clsflower - Remove tc flower filters
3109  * @adapter: board private structure
3110  * @cls_flower: Pointer to struct flow_cls_offload
3111  */
3112 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3113 				 struct flow_cls_offload *cls_flower)
3114 {
3115 	struct iavf_cloud_filter *filter = NULL;
3116 	int err = 0;
3117 
3118 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3119 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3120 	if (filter) {
3121 		filter->del = true;
3122 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3123 	} else {
3124 		err = -EINVAL;
3125 	}
3126 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3127 
3128 	return err;
3129 }
3130 
3131 /**
3132  * iavf_setup_tc_cls_flower - flower classifier offloads
3133  * @adapter: board private structure
3134  * @cls_flower: pointer to flow_cls_offload struct with flow info
3135  */
3136 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3137 				    struct flow_cls_offload *cls_flower)
3138 {
3139 	switch (cls_flower->command) {
3140 	case FLOW_CLS_REPLACE:
3141 		return iavf_configure_clsflower(adapter, cls_flower);
3142 	case FLOW_CLS_DESTROY:
3143 		return iavf_delete_clsflower(adapter, cls_flower);
3144 	case FLOW_CLS_STATS:
3145 		return -EOPNOTSUPP;
3146 	default:
3147 		return -EOPNOTSUPP;
3148 	}
3149 }
3150 
3151 /**
3152  * iavf_setup_tc_block_cb - block callback for tc
3153  * @type: type of offload
3154  * @type_data: offload data
3155  * @cb_priv:
3156  *
3157  * This function is the block callback for traffic classes
3158  **/
3159 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3160 				  void *cb_priv)
3161 {
3162 	struct iavf_adapter *adapter = cb_priv;
3163 
3164 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3165 		return -EOPNOTSUPP;
3166 
3167 	switch (type) {
3168 	case TC_SETUP_CLSFLOWER:
3169 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3170 	default:
3171 		return -EOPNOTSUPP;
3172 	}
3173 }
3174 
3175 static LIST_HEAD(iavf_block_cb_list);
3176 
3177 /**
3178  * iavf_setup_tc - configure multiple traffic classes
3179  * @netdev: network interface device structure
3180  * @type: type of offload
3181  * @type_data: tc offload data
3182  *
3183  * This function is the callback to ndo_setup_tc in the
3184  * netdev_ops.
3185  *
3186  * Returns 0 on success
3187  **/
3188 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3189 			 void *type_data)
3190 {
3191 	struct iavf_adapter *adapter = netdev_priv(netdev);
3192 
3193 	switch (type) {
3194 	case TC_SETUP_QDISC_MQPRIO:
3195 		return __iavf_setup_tc(netdev, type_data);
3196 	case TC_SETUP_BLOCK:
3197 		return flow_block_cb_setup_simple(type_data,
3198 						  &iavf_block_cb_list,
3199 						  iavf_setup_tc_block_cb,
3200 						  adapter, adapter, true);
3201 	default:
3202 		return -EOPNOTSUPP;
3203 	}
3204 }
3205 
3206 /**
3207  * iavf_open - Called when a network interface is made active
3208  * @netdev: network interface device structure
3209  *
3210  * Returns 0 on success, negative value on failure
3211  *
3212  * The open entry point is called when a network interface is made
3213  * active by the system (IFF_UP).  At this point all resources needed
3214  * for transmit and receive operations are allocated, the interrupt
3215  * handler is registered with the OS, the watchdog is started,
3216  * and the stack is notified that the interface is ready.
