1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 /** 913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 914 * @netdev: network device struct 915 * @proto: unused protocol data 916 * @vid: VLAN tag 917 **/ 918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 919 __always_unused __be16 proto, u16 vid) 920 { 921 struct iavf_adapter *adapter = netdev_priv(netdev); 922 923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 924 if (proto == cpu_to_be16(ETH_P_8021Q)) 925 clear_bit(vid, adapter->vsi.active_cvlans); 926 else 927 clear_bit(vid, adapter->vsi.active_svlans); 928 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1012 f->is_primary = false; 1013 } 1014 1015 f = iavf_find_filter(adapter, hw->mac.addr); 1016 if (f) { 1017 f->remove = true; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1019 } 1020 1021 f = iavf_add_filter(adapter, new_mac); 1022 1023 if (f) { 1024 /* Always send the request to add if changing primary MAC 1025 * even if filter is already present on the list 1026 */ 1027 f->is_primary = true; 1028 f->add = true; 1029 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1030 ether_addr_copy(hw->mac.addr, new_mac); 1031 } 1032 1033 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1034 1035 /* schedule the watchdog task to immediately process the request */ 1036 if (f) { 1037 queue_work(iavf_wq, &adapter->watchdog_task.work); 1038 return 0; 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 /** 1044 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1045 * @netdev: network interface device structure 1046 * @macaddr: MAC address to set 1047 * 1048 * Returns true on success, false on failure 1049 */ 1050 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1051 const u8 *macaddr) 1052 { 1053 struct iavf_adapter *adapter = netdev_priv(netdev); 1054 struct iavf_mac_filter *f; 1055 bool ret = false; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 f = iavf_find_filter(adapter, macaddr); 1060 1061 if (!f || (!f->add && f->add_handled)) 1062 ret = true; 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * iavf_set_mac - NDO callback to set port MAC address 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 */ 1076 static int iavf_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct iavf_adapter *adapter = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 int ret; 1081 1082 if (!is_valid_ether_addr(addr->sa_data)) 1083 return -EADDRNOTAVAIL; 1084 1085 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1086 1087 if (ret) 1088 return ret; 1089 1090 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1091 iavf_is_mac_set_handled(netdev, addr->sa_data), 1092 msecs_to_jiffies(2500)); 1093 1094 /* If ret < 0 then it means wait was interrupted. 1095 * If ret == 0 then it means we got a timeout. 1096 * else it means we got response for set MAC from PF, 1097 * check if netdev MAC was updated to requested MAC, 1098 * if yes then set MAC succeeded otherwise it failed return -EACCES 1099 */ 1100 if (ret < 0) 1101 return ret; 1102 1103 if (!ret) 1104 return -EAGAIN; 1105 1106 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1107 return -EACCES; 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1114 * @netdev: the netdevice 1115 * @addr: address to add 1116 * 1117 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1118 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1119 */ 1120 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1121 { 1122 struct iavf_adapter *adapter = netdev_priv(netdev); 1123 1124 if (iavf_add_filter(adapter, addr)) 1125 return 0; 1126 else 1127 return -ENOMEM; 1128 } 1129 1130 /** 1131 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1132 * @netdev: the netdevice 1133 * @addr: address to add 1134 * 1135 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1136 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1137 */ 1138 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1139 { 1140 struct iavf_adapter *adapter = netdev_priv(netdev); 1141 struct iavf_mac_filter *f; 1142 1143 /* Under some circumstances, we might receive a request to delete 1144 * our own device address from our uc list. Because we store the 1145 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1146 * such requests and not delete our device address from this list. 1147 */ 1148 if (ether_addr_equal(addr, netdev->dev_addr)) 1149 return 0; 1150 1151 f = iavf_find_filter(adapter, addr); 1152 if (f) { 1153 f->remove = true; 1154 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * iavf_set_rx_mode - NDO callback to set the netdev filters 1161 * @netdev: network interface device structure 1162 **/ 1163 static void iavf_set_rx_mode(struct net_device *netdev) 1164 { 1165 struct iavf_adapter *adapter = netdev_priv(netdev); 1166 1167 spin_lock_bh(&adapter->mac_vlan_list_lock); 1168 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1169 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1170 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1171 1172 if (netdev->flags & IFF_PROMISC && 1173 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1174 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1175 else if (!(netdev->flags & IFF_PROMISC) && 1176 adapter->flags & IAVF_FLAG_PROMISC_ON) 1177 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1178 1179 if (netdev->flags & IFF_ALLMULTI && 1180 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1181 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1182 else if (!(netdev->flags & IFF_ALLMULTI) && 1183 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1184 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1185 } 1186 1187 /** 1188 * iavf_napi_enable_all - enable NAPI on all queue vectors 1189 * @adapter: board private structure 1190 **/ 1191 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1192 { 1193 int q_idx; 1194 struct iavf_q_vector *q_vector; 1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1196 1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1198 struct napi_struct *napi; 1199 1200 q_vector = &adapter->q_vectors[q_idx]; 1201 napi = &q_vector->napi; 1202 napi_enable(napi); 1203 } 1204 } 1205 1206 /** 1207 * iavf_napi_disable_all - disable NAPI on all queue vectors 1208 * @adapter: board private structure 1209 **/ 1210 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1211 { 1212 int q_idx; 1213 struct iavf_q_vector *q_vector; 1214 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1215 1216 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1217 q_vector = &adapter->q_vectors[q_idx]; 1218 napi_disable(&q_vector->napi); 1219 } 1220 } 1221 1222 /** 1223 * iavf_configure - set up transmit and receive data structures 1224 * @adapter: board private structure 1225 **/ 1226 static void iavf_configure(struct iavf_adapter *adapter) 1227 { 1228 struct net_device *netdev = adapter->netdev; 1229 int i; 1230 1231 iavf_set_rx_mode(netdev); 1232 1233 iavf_configure_tx(adapter); 1234 iavf_configure_rx(adapter); 1235 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1236 1237 for (i = 0; i < adapter->num_active_queues; i++) { 1238 struct iavf_ring *ring = &adapter->rx_rings[i]; 1239 1240 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1241 } 1242 } 1243 1244 /** 1245 * iavf_up_complete - Finish the last steps of bringing up a connection 1246 * @adapter: board private structure 1247 * 1248 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1249 **/ 1250 static void iavf_up_complete(struct iavf_adapter *adapter) 1251 { 1252 iavf_change_state(adapter, __IAVF_RUNNING); 1253 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1254 1255 iavf_napi_enable_all(adapter); 1256 1257 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1258 if (CLIENT_ENABLED(adapter)) 1259 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1260 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1261 } 1262 1263 /** 1264 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1265 * yet and mark other to be removed. 1266 * @adapter: board private structure 1267 **/ 1268 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1269 { 1270 struct iavf_vlan_filter *vlf, *vlftmp; 1271 struct iavf_mac_filter *f, *ftmp; 1272 1273 spin_lock_bh(&adapter->mac_vlan_list_lock); 1274 /* clear the sync flag on all filters */ 1275 __dev_uc_unsync(adapter->netdev, NULL); 1276 __dev_mc_unsync(adapter->netdev, NULL); 1277 1278 /* remove all MAC filters */ 1279 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1280 list) { 1281 if (f->add) { 1282 list_del(&f->list); 1283 kfree(f); 1284 } else { 1285 f->remove = true; 1286 } 1287 } 1288 1289 /* remove all VLAN filters */ 1290 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1291 list) { 1292 if (vlf->add) { 1293 list_del(&vlf->list); 1294 kfree(vlf); 1295 } else { 1296 vlf->remove = true; 1297 } 1298 } 1299 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1300 } 1301 1302 /** 1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1304 * mark other to be removed. 1305 * @adapter: board private structure 1306 **/ 1307 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1308 { 1309 struct iavf_cloud_filter *cf, *cftmp; 1310 1311 /* remove all cloud filters */ 1312 spin_lock_bh(&adapter->cloud_filter_list_lock); 1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1314 list) { 1315 if (cf->add) { 1316 list_del(&cf->list); 1317 kfree(cf); 1318 adapter->num_cloud_filters--; 1319 } else { 1320 cf->del = true; 1321 } 1322 } 1323 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1324 } 1325 1326 /** 1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1328 * other to be removed. 1329 * @adapter: board private structure 1330 **/ 1331 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1332 { 1333 struct iavf_fdir_fltr *fdir, *fdirtmp; 1334 1335 /* remove all Flow Director filters */ 1336 spin_lock_bh(&adapter->fdir_fltr_lock); 1337 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1338 list) { 1339 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1340 list_del(&fdir->list); 1341 kfree(fdir); 1342 adapter->fdir_active_fltr--; 1343 } else { 1344 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1345 } 1346 } 1347 spin_unlock_bh(&adapter->fdir_fltr_lock); 1348 } 1349 1350 /** 1351 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1352 * other to be removed. 1353 * @adapter: board private structure 1354 **/ 1355 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1356 { 1357 struct iavf_adv_rss *rss, *rsstmp; 1358 1359 /* remove all advance RSS configuration */ 1360 spin_lock_bh(&adapter->adv_rss_lock); 1361 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1362 list) { 1363 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1364 list_del(&rss->list); 1365 kfree(rss); 1366 } else { 1367 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1368 } 1369 } 1370 spin_unlock_bh(&adapter->adv_rss_lock); 1371 } 1372 1373 /** 1374 * iavf_down - Shutdown the connection processing 1375 * @adapter: board private structure 1376 * 1377 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1378 **/ 1379 void iavf_down(struct iavf_adapter *adapter) 1380 { 1381 struct net_device *netdev = adapter->netdev; 1382 1383 if (adapter->state <= __IAVF_DOWN_PENDING) 1384 return; 1385 1386 netif_carrier_off(netdev); 1387 netif_tx_disable(netdev); 1388 adapter->link_up = false; 1389 iavf_napi_disable_all(adapter); 1390 iavf_irq_disable(adapter); 1391 1392 iavf_clear_mac_vlan_filters(adapter); 1393 iavf_clear_cloud_filters(adapter); 1394 iavf_clear_fdir_filters(adapter); 1395 iavf_clear_adv_rss_conf(adapter); 1396 1397 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1398 /* cancel any current operation */ 1399 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1400 /* Schedule operations to close down the HW. Don't wait 1401 * here for this to complete. The watchdog is still running 1402 * and it will take care of this. 1403 */ 1404 if (!list_empty(&adapter->mac_filter_list)) 1405 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1406 if (!list_empty(&adapter->vlan_filter_list)) 1407 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1408 if (!list_empty(&adapter->cloud_filter_list)) 1409 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1410 if (!list_empty(&adapter->fdir_list_head)) 1411 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1412 if (!list_empty(&adapter->adv_rss_list_head)) 1413 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1414 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1415 } 1416 1417 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1418 } 1419 1420 /** 1421 * iavf_acquire_msix_vectors - Setup the MSIX capability 1422 * @adapter: board private structure 1423 * @vectors: number of vectors to request 1424 * 1425 * Work with the OS to set up the MSIX vectors needed. 1426 * 1427 * Returns 0 on success, negative on failure 1428 **/ 1429 static int 1430 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1431 { 1432 int err, vector_threshold; 1433 1434 /* We'll want at least 3 (vector_threshold): 1435 * 0) Other (Admin Queue and link, mostly) 1436 * 1) TxQ[0] Cleanup 1437 * 2) RxQ[0] Cleanup 1438 */ 1439 vector_threshold = MIN_MSIX_COUNT; 1440 1441 /* The more we get, the more we will assign to Tx/Rx Cleanup 1442 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1443 * Right now, we simply care about how many we'll get; we'll 1444 * set them up later while requesting irq's. 1445 */ 1446 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1447 vector_threshold, vectors); 1448 if (err < 0) { 1449 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1450 kfree(adapter->msix_entries); 1451 adapter->msix_entries = NULL; 1452 return err; 1453 } 1454 1455 /* Adjust for only the vectors we'll use, which is minimum 1456 * of max_msix_q_vectors + NONQ_VECS, or the number of 1457 * vectors we were allocated. 1458 */ 1459 adapter->num_msix_vectors = err; 1460 return 0; 1461 } 1462 1463 /** 1464 * iavf_free_queues - Free memory for all rings 1465 * @adapter: board private structure to initialize 1466 * 1467 * Free all of the memory associated with queue pairs. 1468 **/ 1469 static void iavf_free_queues(struct iavf_adapter *adapter) 1470 { 1471 if (!adapter->vsi_res) 1472 return; 1473 adapter->num_active_queues = 0; 1474 kfree(adapter->tx_rings); 1475 adapter->tx_rings = NULL; 1476 kfree(adapter->rx_rings); 1477 adapter->rx_rings = NULL; 1478 } 1479 1480 /** 1481 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1482 * @adapter: board private structure 1483 * 1484 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1485 * stripped in certain descriptor fields. Instead of checking the offload 1486 * capability bits in the hot path, cache the location the ring specific 1487 * flags. 1488 */ 1489 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1490 { 1491 int i; 1492 1493 for (i = 0; i < adapter->num_active_queues; i++) { 1494 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1495 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1496 1497 /* prevent multiple L2TAG bits being set after VFR */ 1498 tx_ring->flags &= 1499 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1500 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1501 rx_ring->flags &= 1502 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1503 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1504 1505 if (VLAN_ALLOWED(adapter)) { 1506 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1507 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1508 } else if (VLAN_V2_ALLOWED(adapter)) { 1509 struct virtchnl_vlan_supported_caps *stripping_support; 1510 struct virtchnl_vlan_supported_caps *insertion_support; 1511 1512 stripping_support = 1513 &adapter->vlan_v2_caps.offloads.stripping_support; 1514 insertion_support = 1515 &adapter->vlan_v2_caps.offloads.insertion_support; 1516 1517 if (stripping_support->outer) { 1518 if (stripping_support->outer & 1519 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1520 rx_ring->flags |= 1521 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1522 else if (stripping_support->outer & 1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1524 rx_ring->flags |= 1525 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1526 } else if (stripping_support->inner) { 1527 if (stripping_support->inner & 1528 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1529 rx_ring->flags |= 1530 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1531 else if (stripping_support->inner & 1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1533 rx_ring->flags |= 1534 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1535 } 1536 1537 if (insertion_support->outer) { 1538 if (insertion_support->outer & 1539 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1540 tx_ring->flags |= 1541 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1542 else if (insertion_support->outer & 1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1544 tx_ring->flags |= 1545 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1546 } else if (insertion_support->inner) { 1547 if (insertion_support->inner & 1548 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1549 tx_ring->flags |= 1550 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1551 else if (insertion_support->inner & 1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1553 tx_ring->flags |= 1554 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1555 } 1556 } 1557 } 1558 } 1559 1560 /** 1561 * iavf_alloc_queues - Allocate memory for all rings 1562 * @adapter: board private structure to initialize 1563 * 1564 * We allocate one ring per queue at run-time since we don't know the 1565 * number of queues at compile-time. The polling_netdev array is 1566 * intended for Multiqueue, but should work fine with a single queue. 