1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_is_reset_in_progress - Check if a reset is in progress 171 * @adapter: board private structure 172 */ 173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 174 { 175 if (adapter->state == __IAVF_RESETTING || 176 adapter->flags & (IAVF_FLAG_RESET_PENDING | 177 IAVF_FLAG_RESET_NEEDED)) 178 return true; 179 180 return false; 181 } 182 183 /** 184 * iavf_wait_for_reset - Wait for reset to finish. 185 * @adapter: board private structure 186 * 187 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 188 */ 189 int iavf_wait_for_reset(struct iavf_adapter *adapter) 190 { 191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 192 !iavf_is_reset_in_progress(adapter), 193 msecs_to_jiffies(5000)); 194 195 /* If ret < 0 then it means wait was interrupted. 196 * If ret == 0 then it means we got a timeout while waiting 197 * for reset to finish. 198 * If ret > 0 it means reset has finished. 199 */ 200 if (ret > 0) 201 return 0; 202 else if (ret < 0) 203 return -EINTR; 204 else 205 return -EBUSY; 206 } 207 208 /** 209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 210 * @hw: pointer to the HW structure 211 * @mem: ptr to mem struct to fill out 212 * @size: size of memory requested 213 * @alignment: what to align the allocation to 214 **/ 215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 216 struct iavf_dma_mem *mem, 217 u64 size, u32 alignment) 218 { 219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 220 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = ALIGN(size, alignment); 225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 226 (dma_addr_t *)&mem->pa, GFP_KERNEL); 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_dma_mem - wrapper for DMA memory freeing 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 239 { 240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 241 242 if (!mem || !mem->va) 243 return IAVF_ERR_PARAM; 244 dma_free_coherent(&adapter->pdev->dev, mem->size, 245 mem->va, (dma_addr_t)mem->pa); 246 return 0; 247 } 248 249 /** 250 * iavf_allocate_virt_mem - virt memory alloc wrapper 251 * @hw: pointer to the HW structure 252 * @mem: ptr to mem struct to fill out 253 * @size: size of memory requested 254 **/ 255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 256 struct iavf_virt_mem *mem, u32 size) 257 { 258 if (!mem) 259 return IAVF_ERR_PARAM; 260 261 mem->size = size; 262 mem->va = kzalloc(size, GFP_KERNEL); 263 264 if (mem->va) 265 return 0; 266 else 267 return IAVF_ERR_NO_MEMORY; 268 } 269 270 /** 271 * iavf_free_virt_mem - virt memory free wrapper 272 * @hw: pointer to the HW structure 273 * @mem: ptr to mem struct to free 274 **/ 275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 276 { 277 kfree(mem->va); 278 } 279 280 /** 281 * iavf_lock_timeout - try to lock mutex but give up after timeout 282 * @lock: mutex that should be locked 283 * @msecs: timeout in msecs 284 * 285 * Returns 0 on success, negative on failure 286 **/ 287 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 288 { 289 unsigned int wait, delay = 10; 290 291 for (wait = 0; wait < msecs; wait += delay) { 292 if (mutex_trylock(lock)) 293 return 0; 294 295 msleep(delay); 296 } 297 298 return -1; 299 } 300 301 /** 302 * iavf_schedule_reset - Set the flags and schedule a reset event 303 * @adapter: board private structure 304 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 305 **/ 306 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 307 { 308 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 309 !(adapter->flags & 310 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 311 adapter->flags |= flags; 312 queue_work(adapter->wq, &adapter->reset_task); 313 } 314 } 315 316 /** 317 * iavf_schedule_request_stats - Set the flags and schedule statistics request 318 * @adapter: board private structure 319 * 320 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 321 * request and refresh ethtool stats 322 **/ 323 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 324 { 325 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 326 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 327 } 328 329 /** 330 * iavf_tx_timeout - Respond to a Tx Hang 331 * @netdev: network interface device structure 332 * @txqueue: queue number that is timing out 333 **/ 334 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 335 { 336 struct iavf_adapter *adapter = netdev_priv(netdev); 337 338 adapter->tx_timeout_count++; 339 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 340 } 341 342 /** 343 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 344 * @adapter: board private structure 345 **/ 346 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 347 { 348 struct iavf_hw *hw = &adapter->hw; 349 350 if (!adapter->msix_entries) 351 return; 352 353 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 354 355 iavf_flush(hw); 356 357 synchronize_irq(adapter->msix_entries[0].vector); 358 } 359 360 /** 361 * iavf_misc_irq_enable - Enable default interrupt generation settings 362 * @adapter: board private structure 363 **/ 364 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 365 { 366 struct iavf_hw *hw = &adapter->hw; 367 368 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 369 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 370 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 371 372 iavf_flush(hw); 373 } 374 375 /** 376 * iavf_irq_disable - Mask off interrupt generation on the NIC 377 * @adapter: board private structure 378 **/ 379 static void iavf_irq_disable(struct iavf_adapter *adapter) 380 { 381 int i; 382 struct iavf_hw *hw = &adapter->hw; 383 384 if (!adapter->msix_entries) 385 return; 386 387 for (i = 1; i < adapter->num_msix_vectors; i++) { 388 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 389 synchronize_irq(adapter->msix_entries[i].vector); 390 } 391 iavf_flush(hw); 392 } 393 394 /** 395 * iavf_irq_enable_queues - Enable interrupt for all queues 396 * @adapter: board private structure 397 **/ 398 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 399 { 400 struct iavf_hw *hw = &adapter->hw; 401 int i; 402 403 for (i = 1; i < adapter->num_msix_vectors; i++) { 404 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 405 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 406 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 407 } 408 } 409 410 /** 411 * iavf_irq_enable - Enable default interrupt generation settings 412 * @adapter: board private structure 413 * @flush: boolean value whether to run rd32() 414 **/ 415 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 416 { 417 struct iavf_hw *hw = &adapter->hw; 418 419 iavf_misc_irq_enable(adapter); 420 iavf_irq_enable_queues(adapter); 421 422 if (flush) 423 iavf_flush(hw); 424 } 425 426 /** 427 * iavf_msix_aq - Interrupt handler for vector 0 428 * @irq: interrupt number 429 * @data: pointer to netdev 430 **/ 431 static irqreturn_t iavf_msix_aq(int irq, void *data) 432 { 433 struct net_device *netdev = data; 434 struct iavf_adapter *adapter = netdev_priv(netdev); 435 struct iavf_hw *hw = &adapter->hw; 436 437 /* handle non-queue interrupts, these reads clear the registers */ 438 rd32(hw, IAVF_VFINT_ICR01); 439 rd32(hw, IAVF_VFINT_ICR0_ENA1); 440 441 if (adapter->state != __IAVF_REMOVE) 442 /* schedule work on the private workqueue */ 443 queue_work(adapter->wq, &adapter->adminq_task); 444 445 return IRQ_HANDLED; 446 } 447 448 /** 449 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 450 * @irq: interrupt number 451 * @data: pointer to a q_vector 452 **/ 453 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 454 { 455 struct iavf_q_vector *q_vector = data; 456 457 if (!q_vector->tx.ring && !q_vector->rx.ring) 458 return IRQ_HANDLED; 459 460 napi_schedule_irqoff(&q_vector->napi); 461 462 return IRQ_HANDLED; 463 } 464 465 /** 466 * iavf_map_vector_to_rxq - associate irqs with rx queues 467 * @adapter: board private structure 468 * @v_idx: interrupt number 469 * @r_idx: queue number 470 **/ 471 static void 472 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 473 { 474 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 475 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 476 struct iavf_hw *hw = &adapter->hw; 477 478 rx_ring->q_vector = q_vector; 479 rx_ring->next = q_vector->rx.ring; 480 rx_ring->vsi = &adapter->vsi; 481 q_vector->rx.ring = rx_ring; 482 q_vector->rx.count++; 483 q_vector->rx.next_update = jiffies + 1; 484 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 485 q_vector->ring_mask |= BIT(r_idx); 486 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 487 q_vector->rx.current_itr >> 1); 488 q_vector->rx.current_itr = q_vector->rx.target_itr; 489 } 490 491 /** 492 * iavf_map_vector_to_txq - associate irqs with tx queues 493 * @adapter: board private structure 494 * @v_idx: interrupt number 495 * @t_idx: queue number 496 **/ 497 static void 498 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 499 { 500 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 501 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 502 struct iavf_hw *hw = &adapter->hw; 503 504 tx_ring->q_vector = q_vector; 505 tx_ring->next = q_vector->tx.ring; 506 tx_ring->vsi = &adapter->vsi; 507 q_vector->tx.ring = tx_ring; 508 q_vector->tx.count++; 509 q_vector->tx.next_update = jiffies + 1; 510 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 511 q_vector->num_ringpairs++; 512 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 513 q_vector->tx.target_itr >> 1); 514 q_vector->tx.current_itr = q_vector->tx.target_itr; 515 } 516 517 /** 518 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 519 * @adapter: board private structure to initialize 520 * 521 * This function maps descriptor rings to the queue-specific vectors 522 * we were allotted through the MSI-X enabling code. Ideally, we'd have 523 * one vector per ring/queue, but on a constrained vector budget, we 524 * group the rings as "efficiently" as possible. You would add new 525 * mapping configurations in here. 526 **/ 527 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 528 { 529 int rings_remaining = adapter->num_active_queues; 530 int ridx = 0, vidx = 0; 531 int q_vectors; 532 533 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 534 535 for (; ridx < rings_remaining; ridx++) { 536 iavf_map_vector_to_rxq(adapter, vidx, ridx); 537 iavf_map_vector_to_txq(adapter, vidx, ridx); 538 539 /* In the case where we have more queues than vectors, continue 540 * round-robin on vectors until all queues are mapped. 541 */ 542 if (++vidx >= q_vectors) 543 vidx = 0; 544 } 545 546 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 547 } 548 549 /** 550 * iavf_irq_affinity_notify - Callback for affinity changes 551 * @notify: context as to what irq was changed 552 * @mask: the new affinity mask 553 * 554 * This is a callback function used by the irq_set_affinity_notifier function 555 * so that we may register to receive changes to the irq affinity masks. 556 **/ 557 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 558 const cpumask_t *mask) 559 { 560 struct iavf_q_vector *q_vector = 561 container_of(notify, struct iavf_q_vector, affinity_notify); 562 563 cpumask_copy(&q_vector->affinity_mask, mask); 564 } 565 566 /** 567 * iavf_irq_affinity_release - Callback for affinity notifier release 568 * @ref: internal core kernel usage 569 * 570 * This is a callback function used by the irq_set_affinity_notifier function 571 * to inform the current notification subscriber that they will no longer 572 * receive notifications. 573 **/ 574 static void iavf_irq_affinity_release(struct kref *ref) {} 575 576 /** 577 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 578 * @adapter: board private structure 579 * @basename: device basename 580 * 581 * Allocates MSI-X vectors for tx and rx handling, and requests 582 * interrupts from the kernel. 583 **/ 584 static int 585 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 586 { 587 unsigned int vector, q_vectors; 588 unsigned int rx_int_idx = 0, tx_int_idx = 0; 589 int irq_num, err; 590 int cpu; 591 592 iavf_irq_disable(adapter); 593 /* Decrement for Other and TCP Timer vectors */ 594 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 595 596 for (vector = 0; vector < q_vectors; vector++) { 597 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 598 599 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 600 601 if (q_vector->tx.ring && q_vector->rx.ring) { 602 snprintf(q_vector->name, sizeof(q_vector->name), 603 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 604 tx_int_idx++; 605 } else if (q_vector->rx.ring) { 606 snprintf(q_vector->name, sizeof(q_vector->name), 607 "iavf-%s-rx-%u", basename, rx_int_idx++); 608 } else if (q_vector->tx.ring) { 609 snprintf(q_vector->name, sizeof(q_vector->name), 610 "iavf-%s-tx-%u", basename, tx_int_idx++); 611 } else { 612 /* skip this unused q_vector */ 613 continue; 614 } 615 err = request_irq(irq_num, 616 iavf_msix_clean_rings, 617 0, 618 q_vector->name, 619 q_vector); 620 if (err) { 621 dev_info(&adapter->pdev->dev, 622 "Request_irq failed, error: %d\n", err); 623 goto free_queue_irqs; 624 } 625 /* register for affinity change notifications */ 626 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 627 q_vector->affinity_notify.release = 628 iavf_irq_affinity_release; 629 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 630 /* Spread the IRQ affinity hints across online CPUs. Note that 631 * get_cpu_mask returns a mask with a permanent lifetime so 632 * it's safe to use as a hint for irq_update_affinity_hint. 633 */ 634 cpu = cpumask_local_spread(q_vector->v_idx, -1); 635 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 636 } 637 638 return 0; 639 640 free_queue_irqs: 641 while (vector) { 642 vector--; 643 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 644 irq_set_affinity_notifier(irq_num, NULL); 645 irq_update_affinity_hint(irq_num, NULL); 646 free_irq(irq_num, &adapter->q_vectors[vector]); 647 } 648 return err; 649 } 650 651 /** 652 * iavf_request_misc_irq - Initialize MSI-X interrupts 653 * @adapter: board private structure 654 * 655 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 656 * vector is only for the admin queue, and stays active even when the netdev 657 * is closed. 658 **/ 659 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 660 { 661 struct net_device *netdev = adapter->netdev; 662 int err; 663 664 snprintf(adapter->misc_vector_name, 665 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 666 dev_name(&adapter->pdev->dev)); 667 err = request_irq(adapter->msix_entries[0].vector, 668 &iavf_msix_aq, 0, 669 adapter->misc_vector_name, netdev); 670 if (err) { 671 dev_err(&adapter->pdev->dev, 672 "request_irq for %s failed: %d\n", 673 adapter->misc_vector_name, err); 674 free_irq(adapter->msix_entries[0].vector, netdev); 675 } 676 return err; 677 } 678 679 /** 680 * iavf_free_traffic_irqs - Free MSI-X interrupts 681 * @adapter: board private structure 682 * 683 * Frees all MSI-X vectors other than 0. 684 **/ 685 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 686 { 687 int vector, irq_num, q_vectors; 688 689 if (!adapter->msix_entries) 690 return; 691 692 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 693 694 for (vector = 0; vector < q_vectors; vector++) { 695 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 696 irq_set_affinity_notifier(irq_num, NULL); 697 irq_update_affinity_hint(irq_num, NULL); 698 free_irq(irq_num, &adapter->q_vectors[vector]); 699 } 700 } 701 702 /** 703 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 704 * @adapter: board private structure 705 * 706 * Frees MSI-X vector 0. 707 **/ 708 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 709 { 710 struct net_device *netdev = adapter->netdev; 711 712 if (!adapter->msix_entries) 713 return; 714 715 free_irq(adapter->msix_entries[0].vector, netdev); 716 } 717 718 /** 719 * iavf_configure_tx - Configure Transmit Unit after Reset 720 * @adapter: board private structure 721 * 722 * Configure the Tx unit of the MAC after a reset. 723 **/ 724 static void iavf_configure_tx(struct iavf_adapter *adapter) 725 { 726 struct iavf_hw *hw = &adapter->hw; 727 int i; 728 729 for (i = 0; i < adapter->num_active_queues; i++) 730 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 731 } 732 733 /** 734 * iavf_configure_rx - Configure Receive Unit after Reset 735 * @adapter: board private structure 736 * 737 * Configure the Rx unit of the MAC after a reset. 738 **/ 739 static void iavf_configure_rx(struct iavf_adapter *adapter) 740 { 741 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 742 struct iavf_hw *hw = &adapter->hw; 743 int i; 744 745 /* Legacy Rx will always default to a 2048 buffer size. */ 746 #if (PAGE_SIZE < 8192) 747 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 748 struct net_device *netdev = adapter->netdev; 749 750 /* For jumbo frames on systems with 4K pages we have to use 751 * an order 1 page, so we might as well increase the size 752 * of our Rx buffer to make better use of the available space 753 */ 754 rx_buf_len = IAVF_RXBUFFER_3072; 755 756 /* We use a 1536 buffer size for configurations with 757 * standard Ethernet mtu. On x86 this gives us enough room 758 * for shared info and 192 bytes of padding. 759 */ 760 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 761 (netdev->mtu <= ETH_DATA_LEN)) 762 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 763 } 764 #endif 765 766 for (i = 0; i < adapter->num_active_queues; i++) { 767 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 768 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 769 770 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 771 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 772 else 773 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 774 } 775 } 776 777 /** 778 * iavf_find_vlan - Search filter list for specific vlan filter 779 * @adapter: board private structure 780 * @vlan: vlan tag 781 * 782 * Returns ptr to the filter object or NULL. Must be called while holding the 783 * mac_vlan_list_lock. 784 **/ 785 static struct 786 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 787 struct iavf_vlan vlan) 788 { 789 struct iavf_vlan_filter *f; 790 791 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 792 if (f->vlan.vid == vlan.vid && 793 f->vlan.tpid == vlan.tpid) 794 return f; 795 } 796 797 return NULL; 798 } 799 800 /** 801 * iavf_add_vlan - Add a vlan filter to the list 802 * @adapter: board private structure 803 * @vlan: VLAN tag 804 * 805 * Returns ptr to the filter object or NULL when no memory available. 