1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140 	if (!(adapter->flags &
141 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 		queue_work(iavf_wq, &adapter->reset_task);
144 	}
145 }
146 
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  * @txqueue: queue number that is timing out
151  **/
152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
153 {
154 	struct iavf_adapter *adapter = netdev_priv(netdev);
155 
156 	adapter->tx_timeout_count++;
157 	iavf_schedule_reset(adapter);
158 }
159 
160 /**
161  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
162  * @adapter: board private structure
163  **/
164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
165 {
166 	struct iavf_hw *hw = &adapter->hw;
167 
168 	if (!adapter->msix_entries)
169 		return;
170 
171 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
172 
173 	iavf_flush(hw);
174 
175 	synchronize_irq(adapter->msix_entries[0].vector);
176 }
177 
178 /**
179  * iavf_misc_irq_enable - Enable default interrupt generation settings
180  * @adapter: board private structure
181  **/
182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
183 {
184 	struct iavf_hw *hw = &adapter->hw;
185 
186 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
187 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
188 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
189 
190 	iavf_flush(hw);
191 }
192 
193 /**
194  * iavf_irq_disable - Mask off interrupt generation on the NIC
195  * @adapter: board private structure
196  **/
197 static void iavf_irq_disable(struct iavf_adapter *adapter)
198 {
199 	int i;
200 	struct iavf_hw *hw = &adapter->hw;
201 
202 	if (!adapter->msix_entries)
203 		return;
204 
205 	for (i = 1; i < adapter->num_msix_vectors; i++) {
206 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
207 		synchronize_irq(adapter->msix_entries[i].vector);
208 	}
209 	iavf_flush(hw);
210 }
211 
212 /**
213  * iavf_irq_enable_queues - Enable interrupt for specified queues
214  * @adapter: board private structure
215  * @mask: bitmap of queues to enable
216  **/
217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
218 {
219 	struct iavf_hw *hw = &adapter->hw;
220 	int i;
221 
222 	for (i = 1; i < adapter->num_msix_vectors; i++) {
223 		if (mask & BIT(i - 1)) {
224 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
225 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
226 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
227 		}
228 	}
229 }
230 
231 /**
232  * iavf_irq_enable - Enable default interrupt generation settings
233  * @adapter: board private structure
234  * @flush: boolean value whether to run rd32()
235  **/
236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
237 {
238 	struct iavf_hw *hw = &adapter->hw;
239 
240 	iavf_misc_irq_enable(adapter);
241 	iavf_irq_enable_queues(adapter, ~0);
242 
243 	if (flush)
244 		iavf_flush(hw);
245 }
246 
247 /**
248  * iavf_msix_aq - Interrupt handler for vector 0
249  * @irq: interrupt number
250  * @data: pointer to netdev
251  **/
252 static irqreturn_t iavf_msix_aq(int irq, void *data)
253 {
254 	struct net_device *netdev = data;
255 	struct iavf_adapter *adapter = netdev_priv(netdev);
256 	struct iavf_hw *hw = &adapter->hw;
257 
258 	/* handle non-queue interrupts, these reads clear the registers */
259 	rd32(hw, IAVF_VFINT_ICR01);
260 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
261 
262 	/* schedule work on the private workqueue */
263 	queue_work(iavf_wq, &adapter->adminq_task);
264 
265 	return IRQ_HANDLED;
266 }
267 
268 /**
269  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
270  * @irq: interrupt number
271  * @data: pointer to a q_vector
272  **/
273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
274 {
275 	struct iavf_q_vector *q_vector = data;
276 
277 	if (!q_vector->tx.ring && !q_vector->rx.ring)
278 		return IRQ_HANDLED;
279 
280 	napi_schedule_irqoff(&q_vector->napi);
281 
282 	return IRQ_HANDLED;
283 }
284 
285 /**
286  * iavf_map_vector_to_rxq - associate irqs with rx queues
287  * @adapter: board private structure
288  * @v_idx: interrupt number
289  * @r_idx: queue number
290  **/
291 static void
292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
293 {
294 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
295 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
296 	struct iavf_hw *hw = &adapter->hw;
297 
298 	rx_ring->q_vector = q_vector;
299 	rx_ring->next = q_vector->rx.ring;
300 	rx_ring->vsi = &adapter->vsi;
301 	q_vector->rx.ring = rx_ring;
302 	q_vector->rx.count++;
303 	q_vector->rx.next_update = jiffies + 1;
304 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
305 	q_vector->ring_mask |= BIT(r_idx);
306 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
307 	     q_vector->rx.current_itr >> 1);
308 	q_vector->rx.current_itr = q_vector->rx.target_itr;
309 }
310 
311 /**
312  * iavf_map_vector_to_txq - associate irqs with tx queues
313  * @adapter: board private structure
314  * @v_idx: interrupt number
315  * @t_idx: queue number
316  **/
317 static void
318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
319 {
320 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
321 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
322 	struct iavf_hw *hw = &adapter->hw;
323 
324 	tx_ring->q_vector = q_vector;
325 	tx_ring->next = q_vector->tx.ring;
326 	tx_ring->vsi = &adapter->vsi;
327 	q_vector->tx.ring = tx_ring;
328 	q_vector->tx.count++;
329 	q_vector->tx.next_update = jiffies + 1;
330 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
331 	q_vector->num_ringpairs++;
332 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
333 	     q_vector->tx.target_itr >> 1);
334 	q_vector->tx.current_itr = q_vector->tx.target_itr;
335 }
336 
337 /**
338  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
339  * @adapter: board private structure to initialize
340  *
341  * This function maps descriptor rings to the queue-specific vectors
342  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
343  * one vector per ring/queue, but on a constrained vector budget, we
344  * group the rings as "efficiently" as possible.  You would add new
345  * mapping configurations in here.
346  **/
347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
348 {
349 	int rings_remaining = adapter->num_active_queues;
350 	int ridx = 0, vidx = 0;
351 	int q_vectors;
352 
353 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
354 
355 	for (; ridx < rings_remaining; ridx++) {
356 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
357 		iavf_map_vector_to_txq(adapter, vidx, ridx);
358 
359 		/* In the case where we have more queues than vectors, continue
360 		 * round-robin on vectors until all queues are mapped.
361 		 */
362 		if (++vidx >= q_vectors)
363 			vidx = 0;
364 	}
365 
366 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
367 }
368 
369 /**
370  * iavf_irq_affinity_notify - Callback for affinity changes
371  * @notify: context as to what irq was changed
372  * @mask: the new affinity mask
373  *
374  * This is a callback function used by the irq_set_affinity_notifier function
375  * so that we may register to receive changes to the irq affinity masks.
376  **/
377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
378 				     const cpumask_t *mask)
379 {
380 	struct iavf_q_vector *q_vector =
381 		container_of(notify, struct iavf_q_vector, affinity_notify);
382 
383 	cpumask_copy(&q_vector->affinity_mask, mask);
384 }
385 
386 /**
387  * iavf_irq_affinity_release - Callback for affinity notifier release
388  * @ref: internal core kernel usage
389  *
390  * This is a callback function used by the irq_set_affinity_notifier function
391  * to inform the current notification subscriber that they will no longer
392  * receive notifications.
393  **/
394 static void iavf_irq_affinity_release(struct kref *ref) {}
395 
396 /**
397  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
398  * @adapter: board private structure
399  * @basename: device basename
400  *
401  * Allocates MSI-X vectors for tx and rx handling, and requests
402  * interrupts from the kernel.
403  **/
404 static int
405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
406 {
407 	unsigned int vector, q_vectors;
408 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
409 	int irq_num, err;
410 	int cpu;
411 
412 	iavf_irq_disable(adapter);
413 	/* Decrement for Other and TCP Timer vectors */
414 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
415 
416 	for (vector = 0; vector < q_vectors; vector++) {
417 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
418 
419 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
420 
421 		if (q_vector->tx.ring && q_vector->rx.ring) {
422 			snprintf(q_vector->name, sizeof(q_vector->name),
423 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
424 			tx_int_idx++;
425 		} else if (q_vector->rx.ring) {
426 			snprintf(q_vector->name, sizeof(q_vector->name),
427 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
428 		} else if (q_vector->tx.ring) {
429 			snprintf(q_vector->name, sizeof(q_vector->name),
430 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
431 		} else {
432 			/* skip this unused q_vector */
433 			continue;
434 		}
435 		err = request_irq(irq_num,
436 				  iavf_msix_clean_rings,
437 				  0,
438 				  q_vector->name,
439 				  q_vector);
440 		if (err) {
441 			dev_info(&adapter->pdev->dev,
442 				 "Request_irq failed, error: %d\n", err);
443 			goto free_queue_irqs;
444 		}
445 		/* register for affinity change notifications */
446 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
447 		q_vector->affinity_notify.release =
448 						   iavf_irq_affinity_release;
449 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
450 		/* Spread the IRQ affinity hints across online CPUs. Note that
451 		 * get_cpu_mask returns a mask with a permanent lifetime so
452 		 * it's safe to use as a hint for irq_set_affinity_hint.
453 		 */
454 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
455 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
456 	}
457 
458 	return 0;
459 
460 free_queue_irqs:
461 	while (vector) {
462 		vector--;
463 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
464 		irq_set_affinity_notifier(irq_num, NULL);
465 		irq_set_affinity_hint(irq_num, NULL);
466 		free_irq(irq_num, &adapter->q_vectors[vector]);
467 	}
468 	return err;
469 }
470 
471 /**
472  * iavf_request_misc_irq - Initialize MSI-X interrupts
473  * @adapter: board private structure
474  *
475  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
476  * vector is only for the admin queue, and stays active even when the netdev
477  * is closed.
478  **/
479 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
480 {
481 	struct net_device *netdev = adapter->netdev;
482 	int err;
483 
484 	snprintf(adapter->misc_vector_name,
485 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
486 		 dev_name(&adapter->pdev->dev));
487 	err = request_irq(adapter->msix_entries[0].vector,
488 			  &iavf_msix_aq, 0,
489 			  adapter->misc_vector_name, netdev);
490 	if (err) {
491 		dev_err(&adapter->pdev->dev,
492 			"request_irq for %s failed: %d\n",
493 			adapter->misc_vector_name, err);
494 		free_irq(adapter->msix_entries[0].vector, netdev);
495 	}
496 	return err;
497 }
498 
499 /**
500  * iavf_free_traffic_irqs - Free MSI-X interrupts
501  * @adapter: board private structure
502  *
503  * Frees all MSI-X vectors other than 0.