1567 **/ 1568 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1569 { 1570 int i, num_active_queues; 1571 1572 /* If we're in reset reallocating queues we don't actually know yet for 1573 * certain the PF gave us the number of queues we asked for but we'll 1574 * assume it did. Once basic reset is finished we'll confirm once we 1575 * start negotiating config with PF. 1576 */ 1577 if (adapter->num_req_queues) 1578 num_active_queues = adapter->num_req_queues; 1579 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1580 adapter->num_tc) 1581 num_active_queues = adapter->ch_config.total_qps; 1582 else 1583 num_active_queues = min_t(int, 1584 adapter->vsi_res->num_queue_pairs, 1585 (int)(num_online_cpus())); 1586 1587 1588 adapter->tx_rings = kcalloc(num_active_queues, 1589 sizeof(struct iavf_ring), GFP_KERNEL); 1590 if (!adapter->tx_rings) 1591 goto err_out; 1592 adapter->rx_rings = kcalloc(num_active_queues, 1593 sizeof(struct iavf_ring), GFP_KERNEL); 1594 if (!adapter->rx_rings) 1595 goto err_out; 1596 1597 for (i = 0; i < num_active_queues; i++) { 1598 struct iavf_ring *tx_ring; 1599 struct iavf_ring *rx_ring; 1600 1601 tx_ring = &adapter->tx_rings[i]; 1602 1603 tx_ring->queue_index = i; 1604 tx_ring->netdev = adapter->netdev; 1605 tx_ring->dev = &adapter->pdev->dev; 1606 tx_ring->count = adapter->tx_desc_count; 1607 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1608 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1609 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1610 1611 rx_ring = &adapter->rx_rings[i]; 1612 rx_ring->queue_index = i; 1613 rx_ring->netdev = adapter->netdev; 1614 rx_ring->dev = &adapter->pdev->dev; 1615 rx_ring->count = adapter->rx_desc_count; 1616 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1617 } 1618 1619 adapter->num_active_queues = num_active_queues; 1620 1621 iavf_set_queue_vlan_tag_loc(adapter); 1622 1623 return 0; 1624 1625 err_out: 1626 iavf_free_queues(adapter); 1627 return -ENOMEM; 1628 } 1629 1630 /** 1631 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1632 * @adapter: board private structure to initialize 1633 * 1634 * Attempt to configure the interrupts using the best available 1635 * capabilities of the hardware and the kernel. 1636 **/ 1637 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1638 { 1639 int vector, v_budget; 1640 int pairs = 0; 1641 int err = 0; 1642 1643 if (!adapter->vsi_res) { 1644 err = -EIO; 1645 goto out; 1646 } 1647 pairs = adapter->num_active_queues; 1648 1649 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1650 * us much good if we have more vectors than CPUs. However, we already 1651 * limit the total number of queues by the number of CPUs so we do not 1652 * need any further limiting here. 1653 */ 1654 v_budget = min_t(int, pairs + NONQ_VECS, 1655 (int)adapter->vf_res->max_vectors); 1656 1657 adapter->msix_entries = kcalloc(v_budget, 1658 sizeof(struct msix_entry), GFP_KERNEL); 1659 if (!adapter->msix_entries) { 1660 err = -ENOMEM; 1661 goto out; 1662 } 1663 1664 for (vector = 0; vector < v_budget; vector++) 1665 adapter->msix_entries[vector].entry = vector; 1666 1667 err = iavf_acquire_msix_vectors(adapter, v_budget); 1668 1669 out: 1670 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1671 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1672 return err; 1673 } 1674 1675 /** 1676 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1677 * @adapter: board private structure 1678 * 1679 * Return 0 on success, negative on failure 1680 **/ 1681 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1682 { 1683 struct iavf_aqc_get_set_rss_key_data *rss_key = 1684 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1685 struct iavf_hw *hw = &adapter->hw; 1686 enum iavf_status status; 1687 1688 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1689 /* bail because we already have a command pending */ 1690 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1691 adapter->current_op); 1692 return -EBUSY; 1693 } 1694 1695 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1696 if (status) { 1697 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1698 iavf_stat_str(hw, status), 1699 iavf_aq_str(hw, hw->aq.asq_last_status)); 1700 return iavf_status_to_errno(status); 1701 1702 } 1703 1704 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1705 adapter->rss_lut, adapter->rss_lut_size); 1706 if (status) { 1707 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1708 iavf_stat_str(hw, status), 1709 iavf_aq_str(hw, hw->aq.asq_last_status)); 1710 return iavf_status_to_errno(status); 1711 } 1712 1713 return 0; 1714 1715 } 1716 1717 /** 1718 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1719 * @adapter: board private structure 1720 * 1721 * Returns 0 on success, negative on failure 1722 **/ 1723 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1724 { 1725 struct iavf_hw *hw = &adapter->hw; 1726 u32 *dw; 1727 u16 i; 1728 1729 dw = (u32 *)adapter->rss_key; 1730 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1731 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1732 1733 dw = (u32 *)adapter->rss_lut; 1734 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1735 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1736 1737 iavf_flush(hw); 1738 1739 return 0; 1740 } 1741 1742 /** 1743 * iavf_config_rss - Configure RSS keys and lut 1744 * @adapter: board private structure 1745 * 1746 * Returns 0 on success, negative on failure 1747 **/ 1748 int iavf_config_rss(struct iavf_adapter *adapter) 1749 { 1750 1751 if (RSS_PF(adapter)) { 1752 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1753 IAVF_FLAG_AQ_SET_RSS_KEY; 1754 return 0; 1755 } else if (RSS_AQ(adapter)) { 1756 return iavf_config_rss_aq(adapter); 1757 } else { 1758 return iavf_config_rss_reg(adapter); 1759 } 1760 } 1761 1762 /** 1763 * iavf_fill_rss_lut - Fill the lut with default values 1764 * @adapter: board private structure 1765 **/ 1766 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1767 { 1768 u16 i; 1769 1770 for (i = 0; i < adapter->rss_lut_size; i++) 1771 adapter->rss_lut[i] = i % adapter->num_active_queues; 1772 } 1773 1774 /** 1775 * iavf_init_rss - Prepare for RSS 1776 * @adapter: board private structure 1777 * 1778 * Return 0 on success, negative on failure 1779 **/ 1780 static int iavf_init_rss(struct iavf_adapter *adapter) 1781 { 1782 struct iavf_hw *hw = &adapter->hw; 1783 1784 if (!RSS_PF(adapter)) { 1785 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1786 if (adapter->vf_res->vf_cap_flags & 1787 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1788 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1789 else 1790 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1791 1792 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1793 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1794 } 1795 1796 iavf_fill_rss_lut(adapter); 1797 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1798 1799 return iavf_config_rss(adapter); 1800 } 1801 1802 /** 1803 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1804 * @adapter: board private structure to initialize 1805 * 1806 * We allocate one q_vector per queue interrupt. If allocation fails we 1807 * return -ENOMEM. 1808 **/ 1809 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1810 { 1811 int q_idx = 0, num_q_vectors; 1812 struct iavf_q_vector *q_vector; 1813 1814 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1815 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1816 GFP_KERNEL); 1817 if (!adapter->q_vectors) 1818 return -ENOMEM; 1819 1820 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1821 q_vector = &adapter->q_vectors[q_idx]; 1822 q_vector->adapter = adapter; 1823 q_vector->vsi = &adapter->vsi; 1824 q_vector->v_idx = q_idx; 1825 q_vector->reg_idx = q_idx; 1826 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1827 netif_napi_add(adapter->netdev, &q_vector->napi, 1828 iavf_napi_poll); 1829 } 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1836 * @adapter: board private structure to initialize 1837 * 1838 * This function frees the memory allocated to the q_vectors. In addition if 1839 * NAPI is enabled it will delete any references to the NAPI struct prior 1840 * to freeing the q_vector. 1841 **/ 1842 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1843 { 1844 int q_idx, num_q_vectors; 1845 int napi_vectors; 1846 1847 if (!adapter->q_vectors) 1848 return; 1849 1850 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1851 napi_vectors = adapter->num_active_queues; 1852 1853 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1854 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1855 1856 if (q_idx < napi_vectors) 1857 netif_napi_del(&q_vector->napi); 1858 } 1859 kfree(adapter->q_vectors); 1860 adapter->q_vectors = NULL; 1861 } 1862 1863 /** 1864 * iavf_reset_interrupt_capability - Reset MSIX setup 1865 * @adapter: board private structure 1866 * 1867 **/ 1868 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1869 { 1870 if (!adapter->msix_entries) 1871 return; 1872 1873 pci_disable_msix(adapter->pdev); 1874 kfree(adapter->msix_entries); 1875 adapter->msix_entries = NULL; 1876 } 1877 1878 /** 1879 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1880 * @adapter: board private structure to initialize 1881 * 1882 **/ 1883 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1884 { 1885 int err; 1886 1887 err = iavf_alloc_queues(adapter); 1888 if (err) { 1889 dev_err(&adapter->pdev->dev, 1890 "Unable to allocate memory for queues\n"); 1891 goto err_alloc_queues; 1892 } 1893 1894 rtnl_lock(); 1895 err = iavf_set_interrupt_capability(adapter); 1896 rtnl_unlock(); 1897 if (err) { 1898 dev_err(&adapter->pdev->dev, 1899 "Unable to setup interrupt capabilities\n"); 1900 goto err_set_interrupt; 1901 } 1902 1903 err = iavf_alloc_q_vectors(adapter); 1904 if (err) { 1905 dev_err(&adapter->pdev->dev, 1906 "Unable to allocate memory for queue vectors\n"); 1907 goto err_alloc_q_vectors; 1908 } 1909 1910 /* If we've made it so far while ADq flag being ON, then we haven't 1911 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1912 * resources have been allocated in the reset path. 1913 * Now we can truly claim that ADq is enabled. 1914 */ 1915 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1916 adapter->num_tc) 1917 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1918 adapter->num_tc); 1919 1920 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1921 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1922 adapter->num_active_queues); 1923 1924 return 0; 1925 err_alloc_q_vectors: 1926 iavf_reset_interrupt_capability(adapter); 1927 err_set_interrupt: 1928 iavf_free_queues(adapter); 1929 err_alloc_queues: 1930 return err; 1931 } 1932 1933 /** 1934 * iavf_free_rss - Free memory used by RSS structs 1935 * @adapter: board private structure 1936 **/ 1937 static void iavf_free_rss(struct iavf_adapter *adapter) 1938 { 1939 kfree(adapter->rss_key); 1940 adapter->rss_key = NULL; 1941 1942 kfree(adapter->rss_lut); 1943 adapter->rss_lut = NULL; 1944 } 1945 1946 /** 1947 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1948 * @adapter: board private structure 1949 * 1950 * Returns 0 on success, negative on failure 1951 **/ 1952 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1953 { 1954 struct net_device *netdev = adapter->netdev; 1955 int err; 1956 1957 if (netif_running(netdev)) 1958 iavf_free_traffic_irqs(adapter); 1959 iavf_free_misc_irq(adapter); 1960 iavf_reset_interrupt_capability(adapter); 1961 iavf_free_q_vectors(adapter); 1962 iavf_free_queues(adapter); 1963 1964 err = iavf_init_interrupt_scheme(adapter); 1965 if (err) 1966 goto err; 1967 1968 netif_tx_stop_all_queues(netdev); 1969 1970 err = iavf_request_misc_irq(adapter); 1971 if (err) 1972 goto err; 1973 1974 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1975 1976 iavf_map_rings_to_vectors(adapter); 1977 err: 1978 return err; 1979 } 1980 1981 /** 1982 * iavf_process_aq_command - process aq_required flags 1983 * and sends aq command 1984 * @adapter: pointer to iavf adapter structure 1985 * 1986 * Returns 0 on success 1987 * Returns error code if no command was sent 1988 * or error code if the command failed. 1989 **/ 1990 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1991 { 1992 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1993 return iavf_send_vf_config_msg(adapter); 1994 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1995 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1996 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1997 iavf_disable_queues(adapter); 1998 return 0; 1999 } 2000 2001 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2002 iavf_map_queues(adapter); 2003 return 0; 2004 } 2005 2006 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2007 iavf_add_ether_addrs(adapter); 2008 return 0; 2009 } 2010 2011 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2012 iavf_add_vlans(adapter); 2013 return 0; 2014 } 2015 2016 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2017 iavf_del_ether_addrs(adapter); 2018 return 0; 2019 } 2020 2021 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2022 iavf_del_vlans(adapter); 2023 return 0; 2024 } 2025 2026 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2027 iavf_enable_vlan_stripping(adapter); 2028 return 0; 2029 } 2030 2031 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2032 iavf_disable_vlan_stripping(adapter); 2033 return 0; 2034 } 2035 2036 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2037 iavf_configure_queues(adapter); 2038 return 0; 2039 } 2040 2041 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2042 iavf_enable_queues(adapter); 2043 return 0; 2044 } 2045 2046 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2047 /* This message goes straight to the firmware, not the 2048 * PF, so we don't have to set current_op as we will 2049 * not get a response through the ARQ. 2050 */ 2051 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2052 return 0; 2053 } 2054 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2055 iavf_get_hena(adapter); 2056 return 0; 2057 } 2058 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2059 iavf_set_hena(adapter); 2060 return 0; 2061 } 2062 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2063 iavf_set_rss_key(adapter); 2064 return 0; 2065 } 2066 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2067 iavf_set_rss_lut(adapter); 2068 return 0; 2069 } 2070 2071 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2072 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2073 FLAG_VF_MULTICAST_PROMISC); 2074 return 0; 2075 } 2076 2077 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2078 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2079 return 0; 2080 } 2081 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2082 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2083 iavf_set_promiscuous(adapter, 0); 2084 return 0; 2085 } 2086 2087 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2088 iavf_enable_channels(adapter); 2089 return 0; 2090 } 2091 2092 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2093 iavf_disable_channels(adapter); 2094 return 0; 2095 } 2096 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2097 iavf_add_cloud_filter(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2102 iavf_del_cloud_filter(adapter); 2103 return 0; 2104 } 2105 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2106 iavf_del_cloud_filter(adapter); 2107 return 0; 2108 } 2109 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2110 iavf_add_cloud_filter(adapter); 2111 return 0; 2112 } 2113 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2114 iavf_add_fdir_filter(adapter); 2115 return IAVF_SUCCESS; 2116 } 2117 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2118 iavf_del_fdir_filter(adapter); 2119 return IAVF_SUCCESS; 2120 } 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2122 iavf_add_adv_rss_cfg(adapter); 2123 return 0; 2124 } 2125 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2126 iavf_del_adv_rss_cfg(adapter); 2127 return 0; 2128 } 2129 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2130 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2131 return 0; 2132 } 2133 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2134 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2135 return 0; 2136 } 2137 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2138 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2139 return 0; 2140 } 2141 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2142 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2143 return 0; 2144 } 2145 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2146 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2150 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2151 return 0; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2154 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2155 return 0; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2158 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2159 return 0; 2160 } 2161 2162 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2163 iavf_request_stats(adapter); 2164 return 0; 2165 } 2166 2167 return -EAGAIN; 2168 } 2169 2170 /** 2171 * iavf_set_vlan_offload_features - set VLAN offload configuration 2172 * @adapter: board private structure 2173 * @prev_features: previous features used for comparison 2174 * @features: updated features used for configuration 2175 * 2176 * Set the aq_required bit(s) based on the requested features passed in to 2177 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2178 * the watchdog if any changes are requested to expedite the request via 2179 * virtchnl. 