806 **/ 807 static struct 808 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 809 struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f = NULL; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (!f) { 817 f = kzalloc(sizeof(*f), GFP_ATOMIC); 818 if (!f) 819 goto clearout; 820 821 f->vlan = vlan; 822 823 list_add_tail(&f->list, &adapter->vlan_filter_list); 824 f->state = IAVF_VLAN_ADD; 825 adapter->num_vlan_filters++; 826 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 827 } 828 829 clearout: 830 spin_unlock_bh(&adapter->mac_vlan_list_lock); 831 return f; 832 } 833 834 /** 835 * iavf_del_vlan - Remove a vlan filter from the list 836 * @adapter: board private structure 837 * @vlan: VLAN tag 838 **/ 839 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 840 { 841 struct iavf_vlan_filter *f; 842 843 spin_lock_bh(&adapter->mac_vlan_list_lock); 844 845 f = iavf_find_vlan(adapter, vlan); 846 if (f) { 847 f->state = IAVF_VLAN_REMOVE; 848 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 849 } 850 851 spin_unlock_bh(&adapter->mac_vlan_list_lock); 852 } 853 854 /** 855 * iavf_restore_filters 856 * @adapter: board private structure 857 * 858 * Restore existing non MAC filters when VF netdev comes back up 859 **/ 860 static void iavf_restore_filters(struct iavf_adapter *adapter) 861 { 862 struct iavf_vlan_filter *f; 863 864 /* re-add all VLAN filters */ 865 spin_lock_bh(&adapter->mac_vlan_list_lock); 866 867 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 868 if (f->state == IAVF_VLAN_INACTIVE) 869 f->state = IAVF_VLAN_ADD; 870 } 871 872 spin_unlock_bh(&adapter->mac_vlan_list_lock); 873 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 874 } 875 876 /** 877 * iavf_get_num_vlans_added - get number of VLANs added 878 * @adapter: board private structure 879 */ 880 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 881 { 882 return adapter->num_vlan_filters; 883 } 884 885 /** 886 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 887 * @adapter: board private structure 888 * 889 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 890 * do not impose a limit as that maintains current behavior and for 891 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 892 **/ 893 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 894 { 895 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 896 * never been a limit on the VF driver side 897 */ 898 if (VLAN_ALLOWED(adapter)) 899 return VLAN_N_VID; 900 else if (VLAN_V2_ALLOWED(adapter)) 901 return adapter->vlan_v2_caps.filtering.max_filters; 902 903 return 0; 904 } 905 906 /** 907 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 908 * @adapter: board private structure 909 **/ 910 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 911 { 912 if (iavf_get_num_vlans_added(adapter) < 913 iavf_get_max_vlans_allowed(adapter)) 914 return false; 915 916 return true; 917 } 918 919 /** 920 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 921 * @netdev: network device struct 922 * @proto: unused protocol data 923 * @vid: VLAN tag 924 **/ 925 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 926 __always_unused __be16 proto, u16 vid) 927 { 928 struct iavf_adapter *adapter = netdev_priv(netdev); 929 930 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 931 if (!vid) 932 return 0; 933 934 if (!VLAN_FILTERING_ALLOWED(adapter)) 935 return -EIO; 936 937 if (iavf_max_vlans_added(adapter)) { 938 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 939 iavf_get_max_vlans_allowed(adapter)); 940 return -EIO; 941 } 942 943 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 944 return -ENOMEM; 945 946 return 0; 947 } 948 949 /** 950 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 951 * @netdev: network device struct 952 * @proto: unused protocol data 953 * @vid: VLAN tag 954 **/ 955 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 956 __always_unused __be16 proto, u16 vid) 957 { 958 struct iavf_adapter *adapter = netdev_priv(netdev); 959 960 /* We do not track VLAN 0 filter */ 961 if (!vid) 962 return 0; 963 964 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 965 return 0; 966 } 967 968 /** 969 * iavf_find_filter - Search filter list for specific mac filter 970 * @adapter: board private structure 971 * @macaddr: the MAC address 972 * 973 * Returns ptr to the filter object or NULL. Must be called while holding the 974 * mac_vlan_list_lock. 975 **/ 976 static struct 977 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 978 const u8 *macaddr) 979 { 980 struct iavf_mac_filter *f; 981 982 if (!macaddr) 983 return NULL; 984 985 list_for_each_entry(f, &adapter->mac_filter_list, list) { 986 if (ether_addr_equal(macaddr, f->macaddr)) 987 return f; 988 } 989 return NULL; 990 } 991 992 /** 993 * iavf_add_filter - Add a mac filter to the filter list 994 * @adapter: board private structure 995 * @macaddr: the MAC address 996 * 997 * Returns ptr to the filter object or NULL when no memory available. 998 **/ 999 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1000 const u8 *macaddr) 1001 { 1002 struct iavf_mac_filter *f; 1003 1004 if (!macaddr) 1005 return NULL; 1006 1007 f = iavf_find_filter(adapter, macaddr); 1008 if (!f) { 1009 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1010 if (!f) 1011 return f; 1012 1013 ether_addr_copy(f->macaddr, macaddr); 1014 1015 list_add_tail(&f->list, &adapter->mac_filter_list); 1016 f->add = true; 1017 f->add_handled = false; 1018 f->is_new_mac = true; 1019 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1020 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1021 } else { 1022 f->remove = false; 1023 } 1024 1025 return f; 1026 } 1027 1028 /** 1029 * iavf_replace_primary_mac - Replace current primary address 1030 * @adapter: board private structure 1031 * @new_mac: new MAC address to be applied 1032 * 1033 * Replace current dev_addr and send request to PF for removal of previous 1034 * primary MAC address filter and addition of new primary MAC filter. 1035 * Return 0 for success, -ENOMEM for failure. 1036 * 1037 * Do not call this with mac_vlan_list_lock! 1038 **/ 1039 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1040 const u8 *new_mac) 1041 { 1042 struct iavf_hw *hw = &adapter->hw; 1043 struct iavf_mac_filter *new_f; 1044 struct iavf_mac_filter *old_f; 1045 1046 spin_lock_bh(&adapter->mac_vlan_list_lock); 1047 1048 new_f = iavf_add_filter(adapter, new_mac); 1049 if (!new_f) { 1050 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1051 return -ENOMEM; 1052 } 1053 1054 old_f = iavf_find_filter(adapter, hw->mac.addr); 1055 if (old_f) { 1056 old_f->is_primary = false; 1057 old_f->remove = true; 1058 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1059 } 1060 /* Always send the request to add if changing primary MAC, 1061 * even if filter is already present on the list 1062 */ 1063 new_f->is_primary = true; 1064 new_f->add = true; 1065 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1066 ether_addr_copy(hw->mac.addr, new_mac); 1067 1068 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1069 1070 /* schedule the watchdog task to immediately process the request */ 1071 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1072 return 0; 1073 } 1074 1075 /** 1076 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1077 * @netdev: network interface device structure 1078 * @macaddr: MAC address to set 1079 * 1080 * Returns true on success, false on failure 1081 */ 1082 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1083 const u8 *macaddr) 1084 { 1085 struct iavf_adapter *adapter = netdev_priv(netdev); 1086 struct iavf_mac_filter *f; 1087 bool ret = false; 1088 1089 spin_lock_bh(&adapter->mac_vlan_list_lock); 1090 1091 f = iavf_find_filter(adapter, macaddr); 1092 1093 if (!f || (!f->add && f->add_handled)) 1094 ret = true; 1095 1096 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1097 1098 return ret; 1099 } 1100 1101 /** 1102 * iavf_set_mac - NDO callback to set port MAC address 1103 * @netdev: network interface device structure 1104 * @p: pointer to an address structure 1105 * 1106 * Returns 0 on success, negative on failure 1107 */ 1108 static int iavf_set_mac(struct net_device *netdev, void *p) 1109 { 1110 struct iavf_adapter *adapter = netdev_priv(netdev); 1111 struct sockaddr *addr = p; 1112 int ret; 1113 1114 if (!is_valid_ether_addr(addr->sa_data)) 1115 return -EADDRNOTAVAIL; 1116 1117 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1118 1119 if (ret) 1120 return ret; 1121 1122 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1123 iavf_is_mac_set_handled(netdev, addr->sa_data), 1124 msecs_to_jiffies(2500)); 1125 1126 /* If ret < 0 then it means wait was interrupted. 1127 * If ret == 0 then it means we got a timeout. 1128 * else it means we got response for set MAC from PF, 1129 * check if netdev MAC was updated to requested MAC, 1130 * if yes then set MAC succeeded otherwise it failed return -EACCES 1131 */ 1132 if (ret < 0) 1133 return ret; 1134 1135 if (!ret) 1136 return -EAGAIN; 1137 1138 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1139 return -EACCES; 1140 1141 return 0; 1142 } 1143 1144 /** 1145 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1146 * @netdev: the netdevice 1147 * @addr: address to add 1148 * 1149 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1150 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1151 */ 1152 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1153 { 1154 struct iavf_adapter *adapter = netdev_priv(netdev); 1155 1156 if (iavf_add_filter(adapter, addr)) 1157 return 0; 1158 else 1159 return -ENOMEM; 1160 } 1161 1162 /** 1163 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1164 * @netdev: the netdevice 1165 * @addr: address to add 1166 * 1167 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1168 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1169 */ 1170 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1171 { 1172 struct iavf_adapter *adapter = netdev_priv(netdev); 1173 struct iavf_mac_filter *f; 1174 1175 /* Under some circumstances, we might receive a request to delete 1176 * our own device address from our uc list. Because we store the 1177 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1178 * such requests and not delete our device address from this list. 1179 */ 1180 if (ether_addr_equal(addr, netdev->dev_addr)) 1181 return 0; 1182 1183 f = iavf_find_filter(adapter, addr); 1184 if (f) { 1185 f->remove = true; 1186 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1187 } 1188 return 0; 1189 } 1190 1191 /** 1192 * iavf_set_rx_mode - NDO callback to set the netdev filters 1193 * @netdev: network interface device structure 1194 **/ 1195 static void iavf_set_rx_mode(struct net_device *netdev) 1196 { 1197 struct iavf_adapter *adapter = netdev_priv(netdev); 1198 1199 spin_lock_bh(&adapter->mac_vlan_list_lock); 1200 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1201 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1202 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1203 1204 if (netdev->flags & IFF_PROMISC && 1205 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1206 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1207 else if (!(netdev->flags & IFF_PROMISC) && 1208 adapter->flags & IAVF_FLAG_PROMISC_ON) 1209 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1210 1211 if (netdev->flags & IFF_ALLMULTI && 1212 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1213 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1214 else if (!(netdev->flags & IFF_ALLMULTI) && 1215 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1216 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1217 } 1218 1219 /** 1220 * iavf_napi_enable_all - enable NAPI on all queue vectors 1221 * @adapter: board private structure 1222 **/ 1223 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1224 { 1225 int q_idx; 1226 struct iavf_q_vector *q_vector; 1227 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1228 1229 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1230 struct napi_struct *napi; 1231 1232 q_vector = &adapter->q_vectors[q_idx]; 1233 napi = &q_vector->napi; 1234 napi_enable(napi); 1235 } 1236 } 1237 1238 /** 1239 * iavf_napi_disable_all - disable NAPI on all queue vectors 1240 * @adapter: board private structure 1241 **/ 1242 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1243 { 1244 int q_idx; 1245 struct iavf_q_vector *q_vector; 1246 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1247 1248 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1249 q_vector = &adapter->q_vectors[q_idx]; 1250 napi_disable(&q_vector->napi); 1251 } 1252 } 1253 1254 /** 1255 * iavf_configure - set up transmit and receive data structures 1256 * @adapter: board private structure 1257 **/ 1258 static void iavf_configure(struct iavf_adapter *adapter) 1259 { 1260 struct net_device *netdev = adapter->netdev; 1261 int i; 1262 1263 iavf_set_rx_mode(netdev); 1264 1265 iavf_configure_tx(adapter); 1266 iavf_configure_rx(adapter); 1267 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1268 1269 for (i = 0; i < adapter->num_active_queues; i++) { 1270 struct iavf_ring *ring = &adapter->rx_rings[i]; 1271 1272 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1273 } 1274 } 1275 1276 /** 1277 * iavf_up_complete - Finish the last steps of bringing up a connection 1278 * @adapter: board private structure 1279 * 1280 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1281 **/ 1282 static void iavf_up_complete(struct iavf_adapter *adapter) 1283 { 1284 iavf_change_state(adapter, __IAVF_RUNNING); 1285 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1286 1287 iavf_napi_enable_all(adapter); 1288 1289 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1290 if (CLIENT_ENABLED(adapter)) 1291 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1292 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1293 } 1294 1295 /** 1296 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1297 * yet and mark other to be removed. 1298 * @adapter: board private structure 1299 **/ 1300 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1301 { 1302 struct iavf_vlan_filter *vlf, *vlftmp; 1303 struct iavf_mac_filter *f, *ftmp; 1304 1305 spin_lock_bh(&adapter->mac_vlan_list_lock); 1306 /* clear the sync flag on all filters */ 1307 __dev_uc_unsync(adapter->netdev, NULL); 1308 __dev_mc_unsync(adapter->netdev, NULL); 1309 1310 /* remove all MAC filters */ 1311 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1312 list) { 1313 if (f->add) { 1314 list_del(&f->list); 1315 kfree(f); 1316 } else { 1317 f->remove = true; 1318 } 1319 } 1320 1321 /* disable all VLAN filters */ 1322 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1323 list) 1324 vlf->state = IAVF_VLAN_DISABLE; 1325 1326 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1327 } 1328 1329 /** 1330 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1331 * mark other to be removed. 1332 * @adapter: board private structure 1333 **/ 1334 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1335 { 1336 struct iavf_cloud_filter *cf, *cftmp; 1337 1338 /* remove all cloud filters */ 1339 spin_lock_bh(&adapter->cloud_filter_list_lock); 1340 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1341 list) { 1342 if (cf->add) { 1343 list_del(&cf->list); 1344 kfree(cf); 1345 adapter->num_cloud_filters--; 1346 } else { 1347 cf->del = true; 1348 } 1349 } 1350 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1351 } 1352 1353 /** 1354 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1355 * other to be removed. 1356 * @adapter: board private structure 1357 **/ 1358 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1359 { 1360 struct iavf_fdir_fltr *fdir, *fdirtmp; 1361 1362 /* remove all Flow Director filters */ 1363 spin_lock_bh(&adapter->fdir_fltr_lock); 1364 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1365 list) { 1366 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1367 list_del(&fdir->list); 1368 kfree(fdir); 1369 adapter->fdir_active_fltr--; 1370 } else { 1371 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1372 } 1373 } 1374 spin_unlock_bh(&adapter->fdir_fltr_lock); 1375 } 1376 1377 /** 1378 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1379 * other to be removed. 1380 * @adapter: board private structure 1381 **/ 1382 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1383 { 1384 struct iavf_adv_rss *rss, *rsstmp; 1385 1386 /* remove all advance RSS configuration */ 1387 spin_lock_bh(&adapter->adv_rss_lock); 1388 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1389 list) { 1390 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1391 list_del(&rss->list); 1392 kfree(rss); 1393 } else { 1394 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1395 } 1396 } 1397 spin_unlock_bh(&adapter->adv_rss_lock); 1398 } 1399 1400 /** 1401 * iavf_down - Shutdown the connection processing 1402 * @adapter: board private structure 1403 * 1404 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1405 **/ 1406 void iavf_down(struct iavf_adapter *adapter) 1407 { 1408 struct net_device *netdev = adapter->netdev; 1409 1410 if (adapter->state <= __IAVF_DOWN_PENDING) 1411 return; 1412 1413 netif_carrier_off(netdev); 1414 netif_tx_disable(netdev); 1415 adapter->link_up = false; 1416 iavf_napi_disable_all(adapter); 1417 iavf_irq_disable(adapter); 1418 1419 iavf_clear_mac_vlan_filters(adapter); 1420 iavf_clear_cloud_filters(adapter); 1421 iavf_clear_fdir_filters(adapter); 1422 iavf_clear_adv_rss_conf(adapter); 1423 1424 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1425 /* cancel any current operation */ 1426 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1427 /* Schedule operations to close down the HW. Don't wait 1428 * here for this to complete. The watchdog is still running 1429 * and it will take care of this. 1430 */ 1431 if (!list_empty(&adapter->mac_filter_list)) 1432 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1433 if (!list_empty(&adapter->vlan_filter_list)) 1434 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1435 if (!list_empty(&adapter->cloud_filter_list)) 1436 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1437 if (!list_empty(&adapter->fdir_list_head)) 1438 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1439 if (!list_empty(&adapter->adv_rss_list_head)) 1440 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1441 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1442 } 1443 1444 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1445 } 1446 1447 /** 1448 * iavf_acquire_msix_vectors - Setup the MSIX capability 1449 * @adapter: board private structure 1450 * @vectors: number of vectors to request 1451 * 1452 * Work with the OS to set up the MSIX vectors needed. 1453 * 1454 * Returns 0 on success, negative on failure 1455 **/ 1456 static int 1457 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1458 { 1459 int err, vector_threshold; 1460 1461 /* We'll want at least 3 (vector_threshold): 1462 * 0) Other (Admin Queue and link, mostly) 1463 * 1) TxQ[0] Cleanup 1464 * 2) RxQ[0] Cleanup 1465 */ 1466 vector_threshold = MIN_MSIX_COUNT; 1467 1468 /* The more we get, the more we will assign to Tx/Rx Cleanup 1469 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1470 * Right now, we simply care about how many we'll get; we'll 1471 * set them up later while requesting irq's. 1472 */ 1473 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1474 vector_threshold, vectors); 1475 if (err < 0) { 1476 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1477 kfree(adapter->msix_entries); 1478 adapter->msix_entries = NULL; 1479 return err; 1480 } 1481 1482 /* Adjust for only the vectors we'll use, which is minimum 1483 * of max_msix_q_vectors + NONQ_VECS, or the number of 1484 * vectors we were allocated. 1485 */ 1486 adapter->num_msix_vectors = err; 1487 return 0; 1488 } 1489 1490 /** 1491 * iavf_free_queues - Free memory for all rings 1492 * @adapter: board private structure to initialize 1493 * 1494 * Free all of the memory associated with queue pairs. 1495 **/ 1496 static void iavf_free_queues(struct iavf_adapter *adapter) 1497 { 1498 if (!adapter->vsi_res) 1499 return; 1500 adapter->num_active_queues = 0; 1501 kfree(adapter->tx_rings); 1502 adapter->tx_rings = NULL; 1503 kfree(adapter->rx_rings); 1504 adapter->rx_rings = NULL; 1505 } 1506 1507 /** 1508 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1509 * @adapter: board private structure 1510 * 1511 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1512 * stripped in certain descriptor fields. Instead of checking the offload 1513 * capability bits in the hot path, cache the location the ring specific 1514 * flags. 