504  **/
505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
506 {
507 	int vector, irq_num, q_vectors;
508 
509 	if (!adapter->msix_entries)
510 		return;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (vector = 0; vector < q_vectors; vector++) {
515 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
516 		irq_set_affinity_notifier(irq_num, NULL);
517 		irq_set_affinity_hint(irq_num, NULL);
518 		free_irq(irq_num, &adapter->q_vectors[vector]);
519 	}
520 }
521 
522 /**
523  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
524  * @adapter: board private structure
525  *
526  * Frees MSI-X vector 0.
527  **/
528 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
529 {
530 	struct net_device *netdev = adapter->netdev;
531 
532 	if (!adapter->msix_entries)
533 		return;
534 
535 	free_irq(adapter->msix_entries[0].vector, netdev);
536 }
537 
538 /**
539  * iavf_configure_tx - Configure Transmit Unit after Reset
540  * @adapter: board private structure
541  *
542  * Configure the Tx unit of the MAC after a reset.
543  **/
544 static void iavf_configure_tx(struct iavf_adapter *adapter)
545 {
546 	struct iavf_hw *hw = &adapter->hw;
547 	int i;
548 
549 	for (i = 0; i < adapter->num_active_queues; i++)
550 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
551 }
552 
553 /**
554  * iavf_configure_rx - Configure Receive Unit after Reset
555  * @adapter: board private structure
556  *
557  * Configure the Rx unit of the MAC after a reset.
558  **/
559 static void iavf_configure_rx(struct iavf_adapter *adapter)
560 {
561 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
562 	struct iavf_hw *hw = &adapter->hw;
563 	int i;
564 
565 	/* Legacy Rx will always default to a 2048 buffer size. */
566 #if (PAGE_SIZE < 8192)
567 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
568 		struct net_device *netdev = adapter->netdev;
569 
570 		/* For jumbo frames on systems with 4K pages we have to use
571 		 * an order 1 page, so we might as well increase the size
572 		 * of our Rx buffer to make better use of the available space
573 		 */
574 		rx_buf_len = IAVF_RXBUFFER_3072;
575 
576 		/* We use a 1536 buffer size for configurations with
577 		 * standard Ethernet mtu.  On x86 this gives us enough room
578 		 * for shared info and 192 bytes of padding.
579 		 */
580 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
581 		    (netdev->mtu <= ETH_DATA_LEN))
582 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
583 	}
584 #endif
585 
586 	for (i = 0; i < adapter->num_active_queues; i++) {
587 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
588 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
589 
590 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
591 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
592 		else
593 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
594 	}
595 }
596 
597 /**
598  * iavf_find_vlan - Search filter list for specific vlan filter
599  * @adapter: board private structure
600  * @vlan: vlan tag
601  *
602  * Returns ptr to the filter object or NULL. Must be called while holding the
603  * mac_vlan_list_lock.
604  **/
605 static struct
606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
607 {
608 	struct iavf_vlan_filter *f;
609 
610 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
611 		if (vlan == f->vlan)
612 			return f;
613 	}
614 	return NULL;
615 }
616 
617 /**
618  * iavf_add_vlan - Add a vlan filter to the list
619  * @adapter: board private structure
620  * @vlan: VLAN tag
621  *
622  * Returns ptr to the filter object or NULL when no memory available.
623  **/
624 static struct
625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
626 {
627 	struct iavf_vlan_filter *f = NULL;
628 
629 	spin_lock_bh(&adapter->mac_vlan_list_lock);
630 
631 	f = iavf_find_vlan(adapter, vlan);
632 	if (!f) {
633 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
634 		if (!f)
635 			goto clearout;
636 
637 		f->vlan = vlan;
638 
639 		list_add_tail(&f->list, &adapter->vlan_filter_list);
640 		f->add = true;
641 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
642 	}
643 
644 clearout:
645 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
646 	return f;
647 }
648 
649 /**
650  * iavf_del_vlan - Remove a vlan filter from the list
651  * @adapter: board private structure
652  * @vlan: VLAN tag
653  **/
654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
655 {
656 	struct iavf_vlan_filter *f;
657 
658 	spin_lock_bh(&adapter->mac_vlan_list_lock);
659 
660 	f = iavf_find_vlan(adapter, vlan);
661 	if (f) {
662 		f->remove = true;
663 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
664 	}
665 
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 }
668 
669 /**
670  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
671  * @netdev: network device struct
672  * @proto: unused protocol data
673  * @vid: VLAN tag
674  **/
675 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
676 				__always_unused __be16 proto, u16 vid)
677 {
678 	struct iavf_adapter *adapter = netdev_priv(netdev);
679 
680 	if (!VLAN_ALLOWED(adapter))
681 		return -EIO;
682 	if (iavf_add_vlan(adapter, vid) == NULL)
683 		return -ENOMEM;
684 	return 0;
685 }
686 
687 /**
688  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
689  * @netdev: network device struct
690  * @proto: unused protocol data
691  * @vid: VLAN tag
692  **/
693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
694 				 __always_unused __be16 proto, u16 vid)
695 {
696 	struct iavf_adapter *adapter = netdev_priv(netdev);
697 
698 	if (VLAN_ALLOWED(adapter)) {
699 		iavf_del_vlan(adapter, vid);
700 		return 0;
701 	}
702 	return -EIO;
703 }
704 
705 /**
706  * iavf_find_filter - Search filter list for specific mac filter
707  * @adapter: board private structure
708  * @macaddr: the MAC address
709  *
710  * Returns ptr to the filter object or NULL. Must be called while holding the
711  * mac_vlan_list_lock.
712  **/
713 static struct
714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
715 				  const u8 *macaddr)
716 {
717 	struct iavf_mac_filter *f;
718 
719 	if (!macaddr)
720 		return NULL;
721 
722 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
723 		if (ether_addr_equal(macaddr, f->macaddr))
724 			return f;
725 	}
726 	return NULL;
727 }
728 
729 /**
730  * iavf_add_filter - Add a mac filter to the filter list
731  * @adapter: board private structure
732  * @macaddr: the MAC address
733  *
734  * Returns ptr to the filter object or NULL when no memory available.
735  **/
736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
737 					const u8 *macaddr)
738 {
739 	struct iavf_mac_filter *f;
740 
741 	if (!macaddr)
742 		return NULL;
743 
744 	f = iavf_find_filter(adapter, macaddr);
745 	if (!f) {
746 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
747 		if (!f)
748 			return f;
749 
750 		ether_addr_copy(f->macaddr, macaddr);
751 
752 		list_add_tail(&f->list, &adapter->mac_filter_list);
753 		f->add = true;
754 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
755 	} else {
756 		f->remove = false;
757 	}
758 
759 	return f;
760 }
761 
762 /**
763  * iavf_set_mac - NDO callback to set port mac address
764  * @netdev: network interface device structure
765  * @p: pointer to an address structure
766  *
767  * Returns 0 on success, negative on failure
768  **/
769 static int iavf_set_mac(struct net_device *netdev, void *p)
770 {
771 	struct iavf_adapter *adapter = netdev_priv(netdev);
772 	struct iavf_hw *hw = &adapter->hw;
773 	struct iavf_mac_filter *f;
774 	struct sockaddr *addr = p;
775 
776 	if (!is_valid_ether_addr(addr->sa_data))
777 		return -EADDRNOTAVAIL;
778 
779 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
780 		return 0;
781 
782 	spin_lock_bh(&adapter->mac_vlan_list_lock);
783 
784 	f = iavf_find_filter(adapter, hw->mac.addr);
785 	if (f) {
786 		f->remove = true;
787 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
788 	}
789 
790 	f = iavf_add_filter(adapter, addr->sa_data);
791 
792 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
793 
794 	if (f) {
795 		ether_addr_copy(hw->mac.addr, addr->sa_data);
796 	}
797 
798 	return (f == NULL) ? -ENOMEM : 0;
799 }
800 
801 /**
802  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
803  * @netdev: the netdevice
804  * @addr: address to add
805  *
806  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
807  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
808  */
809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
810 {
811 	struct iavf_adapter *adapter = netdev_priv(netdev);
812 
813 	if (iavf_add_filter(adapter, addr))
814 		return 0;
815 	else
816 		return -ENOMEM;
817 }
818 
819 /**
820  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
821  * @netdev: the netdevice
822  * @addr: address to add
823  *
824  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
825  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
826  */
827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
828 {
829 	struct iavf_adapter *adapter = netdev_priv(netdev);
830 	struct iavf_mac_filter *f;
831 
832 	/* Under some circumstances, we might receive a request to delete
833 	 * our own device address from our uc list. Because we store the
834 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
835 	 * such requests and not delete our device address from this list.
836 	 */
837 	if (ether_addr_equal(addr, netdev->dev_addr))
838 		return 0;
839 
840 	f = iavf_find_filter(adapter, addr);
841 	if (f) {
842 		f->remove = true;
843 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
844 	}
845 	return 0;
846 }
847 
848 /**
849  * iavf_set_rx_mode - NDO callback to set the netdev filters
850  * @netdev: network interface device structure
851  **/
852 static void iavf_set_rx_mode(struct net_device *netdev)
853 {
854 	struct iavf_adapter *adapter = netdev_priv(netdev);
855 
856 	spin_lock_bh(&adapter->mac_vlan_list_lock);
857 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
859 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
860 
861 	if (netdev->flags & IFF_PROMISC &&
862 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
863 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
864 	else if (!(netdev->flags & IFF_PROMISC) &&
865 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
866 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
867 
868 	if (netdev->flags & IFF_ALLMULTI &&
869 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
870 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
871 	else if (!(netdev->flags & IFF_ALLMULTI) &&
872 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
873 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
874 }
875 
876 /**
877  * iavf_napi_enable_all - enable NAPI on all queue vectors
878  * @adapter: board private structure
879  **/
880 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
881 {
882 	int q_idx;
883 	struct iavf_q_vector *q_vector;
884 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
885 
886 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
887 		struct napi_struct *napi;
888 
889 		q_vector = &adapter->q_vectors[q_idx];
890 		napi = &q_vector->napi;
891 		napi_enable(napi);
892 	}
893 }
894 
895 /**
896  * iavf_napi_disable_all - disable NAPI on all queue vectors
897  * @adapter: board private structure
898  **/
899 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
900 {
901 	int q_idx;
902 	struct iavf_q_vector *q_vector;
903 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
904 
905 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
906 		q_vector = &adapter->q_vectors[q_idx];
907 		napi_disable(&q_vector->napi);
908 	}
909 }
910 
911 /**
912  * iavf_configure - set up transmit and receive data structures
913  * @adapter: board private structure
914  **/
915 static void iavf_configure(struct iavf_adapter *adapter)
916 {
917 	struct net_device *netdev = adapter->netdev;
918 	int i;
919 
920 	iavf_set_rx_mode(netdev);
921 
922 	iavf_configure_tx(adapter);
923 	iavf_configure_rx(adapter);
924 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
925 
926 	for (i = 0; i < adapter->num_active_queues; i++) {
927 		struct iavf_ring *ring = &adapter->rx_rings[i];
928 
929 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
930 	}
931 }
932 
933 /**
934  * iavf_up_complete - Finish the last steps of bringing up a connection
935  * @adapter: board private structure
936  *
937  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
938  **/
939 static void iavf_up_complete(struct iavf_adapter *adapter)
940 {
941 	adapter->state = __IAVF_RUNNING;
942 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
943 
944 	iavf_napi_enable_all(adapter);
945 
946 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
947 	if (CLIENT_ENABLED(adapter))
948 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
949 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
950 }
951 
952 /**
953  * iavf_down - Shutdown the connection processing
954  * @adapter: board private structure
955  *
956  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
957  **/
958 void iavf_down(struct iavf_adapter *adapter)
959 {
960 	struct net_device *netdev = adapter->netdev;
961 	struct iavf_vlan_filter *vlf;
962 	struct iavf_mac_filter *f;
963 	struct iavf_cloud_filter *cf;
964 
965 	if (adapter->state <= __IAVF_DOWN_PENDING)
966 		return;
967 
968 	netif_carrier_off(netdev);
969 	netif_tx_disable(netdev);
970 	adapter->link_up = false;
971 	iavf_napi_disable_all(adapter);
972 	iavf_irq_disable(adapter);
973 
974 	spin_lock_bh(&adapter->mac_vlan_list_lock);
975 
976 	/* clear the sync flag on all filters */
977 	__dev_uc_unsync(adapter->netdev, NULL);
978 	__dev_mc_unsync(adapter->netdev, NULL);
979 
980 	/* remove all MAC filters */
981 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
982 		f->remove = true;
983 	}
984 
985 	/* remove all VLAN filters */
986 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
987 		vlf->remove = true;
988 	}
989 
990 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
991 
992 	/* remove all cloud filters */
993 	spin_lock_bh(&adapter->cloud_filter_list_lock);
994 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
995 		cf->del = true;
996 	}
997 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
998 
999 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1000 	    adapter->state != __IAVF_RESETTING) {
1001 		/* cancel any current operation */
1002 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1003 		/* Schedule operations to close down the HW. Don't wait
1004 		 * here for this to complete. The watchdog is still running
1005 		 * and it will take care of this.