2180 **/ 2181 void 2182 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2183 netdev_features_t prev_features, 2184 netdev_features_t features) 2185 { 2186 bool enable_stripping = true, enable_insertion = true; 2187 u16 vlan_ethertype = 0; 2188 u64 aq_required = 0; 2189 2190 /* keep cases separate because one ethertype for offloads can be 2191 * disabled at the same time as another is disabled, so check for an 2192 * enabled ethertype first, then check for disabled. Default to 2193 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2194 * stripping. 2195 */ 2196 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2197 vlan_ethertype = ETH_P_8021AD; 2198 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2199 vlan_ethertype = ETH_P_8021Q; 2200 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2201 vlan_ethertype = ETH_P_8021AD; 2202 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2203 vlan_ethertype = ETH_P_8021Q; 2204 else 2205 vlan_ethertype = ETH_P_8021Q; 2206 2207 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2208 enable_stripping = false; 2209 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2210 enable_insertion = false; 2211 2212 if (VLAN_ALLOWED(adapter)) { 2213 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2214 * stripping via virtchnl. VLAN insertion can be toggled on the 2215 * netdev, but it doesn't require a virtchnl message 2216 */ 2217 if (enable_stripping) 2218 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2219 else 2220 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2221 2222 } else if (VLAN_V2_ALLOWED(adapter)) { 2223 switch (vlan_ethertype) { 2224 case ETH_P_8021Q: 2225 if (enable_stripping) 2226 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2227 else 2228 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2229 2230 if (enable_insertion) 2231 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2232 else 2233 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2234 break; 2235 case ETH_P_8021AD: 2236 if (enable_stripping) 2237 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2238 else 2239 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2240 2241 if (enable_insertion) 2242 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2243 else 2244 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2245 break; 2246 } 2247 } 2248 2249 if (aq_required) { 2250 adapter->aq_required |= aq_required; 2251 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2252 } 2253 } 2254 2255 /** 2256 * iavf_startup - first step of driver startup 2257 * @adapter: board private structure 2258 * 2259 * Function process __IAVF_STARTUP driver state. 2260 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2261 * when fails the state is changed to __IAVF_INIT_FAILED 2262 **/ 2263 static void iavf_startup(struct iavf_adapter *adapter) 2264 { 2265 struct pci_dev *pdev = adapter->pdev; 2266 struct iavf_hw *hw = &adapter->hw; 2267 enum iavf_status status; 2268 int ret; 2269 2270 WARN_ON(adapter->state != __IAVF_STARTUP); 2271 2272 /* driver loaded, probe complete */ 2273 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2274 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2275 status = iavf_set_mac_type(hw); 2276 if (status) { 2277 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2278 goto err; 2279 } 2280 2281 ret = iavf_check_reset_complete(hw); 2282 if (ret) { 2283 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2284 ret); 2285 goto err; 2286 } 2287 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2288 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2289 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2290 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2291 2292 status = iavf_init_adminq(hw); 2293 if (status) { 2294 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2295 status); 2296 goto err; 2297 } 2298 ret = iavf_send_api_ver(adapter); 2299 if (ret) { 2300 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2301 iavf_shutdown_adminq(hw); 2302 goto err; 2303 } 2304 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2305 return; 2306 err: 2307 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2308 } 2309 2310 /** 2311 * iavf_init_version_check - second step of driver startup 2312 * @adapter: board private structure 2313 * 2314 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2315 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2316 * when fails the state is changed to __IAVF_INIT_FAILED 2317 **/ 2318 static void iavf_init_version_check(struct iavf_adapter *adapter) 2319 { 2320 struct pci_dev *pdev = adapter->pdev; 2321 struct iavf_hw *hw = &adapter->hw; 2322 int err = -EAGAIN; 2323 2324 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2325 2326 if (!iavf_asq_done(hw)) { 2327 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2328 iavf_shutdown_adminq(hw); 2329 iavf_change_state(adapter, __IAVF_STARTUP); 2330 goto err; 2331 } 2332 2333 /* aq msg sent, awaiting reply */ 2334 err = iavf_verify_api_ver(adapter); 2335 if (err) { 2336 if (err == -EALREADY) 2337 err = iavf_send_api_ver(adapter); 2338 else 2339 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2340 adapter->pf_version.major, 2341 adapter->pf_version.minor, 2342 VIRTCHNL_VERSION_MAJOR, 2343 VIRTCHNL_VERSION_MINOR); 2344 goto err; 2345 } 2346 err = iavf_send_vf_config_msg(adapter); 2347 if (err) { 2348 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2349 err); 2350 goto err; 2351 } 2352 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2353 return; 2354 err: 2355 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2356 } 2357 2358 /** 2359 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2360 * @adapter: board private structure 2361 */ 2362 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2363 { 2364 int i, num_req_queues = adapter->num_req_queues; 2365 struct iavf_vsi *vsi = &adapter->vsi; 2366 2367 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2368 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2369 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2370 } 2371 if (!adapter->vsi_res) { 2372 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2373 return -ENODEV; 2374 } 2375 2376 if (num_req_queues && 2377 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2378 /* Problem. The PF gave us fewer queues than what we had 2379 * negotiated in our request. Need a reset to see if we can't 2380 * get back to a working state. 2381 */ 2382 dev_err(&adapter->pdev->dev, 2383 "Requested %d queues, but PF only gave us %d.\n", 2384 num_req_queues, 2385 adapter->vsi_res->num_queue_pairs); 2386 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2387 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2388 iavf_schedule_reset(adapter); 2389 2390 return -EAGAIN; 2391 } 2392 adapter->num_req_queues = 0; 2393 adapter->vsi.id = adapter->vsi_res->vsi_id; 2394 2395 adapter->vsi.back = adapter; 2396 adapter->vsi.base_vector = 1; 2397 vsi->netdev = adapter->netdev; 2398 vsi->qs_handle = adapter->vsi_res->qset_handle; 2399 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2400 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2401 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2402 } else { 2403 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2404 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2405 } 2406 2407 return 0; 2408 } 2409 2410 /** 2411 * iavf_init_get_resources - third step of driver startup 2412 * @adapter: board private structure 2413 * 2414 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2415 * finishes driver initialization procedure. 2416 * When success the state is changed to __IAVF_DOWN 2417 * when fails the state is changed to __IAVF_INIT_FAILED 2418 **/ 2419 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2420 { 2421 struct pci_dev *pdev = adapter->pdev; 2422 struct iavf_hw *hw = &adapter->hw; 2423 int err; 2424 2425 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2426 /* aq msg sent, awaiting reply */ 2427 if (!adapter->vf_res) { 2428 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2429 GFP_KERNEL); 2430 if (!adapter->vf_res) { 2431 err = -ENOMEM; 2432 goto err; 2433 } 2434 } 2435 err = iavf_get_vf_config(adapter); 2436 if (err == -EALREADY) { 2437 err = iavf_send_vf_config_msg(adapter); 2438 goto err; 2439 } else if (err == -EINVAL) { 2440 /* We only get -EINVAL if the device is in a very bad 2441 * state or if we've been disabled for previous bad 2442 * behavior. Either way, we're done now. 2443 */ 2444 iavf_shutdown_adminq(hw); 2445 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2446 return; 2447 } 2448 if (err) { 2449 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2450 goto err_alloc; 2451 } 2452 2453 err = iavf_parse_vf_resource_msg(adapter); 2454 if (err) { 2455 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2456 err); 2457 goto err_alloc; 2458 } 2459 /* Some features require additional messages to negotiate extended 2460 * capabilities. These are processed in sequence by the 2461 * __IAVF_INIT_EXTENDED_CAPS driver state. 2462 */ 2463 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2464 2465 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2466 return; 2467 2468 err_alloc: 2469 kfree(adapter->vf_res); 2470 adapter->vf_res = NULL; 2471 err: 2472 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2473 } 2474 2475 /** 2476 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2477 * @adapter: board private structure 2478 * 2479 * Function processes send of the extended VLAN V2 capability message to the 2480 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2481 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2482 */ 2483 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2484 { 2485 int ret; 2486 2487 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2488 2489 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2490 if (ret && ret == -EOPNOTSUPP) { 2491 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2492 * we did not send the capability exchange message and do not 2493 * expect a response. 2494 */ 2495 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2496 } 2497 2498 /* We sent the message, so move on to the next step */ 2499 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2500 } 2501 2502 /** 2503 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2504 * @adapter: board private structure 2505 * 2506 * Function processes receipt of the extended VLAN V2 capability message from 2507 * the PF. 2508 **/ 2509 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2510 { 2511 int ret; 2512 2513 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2514 2515 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2516 2517 ret = iavf_get_vf_vlan_v2_caps(adapter); 2518 if (ret) 2519 goto err; 2520 2521 /* We've processed receipt of the VLAN V2 caps message */ 2522 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2523 return; 2524 err: 2525 /* We didn't receive a reply. Make sure we try sending again when 2526 * __IAVF_INIT_FAILED attempts to recover. 2527 */ 2528 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2529 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2530 } 2531 2532 /** 2533 * iavf_init_process_extended_caps - Part of driver startup 2534 * @adapter: board private structure 2535 * 2536 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2537 * handles negotiating capabilities for features which require an additional 2538 * message. 2539 * 2540 * Once all extended capabilities exchanges are finished, the driver will 2541 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2542 */ 2543 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2544 { 2545 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2546 2547 /* Process capability exchange for VLAN V2 */ 2548 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2549 iavf_init_send_offload_vlan_v2_caps(adapter); 2550 return; 2551 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2552 iavf_init_recv_offload_vlan_v2_caps(adapter); 2553 return; 2554 } 2555 2556 /* When we reach here, no further extended capabilities exchanges are 2557 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2558 */ 2559 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2560 } 2561 2562 /** 2563 * iavf_init_config_adapter - last part of driver startup 2564 * @adapter: board private structure 2565 * 2566 * After all the supported capabilities are negotiated, then the 2567 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2568 */ 2569 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2570 { 2571 struct net_device *netdev = adapter->netdev; 2572 struct pci_dev *pdev = adapter->pdev; 2573 int err; 2574 2575 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2576 2577 if (iavf_process_config(adapter)) 2578 goto err; 2579 2580 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2581 2582 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2583 2584 netdev->netdev_ops = &iavf_netdev_ops; 2585 iavf_set_ethtool_ops(netdev); 2586 netdev->watchdog_timeo = 5 * HZ; 2587 2588 /* MTU range: 68 - 9710 */ 2589 netdev->min_mtu = ETH_MIN_MTU; 2590 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2591 2592 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2593 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2594 adapter->hw.mac.addr); 2595 eth_hw_addr_random(netdev); 2596 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2597 } else { 2598 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2599 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2600 } 2601 2602 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2603 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2604 err = iavf_init_interrupt_scheme(adapter); 2605 if (err) 2606 goto err_sw_init; 2607 iavf_map_rings_to_vectors(adapter); 2608 if (adapter->vf_res->vf_cap_flags & 2609 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2610 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2611 2612 err = iavf_request_misc_irq(adapter); 2613 if (err) 2614 goto err_sw_init; 2615 2616 netif_carrier_off(netdev); 2617 adapter->link_up = false; 2618 2619 /* set the semaphore to prevent any callbacks after device registration 2620 * up to time when state of driver will be set to __IAVF_DOWN 2621 */ 2622 rtnl_lock(); 2623 if (!adapter->netdev_registered) { 2624 err = register_netdevice(netdev); 2625 if (err) { 2626 rtnl_unlock(); 2627 goto err_register; 2628 } 2629 } 2630 2631 adapter->netdev_registered = true; 2632 2633 netif_tx_stop_all_queues(netdev); 2634 if (CLIENT_ALLOWED(adapter)) { 2635 err = iavf_lan_add_device(adapter); 2636 if (err) 2637 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2638 err); 2639 } 2640 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2641 if (netdev->features & NETIF_F_GRO) 2642 dev_info(&pdev->dev, "GRO is enabled\n"); 2643 2644 iavf_change_state(adapter, __IAVF_DOWN); 2645 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2646 rtnl_unlock(); 2647 2648 iavf_misc_irq_enable(adapter); 2649 wake_up(&adapter->down_waitqueue); 2650 2651 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2652 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2653 if (!adapter->rss_key || !adapter->rss_lut) { 2654 err = -ENOMEM; 2655 goto err_mem; 2656 } 2657 if (RSS_AQ(adapter)) 2658 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2659 else 2660 iavf_init_rss(adapter); 2661 2662 if (VLAN_V2_ALLOWED(adapter)) 2663 /* request initial VLAN offload settings */ 2664 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2665 2666 return; 2667 err_mem: 2668 iavf_free_rss(adapter); 2669 err_register: 2670 iavf_free_misc_irq(adapter); 2671 err_sw_init: 2672 iavf_reset_interrupt_capability(adapter); 2673 err: 2674 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2675 } 2676 2677 /** 2678 * iavf_watchdog_task - Periodic call-back task 2679 * @work: pointer to work_struct 2680 **/ 2681 static void iavf_watchdog_task(struct work_struct *work) 2682 { 2683 struct iavf_adapter *adapter = container_of(work, 2684 struct iavf_adapter, 2685 watchdog_task.work); 2686 struct iavf_hw *hw = &adapter->hw; 2687 u32 reg_val; 2688 2689 if (!mutex_trylock(&adapter->crit_lock)) { 2690 if (adapter->state == __IAVF_REMOVE) 2691 return; 2692 2693 goto restart_watchdog; 2694 } 2695 2696 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2697 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2698 2699 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2700 adapter->aq_required = 0; 2701 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2702 mutex_unlock(&adapter->crit_lock); 2703 queue_work(iavf_wq, &adapter->reset_task); 2704 return; 2705 } 2706 2707 switch (adapter->state) { 2708 case __IAVF_STARTUP: 2709 iavf_startup(adapter); 2710 mutex_unlock(&adapter->crit_lock); 2711 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2712 msecs_to_jiffies(30)); 2713 return; 2714 case __IAVF_INIT_VERSION_CHECK: 2715 iavf_init_version_check(adapter); 2716 mutex_unlock(&adapter->crit_lock); 2717 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2718 msecs_to_jiffies(30)); 2719 return; 2720 case __IAVF_INIT_GET_RESOURCES: 2721 iavf_init_get_resources(adapter); 2722 mutex_unlock(&adapter->crit_lock); 2723 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2724 msecs_to_jiffies(1)); 2725 return; 2726 case __IAVF_INIT_EXTENDED_CAPS: 2727 iavf_init_process_extended_caps(adapter); 2728 mutex_unlock(&adapter->crit_lock); 2729 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2730 msecs_to_jiffies(1)); 2731 return; 2732 case __IAVF_INIT_CONFIG_ADAPTER: 2733 iavf_init_config_adapter(adapter); 2734 mutex_unlock(&adapter->crit_lock); 2735 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2736 msecs_to_jiffies(1)); 2737 return; 2738 case __IAVF_INIT_FAILED: 2739 if (test_bit(__IAVF_IN_REMOVE_TASK, 2740 &adapter->crit_section)) { 2741 /* Do not update the state and do not reschedule 2742 * watchdog task, iavf_remove should handle this state 2743 * as it can loop forever 2744 */ 2745 mutex_unlock(&adapter->crit_lock); 2746 return; 2747 } 2748 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2749 dev_err(&adapter->pdev->dev, 2750 "Failed to communicate with PF; waiting before retry\n"); 2751 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2752 iavf_shutdown_adminq(hw); 2753 mutex_unlock(&adapter->crit_lock); 2754 queue_delayed_work(iavf_wq, 2755 &adapter->watchdog_task, (5 * HZ)); 2756 return; 2757 } 2758 /* Try again from failed step*/ 2759 iavf_change_state(adapter, adapter->last_state); 2760 mutex_unlock(&adapter->crit_lock); 2761 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2762 return; 2763 case __IAVF_COMM_FAILED: 2764 if (test_bit(__IAVF_IN_REMOVE_TASK, 2765 &adapter->crit_section)) { 2766 /* Set state to __IAVF_INIT_FAILED and perform remove 2767 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2768 * doesn't bring the state back to __IAVF_COMM_FAILED. 2769 */ 2770 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2771 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2772 mutex_unlock(&adapter->crit_lock); 2773 return; 2774 } 2775 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2776 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2777 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2778 reg_val == VIRTCHNL_VFR_COMPLETED) { 2779 /* A chance for redemption! */ 2780 dev_err(&adapter->pdev->dev, 2781 "Hardware came out of reset. Attempting reinit.\n"); 2782 /* When init task contacts the PF and 2783 * gets everything set up again, it'll restart the 2784 * watchdog for us. Down, boy. Sit. Stay. Woof. 2785 */ 2786 iavf_change_state(adapter, __IAVF_STARTUP); 2787 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2788 } 2789 adapter->aq_required = 0; 2790 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2791 mutex_unlock(&adapter->crit_lock); 2792 queue_delayed_work(iavf_wq, 2793 &adapter->watchdog_task, 2794 msecs_to_jiffies(10)); 2795 return; 2796 case __IAVF_RESETTING: 2797 mutex_unlock(&adapter->crit_lock); 2798 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2799 return; 2800 case __IAVF_DOWN: 2801 case __IAVF_DOWN_PENDING: 2802 case __IAVF_TESTING: 2803 case __IAVF_RUNNING: 2804 if (adapter->current_op) { 2805 if (!iavf_asq_done(hw)) { 2806 dev_dbg(&adapter->pdev->dev, 2807 "Admin queue timeout\n"); 2808 iavf_send_api_ver(adapter); 2809 } 2810 } else { 2811 int ret = iavf_process_aq_command(adapter); 2812 2813 /* An error will be returned if no commands were 2814 * processed; use this opportunity to update stats 2815 * if the error isn't -ENOTSUPP 2816 */ 2817 if (ret && ret != -EOPNOTSUPP && 2818 adapter->state == __IAVF_RUNNING) 2819 iavf_request_stats(adapter); 2820 } 2821 if (adapter->state == __IAVF_RUNNING) 2822 iavf_detect_recover_hung(&adapter->vsi); 2823 break; 2824 case __IAVF_REMOVE: 2825 default: 2826 mutex_unlock(&adapter->crit_lock); 2827 return; 2828 } 2829 2830 /* check for hw reset */ 2831 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2832 if (!reg_val) { 2833 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2834 adapter->aq_required = 0; 2835 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2836 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2837 queue_work(iavf_wq, &adapter->reset_task); 2838 mutex_unlock(&adapter->crit_lock); 2839 queue_delayed_work(iavf_wq, 2840 &adapter->watchdog_task, HZ * 2); 2841 return; 2842 } 2843 2844 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2845 mutex_unlock(&adapter->crit_lock); 2846 restart_watchdog: 2847 if (adapter->state >= __IAVF_DOWN) 2848 queue_work(iavf_wq, &adapter->adminq_task); 2849 if (adapter->aq_required) 2850 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2851 msecs_to_jiffies(20)); 2852 else 2853 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2854 } 2855 2856 /** 2857 * iavf_disable_vf - disable VF 2858 * @adapter: board private structure 2859 * 2860 * Set communication failed flag and free all resources. 2861 * NOTE: This function is expected to be called with crit_lock being held. 2862 **/ 2863 static void iavf_disable_vf(struct iavf_adapter *adapter) 2864 { 2865 struct iavf_mac_filter *f, *ftmp; 2866 struct iavf_vlan_filter *fv, *fvtmp; 2867 struct iavf_cloud_filter *cf, *cftmp; 2868 2869 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2870 2871 /* We don't use netif_running() because it may be true prior to 2872 * ndo_open() returning, so we can't assume it means all our open 2873 * tasks have finished, since we're not holding the rtnl_lock here. 2874 */ 2875 if (adapter->state == __IAVF_RUNNING) { 2876 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2877 netif_carrier_off(adapter->netdev); 2878 netif_tx_disable(adapter->netdev); 2879 adapter->link_up = false; 2880 iavf_napi_disable_all(adapter); 2881 iavf_irq_disable(adapter); 2882 iavf_free_traffic_irqs(adapter); 2883 iavf_free_all_tx_resources(adapter); 2884 iavf_free_all_rx_resources(adapter); 2885 } 2886 2887 spin_lock_bh(&adapter->mac_vlan_list_lock); 2888 2889 /* Delete all of the filters */ 2890 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2891 list_del(&f->list); 2892 kfree(f); 2893 } 2894 2895 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2896 list_del(&fv->list); 2897 kfree(fv); 2898 } 2899 2900 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2901 2902 spin_lock_bh(&adapter->cloud_filter_list_lock); 2903 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2904 list_del(&cf->list); 2905 kfree(cf); 2906 adapter->num_cloud_filters--; 2907 } 2908 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2909 2910 iavf_free_misc_irq(adapter); 2911 iavf_reset_interrupt_capability(adapter); 2912 iavf_free_q_vectors(adapter); 2913 iavf_free_queues(adapter); 2914 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2915 iavf_shutdown_adminq(&adapter->hw); 2916 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2917 iavf_change_state(adapter, __IAVF_DOWN); 2918 wake_up(&adapter->down_waitqueue); 2919 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2920 } 2921 2922 /** 2923 * iavf_reset_task - Call-back task to handle hardware reset 2924 * @work: pointer to work_struct 2925 * 2926 * During reset we need to shut down and reinitialize the admin queue 2927 * before we can use it to communicate with the PF again. We also clear 2928 * and reinit the rings because that context is lost as well. 2929 **/ 2930 static void iavf_reset_task(struct work_struct *work) 2931 { 2932 struct iavf_adapter *adapter = container_of(work, 2933 struct iavf_adapter, 2934 reset_task); 2935 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2936 struct net_device *netdev = adapter->netdev; 2937 struct iavf_hw *hw = &adapter->hw; 2938 struct iavf_mac_filter *f, *ftmp; 2939 struct iavf_cloud_filter *cf; 2940 enum iavf_status status; 2941 u32 reg_val; 2942 int i = 0, err; 2943 bool running; 2944 2945 /* Detach interface to avoid subsequent NDO callbacks */ 2946 rtnl_lock(); 2947 netif_device_detach(netdev); 2948 rtnl_unlock(); 2949 2950 /* When device is being removed it doesn't make sense to run the reset 2951 * task, just return in such a case. 2952 */ 2953 if (!mutex_trylock(&adapter->crit_lock)) { 2954 if (adapter->state != __IAVF_REMOVE) 2955 queue_work(iavf_wq, &adapter->reset_task); 2956 2957 goto reset_finish; 2958 } 2959 2960 while (!mutex_trylock(&adapter->client_lock)) 2961 usleep_range(500, 1000); 2962 if (CLIENT_ENABLED(adapter)) { 2963 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2964 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2965 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2966 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2967 cancel_delayed_work_sync(&adapter->client_task); 2968 iavf_notify_client_close(&adapter->vsi, true); 2969 } 2970 iavf_misc_irq_disable(adapter); 2971 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2972 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2973 /* Restart the AQ here. If we have been reset but didn't 2974 * detect it, or if the PF had to reinit, our AQ will be hosed. 2975 */ 2976 iavf_shutdown_adminq(hw); 2977 iavf_init_adminq(hw); 2978 iavf_request_reset(adapter); 2979 } 2980 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2981 2982 /* poll until we see the reset actually happen */ 2983 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2984 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2985 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2986 if (!reg_val) 2987 break; 2988 usleep_range(5000, 10000); 2989 } 2990 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2991 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2992 goto continue_reset; /* act like the reset happened */ 2993 } 2994 2995 /* wait until the reset is complete and the PF is responding to us */ 2996 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2997 /* sleep first to make sure a minimum wait time is met */ 2998 msleep(IAVF_RESET_WAIT_MS); 2999 3000 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3001 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3002 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3003 break; 3004 } 3005 3006 pci_set_master(adapter->pdev); 3007 pci_restore_msi_state(adapter->pdev); 3008 3009 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3010 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3011 reg_val); 3012 iavf_disable_vf(adapter); 3013 mutex_unlock(&adapter->client_lock); 3014 mutex_unlock(&adapter->crit_lock); 3015 if (netif_running(netdev)) { 3016 rtnl_lock(); 3017 dev_close(netdev); 3018 rtnl_unlock(); 3019 } 3020 return; /* Do not attempt to reinit. It's dead, Jim. */ 3021 } 3022 3023 continue_reset: 3024 /* We don't use netif_running() because it may be true prior to 3025 * ndo_open() returning, so we can't assume it means all our open 3026 * tasks have finished, since we're not holding the rtnl_lock here. 3027 */ 3028 running = adapter->state == __IAVF_RUNNING; 3029 3030 if (running) { 3031 netif_carrier_off(netdev); 3032 netif_tx_stop_all_queues(netdev); 3033 adapter->link_up = false; 3034 iavf_napi_disable_all(adapter); 3035 } 3036 iavf_irq_disable(adapter); 3037 3038 iavf_change_state(adapter, __IAVF_RESETTING); 3039 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3040 3041 /* free the Tx/Rx rings and descriptors, might be better to just 3042 * re-use them sometime in the future 3043 */ 3044 iavf_free_all_rx_resources(adapter); 3045 iavf_free_all_tx_resources(adapter); 3046 3047 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3048 /* kill and reinit the admin queue */ 3049 iavf_shutdown_adminq(hw); 3050 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3051 status = iavf_init_adminq(hw); 3052 if (status) { 3053 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3054 status); 3055 goto reset_err; 3056 } 3057 adapter->aq_required = 0; 3058 3059 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3060 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3061 err = iavf_reinit_interrupt_scheme(adapter); 3062 if (err) 3063 goto reset_err; 3064 } 3065 3066 if (RSS_AQ(adapter)) { 3067 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3068 } else { 3069 err = iavf_init_rss(adapter); 3070 if (err) 3071 goto reset_err; 3072 } 3073 3074 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3075 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3076 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3077 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3078 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3079 * been successfully sent and negotiated 3080 */ 3081 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3082 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3083 3084 spin_lock_bh(&adapter->mac_vlan_list_lock); 3085 3086 /* Delete filter for the current MAC address, it could have 3087 * been changed by the PF via administratively set MAC. 3088 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3089 */ 3090 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3091 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3092 list_del(&f->list); 3093 kfree(f); 3094 } 3095 } 3096 /* re-add all MAC filters */ 3097 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3098 f->add = true; 3099 } 3100 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3101 3102 /* check if TCs are running and re-add all cloud filters */ 3103 spin_lock_bh(&adapter->cloud_filter_list_lock); 3104 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3105 adapter->num_tc) { 3106 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3107 cf->add = true; 3108 } 3109 } 3110 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3111 3112 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3113 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3114 iavf_misc_irq_enable(adapter); 3115 3116 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3117 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3118 3119 