1515 */ 1516 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1517 { 1518 int i; 1519 1520 for (i = 0; i < adapter->num_active_queues; i++) { 1521 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1522 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1523 1524 /* prevent multiple L2TAG bits being set after VFR */ 1525 tx_ring->flags &= 1526 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1527 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1528 rx_ring->flags &= 1529 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1530 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1531 1532 if (VLAN_ALLOWED(adapter)) { 1533 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 } else if (VLAN_V2_ALLOWED(adapter)) { 1536 struct virtchnl_vlan_supported_caps *stripping_support; 1537 struct virtchnl_vlan_supported_caps *insertion_support; 1538 1539 stripping_support = 1540 &adapter->vlan_v2_caps.offloads.stripping_support; 1541 insertion_support = 1542 &adapter->vlan_v2_caps.offloads.insertion_support; 1543 1544 if (stripping_support->outer) { 1545 if (stripping_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1547 rx_ring->flags |= 1548 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1549 else if (stripping_support->outer & 1550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1551 rx_ring->flags |= 1552 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1553 } else if (stripping_support->inner) { 1554 if (stripping_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1556 rx_ring->flags |= 1557 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1558 else if (stripping_support->inner & 1559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1560 rx_ring->flags |= 1561 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1562 } 1563 1564 if (insertion_support->outer) { 1565 if (insertion_support->outer & 1566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1567 tx_ring->flags |= 1568 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1569 else if (insertion_support->outer & 1570 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1571 tx_ring->flags |= 1572 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1573 } else if (insertion_support->inner) { 1574 if (insertion_support->inner & 1575 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1576 tx_ring->flags |= 1577 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1578 else if (insertion_support->inner & 1579 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1580 tx_ring->flags |= 1581 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1582 } 1583 } 1584 } 1585 } 1586 1587 /** 1588 * iavf_alloc_queues - Allocate memory for all rings 1589 * @adapter: board private structure to initialize 1590 * 1591 * We allocate one ring per queue at run-time since we don't know the 1592 * number of queues at compile-time. The polling_netdev array is 1593 * intended for Multiqueue, but should work fine with a single queue. 1594 **/ 1595 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1596 { 1597 int i, num_active_queues; 1598 1599 /* If we're in reset reallocating queues we don't actually know yet for 1600 * certain the PF gave us the number of queues we asked for but we'll 1601 * assume it did. Once basic reset is finished we'll confirm once we 1602 * start negotiating config with PF. 1603 */ 1604 if (adapter->num_req_queues) 1605 num_active_queues = adapter->num_req_queues; 1606 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1607 adapter->num_tc) 1608 num_active_queues = adapter->ch_config.total_qps; 1609 else 1610 num_active_queues = min_t(int, 1611 adapter->vsi_res->num_queue_pairs, 1612 (int)(num_online_cpus())); 1613 1614 1615 adapter->tx_rings = kcalloc(num_active_queues, 1616 sizeof(struct iavf_ring), GFP_KERNEL); 1617 if (!adapter->tx_rings) 1618 goto err_out; 1619 adapter->rx_rings = kcalloc(num_active_queues, 1620 sizeof(struct iavf_ring), GFP_KERNEL); 1621 if (!adapter->rx_rings) 1622 goto err_out; 1623 1624 for (i = 0; i < num_active_queues; i++) { 1625 struct iavf_ring *tx_ring; 1626 struct iavf_ring *rx_ring; 1627 1628 tx_ring = &adapter->tx_rings[i]; 1629 1630 tx_ring->queue_index = i; 1631 tx_ring->netdev = adapter->netdev; 1632 tx_ring->dev = &adapter->pdev->dev; 1633 tx_ring->count = adapter->tx_desc_count; 1634 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1635 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1636 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1637 1638 rx_ring = &adapter->rx_rings[i]; 1639 rx_ring->queue_index = i; 1640 rx_ring->netdev = adapter->netdev; 1641 rx_ring->dev = &adapter->pdev->dev; 1642 rx_ring->count = adapter->rx_desc_count; 1643 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1644 } 1645 1646 adapter->num_active_queues = num_active_queues; 1647 1648 iavf_set_queue_vlan_tag_loc(adapter); 1649 1650 return 0; 1651 1652 err_out: 1653 iavf_free_queues(adapter); 1654 return -ENOMEM; 1655 } 1656 1657 /** 1658 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1659 * @adapter: board private structure to initialize 1660 * 1661 * Attempt to configure the interrupts using the best available 1662 * capabilities of the hardware and the kernel. 1663 **/ 1664 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1665 { 1666 int vector, v_budget; 1667 int pairs = 0; 1668 int err = 0; 1669 1670 if (!adapter->vsi_res) { 1671 err = -EIO; 1672 goto out; 1673 } 1674 pairs = adapter->num_active_queues; 1675 1676 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1677 * us much good if we have more vectors than CPUs. However, we already 1678 * limit the total number of queues by the number of CPUs so we do not 1679 * need any further limiting here. 1680 */ 1681 v_budget = min_t(int, pairs + NONQ_VECS, 1682 (int)adapter->vf_res->max_vectors); 1683 1684 adapter->msix_entries = kcalloc(v_budget, 1685 sizeof(struct msix_entry), GFP_KERNEL); 1686 if (!adapter->msix_entries) { 1687 err = -ENOMEM; 1688 goto out; 1689 } 1690 1691 for (vector = 0; vector < v_budget; vector++) 1692 adapter->msix_entries[vector].entry = vector; 1693 1694 err = iavf_acquire_msix_vectors(adapter, v_budget); 1695 if (!err) 1696 iavf_schedule_finish_config(adapter); 1697 1698 out: 1699 return err; 1700 } 1701 1702 /** 1703 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1704 * @adapter: board private structure 1705 * 1706 * Return 0 on success, negative on failure 1707 **/ 1708 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1709 { 1710 struct iavf_aqc_get_set_rss_key_data *rss_key = 1711 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1712 struct iavf_hw *hw = &adapter->hw; 1713 enum iavf_status status; 1714 1715 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1716 /* bail because we already have a command pending */ 1717 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1718 adapter->current_op); 1719 return -EBUSY; 1720 } 1721 1722 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1723 if (status) { 1724 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1725 iavf_stat_str(hw, status), 1726 iavf_aq_str(hw, hw->aq.asq_last_status)); 1727 return iavf_status_to_errno(status); 1728 1729 } 1730 1731 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1732 adapter->rss_lut, adapter->rss_lut_size); 1733 if (status) { 1734 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1735 iavf_stat_str(hw, status), 1736 iavf_aq_str(hw, hw->aq.asq_last_status)); 1737 return iavf_status_to_errno(status); 1738 } 1739 1740 return 0; 1741 1742 } 1743 1744 /** 1745 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1746 * @adapter: board private structure 1747 * 1748 * Returns 0 on success, negative on failure 1749 **/ 1750 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1751 { 1752 struct iavf_hw *hw = &adapter->hw; 1753 u32 *dw; 1754 u16 i; 1755 1756 dw = (u32 *)adapter->rss_key; 1757 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1758 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1759 1760 dw = (u32 *)adapter->rss_lut; 1761 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1762 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1763 1764 iavf_flush(hw); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * iavf_config_rss - Configure RSS keys and lut 1771 * @adapter: board private structure 1772 * 1773 * Returns 0 on success, negative on failure 1774 **/ 1775 int iavf_config_rss(struct iavf_adapter *adapter) 1776 { 1777 1778 if (RSS_PF(adapter)) { 1779 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1780 IAVF_FLAG_AQ_SET_RSS_KEY; 1781 return 0; 1782 } else if (RSS_AQ(adapter)) { 1783 return iavf_config_rss_aq(adapter); 1784 } else { 1785 return iavf_config_rss_reg(adapter); 1786 } 1787 } 1788 1789 /** 1790 * iavf_fill_rss_lut - Fill the lut with default values 1791 * @adapter: board private structure 1792 **/ 1793 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1794 { 1795 u16 i; 1796 1797 for (i = 0; i < adapter->rss_lut_size; i++) 1798 adapter->rss_lut[i] = i % adapter->num_active_queues; 1799 } 1800 1801 /** 1802 * iavf_init_rss - Prepare for RSS 1803 * @adapter: board private structure 1804 * 1805 * Return 0 on success, negative on failure 1806 **/ 1807 static int iavf_init_rss(struct iavf_adapter *adapter) 1808 { 1809 struct iavf_hw *hw = &adapter->hw; 1810 1811 if (!RSS_PF(adapter)) { 1812 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1813 if (adapter->vf_res->vf_cap_flags & 1814 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1815 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1816 else 1817 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1818 1819 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1820 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1821 } 1822 1823 iavf_fill_rss_lut(adapter); 1824 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1825 1826 return iavf_config_rss(adapter); 1827 } 1828 1829 /** 1830 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1831 * @adapter: board private structure to initialize 1832 * 1833 * We allocate one q_vector per queue interrupt. If allocation fails we 1834 * return -ENOMEM. 1835 **/ 1836 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1837 { 1838 int q_idx = 0, num_q_vectors; 1839 struct iavf_q_vector *q_vector; 1840 1841 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1842 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1843 GFP_KERNEL); 1844 if (!adapter->q_vectors) 1845 return -ENOMEM; 1846 1847 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1848 q_vector = &adapter->q_vectors[q_idx]; 1849 q_vector->adapter = adapter; 1850 q_vector->vsi = &adapter->vsi; 1851 q_vector->v_idx = q_idx; 1852 q_vector->reg_idx = q_idx; 1853 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1854 netif_napi_add(adapter->netdev, &q_vector->napi, 1855 iavf_napi_poll); 1856 } 1857 1858 return 0; 1859 } 1860 1861 /** 1862 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1863 * @adapter: board private structure to initialize 1864 * 1865 * This function frees the memory allocated to the q_vectors. In addition if 1866 * NAPI is enabled it will delete any references to the NAPI struct prior 1867 * to freeing the q_vector. 1868 **/ 1869 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1870 { 1871 int q_idx, num_q_vectors; 1872 1873 if (!adapter->q_vectors) 1874 return; 1875 1876 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1877 1878 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1879 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1880 1881 netif_napi_del(&q_vector->napi); 1882 } 1883 kfree(adapter->q_vectors); 1884 adapter->q_vectors = NULL; 1885 } 1886 1887 /** 1888 * iavf_reset_interrupt_capability - Reset MSIX setup 1889 * @adapter: board private structure 1890 * 1891 **/ 1892 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1893 { 1894 if (!adapter->msix_entries) 1895 return; 1896 1897 pci_disable_msix(adapter->pdev); 1898 kfree(adapter->msix_entries); 1899 adapter->msix_entries = NULL; 1900 } 1901 1902 /** 1903 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1904 * @adapter: board private structure to initialize 1905 * 1906 **/ 1907 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1908 { 1909 int err; 1910 1911 err = iavf_alloc_queues(adapter); 1912 if (err) { 1913 dev_err(&adapter->pdev->dev, 1914 "Unable to allocate memory for queues\n"); 1915 goto err_alloc_queues; 1916 } 1917 1918 err = iavf_set_interrupt_capability(adapter); 1919 if (err) { 1920 dev_err(&adapter->pdev->dev, 1921 "Unable to setup interrupt capabilities\n"); 1922 goto err_set_interrupt; 1923 } 1924 1925 err = iavf_alloc_q_vectors(adapter); 1926 if (err) { 1927 dev_err(&adapter->pdev->dev, 1928 "Unable to allocate memory for queue vectors\n"); 1929 goto err_alloc_q_vectors; 1930 } 1931 1932 /* If we've made it so far while ADq flag being ON, then we haven't 1933 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1934 * resources have been allocated in the reset path. 1935 * Now we can truly claim that ADq is enabled. 1936 */ 1937 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1938 adapter->num_tc) 1939 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1940 adapter->num_tc); 1941 1942 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1943 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1944 adapter->num_active_queues); 1945 1946 return 0; 1947 err_alloc_q_vectors: 1948 iavf_reset_interrupt_capability(adapter); 1949 err_set_interrupt: 1950 iavf_free_queues(adapter); 1951 err_alloc_queues: 1952 return err; 1953 } 1954 1955 /** 1956 * iavf_free_rss - Free memory used by RSS structs 1957 * @adapter: board private structure 1958 **/ 1959 static void iavf_free_rss(struct iavf_adapter *adapter) 1960 { 1961 kfree(adapter->rss_key); 1962 adapter->rss_key = NULL; 1963 1964 kfree(adapter->rss_lut); 1965 adapter->rss_lut = NULL; 1966 } 1967 1968 /** 1969 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1970 * @adapter: board private structure 1971 * @running: true if adapter->state == __IAVF_RUNNING 1972 * 1973 * Returns 0 on success, negative on failure 1974 **/ 1975 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 int err; 1979 1980 if (running) 1981 iavf_free_traffic_irqs(adapter); 1982 iavf_free_misc_irq(adapter); 1983 iavf_reset_interrupt_capability(adapter); 1984 iavf_free_q_vectors(adapter); 1985 iavf_free_queues(adapter); 1986 1987 err = iavf_init_interrupt_scheme(adapter); 1988 if (err) 1989 goto err; 1990 1991 netif_tx_stop_all_queues(netdev); 1992 1993 err = iavf_request_misc_irq(adapter); 1994 if (err) 1995 goto err; 1996 1997 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1998 1999 iavf_map_rings_to_vectors(adapter); 2000 err: 2001 return err; 2002 } 2003 2004 /** 2005 * iavf_finish_config - do all netdev work that needs RTNL 2006 * @work: our work_struct 2007 * 2008 * Do work that needs both RTNL and crit_lock. 2009 **/ 2010 static void iavf_finish_config(struct work_struct *work) 2011 { 2012 struct iavf_adapter *adapter; 2013 int pairs, err; 2014 2015 adapter = container_of(work, struct iavf_adapter, finish_config); 2016 2017 /* Always take RTNL first to prevent circular lock dependency */ 2018 rtnl_lock(); 2019 mutex_lock(&adapter->crit_lock); 2020 2021 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2022 adapter->netdev_registered && 2023 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2024 netdev_update_features(adapter->netdev); 2025 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2026 } 2027 2028 switch (adapter->state) { 2029 case __IAVF_DOWN: 2030 if (!adapter->netdev_registered) { 2031 err = register_netdevice(adapter->netdev); 2032 if (err) { 2033 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2034 err); 2035 2036 /* go back and try again.*/ 2037 iavf_free_rss(adapter); 2038 iavf_free_misc_irq(adapter); 2039 iavf_reset_interrupt_capability(adapter); 2040 iavf_change_state(adapter, 2041 __IAVF_INIT_CONFIG_ADAPTER); 2042 goto out; 2043 } 2044 adapter->netdev_registered = true; 2045 } 2046 2047 /* Set the real number of queues when reset occurs while 2048 * state == __IAVF_DOWN 2049 */ 2050 fallthrough; 2051 case __IAVF_RUNNING: 2052 pairs = adapter->num_active_queues; 2053 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2054 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2055 break; 2056 2057 default: 2058 break; 2059 } 2060 2061 out: 2062 mutex_unlock(&adapter->crit_lock); 2063 rtnl_unlock(); 2064 } 2065 2066 /** 2067 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2068 * @adapter: board private structure 2069 **/ 2070 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2071 { 2072 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2073 queue_work(adapter->wq, &adapter->finish_config); 2074 } 2075 2076 /** 2077 * iavf_process_aq_command - process aq_required flags 2078 * and sends aq command 2079 * @adapter: pointer to iavf adapter structure 2080 * 2081 * Returns 0 on success 2082 * Returns error code if no command was sent 2083 * or error code if the command failed. 2084 **/ 2085 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2086 { 2087 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2088 return iavf_send_vf_config_msg(adapter); 2089 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2090 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2091 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2092 iavf_disable_queues(adapter); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2097 iavf_map_queues(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2102 iavf_add_ether_addrs(adapter); 2103 return 0; 2104 } 2105 2106 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2107 iavf_add_vlans(adapter); 2108 return 0; 2109 } 2110 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2112 iavf_del_ether_addrs(adapter); 2113 return 0; 2114 } 2115 2116 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2117 iavf_del_vlans(adapter); 2118 return 0; 2119 } 2120 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2122 iavf_enable_vlan_stripping(adapter); 2123 return 0; 2124 } 2125 2126 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2127 iavf_disable_vlan_stripping(adapter); 2128 return 0; 2129 } 2130 2131 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2132 iavf_configure_queues(adapter); 2133 return 0; 2134 } 2135 2136 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2137 iavf_enable_queues(adapter); 2138 return 0; 2139 } 2140 2141 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2142 /* This message goes straight to the firmware, not the 2143 * PF, so we don't have to set current_op as we will 2144 * not get a response through the ARQ. 2145 */ 2146 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2150 iavf_get_hena(adapter); 2151 return 0; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2154 iavf_set_hena(adapter); 2155 return 0; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2158 iavf_set_rss_key(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2162 iavf_set_rss_lut(adapter); 2163 return 0; 2164 } 2165 2166 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2167 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2168 FLAG_VF_MULTICAST_PROMISC); 2169 return 0; 2170 } 2171 2172 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2173 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2174 return 0; 2175 } 2176 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2177 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2178 iavf_set_promiscuous(adapter, 0); 2179 return 0; 2180 } 2181 2182 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2183 iavf_enable_channels(adapter); 2184 return 0; 2185 } 2186 2187 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2188 iavf_disable_channels(adapter); 2189 return 0; 2190 } 2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2192 iavf_add_cloud_filter(adapter); 2193 return 0; 2194 } 2195 2196 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2197 iavf_del_cloud_filter(adapter); 2198 return 0; 2199 } 2200 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2201 iavf_del_cloud_filter(adapter); 2202 return 0; 2203 } 2204 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2205 iavf_add_cloud_filter(adapter); 2206 return 0; 2207 } 2208 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2209 iavf_add_fdir_filter(adapter); 2210 return IAVF_SUCCESS; 2211 } 2212 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2213 iavf_del_fdir_filter(adapter); 2214 return IAVF_SUCCESS; 2215 } 2216 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2217 iavf_add_adv_rss_cfg(adapter); 2218 return 0; 2219 } 2220 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2221 iavf_del_adv_rss_cfg(adapter); 2222 return 0; 2223 } 2224 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2225 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2226 return 0; 2227 } 2228 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2229 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2230 return 0; 2231 } 2232 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2233 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2234 return 0; 2235 } 2236 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2237 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2238 return 0; 2239 } 2240 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2241 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2242 return 0; 2243 } 2244 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2245 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2246 return 0; 2247 } 2248 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2249 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2250 return 0; 2251 } 2252 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2253 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2254 return 0; 2255 } 2256 2257 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2258 iavf_request_stats(adapter); 2259 return 0; 2260 } 2261 2262 return -EAGAIN; 2263 } 2264 2265 /** 2266 * iavf_set_vlan_offload_features - set VLAN offload configuration 2267 * @adapter: board private structure 2268 * @prev_features: previous features used for comparison 2269 * @features: updated features used for configuration 2270 * 2271 * Set the aq_required bit(s) based on the requested features passed in to 2272 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2273 * the watchdog if any changes are requested to expedite the request via 2274 * virtchnl. 