3217  **/
3218 static int iavf_open(struct net_device *netdev)
3219 {
3220 	struct iavf_adapter *adapter = netdev_priv(netdev);
3221 	int err;
3222 
3223 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3224 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3225 		return -EIO;
3226 	}
3227 
3228 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3229 				&adapter->crit_section))
3230 		usleep_range(500, 1000);
3231 
3232 	if (adapter->state != __IAVF_DOWN) {
3233 		err = -EBUSY;
3234 		goto err_unlock;
3235 	}
3236 
3237 	/* allocate transmit descriptors */
3238 	err = iavf_setup_all_tx_resources(adapter);
3239 	if (err)
3240 		goto err_setup_tx;
3241 
3242 	/* allocate receive descriptors */
3243 	err = iavf_setup_all_rx_resources(adapter);
3244 	if (err)
3245 		goto err_setup_rx;
3246 
3247 	/* clear any pending interrupts, may auto mask */
3248 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3249 	if (err)
3250 		goto err_req_irq;
3251 
3252 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3253 
3254 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3255 
3256 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3257 
3258 	iavf_configure(adapter);
3259 
3260 	iavf_up_complete(adapter);
3261 
3262 	iavf_irq_enable(adapter, true);
3263 
3264 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3265 
3266 	return 0;
3267 
3268 err_req_irq:
3269 	iavf_down(adapter);
3270 	iavf_free_traffic_irqs(adapter);
3271 err_setup_rx:
3272 	iavf_free_all_rx_resources(adapter);
3273 err_setup_tx:
3274 	iavf_free_all_tx_resources(adapter);
3275 err_unlock:
3276 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3277 
3278 	return err;
3279 }
3280 
3281 /**
3282  * iavf_close - Disables a network interface
3283  * @netdev: network interface device structure
3284  *
3285  * Returns 0, this is not allowed to fail
3286  *
3287  * The close entry point is called when an interface is de-activated
3288  * by the OS.  The hardware is still under the drivers control, but
3289  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3290  * are freed, along with all transmit and receive resources.
3291  **/
3292 static int iavf_close(struct net_device *netdev)
3293 {
3294 	struct iavf_adapter *adapter = netdev_priv(netdev);
3295 	int status;
3296 
3297 	if (adapter->state <= __IAVF_DOWN_PENDING)
3298 		return 0;
3299 
3300 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3301 				&adapter->crit_section))
3302 		usleep_range(500, 1000);
3303 
3304 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3305 	if (CLIENT_ENABLED(adapter))
3306 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3307 
3308 	iavf_down(adapter);
3309 	adapter->state = __IAVF_DOWN_PENDING;
3310 	iavf_free_traffic_irqs(adapter);
3311 
3312 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3313 
3314 	/* We explicitly don't free resources here because the hardware is
3315 	 * still active and can DMA into memory. Resources are cleared in
3316 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3317 	 * driver that the rings have been stopped.
3318 	 *
3319 	 * Also, we wait for state to transition to __IAVF_DOWN before
3320 	 * returning. State change occurs in iavf_virtchnl_completion() after
3321 	 * VF resources are released (which occurs after PF driver processes and
3322 	 * responds to admin queue commands).
3323 	 */
3324 
3325 	status = wait_event_timeout(adapter->down_waitqueue,
3326 				    adapter->state == __IAVF_DOWN,
3327 				    msecs_to_jiffies(500));
3328 	if (!status)
3329 		netdev_warn(netdev, "Device resources not yet released\n");
3330 	return 0;
3331 }
3332 
3333 /**
3334  * iavf_change_mtu - Change the Maximum Transfer Unit
3335  * @netdev: network interface device structure
3336  * @new_mtu: new value for maximum frame size
3337  *
3338  * Returns 0 on success, negative on failure
3339  **/
3340 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3341 {
3342 	struct iavf_adapter *adapter = netdev_priv(netdev);
3343 
3344 	netdev->mtu = new_mtu;
3345 	if (CLIENT_ENABLED(adapter)) {
3346 		iavf_notify_client_l2_params(&adapter->vsi);
3347 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3348 	}
3349 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3350 	queue_work(iavf_wq, &adapter->reset_task);
3351 
3352 	return 0;
3353 }
3354 
3355 /**
3356  * iavf_set_features - set the netdev feature flags
3357  * @netdev: ptr to the netdev being adjusted
3358  * @features: the feature set that the stack is suggesting
3359  * Note: expects to be called while under rtnl_lock()
3360  **/
3361 static int iavf_set_features(struct net_device *netdev,
3362 			     netdev_features_t features)
3363 {
3364 	struct iavf_adapter *adapter = netdev_priv(netdev);
3365 
3366 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3367 	 * of VLAN offload
3368 	 */
3369 	if (!VLAN_ALLOWED(adapter)) {
3370 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3371 			return -EINVAL;
3372 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3373 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3374 			adapter->aq_required |=
3375 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3376 		else
3377 			adapter->aq_required |=
3378 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 /**
3385  * iavf_features_check - Validate encapsulated packet conforms to limits
3386  * @skb: skb buff
3387  * @dev: This physical port's netdev
3388  * @features: Offload features that the stack believes apply
3389  **/
3390 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3391 					     struct net_device *dev,
3392 					     netdev_features_t features)
3393 {
3394 	size_t len;
3395 
3396 	/* No point in doing any of this if neither checksum nor GSO are
3397 	 * being requested for this frame.  We can rule out both by just
3398 	 * checking for CHECKSUM_PARTIAL
3399 	 */
3400 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3401 		return features;
3402 
3403 	/* We cannot support GSO if the MSS is going to be less than
3404 	 * 64 bytes.  If it is then we need to drop support for GSO.