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 3120 3121 /* We were running when the reset started, so we need to restore some 3122 * state here. 3123 */ 3124 if (running) { 3125 /* allocate transmit descriptors */ 3126 err = iavf_setup_all_tx_resources(adapter); 3127 if (err) 3128 goto reset_err; 3129 3130 /* allocate receive descriptors */ 3131 err = iavf_setup_all_rx_resources(adapter); 3132 if (err) 3133 goto reset_err; 3134 3135 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3136 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3137 err = iavf_request_traffic_irqs(adapter, netdev->name); 3138 if (err) 3139 goto reset_err; 3140 3141 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3142 } 3143 3144 iavf_configure(adapter); 3145 3146 /* iavf_up_complete() will switch device back 3147 * to __IAVF_RUNNING 3148 */ 3149 iavf_up_complete(adapter); 3150 3151 iavf_irq_enable(adapter, true); 3152 } else { 3153 iavf_change_state(adapter, __IAVF_DOWN); 3154 wake_up(&adapter->down_waitqueue); 3155 } 3156 3157 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3158 3159 mutex_unlock(&adapter->client_lock); 3160 mutex_unlock(&adapter->crit_lock); 3161 3162 goto reset_finish; 3163 reset_err: 3164 if (running) { 3165 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3166 iavf_free_traffic_irqs(adapter); 3167 } 3168 iavf_disable_vf(adapter); 3169 3170 mutex_unlock(&adapter->client_lock); 3171 mutex_unlock(&adapter->crit_lock); 3172 3173 if (netif_running(netdev)) { 3174 /* Close device to ensure that Tx queues will not be started 3175 * during netif_device_attach() at the end of the reset task. 3176 */ 3177 rtnl_lock(); 3178 dev_close(netdev); 3179 rtnl_unlock(); 3180 } 3181 3182 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3183 reset_finish: 3184 rtnl_lock(); 3185 netif_device_attach(netdev); 3186 rtnl_unlock(); 3187 } 3188 3189 /** 3190 * iavf_adminq_task - worker thread to clean the admin queue 3191 * @work: pointer to work_struct containing our data 3192 **/ 3193 static void iavf_adminq_task(struct work_struct *work) 3194 { 3195 struct iavf_adapter *adapter = 3196 container_of(work, struct iavf_adapter, adminq_task); 3197 struct iavf_hw *hw = &adapter->hw; 3198 struct iavf_arq_event_info event; 3199 enum virtchnl_ops v_op; 3200 enum iavf_status ret, v_ret; 3201 u32 val, oldval; 3202 u16 pending; 3203 3204 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3205 goto out; 3206 3207 if (!mutex_trylock(&adapter->crit_lock)) { 3208 if (adapter->state == __IAVF_REMOVE) 3209 return; 3210 3211 queue_work(iavf_wq, &adapter->adminq_task); 3212 goto out; 3213 } 3214 3215 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3216 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3217 if (!event.msg_buf) 3218 goto out; 3219 3220 do { 3221 ret = iavf_clean_arq_element(hw, &event, &pending); 3222 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3223 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3224 3225 if (ret || !v_op) 3226 break; /* No event to process or error cleaning ARQ */ 3227 3228 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3229 event.msg_len); 3230 if (pending != 0) 3231 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3232 } while (pending); 3233 mutex_unlock(&adapter->crit_lock); 3234 3235 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3236 if (adapter->netdev_registered || 3237 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3238 struct net_device *netdev = adapter->netdev; 3239 3240 rtnl_lock(); 3241 netdev_update_features(netdev); 3242 rtnl_unlock(); 3243 /* Request VLAN offload settings */ 3244 if (VLAN_V2_ALLOWED(adapter)) 3245 iavf_set_vlan_offload_features 3246 (adapter, 0, netdev->features); 3247 3248 iavf_set_queue_vlan_tag_loc(adapter); 3249 } 3250 3251 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3252 } 3253 if ((adapter->flags & 3254 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3255 adapter->state == __IAVF_RESETTING) 3256 goto freedom; 3257 3258 /* check for error indications */ 3259 val = rd32(hw, hw->aq.arq.len); 3260 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3261 goto freedom; 3262 oldval = val; 3263 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3264 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3265 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3266 } 3267 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3268 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3269 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3270 } 3271 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3272 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3273 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3274 } 3275 if (oldval != val) 3276 wr32(hw, hw->aq.arq.len, val); 3277 3278 val = rd32(hw, hw->aq.asq.len); 3279 oldval = val; 3280 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3281 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3282 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3283 } 3284 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3285 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3286 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3287 } 3288 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3289 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3290 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3291 } 3292 if (oldval != val) 3293 wr32(hw, hw->aq.asq.len, val); 3294 3295 freedom: 3296 kfree(event.msg_buf); 3297 out: 3298 /* re-enable Admin queue interrupt cause */ 3299 iavf_misc_irq_enable(adapter); 3300 } 3301 3302 /** 3303 * iavf_client_task - worker thread to perform client work 3304 * @work: pointer to work_struct containing our data 3305 * 3306 * This task handles client interactions. Because client calls can be 3307 * reentrant, we can't handle them in the watchdog. 3308 **/ 3309 static void iavf_client_task(struct work_struct *work) 3310 { 3311 struct iavf_adapter *adapter = 3312 container_of(work, struct iavf_adapter, client_task.work); 3313 3314 /* If we can't get the client bit, just give up. We'll be rescheduled 3315 * later. 3316 */ 3317 3318 if (!mutex_trylock(&adapter->client_lock)) 3319 return; 3320 3321 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3322 iavf_client_subtask(adapter); 3323 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3324 goto out; 3325 } 3326 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3327 iavf_notify_client_l2_params(&adapter->vsi); 3328 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3329 goto out; 3330 } 3331 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3332 iavf_notify_client_close(&adapter->vsi, false); 3333 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3334 goto out; 3335 } 3336 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3337 iavf_notify_client_open(&adapter->vsi); 3338 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3339 } 3340 out: 3341 mutex_unlock(&adapter->client_lock); 3342 } 3343 3344 /** 3345 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3346 * @adapter: board private structure 3347 * 3348 * Free all transmit software resources 3349 **/ 3350 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3351 { 3352 int i; 3353 3354 if (!adapter->tx_rings) 3355 return; 3356 3357 for (i = 0; i < adapter->num_active_queues; i++) 3358 if (adapter->tx_rings[i].desc) 3359 iavf_free_tx_resources(&adapter->tx_rings[i]); 3360 } 3361 3362 /** 3363 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3364 * @adapter: board private structure 3365 * 3366 * If this function returns with an error, then it's possible one or 3367 * more of the rings is populated (while the rest are not). It is the 3368 * callers duty to clean those orphaned rings. 3369 * 3370 * Return 0 on success, negative on failure 3371 **/ 3372 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3373 { 3374 int i, err = 0; 3375 3376 for (i = 0; i < adapter->num_active_queues; i++) { 3377 adapter->tx_rings[i].count = adapter->tx_desc_count; 3378 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3379 if (!err) 3380 continue; 3381 dev_err(&adapter->pdev->dev, 3382 "Allocation for Tx Queue %u failed\n", i); 3383 break; 3384 } 3385 3386 return err; 3387 } 3388 3389 /** 3390 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3391 * @adapter: board private structure 3392 * 3393 * If this function returns with an error, then it's possible one or 3394 * more of the rings is populated (while the rest are not). It is the 3395 * callers duty to clean those orphaned rings. 3396 * 3397 * Return 0 on success, negative on failure 3398 **/ 3399 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3400 { 3401 int i, err = 0; 3402 3403 for (i = 0; i < adapter->num_active_queues; i++) { 3404 adapter->rx_rings[i].count = adapter->rx_desc_count; 3405 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3406 if (!err) 3407 continue; 3408 dev_err(&adapter->pdev->dev, 3409 "Allocation for Rx Queue %u failed\n", i); 3410 break; 3411 } 3412 return err; 3413 } 3414 3415 /** 3416 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3417 * @adapter: board private structure 3418 * 3419 * Free all receive software resources 3420 **/ 3421 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3422 { 3423 int i; 3424 3425 if (!adapter->rx_rings) 3426 return; 3427 3428 for (i = 0; i < adapter->num_active_queues; i++) 3429 if (adapter->rx_rings[i].desc) 3430 iavf_free_rx_resources(&adapter->rx_rings[i]); 3431 } 3432 3433 /** 3434 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3435 * @adapter: board private structure 3436 * @max_tx_rate: max Tx bw for a tc 3437 **/ 3438 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3439 u64 max_tx_rate) 3440 { 3441 int speed = 0, ret = 0; 3442 3443 if (ADV_LINK_SUPPORT(adapter)) { 3444 if (adapter->link_speed_mbps < U32_MAX) { 3445 speed = adapter->link_speed_mbps; 3446 goto validate_bw; 3447 } else { 3448 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3449 return -EINVAL; 3450 } 3451 } 3452 3453 switch (adapter->link_speed) { 3454 case VIRTCHNL_LINK_SPEED_40GB: 3455 speed = SPEED_40000; 3456 break; 3457 case VIRTCHNL_LINK_SPEED_25GB: 3458 speed = SPEED_25000; 3459 break; 3460 case VIRTCHNL_LINK_SPEED_20GB: 3461 speed = SPEED_20000; 3462 break; 3463 case VIRTCHNL_LINK_SPEED_10GB: 3464 speed = SPEED_10000; 3465 break; 3466 case VIRTCHNL_LINK_SPEED_5GB: 3467 speed = SPEED_5000; 3468 break; 3469 case VIRTCHNL_LINK_SPEED_2_5GB: 3470 speed = SPEED_2500; 3471 break; 3472 case VIRTCHNL_LINK_SPEED_1GB: 3473 speed = SPEED_1000; 3474 break; 3475 case VIRTCHNL_LINK_SPEED_100MB: 3476 speed = SPEED_100; 3477 break; 3478 default: 3479 break; 3480 } 3481 3482 validate_bw: 3483 if (max_tx_rate > speed) { 3484 dev_err(&adapter->pdev->dev, 3485 "Invalid tx rate specified\n"); 3486 ret = -EINVAL; 3487 } 3488 3489 return ret; 3490 } 3491 3492 /** 3493 * iavf_validate_ch_config - validate queue mapping info 3494 * @adapter: board private structure 3495 * @mqprio_qopt: queue parameters 3496 * 3497 * This function validates if the config provided by the user to 3498 * configure queue channels is valid or not. Returns 0 on a valid 3499 * config. 3500 **/ 3501 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3502 struct tc_mqprio_qopt_offload *mqprio_qopt) 3503 { 3504 u64 total_max_rate = 0; 3505 u32 tx_rate_rem = 0; 3506 int i, num_qps = 0; 3507 u64 tx_rate = 0; 3508 int ret = 0; 3509 3510 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3511 mqprio_qopt->qopt.num_tc < 1) 3512 return -EINVAL; 3513 3514 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3515 if (!mqprio_qopt->qopt.count[i] || 3516 mqprio_qopt->qopt.offset[i] != num_qps) 3517 return -EINVAL; 3518 if (mqprio_qopt->min_rate[i]) { 3519 dev_err(&adapter->pdev->dev, 3520 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3521 i); 3522 return -EINVAL; 3523 } 3524 3525 /* convert to Mbps */ 3526 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3527 IAVF_MBPS_DIVISOR); 3528 3529 if (mqprio_qopt->max_rate[i] && 3530 tx_rate < IAVF_MBPS_QUANTA) { 3531 dev_err(&adapter->pdev->dev, 3532 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3533 i, IAVF_MBPS_QUANTA); 3534 return -EINVAL; 3535 } 3536 3537 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3538 3539 if (tx_rate_rem != 0) { 3540 dev_err(&adapter->pdev->dev, 3541 "Invalid max tx rate for TC%d, not divisible by %d\n", 3542 i, IAVF_MBPS_QUANTA); 3543 return -EINVAL; 3544 } 3545 3546 total_max_rate += tx_rate; 3547 num_qps += mqprio_qopt->qopt.count[i]; 3548 } 3549 if (num_qps > adapter->num_active_queues) { 3550 dev_err(&adapter->pdev->dev, 3551 "Cannot support requested number of queues\n"); 3552 return -EINVAL; 3553 } 3554 3555 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3556 return ret; 3557 } 3558 3559 /** 3560 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3561 * @adapter: board private structure 3562 **/ 3563 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3564 { 3565 struct iavf_cloud_filter *cf, *cftmp; 3566 3567 spin_lock_bh(&adapter->cloud_filter_list_lock); 3568 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3569 list) { 3570 list_del(&cf->list); 3571 kfree(cf); 3572 adapter->num_cloud_filters--; 3573 } 3574 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3575 } 3576 3577 /** 3578 * __iavf_setup_tc - configure multiple traffic classes 3579 * @netdev: network interface device structure 3580 * @type_data: tc offload data 3581 * 3582 * This function processes the config information provided by the 3583 * user to configure traffic classes/queue channels and packages the 3584 * information to request the PF to setup traffic classes. 3585 * 3586 * Returns 0 on success. 3587 **/ 3588 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3589 { 3590 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3591 struct iavf_adapter *adapter = netdev_priv(netdev); 3592 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3593 u8 num_tc = 0, total_qps = 0; 3594 int ret = 0, netdev_tc = 0; 3595 u64 max_tx_rate; 3596 u16 mode; 3597 int i; 3598 3599 num_tc = mqprio_qopt->qopt.num_tc; 3600 mode = mqprio_qopt->mode; 3601 3602 /* delete queue_channel */ 3603 if (!mqprio_qopt->qopt.hw) { 3604 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3605 /* reset the tc configuration */ 3606 netdev_reset_tc(netdev); 3607 adapter->num_tc = 0; 3608 netif_tx_stop_all_queues(netdev); 3609 netif_tx_disable(netdev); 3610 iavf_del_all_cloud_filters(adapter); 3611 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3612 total_qps = adapter->orig_num_active_queues; 3613 goto exit; 3614 } else { 3615 return -EINVAL; 3616 } 3617 } 3618 3619 /* add queue channel */ 3620 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3621 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3622 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3623 return -EOPNOTSUPP; 3624 } 3625 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3626 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3627 return -EINVAL; 3628 } 3629 3630 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3631 if (ret) 3632 return ret; 3633 /* Return if same TC config is requested */ 3634 if (adapter->num_tc == num_tc) 3635 return 0; 3636 adapter->num_tc = num_tc; 3637 3638 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3639 if (i < num_tc) { 3640 adapter->ch_config.ch_info[i].count = 3641 mqprio_qopt->qopt.count[i]; 3642 adapter->ch_config.ch_info[i].offset = 3643 mqprio_qopt->qopt.offset[i]; 3644 total_qps += mqprio_qopt->qopt.count[i]; 3645 max_tx_rate = mqprio_qopt->max_rate[i]; 3646 /* convert to Mbps */ 3647 max_tx_rate = div_u64(max_tx_rate, 3648 IAVF_MBPS_DIVISOR); 3649 adapter->ch_config.ch_info[i].max_tx_rate = 3650 max_tx_rate; 3651 } else { 3652 adapter->ch_config.ch_info[i].count = 1; 3653 adapter->ch_config.ch_info[i].offset = 0; 3654 } 3655 } 3656 3657 /* Take snapshot of original config such as "num_active_queues" 3658 * It is used later when delete ADQ flow is exercised, so that 3659 * once delete ADQ flow completes, VF shall go back to its 3660 * original queue configuration 3661 */ 3662 3663 adapter->orig_num_active_queues = adapter->num_active_queues; 3664 3665 /* Store queue info based on TC so that VF gets configured 3666 * with correct number of queues when VF completes ADQ config 3667 * flow 3668 */ 3669 adapter->ch_config.total_qps = total_qps; 3670 3671 netif_tx_stop_all_queues(netdev); 3672 netif_tx_disable(netdev); 3673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3674 netdev_reset_tc(netdev); 3675 /* Report the tc mapping up the stack */ 3676 