1006 		 */
1007 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1009 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1010 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1011 	}
1012 
1013 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1014 }
1015 
1016 /**
1017  * iavf_acquire_msix_vectors - Setup the MSIX capability
1018  * @adapter: board private structure
1019  * @vectors: number of vectors to request
1020  *
1021  * Work with the OS to set up the MSIX vectors needed.
1022  *
1023  * Returns 0 on success, negative on failure
1024  **/
1025 static int
1026 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1027 {
1028 	int err, vector_threshold;
1029 
1030 	/* We'll want at least 3 (vector_threshold):
1031 	 * 0) Other (Admin Queue and link, mostly)
1032 	 * 1) TxQ[0] Cleanup
1033 	 * 2) RxQ[0] Cleanup
1034 	 */
1035 	vector_threshold = MIN_MSIX_COUNT;
1036 
1037 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1038 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1039 	 * Right now, we simply care about how many we'll get; we'll
1040 	 * set them up later while requesting irq's.
1041 	 */
1042 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1043 				    vector_threshold, vectors);
1044 	if (err < 0) {
1045 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1046 		kfree(adapter->msix_entries);
1047 		adapter->msix_entries = NULL;
1048 		return err;
1049 	}
1050 
1051 	/* Adjust for only the vectors we'll use, which is minimum
1052 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1053 	 * vectors we were allocated.
1054 	 */
1055 	adapter->num_msix_vectors = err;
1056 	return 0;
1057 }
1058 
1059 /**
1060  * iavf_free_queues - Free memory for all rings
1061  * @adapter: board private structure to initialize
1062  *
1063  * Free all of the memory associated with queue pairs.
1064  **/
1065 static void iavf_free_queues(struct iavf_adapter *adapter)
1066 {
1067 	if (!adapter->vsi_res)
1068 		return;
1069 	adapter->num_active_queues = 0;
1070 	kfree(adapter->tx_rings);
1071 	adapter->tx_rings = NULL;
1072 	kfree(adapter->rx_rings);
1073 	adapter->rx_rings = NULL;
1074 }
1075 
1076 /**
1077  * iavf_alloc_queues - Allocate memory for all rings
1078  * @adapter: board private structure to initialize
1079  *
1080  * We allocate one ring per queue at run-time since we don't know the
1081  * number of queues at compile-time.  The polling_netdev array is
1082  * intended for Multiqueue, but should work fine with a single queue.
1083  **/
1084 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1085 {
1086 	int i, num_active_queues;
1087 
1088 	/* If we're in reset reallocating queues we don't actually know yet for
1089 	 * certain the PF gave us the number of queues we asked for but we'll
1090 	 * assume it did.  Once basic reset is finished we'll confirm once we
1091 	 * start negotiating config with PF.
1092 	 */
1093 	if (adapter->num_req_queues)
1094 		num_active_queues = adapter->num_req_queues;
1095 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1096 		 adapter->num_tc)
1097 		num_active_queues = adapter->ch_config.total_qps;
1098 	else
1099 		num_active_queues = min_t(int,
1100 					  adapter->vsi_res->num_queue_pairs,
1101 					  (int)(num_online_cpus()));
1102 
1103 
1104 	adapter->tx_rings = kcalloc(num_active_queues,
1105 				    sizeof(struct iavf_ring), GFP_KERNEL);
1106 	if (!adapter->tx_rings)
1107 		goto err_out;
1108 	adapter->rx_rings = kcalloc(num_active_queues,
1109 				    sizeof(struct iavf_ring), GFP_KERNEL);
1110 	if (!adapter->rx_rings)
1111 		goto err_out;
1112 
1113 	for (i = 0; i < num_active_queues; i++) {
1114 		struct iavf_ring *tx_ring;
1115 		struct iavf_ring *rx_ring;
1116 
1117 		tx_ring = &adapter->tx_rings[i];
1118 
1119 		tx_ring->queue_index = i;
1120 		tx_ring->netdev = adapter->netdev;
1121 		tx_ring->dev = &adapter->pdev->dev;
1122 		tx_ring->count = adapter->tx_desc_count;
1123 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1124 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1125 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1126 
1127 		rx_ring = &adapter->rx_rings[i];
1128 		rx_ring->queue_index = i;
1129 		rx_ring->netdev = adapter->netdev;
1130 		rx_ring->dev = &adapter->pdev->dev;
1131 		rx_ring->count = adapter->rx_desc_count;
1132 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1133 	}
1134 
1135 	adapter->num_active_queues = num_active_queues;
1136 
1137 	return 0;
1138 
1139 err_out:
1140 	iavf_free_queues(adapter);
1141 	return -ENOMEM;
1142 }
1143 
1144 /**
1145  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1146  * @adapter: board private structure to initialize
1147  *
1148  * Attempt to configure the interrupts using the best available
1149  * capabilities of the hardware and the kernel.
1150  **/
1151 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1152 {
1153 	int vector, v_budget;
1154 	int pairs = 0;
1155 	int err = 0;
1156 
1157 	if (!adapter->vsi_res) {
1158 		err = -EIO;
1159 		goto out;
1160 	}
1161 	pairs = adapter->num_active_queues;
1162 
1163 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1164 	 * us much good if we have more vectors than CPUs. However, we already
1165 	 * limit the total number of queues by the number of CPUs so we do not
1166 	 * need any further limiting here.
1167 	 */
1168 	v_budget = min_t(int, pairs + NONQ_VECS,
1169 			 (int)adapter->vf_res->max_vectors);
1170 
1171 	adapter->msix_entries = kcalloc(v_budget,
1172 					sizeof(struct msix_entry), GFP_KERNEL);
1173 	if (!adapter->msix_entries) {
1174 		err = -ENOMEM;
1175 		goto out;
1176 	}
1177 
1178 	for (vector = 0; vector < v_budget; vector++)
1179 		adapter->msix_entries[vector].entry = vector;
1180 
1181 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1182 
1183 out:
1184 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1185 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1186 	return err;
1187 }
1188 
1189 /**
1190  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1191  * @adapter: board private structure
1192  *
1193  * Return 0 on success, negative on failure
1194  **/
1195 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1196 {
1197 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1198 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1199 	struct iavf_hw *hw = &adapter->hw;
1200 	int ret = 0;
1201 
1202 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1203 		/* bail because we already have a command pending */
1204 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1205 			adapter->current_op);
1206 		return -EBUSY;
1207 	}
1208 
1209 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1210 	if (ret) {
1211 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1212 			iavf_stat_str(hw, ret),
1213 			iavf_aq_str(hw, hw->aq.asq_last_status));
1214 		return ret;
1215 
1216 	}
1217 
1218 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1219 				  adapter->rss_lut, adapter->rss_lut_size);
1220 	if (ret) {
1221 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1222 			iavf_stat_str(hw, ret),
1223 			iavf_aq_str(hw, hw->aq.asq_last_status));
1224 	}
1225 
1226 	return ret;
1227 
1228 }
1229 
1230 /**
1231  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1232  * @adapter: board private structure
1233  *
1234  * Returns 0 on success, negative on failure
1235  **/
1236 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1237 {
1238 	struct iavf_hw *hw = &adapter->hw;
1239 	u32 *dw;
1240 	u16 i;
1241 
1242 	dw = (u32 *)adapter->rss_key;
1243 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1244 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1245 
1246 	dw = (u32 *)adapter->rss_lut;
1247 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1248 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1249 
1250 	iavf_flush(hw);
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * iavf_config_rss - Configure RSS keys and lut
1257  * @adapter: board private structure
1258  *
1259  * Returns 0 on success, negative on failure
1260  **/
1261 int iavf_config_rss(struct iavf_adapter *adapter)
1262 {
1263 
1264 	if (RSS_PF(adapter)) {
1265 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1266 					IAVF_FLAG_AQ_SET_RSS_KEY;
1267 		return 0;
1268 	} else if (RSS_AQ(adapter)) {
1269 		return iavf_config_rss_aq(adapter);
1270 	} else {
1271 		return iavf_config_rss_reg(adapter);
1272 	}
1273 }
1274 
1275 /**
1276  * iavf_fill_rss_lut - Fill the lut with default values
1277  * @adapter: board private structure
1278  **/
1279 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1280 {
1281 	u16 i;
1282 
1283 	for (i = 0; i < adapter->rss_lut_size; i++)
1284 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1285 }
1286 
1287 /**
1288  * iavf_init_rss - Prepare for RSS
1289  * @adapter: board private structure
1290  *
1291  * Return 0 on success, negative on failure
1292  **/
1293 static int iavf_init_rss(struct iavf_adapter *adapter)
1294 {
1295 	struct iavf_hw *hw = &adapter->hw;
1296 	int ret;
1297 
1298 	if (!RSS_PF(adapter)) {
1299 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1300 		if (adapter->vf_res->vf_cap_flags &
1301 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1302 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1303 		else
1304 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1305 
1306 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1307 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1308 	}
1309 
1310 	iavf_fill_rss_lut(adapter);
1311 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1312 	ret = iavf_config_rss(adapter);
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one q_vector per queue interrupt.  If allocation fails we
1322  * return -ENOMEM.