2275 **/ 2276 static void 2277 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2278 netdev_features_t prev_features, 2279 netdev_features_t features) 2280 { 2281 bool enable_stripping = true, enable_insertion = true; 2282 u16 vlan_ethertype = 0; 2283 u64 aq_required = 0; 2284 2285 /* keep cases separate because one ethertype for offloads can be 2286 * disabled at the same time as another is disabled, so check for an 2287 * enabled ethertype first, then check for disabled. Default to 2288 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2289 * stripping. 2290 */ 2291 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2292 vlan_ethertype = ETH_P_8021AD; 2293 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2294 vlan_ethertype = ETH_P_8021Q; 2295 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2296 vlan_ethertype = ETH_P_8021AD; 2297 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2298 vlan_ethertype = ETH_P_8021Q; 2299 else 2300 vlan_ethertype = ETH_P_8021Q; 2301 2302 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2303 enable_stripping = false; 2304 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2305 enable_insertion = false; 2306 2307 if (VLAN_ALLOWED(adapter)) { 2308 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2309 * stripping via virtchnl. VLAN insertion can be toggled on the 2310 * netdev, but it doesn't require a virtchnl message 2311 */ 2312 if (enable_stripping) 2313 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2314 else 2315 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2316 2317 } else if (VLAN_V2_ALLOWED(adapter)) { 2318 switch (vlan_ethertype) { 2319 case ETH_P_8021Q: 2320 if (enable_stripping) 2321 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2322 else 2323 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2324 2325 if (enable_insertion) 2326 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2327 else 2328 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2329 break; 2330 case ETH_P_8021AD: 2331 if (enable_stripping) 2332 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2333 else 2334 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2335 2336 if (enable_insertion) 2337 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2338 else 2339 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2340 break; 2341 } 2342 } 2343 2344 if (aq_required) { 2345 adapter->aq_required |= aq_required; 2346 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2347 } 2348 } 2349 2350 /** 2351 * iavf_startup - first step of driver startup 2352 * @adapter: board private structure 2353 * 2354 * Function process __IAVF_STARTUP driver state. 2355 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2356 * when fails the state is changed to __IAVF_INIT_FAILED 2357 **/ 2358 static void iavf_startup(struct iavf_adapter *adapter) 2359 { 2360 struct pci_dev *pdev = adapter->pdev; 2361 struct iavf_hw *hw = &adapter->hw; 2362 enum iavf_status status; 2363 int ret; 2364 2365 WARN_ON(adapter->state != __IAVF_STARTUP); 2366 2367 /* driver loaded, probe complete */ 2368 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2369 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2370 status = iavf_set_mac_type(hw); 2371 if (status) { 2372 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2373 goto err; 2374 } 2375 2376 ret = iavf_check_reset_complete(hw); 2377 if (ret) { 2378 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2379 ret); 2380 goto err; 2381 } 2382 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2383 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2384 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2385 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2386 2387 status = iavf_init_adminq(hw); 2388 if (status) { 2389 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2390 status); 2391 goto err; 2392 } 2393 ret = iavf_send_api_ver(adapter); 2394 if (ret) { 2395 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2396 iavf_shutdown_adminq(hw); 2397 goto err; 2398 } 2399 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2400 return; 2401 err: 2402 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2403 } 2404 2405 /** 2406 * iavf_init_version_check - second step of driver startup 2407 * @adapter: board private structure 2408 * 2409 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2410 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2411 * when fails the state is changed to __IAVF_INIT_FAILED 2412 **/ 2413 static void iavf_init_version_check(struct iavf_adapter *adapter) 2414 { 2415 struct pci_dev *pdev = adapter->pdev; 2416 struct iavf_hw *hw = &adapter->hw; 2417 int err = -EAGAIN; 2418 2419 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2420 2421 if (!iavf_asq_done(hw)) { 2422 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2423 iavf_shutdown_adminq(hw); 2424 iavf_change_state(adapter, __IAVF_STARTUP); 2425 goto err; 2426 } 2427 2428 /* aq msg sent, awaiting reply */ 2429 err = iavf_verify_api_ver(adapter); 2430 if (err) { 2431 if (err == -EALREADY) 2432 err = iavf_send_api_ver(adapter); 2433 else 2434 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2435 adapter->pf_version.major, 2436 adapter->pf_version.minor, 2437 VIRTCHNL_VERSION_MAJOR, 2438 VIRTCHNL_VERSION_MINOR); 2439 goto err; 2440 } 2441 err = iavf_send_vf_config_msg(adapter); 2442 if (err) { 2443 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2444 err); 2445 goto err; 2446 } 2447 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2448 return; 2449 err: 2450 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2451 } 2452 2453 /** 2454 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2455 * @adapter: board private structure 2456 */ 2457 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2458 { 2459 int i, num_req_queues = adapter->num_req_queues; 2460 struct iavf_vsi *vsi = &adapter->vsi; 2461 2462 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2463 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2464 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2465 } 2466 if (!adapter->vsi_res) { 2467 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2468 return -ENODEV; 2469 } 2470 2471 if (num_req_queues && 2472 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2473 /* Problem. The PF gave us fewer queues than what we had 2474 * negotiated in our request. Need a reset to see if we can't 2475 * get back to a working state. 2476 */ 2477 dev_err(&adapter->pdev->dev, 2478 "Requested %d queues, but PF only gave us %d.\n", 2479 num_req_queues, 2480 adapter->vsi_res->num_queue_pairs); 2481 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2482 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2483 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2484 2485 return -EAGAIN; 2486 } 2487 adapter->num_req_queues = 0; 2488 adapter->vsi.id = adapter->vsi_res->vsi_id; 2489 2490 adapter->vsi.back = adapter; 2491 adapter->vsi.base_vector = 1; 2492 vsi->netdev = adapter->netdev; 2493 vsi->qs_handle = adapter->vsi_res->qset_handle; 2494 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2495 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2496 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2497 } else { 2498 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2499 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2500 } 2501 2502 return 0; 2503 } 2504 2505 /** 2506 * iavf_init_get_resources - third step of driver startup 2507 * @adapter: board private structure 2508 * 2509 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2510 * finishes driver initialization procedure. 2511 * When success the state is changed to __IAVF_DOWN 2512 * when fails the state is changed to __IAVF_INIT_FAILED 2513 **/ 2514 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2515 { 2516 struct pci_dev *pdev = adapter->pdev; 2517 struct iavf_hw *hw = &adapter->hw; 2518 int err; 2519 2520 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2521 /* aq msg sent, awaiting reply */ 2522 if (!adapter->vf_res) { 2523 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2524 GFP_KERNEL); 2525 if (!adapter->vf_res) { 2526 err = -ENOMEM; 2527 goto err; 2528 } 2529 } 2530 err = iavf_get_vf_config(adapter); 2531 if (err == -EALREADY) { 2532 err = iavf_send_vf_config_msg(adapter); 2533 goto err; 2534 } else if (err == -EINVAL) { 2535 /* We only get -EINVAL if the device is in a very bad 2536 * state or if we've been disabled for previous bad 2537 * behavior. Either way, we're done now. 2538 */ 2539 iavf_shutdown_adminq(hw); 2540 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2541 return; 2542 } 2543 if (err) { 2544 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2545 goto err_alloc; 2546 } 2547 2548 err = iavf_parse_vf_resource_msg(adapter); 2549 if (err) { 2550 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2551 err); 2552 goto err_alloc; 2553 } 2554 /* Some features require additional messages to negotiate extended 2555 * capabilities. These are processed in sequence by the 2556 * __IAVF_INIT_EXTENDED_CAPS driver state. 2557 */ 2558 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2559 2560 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2561 return; 2562 2563 err_alloc: 2564 kfree(adapter->vf_res); 2565 adapter->vf_res = NULL; 2566 err: 2567 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2568 } 2569 2570 /** 2571 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2572 * @adapter: board private structure 2573 * 2574 * Function processes send of the extended VLAN V2 capability message to the 2575 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2576 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2577 */ 2578 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2579 { 2580 int ret; 2581 2582 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2583 2584 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2585 if (ret && ret == -EOPNOTSUPP) { 2586 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2587 * we did not send the capability exchange message and do not 2588 * expect a response. 2589 */ 2590 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2591 } 2592 2593 /* We sent the message, so move on to the next step */ 2594 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2595 } 2596 2597 /** 2598 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2599 * @adapter: board private structure 2600 * 2601 * Function processes receipt of the extended VLAN V2 capability message from 2602 * the PF. 2603 **/ 2604 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2605 { 2606 int ret; 2607 2608 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2609 2610 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2611 2612 ret = iavf_get_vf_vlan_v2_caps(adapter); 2613 if (ret) 2614 goto err; 2615 2616 /* We've processed receipt of the VLAN V2 caps message */ 2617 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2618 return; 2619 err: 2620 /* We didn't receive a reply. Make sure we try sending again when 2621 * __IAVF_INIT_FAILED attempts to recover. 2622 */ 2623 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2624 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2625 } 2626 2627 /** 2628 * iavf_init_process_extended_caps - Part of driver startup 2629 * @adapter: board private structure 2630 * 2631 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2632 * handles negotiating capabilities for features which require an additional 2633 * message. 2634 * 2635 * Once all extended capabilities exchanges are finished, the driver will 2636 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2637 */ 2638 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2639 { 2640 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2641 2642 /* Process capability exchange for VLAN V2 */ 2643 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2644 iavf_init_send_offload_vlan_v2_caps(adapter); 2645 return; 2646 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2647 iavf_init_recv_offload_vlan_v2_caps(adapter); 2648 return; 2649 } 2650 2651 /* When we reach here, no further extended capabilities exchanges are 2652 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2653 */ 2654 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2655 } 2656 2657 /** 2658 * iavf_init_config_adapter - last part of driver startup 2659 * @adapter: board private structure 2660 * 2661 * After all the supported capabilities are negotiated, then the 2662 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2663 */ 2664 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2665 { 2666 struct net_device *netdev = adapter->netdev; 2667 struct pci_dev *pdev = adapter->pdev; 2668 int err; 2669 2670 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2671 2672 if (iavf_process_config(adapter)) 2673 goto err; 2674 2675 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2676 2677 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2678 2679 netdev->netdev_ops = &iavf_netdev_ops; 2680 iavf_set_ethtool_ops(netdev); 2681 netdev->watchdog_timeo = 5 * HZ; 2682 2683 /* MTU range: 68 - 9710 */ 2684 netdev->min_mtu = ETH_MIN_MTU; 2685 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2686 2687 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2688 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2689 adapter->hw.mac.addr); 2690 eth_hw_addr_random(netdev); 2691 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2692 } else { 2693 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2694 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2695 } 2696 2697 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2698 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2699 err = iavf_init_interrupt_scheme(adapter); 2700 if (err) 2701 goto err_sw_init; 2702 iavf_map_rings_to_vectors(adapter); 2703 if (adapter->vf_res->vf_cap_flags & 2704 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2705 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2706 2707 err = iavf_request_misc_irq(adapter); 2708 if (err) 2709 goto err_sw_init; 2710 2711 netif_carrier_off(netdev); 2712 adapter->link_up = false; 2713 netif_tx_stop_all_queues(netdev); 2714 2715 if (CLIENT_ALLOWED(adapter)) { 2716 err = iavf_lan_add_device(adapter); 2717 if (err) 2718 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2719 err); 2720 } 2721 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2722 if (netdev->features & NETIF_F_GRO) 2723 dev_info(&pdev->dev, "GRO is enabled\n"); 2724 2725 iavf_change_state(adapter, __IAVF_DOWN); 2726 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2727 2728 iavf_misc_irq_enable(adapter); 2729 wake_up(&adapter->down_waitqueue); 2730 2731 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2732 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2733 if (!adapter->rss_key || !adapter->rss_lut) { 2734 err = -ENOMEM; 2735 goto err_mem; 2736 } 2737 if (RSS_AQ(adapter)) 2738 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2739 else 2740 iavf_init_rss(adapter); 2741 2742 if (VLAN_V2_ALLOWED(adapter)) 2743 /* request initial VLAN offload settings */ 2744 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2745 2746 iavf_schedule_finish_config(adapter); 2747 return; 2748 2749 err_mem: 2750 iavf_free_rss(adapter); 2751 iavf_free_misc_irq(adapter); 2752 err_sw_init: 2753 iavf_reset_interrupt_capability(adapter); 2754 err: 2755 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2756 } 2757 2758 /** 2759 * iavf_watchdog_task - Periodic call-back task 2760 * @work: pointer to work_struct 2761 **/ 2762 static void iavf_watchdog_task(struct work_struct *work) 2763 { 2764 struct iavf_adapter *adapter = container_of(work, 2765 struct iavf_adapter, 2766 watchdog_task.work); 2767 struct iavf_hw *hw = &adapter->hw; 2768 u32 reg_val; 2769 2770 if (!mutex_trylock(&adapter->crit_lock)) { 2771 if (adapter->state == __IAVF_REMOVE) 2772 return; 2773 2774 goto restart_watchdog; 2775 } 2776 2777 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2778 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2779 2780 switch (adapter->state) { 2781 case __IAVF_STARTUP: 2782 iavf_startup(adapter); 2783 mutex_unlock(&adapter->crit_lock); 2784 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2785 msecs_to_jiffies(30)); 2786 return; 2787 case __IAVF_INIT_VERSION_CHECK: 2788 iavf_init_version_check(adapter); 2789 mutex_unlock(&adapter->crit_lock); 2790 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2791 msecs_to_jiffies(30)); 2792 return; 2793 case __IAVF_INIT_GET_RESOURCES: 2794 iavf_init_get_resources(adapter); 2795 mutex_unlock(&adapter->crit_lock); 2796 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2797 msecs_to_jiffies(1)); 2798 return; 2799 case __IAVF_INIT_EXTENDED_CAPS: 2800 iavf_init_process_extended_caps(adapter); 2801 mutex_unlock(&adapter->crit_lock); 2802 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2803 msecs_to_jiffies(1)); 2804 return; 2805 case __IAVF_INIT_CONFIG_ADAPTER: 2806 iavf_init_config_adapter(adapter); 2807 mutex_unlock(&adapter->crit_lock); 2808 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2809 msecs_to_jiffies(1)); 2810 return; 2811 case __IAVF_INIT_FAILED: 2812 if (test_bit(__IAVF_IN_REMOVE_TASK, 2813 &adapter->crit_section)) { 2814 /* Do not update the state and do not reschedule 2815 * watchdog task, iavf_remove should handle this state 2816 * as it can loop forever 2817 */ 2818 mutex_unlock(&adapter->crit_lock); 2819 return; 2820 } 2821 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2822 dev_err(&adapter->pdev->dev, 2823 "Failed to communicate with PF; waiting before retry\n"); 2824 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2825 iavf_shutdown_adminq(hw); 2826 mutex_unlock(&adapter->crit_lock); 2827 queue_delayed_work(adapter->wq, 2828 &adapter->watchdog_task, (5 * HZ)); 2829 return; 2830 } 2831 /* Try again from failed step*/ 2832 iavf_change_state(adapter, adapter->last_state); 2833 mutex_unlock(&adapter->crit_lock); 2834 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2835 return; 2836 case __IAVF_COMM_FAILED: 2837 if (test_bit(__IAVF_IN_REMOVE_TASK, 2838 &adapter->crit_section)) { 2839 /* Set state to __IAVF_INIT_FAILED and perform remove 2840 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2841 * doesn't bring the state back to __IAVF_COMM_FAILED. 