netdev_set_num_tc(adapter->netdev, num_tc); 3677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3678 u16 qcount = mqprio_qopt->qopt.count[i]; 3679 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3680 3681 if (i < num_tc) 3682 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3683 qoffset); 3684 } 3685 } 3686 exit: 3687 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3688 return 0; 3689 3690 netif_set_real_num_rx_queues(netdev, total_qps); 3691 netif_set_real_num_tx_queues(netdev, total_qps); 3692 3693 return ret; 3694 } 3695 3696 /** 3697 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3698 * @adapter: board private structure 3699 * @f: pointer to struct flow_cls_offload 3700 * @filter: pointer to cloud filter structure 3701 */ 3702 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3703 struct flow_cls_offload *f, 3704 struct iavf_cloud_filter *filter) 3705 { 3706 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3707 struct flow_dissector *dissector = rule->match.dissector; 3708 u16 n_proto_mask = 0; 3709 u16 n_proto_key = 0; 3710 u8 field_flags = 0; 3711 u16 addr_type = 0; 3712 u16 n_proto = 0; 3713 int i = 0; 3714 struct virtchnl_filter *vf = &filter->f; 3715 3716 if (dissector->used_keys & 3717 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3718 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3719 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3720 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3721 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3722 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3723 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3724 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3725 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3726 dissector->used_keys); 3727 return -EOPNOTSUPP; 3728 } 3729 3730 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3731 struct flow_match_enc_keyid match; 3732 3733 flow_rule_match_enc_keyid(rule, &match); 3734 if (match.mask->keyid != 0) 3735 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3736 } 3737 3738 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3739 struct flow_match_basic match; 3740 3741 flow_rule_match_basic(rule, &match); 3742 n_proto_key = ntohs(match.key->n_proto); 3743 n_proto_mask = ntohs(match.mask->n_proto); 3744 3745 if (n_proto_key == ETH_P_ALL) { 3746 n_proto_key = 0; 3747 n_proto_mask = 0; 3748 } 3749 n_proto = n_proto_key & n_proto_mask; 3750 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3751 return -EINVAL; 3752 if (n_proto == ETH_P_IPV6) { 3753 /* specify flow type as TCP IPv6 */ 3754 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3755 } 3756 3757 if (match.key->ip_proto != IPPROTO_TCP) { 3758 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3759 return -EINVAL; 3760 } 3761 } 3762 3763 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3764 struct flow_match_eth_addrs match; 3765 3766 flow_rule_match_eth_addrs(rule, &match); 3767 3768 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3769 if (!is_zero_ether_addr(match.mask->dst)) { 3770 if (is_broadcast_ether_addr(match.mask->dst)) { 3771 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3772 } else { 3773 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3774 match.mask->dst); 3775 return -EINVAL; 3776 } 3777 } 3778 3779 if (!is_zero_ether_addr(match.mask->src)) { 3780 if (is_broadcast_ether_addr(match.mask->src)) { 3781 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3782 } else { 3783 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3784 match.mask->src); 3785 return -EINVAL; 3786 } 3787 } 3788 3789 if (!is_zero_ether_addr(match.key->dst)) 3790 if (is_valid_ether_addr(match.key->dst) || 3791 is_multicast_ether_addr(match.key->dst)) { 3792 /* set the mask if a valid dst_mac address */ 3793 for (i = 0; i < ETH_ALEN; i++) 3794 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3795 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3796 match.key->dst); 3797 } 3798 3799 if (!is_zero_ether_addr(match.key->src)) 3800 if (is_valid_ether_addr(match.key->src) || 3801 is_multicast_ether_addr(match.key->src)) { 3802 /* set the mask if a valid dst_mac address */ 3803 for (i = 0; i < ETH_ALEN; i++) 3804 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3805 ether_addr_copy(vf->data.tcp_spec.src_mac, 3806 match.key->src); 3807 } 3808 } 3809 3810 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3811 struct flow_match_vlan match; 3812 3813 flow_rule_match_vlan(rule, &match); 3814 if (match.mask->vlan_id) { 3815 if (match.mask->vlan_id == VLAN_VID_MASK) { 3816 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3817 } else { 3818 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3819 match.mask->vlan_id); 3820 return -EINVAL; 3821 } 3822 } 3823 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3824 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3825 } 3826 3827 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3828 struct flow_match_control match; 3829 3830 flow_rule_match_control(rule, &match); 3831 addr_type = match.key->addr_type; 3832 } 3833 3834 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3835 struct flow_match_ipv4_addrs match; 3836 3837 flow_rule_match_ipv4_addrs(rule, &match); 3838 if (match.mask->dst) { 3839 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3840 field_flags |= IAVF_CLOUD_FIELD_IIP; 3841 } else { 3842 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3843 be32_to_cpu(match.mask->dst)); 3844 return -EINVAL; 3845 } 3846 } 3847 3848 if (match.mask->src) { 3849 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3850 field_flags |= IAVF_CLOUD_FIELD_IIP; 3851 } else { 3852 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3853 be32_to_cpu(match.mask->dst)); 3854 return -EINVAL; 3855 } 3856 } 3857 3858 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3859 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3860 return -EINVAL; 3861 } 3862 if (match.key->dst) { 3863 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3864 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3865 } 3866 if (match.key->src) { 3867 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3868 vf->data.tcp_spec.src_ip[0] = match.key->src; 3869 } 3870 } 3871 3872 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3873 struct flow_match_ipv6_addrs match; 3874 3875 flow_rule_match_ipv6_addrs(rule, &match); 3876 3877 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3878 if (ipv6_addr_any(&match.mask->dst)) { 3879 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3880 IPV6_ADDR_ANY); 3881 return -EINVAL; 3882 } 3883 3884 /* src and dest IPv6 address should not be LOOPBACK 3885 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3886 */ 3887 if (ipv6_addr_loopback(&match.key->dst) || 3888 ipv6_addr_loopback(&match.key->src)) { 3889 dev_err(&adapter->pdev->dev, 3890 "ipv6 addr should not be loopback\n"); 3891 return -EINVAL; 3892 } 3893 if (!ipv6_addr_any(&match.mask->dst) || 3894 !ipv6_addr_any(&match.mask->src)) 3895 field_flags |= IAVF_CLOUD_FIELD_IIP; 3896 3897 for (i = 0; i < 4; i++) 3898 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3899 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3900 sizeof(vf->data.tcp_spec.dst_ip)); 3901 for (i = 0; i < 4; i++) 3902 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3903 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3904 sizeof(vf->data.tcp_spec.src_ip)); 3905 } 3906 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3907 struct flow_match_ports match; 3908 3909 flow_rule_match_ports(rule, &match); 3910 if (match.mask->src) { 3911 if (match.mask->src == cpu_to_be16(0xffff)) { 3912 field_flags |= IAVF_CLOUD_FIELD_IIP; 3913 } else { 3914 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3915 be16_to_cpu(match.mask->src)); 3916 return -EINVAL; 3917 } 3918 } 3919 3920 if (match.mask->dst) { 3921 if (match.mask->dst == cpu_to_be16(0xffff)) { 3922 field_flags |= IAVF_CLOUD_FIELD_IIP; 3923 } else { 3924 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3925 be16_to_cpu(match.mask->dst)); 3926 return -EINVAL; 3927 } 3928 } 3929 if (match.key->dst) { 3930 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3931 vf->data.tcp_spec.dst_port = match.key->dst; 3932 } 3933 3934 if (match.key->src) { 3935 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3936 vf->data.tcp_spec.src_port = match.key->src; 3937 } 3938 } 3939 vf->field_flags = field_flags; 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * iavf_handle_tclass - Forward to a traffic class on the device 3946 * @adapter: board private structure 3947 * @tc: traffic class index on the device 3948 * @filter: pointer to cloud filter structure 3949 */ 3950 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3951 struct iavf_cloud_filter *filter) 3952 { 3953 if (tc == 0) 3954 return 0; 3955 if (tc < adapter->num_tc) { 3956 if (!filter->f.data.tcp_spec.dst_port) { 3957 dev_err(&adapter->pdev->dev, 3958 "Specify destination port to redirect to traffic class other than TC0\n"); 3959 return -EINVAL; 3960 } 3961 } 3962 /* redirect to a traffic class on the same device */ 3963 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3964 filter->f.action_meta = tc; 3965 return 0; 3966 } 3967 3968 /** 3969 * iavf_find_cf - Find the cloud filter in the list 3970 * @adapter: Board private structure 3971 * @cookie: filter specific cookie 3972 * 3973 * Returns ptr to the filter object or NULL. Must be called while holding the 3974 * cloud_filter_list_lock. 3975 */ 3976 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3977 unsigned long *cookie) 3978 { 3979 struct iavf_cloud_filter *filter = NULL; 3980 3981 if (!cookie) 3982 return NULL; 3983 3984 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3985 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3986 return filter; 3987 } 3988 return NULL; 3989 } 3990 3991 /** 3992 * iavf_configure_clsflower - Add tc flower filters 3993 * @adapter: board private structure 3994 * @cls_flower: Pointer to struct flow_cls_offload 3995 */ 3996 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3997 struct flow_cls_offload *cls_flower) 3998 { 3999 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4000 struct iavf_cloud_filter *filter = NULL; 4001 int err = -EINVAL, count = 50; 4002 4003 if (tc < 0) { 4004 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4005 return -EINVAL; 4006 } 4007 4008 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4009 if (!filter) 4010 return -ENOMEM; 4011 4012 while (!mutex_trylock(&adapter->crit_lock)) { 4013 if (--count == 0) { 4014 kfree(filter); 4015 return err; 4016 } 4017 udelay(1); 4018 } 4019 4020 filter->cookie = cls_flower->cookie; 4021 4022 /* bail out here if filter already exists */ 4023 spin_lock_bh(&adapter->cloud_filter_list_lock); 4024 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4025 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4026 err = -EEXIST; 4027 goto spin_unlock; 4028 } 4029 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4030 4031 /* set the mask to all zeroes to begin with */ 4032 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4033 /* start out with flow type and eth type IPv4 to begin with */ 4034 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4035 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4036 if (err) 4037 goto err; 4038 4039 err = iavf_handle_tclass(adapter, tc, filter); 4040 if (err) 4041 goto err; 4042 4043 /* add filter to the list */ 4044 spin_lock_bh(&adapter->cloud_filter_list_lock); 4045 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4046 adapter->num_cloud_filters++; 4047 filter->add = true; 4048 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4049 spin_unlock: 4050 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4051 err: 4052 if (err) 4053 kfree(filter); 4054 4055 mutex_unlock(&adapter->crit_lock); 4056 return err; 4057 } 4058 4059 /** 4060 * iavf_delete_clsflower - Remove tc flower filters 4061 * @adapter: board private structure 4062 * @cls_flower: Pointer to struct flow_cls_offload 4063 */ 4064 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4065 struct flow_cls_offload *cls_flower) 4066 { 4067 struct iavf_cloud_filter *filter = NULL; 4068 int err = 0; 4069 4070 spin_lock_bh(&adapter->cloud_filter_list_lock); 4071 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4072 if (filter) { 4073 filter->del = true; 4074 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4075 } else { 4076 err = -EINVAL; 4077 } 4078 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4079 4080 return err; 4081 } 4082 4083 /** 4084 * iavf_setup_tc_cls_flower - flower classifier offloads 4085 * @adapter: board private structure 4086 * @cls_flower: pointer to flow_cls_offload struct with flow info 4087 */ 4088 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4089 struct flow_cls_offload *cls_flower) 4090 { 4091 switch (cls_flower->command) { 4092 case FLOW_CLS_REPLACE: 4093 return iavf_configure_clsflower(adapter, cls_flower); 4094 case FLOW_CLS_DESTROY: 4095 return iavf_delete_clsflower(adapter, cls_flower); 4096 case FLOW_CLS_STATS: 4097 return -EOPNOTSUPP; 4098 default: 4099 return -EOPNOTSUPP; 4100 } 4101 } 4102 4103 /** 4104 * iavf_setup_tc_block_cb - block callback for tc 4105 * @type: type of offload 4106 * @type_data: offload data 4107 * @cb_priv: 4108 * 4109 * This function is the block callback for traffic classes 4110 **/ 4111 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4112 void *cb_priv) 4113 { 4114 struct iavf_adapter *adapter = cb_priv; 4115 4116 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4117 return -EOPNOTSUPP; 4118 4119 switch (type) { 4120 case TC_SETUP_CLSFLOWER: 4121 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4122 default: 4123 return -EOPNOTSUPP; 4124 } 4125 } 4126 4127 static LIST_HEAD(iavf_block_cb_list); 4128 4129 /** 4130 * iavf_setup_tc - configure multiple traffic classes 4131 * @netdev: network interface device structure 4132 * @type: type of offload 4133 * @type_data: tc offload data 4134 * 4135 * This function is the callback to ndo_setup_tc in the 4136 * netdev_ops. 4137 * 4138 * Returns 0 on success 4139 **/ 4140 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4141 void *type_data) 4142 { 4143 struct iavf_adapter *adapter = netdev_priv(netdev); 4144 4145 switch (type) { 4146 case TC_SETUP_QDISC_MQPRIO: 4147 return __iavf_setup_tc(netdev, type_data); 4148 case TC_SETUP_BLOCK: 4149 return flow_block_cb_setup_simple(type_data, 4150 &iavf_block_cb_list, 4151 iavf_setup_tc_block_cb, 4152 adapter, adapter, true); 4153 default: 4154 return -EOPNOTSUPP; 4155 } 4156 } 4157 4158 /** 4159 * iavf_open - Called when a network interface is made active 4160 * @netdev: network interface device structure 4161 * 4162 * Returns 0 on success, negative value on failure 4163 * 4164 * The open entry point is called when a network interface is made 4165 * active by the system (IFF_UP). At this point all resources needed 4166 * for transmit and receive operations are allocated, the interrupt 4167 * handler is registered with the OS, the watchdog is started, 4168 * and the stack is notified that the interface is ready. 4169 **/ 4170 static int iavf_open(struct net_device *netdev) 4171 { 4172 struct iavf_adapter *adapter = netdev_priv(netdev); 4173 int err; 4174 4175 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4176 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4177 return -EIO; 4178 } 4179 4180 while (!mutex_trylock(&adapter->crit_lock)) { 4181 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4182 * is already taken and iavf_open is called from an upper 4183 * device's notifier reacting on NETDEV_REGISTER event. 