1323  **/
1324 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1325 {
1326 	int q_idx = 0, num_q_vectors;
1327 	struct iavf_q_vector *q_vector;
1328 
1329 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1330 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1331 				     GFP_KERNEL);
1332 	if (!adapter->q_vectors)
1333 		return -ENOMEM;
1334 
1335 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1336 		q_vector = &adapter->q_vectors[q_idx];
1337 		q_vector->adapter = adapter;
1338 		q_vector->vsi = &adapter->vsi;
1339 		q_vector->v_idx = q_idx;
1340 		q_vector->reg_idx = q_idx;
1341 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1342 		netif_napi_add(adapter->netdev, &q_vector->napi,
1343 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1351  * @adapter: board private structure to initialize
1352  *
1353  * This function frees the memory allocated to the q_vectors.  In addition if
1354  * NAPI is enabled it will delete any references to the NAPI struct prior
1355  * to freeing the q_vector.
1356  **/
1357 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1358 {
1359 	int q_idx, num_q_vectors;
1360 	int napi_vectors;
1361 
1362 	if (!adapter->q_vectors)
1363 		return;
1364 
1365 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1366 	napi_vectors = adapter->num_active_queues;
1367 
1368 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1369 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1370 
1371 		if (q_idx < napi_vectors)
1372 			netif_napi_del(&q_vector->napi);
1373 	}
1374 	kfree(adapter->q_vectors);
1375 	adapter->q_vectors = NULL;
1376 }
1377 
1378 /**
1379  * iavf_reset_interrupt_capability - Reset MSIX setup
1380  * @adapter: board private structure
1381  *
1382  **/
1383 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1384 {
1385 	if (!adapter->msix_entries)
1386 		return;
1387 
1388 	pci_disable_msix(adapter->pdev);
1389 	kfree(adapter->msix_entries);
1390 	adapter->msix_entries = NULL;
1391 }
1392 
1393 /**
1394  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1395  * @adapter: board private structure to initialize
1396  *
1397  **/
1398 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1399 {
1400 	int err;
1401 
1402 	err = iavf_alloc_queues(adapter);
1403 	if (err) {
1404 		dev_err(&adapter->pdev->dev,
1405 			"Unable to allocate memory for queues\n");
1406 		goto err_alloc_queues;
1407 	}
1408 
1409 	rtnl_lock();
1410 	err = iavf_set_interrupt_capability(adapter);
1411 	rtnl_unlock();
1412 	if (err) {
1413 		dev_err(&adapter->pdev->dev,
1414 			"Unable to setup interrupt capabilities\n");
1415 		goto err_set_interrupt;
1416 	}
1417 
1418 	err = iavf_alloc_q_vectors(adapter);
1419 	if (err) {
1420 		dev_err(&adapter->pdev->dev,
1421 			"Unable to allocate memory for queue vectors\n");
1422 		goto err_alloc_q_vectors;
1423 	}
1424 
1425 	/* If we've made it so far while ADq flag being ON, then we haven't
1426 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1427 	 * resources have been allocated in the reset path.
1428 	 * Now we can truly claim that ADq is enabled.
1429 	 */
1430 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1431 	    adapter->num_tc)
1432 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1433 			 adapter->num_tc);
1434 
1435 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1436 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1437 		 adapter->num_active_queues);
1438 
1439 	return 0;
1440 err_alloc_q_vectors:
1441 	iavf_reset_interrupt_capability(adapter);
1442 err_set_interrupt:
1443 	iavf_free_queues(adapter);
1444 err_alloc_queues:
1445 	return err;
1446 }
1447 
1448 /**
1449  * iavf_free_rss - Free memory used by RSS structs
1450  * @adapter: board private structure
1451  **/
1452 static void iavf_free_rss(struct iavf_adapter *adapter)
1453 {
1454 	kfree(adapter->rss_key);
1455 	adapter->rss_key = NULL;
1456 
1457 	kfree(adapter->rss_lut);
1458 	adapter->rss_lut = NULL;
1459 }
1460 
1461 /**
1462  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1463  * @adapter: board private structure
1464  *
1465  * Returns 0 on success, negative on failure
1466  **/
1467 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1468 {
1469 	struct net_device *netdev = adapter->netdev;
1470 	int err;
1471 
1472 	if (netif_running(netdev))
1473 		iavf_free_traffic_irqs(adapter);
1474 	iavf_free_misc_irq(adapter);
1475 	iavf_reset_interrupt_capability(adapter);
1476 	iavf_free_q_vectors(adapter);
1477 	iavf_free_queues(adapter);
1478 
1479 	err =  iavf_init_interrupt_scheme(adapter);
1480 	if (err)
1481 		goto err;
1482 
1483 	netif_tx_stop_all_queues(netdev);
1484 
1485 	err = iavf_request_misc_irq(adapter);
1486 	if (err)
1487 		goto err;
1488 
1489 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1490 
1491 	iavf_map_rings_to_vectors(adapter);
1492 
1493 	if (RSS_AQ(adapter))
1494 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1495 	else
1496 		err = iavf_init_rss(adapter);
1497 err:
1498 	return err;
1499 }
1500 
1501 /**
1502  * iavf_process_aq_command - process aq_required flags
1503  * and sends aq command
1504  * @adapter: pointer to iavf adapter structure
1505  *
1506  * Returns 0 on success
1507  * Returns error code if no command was sent
1508  * or error code if the command failed.
1509  **/
1510 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1511 {
1512 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1513 		return iavf_send_vf_config_msg(adapter);
1514 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1515 		iavf_disable_queues(adapter);
1516 		return 0;
1517 	}
1518 
1519 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1520 		iavf_map_queues(adapter);
1521 		return 0;
1522 	}
1523 
1524 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1525 		iavf_add_ether_addrs(adapter);
1526 		return 0;
1527 	}
1528 
1529 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1530 		iavf_add_vlans(adapter);
1531 		return 0;
1532 	}
1533 
1534 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1535 		iavf_del_ether_addrs(adapter);
1536 		return 0;
1537 	}
1538 
1539 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1540 		iavf_del_vlans(adapter);
1541 		return 0;
1542 	}
1543 
1544 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1545 		iavf_enable_vlan_stripping(adapter);
1546 		return 0;
1547 	}
1548 
1549 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1550 		iavf_disable_vlan_stripping(adapter);
1551 		return 0;
1552 	}
1553 
1554 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1555 		iavf_configure_queues(adapter);
1556 		return 0;
1557 	}
1558 
1559 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1560 		iavf_enable_queues(adapter);
1561 		return 0;
1562 	}
1563 
1564 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1565 		/* This message goes straight to the firmware, not the
1566 		 * PF, so we don't have to set current_op as we will
1567 		 * not get a response through the ARQ.
1568 		 */
1569 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1570 		return 0;
1571 	}
1572 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1573 		iavf_get_hena(adapter);
1574 		return 0;
1575 	}
1576 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1577 		iavf_set_hena(adapter);
1578 		return 0;
1579 	}
1580 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1581 		iavf_set_rss_key(adapter);
1582 		return 0;
1583 	}
1584 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1585 		iavf_set_rss_lut(adapter);
1586 		return 0;
1587 	}
1588 
1589 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1590 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1591 				       FLAG_VF_MULTICAST_PROMISC);
1592 		return 0;
1593 	}
1594 
1595 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1596 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1597 		return 0;
1598 	}
1599 
1600 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1601 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1602 		iavf_set_promiscuous(adapter, 0);
1603 		return 0;
1604 	}
1605 
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1607 		iavf_enable_channels(adapter);
1608 		return 0;
1609 	}
1610 
1611 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1612 		iavf_disable_channels(adapter);
1613 		return 0;
1614 	}
1615 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1616 		iavf_add_cloud_filter(adapter);
1617 		return 0;
1618 	}
1619 
1620 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1621 		iavf_del_cloud_filter(adapter);
1622 		return 0;
1623 	}
1624 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1625 		iavf_del_cloud_filter(adapter);
1626 		return 0;
1627 	}
1628 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1629 		iavf_add_cloud_filter(adapter);
1630 		return 0;
1631 	}
1632 	return -EAGAIN;
1633 }
1634 
1635 /**
1636  * iavf_startup - first step of driver startup
1637  * @adapter: board private structure
1638  *
1639  * Function process __IAVF_STARTUP driver state.
1640  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1641  * when fails it returns -EAGAIN
1642  **/
1643 static int iavf_startup(struct iavf_adapter *adapter)
1644 {
1645 	struct pci_dev *pdev = adapter->pdev;
1646 	struct iavf_hw *hw = &adapter->hw;
1647 	int err;
1648 
1649 	WARN_ON(adapter->state != __IAVF_STARTUP);
1650 
1651 	/* driver loaded, probe complete */
1652 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1653 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1654 	err = iavf_set_mac_type(hw);
1655 	if (err) {
1656 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1657 		goto err;
1658 	}
1659 
1660 	err = iavf_check_reset_complete(hw);
1661 	if (err) {
1662 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1663 			 err);
1664 		goto err;
1665 	}
1666 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1667 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1668 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1670 
1671 	err = iavf_init_adminq(hw);
1672 	if (err) {
1673 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1674 		goto err;
1675 	}
1676 	err = iavf_send_api_ver(adapter);
1677 	if (err) {
1678 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1679 		iavf_shutdown_adminq(hw);
1680 		goto err;
1681 	}
1682 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1683 err:
1684 	return err;
1685 }
1686 
1687 /**
1688  * iavf_init_version_check - second step of driver startup
1689  * @adapter: board private structure
1690  *
1691  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1692  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1693  * when fails it returns -EAGAIN
1694  **/
1695 static int iavf_init_version_check(struct iavf_adapter *adapter)
1696 {
1697 	struct pci_dev *pdev = adapter->pdev;
1698 	struct iavf_hw *hw = &adapter->hw;
1699 	int err = -EAGAIN;
1700 
1701 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1702 
1703 	if (!iavf_asq_done(hw)) {
1704 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1705 		iavf_shutdown_adminq(hw);
1706 		adapter->state = __IAVF_STARTUP;
1707 		goto err;
1708 	}
1709 
1710 	/* aq msg sent, awaiting reply */
1711 	err = iavf_verify_api_ver(adapter);
1712 	if (err) {
1713 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1714 			err = iavf_send_api_ver(adapter);
1715 		else
1716 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1717 				adapter->pf_version.major,
1718 				adapter->pf_version.minor,
1719 				VIRTCHNL_VERSION_MAJOR,
1720 				VIRTCHNL_VERSION_MINOR);
1721 		goto err;
1722 	}
1723 	err = iavf_send_vf_config_msg(adapter);
1724 	if (err) {
1725 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1726 			err);
1727 		goto err;
1728 	}
1729 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1730 
1731 err:
1732 	return err;
1733 }
1734 
1735 /**
1736  * iavf_init_get_resources - third step of driver startup
1737  * @adapter: board private structure
1738  *
1739  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1740  * finishes driver initialization procedure.