2842 */ 2843 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2844 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2845 mutex_unlock(&adapter->crit_lock); 2846 return; 2847 } 2848 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2849 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2850 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2851 reg_val == VIRTCHNL_VFR_COMPLETED) { 2852 /* A chance for redemption! */ 2853 dev_err(&adapter->pdev->dev, 2854 "Hardware came out of reset. Attempting reinit.\n"); 2855 /* When init task contacts the PF and 2856 * gets everything set up again, it'll restart the 2857 * watchdog for us. Down, boy. Sit. Stay. Woof. 2858 */ 2859 iavf_change_state(adapter, __IAVF_STARTUP); 2860 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2861 } 2862 adapter->aq_required = 0; 2863 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2864 mutex_unlock(&adapter->crit_lock); 2865 queue_delayed_work(adapter->wq, 2866 &adapter->watchdog_task, 2867 msecs_to_jiffies(10)); 2868 return; 2869 case __IAVF_RESETTING: 2870 mutex_unlock(&adapter->crit_lock); 2871 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2872 HZ * 2); 2873 return; 2874 case __IAVF_DOWN: 2875 case __IAVF_DOWN_PENDING: 2876 case __IAVF_TESTING: 2877 case __IAVF_RUNNING: 2878 if (adapter->current_op) { 2879 if (!iavf_asq_done(hw)) { 2880 dev_dbg(&adapter->pdev->dev, 2881 "Admin queue timeout\n"); 2882 iavf_send_api_ver(adapter); 2883 } 2884 } else { 2885 int ret = iavf_process_aq_command(adapter); 2886 2887 /* An error will be returned if no commands were 2888 * processed; use this opportunity to update stats 2889 * if the error isn't -ENOTSUPP 2890 */ 2891 if (ret && ret != -EOPNOTSUPP && 2892 adapter->state == __IAVF_RUNNING) 2893 iavf_request_stats(adapter); 2894 } 2895 if (adapter->state == __IAVF_RUNNING) 2896 iavf_detect_recover_hung(&adapter->vsi); 2897 break; 2898 case __IAVF_REMOVE: 2899 default: 2900 mutex_unlock(&adapter->crit_lock); 2901 return; 2902 } 2903 2904 /* check for hw reset */ 2905 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2906 if (!reg_val) { 2907 adapter->aq_required = 0; 2908 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2909 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2910 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2911 mutex_unlock(&adapter->crit_lock); 2912 queue_delayed_work(adapter->wq, 2913 &adapter->watchdog_task, HZ * 2); 2914 return; 2915 } 2916 2917 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2918 mutex_unlock(&adapter->crit_lock); 2919 restart_watchdog: 2920 if (adapter->state >= __IAVF_DOWN) 2921 queue_work(adapter->wq, &adapter->adminq_task); 2922 if (adapter->aq_required) 2923 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2924 msecs_to_jiffies(20)); 2925 else 2926 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2927 HZ * 2); 2928 } 2929 2930 /** 2931 * iavf_disable_vf - disable VF 2932 * @adapter: board private structure 2933 * 2934 * Set communication failed flag and free all resources. 2935 * NOTE: This function is expected to be called with crit_lock being held. 2936 **/ 2937 static void iavf_disable_vf(struct iavf_adapter *adapter) 2938 { 2939 struct iavf_mac_filter *f, *ftmp; 2940 struct iavf_vlan_filter *fv, *fvtmp; 2941 struct iavf_cloud_filter *cf, *cftmp; 2942 2943 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2944 2945 /* We don't use netif_running() because it may be true prior to 2946 * ndo_open() returning, so we can't assume it means all our open 2947 * tasks have finished, since we're not holding the rtnl_lock here. 2948 */ 2949 if (adapter->state == __IAVF_RUNNING) { 2950 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2951 netif_carrier_off(adapter->netdev); 2952 netif_tx_disable(adapter->netdev); 2953 adapter->link_up = false; 2954 iavf_napi_disable_all(adapter); 2955 iavf_irq_disable(adapter); 2956 iavf_free_traffic_irqs(adapter); 2957 iavf_free_all_tx_resources(adapter); 2958 iavf_free_all_rx_resources(adapter); 2959 } 2960 2961 spin_lock_bh(&adapter->mac_vlan_list_lock); 2962 2963 /* Delete all of the filters */ 2964 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2965 list_del(&f->list); 2966 kfree(f); 2967 } 2968 2969 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2970 list_del(&fv->list); 2971 kfree(fv); 2972 } 2973 adapter->num_vlan_filters = 0; 2974 2975 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2976 2977 spin_lock_bh(&adapter->cloud_filter_list_lock); 2978 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2979 list_del(&cf->list); 2980 kfree(cf); 2981 adapter->num_cloud_filters--; 2982 } 2983 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2984 2985 iavf_free_misc_irq(adapter); 2986 iavf_reset_interrupt_capability(adapter); 2987 iavf_free_q_vectors(adapter); 2988 iavf_free_queues(adapter); 2989 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2990 iavf_shutdown_adminq(&adapter->hw); 2991 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2992 iavf_change_state(adapter, __IAVF_DOWN); 2993 wake_up(&adapter->down_waitqueue); 2994 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2995 } 2996 2997 /** 2998 * iavf_reset_task - Call-back task to handle hardware reset 2999 * @work: pointer to work_struct 3000 * 3001 * During reset we need to shut down and reinitialize the admin queue 3002 * before we can use it to communicate with the PF again. We also clear 3003 * and reinit the rings because that context is lost as well. 3004 **/ 3005 static void iavf_reset_task(struct work_struct *work) 3006 { 3007 struct iavf_adapter *adapter = container_of(work, 3008 struct iavf_adapter, 3009 reset_task); 3010 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3011 struct net_device *netdev = adapter->netdev; 3012 struct iavf_hw *hw = &adapter->hw; 3013 struct iavf_mac_filter *f, *ftmp; 3014 struct iavf_cloud_filter *cf; 3015 enum iavf_status status; 3016 u32 reg_val; 3017 int i = 0, err; 3018 bool running; 3019 3020 /* When device is being removed it doesn't make sense to run the reset 3021 * task, just return in such a case. 3022 */ 3023 if (!mutex_trylock(&adapter->crit_lock)) { 3024 if (adapter->state != __IAVF_REMOVE) 3025 queue_work(adapter->wq, &adapter->reset_task); 3026 3027 return; 3028 } 3029 3030 while (!mutex_trylock(&adapter->client_lock)) 3031 usleep_range(500, 1000); 3032 if (CLIENT_ENABLED(adapter)) { 3033 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 3034 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 3035 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 3036 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 3037 cancel_delayed_work_sync(&adapter->client_task); 3038 iavf_notify_client_close(&adapter->vsi, true); 3039 } 3040 iavf_misc_irq_disable(adapter); 3041 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3042 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3043 /* Restart the AQ here. If we have been reset but didn't 3044 * detect it, or if the PF had to reinit, our AQ will be hosed. 3045 */ 3046 iavf_shutdown_adminq(hw); 3047 iavf_init_adminq(hw); 3048 iavf_request_reset(adapter); 3049 } 3050 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3051 3052 /* poll until we see the reset actually happen */ 3053 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3054 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3055 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3056 if (!reg_val) 3057 break; 3058 usleep_range(5000, 10000); 3059 } 3060 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3061 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3062 goto continue_reset; /* act like the reset happened */ 3063 } 3064 3065 /* wait until the reset is complete and the PF is responding to us */ 3066 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3067 /* sleep first to make sure a minimum wait time is met */ 3068 msleep(IAVF_RESET_WAIT_MS); 3069 3070 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3071 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3072 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3073 break; 3074 } 3075 3076 pci_set_master(adapter->pdev); 3077 pci_restore_msi_state(adapter->pdev); 3078 3079 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3080 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3081 reg_val); 3082 iavf_disable_vf(adapter); 3083 mutex_unlock(&adapter->client_lock); 3084 mutex_unlock(&adapter->crit_lock); 3085 return; /* Do not attempt to reinit. It's dead, Jim. */ 3086 } 3087 3088 continue_reset: 3089 /* We don't use netif_running() because it may be true prior to 3090 * ndo_open() returning, so we can't assume it means all our open 3091 * tasks have finished, since we're not holding the rtnl_lock here. 3092 */ 3093 running = adapter->state == __IAVF_RUNNING; 3094 3095 if (running) { 3096 netif_carrier_off(netdev); 3097 netif_tx_stop_all_queues(netdev); 3098 adapter->link_up = false; 3099 iavf_napi_disable_all(adapter); 3100 } 3101 iavf_irq_disable(adapter); 3102 3103 iavf_change_state(adapter, __IAVF_RESETTING); 3104 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3105 3106 /* free the Tx/Rx rings and descriptors, might be better to just 3107 * re-use them sometime in the future 3108 */ 3109 iavf_free_all_rx_resources(adapter); 3110 iavf_free_all_tx_resources(adapter); 3111 3112 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3113 /* kill and reinit the admin queue */ 3114 iavf_shutdown_adminq(hw); 3115 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3116 status = iavf_init_adminq(hw); 3117 if (status) { 3118 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3119 status); 3120 goto reset_err; 3121 } 3122 adapter->aq_required = 0; 3123 3124 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3125 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3126 err = iavf_reinit_interrupt_scheme(adapter, running); 3127 if (err) 3128 goto reset_err; 3129 } 3130 3131 if (RSS_AQ(adapter)) { 3132 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3133 } else { 3134 err = iavf_init_rss(adapter); 3135 if (err) 3136 goto reset_err; 3137 } 3138 3139 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3140 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3141 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3142 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3143 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3144 * been successfully sent and negotiated 3145 */ 3146 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3147 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3148 3149 spin_lock_bh(&adapter->mac_vlan_list_lock); 3150 3151 /* Delete filter for the current MAC address, it could have 3152 * been changed by the PF via administratively set MAC. 3153 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3154 */ 3155 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3156 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3157 list_del(&f->list); 3158 kfree(f); 3159 } 3160 } 3161 /* re-add all MAC filters */ 3162 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3163 f->add = true; 3164 } 3165 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3166 3167 /* check if TCs are running and re-add all cloud filters */ 3168 spin_lock_bh(&adapter->cloud_filter_list_lock); 3169 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3170 adapter->num_tc) { 3171 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3172 cf->add = true; 3173 } 3174 } 3175 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3176 3177 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3178 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3179 iavf_misc_irq_enable(adapter); 3180 3181 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3182 3183 /* We were running when the reset started, so we need to restore some 3184 * state here. 3185 */ 3186 if (running) { 3187 /* allocate transmit descriptors */ 3188 err = iavf_setup_all_tx_resources(adapter); 3189 if (err) 3190 goto reset_err; 3191 3192 /* allocate receive descriptors */ 3193 err = iavf_setup_all_rx_resources(adapter); 3194 if (err) 3195 goto reset_err; 3196 3197 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3198 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3199 err = iavf_request_traffic_irqs(adapter, netdev->name); 3200 if (err) 3201 goto reset_err; 3202 3203 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3204 } 3205 3206 iavf_configure(adapter); 3207 3208 /* iavf_up_complete() will switch device back 3209 * to __IAVF_RUNNING 3210 */ 3211 iavf_up_complete(adapter); 3212 3213 iavf_irq_enable(adapter, true); 3214 } else { 3215 iavf_change_state(adapter, __IAVF_DOWN); 3216 wake_up(&adapter->down_waitqueue); 3217 } 3218 3219 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3220 3221 wake_up(&adapter->reset_waitqueue); 3222 mutex_unlock(&adapter->client_lock); 3223 mutex_unlock(&adapter->crit_lock); 3224 3225 return; 3226 reset_err: 3227 if (running) { 3228 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3229 iavf_free_traffic_irqs(adapter); 3230 } 3231 iavf_disable_vf(adapter); 3232 3233 mutex_unlock(&adapter->client_lock); 3234 mutex_unlock(&adapter->crit_lock); 3235 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3236 } 3237 3238 /** 3239 * iavf_adminq_task - worker thread to clean the admin queue 3240 * @work: pointer to work_struct containing our data 3241 **/ 3242 static void iavf_adminq_task(struct work_struct *work) 3243 { 3244 struct iavf_adapter *adapter = 3245 container_of(work, struct iavf_adapter, adminq_task); 3246 struct iavf_hw *hw = &adapter->hw; 3247 struct iavf_arq_event_info event; 3248 enum virtchnl_ops v_op; 3249 enum iavf_status ret, v_ret; 3250 u32 val, oldval; 3251 u16 pending; 3252 3253 if (!mutex_trylock(&adapter->crit_lock)) { 3254 if (adapter->state == __IAVF_REMOVE) 3255 return; 3256 3257 queue_work(adapter->wq, &adapter->adminq_task); 3258 goto out; 3259 } 3260 3261 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3262 goto unlock; 3263 3264 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3265 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3266 if (!event.msg_buf) 3267 goto unlock; 3268 3269 do { 3270 ret = iavf_clean_arq_element(hw, &event, &pending); 3271 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3272 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3273 3274 if (ret || !v_op) 3275 break; /* No event to process or error cleaning ARQ */ 3276 3277 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3278 event.msg_len); 3279 if (pending != 0) 3280 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3281 } while (pending); 3282 3283 if (iavf_is_reset_in_progress(adapter)) 3284 goto freedom; 3285 3286 /* check for error indications */ 3287 val = rd32(hw, hw->aq.arq.len); 3288 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3289 goto freedom; 3290 oldval = val; 3291 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3292 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3293 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3294 } 3295 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3296 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3297 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3298 } 3299 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3300 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3301 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3302 } 3303 if (oldval != val) 3304 wr32(hw, hw->aq.arq.len, val); 3305 3306 val = rd32(hw, hw->aq.asq.len); 3307 oldval = val; 3308 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3309 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3310 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3311 } 3312 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3313 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3314 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3315 } 3316 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3317 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3318 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3319 } 3320 if (oldval != val) 3321 wr32(hw, hw->aq.asq.len, val); 3322 3323 freedom: 3324 kfree(event.msg_buf); 3325 unlock: 3326 mutex_unlock(&adapter->crit_lock); 3327 out: 3328 /* re-enable Admin queue interrupt cause */ 3329 iavf_misc_irq_enable(adapter); 3330 } 3331 3332 /** 3333 * iavf_client_task - worker thread to perform client work 3334 * @work: pointer to work_struct containing our data 3335 * 3336 * This task handles client interactions. Because client calls can be 3337 * reentrant, we can't handle them in the watchdog. 3338 **/ 3339 static void iavf_client_task(struct work_struct *work) 3340 { 3341 struct iavf_adapter *adapter = 3342 container_of(work, struct iavf_adapter, client_task.work); 3343 3344 /* If we can't get the client bit, just give up. We'll be rescheduled 3345 * later. 3346 */ 3347 3348 if (!mutex_trylock(&adapter->client_lock)) 3349 return; 3350 3351 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3352 iavf_client_subtask(adapter); 3353 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3354 goto out; 3355 } 3356 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3357 iavf_notify_client_l2_params(&adapter->vsi); 3358 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3359 goto out; 3360 } 3361 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3362 iavf_notify_client_close(&adapter->vsi, false); 3363 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3364 goto out; 3365 } 3366 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3367 iavf_notify_client_open(&adapter->vsi); 3368 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3369 } 3370 out: 3371 mutex_unlock(&adapter->client_lock); 3372 } 3373 3374 /** 3375 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3376 * @adapter: board private structure 3377 * 3378 * Free all transmit software resources 3379 **/ 3380 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3381 { 3382 int i; 3383 3384 if (!adapter->tx_rings) 3385 return; 3386 3387 for (i = 0; i < adapter->num_active_queues; i++) 3388 if (adapter->tx_rings[i].desc) 3389 iavf_free_tx_resources(&adapter->tx_rings[i]); 3390 } 3391 3392 /** 3393 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3394 * @adapter: board private structure 3395 * 3396 * If this function returns with an error, then it's possible one or 3397 * more of the rings is populated (while the rest are not). It is the 3398 * callers duty to clean those orphaned rings. 