4184 * We have to leave here to avoid dead lock. 4185 */ 4186 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4187 return -EBUSY; 4188 4189 usleep_range(500, 1000); 4190 } 4191 4192 if (adapter->state != __IAVF_DOWN) { 4193 err = -EBUSY; 4194 goto err_unlock; 4195 } 4196 4197 if (adapter->state == __IAVF_RUNNING && 4198 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4199 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4200 err = 0; 4201 goto err_unlock; 4202 } 4203 4204 /* allocate transmit descriptors */ 4205 err = iavf_setup_all_tx_resources(adapter); 4206 if (err) 4207 goto err_setup_tx; 4208 4209 /* allocate receive descriptors */ 4210 err = iavf_setup_all_rx_resources(adapter); 4211 if (err) 4212 goto err_setup_rx; 4213 4214 /* clear any pending interrupts, may auto mask */ 4215 err = iavf_request_traffic_irqs(adapter, netdev->name); 4216 if (err) 4217 goto err_req_irq; 4218 4219 spin_lock_bh(&adapter->mac_vlan_list_lock); 4220 4221 iavf_add_filter(adapter, adapter->hw.mac.addr); 4222 4223 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4224 4225 /* Restore VLAN filters that were removed with IFF_DOWN */ 4226 iavf_restore_filters(adapter); 4227 4228 iavf_configure(adapter); 4229 4230 iavf_up_complete(adapter); 4231 4232 iavf_irq_enable(adapter, true); 4233 4234 mutex_unlock(&adapter->crit_lock); 4235 4236 return 0; 4237 4238 err_req_irq: 4239 iavf_down(adapter); 4240 iavf_free_traffic_irqs(adapter); 4241 err_setup_rx: 4242 iavf_free_all_rx_resources(adapter); 4243 err_setup_tx: 4244 iavf_free_all_tx_resources(adapter); 4245 err_unlock: 4246 mutex_unlock(&adapter->crit_lock); 4247 4248 return err; 4249 } 4250 4251 /** 4252 * iavf_close - Disables a network interface 4253 * @netdev: network interface device structure 4254 * 4255 * Returns 0, this is not allowed to fail 4256 * 4257 * The close entry point is called when an interface is de-activated 4258 * by the OS. The hardware is still under the drivers control, but 4259 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4260 * are freed, along with all transmit and receive resources. 4261 **/ 4262 static int iavf_close(struct net_device *netdev) 4263 { 4264 struct iavf_adapter *adapter = netdev_priv(netdev); 4265 u64 aq_to_restore; 4266 int status; 4267 4268 mutex_lock(&adapter->crit_lock); 4269 4270 if (adapter->state <= __IAVF_DOWN_PENDING) { 4271 mutex_unlock(&adapter->crit_lock); 4272 return 0; 4273 } 4274 4275 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4276 if (CLIENT_ENABLED(adapter)) 4277 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4278 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4279 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4280 * deadlock with adminq_task() until iavf_close timeouts. We must send 4281 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4282 * disable queues possible for vf. Give only necessary flags to 4283 * iavf_down and save other to set them right before iavf_close() 4284 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4285 * iavf will be in DOWN state. 4286 */ 4287 aq_to_restore = adapter->aq_required; 4288 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4289 4290 /* Remove flags which we do not want to send after close or we want to 4291 * send before disable queues. 4292 */ 4293 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4294 IAVF_FLAG_AQ_ENABLE_QUEUES | 4295 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4296 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4297 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4298 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4299 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4300 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4301 4302 iavf_down(adapter); 4303 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4304 iavf_free_traffic_irqs(adapter); 4305 4306 mutex_unlock(&adapter->crit_lock); 4307 4308 /* We explicitly don't free resources here because the hardware is 4309 * still active and can DMA into memory. Resources are cleared in 4310 * iavf_virtchnl_completion() after we get confirmation from the PF 4311 * driver that the rings have been stopped. 4312 * 4313 * Also, we wait for state to transition to __IAVF_DOWN before 4314 * returning. State change occurs in iavf_virtchnl_completion() after 4315 * VF resources are released (which occurs after PF driver processes and 4316 * responds to admin queue commands). 4317 */ 4318 4319 status = wait_event_timeout(adapter->down_waitqueue, 4320 adapter->state == __IAVF_DOWN, 4321 msecs_to_jiffies(500)); 4322 if (!status) 4323 netdev_warn(netdev, "Device resources not yet released\n"); 4324 4325 mutex_lock(&adapter->crit_lock); 4326 adapter->aq_required |= aq_to_restore; 4327 mutex_unlock(&adapter->crit_lock); 4328 return 0; 4329 } 4330 4331 /** 4332 * iavf_change_mtu - Change the Maximum Transfer Unit 4333 * @netdev: network interface device structure 4334 * @new_mtu: new value for maximum frame size 4335 * 4336 * Returns 0 on success, negative on failure 4337 **/ 4338 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4339 { 4340 struct iavf_adapter *adapter = netdev_priv(netdev); 4341 4342 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4343 netdev->mtu, new_mtu); 4344 netdev->mtu = new_mtu; 4345 if (CLIENT_ENABLED(adapter)) { 4346 iavf_notify_client_l2_params(&adapter->vsi); 4347 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4348 } 4349 4350 if (netif_running(netdev)) { 4351 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4352 queue_work(iavf_wq, &adapter->reset_task); 4353 } 4354 4355 return 0; 4356 } 4357 4358 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4359 NETIF_F_HW_VLAN_CTAG_TX | \ 4360 NETIF_F_HW_VLAN_STAG_RX | \ 4361 NETIF_F_HW_VLAN_STAG_TX) 4362 4363 /** 4364 * iavf_set_features - set the netdev feature flags 4365 * @netdev: ptr to the netdev being adjusted 4366 * @features: the feature set that the stack is suggesting 4367 * Note: expects to be called while under rtnl_lock() 4368 **/ 4369 static int iavf_set_features(struct net_device *netdev, 4370 netdev_features_t features) 4371 { 4372 struct iavf_adapter *adapter = netdev_priv(netdev); 4373 4374 /* trigger update on any VLAN feature change */ 4375 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4376 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4377 iavf_set_vlan_offload_features(adapter, netdev->features, 4378 features); 4379 4380 return 0; 4381 } 4382 4383 /** 4384 * iavf_features_check - Validate encapsulated packet conforms to limits 4385 * @skb: skb buff 4386 * @dev: This physical port's netdev 4387 * @features: Offload features that the stack believes apply 4388 **/ 4389 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4390 struct net_device *dev, 4391 netdev_features_t features) 4392 { 4393 size_t len; 4394 4395 /* No point in doing any of this if neither checksum nor GSO are 4396 * being requested for this frame. We can rule out both by just 4397 * checking for CHECKSUM_PARTIAL 4398 */ 4399 if (skb->ip_summed != CHECKSUM_PARTIAL) 4400 return features; 4401 4402 /* We cannot support GSO if the MSS is going to be less than 4403 * 64 bytes. If it is then we need to drop support for GSO. 4404 */ 4405 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4406 features &= ~NETIF_F_GSO_MASK; 4407 4408 /* MACLEN can support at most 63 words */ 4409 len = skb_network_header(skb) - skb->data; 4410 if (len & ~(63 * 2)) 4411 goto out_err; 4412 4413 /* IPLEN and EIPLEN can support at most 127 dwords */ 4414 len = skb_transport_header(skb) - skb_network_header(skb); 4415 if (len & ~(127 * 4)) 4416 goto out_err; 4417 4418 if (skb->encapsulation) { 4419 /* L4TUNLEN can support 127 words */ 4420 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4421 if (len & ~(127 * 2)) 4422 goto out_err; 4423 4424 /* IPLEN can support at most 127 dwords */ 4425 len = skb_inner_transport_header(skb) - 4426 skb_inner_network_header(skb); 4427 if (len & ~(127 * 4)) 4428 goto out_err; 4429 } 4430 4431 /* No need to validate L4LEN as TCP is the only protocol with a 4432 * flexible value and we support all possible values supported 4433 * by TCP, which is at most 15 dwords 4434 */ 4435 4436 return features; 4437 out_err: 4438 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4439 } 4440 4441 /** 4442 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4443 * @adapter: board private structure 4444 * 4445 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4446 * were negotiated determine the VLAN features that can be toggled on and off. 4447 **/ 4448 static netdev_features_t 4449 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4450 { 4451 netdev_features_t hw_features = 0; 4452 4453 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4454 return hw_features; 4455 4456 /* Enable VLAN features if supported */ 4457 if (VLAN_ALLOWED(adapter)) { 4458 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4459 NETIF_F_HW_VLAN_CTAG_RX); 4460 } else if (VLAN_V2_ALLOWED(adapter)) { 4461 struct virtchnl_vlan_caps *vlan_v2_caps = 4462 &adapter->vlan_v2_caps; 4463 struct virtchnl_vlan_supported_caps *stripping_support = 4464 &vlan_v2_caps->offloads.stripping_support; 4465 struct virtchnl_vlan_supported_caps *insertion_support = 4466 &vlan_v2_caps->offloads.insertion_support; 4467 4468 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4469 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4470 if (stripping_support->outer & 4471 VIRTCHNL_VLAN_ETHERTYPE_8100) 4472 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4473 if (stripping_support->outer & 4474 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4475 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4476 } else if (stripping_support->inner != 4477 VIRTCHNL_VLAN_UNSUPPORTED && 4478 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4479 if (stripping_support->inner & 4480 VIRTCHNL_VLAN_ETHERTYPE_8100) 4481 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4482 } 4483 4484 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4485 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4486 if (insertion_support->outer & 4487 VIRTCHNL_VLAN_ETHERTYPE_8100) 4488 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4489 if (insertion_support->outer & 4490 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4491 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4492 } else if (insertion_support->inner && 4493 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4494 if (insertion_support->inner & 4495 VIRTCHNL_VLAN_ETHERTYPE_8100) 4496 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4497 } 4498 } 4499 4500 return hw_features; 4501 } 4502 4503 /** 4504 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4505 * @adapter: board private structure 4506 * 4507 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4508 * were negotiated determine the VLAN features that are enabled by default. 4509 **/ 4510 static netdev_features_t 4511 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4512 { 4513 netdev_features_t features = 0; 4514 4515 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4516 return features; 4517 4518 if (VLAN_ALLOWED(adapter)) { 4519 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4520 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4521 } else if (VLAN_V2_ALLOWED(adapter)) { 4522 struct virtchnl_vlan_caps *vlan_v2_caps = 4523 &adapter->vlan_v2_caps; 4524 struct virtchnl_vlan_supported_caps *filtering_support = 4525 &vlan_v2_caps->filtering.filtering_support; 4526 struct virtchnl_vlan_supported_caps *stripping_support = 4527 &vlan_v2_caps->offloads.stripping_support; 4528 struct virtchnl_vlan_supported_caps *insertion_support = 4529 &vlan_v2_caps->offloads.insertion_support; 4530 u32 ethertype_init; 4531 4532 /* give priority to outer stripping and don't support both outer 4533 * and inner stripping 4534 */ 4535 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4536 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4537 if (stripping_support->outer & 4538 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4539 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4540 features |= NETIF_F_HW_VLAN_CTAG_RX; 4541 else if (stripping_support->outer & 4542 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4543 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4544 features |= NETIF_F_HW_VLAN_STAG_RX; 4545 } else if (stripping_support->inner != 4546 VIRTCHNL_VLAN_UNSUPPORTED) { 4547 if (stripping_support->inner & 4548 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4549 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4550 features |= NETIF_F_HW_VLAN_CTAG_RX; 4551 } 4552 4553 /* give priority to outer insertion and don't support both outer 4554 * and inner insertion 4555 */ 4556 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4557 if (insertion_support->outer & 4558 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4559 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4560 features |= NETIF_F_HW_VLAN_CTAG_TX; 4561 else if (insertion_support->outer & 4562 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4563 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4564 features |= NETIF_F_HW_VLAN_STAG_TX; 4565 } else if (insertion_support->inner != 4566 VIRTCHNL_VLAN_UNSUPPORTED) { 4567 if (insertion_support->inner & 4568 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4569 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4570 features |= NETIF_F_HW_VLAN_CTAG_TX; 4571 } 4572 4573 /* give priority to outer filtering and don't bother if both 4574 * outer and inner filtering are enabled 4575 */ 4576 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4577 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4578 if (filtering_support->outer & 4579 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4580 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4581 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4582 if (filtering_support->outer & 4583 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4584 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4585 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4586 } else if (filtering_support->inner != 4587 VIRTCHNL_VLAN_UNSUPPORTED) { 4588 if (filtering_support->inner & 4589 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4590 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4591 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4592 if (filtering_support->inner & 4593 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4594 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4595 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4596 } 4597 } 4598 4599 return features; 4600 } 4601 4602 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4603 (!(((requested) & (feature_bit)) && \ 4604 !((allowed) & (feature_bit)))) 4605 4606 /** 4607 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4608 * @adapter: board private structure 4609 * @requested_features: stack requested NETDEV features 4610 **/ 4611 static netdev_features_t 4612 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4613 netdev_features_t requested_features) 4614 { 4615 netdev_features_t allowed_features; 4616 4617 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4618 iavf_get_netdev_vlan_features(adapter); 4619 4620 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4621 allowed_features, 4622 NETIF_F_HW_VLAN_CTAG_TX)) 4623 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4624 4625 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4626 allowed_features, 4627 NETIF_F_HW_VLAN_CTAG_RX)) 4628 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4629 4630 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4631 allowed_features, 4632 NETIF_F_HW_VLAN_STAG_TX)) 4633 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4634 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4635 allowed_features, 4636 NETIF_F_HW_VLAN_STAG_RX)) 4637 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4638 4639 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4640 allowed_features, 4641 NETIF_F_HW_VLAN_CTAG_FILTER)) 4642 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4643 4644 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4645 allowed_features, 4646 NETIF_F_HW_VLAN_STAG_FILTER)) 4647 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4648 4649 if ((requested_features & 4650 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4651 (requested_features & 4652 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4653 adapter->vlan_v2_caps.offloads.ethertype_match == 4654 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4655 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4656 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4657 NETIF_F_HW_VLAN_STAG_TX); 4658 } 4659 4660 return requested_features; 4661 } 4662 4663 /** 4664 * iavf_fix_features - fix up the netdev feature bits 4665 * @netdev: our net device 4666 * @features: desired feature bits 4667 * 4668 * Returns fixed-up features bits 4669 **/ 4670 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4671 netdev_features_t features) 4672 { 4673 struct iavf_adapter *adapter = netdev_priv(netdev); 4674 4675 return iavf_fix_netdev_vlan_features(adapter, features); 4676 } 4677 4678 static const struct net_device_ops iavf_netdev_ops = { 4679 .ndo_open = iavf_open, 4680 .ndo_stop = iavf_close, 4681 .ndo_start_xmit = iavf_xmit_frame, 4682 .ndo_set_rx_mode = iavf_set_rx_mode, 4683 .ndo_validate_addr = eth_validate_addr, 4684 .ndo_set_mac_address = iavf_set_mac, 4685 .ndo_change_mtu = iavf_change_mtu, 4686 .ndo_tx_timeout = iavf_tx_timeout, 4687 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4688 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4689 .ndo_features_check = iavf_features_check, 4690 .ndo_fix_features = iavf_fix_features, 4691 .ndo_set_features = iavf_set_features, 4692 .ndo_setup_tc = iavf_setup_tc, 4693 }; 4694 4695 /** 4696 * iavf_check_reset_complete - check that VF reset is complete 4697 * @hw: pointer to hw struct 4698 * 4699 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4700 **/ 4701 static int iavf_check_reset_complete(struct iavf_hw *hw) 4702 { 4703 u32 rstat; 4704 int i; 4705 4706 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4707 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4708 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4709 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4710 (rstat == VIRTCHNL_VFR_COMPLETED)) 4711 return 0; 4712 usleep_range(10, 20); 4713 } 4714 return -EBUSY; 4715 } 4716 4717 /** 4718 * iavf_process_config - Process the config information we got from the PF 4719 * @adapter: board private structure 4720 * 4721 * Verify that we have a valid config struct, and set up our netdev features 4722 * and our VSI struct. 