1741  * When success the state is changed to __IAVF_DOWN
1742  * when fails it returns -EAGAIN
1743  **/
1744 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1745 {
1746 	struct net_device *netdev = adapter->netdev;
1747 	struct pci_dev *pdev = adapter->pdev;
1748 	struct iavf_hw *hw = &adapter->hw;
1749 	int err;
1750 
1751 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1752 	/* aq msg sent, awaiting reply */
1753 	if (!adapter->vf_res) {
1754 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1755 					  GFP_KERNEL);
1756 		if (!adapter->vf_res) {
1757 			err = -ENOMEM;
1758 			goto err;
1759 		}
1760 	}
1761 	err = iavf_get_vf_config(adapter);
1762 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1763 		err = iavf_send_vf_config_msg(adapter);
1764 		goto err;
1765 	} else if (err == IAVF_ERR_PARAM) {
1766 		/* We only get ERR_PARAM if the device is in a very bad
1767 		 * state or if we've been disabled for previous bad
1768 		 * behavior. Either way, we're done now.
1769 		 */
1770 		iavf_shutdown_adminq(hw);
1771 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1772 		return 0;
1773 	}
1774 	if (err) {
1775 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1776 		goto err_alloc;
1777 	}
1778 
1779 	if (iavf_process_config(adapter))
1780 		goto err_alloc;
1781 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1782 
1783 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1784 
1785 	netdev->netdev_ops = &iavf_netdev_ops;
1786 	iavf_set_ethtool_ops(netdev);
1787 	netdev->watchdog_timeo = 5 * HZ;
1788 
1789 	/* MTU range: 68 - 9710 */
1790 	netdev->min_mtu = ETH_MIN_MTU;
1791 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1792 
1793 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1794 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1795 			 adapter->hw.mac.addr);
1796 		eth_hw_addr_random(netdev);
1797 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1798 	} else {
1799 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1800 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1801 	}
1802 
1803 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1804 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1805 	err = iavf_init_interrupt_scheme(adapter);
1806 	if (err)
1807 		goto err_sw_init;
1808 	iavf_map_rings_to_vectors(adapter);
1809 	if (adapter->vf_res->vf_cap_flags &
1810 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1811 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1812 
1813 	err = iavf_request_misc_irq(adapter);
1814 	if (err)
1815 		goto err_sw_init;
1816 
1817 	netif_carrier_off(netdev);
1818 	adapter->link_up = false;
1819 
1820 	/* set the semaphore to prevent any callbacks after device registration
1821 	 * up to time when state of driver will be set to __IAVF_DOWN
1822 	 */
1823 	rtnl_lock();
1824 	if (!adapter->netdev_registered) {
1825 		err = register_netdevice(netdev);
1826 		if (err) {
1827 			rtnl_unlock();
1828 			goto err_register;
1829 		}
1830 	}
1831 
1832 	adapter->netdev_registered = true;
1833 
1834 	netif_tx_stop_all_queues(netdev);
1835 	if (CLIENT_ALLOWED(adapter)) {
1836 		err = iavf_lan_add_device(adapter);
1837 		if (err) {
1838 			rtnl_unlock();
1839 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1840 				 err);
1841 		}
1842 	}
1843 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1844 	if (netdev->features & NETIF_F_GRO)
1845 		dev_info(&pdev->dev, "GRO is enabled\n");
1846 
1847 	adapter->state = __IAVF_DOWN;
1848 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1849 	rtnl_unlock();
1850 
1851 	iavf_misc_irq_enable(adapter);
1852 	wake_up(&adapter->down_waitqueue);
1853 
1854 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1855 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1856 	if (!adapter->rss_key || !adapter->rss_lut) {
1857 		err = -ENOMEM;
1858 		goto err_mem;
1859 	}
1860 	if (RSS_AQ(adapter))
1861 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1862 	else
1863 		iavf_init_rss(adapter);
1864 
1865 	return err;
1866 err_mem:
1867 	iavf_free_rss(adapter);
1868 err_register:
1869 	iavf_free_misc_irq(adapter);
1870 err_sw_init:
1871 	iavf_reset_interrupt_capability(adapter);
1872 err_alloc:
1873 	kfree(adapter->vf_res);
1874 	adapter->vf_res = NULL;
1875 err:
1876 	return err;
1877 }
1878 
1879 /**
1880  * iavf_watchdog_task - Periodic call-back task
1881  * @work: pointer to work_struct
1882  **/
1883 static void iavf_watchdog_task(struct work_struct *work)
1884 {
1885 	struct iavf_adapter *adapter = container_of(work,
1886 						    struct iavf_adapter,
1887 						    watchdog_task.work);
1888 	struct iavf_hw *hw = &adapter->hw;
1889 	u32 reg_val;
1890 
1891 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1892 		goto restart_watchdog;
1893 
1894 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1895 		adapter->state = __IAVF_COMM_FAILED;
1896 
1897 	switch (adapter->state) {
1898 	case __IAVF_COMM_FAILED:
1899 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1900 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1901 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1902 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1903 			/* A chance for redemption! */
1904 			dev_err(&adapter->pdev->dev,
1905 				"Hardware came out of reset. Attempting reinit.\n");
1906 			adapter->state = __IAVF_STARTUP;
1907 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1908 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1909 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1910 				  &adapter->crit_section);
1911 			/* Don't reschedule the watchdog, since we've restarted
1912 			 * the init task. When init_task contacts the PF and
1913 			 * gets everything set up again, it'll restart the
1914 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1915 			 */
1916 			return;
1917 		}
1918 		adapter->aq_required = 0;
1919 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1920 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1921 			  &adapter->crit_section);
1922 		queue_delayed_work(iavf_wq,
1923 				   &adapter->watchdog_task,
1924 				   msecs_to_jiffies(10));
1925 		goto watchdog_done;
1926 	case __IAVF_RESETTING:
1927 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1928 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1929 		return;
1930 	case __IAVF_DOWN:
1931 	case __IAVF_DOWN_PENDING:
1932 	case __IAVF_TESTING:
1933 	case __IAVF_RUNNING:
1934 		if (adapter->current_op) {
1935 			if (!iavf_asq_done(hw)) {
1936 				dev_dbg(&adapter->pdev->dev,
1937 					"Admin queue timeout\n");
1938 				iavf_send_api_ver(adapter);
1939 			}
1940 		} else {
1941 			/* An error will be returned if no commands were
1942 			 * processed; use this opportunity to update stats
1943 			 */
1944 			if (iavf_process_aq_command(adapter) &&
1945 			    adapter->state == __IAVF_RUNNING)
1946 				iavf_request_stats(adapter);
1947 		}
1948 		break;
1949 	case __IAVF_REMOVE:
1950 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1951 		return;
1952 	default:
1953 		goto restart_watchdog;
1954 	}
1955 
1956 		/* check for hw reset */
1957 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1958 	if (!reg_val) {
1959 		adapter->state = __IAVF_RESETTING;
1960 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1961 		adapter->aq_required = 0;
1962 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1963 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1964 		queue_work(iavf_wq, &adapter->reset_task);
1965 		goto watchdog_done;
1966 	}
1967 
1968 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1969 watchdog_done:
1970 	if (adapter->state == __IAVF_RUNNING ||
1971 	    adapter->state == __IAVF_COMM_FAILED)
1972 		iavf_detect_recover_hung(&adapter->vsi);
1973 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1974 restart_watchdog:
1975 	if (adapter->aq_required)
1976 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1977 				   msecs_to_jiffies(20));
1978 	else
1979 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1980 	queue_work(iavf_wq, &adapter->adminq_task);
1981 }
1982 
1983 static void iavf_disable_vf(struct iavf_adapter *adapter)
1984 {
1985 	struct iavf_mac_filter *f, *ftmp;
1986 	struct iavf_vlan_filter *fv, *fvtmp;
1987 	struct iavf_cloud_filter *cf, *cftmp;
1988 
1989 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1990 
1991 	/* We don't use netif_running() because it may be true prior to
1992 	 * ndo_open() returning, so we can't assume it means all our open
1993 	 * tasks have finished, since we're not holding the rtnl_lock here.
1994 	 */
1995 	if (adapter->state == __IAVF_RUNNING) {
1996 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1997 		netif_carrier_off(adapter->netdev);
1998 		netif_tx_disable(adapter->netdev);
1999 		adapter->link_up = false;
2000 		iavf_napi_disable_all(adapter);
2001 		iavf_irq_disable(adapter);
2002 		iavf_free_traffic_irqs(adapter);
2003 		iavf_free_all_tx_resources(adapter);
2004 		iavf_free_all_rx_resources(adapter);
2005 	}
2006 
2007 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2008 
2009 	/* Delete all of the filters */
2010 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2011 		list_del(&f->list);
2012 		kfree(f);
2013 	}
2014 
2015 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2016 		list_del(&fv->list);
2017 		kfree(fv);
2018 	}
2019 
2020 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2021 
2022 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2023 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2024 		list_del(&cf->list);
2025 		kfree(cf);
2026 		adapter->num_cloud_filters--;
2027 	}
2028 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2029 
2030 	iavf_free_misc_irq(adapter);
2031 	iavf_reset_interrupt_capability(adapter);
2032 	iavf_free_queues(adapter);
2033 	iavf_free_q_vectors(adapter);
2034 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2035 	iavf_shutdown_adminq(&adapter->hw);
2036 	adapter->netdev->flags &= ~IFF_UP;
2037 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2038 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2039 	adapter->state = __IAVF_DOWN;
2040 	wake_up(&adapter->down_waitqueue);
2041 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2042 }
2043 
2044 /**
2045  * iavf_reset_task - Call-back task to handle hardware reset
2046  * @work: pointer to work_struct
2047  *
2048  * During reset we need to shut down and reinitialize the admin queue
2049  * before we can use it to communicate with the PF again. We also clear
2050  * and reinit the rings because that context is lost as well.