3399 * 3400 * Return 0 on success, negative on failure 3401 **/ 3402 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3403 { 3404 int i, err = 0; 3405 3406 for (i = 0; i < adapter->num_active_queues; i++) { 3407 adapter->tx_rings[i].count = adapter->tx_desc_count; 3408 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3409 if (!err) 3410 continue; 3411 dev_err(&adapter->pdev->dev, 3412 "Allocation for Tx Queue %u failed\n", i); 3413 break; 3414 } 3415 3416 return err; 3417 } 3418 3419 /** 3420 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3421 * @adapter: board private structure 3422 * 3423 * If this function returns with an error, then it's possible one or 3424 * more of the rings is populated (while the rest are not). It is the 3425 * callers duty to clean those orphaned rings. 3426 * 3427 * Return 0 on success, negative on failure 3428 **/ 3429 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3430 { 3431 int i, err = 0; 3432 3433 for (i = 0; i < adapter->num_active_queues; i++) { 3434 adapter->rx_rings[i].count = adapter->rx_desc_count; 3435 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3436 if (!err) 3437 continue; 3438 dev_err(&adapter->pdev->dev, 3439 "Allocation for Rx Queue %u failed\n", i); 3440 break; 3441 } 3442 return err; 3443 } 3444 3445 /** 3446 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3447 * @adapter: board private structure 3448 * 3449 * Free all receive software resources 3450 **/ 3451 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3452 { 3453 int i; 3454 3455 if (!adapter->rx_rings) 3456 return; 3457 3458 for (i = 0; i < adapter->num_active_queues; i++) 3459 if (adapter->rx_rings[i].desc) 3460 iavf_free_rx_resources(&adapter->rx_rings[i]); 3461 } 3462 3463 /** 3464 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3465 * @adapter: board private structure 3466 * @max_tx_rate: max Tx bw for a tc 3467 **/ 3468 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3469 u64 max_tx_rate) 3470 { 3471 int speed = 0, ret = 0; 3472 3473 if (ADV_LINK_SUPPORT(adapter)) { 3474 if (adapter->link_speed_mbps < U32_MAX) { 3475 speed = adapter->link_speed_mbps; 3476 goto validate_bw; 3477 } else { 3478 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3479 return -EINVAL; 3480 } 3481 } 3482 3483 switch (adapter->link_speed) { 3484 case VIRTCHNL_LINK_SPEED_40GB: 3485 speed = SPEED_40000; 3486 break; 3487 case VIRTCHNL_LINK_SPEED_25GB: 3488 speed = SPEED_25000; 3489 break; 3490 case VIRTCHNL_LINK_SPEED_20GB: 3491 speed = SPEED_20000; 3492 break; 3493 case VIRTCHNL_LINK_SPEED_10GB: 3494 speed = SPEED_10000; 3495 break; 3496 case VIRTCHNL_LINK_SPEED_5GB: 3497 speed = SPEED_5000; 3498 break; 3499 case VIRTCHNL_LINK_SPEED_2_5GB: 3500 speed = SPEED_2500; 3501 break; 3502 case VIRTCHNL_LINK_SPEED_1GB: 3503 speed = SPEED_1000; 3504 break; 3505 case VIRTCHNL_LINK_SPEED_100MB: 3506 speed = SPEED_100; 3507 break; 3508 default: 3509 break; 3510 } 3511 3512 validate_bw: 3513 if (max_tx_rate > speed) { 3514 dev_err(&adapter->pdev->dev, 3515 "Invalid tx rate specified\n"); 3516 ret = -EINVAL; 3517 } 3518 3519 return ret; 3520 } 3521 3522 /** 3523 * iavf_validate_ch_config - validate queue mapping info 3524 * @adapter: board private structure 3525 * @mqprio_qopt: queue parameters 3526 * 3527 * This function validates if the config provided by the user to 3528 * configure queue channels is valid or not. Returns 0 on a valid 3529 * config. 3530 **/ 3531 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3532 struct tc_mqprio_qopt_offload *mqprio_qopt) 3533 { 3534 u64 total_max_rate = 0; 3535 u32 tx_rate_rem = 0; 3536 int i, num_qps = 0; 3537 u64 tx_rate = 0; 3538 int ret = 0; 3539 3540 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3541 mqprio_qopt->qopt.num_tc < 1) 3542 return -EINVAL; 3543 3544 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3545 if (!mqprio_qopt->qopt.count[i] || 3546 mqprio_qopt->qopt.offset[i] != num_qps) 3547 return -EINVAL; 3548 if (mqprio_qopt->min_rate[i]) { 3549 dev_err(&adapter->pdev->dev, 3550 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3551 i); 3552 return -EINVAL; 3553 } 3554 3555 /* convert to Mbps */ 3556 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3557 IAVF_MBPS_DIVISOR); 3558 3559 if (mqprio_qopt->max_rate[i] && 3560 tx_rate < IAVF_MBPS_QUANTA) { 3561 dev_err(&adapter->pdev->dev, 3562 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3563 i, IAVF_MBPS_QUANTA); 3564 return -EINVAL; 3565 } 3566 3567 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3568 3569 if (tx_rate_rem != 0) { 3570 dev_err(&adapter->pdev->dev, 3571 "Invalid max tx rate for TC%d, not divisible by %d\n", 3572 i, IAVF_MBPS_QUANTA); 3573 return -EINVAL; 3574 } 3575 3576 total_max_rate += tx_rate; 3577 num_qps += mqprio_qopt->qopt.count[i]; 3578 } 3579 if (num_qps > adapter->num_active_queues) { 3580 dev_err(&adapter->pdev->dev, 3581 "Cannot support requested number of queues\n"); 3582 return -EINVAL; 3583 } 3584 3585 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3586 return ret; 3587 } 3588 3589 /** 3590 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3591 * @adapter: board private structure 3592 **/ 3593 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3594 { 3595 struct iavf_cloud_filter *cf, *cftmp; 3596 3597 spin_lock_bh(&adapter->cloud_filter_list_lock); 3598 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3599 list) { 3600 list_del(&cf->list); 3601 kfree(cf); 3602 adapter->num_cloud_filters--; 3603 } 3604 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3605 } 3606 3607 /** 3608 * __iavf_setup_tc - configure multiple traffic classes 3609 * @netdev: network interface device structure 3610 * @type_data: tc offload data 3611 * 3612 * This function processes the config information provided by the 3613 * user to configure traffic classes/queue channels and packages the 3614 * information to request the PF to setup traffic classes. 3615 * 3616 * Returns 0 on success. 3617 **/ 3618 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3619 { 3620 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3621 struct iavf_adapter *adapter = netdev_priv(netdev); 3622 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3623 u8 num_tc = 0, total_qps = 0; 3624 int ret = 0, netdev_tc = 0; 3625 u64 max_tx_rate; 3626 u16 mode; 3627 int i; 3628 3629 num_tc = mqprio_qopt->qopt.num_tc; 3630 mode = mqprio_qopt->mode; 3631 3632 /* delete queue_channel */ 3633 if (!mqprio_qopt->qopt.hw) { 3634 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3635 /* reset the tc configuration */ 3636 netdev_reset_tc(netdev); 3637 adapter->num_tc = 0; 3638 netif_tx_stop_all_queues(netdev); 3639 netif_tx_disable(netdev); 3640 iavf_del_all_cloud_filters(adapter); 3641 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3642 total_qps = adapter->orig_num_active_queues; 3643 goto exit; 3644 } else { 3645 return -EINVAL; 3646 } 3647 } 3648 3649 /* add queue channel */ 3650 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3651 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3652 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3653 return -EOPNOTSUPP; 3654 } 3655 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3656 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3657 return -EINVAL; 3658 } 3659 3660 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3661 if (ret) 3662 return ret; 3663 /* Return if same TC config is requested */ 3664 if (adapter->num_tc == num_tc) 3665 return 0; 3666 adapter->num_tc = num_tc; 3667 3668 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3669 if (i < num_tc) { 3670 adapter->ch_config.ch_info[i].count = 3671 mqprio_qopt->qopt.count[i]; 3672 adapter->ch_config.ch_info[i].offset = 3673 mqprio_qopt->qopt.offset[i]; 3674 total_qps += mqprio_qopt->qopt.count[i]; 3675 max_tx_rate = mqprio_qopt->max_rate[i]; 3676 /* convert to Mbps */ 3677 max_tx_rate = div_u64(max_tx_rate, 3678 IAVF_MBPS_DIVISOR); 3679 adapter->ch_config.ch_info[i].max_tx_rate = 3680 max_tx_rate; 3681 } else { 3682 adapter->ch_config.ch_info[i].count = 1; 3683 adapter->ch_config.ch_info[i].offset = 0; 3684 } 3685 } 3686 3687 /* Take snapshot of original config such as "num_active_queues" 3688 * It is used later when delete ADQ flow is exercised, so that 3689 * once delete ADQ flow completes, VF shall go back to its 3690 * original queue configuration 3691 */ 3692 3693 adapter->orig_num_active_queues = adapter->num_active_queues; 3694 3695 /* Store queue info based on TC so that VF gets configured 3696 * with correct number of queues when VF completes ADQ config 3697 * flow 3698 */ 3699 adapter->ch_config.total_qps = total_qps; 3700 3701 netif_tx_stop_all_queues(netdev); 3702 netif_tx_disable(netdev); 3703 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3704 netdev_reset_tc(netdev); 3705 /* Report the tc mapping up the stack */ 3706 netdev_set_num_tc(adapter->netdev, num_tc); 3707 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3708 u16 qcount = mqprio_qopt->qopt.count[i]; 3709 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3710 3711 if (i < num_tc) 3712 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3713 qoffset); 3714 } 3715 } 3716 exit: 3717 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3718 return 0; 3719 3720 netif_set_real_num_rx_queues(netdev, total_qps); 3721 netif_set_real_num_tx_queues(netdev, total_qps); 3722 3723 return ret; 3724 } 3725 3726 /** 3727 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3728 * @adapter: board private structure 3729 * @f: pointer to struct flow_cls_offload 3730 * @filter: pointer to cloud filter structure 3731 */ 3732 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3733 struct flow_cls_offload *f, 3734 struct iavf_cloud_filter *filter) 3735 { 3736 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3737 struct flow_dissector *dissector = rule->match.dissector; 3738 u16 n_proto_mask = 0; 3739 u16 n_proto_key = 0; 3740 u8 field_flags = 0; 3741 u16 addr_type = 0; 3742 u16 n_proto = 0; 3743 int i = 0; 3744 struct virtchnl_filter *vf = &filter->f; 3745 3746 if (dissector->used_keys & 3747 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3748 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3749 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3750 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3751 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3752 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3753 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3754 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3755 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3756 dissector->used_keys); 3757 return -EOPNOTSUPP; 3758 } 3759 3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3761 struct flow_match_enc_keyid match; 3762 3763 flow_rule_match_enc_keyid(rule, &match); 3764 if (match.mask->keyid != 0) 3765 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3766 } 3767 3768 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3769 struct flow_match_basic match; 3770 3771 flow_rule_match_basic(rule, &match); 3772 n_proto_key = ntohs(match.key->n_proto); 3773 n_proto_mask = ntohs(match.mask->n_proto); 3774 3775 if (n_proto_key == ETH_P_ALL) { 3776 n_proto_key = 0; 3777 n_proto_mask = 0; 3778 } 3779 n_proto = n_proto_key & n_proto_mask; 3780 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3781 return -EINVAL; 3782 if (n_proto == ETH_P_IPV6) { 3783 /* specify flow type as TCP IPv6 */ 3784 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3785 } 3786 3787 if (match.key->ip_proto != IPPROTO_TCP) { 3788 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3789 return -EINVAL; 3790 } 3791 } 3792 3793 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3794 struct flow_match_eth_addrs match; 3795 3796 flow_rule_match_eth_addrs(rule, &match); 3797 3798 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3799 if (!is_zero_ether_addr(match.mask->dst)) { 3800 if (is_broadcast_ether_addr(match.mask->dst)) { 3801 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3802 } else { 3803 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3804 match.mask->dst); 3805 return -EINVAL; 3806 } 3807 } 3808 3809 if (!is_zero_ether_addr(match.mask->src)) { 3810 if (is_broadcast_ether_addr(match.mask->src)) { 3811 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3812 } else { 3813 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3814 match.mask->src); 3815 return -EINVAL; 3816 } 3817 } 3818 3819 if (!is_zero_ether_addr(match.key->dst)) 3820 if (is_valid_ether_addr(match.key->dst) || 3821 is_multicast_ether_addr(match.key->dst)) { 3822 /* set the mask if a valid dst_mac address */ 3823 for (i = 0; i < ETH_ALEN; i++) 3824 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3825 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3826 match.key->dst); 3827 } 3828 3829 if (!is_zero_ether_addr(match.key->src)) 3830 if (is_valid_ether_addr(match.key->src) || 3831 is_multicast_ether_addr(match.key->src)) { 3832 /* set the mask if a valid dst_mac address */ 3833 for (i = 0; i < ETH_ALEN; i++) 3834 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3835 ether_addr_copy(vf->data.tcp_spec.src_mac, 3836 match.key->src); 3837 } 3838 } 3839 3840 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3841 struct flow_match_vlan match; 3842 3843 flow_rule_match_vlan(rule, &match); 3844 if (match.mask->vlan_id) { 3845 if (match.mask->vlan_id == VLAN_VID_MASK) { 3846 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3847 } else { 3848 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3849 match.mask->vlan_id); 3850 return -EINVAL; 3851 } 3852 } 3853 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3854 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3855 } 3856 3857 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3858 struct flow_match_control match; 3859 3860 flow_rule_match_control(rule, &match); 3861 addr_type = match.key->addr_type; 3862 } 3863 3864 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3865 struct flow_match_ipv4_addrs match; 3866 3867 flow_rule_match_ipv4_addrs(rule, &match); 3868 if (match.mask->dst) { 3869 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3870 field_flags |= IAVF_CLOUD_FIELD_IIP; 3871 } else { 3872 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3873 be32_to_cpu(match.mask->dst)); 3874 return -EINVAL; 3875 } 3876 } 3877 3878 if (match.mask->src) { 3879 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3880 field_flags |= IAVF_CLOUD_FIELD_IIP; 3881 } else { 3882 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3883 be32_to_cpu(match.mask->src)); 3884 return -EINVAL; 3885 } 3886 } 3887 3888 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3889 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3890 return -EINVAL; 3891 } 3892 if (match.key->dst) { 3893 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3894 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3895 } 3896 if (match.key->src) { 3897 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3898 vf->data.tcp_spec.src_ip[0] = match.key->src; 3899 } 3900 } 3901 3902 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3903 struct flow_match_ipv6_addrs match; 3904 3905 flow_rule_match_ipv6_addrs(rule, &match); 3906 3907 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3908 if (ipv6_addr_any(&match.mask->dst)) { 3909 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3910 IPV6_ADDR_ANY); 3911 return -EINVAL; 3912 } 3913 3914 /* src and dest IPv6 address should not be LOOPBACK 3915 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3916 */ 3917 if (ipv6_addr_loopback(&match.key->dst) || 3918 ipv6_addr_loopback(&match.key->src)) { 3919 dev_err(&adapter->pdev->dev, 3920 "ipv6 addr should not be loopback\n"); 3921 return -EINVAL; 3922 } 3923 if (!ipv6_addr_any(&match.mask->dst) || 3924 !ipv6_addr_any(&match.mask->src)) 3925 field_flags |= IAVF_CLOUD_FIELD_IIP; 3926 3927 for (i = 0; i < 4; i++) 3928 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3929 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3930 sizeof(vf->data.tcp_spec.dst_ip)); 3931 for (i = 0; i < 4; i++) 3932 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3933 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3934 sizeof(vf->data.tcp_spec.src_ip)); 3935 } 3936 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3937 struct flow_match_ports match; 3938 3939 flow_rule_match_ports(rule, &match); 3940 if (match.mask->src) { 3941 if (match.mask->src == cpu_to_be16(0xffff)) { 3942 field_flags |= IAVF_CLOUD_FIELD_IIP; 3943 } else { 3944 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3945 be16_to_cpu(match.mask->src)); 3946 return -EINVAL; 3947 } 3948 } 3949 3950 if (match.mask->dst) { 3951 if (match.mask->dst == cpu_to_be16(0xffff)) { 3952 field_flags |= IAVF_CLOUD_FIELD_IIP; 3953 } else { 3954 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3955 be16_to_cpu(match.mask->dst)); 3956 return -EINVAL; 3957 } 3958 } 3959 if (match.key->dst) { 3960 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3961 vf->data.tcp_spec.dst_port = match.key->dst; 3962 } 3963 3964 if (match.key->src) { 3965 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3966 vf->data.tcp_spec.src_port = match.key->src; 3967 } 3968 } 3969 vf->field_flags = field_flags; 3970 3971 return 0; 3972 } 3973 3974 /** 3975 * iavf_handle_tclass - Forward to a traffic class on the device 3976 * @adapter: board private structure 3977 * @tc: traffic class index on the device 3978 * @filter: pointer to cloud filter structure 3979 */ 3980 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3981 struct iavf_cloud_filter *filter) 3982 { 3983 if (tc == 0) 3984 return 0; 3985 if (tc < adapter->num_tc) { 3986 if (!filter->f.data.tcp_spec.dst_port) { 3987 dev_err(&adapter->pdev->dev, 3988 "Specify destination port to redirect to traffic class other than TC0\n"); 3989 return -EINVAL; 3990 } 3991 } 3992 /* redirect to a traffic class on the same device */ 3993 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3994 filter->f.action_meta = tc; 3995 return 0; 3996 } 3997 3998 /** 3999 * iavf_find_cf - Find the cloud filter in the list 4000 * @adapter: Board private structure 4001 * @cookie: filter specific cookie 4002 * 4003 * Returns ptr to the filter object or NULL. Must be called while holding the 4004 * cloud_filter_list_lock. 4005 */ 4006 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4007 unsigned long *cookie) 4008 { 4009 struct iavf_cloud_filter *filter = NULL; 4010 4011 if (!cookie) 4012 return NULL; 4013 4014 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4015 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4016 return filter; 4017 } 4018 return NULL; 4019 } 4020 4021 /** 4022 * iavf_configure_clsflower - Add tc flower filters 4023 * @adapter: board private structure 4024 * @cls_flower: Pointer to struct flow_cls_offload 4025 */ 4026 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4027 struct flow_cls_offload *cls_flower) 4028 { 4029 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4030 struct iavf_cloud_filter *filter = NULL; 4031 int err = -EINVAL, count = 50; 4032 4033 if (tc < 0) { 4034 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4035 return -EINVAL; 4036 } 4037 4038 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4039 if (!filter) 4040 return -ENOMEM; 4041 4042 while (!mutex_trylock(&adapter->crit_lock)) { 4043 if (--count == 0) { 4044 kfree(filter); 4045 return err; 4046 } 4047 udelay(1); 4048 } 4049 4050 filter->cookie = cls_flower->cookie; 4051 4052 /* bail out here if filter already exists */ 4053 