3405 	 */
3406 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3407 		features &= ~NETIF_F_GSO_MASK;
3408 
3409 	/* MACLEN can support at most 63 words */
3410 	len = skb_network_header(skb) - skb->data;
3411 	if (len & ~(63 * 2))
3412 		goto out_err;
3413 
3414 	/* IPLEN and EIPLEN can support at most 127 dwords */
3415 	len = skb_transport_header(skb) - skb_network_header(skb);
3416 	if (len & ~(127 * 4))
3417 		goto out_err;
3418 
3419 	if (skb->encapsulation) {
3420 		/* L4TUNLEN can support 127 words */
3421 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3422 		if (len & ~(127 * 2))
3423 			goto out_err;
3424 
3425 		/* IPLEN can support at most 127 dwords */
3426 		len = skb_inner_transport_header(skb) -
3427 		      skb_inner_network_header(skb);
3428 		if (len & ~(127 * 4))
3429 			goto out_err;
3430 	}
3431 
3432 	/* No need to validate L4LEN as TCP is the only protocol with a
3433 	 * a flexible value and we support all possible values supported
3434 	 * by TCP, which is at most 15 dwords
3435 	 */
3436 
3437 	return features;
3438 out_err:
3439 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3440 }
3441 
3442 /**
3443  * iavf_fix_features - fix up the netdev feature bits
3444  * @netdev: our net device
3445  * @features: desired feature bits
3446  *
3447  * Returns fixed-up features bits
3448  **/
3449 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3450 					   netdev_features_t features)
3451 {
3452 	struct iavf_adapter *adapter = netdev_priv(netdev);
3453 
3454 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3455 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3456 			      NETIF_F_HW_VLAN_CTAG_RX |
3457 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3458 
3459 	return features;
3460 }
3461 
3462 static const struct net_device_ops iavf_netdev_ops = {
3463 	.ndo_open		= iavf_open,
3464 	.ndo_stop		= iavf_close,
3465 	.ndo_start_xmit		= iavf_xmit_frame,
3466 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3467 	.ndo_validate_addr	= eth_validate_addr,
3468 	.ndo_set_mac_address	= iavf_set_mac,
3469 	.ndo_change_mtu		= iavf_change_mtu,
3470 	.ndo_tx_timeout		= iavf_tx_timeout,
3471 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3472 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3473 	.ndo_features_check	= iavf_features_check,
3474 	.ndo_fix_features	= iavf_fix_features,
3475 	.ndo_set_features	= iavf_set_features,
3476 	.ndo_setup_tc		= iavf_setup_tc,
3477 };
3478 
3479 /**
3480  * iavf_check_reset_complete - check that VF reset is complete
3481  * @hw: pointer to hw struct
3482  *
3483  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3484  **/
3485 static int iavf_check_reset_complete(struct iavf_hw *hw)
3486 {
3487 	u32 rstat;
3488 	int i;
3489 
3490 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3491 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3492 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3493 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3494 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3495 			return 0;
3496 		usleep_range(10, 20);
3497 	}
3498 	return -EBUSY;
3499 }
3500 
3501 /**
3502  * iavf_process_config - Process the config information we got from the PF
3503  * @adapter: board private structure
3504  *
3505  * Verify that we have a valid config struct, and set up our netdev features
3506  * and our VSI struct.