2051  **/
2052 static void iavf_reset_task(struct work_struct *work)
2053 {
2054 	struct iavf_adapter *adapter = container_of(work,
2055 						      struct iavf_adapter,
2056 						      reset_task);
2057 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2058 	struct net_device *netdev = adapter->netdev;
2059 	struct iavf_hw *hw = &adapter->hw;
2060 	struct iavf_mac_filter *f, *ftmp;
2061 	struct iavf_vlan_filter *vlf;
2062 	struct iavf_cloud_filter *cf;
2063 	u32 reg_val;
2064 	int i = 0, err;
2065 	bool running;
2066 
2067 	/* When device is being removed it doesn't make sense to run the reset
2068 	 * task, just return in such a case.
2069 	 */
2070 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2071 		return;
2072 
2073 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2074 				&adapter->crit_section))
2075 		usleep_range(500, 1000);
2076 	if (CLIENT_ENABLED(adapter)) {
2077 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2078 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2079 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2080 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2081 		cancel_delayed_work_sync(&adapter->client_task);
2082 		iavf_notify_client_close(&adapter->vsi, true);
2083 	}
2084 	iavf_misc_irq_disable(adapter);
2085 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2086 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2087 		/* Restart the AQ here. If we have been reset but didn't
2088 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2089 		 */
2090 		iavf_shutdown_adminq(hw);
2091 		iavf_init_adminq(hw);
2092 		iavf_request_reset(adapter);
2093 	}
2094 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2095 
2096 	/* poll until we see the reset actually happen */
2097 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2098 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2099 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2100 		if (!reg_val)
2101 			break;
2102 		usleep_range(5000, 10000);
2103 	}
2104 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2105 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2106 		goto continue_reset; /* act like the reset happened */
2107 	}
2108 
2109 	/* wait until the reset is complete and the PF is responding to us */
2110 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2111 		/* sleep first to make sure a minimum wait time is met */
2112 		msleep(IAVF_RESET_WAIT_MS);
2113 
2114 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2115 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2116 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2117 			break;
2118 	}
2119 
2120 	pci_set_master(adapter->pdev);
2121 
2122 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2123 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2124 			reg_val);
2125 		iavf_disable_vf(adapter);
2126 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2127 		return; /* Do not attempt to reinit. It's dead, Jim. */
2128 	}
2129 
2130 continue_reset:
2131 	/* We don't use netif_running() because it may be true prior to
2132 	 * ndo_open() returning, so we can't assume it means all our open
2133 	 * tasks have finished, since we're not holding the rtnl_lock here.
2134 	 */
2135 	running = ((adapter->state == __IAVF_RUNNING) ||
2136 		   (adapter->state == __IAVF_RESETTING));
2137 
2138 	if (running) {
2139 		netif_carrier_off(netdev);
2140 		netif_tx_stop_all_queues(netdev);
2141 		adapter->link_up = false;
2142 		iavf_napi_disable_all(adapter);
2143 	}
2144 	iavf_irq_disable(adapter);
2145 
2146 	adapter->state = __IAVF_RESETTING;
2147 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2148 
2149 	/* free the Tx/Rx rings and descriptors, might be better to just
2150 	 * re-use them sometime in the future
2151 	 */
2152 	iavf_free_all_rx_resources(adapter);
2153 	iavf_free_all_tx_resources(adapter);
2154 
2155 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2156 	/* kill and reinit the admin queue */
2157 	iavf_shutdown_adminq(hw);
2158 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2159 	err = iavf_init_adminq(hw);
2160 	if (err)
2161 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2162 			 err);
2163 	adapter->aq_required = 0;
2164 
2165 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2166 		err = iavf_reinit_interrupt_scheme(adapter);
2167 		if (err)
2168 			goto reset_err;
2169 	}
2170 
2171 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2172 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2173 
2174 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2175 
2176 	/* Delete filter for the current MAC address, it could have
2177 	 * been changed by the PF via administratively set MAC.
2178 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2179 	 */
2180 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2181 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2182 			list_del(&f->list);
2183 			kfree(f);
2184 		}
2185 	}
2186 	/* re-add all MAC filters */
2187 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2188 		f->add = true;
2189 	}
2190 	/* re-add all VLAN filters */
2191 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2192 		vlf->add = true;
2193 	}
2194 
2195 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2196 
2197 	/* check if TCs are running and re-add all cloud filters */
2198 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2199 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2200 	    adapter->num_tc) {
2201 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2202 			cf->add = true;
2203 		}
2204 	}
2205 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2206 
2207 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2208 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2209 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2210 	iavf_misc_irq_enable(adapter);
2211 
2212 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2213 
2214 	/* We were running when the reset started, so we need to restore some
2215 	 * state here.
2216 	 */
2217 	if (running) {
2218 		/* allocate transmit descriptors */
2219 		err = iavf_setup_all_tx_resources(adapter);
2220 		if (err)
2221 			goto reset_err;
2222 
2223 		/* allocate receive descriptors */
2224 		err = iavf_setup_all_rx_resources(adapter);
2225 		if (err)
2226 			goto reset_err;
2227 
2228 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2229 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2230 			if (err)
2231 				goto reset_err;
2232 
2233 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2234 		}
2235 
2236 		iavf_configure(adapter);
2237 
2238 		iavf_up_complete(adapter);
2239 
2240 		iavf_irq_enable(adapter, true);
2241 	} else {
2242 		adapter->state = __IAVF_DOWN;
2243 		wake_up(&adapter->down_waitqueue);
2244 	}
2245 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2246 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2247 
2248 	return;
2249 reset_err:
2250 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2251 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2252 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2253 	iavf_close(netdev);
2254 }
2255 
2256 /**
2257  * iavf_adminq_task - worker thread to clean the admin queue
2258  * @work: pointer to work_struct containing our data
2259  **/
2260 static void iavf_adminq_task(struct work_struct *work)
2261 {
2262 	struct iavf_adapter *adapter =
2263 		container_of(work, struct iavf_adapter, adminq_task);
2264 	struct iavf_hw *hw = &adapter->hw;
2265 	struct iavf_arq_event_info event;
2266 	enum virtchnl_ops v_op;
2267 	enum iavf_status ret, v_ret;
2268 	u32 val, oldval;
2269 	u16 pending;
2270 
2271 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2272 		goto out;
2273 
2274 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2275 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2276 	if (!event.msg_buf)
2277 		goto out;
2278 
2279 	do {
2280 		ret = iavf_clean_arq_element(hw, &event, &pending);
2281 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2282 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2283 
2284 		if (ret || !v_op)
2285 			break; /* No event to process or error cleaning ARQ */
2286 
2287 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2288 					 event.msg_len);
2289 		if (pending != 0)
2290 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2291 	} while (pending);
2292 
2293 	if ((adapter->flags &
2294 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2295 	    adapter->state == __IAVF_RESETTING)
2296 		goto freedom;
2297 
2298 	/* check for error indications */
2299 	val = rd32(hw, hw->aq.arq.len);
2300 	if (val == 0xdeadbeef) /* indicates device in reset */
2301 		goto freedom;
2302 	oldval = val;
2303 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2304 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2305 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2306 	}
2307 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2308 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2309 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2310 	}
2311 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2312 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2313 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2314 	}
2315 	if (oldval != val)
2316 		wr32(hw, hw->aq.arq.len, val);
2317 
2318 	val = rd32(hw, hw->aq.asq.len);
2319 	oldval = val;
2320 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2321 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2322 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2323 	}
2324 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2325 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2326 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2327 	}
2328 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2329 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2330 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2331 	}
2332 	if (oldval != val)
2333 		wr32(hw, hw->aq.asq.len, val);
2334 
2335 freedom:
2336 	kfree(event.msg_buf);
2337 out:
2338 	/* re-enable Admin queue interrupt cause */
2339 	iavf_misc_irq_enable(adapter);
2340 }
2341 
2342 /**
2343  * iavf_client_task - worker thread to perform client work
2344  * @work: pointer to work_struct containing our data
2345  *
2346  * This task handles client interactions. Because client calls can be
2347  * reentrant, we can't handle them in the watchdog.
2348  **/
2349 static void iavf_client_task(struct work_struct *work)
2350 {
2351 	struct iavf_adapter *adapter =
2352 		container_of(work, struct iavf_adapter, client_task.work);
2353 
2354 	/* If we can't get the client bit, just give up. We'll be rescheduled
2355 	 * later.
2356 	 */
2357 
2358 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2359 		return;
2360 
2361 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2362 		iavf_client_subtask(adapter);
2363 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2364 		goto out;
2365 	}
2366 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2367 		iavf_notify_client_l2_params(&adapter->vsi);
2368 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2369 		goto out;
2370 	}
2371 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2372 		iavf_notify_client_close(&adapter->vsi, false);
2373 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2374 		goto out;
2375 	}
2376 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2377 		iavf_notify_client_open(&adapter->vsi);
2378 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2379 	}
2380 out:
2381 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2382 }
2383 
2384 /**
2385  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2386  * @adapter: board private structure
2387  *
2388  * Free all transmit software resources
2389  **/
2390 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2391 {
2392 	int i;
2393 
2394 	if (!adapter->tx_rings)
2395 		return;
2396 
2397 	for (i = 0; i < adapter->num_active_queues; i++)
2398 		if (adapter->tx_rings[i].desc)
2399 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2400 }
2401 
2402 /**
2403  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2404  * @adapter: board private structure
2405  *
2406  * If this function returns with an error, then it's possible one or
2407  * more of the rings is populated (while the rest are not).  It is the
2408  * callers duty to clean those orphaned rings.
2409  *
2410  * Return 0 on success, negative on failure
2411  **/
2412 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2413 {
2414 	int i, err = 0;
2415 
2416 	for (i = 0; i < adapter->num_active_queues; i++) {
2417 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2418 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2419 		if (!err)
2420 			continue;
2421 		dev_err(&adapter->pdev->dev,
2422 			"Allocation for Tx Queue %u failed\n", i);
2423 		break;
2424 	}
2425 
2426 	return err;
2427 }
2428 
2429 /**
2430  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2431  * @adapter: board private structure
2432  *
2433  * If this function returns with an error, then it's possible one or
2434  * more of the rings is populated (while the rest are not).  It is the
2435  * callers duty to clean those orphaned rings.