spin_lock_bh(&adapter->cloud_filter_list_lock); 4054 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4055 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4056 err = -EEXIST; 4057 goto spin_unlock; 4058 } 4059 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4060 4061 /* set the mask to all zeroes to begin with */ 4062 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4063 /* start out with flow type and eth type IPv4 to begin with */ 4064 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4065 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4066 if (err) 4067 goto err; 4068 4069 err = iavf_handle_tclass(adapter, tc, filter); 4070 if (err) 4071 goto err; 4072 4073 /* add filter to the list */ 4074 spin_lock_bh(&adapter->cloud_filter_list_lock); 4075 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4076 adapter->num_cloud_filters++; 4077 filter->add = true; 4078 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4079 spin_unlock: 4080 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4081 err: 4082 if (err) 4083 kfree(filter); 4084 4085 mutex_unlock(&adapter->crit_lock); 4086 return err; 4087 } 4088 4089 /** 4090 * iavf_delete_clsflower - Remove tc flower filters 4091 * @adapter: board private structure 4092 * @cls_flower: Pointer to struct flow_cls_offload 4093 */ 4094 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4095 struct flow_cls_offload *cls_flower) 4096 { 4097 struct iavf_cloud_filter *filter = NULL; 4098 int err = 0; 4099 4100 spin_lock_bh(&adapter->cloud_filter_list_lock); 4101 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4102 if (filter) { 4103 filter->del = true; 4104 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4105 } else { 4106 err = -EINVAL; 4107 } 4108 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4109 4110 return err; 4111 } 4112 4113 /** 4114 * iavf_setup_tc_cls_flower - flower classifier offloads 4115 * @adapter: board private structure 4116 * @cls_flower: pointer to flow_cls_offload struct with flow info 4117 */ 4118 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4119 struct flow_cls_offload *cls_flower) 4120 { 4121 switch (cls_flower->command) { 4122 case FLOW_CLS_REPLACE: 4123 return iavf_configure_clsflower(adapter, cls_flower); 4124 case FLOW_CLS_DESTROY: 4125 return iavf_delete_clsflower(adapter, cls_flower); 4126 case FLOW_CLS_STATS: 4127 return -EOPNOTSUPP; 4128 default: 4129 return -EOPNOTSUPP; 4130 } 4131 } 4132 4133 /** 4134 * iavf_setup_tc_block_cb - block callback for tc 4135 * @type: type of offload 4136 * @type_data: offload data 4137 * @cb_priv: 4138 * 4139 * This function is the block callback for traffic classes 4140 **/ 4141 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4142 void *cb_priv) 4143 { 4144 struct iavf_adapter *adapter = cb_priv; 4145 4146 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4147 return -EOPNOTSUPP; 4148 4149 switch (type) { 4150 case TC_SETUP_CLSFLOWER: 4151 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4152 default: 4153 return -EOPNOTSUPP; 4154 } 4155 } 4156 4157 static LIST_HEAD(iavf_block_cb_list); 4158 4159 /** 4160 * iavf_setup_tc - configure multiple traffic classes 4161 * @netdev: network interface device structure 4162 * @type: type of offload 4163 * @type_data: tc offload data 4164 * 4165 * This function is the callback to ndo_setup_tc in the 4166 * netdev_ops. 4167 * 4168 * Returns 0 on success 4169 **/ 4170 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4171 void *type_data) 4172 { 4173 struct iavf_adapter *adapter = netdev_priv(netdev); 4174 4175 switch (type) { 4176 case TC_SETUP_QDISC_MQPRIO: 4177 return __iavf_setup_tc(netdev, type_data); 4178 case TC_SETUP_BLOCK: 4179 return flow_block_cb_setup_simple(type_data, 4180 &iavf_block_cb_list, 4181 iavf_setup_tc_block_cb, 4182 adapter, adapter, true); 4183 default: 4184 return -EOPNOTSUPP; 4185 } 4186 } 4187 4188 /** 4189 * iavf_open - Called when a network interface is made active 4190 * @netdev: network interface device structure 4191 * 4192 * Returns 0 on success, negative value on failure 4193 * 4194 * The open entry point is called when a network interface is made 4195 * active by the system (IFF_UP). At this point all resources needed 4196 * for transmit and receive operations are allocated, the interrupt 4197 * handler is registered with the OS, the watchdog is started, 4198 * and the stack is notified that the interface is ready. 4199 **/ 4200 static int iavf_open(struct net_device *netdev) 4201 { 4202 struct iavf_adapter *adapter = netdev_priv(netdev); 4203 int err; 4204 4205 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4206 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4207 return -EIO; 4208 } 4209 4210 while (!mutex_trylock(&adapter->crit_lock)) { 4211 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4212 * is already taken and iavf_open is called from an upper 4213 * device's notifier reacting on NETDEV_REGISTER event. 4214 * We have to leave here to avoid dead lock. 4215 */ 4216 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4217 return -EBUSY; 4218 4219 usleep_range(500, 1000); 4220 } 4221 4222 if (adapter->state != __IAVF_DOWN) { 4223 err = -EBUSY; 4224 goto err_unlock; 4225 } 4226 4227 if (adapter->state == __IAVF_RUNNING && 4228 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4229 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4230 err = 0; 4231 goto err_unlock; 4232 } 4233 4234 /* allocate transmit descriptors */ 4235 err = iavf_setup_all_tx_resources(adapter); 4236 if (err) 4237 goto err_setup_tx; 4238 4239 /* allocate receive descriptors */ 4240 err = iavf_setup_all_rx_resources(adapter); 4241 if (err) 4242 goto err_setup_rx; 4243 4244 /* clear any pending interrupts, may auto mask */ 4245 err = iavf_request_traffic_irqs(adapter, netdev->name); 4246 if (err) 4247 goto err_req_irq; 4248 4249 spin_lock_bh(&adapter->mac_vlan_list_lock); 4250 4251 iavf_add_filter(adapter, adapter->hw.mac.addr); 4252 4253 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4254 4255 /* Restore VLAN filters that were removed with IFF_DOWN */ 4256 iavf_restore_filters(adapter); 4257 4258 iavf_configure(adapter); 4259 4260 iavf_up_complete(adapter); 4261 4262 iavf_irq_enable(adapter, true); 4263 4264 mutex_unlock(&adapter->crit_lock); 4265 4266 return 0; 4267 4268 err_req_irq: 4269 iavf_down(adapter); 4270 iavf_free_traffic_irqs(adapter); 4271 err_setup_rx: 4272 iavf_free_all_rx_resources(adapter); 4273 err_setup_tx: 4274 iavf_free_all_tx_resources(adapter); 4275 err_unlock: 4276 mutex_unlock(&adapter->crit_lock); 4277 4278 return err; 4279 } 4280 4281 /** 4282 * iavf_close - Disables a network interface 4283 * @netdev: network interface device structure 4284 * 4285 * Returns 0, this is not allowed to fail 4286 * 4287 * The close entry point is called when an interface is de-activated 4288 * by the OS. The hardware is still under the drivers control, but 4289 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4290 * are freed, along with all transmit and receive resources. 4291 **/ 4292 static int iavf_close(struct net_device *netdev) 4293 { 4294 struct iavf_adapter *adapter = netdev_priv(netdev); 4295 u64 aq_to_restore; 4296 int status; 4297 4298 mutex_lock(&adapter->crit_lock); 4299 4300 if (adapter->state <= __IAVF_DOWN_PENDING) { 4301 mutex_unlock(&adapter->crit_lock); 4302 return 0; 4303 } 4304 4305 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4306 if (CLIENT_ENABLED(adapter)) 4307 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4308 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4309 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4310 * deadlock with adminq_task() until iavf_close timeouts. We must send 4311 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4312 * disable queues possible for vf. Give only necessary flags to 4313 * iavf_down and save other to set them right before iavf_close() 4314 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4315 * iavf will be in DOWN state. 4316 */ 4317 aq_to_restore = adapter->aq_required; 4318 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4319 4320 /* Remove flags which we do not want to send after close or we want to 4321 * send before disable queues. 4322 */ 4323 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4324 IAVF_FLAG_AQ_ENABLE_QUEUES | 4325 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4326 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4327 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4328 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4329 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4330 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4331 4332 iavf_down(adapter); 4333 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4334 iavf_free_traffic_irqs(adapter); 4335 4336 mutex_unlock(&adapter->crit_lock); 4337 4338 /* We explicitly don't free resources here because the hardware is 4339 * still active and can DMA into memory. Resources are cleared in 4340 * iavf_virtchnl_completion() after we get confirmation from the PF 4341 * driver that the rings have been stopped. 4342 * 4343 * Also, we wait for state to transition to __IAVF_DOWN before 4344 * returning. State change occurs in iavf_virtchnl_completion() after 4345 * VF resources are released (which occurs after PF driver processes and 4346 * responds to admin queue commands). 4347 */ 4348 4349 status = wait_event_timeout(adapter->down_waitqueue, 4350 adapter->state == __IAVF_DOWN, 4351 msecs_to_jiffies(500)); 4352 if (!status) 4353 netdev_warn(netdev, "Device resources not yet released\n"); 4354 4355 mutex_lock(&adapter->crit_lock); 4356 adapter->aq_required |= aq_to_restore; 4357 mutex_unlock(&adapter->crit_lock); 4358 return 0; 4359 } 4360 4361 /** 4362 * iavf_change_mtu - Change the Maximum Transfer Unit 4363 * @netdev: network interface device structure 4364 * @new_mtu: new value for maximum frame size 4365 * 4366 * Returns 0 on success, negative on failure 4367 **/ 4368 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4369 { 4370 struct iavf_adapter *adapter = netdev_priv(netdev); 4371 int ret = 0; 4372 4373 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4374 netdev->mtu, new_mtu); 4375 netdev->mtu = new_mtu; 4376 if (CLIENT_ENABLED(adapter)) { 4377 iavf_notify_client_l2_params(&adapter->vsi); 4378 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4379 } 4380 4381 if (netif_running(netdev)) { 4382 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4383 ret = iavf_wait_for_reset(adapter); 4384 if (ret < 0) 4385 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4386 else if (ret) 4387 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4388 } 4389 4390 return ret; 4391 } 4392 4393 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4394 NETIF_F_HW_VLAN_CTAG_TX | \ 4395 NETIF_F_HW_VLAN_STAG_RX | \ 4396 NETIF_F_HW_VLAN_STAG_TX) 4397 4398 /** 4399 * iavf_set_features - set the netdev feature flags 4400 * @netdev: ptr to the netdev being adjusted 4401 * @features: the feature set that the stack is suggesting 4402 * Note: expects to be called while under rtnl_lock() 4403 **/ 4404 static int iavf_set_features(struct net_device *netdev, 4405 netdev_features_t features) 4406 { 4407 struct iavf_adapter *adapter = netdev_priv(netdev); 4408 4409 /* trigger update on any VLAN feature change */ 4410 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4411 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4412 iavf_set_vlan_offload_features(adapter, netdev->features, 4413 features); 4414 4415 return 0; 4416 } 4417 4418 /** 4419 * iavf_features_check - Validate encapsulated packet conforms to limits 4420 * @skb: skb buff 4421 * @dev: This physical port's netdev 4422 * @features: Offload features that the stack believes apply 4423 **/ 4424 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4425 struct net_device *dev, 4426 netdev_features_t features) 4427 { 4428 size_t len; 4429 4430 /* No point in doing any of this if neither checksum nor GSO are 4431 * being requested for this frame. We can rule out both by just 4432 * checking for CHECKSUM_PARTIAL 4433 */ 4434 if (skb->ip_summed != CHECKSUM_PARTIAL) 4435 return features; 4436 4437 /* We cannot support GSO if the MSS is going to be less than 4438 * 64 bytes. If it is then we need to drop support for GSO. 4439 */ 4440 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4441 features &= ~NETIF_F_GSO_MASK; 4442 4443 /* MACLEN can support at most 63 words */ 4444 len = skb_network_header(skb) - skb->data; 4445 if (len & ~(63 * 2)) 4446 goto out_err; 4447 4448 /* IPLEN and EIPLEN can support at most 127 dwords */ 4449 len = skb_transport_header(skb) - skb_network_header(skb); 4450 if (len & ~(127 * 4)) 4451 goto out_err; 4452 4453 if (skb->encapsulation) { 4454 /* L4TUNLEN can support 127 words */ 4455 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4456 if (len & ~(127 * 2)) 4457 goto out_err; 4458 4459 /* IPLEN can support at most 127 dwords */ 4460 len = skb_inner_transport_header(skb) - 4461 skb_inner_network_header(skb); 4462 if (len & ~(127 * 4)) 4463 goto out_err; 4464 } 4465 4466 /* No need to validate L4LEN as TCP is the only protocol with a 4467 * flexible value and we support all possible values supported 4468 * by TCP, which is at most 15 dwords 4469 */ 4470 4471 return features; 4472 out_err: 4473 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4474 } 4475 4476 /** 4477 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4478 * @adapter: board private structure 4479 * 4480 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4481 * were negotiated determine the VLAN features that can be toggled on and off. 4482 **/ 4483 static netdev_features_t 4484 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4485 { 4486 netdev_features_t hw_features = 0; 4487 4488 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4489 return hw_features; 4490 4491 /* Enable VLAN features if supported */ 4492 if (VLAN_ALLOWED(adapter)) { 4493 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4494 NETIF_F_HW_VLAN_CTAG_RX); 4495 } else if (VLAN_V2_ALLOWED(adapter)) { 4496 struct virtchnl_vlan_caps *vlan_v2_caps = 4497 &adapter->vlan_v2_caps; 4498 struct virtchnl_vlan_supported_caps *stripping_support = 4499 &vlan_v2_caps->offloads.stripping_support; 4500 struct virtchnl_vlan_supported_caps *insertion_support = 4501 &vlan_v2_caps->offloads.insertion_support; 4502 4503 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4504 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4505 if (stripping_support->outer & 4506 VIRTCHNL_VLAN_ETHERTYPE_8100) 4507 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4508 if (stripping_support->outer & 4509 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4510 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4511 } else if (stripping_support->inner != 4512 VIRTCHNL_VLAN_UNSUPPORTED && 4513 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4514 if (stripping_support->inner & 4515 VIRTCHNL_VLAN_ETHERTYPE_8100) 4516 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4517 } 4518 4519 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4520 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4521 if (insertion_support->outer & 4522 VIRTCHNL_VLAN_ETHERTYPE_8100) 4523 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4524 if (insertion_support->outer & 4525 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4526 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4527 } else if (insertion_support->inner && 4528 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4529 if (insertion_support->inner & 4530 VIRTCHNL_VLAN_ETHERTYPE_8100) 4531 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4532 } 4533 } 4534 4535 return hw_features; 4536 } 4537 4538 /** 4539 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4540 * @adapter: board private structure 4541 * 4542 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4543 * were negotiated determine the VLAN features that are enabled by default. 4544 **/ 4545 static netdev_features_t 4546 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4547 { 4548 netdev_features_t features = 0; 4549 4550 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4551 return features; 4552 4553 if (VLAN_ALLOWED(adapter)) { 4554 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4555 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4556 } else if (VLAN_V2_ALLOWED(adapter)) { 4557 struct virtchnl_vlan_caps *vlan_v2_caps = 4558 &adapter->vlan_v2_caps; 4559 struct virtchnl_vlan_supported_caps *filtering_support = 4560 &vlan_v2_caps->filtering.filtering_support; 4561 struct virtchnl_vlan_supported_caps *stripping_support = 4562 &vlan_v2_caps->offloads.stripping_support; 4563 struct virtchnl_vlan_supported_caps *insertion_support = 4564 &vlan_v2_caps->offloads.insertion_support; 4565 u32 ethertype_init; 4566 4567 /* give priority to outer stripping and don't support both outer 4568 * and inner stripping 4569 */ 4570 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4571 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4572 if (stripping_support->outer & 4573 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4574 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4575 features |= NETIF_F_HW_VLAN_CTAG_RX; 4576 else if (stripping_support->outer & 4577 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4578 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4579 features |= NETIF_F_HW_VLAN_STAG_RX; 4580 } else if (stripping_support->inner != 4581 VIRTCHNL_VLAN_UNSUPPORTED) { 4582 if (stripping_support->inner & 4583 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4584 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4585 features |= NETIF_F_HW_VLAN_CTAG_RX; 4586 } 4587 4588 /* give priority to outer insertion and don't support both outer 4589 * and inner insertion 4590 */ 4591 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4592 if (insertion_support->outer & 4593 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4594 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4595 features |= NETIF_F_HW_VLAN_CTAG_TX; 4596 else if (insertion_support->outer & 4597 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4598 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4599 features |= NETIF_F_HW_VLAN_STAG_TX; 4600 } else if (insertion_support->inner != 4601 VIRTCHNL_VLAN_UNSUPPORTED) { 4602 if (insertion_support->inner & 4603 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4604 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4605 features |= NETIF_F_HW_VLAN_CTAG_TX; 4606 } 4607 4608 /* give priority to outer filtering and don't bother if both 4609 * outer and inner filtering are enabled 4610 */ 4611 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4612 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4613 if (filtering_support->outer & 4614 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4615 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4616 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4617 if (filtering_support->outer & 4618 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4619 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4620 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4621 } else if (filtering_support->inner != 4622 VIRTCHNL_VLAN_UNSUPPORTED) { 4623 if (filtering_support->inner & 4624 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4625 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4626 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4627 if (filtering_support->inner & 4628 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4629 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4630 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4631 } 4632 } 4633 4634 return features; 4635 } 4636 4637 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4638 (!