3507  **/
3508 int iavf_process_config(struct iavf_adapter *adapter)
3509 {
3510 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3511 	int i, num_req_queues = adapter->num_req_queues;
3512 	struct net_device *netdev = adapter->netdev;
3513 	struct iavf_vsi *vsi = &adapter->vsi;
3514 	netdev_features_t hw_enc_features;
3515 	netdev_features_t hw_features;
3516 
3517 	/* got VF config message back from PF, now we can parse it */
3518 	for (i = 0; i < vfres->num_vsis; i++) {
3519 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3520 			adapter->vsi_res = &vfres->vsi_res[i];
3521 	}
3522 	if (!adapter->vsi_res) {
3523 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3524 		return -ENODEV;
3525 	}
3526 
3527 	if (num_req_queues &&
3528 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3529 		/* Problem.  The PF gave us fewer queues than what we had
3530 		 * negotiated in our request.  Need a reset to see if we can't
3531 		 * get back to a working state.
3532 		 */
3533 		dev_err(&adapter->pdev->dev,
3534 			"Requested %d queues, but PF only gave us %d.\n",
3535 			num_req_queues,
3536 			adapter->vsi_res->num_queue_pairs);
3537 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3538 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3539 		iavf_schedule_reset(adapter);
3540 		return -ENODEV;
3541 	}
3542 	adapter->num_req_queues = 0;
3543 
3544 	hw_enc_features = NETIF_F_SG			|
3545 			  NETIF_F_IP_CSUM		|
3546 			  NETIF_F_IPV6_CSUM		|
3547 			  NETIF_F_HIGHDMA		|
3548 			  NETIF_F_SOFT_FEATURES	|
3549 			  NETIF_F_TSO			|
3550 			  NETIF_F_TSO_ECN		|
3551 			  NETIF_F_TSO6			|
3552 			  NETIF_F_SCTP_CRC		|
3553 			  NETIF_F_RXHASH		|
3554 			  NETIF_F_RXCSUM		|
3555 			  0;
3556 
3557 	/* advertise to stack only if offloads for encapsulated packets is
3558 	 * supported
3559 	 */
3560 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3561 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3562 				   NETIF_F_GSO_GRE		|
3563 				   NETIF_F_GSO_GRE_CSUM		|
3564 				   NETIF_F_GSO_IPXIP4		|
3565 				   NETIF_F_GSO_IPXIP6		|
3566 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3567 				   NETIF_F_GSO_PARTIAL		|
3568 				   0;
3569 
3570 		if (!(vfres->vf_cap_flags &
3571 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3572 			netdev->gso_partial_features |=
3573 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3574 
3575 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3576 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3577 		netdev->hw_enc_features |= hw_enc_features;
3578 	}
3579 	/* record features VLANs can make use of */
3580 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3581 
3582 	/* Write features and hw_features separately to avoid polluting
3583 	 * with, or dropping, features that are set when we registered.
3584 	 */
3585 	hw_features = hw_enc_features;
3586 
3587 	/* Enable VLAN features if supported */
3588 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3589 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3590 				NETIF_F_HW_VLAN_CTAG_RX);
3591 	/* Enable cloud filter if ADQ is supported */
3592 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3593 		hw_features |= NETIF_F_HW_TC;
3594 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3595 		hw_features |= NETIF_F_GSO_UDP_L4;
3596 
3597 	netdev->hw_features |= hw_features;
3598 
3599 	netdev->features |= hw_features;
3600 
3601 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3602 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3603 
3604 	netdev->priv_flags |= IFF_UNICAST_FLT;
3605 
3606 	/* Do not turn on offloads when they are requested to be turned off.
3607 	 * TSO needs minimum 576 bytes to work correctly.