2436  *
2437  * Return 0 on success, negative on failure
2438  **/
2439 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2440 {
2441 	int i, err = 0;
2442 
2443 	for (i = 0; i < adapter->num_active_queues; i++) {
2444 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2445 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2446 		if (!err)
2447 			continue;
2448 		dev_err(&adapter->pdev->dev,
2449 			"Allocation for Rx Queue %u failed\n", i);
2450 		break;
2451 	}
2452 	return err;
2453 }
2454 
2455 /**
2456  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2457  * @adapter: board private structure
2458  *
2459  * Free all receive software resources
2460  **/
2461 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2462 {
2463 	int i;
2464 
2465 	if (!adapter->rx_rings)
2466 		return;
2467 
2468 	for (i = 0; i < adapter->num_active_queues; i++)
2469 		if (adapter->rx_rings[i].desc)
2470 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2471 }
2472 
2473 /**
2474  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2475  * @adapter: board private structure
2476  * @max_tx_rate: max Tx bw for a tc
2477  **/
2478 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2479 				      u64 max_tx_rate)
2480 {
2481 	int speed = 0, ret = 0;
2482 
2483 	if (ADV_LINK_SUPPORT(adapter)) {
2484 		if (adapter->link_speed_mbps < U32_MAX) {
2485 			speed = adapter->link_speed_mbps;
2486 			goto validate_bw;
2487 		} else {
2488 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2489 			return -EINVAL;
2490 		}
2491 	}
2492 
2493 	switch (adapter->link_speed) {
2494 	case VIRTCHNL_LINK_SPEED_40GB:
2495 		speed = SPEED_40000;
2496 		break;
2497 	case VIRTCHNL_LINK_SPEED_25GB:
2498 		speed = SPEED_25000;
2499 		break;
2500 	case VIRTCHNL_LINK_SPEED_20GB:
2501 		speed = SPEED_20000;
2502 		break;
2503 	case VIRTCHNL_LINK_SPEED_10GB:
2504 		speed = SPEED_10000;
2505 		break;
2506 	case VIRTCHNL_LINK_SPEED_5GB:
2507 		speed = SPEED_5000;
2508 		break;
2509 	case VIRTCHNL_LINK_SPEED_2_5GB:
2510 		speed = SPEED_2500;
2511 		break;
2512 	case VIRTCHNL_LINK_SPEED_1GB:
2513 		speed = SPEED_1000;
2514 		break;
2515 	case VIRTCHNL_LINK_SPEED_100MB:
2516 		speed = SPEED_100;
2517 		break;
2518 	default:
2519 		break;
2520 	}
2521 
2522 validate_bw:
2523 	if (max_tx_rate > speed) {
2524 		dev_err(&adapter->pdev->dev,
2525 			"Invalid tx rate specified\n");
2526 		ret = -EINVAL;
2527 	}
2528 
2529 	return ret;
2530 }
2531 
2532 /**
2533  * iavf_validate_channel_config - validate queue mapping info
2534  * @adapter: board private structure
2535  * @mqprio_qopt: queue parameters
2536  *
2537  * This function validates if the config provided by the user to
2538  * configure queue channels is valid or not. Returns 0 on a valid
2539  * config.
2540  **/
2541 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2542 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2543 {
2544 	u64 total_max_rate = 0;
2545 	int i, num_qps = 0;
2546 	u64 tx_rate = 0;
2547 	int ret = 0;
2548 
2549 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2550 	    mqprio_qopt->qopt.num_tc < 1)
2551 		return -EINVAL;
2552 
2553 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2554 		if (!mqprio_qopt->qopt.count[i] ||
2555 		    mqprio_qopt->qopt.offset[i] != num_qps)
2556 			return -EINVAL;
2557 		if (mqprio_qopt->min_rate[i]) {
2558 			dev_err(&adapter->pdev->dev,
2559 				"Invalid min tx rate (greater than 0) specified\n");
2560 			return -EINVAL;
2561 		}
2562 		/*convert to Mbps */
2563 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2564 				  IAVF_MBPS_DIVISOR);
2565 		total_max_rate += tx_rate;
2566 		num_qps += mqprio_qopt->qopt.count[i];
2567 	}
2568 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2569 		return -EINVAL;
2570 
2571 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2572 	return ret;
2573 }
2574 
2575 /**
2576  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2577  * @adapter: board private structure
2578  **/
2579 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2580 {
2581 	struct iavf_cloud_filter *cf, *cftmp;
2582 
2583 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2584 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2585 				 list) {
2586 		list_del(&cf->list);
2587 		kfree(cf);
2588 		adapter->num_cloud_filters--;
2589 	}
2590 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2591 }
2592 
2593 /**
2594  * __iavf_setup_tc - configure multiple traffic classes
2595  * @netdev: network interface device structure
2596  * @type_data: tc offload data
2597  *
2598  * This function processes the config information provided by the
2599  * user to configure traffic classes/queue channels and packages the
2600  * information to request the PF to setup traffic classes.
2601  *
2602  * Returns 0 on success.
2603  **/
2604 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2605 {
2606 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2607 	struct iavf_adapter *adapter = netdev_priv(netdev);
2608 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2609 	u8 num_tc = 0, total_qps = 0;
2610 	int ret = 0, netdev_tc = 0;
2611 	u64 max_tx_rate;
2612 	u16 mode;
2613 	int i;
2614 
2615 	num_tc = mqprio_qopt->qopt.num_tc;
2616 	mode = mqprio_qopt->mode;
2617 
2618 	/* delete queue_channel */
2619 	if (!mqprio_qopt->qopt.hw) {
2620 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2621 			/* reset the tc configuration */
2622 			netdev_reset_tc(netdev);
2623 			adapter->num_tc = 0;
2624 			netif_tx_stop_all_queues(netdev);
2625 			netif_tx_disable(netdev);
2626 			iavf_del_all_cloud_filters(adapter);
2627 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2628 			goto exit;
2629 		} else {
2630 			return -EINVAL;
2631 		}
2632 	}
2633 
2634 	/* add queue channel */
2635 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2636 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2637 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2638 			return -EOPNOTSUPP;
2639 		}
2640 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2641 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2642 			return -EINVAL;
2643 		}
2644 
2645 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2646 		if (ret)
2647 			return ret;
2648 		/* Return if same TC config is requested */
2649 		if (adapter->num_tc == num_tc)
2650 			return 0;
2651 		adapter->num_tc = num_tc;
2652 
2653 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2654 			if (i < num_tc) {
2655 				adapter->ch_config.ch_info[i].count =
2656 					mqprio_qopt->qopt.count[i];
2657 				adapter->ch_config.ch_info[i].offset =
2658 					mqprio_qopt->qopt.offset[i];
2659 				total_qps += mqprio_qopt->qopt.count[i];
2660 				max_tx_rate = mqprio_qopt->max_rate[i];
2661 				/* convert to Mbps */
2662 				max_tx_rate = div_u64(max_tx_rate,
2663 						      IAVF_MBPS_DIVISOR);
2664 				adapter->ch_config.ch_info[i].max_tx_rate =
2665 					max_tx_rate;
2666 			} else {
2667 				adapter->ch_config.ch_info[i].count = 1;
2668 				adapter->ch_config.ch_info[i].offset = 0;
2669 			}
2670 		}
2671 		adapter->ch_config.total_qps = total_qps;
2672 		netif_tx_stop_all_queues(netdev);
2673 		netif_tx_disable(netdev);
2674 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2675 		netdev_reset_tc(netdev);
2676 		/* Report the tc mapping up the stack */
2677 		netdev_set_num_tc(adapter->netdev, num_tc);
2678 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2679 			u16 qcount = mqprio_qopt->qopt.count[i];
2680 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2681 
2682 			if (i < num_tc)
2683 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2684 						    qoffset);
2685 		}
2686 	}
2687 exit:
2688 	return ret;
2689 }
2690 
2691 /**
2692  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2693  * @adapter: board private structure
2694  * @f: pointer to struct flow_cls_offload
2695  * @filter: pointer to cloud filter structure
2696  */
2697 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2698 				 struct flow_cls_offload *f,
2699 				 struct iavf_cloud_filter *filter)
2700 {
2701 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2702 	struct flow_dissector *dissector = rule->match.dissector;
2703 	u16 n_proto_mask = 0;
2704 	u16 n_proto_key = 0;
2705 	u8 field_flags = 0;
2706 	u16 addr_type = 0;
2707 	u16 n_proto = 0;
2708 	int i = 0;
2709 	struct virtchnl_filter *vf = &filter->f;
2710 
2711 	if (dissector->used_keys &
2712 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2713 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2714 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2715 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2716 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2717 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2718 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2719 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2720 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2721 			dissector->used_keys);
2722 		return -EOPNOTSUPP;
2723 	}
2724 
2725 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2726 		struct flow_match_enc_keyid match;
2727 
2728 		flow_rule_match_enc_keyid(rule, &match);
2729 		if (match.mask->keyid != 0)
2730 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2731 	}
2732 
2733 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2734 		struct flow_match_basic match;
2735 
2736 		flow_rule_match_basic(rule, &match);
2737 		n_proto_key = ntohs(match.key->n_proto);
2738 		n_proto_mask = ntohs(match.mask->n_proto);
2739 
2740 		if (n_proto_key == ETH_P_ALL) {
2741 			n_proto_key = 0;
2742 			n_proto_mask = 0;
2743 		}
2744 		n_proto = n_proto_key & n_proto_mask;
2745 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2746 			return -EINVAL;
2747 		if (n_proto == ETH_P_IPV6) {
2748 			/* specify flow type as TCP IPv6 */
2749 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2750 		}
2751 
2752 		if (match.key->ip_proto != IPPROTO_TCP) {
2753 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2754 			return -EINVAL;
2755 		}
2756 	}
2757 
2758 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2759 		struct flow_match_eth_addrs match;
2760 
2761 		flow_rule_match_eth_addrs(rule, &match);
2762 
2763 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2764 		if (!is_zero_ether_addr(match.mask->dst)) {
2765 			if (is_broadcast_ether_addr(match.mask->dst)) {
2766 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2767 			} else {
2768 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2769 					match.mask->dst);
2770 				return IAVF_ERR_CONFIG;
2771 			}
2772 		}
2773 
2774 		if (!is_zero_ether_addr(match.mask->src)) {
2775 			if (is_broadcast_ether_addr(match.mask->src)) {
2776 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2777 			} else {
2778 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2779 					match.mask->src);
2780 				return IAVF_ERR_CONFIG;
2781 			}
2782 		}
2783 
2784 		if (!is_zero_ether_addr(match.key->dst))
2785 			if (is_valid_ether_addr(match.key->dst) ||
2786 			    is_multicast_ether_addr(match.key->dst)) {
2787 				/* set the mask if a valid dst_mac address */
2788 				for (i = 0; i < ETH_ALEN; i++)
2789 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2790 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2791 						match.key->dst);
2792 			}
2793 
2794 		if (!is_zero_ether_addr(match.key->src))
2795 			if (is_valid_ether_addr(match.key->src) ||
2796 			    is_multicast_ether_addr(match.key->src)) {
2797 				/* set the mask if a valid dst_mac address */
2798 				for (i = 0; i < ETH_ALEN; i++)
2799 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2800 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2801 						match.key->src);
2802 		}
2803 	}
2804 