(((requested) & (feature_bit)) && \ 4639 !((allowed) & (feature_bit)))) 4640 4641 /** 4642 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4643 * @adapter: board private structure 4644 * @requested_features: stack requested NETDEV features 4645 **/ 4646 static netdev_features_t 4647 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4648 netdev_features_t requested_features) 4649 { 4650 netdev_features_t allowed_features; 4651 4652 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4653 iavf_get_netdev_vlan_features(adapter); 4654 4655 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4656 allowed_features, 4657 NETIF_F_HW_VLAN_CTAG_TX)) 4658 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4659 4660 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4661 allowed_features, 4662 NETIF_F_HW_VLAN_CTAG_RX)) 4663 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4664 4665 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4666 allowed_features, 4667 NETIF_F_HW_VLAN_STAG_TX)) 4668 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4669 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4670 allowed_features, 4671 NETIF_F_HW_VLAN_STAG_RX)) 4672 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4673 4674 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4675 allowed_features, 4676 NETIF_F_HW_VLAN_CTAG_FILTER)) 4677 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4678 4679 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4680 allowed_features, 4681 NETIF_F_HW_VLAN_STAG_FILTER)) 4682 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4683 4684 if ((requested_features & 4685 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4686 (requested_features & 4687 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4688 adapter->vlan_v2_caps.offloads.ethertype_match == 4689 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4690 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4691 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4692 NETIF_F_HW_VLAN_STAG_TX); 4693 } 4694 4695 return requested_features; 4696 } 4697 4698 /** 4699 * iavf_fix_features - fix up the netdev feature bits 4700 * @netdev: our net device 4701 * @features: desired feature bits 4702 * 4703 * Returns fixed-up features bits 4704 **/ 4705 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4706 netdev_features_t features) 4707 { 4708 struct iavf_adapter *adapter = netdev_priv(netdev); 4709 4710 return iavf_fix_netdev_vlan_features(adapter, features); 4711 } 4712 4713 static const struct net_device_ops iavf_netdev_ops = { 4714 .ndo_open = iavf_open, 4715 .ndo_stop = iavf_close, 4716 .ndo_start_xmit = iavf_xmit_frame, 4717 .ndo_set_rx_mode = iavf_set_rx_mode, 4718 .ndo_validate_addr = eth_validate_addr, 4719 .ndo_set_mac_address = iavf_set_mac, 4720 .ndo_change_mtu = iavf_change_mtu, 4721 .ndo_tx_timeout = iavf_tx_timeout, 4722 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4723 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4724 .ndo_features_check = iavf_features_check, 4725 .ndo_fix_features = iavf_fix_features, 4726 .ndo_set_features = iavf_set_features, 4727 .ndo_setup_tc = iavf_setup_tc, 4728 }; 4729 4730 /** 4731 * iavf_check_reset_complete - check that VF reset is complete 4732 * @hw: pointer to hw struct 4733 * 4734 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4735 **/ 4736 static int iavf_check_reset_complete(struct iavf_hw *hw) 4737 { 4738 u32 rstat; 4739 int i; 4740 4741 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4742 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4743 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4744 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4745 (rstat == VIRTCHNL_VFR_COMPLETED)) 4746 return 0; 4747 usleep_range(10, 20); 4748 } 4749 return -EBUSY; 4750 } 4751 4752 /** 4753 * iavf_process_config - Process the config information we got from the PF 4754 * @adapter: board private structure 4755 * 4756 * Verify that we have a valid config struct, and set up our netdev features 4757 * and our VSI struct. 4758 **/ 4759 int iavf_process_config(struct iavf_adapter *adapter) 4760 { 4761 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4762 netdev_features_t hw_vlan_features, vlan_features; 4763 struct net_device *netdev = adapter->netdev; 4764 netdev_features_t hw_enc_features; 4765 netdev_features_t hw_features; 4766 4767 hw_enc_features = NETIF_F_SG | 4768 NETIF_F_IP_CSUM | 4769 NETIF_F_IPV6_CSUM | 4770 NETIF_F_HIGHDMA | 4771 NETIF_F_SOFT_FEATURES | 4772 NETIF_F_TSO | 4773 NETIF_F_TSO_ECN | 4774 NETIF_F_TSO6 | 4775 NETIF_F_SCTP_CRC | 4776 NETIF_F_RXHASH | 4777 NETIF_F_RXCSUM | 4778 0; 4779 4780 /* advertise to stack only if offloads for encapsulated packets is 4781 * supported 4782 */ 4783 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4784 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4785 NETIF_F_GSO_GRE | 4786 NETIF_F_GSO_GRE_CSUM | 4787 NETIF_F_GSO_IPXIP4 | 4788 NETIF_F_GSO_IPXIP6 | 4789 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4790 NETIF_F_GSO_PARTIAL | 4791 0; 4792 4793 if (!(vfres->vf_cap_flags & 4794 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4795 netdev->gso_partial_features |= 4796 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4797 4798 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4799 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4800 netdev->hw_enc_features |= hw_enc_features; 4801 } 4802 /* record features VLANs can make use of */ 4803 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4804 4805 /* Write features and hw_features separately to avoid polluting 4806 * with, or dropping, features that are set when we registered. 4807 */ 4808 hw_features = hw_enc_features; 4809 4810 /* get HW VLAN features that can be toggled */ 4811 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4812 4813 /* Enable cloud filter if ADQ is supported */ 4814 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4815 hw_features |= NETIF_F_HW_TC; 4816 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4817 hw_features |= NETIF_F_GSO_UDP_L4; 4818 4819 netdev->hw_features |= hw_features | hw_vlan_features; 4820 vlan_features = iavf_get_netdev_vlan_features(adapter); 4821 4822 netdev->features |= hw_features | vlan_features; 4823 4824 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4825 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4826 4827 netdev->priv_flags |= IFF_UNICAST_FLT; 4828 4829 /* Do not turn on offloads when they are requested to be turned off. 4830 * TSO needs minimum 576 bytes to work correctly. 4831 */ 4832 if (netdev->wanted_features) { 4833 if (!(netdev->wanted_features & NETIF_F_TSO) || 4834 netdev->mtu < 576) 4835 netdev->features &= ~NETIF_F_TSO; 4836 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4837 netdev->mtu < 576) 4838 netdev->features &= ~NETIF_F_TSO6; 4839 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4840 netdev->features &= ~NETIF_F_TSO_ECN; 4841 if (!(netdev->wanted_features & NETIF_F_GRO)) 4842 netdev->features &= ~NETIF_F_GRO; 4843 if (!(netdev->wanted_features & NETIF_F_GSO)) 4844 netdev->features &= ~NETIF_F_GSO; 4845 } 4846 4847 return 0; 4848 } 4849 4850 /** 4851 * iavf_shutdown - Shutdown the device in preparation for a reboot 4852 * @pdev: pci device structure 4853 **/ 4854 static void iavf_shutdown(struct pci_dev *pdev) 4855 { 4856 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4857 struct net_device *netdev = adapter->netdev; 4858 4859 netif_device_detach(netdev); 4860 4861 if (netif_running(netdev)) 4862 iavf_close(netdev); 4863 4864 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4865 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4866 /* Prevent the watchdog from running. */ 4867 iavf_change_state(adapter, __IAVF_REMOVE); 4868 adapter->aq_required = 0; 4869 mutex_unlock(&adapter->crit_lock); 4870 4871 #ifdef CONFIG_PM 4872 pci_save_state(pdev); 4873 4874 #endif 4875 pci_disable_device(pdev); 4876 } 4877 4878 /** 4879 * iavf_probe - Device Initialization Routine 4880 * @pdev: PCI device information struct 4881 * @ent: entry in iavf_pci_tbl 4882 * 4883 * Returns 0 on success, negative on failure 4884 * 4885 * iavf_probe initializes an adapter identified by a pci_dev structure. 4886 * The OS initialization, configuring of the adapter private structure, 4887 * and a hardware reset occur. 4888 **/ 4889 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4890 { 4891 struct net_device *netdev; 4892 struct iavf_adapter *adapter = NULL; 4893 struct iavf_hw *hw = NULL; 4894 int err; 4895 4896 err = pci_enable_device(pdev); 4897 if (err) 4898 return err; 4899 4900 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4901 if (err) { 4902 dev_err(&pdev->dev, 4903 "DMA configuration failed: 0x%x\n", err); 4904 goto err_dma; 4905 } 4906 4907 err = pci_request_regions(pdev, iavf_driver_name); 4908 if (err) { 4909 dev_err(&pdev->dev, 4910 "pci_request_regions failed 0x%x\n", err); 4911 goto err_pci_reg; 4912 } 4913 4914 pci_set_master(pdev); 4915 4916 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4917 IAVF_MAX_REQ_QUEUES); 4918 if (!netdev) { 4919 err = -ENOMEM; 4920 goto err_alloc_etherdev; 4921 } 4922 4923 SET_NETDEV_DEV(netdev, &pdev->dev); 4924 4925 pci_set_drvdata(pdev, netdev); 4926 adapter = netdev_priv(netdev); 4927 4928 adapter->netdev = netdev; 4929 adapter->pdev = pdev; 4930 4931 hw = &adapter->hw; 4932 hw->back = adapter; 4933 4934 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4935 iavf_driver_name); 4936 if (!adapter->wq) { 4937 err = -ENOMEM; 4938 goto err_alloc_wq; 4939 } 4940 4941 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4942 iavf_change_state(adapter, __IAVF_STARTUP); 4943 4944 /* Call save state here because it relies on the adapter struct. */ 4945 pci_save_state(pdev); 4946 4947 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4948 pci_resource_len(pdev, 0)); 4949 if (!hw->hw_addr) { 4950 err = -EIO; 4951 goto err_ioremap; 4952 } 4953 hw->vendor_id = pdev->vendor; 4954 hw->device_id = pdev->device; 4955 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4956 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4957 hw->subsystem_device_id = pdev->subsystem_device; 4958 hw->bus.device = PCI_SLOT(pdev->devfn); 4959 hw->bus.func = PCI_FUNC(pdev->devfn); 4960 hw->bus.bus_id = pdev->bus->number; 4961 4962 /* set up the locks for the AQ, do this only once in probe 4963 * and destroy them only once in remove 4964 */ 4965 mutex_init(&adapter->crit_lock); 4966 mutex_init(&adapter->client_lock); 4967 mutex_init(&hw->aq.asq_mutex); 4968 mutex_init(&hw->aq.arq_mutex); 4969 4970 spin_lock_init(&adapter->mac_vlan_list_lock); 4971 spin_lock_init(&adapter->cloud_filter_list_lock); 4972 spin_lock_init(&adapter->fdir_fltr_lock); 4973 spin_lock_init(&adapter->adv_rss_lock); 4974 4975 INIT_LIST_HEAD(&adapter->mac_filter_list); 4976 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4977 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4978 INIT_LIST_HEAD(&adapter->fdir_list_head); 4979 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4980 4981 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4982 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4983 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4984 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4985 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4986 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4987 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4988 4989 /* Setup the wait queue for indicating transition to down status */ 4990 init_waitqueue_head(&adapter->down_waitqueue); 4991 4992 /* Setup the wait queue for indicating transition to running state */ 4993 init_waitqueue_head(&adapter->reset_waitqueue); 4994 4995 /* Setup the wait queue for indicating virtchannel events */ 4996 init_waitqueue_head(&adapter->vc_waitqueue); 4997 4998 return 0; 4999 5000 err_ioremap: 5001 destroy_workqueue(adapter->wq); 5002 err_alloc_wq: 5003 free_netdev(netdev); 5004 err_alloc_etherdev: 5005 pci_release_regions(pdev); 5006 err_pci_reg: 5007 err_dma: 5008 pci_disable_device(pdev); 5009 return err; 5010 } 5011 5012 /** 5013 * iavf_suspend - Power management suspend routine 5014 * @dev_d: device info pointer 5015 * 5016 * Called when the system (VM) is entering sleep/suspend. 5017 **/ 5018 static int __maybe_unused iavf_suspend(struct device *dev_d) 5019 { 5020 struct net_device *netdev = dev_get_drvdata(dev_d); 5021 struct iavf_adapter *adapter = netdev_priv(netdev); 5022 5023 netif_device_detach(netdev); 5024 5025 while (!mutex_trylock(&adapter->crit_lock)) 5026 usleep_range(500, 1000); 5027 5028 if (netif_running(netdev)) { 5029 rtnl_lock(); 5030 iavf_down(adapter); 5031 rtnl_unlock(); 5032 } 5033 iavf_free_misc_irq(adapter); 5034 iavf_reset_interrupt_capability(adapter); 5035 5036 mutex_unlock(&adapter->crit_lock); 5037 5038 return 0; 5039 } 5040 5041 /** 5042 * iavf_resume - Power management resume routine 5043 * @dev_d: device info pointer 5044 * 5045 * Called when the system (VM) is resumed from sleep/suspend. 5046 **/ 5047 static int __maybe_unused iavf_resume(struct device *dev_d) 5048 { 5049 struct pci_dev *pdev = to_pci_dev(dev_d); 5050 struct iavf_adapter *adapter; 5051 u32 err; 5052 5053 adapter = iavf_pdev_to_adapter(pdev); 5054 5055 pci_set_master(pdev); 5056 5057 rtnl_lock(); 5058 err = iavf_set_interrupt_capability(adapter); 5059 if (err) { 5060 rtnl_unlock(); 5061 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5062 return err; 5063 } 5064 err = iavf_request_misc_irq(adapter); 5065 rtnl_unlock(); 5066 if (err) { 5067 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5068 return err; 5069 } 5070 5071 queue_work(adapter->wq, &adapter->reset_task); 5072 5073 netif_device_attach(adapter->netdev); 5074 5075 return err; 5076 } 5077 5078 /** 5079 * iavf_remove - Device Removal Routine 5080 * @pdev: PCI device information struct 5081 * 5082 * iavf_remove is called by the PCI subsystem to alert the driver 5083 * that it should release a PCI device. The could be caused by a 5084 * Hot-Plug event, or because the driver is going to be removed from 5085 * memory. 5086 **/ 5087 static void iavf_remove(struct pci_dev *pdev) 5088 { 5089 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5090 struct iavf_fdir_fltr *fdir, *fdirtmp; 5091 struct iavf_vlan_filter *vlf, *vlftmp; 5092 struct iavf_cloud_filter *cf, *cftmp; 5093 struct iavf_adv_rss *rss, *rsstmp; 5094 struct iavf_mac_filter *f, *ftmp; 5095 struct net_device *netdev; 5096 struct iavf_hw *hw; 5097 int err; 5098 5099 netdev = adapter->netdev; 5100 hw = &adapter->hw; 5101 5102 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5103 return; 5104 5105 /* Wait until port initialization is complete. 5106 * There are flows where register/unregister netdev may race. 5107 */ 5108 while (1) { 5109 mutex_lock(&adapter->crit_lock); 5110 if (adapter->state == __IAVF_RUNNING || 5111 adapter->state == __IAVF_DOWN || 5112 adapter->state == __IAVF_INIT_FAILED) { 5113 mutex_unlock(&adapter->crit_lock); 5114 break; 5115 } 5116 /* Simply return if we already went through iavf_shutdown */ 5117 if (adapter->state == __IAVF_REMOVE) { 5118 mutex_unlock(&adapter->crit_lock); 5119 return; 5120 } 5121 5122 mutex_unlock(&adapter->crit_lock); 5123 usleep_range(500, 1000); 5124 } 5125 cancel_delayed_work_sync(&adapter->watchdog_task); 5126 cancel_work_sync(&adapter->finish_config); 5127 5128 rtnl_lock(); 5129 if (adapter->netdev_registered) { 5130 unregister_netdevice(netdev); 5131 adapter->netdev_registered = false; 5132 } 5133 rtnl_unlock(); 5134 5135 if (CLIENT_ALLOWED(adapter)) { 5136 err = iavf_lan_del_device(adapter); 5137 if (err) 5138 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5139 err); 5140 } 5141 5142 mutex_lock(&adapter->crit_lock); 5143 dev_info(&adapter->pdev->dev, "Removing device\n"); 5144 iavf_change_state(adapter, __IAVF_REMOVE); 5145 5146 iavf_request_reset(adapter); 5147 msleep(50); 5148 /* If the FW isn't responding, kick it once, but only once. */ 5149 if (!iavf_asq_done(hw)) { 5150 iavf_request_reset(adapter); 5151 msleep(50); 5152 } 5153 5154 iavf_misc_irq_disable(adapter); 5155 /* Shut down all the garbage mashers on the detention level */ 5156 cancel_work_sync(&adapter->reset_task); 5157 cancel_delayed_work_sync(&adapter->watchdog_task); 5158 cancel_work_sync(&adapter->adminq_task); 5159 cancel_delayed_work_sync(&adapter->client_task); 5160 5161 adapter->aq_required = 0; 5162 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5163 5164 iavf_free_all_tx_resources(adapter); 5165 iavf_free_all_rx_resources(adapter); 5166 iavf_free_misc_irq(adapter); 5167 5168 iavf_reset_interrupt_capability(adapter); 5169 iavf_free_q_vectors(adapter); 5170 5171 iavf_free_rss(adapter); 5172 5173 if (hw->aq.asq.count) 5174 iavf_shutdown_adminq(hw); 5175 5176 /* destroy the locks only once, here */ 5177 mutex_destroy(&hw->aq.arq_mutex); 5178 mutex_destroy(&hw->aq.asq_mutex); 5179 mutex_destroy(&adapter->client_lock); 5180 mutex_unlock(&adapter->crit_lock); 5181 mutex_destroy(&adapter->crit_lock); 5182 5183 iounmap(hw->hw_addr); 5184 pci_release_regions(pdev); 5185 iavf_free_queues(adapter); 5186 kfree(adapter->vf_res); 5187 spin_lock_bh(&adapter->mac_vlan_list_lock); 5188 /* If we got removed before an up/down sequence, we've got a filter 5189 * hanging out there that we need to get rid of. 5190 */ 5191 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5192 list_del(&f->list); 5193 kfree(f); 5194 } 5195 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5196 list) { 5197 list_del(&vlf->list); 5198 kfree(vlf); 5199 } 5200 5201 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5202 5203 spin_lock_bh(&adapter->cloud_filter_list_lock); 5204 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5205 list_del(&cf->list); 5206 kfree(cf); 5207 } 5208 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5209 5210 spin_lock_bh(&adapter->fdir_fltr_lock); 5211 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5212 list_del(&fdir->list); 5213 kfree(fdir); 5214 } 5215 spin_unlock_bh(&adapter->fdir_fltr_lock); 5216 5217 spin_lock_bh(&adapter->adv_rss_lock); 5218 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5219 list) { 5220 list_del(&rss->list); 5221 kfree(rss); 5222 } 5223 spin_unlock_bh(&adapter->adv_rss_lock); 5224 5225 destroy_workqueue(adapter->wq); 5226 5227 free_netdev(netdev); 5228 5229 pci_disable_device(pdev); 5230 } 5231 5232 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5233 5234 static struct pci_driver iavf_driver = { 5235 .name = iavf_driver_name, 5236 .id_table = iavf_pci_tbl, 5237 .probe = iavf_probe, 5238 .remove = iavf_remove, 5239 .driver.pm = &iavf_pm_ops, 5240 .shutdown = iavf_shutdown, 5241 }; 5242 5243 /** 5244 * iavf_init_module - Driver Registration Routine 5245 * 5246 * iavf_init_module is the first routine called when the driver is 5247 * loaded. All it does is register with the PCI subsystem. 5248 **/ 5249 static int __init iavf_init_module(void) 5250 { 5251 pr_info("iavf: %s\n", iavf_driver_string); 5252 5253 pr_info("%s\n", iavf_copyright); 5254 5255 return pci_register_driver(&iavf_driver); 5256 } 5257 5258 module_init(iavf_init_module); 5259 5260 /** 5261 * iavf_exit_module - Driver Exit Cleanup Routine 5262 * 5263 * iavf_exit_module is called just before the driver is removed 5264 * from memory. 5265 **/ 5266 static void __exit iavf_exit_module(void) 5267 { 5268 pci_unregister_driver(&iavf_driver); 5269 } 5270 5271 module_exit(iavf_exit_module); 5272 5273 /* iavf_main.c */ 5274