3608 	 */
3609 	if (netdev->wanted_features) {
3610 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3611 		    netdev->mtu < 576)
3612 			netdev->features &= ~NETIF_F_TSO;
3613 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3614 		    netdev->mtu < 576)
3615 			netdev->features &= ~NETIF_F_TSO6;
3616 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3617 			netdev->features &= ~NETIF_F_TSO_ECN;
3618 		if (!(netdev->wanted_features & NETIF_F_GRO))
3619 			netdev->features &= ~NETIF_F_GRO;
3620 		if (!(netdev->wanted_features & NETIF_F_GSO))
3621 			netdev->features &= ~NETIF_F_GSO;
3622 	}
3623 
3624 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3625 
3626 	adapter->vsi.back = adapter;
3627 	adapter->vsi.base_vector = 1;
3628 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3629 	vsi->netdev = adapter->netdev;
3630 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3631 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3632 		adapter->rss_key_size = vfres->rss_key_size;
3633 		adapter->rss_lut_size = vfres->rss_lut_size;
3634 	} else {
3635 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3636 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3637 	}
3638 
3639 	return 0;
3640 }
3641 
3642 /**
3643  * iavf_init_task - worker thread to perform delayed initialization
3644  * @work: pointer to work_struct containing our data
3645  *
3646  * This task completes the work that was begun in probe. Due to the nature
3647  * of VF-PF communications, we may need to wait tens of milliseconds to get
3648  * responses back from the PF. Rather than busy-wait in probe and bog down the
3649  * whole system, we'll do it in a task so we can sleep.
3650  * This task only runs during driver init. Once we've established
3651  * communications with the PF driver and set up our netdev, the watchdog
3652  * takes over.
3653  **/
3654 static void iavf_init_task(struct work_struct *work)
3655 {
3656 	struct iavf_adapter *adapter = container_of(work,
3657 						    struct iavf_adapter,
3658 						    init_task.work);
3659 	struct iavf_hw *hw = &adapter->hw;
3660 
3661 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3662 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3663 		return;
3664 	}
3665 	switch (adapter->state) {
3666 	case __IAVF_STARTUP:
3667 		if (iavf_startup(adapter) < 0)
3668 			goto init_failed;
3669 		break;
3670 	case __IAVF_INIT_VERSION_CHECK:
3671 		if (iavf_init_version_check(adapter) < 0)
3672 			goto init_failed;
3673 		break;
3674 	case __IAVF_INIT_GET_RESOURCES:
3675 		if (iavf_init_get_resources(adapter) < 0)
3676 			goto init_failed;
3677 		goto out;
3678 	default:
3679 		goto init_failed;
3680 	}
3681 
3682 	queue_delayed_work(iavf_wq, &adapter->init_task,
3683 			   msecs_to_jiffies(30));
3684 	goto out;
3685 init_failed:
3686 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3687 		dev_err(&adapter->pdev->dev,
3688 			"Failed to communicate with PF; waiting before retry\n");
3689 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3690 		iavf_shutdown_adminq(hw);
3691 		adapter->state = __IAVF_STARTUP;
3692 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3693 		goto out;
3694 	}
3695 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3696 out:
3697 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3698 }
3699 
3700 /**
3701  * iavf_shutdown - Shutdown the device in preparation for a reboot
3702  * @pdev: pci device structure
3703  **/
3704 static void iavf_shutdown(struct pci_dev *pdev)
3705 {
3706 	struct net_device *netdev = pci_get_drvdata(pdev);
3707 	struct iavf_adapter *adapter = netdev_priv(netdev);
3708 
3709 	netif_device_detach(netdev);
3710 
3711 	if (netif_running(netdev))
3712 		iavf_close(netdev);
3713 
3714 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3715 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3716 	/* Prevent the watchdog from running. */
3717 	adapter->state = __IAVF_REMOVE;
3718 	adapter->aq_required = 0;
3719 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3720 
3721 #ifdef CONFIG_PM
3722 	pci_save_state(pdev);
3723 
3724 #endif
3725 	pci_disable_device(pdev);
3726 }
3727 
3728 /**
3729  * iavf_probe - Device Initialization Routine
3730  * @pdev: PCI device information struct
3731  * @ent: entry in iavf_pci_tbl
3732  *
3733  * Returns 0 on success, negative on failure
3734  *
3735  * iavf_probe initializes an adapter identified by a pci_dev structure.