4723 **/ 4724 int iavf_process_config(struct iavf_adapter *adapter) 4725 { 4726 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4727 netdev_features_t hw_vlan_features, vlan_features; 4728 struct net_device *netdev = adapter->netdev; 4729 netdev_features_t hw_enc_features; 4730 netdev_features_t hw_features; 4731 4732 hw_enc_features = NETIF_F_SG | 4733 NETIF_F_IP_CSUM | 4734 NETIF_F_IPV6_CSUM | 4735 NETIF_F_HIGHDMA | 4736 NETIF_F_SOFT_FEATURES | 4737 NETIF_F_TSO | 4738 NETIF_F_TSO_ECN | 4739 NETIF_F_TSO6 | 4740 NETIF_F_SCTP_CRC | 4741 NETIF_F_RXHASH | 4742 NETIF_F_RXCSUM | 4743 0; 4744 4745 /* advertise to stack only if offloads for encapsulated packets is 4746 * supported 4747 */ 4748 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4749 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4750 NETIF_F_GSO_GRE | 4751 NETIF_F_GSO_GRE_CSUM | 4752 NETIF_F_GSO_IPXIP4 | 4753 NETIF_F_GSO_IPXIP6 | 4754 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4755 NETIF_F_GSO_PARTIAL | 4756 0; 4757 4758 if (!(vfres->vf_cap_flags & 4759 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4760 netdev->gso_partial_features |= 4761 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4762 4763 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4764 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4765 netdev->hw_enc_features |= hw_enc_features; 4766 } 4767 /* record features VLANs can make use of */ 4768 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4769 4770 /* Write features and hw_features separately to avoid polluting 4771 * with, or dropping, features that are set when we registered. 4772 */ 4773 hw_features = hw_enc_features; 4774 4775 /* get HW VLAN features that can be toggled */ 4776 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4777 4778 /* Enable cloud filter if ADQ is supported */ 4779 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4780 hw_features |= NETIF_F_HW_TC; 4781 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4782 hw_features |= NETIF_F_GSO_UDP_L4; 4783 4784 netdev->hw_features |= hw_features | hw_vlan_features; 4785 vlan_features = iavf_get_netdev_vlan_features(adapter); 4786 4787 netdev->features |= hw_features | vlan_features; 4788 4789 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4790 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4791 4792 netdev->priv_flags |= IFF_UNICAST_FLT; 4793 4794 /* Do not turn on offloads when they are requested to be turned off. 4795 * TSO needs minimum 576 bytes to work correctly. 4796 */ 4797 if (netdev->wanted_features) { 4798 if (!(netdev->wanted_features & NETIF_F_TSO) || 4799 netdev->mtu < 576) 4800 netdev->features &= ~NETIF_F_TSO; 4801 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4802 netdev->mtu < 576) 4803 netdev->features &= ~NETIF_F_TSO6; 4804 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4805 netdev->features &= ~NETIF_F_TSO_ECN; 4806 if (!(netdev->wanted_features & NETIF_F_GRO)) 4807 netdev->features &= ~NETIF_F_GRO; 4808 if (!(netdev->wanted_features & NETIF_F_GSO)) 4809 netdev->features &= ~NETIF_F_GSO; 4810 } 4811 4812 return 0; 4813 } 4814 4815 /** 4816 * iavf_shutdown - Shutdown the device in preparation for a reboot 4817 * @pdev: pci device structure 4818 **/ 4819 static void iavf_shutdown(struct pci_dev *pdev) 4820 { 4821 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4822 struct net_device *netdev = adapter->netdev; 4823 4824 netif_device_detach(netdev); 4825 4826 if (netif_running(netdev)) 4827 iavf_close(netdev); 4828 4829 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4830 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4831 /* Prevent the watchdog from running. */ 4832 iavf_change_state(adapter, __IAVF_REMOVE); 4833 adapter->aq_required = 0; 4834 mutex_unlock(&adapter->crit_lock); 4835 4836 #ifdef CONFIG_PM 4837 pci_save_state(pdev); 4838 4839 #endif 4840 pci_disable_device(pdev); 4841 } 4842 4843 /** 4844 * iavf_probe - Device Initialization Routine 4845 * @pdev: PCI device information struct 4846 * @ent: entry in iavf_pci_tbl 4847 * 4848 * Returns 0 on success, negative on failure 4849 * 4850 * iavf_probe initializes an adapter identified by a pci_dev structure. 4851 * The OS initialization, configuring of the adapter private structure, 4852 * and a hardware reset occur. 4853 **/ 4854 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4855 { 4856 struct net_device *netdev; 4857 struct iavf_adapter *adapter = NULL; 4858 struct iavf_hw *hw = NULL; 4859 int err; 4860 4861 err = pci_enable_device(pdev); 4862 if (err) 4863 return err; 4864 4865 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4866 if (err) { 4867 dev_err(&pdev->dev, 4868 "DMA configuration failed: 0x%x\n", err); 4869 goto err_dma; 4870 } 4871 4872 err = pci_request_regions(pdev, iavf_driver_name); 4873 if (err) { 4874 dev_err(&pdev->dev, 4875 "pci_request_regions failed 0x%x\n", err); 4876 goto err_pci_reg; 4877 } 4878 4879 pci_enable_pcie_error_reporting(pdev); 4880 4881 pci_set_master(pdev); 4882 4883 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4884 IAVF_MAX_REQ_QUEUES); 4885 if (!netdev) { 4886 err = -ENOMEM; 4887 goto err_alloc_etherdev; 4888 } 4889 4890 SET_NETDEV_DEV(netdev, &pdev->dev); 4891 4892 pci_set_drvdata(pdev, netdev); 4893 adapter = netdev_priv(netdev); 4894 4895 adapter->netdev = netdev; 4896 adapter->pdev = pdev; 4897 4898 hw = &adapter->hw; 4899 hw->back = adapter; 4900 4901 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4902 iavf_change_state(adapter, __IAVF_STARTUP); 4903 4904 /* Call save state here because it relies on the adapter struct. */ 4905 pci_save_state(pdev); 4906 4907 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4908 pci_resource_len(pdev, 0)); 4909 if (!hw->hw_addr) { 4910 err = -EIO; 4911 goto err_ioremap; 4912 } 4913 hw->vendor_id = pdev->vendor; 4914 hw->device_id = pdev->device; 4915 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4916 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4917 hw->subsystem_device_id = pdev->subsystem_device; 4918 hw->bus.device = PCI_SLOT(pdev->devfn); 4919 hw->bus.func = PCI_FUNC(pdev->devfn); 4920 hw->bus.bus_id = pdev->bus->number; 4921 4922 /* set up the locks for the AQ, do this only once in probe 4923 * and destroy them only once in remove 4924 */ 4925 mutex_init(&adapter->crit_lock); 4926 mutex_init(&adapter->client_lock); 4927 mutex_init(&hw->aq.asq_mutex); 4928 mutex_init(&hw->aq.arq_mutex); 4929 4930 spin_lock_init(&adapter->mac_vlan_list_lock); 4931 spin_lock_init(&adapter->cloud_filter_list_lock); 4932 spin_lock_init(&adapter->fdir_fltr_lock); 4933 spin_lock_init(&adapter->adv_rss_lock); 4934 4935 INIT_LIST_HEAD(&adapter->mac_filter_list); 4936 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4937 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4938 INIT_LIST_HEAD(&adapter->fdir_list_head); 4939 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4940 4941 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4942 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4943 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4944 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4945 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4946 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4947 4948 /* Setup the wait queue for indicating transition to down status */ 4949 init_waitqueue_head(&adapter->down_waitqueue); 4950 4951 /* Setup the wait queue for indicating virtchannel events */ 4952 init_waitqueue_head(&adapter->vc_waitqueue); 4953 4954 return 0; 4955 4956 err_ioremap: 4957 free_netdev(netdev); 4958 err_alloc_etherdev: 4959 pci_disable_pcie_error_reporting(pdev); 4960 pci_release_regions(pdev); 4961 err_pci_reg: 4962 err_dma: 4963 pci_disable_device(pdev); 4964 return err; 4965 } 4966 4967 /** 4968 * iavf_suspend - Power management suspend routine 4969 * @dev_d: device info pointer 4970 * 4971 * Called when the system (VM) is entering sleep/suspend. 4972 **/ 4973 static int __maybe_unused iavf_suspend(struct device *dev_d) 4974 { 4975 struct net_device *netdev = dev_get_drvdata(dev_d); 4976 struct iavf_adapter *adapter = netdev_priv(netdev); 4977 4978 netif_device_detach(netdev); 4979 4980 while (!mutex_trylock(&adapter->crit_lock)) 4981 usleep_range(500, 1000); 4982 4983 if (netif_running(netdev)) { 4984 rtnl_lock(); 4985 iavf_down(adapter); 4986 rtnl_unlock(); 4987 } 4988 iavf_free_misc_irq(adapter); 4989 iavf_reset_interrupt_capability(adapter); 4990 4991 mutex_unlock(&adapter->crit_lock); 4992 4993 return 0; 4994 } 4995 4996 /** 4997 * iavf_resume - Power management resume routine 4998 * @dev_d: device info pointer 4999 * 5000 * Called when the system (VM) is resumed from sleep/suspend. 5001 **/ 5002 static int __maybe_unused iavf_resume(struct device *dev_d) 5003 { 5004 struct pci_dev *pdev = to_pci_dev(dev_d); 5005 struct iavf_adapter *adapter; 5006 u32 err; 5007 5008 adapter = iavf_pdev_to_adapter(pdev); 5009 5010 pci_set_master(pdev); 5011 5012 rtnl_lock(); 5013 err = iavf_set_interrupt_capability(adapter); 5014 if (err) { 5015 rtnl_unlock(); 5016 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5017 return err; 5018 } 5019 err = iavf_request_misc_irq(adapter); 5020 rtnl_unlock(); 5021 if (err) { 5022 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5023 return err; 5024 } 5025 5026 queue_work(iavf_wq, &adapter->reset_task); 5027 5028 netif_device_attach(adapter->netdev); 5029 5030 return err; 5031 } 5032 5033 /** 5034 * iavf_remove - Device Removal Routine 5035 * @pdev: PCI device information struct 5036 * 5037 * iavf_remove is called by the PCI subsystem to alert the driver 5038 * that it should release a PCI device. The could be caused by a 5039 * Hot-Plug event, or because the driver is going to be removed from 5040 * memory. 5041 **/ 5042 static void iavf_remove(struct pci_dev *pdev) 5043 { 5044 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5045 struct iavf_fdir_fltr *fdir, *fdirtmp; 5046 struct iavf_vlan_filter *vlf, *vlftmp; 5047 struct iavf_cloud_filter *cf, *cftmp; 5048 struct iavf_adv_rss *rss, *rsstmp; 5049 struct iavf_mac_filter *f, *ftmp; 5050 struct net_device *netdev; 5051 struct iavf_hw *hw; 5052 int err; 5053 5054 netdev = adapter->netdev; 5055 hw = &adapter->hw; 5056 5057 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5058 return; 5059 5060 /* Wait until port initialization is complete. 5061 * There are flows where register/unregister netdev may race. 5062 */ 5063 while (1) { 5064 mutex_lock(&adapter->crit_lock); 5065 if (adapter->state == __IAVF_RUNNING || 5066 adapter->state == __IAVF_DOWN || 5067 adapter->state == __IAVF_INIT_FAILED) { 5068 mutex_unlock(&adapter->crit_lock); 5069 break; 5070 } 5071 5072 mutex_unlock(&adapter->crit_lock); 5073 usleep_range(500, 1000); 5074 } 5075 cancel_delayed_work_sync(&adapter->watchdog_task); 5076 5077 if (adapter->netdev_registered) { 5078 rtnl_lock(); 5079 unregister_netdevice(netdev); 5080 adapter->netdev_registered = false; 5081 rtnl_unlock(); 5082 } 5083 if (CLIENT_ALLOWED(adapter)) { 5084 err = iavf_lan_del_device(adapter); 5085 if (err) 5086 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5087 err); 5088 } 5089 5090 mutex_lock(&adapter->crit_lock); 5091 dev_info(&adapter->pdev->dev, "Removing device\n"); 5092 iavf_change_state(adapter, __IAVF_REMOVE); 5093 5094 iavf_request_reset(adapter); 5095 msleep(50); 5096 /* If the FW isn't responding, kick it once, but only once. */ 5097 if (!iavf_asq_done(hw)) { 5098 iavf_request_reset(adapter); 5099 msleep(50); 5100 } 5101 5102 iavf_misc_irq_disable(adapter); 5103 /* Shut down all the garbage mashers on the detention level */ 5104 cancel_work_sync(&adapter->reset_task); 5105 cancel_delayed_work_sync(&adapter->watchdog_task); 5106 cancel_work_sync(&adapter->adminq_task); 5107 cancel_delayed_work_sync(&adapter->client_task); 5108 5109 adapter->aq_required = 0; 5110 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5111 5112 iavf_free_all_tx_resources(adapter); 5113 iavf_free_all_rx_resources(adapter); 5114 iavf_free_misc_irq(adapter); 5115 5116 iavf_reset_interrupt_capability(adapter); 5117 iavf_free_q_vectors(adapter); 5118 5119 iavf_free_rss(adapter); 5120 5121 if (hw->aq.asq.count) 5122 iavf_shutdown_adminq(hw); 5123 5124 /* destroy the locks only once, here */ 5125 mutex_destroy(&hw->aq.arq_mutex); 5126 mutex_destroy(&hw->aq.asq_mutex); 5127 mutex_destroy(&adapter->client_lock); 5128 mutex_unlock(&adapter->crit_lock); 5129 mutex_destroy(&adapter->crit_lock); 5130 5131 iounmap(hw->hw_addr); 5132 pci_release_regions(pdev); 5133 iavf_free_queues(adapter); 5134 kfree(adapter->vf_res); 5135 spin_lock_bh(&adapter->mac_vlan_list_lock); 5136 /* If we got removed before an up/down sequence, we've got a filter 5137 * hanging out there that we need to get rid of. 5138 */ 5139 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5140 list_del(&f->list); 5141 kfree(f); 5142 } 5143 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5144 list) { 5145 list_del(&vlf->list); 5146 kfree(vlf); 5147 } 5148 5149 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5150 5151 spin_lock_bh(&adapter->cloud_filter_list_lock); 5152 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5153 list_del(&cf->list); 5154 kfree(cf); 5155 } 5156 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5157 5158 spin_lock_bh(&adapter->fdir_fltr_lock); 5159 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5160 list_del(&fdir->list); 5161 kfree(fdir); 5162 } 5163 spin_unlock_bh(&adapter->fdir_fltr_lock); 5164 5165 spin_lock_bh(&adapter->adv_rss_lock); 5166 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5167 list) { 5168 list_del(&rss->list); 5169 kfree(rss); 5170 } 5171 spin_unlock_bh(&adapter->adv_rss_lock); 5172 5173 free_netdev(netdev); 5174 5175 pci_disable_pcie_error_reporting(pdev); 5176 5177 pci_disable_device(pdev); 5178 } 5179 5180 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5181 5182 static struct pci_driver iavf_driver = { 5183 .name = iavf_driver_name, 5184 .id_table = iavf_pci_tbl, 5185 .probe = iavf_probe, 5186 .remove = iavf_remove, 5187 .driver.pm = &iavf_pm_ops, 5188 .shutdown = iavf_shutdown, 5189 }; 5190 5191 /** 5192 * iavf_init_module - Driver Registration Routine 5193 * 5194 * iavf_init_module is the first routine called when the driver is 5195 * loaded. All it does is register with the PCI subsystem. 5196 **/ 5197 static int __init iavf_init_module(void) 5198 { 5199 int ret; 5200 5201 pr_info("iavf: %s\n", iavf_driver_string); 5202 5203 pr_info("%s\n", iavf_copyright); 5204 5205 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 5206 iavf_driver_name); 5207 if (!iavf_wq) { 5208 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 5209 return -ENOMEM; 5210 } 5211 5212 ret = pci_register_driver(&iavf_driver); 5213 if (ret) 5214 destroy_workqueue(iavf_wq); 5215 5216 return ret; 5217 } 5218 5219 module_init(iavf_init_module); 5220 5221 /** 5222 * iavf_exit_module - Driver Exit Cleanup Routine 5223 * 5224 * iavf_exit_module is called just before the driver is removed 5225 * from memory. 5226 **/ 5227 static void __exit iavf_exit_module(void) 5228 { 5229 pci_unregister_driver(&iavf_driver); 5230 destroy_workqueue(iavf_wq); 5231 } 5232 5233 module_exit(iavf_exit_module); 5234 5235 /* iavf_main.c */ 5236