3736  * The OS initialization, configuring of the adapter private structure,
3737  * and a hardware reset occur.
3738  **/
3739 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3740 {
3741 	struct net_device *netdev;
3742 	struct iavf_adapter *adapter = NULL;
3743 	struct iavf_hw *hw = NULL;
3744 	int err;
3745 
3746 	err = pci_enable_device(pdev);
3747 	if (err)
3748 		return err;
3749 
3750 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3751 	if (err) {
3752 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3753 		if (err) {
3754 			dev_err(&pdev->dev,
3755 				"DMA configuration failed: 0x%x\n", err);
3756 			goto err_dma;
3757 		}
3758 	}
3759 
3760 	err = pci_request_regions(pdev, iavf_driver_name);
3761 	if (err) {
3762 		dev_err(&pdev->dev,
3763 			"pci_request_regions failed 0x%x\n", err);
3764 		goto err_pci_reg;
3765 	}
3766 
3767 	pci_enable_pcie_error_reporting(pdev);
3768 
3769 	pci_set_master(pdev);
3770 
3771 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3772 				   IAVF_MAX_REQ_QUEUES);
3773 	if (!netdev) {
3774 		err = -ENOMEM;
3775 		goto err_alloc_etherdev;
3776 	}
3777 
3778 	SET_NETDEV_DEV(netdev, &pdev->dev);
3779 
3780 	pci_set_drvdata(pdev, netdev);
3781 	adapter = netdev_priv(netdev);
3782 
3783 	adapter->netdev = netdev;
3784 	adapter->pdev = pdev;
3785 
3786 	hw = &adapter->hw;
3787 	hw->back = adapter;
3788 
3789 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3790 	adapter->state = __IAVF_STARTUP;
3791 
3792 	/* Call save state here because it relies on the adapter struct. */
3793 	pci_save_state(pdev);
3794 
3795 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3796 			      pci_resource_len(pdev, 0));
3797 	if (!hw->hw_addr) {
3798 		err = -EIO;
3799 		goto err_ioremap;
3800 	}
3801 	hw->vendor_id = pdev->vendor;
3802 	hw->device_id = pdev->device;
3803 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3804 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3805 	hw->subsystem_device_id = pdev->subsystem_device;
3806 	hw->bus.device = PCI_SLOT(pdev->devfn);
3807 	hw->bus.func = PCI_FUNC(pdev->devfn);
3808 	hw->bus.bus_id = pdev->bus->number;
3809 
3810 	/* set up the locks for the AQ, do this only once in probe
3811 	 * and destroy them only once in remove
3812 	 */
3813 	mutex_init(&hw->aq.asq_mutex);
3814 	mutex_init(&hw->aq.arq_mutex);
3815 
3816 	spin_lock_init(&adapter->mac_vlan_list_lock);
3817 	spin_lock_init(&adapter->cloud_filter_list_lock);
3818 	spin_lock_init(&adapter->fdir_fltr_lock);
3819 	spin_lock_init(&adapter->adv_rss_lock);
3820 
3821 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3822 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3823 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3824 	INIT_LIST_HEAD(&adapter->fdir_list_head);
3825 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3826 
3827 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3828 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3829 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3830 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3831 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3832 	queue_delayed_work(iavf_wq, &adapter->init_task,
3833 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3834 
3835 	/* Setup the wait queue for indicating transition to down status */
3836 	init_waitqueue_head(&adapter->down_waitqueue);
3837 
3838 	return 0;
3839 
3840 err_ioremap:
3841 	free_netdev(netdev);
3842 err_alloc_etherdev:
3843 	pci_disable_pcie_error_reporting(pdev);
3844 	pci_release_regions(pdev);
3845 err_pci_reg:
3846 err_dma:
3847 	pci_disable_device(pdev);
3848 	return err;
3849 }
3850 
3851 /**
3852  * iavf_suspend - Power management suspend routine
3853  * @dev_d: device info pointer
3854  *
3855  * Called when the system (VM) is entering sleep/suspend.
3856  **/
3857 static int __maybe_unused iavf_suspend(struct device *dev_d)
3858 {
3859 	struct net_device *netdev = dev_get_drvdata(dev_d);
3860 	struct iavf_adapter *adapter = netdev_priv(netdev);
3861 
3862 	netif_device_detach(netdev);
3863 
3864 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3865 				&adapter->crit_section))
3866 		usleep_range(500, 1000);
3867 
3868 	if (netif_running(netdev)) {
3869 		rtnl_lock();
3870 		iavf_down(adapter);
3871 		rtnl_unlock();
3872 	}
3873 	iavf_free_misc_irq(adapter);
3874 	iavf_reset_interrupt_capability(adapter);
3875 
3876 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3877 
3878 	return 0;
3879 }
3880 
3881 /**
3882  * iavf_resume - Power management resume routine
3883  * @dev_d: device info pointer
3884  *
3885  * Called when the system (VM) is resumed from sleep/suspend.
3886  **/
3887 static int __maybe_unused iavf_resume(struct device *dev_d)
3888 {
3889 	struct pci_dev *pdev = to_pci_dev(dev_d);
3890 	struct net_device *netdev = pci_get_drvdata(pdev);
3891 	struct iavf_adapter *adapter = netdev_priv(netdev);
3892 	u32 err;
3893 
3894 	pci_set_master(pdev);
3895 
3896 	rtnl_lock();
3897 	err = iavf_set_interrupt_capability(adapter);
3898 	if (err) {
3899 		rtnl_unlock();
3900 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3901 		return err;
3902 	}
3903 	err = iavf_request_misc_irq(adapter);
3904 	rtnl_unlock();
3905 	if (err) {
3906 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3907 		return err;
3908 	}
3909 
3910 	queue_work(iavf_wq, &adapter->reset_task);
3911 
3912 	netif_device_attach(netdev);
3913 
3914 	return err;
3915 }
3916 
3917 /**
3918  * iavf_remove - Device Removal Routine
3919  * @pdev: PCI device information struct
3920  *
3921  * iavf_remove is called by the PCI subsystem to alert the driver
3922  * that it should release a PCI device.  The could be caused by a
3923  * Hot-Plug event, or because the driver is going to be removed from
3924  * memory.
3925  **/
3926 static void iavf_remove(struct pci_dev *pdev)
3927 {
3928 	struct net_device *netdev = pci_get_drvdata(pdev);
3929 	struct iavf_adapter *adapter = netdev_priv(netdev);
3930 	struct iavf_fdir_fltr *fdir, *fdirtmp;
3931 	struct iavf_vlan_filter *vlf, *vlftmp;
3932 	struct iavf_adv_rss *rss, *rsstmp;
3933 	struct iavf_mac_filter *f, *ftmp;
3934 	struct iavf_cloud_filter *cf, *cftmp;
3935 	struct iavf_hw *hw = &adapter->hw;
3936 	int err;
3937 	/* Indicate we are in remove and not to run reset_task */
3938 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3939 	cancel_delayed_work_sync(&adapter->init_task);
3940 	cancel_work_sync(&adapter->reset_task);
3941 	cancel_delayed_work_sync(&adapter->client_task);
3942 	if (adapter->netdev_registered) {
3943 		unregister_netdev(netdev);
3944 		adapter->netdev_registered = false;
3945 	}
3946 	if (CLIENT_ALLOWED(adapter)) {
3947 		err = iavf_lan_del_device(adapter);
3948 		if (err)
3949 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3950 				 err);
3951 	}
3952 
3953 	iavf_request_reset(adapter);
3954 	msleep(50);
3955 	/* If the FW isn't responding, kick it once, but only once. */
3956 	if (!iavf_asq_done(hw)) {
3957 		iavf_request_reset(adapter);
3958 		msleep(50);
3959 	}
3960 	if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3961 		dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3962 
3963 	/* Shut down all the garbage mashers on the detention level */
3964 	adapter->state = __IAVF_REMOVE;
3965 	adapter->aq_required = 0;
3966 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3967 	iavf_free_all_tx_resources(adapter);
3968 	iavf_free_all_rx_resources(adapter);
3969 	iavf_misc_irq_disable(adapter);
3970 	iavf_free_misc_irq(adapter);
3971 	iavf_reset_interrupt_capability(adapter);
3972 	iavf_free_q_vectors(adapter);
3973 
3974 	cancel_delayed_work_sync(&adapter->watchdog_task);
3975 
3976 	cancel_work_sync(&adapter->adminq_task);
3977 
3978 	iavf_free_rss(adapter);
3979 
3980 	if (hw->aq.asq.count)
3981 		iavf_shutdown_adminq(hw);
3982 
3983 	/* destroy the locks only once, here */
3984 	mutex_destroy(&hw->aq.arq_mutex);
3985 	mutex_destroy(&hw->aq.asq_mutex);
3986 
3987 	iounmap(hw->hw_addr);
3988 	pci_release_regions(pdev);
3989 	iavf_free_queues(adapter);
3990 	kfree(adapter->vf_res);
3991 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3992 	/* If we got removed before an up/down sequence, we've got a filter
3993 	 * hanging out there that we need to get rid of.
3994 	 */
3995 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3996 		list_del(&f->list);
3997 		kfree(f);
3998 	}
3999 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4000 				 list) {
4001 		list_del(&vlf->list);
4002 		kfree(vlf);
4003 	}
4004 
4005 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4006 
4007 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4008 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4009 		list_del(&cf->list);
4010 		kfree(cf);
4011 	}
4012 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4013 
4014 	spin_lock_bh(&adapter->fdir_fltr_lock);
4015 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4016 		list_del(&fdir->list);
4017 		kfree(fdir);
4018 	}
4019 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4020 
4021 	spin_lock_bh(&adapter->adv_rss_lock);
4022 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4023 				 list) {
4024 		list_del(&rss->list);
4025 		kfree(rss);
4026 	}
4027 	spin_unlock_bh(&adapter->adv_rss_lock);
4028 
4029 	free_netdev(netdev);
4030 
4031 	pci_disable_pcie_error_reporting(pdev);
4032 
4033 	pci_disable_device(pdev);
4034 }
4035 
4036 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4037 
4038 static struct pci_driver iavf_driver = {
4039 	.name      = iavf_driver_name,
4040 	.id_table  = iavf_pci_tbl,
4041 	.probe     = iavf_probe,
4042 	.remove    = iavf_remove,
4043 	.driver.pm = &iavf_pm_ops,
4044 	.shutdown  = iavf_shutdown,
4045 };
4046 
4047 /**
4048  * iavf_init_module - Driver Registration Routine
4049  *
4050  * iavf_init_module is the first routine called when the driver is
4051  * loaded. All it does is register with the PCI subsystem.
4052  **/
4053 static int __init iavf_init_module(void)
4054 {
4055 	int ret;
4056 
4057 	pr_info("iavf: %s\n", iavf_driver_string);
4058 
4059 	pr_info("%s\n", iavf_copyright);
4060 
4061 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4062 				  iavf_driver_name);
4063 	if (!iavf_wq) {
4064 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4065 		return -ENOMEM;
4066 	}
4067 	ret = pci_register_driver(&iavf_driver);
4068 	return ret;
4069 }
4070 
4071 module_init(iavf_init_module);
4072 
4073 /**
4074  * iavf_exit_module - Driver Exit Cleanup Routine
4075  *
4076  * iavf_exit_module is called just before the driver is removed
4077  * from memory.
4078  **/
4079 static void __exit iavf_exit_module(void)
4080 {
4081 	pci_unregister_driver(&iavf_driver);
4082 	destroy_workqueue(iavf_wq);
4083 }
4084 
4085 module_exit(iavf_exit_module);
4086 
4087 /* iavf_main.c */
4088