2805 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2806 		struct flow_match_vlan match;
2807 
2808 		flow_rule_match_vlan(rule, &match);
2809 		if (match.mask->vlan_id) {
2810 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2811 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2812 			} else {
2813 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2814 					match.mask->vlan_id);
2815 				return IAVF_ERR_CONFIG;
2816 			}
2817 		}
2818 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2819 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2820 	}
2821 
2822 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2823 		struct flow_match_control match;
2824 
2825 		flow_rule_match_control(rule, &match);
2826 		addr_type = match.key->addr_type;
2827 	}
2828 
2829 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2830 		struct flow_match_ipv4_addrs match;
2831 
2832 		flow_rule_match_ipv4_addrs(rule, &match);
2833 		if (match.mask->dst) {
2834 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2835 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2836 			} else {
2837 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2838 					be32_to_cpu(match.mask->dst));
2839 				return IAVF_ERR_CONFIG;
2840 			}
2841 		}
2842 
2843 		if (match.mask->src) {
2844 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2845 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2846 			} else {
2847 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2848 					be32_to_cpu(match.mask->dst));
2849 				return IAVF_ERR_CONFIG;
2850 			}
2851 		}
2852 
2853 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2854 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2855 			return IAVF_ERR_CONFIG;
2856 		}
2857 		if (match.key->dst) {
2858 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2859 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2860 		}
2861 		if (match.key->src) {
2862 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2863 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2864 		}
2865 	}
2866 
2867 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2868 		struct flow_match_ipv6_addrs match;
2869 
2870 		flow_rule_match_ipv6_addrs(rule, &match);
2871 
2872 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2873 		if (ipv6_addr_any(&match.mask->dst)) {
2874 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2875 				IPV6_ADDR_ANY);
2876 			return IAVF_ERR_CONFIG;
2877 		}
2878 
2879 		/* src and dest IPv6 address should not be LOOPBACK
2880 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2881 		 */
2882 		if (ipv6_addr_loopback(&match.key->dst) ||
2883 		    ipv6_addr_loopback(&match.key->src)) {
2884 			dev_err(&adapter->pdev->dev,
2885 				"ipv6 addr should not be loopback\n");
2886 			return IAVF_ERR_CONFIG;
2887 		}
2888 		if (!ipv6_addr_any(&match.mask->dst) ||
2889 		    !ipv6_addr_any(&match.mask->src))
2890 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2891 
2892 		for (i = 0; i < 4; i++)
2893 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2894 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2895 		       sizeof(vf->data.tcp_spec.dst_ip));
2896 		for (i = 0; i < 4; i++)
2897 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2898 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2899 		       sizeof(vf->data.tcp_spec.src_ip));
2900 	}
2901 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2902 		struct flow_match_ports match;
2903 
2904 		flow_rule_match_ports(rule, &match);
2905 		if (match.mask->src) {
2906 			if (match.mask->src == cpu_to_be16(0xffff)) {
2907 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2908 			} else {
2909 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2910 					be16_to_cpu(match.mask->src));
2911 				return IAVF_ERR_CONFIG;
2912 			}
2913 		}
2914 
2915 		if (match.mask->dst) {
2916 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2917 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2918 			} else {
2919 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2920 					be16_to_cpu(match.mask->dst));
2921 				return IAVF_ERR_CONFIG;
2922 			}
2923 		}
2924 		if (match.key->dst) {
2925 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2926 			vf->data.tcp_spec.dst_port = match.key->dst;
2927 		}
2928 
2929 		if (match.key->src) {
2930 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2931 			vf->data.tcp_spec.src_port = match.key->src;
2932 		}
2933 	}
2934 	vf->field_flags = field_flags;
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * iavf_handle_tclass - Forward to a traffic class on the device
2941  * @adapter: board private structure
2942  * @tc: traffic class index on the device
2943  * @filter: pointer to cloud filter structure
2944  */
2945 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2946 			      struct iavf_cloud_filter *filter)
2947 {
2948 	if (tc == 0)
2949 		return 0;
2950 	if (tc < adapter->num_tc) {
2951 		if (!filter->f.data.tcp_spec.dst_port) {
2952 			dev_err(&adapter->pdev->dev,
2953 				"Specify destination port to redirect to traffic class other than TC0\n");
2954 			return -EINVAL;
2955 		}
2956 	}
2957 	/* redirect to a traffic class on the same device */
2958 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2959 	filter->f.action_meta = tc;
2960 	return 0;
2961 }
2962 
2963 /**
2964  * iavf_configure_clsflower - Add tc flower filters
2965  * @adapter: board private structure
2966  * @cls_flower: Pointer to struct flow_cls_offload
2967  */
2968 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2969 				    struct flow_cls_offload *cls_flower)
2970 {
2971 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2972 	struct iavf_cloud_filter *filter = NULL;
2973 	int err = -EINVAL, count = 50;
2974 
2975 	if (tc < 0) {
2976 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2977 		return -EINVAL;
2978 	}
2979 
2980 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2981 	if (!filter)
2982 		return -ENOMEM;
2983 
2984 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2985 				&adapter->crit_section)) {
2986 		if (--count == 0)
2987 			goto err;
2988 		udelay(1);
2989 	}
2990 
2991 	filter->cookie = cls_flower->cookie;
2992 
2993 	/* set the mask to all zeroes to begin with */
2994 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2995 	/* start out with flow type and eth type IPv4 to begin with */
2996 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2997 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2998 	if (err < 0)
2999 		goto err;
3000 
3001 	err = iavf_handle_tclass(adapter, tc, filter);
3002 	if (err < 0)
3003 		goto err;
3004 
3005 	/* add filter to the list */
3006 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3007 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3008 	adapter->num_cloud_filters++;
3009 	filter->add = true;
3010 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3011 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3012 err:
3013 	if (err)
3014 		kfree(filter);
3015 
3016 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3017 	return err;
3018 }
3019 
3020 /* iavf_find_cf - Find the cloud filter in the list
3021  * @adapter: Board private structure
3022  * @cookie: filter specific cookie
3023  *
3024  * Returns ptr to the filter object or NULL. Must be called while holding the
3025  * cloud_filter_list_lock.
3026  */
3027 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3028 					      unsigned long *cookie)
3029 {
3030 	struct iavf_cloud_filter *filter = NULL;
3031 
3032 	if (!cookie)
3033 		return NULL;
3034 
3035 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3036 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3037 			return filter;
3038 	}
3039 	return NULL;
3040 }
3041 
3042 /**
3043  * iavf_delete_clsflower - Remove tc flower filters
3044  * @adapter: board private structure
3045  * @cls_flower: Pointer to struct flow_cls_offload
3046  */
3047 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3048 				 struct flow_cls_offload *cls_flower)
3049 {
3050 	struct iavf_cloud_filter *filter = NULL;
3051 	int err = 0;
3052 
3053 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3054 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3055 	if (filter) {
3056 		filter->del = true;
3057 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3058 	} else {
3059 		err = -EINVAL;
3060 	}
3061 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3062 
3063 	return err;
3064 }
3065 
3066 /**
3067  * iavf_setup_tc_cls_flower - flower classifier offloads
3068  * @adapter: board private structure
3069  * @cls_flower: pointer to flow_cls_offload struct with flow info
3070  */
3071 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3072 				    struct flow_cls_offload *cls_flower)
3073 {
3074 	switch (cls_flower->command) {
3075 	case FLOW_CLS_REPLACE:
3076 		return iavf_configure_clsflower(adapter, cls_flower);
3077 	case FLOW_CLS_DESTROY:
3078 		return iavf_delete_clsflower(adapter, cls_flower);
3079 	case FLOW_CLS_STATS:
3080 		return -EOPNOTSUPP;
3081 	default:
3082 		return -EOPNOTSUPP;
3083 	}
3084 }
3085 
3086 /**
3087  * iavf_setup_tc_block_cb - block callback for tc
3088  * @type: type of offload
3089  * @type_data: offload data
3090  * @cb_priv:
3091  *
3092  * This function is the block callback for traffic classes
3093  **/
3094 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3095 				  void *cb_priv)
3096 {
3097 	struct iavf_adapter *adapter = cb_priv;
3098 
3099 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3100 		return -EOPNOTSUPP;
3101 
3102 	switch (type) {
3103 	case TC_SETUP_CLSFLOWER:
3104 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3105 	default:
3106 		return -EOPNOTSUPP;
3107 	}
3108 }
3109 
3110 static LIST_HEAD(iavf_block_cb_list);
3111 
3112 /**
3113  * iavf_setup_tc - configure multiple traffic classes
3114  * @netdev: network interface device structure
3115  * @type: type of offload
3116  * @type_data: tc offload data
3117  *
3118  * This function is the callback to ndo_setup_tc in the
3119  * netdev_ops.
3120  *
3121  * Returns 0 on success
3122  **/
3123 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3124 			 void *type_data)
3125 {
3126 	struct iavf_adapter *adapter = netdev_priv(netdev);
3127 
3128 	switch (type) {
3129 	case TC_SETUP_QDISC_MQPRIO:
3130 		return __iavf_setup_tc(netdev, type_data);
3131 	case TC_SETUP_BLOCK:
3132 		return flow_block_cb_setup_simple(type_data,
3133 						  &iavf_block_cb_list,
3134 						  iavf_setup_tc_block_cb,
3135 						  adapter, adapter, true);
3136 	default:
3137 		return -EOPNOTSUPP;
3138 	}
3139 }
3140 
3141 /**
3142  * iavf_open - Called when a network interface is made active
3143  * @netdev: network interface device structure
3144  *
3145  * Returns 0 on success, negative value on failure
3146  *
3147  * The open entry point is called when a network interface is made
3148  * active by the system (IFF_UP).  At this point all resources needed
3149  * for transmit and receive operations are allocated, the interrupt
3150  * handler is registered with the OS, the watchdog is started,
3151  * and the stack is notified that the interface is ready.
3152  **/
3153 static int iavf_open(struct net_device *netdev)
3154 {
3155 	struct iavf_adapter *adapter = netdev_priv(netdev);
3156 	int err;
3157 
3158 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3159 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3160 		return -EIO;
3161 	}
3162 
3163 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3164 				&adapter->crit_section))
3165 		usleep_range(500, 1000);
3166 
3167 	if (adapter->state != __IAVF_DOWN) {
3168 		err = -EBUSY;
3169 		goto err_unlock;
3170 	}
3171 
3172 	/* allocate transmit descriptors */
3173 	err = iavf_setup_all_tx_resources(adapter);
3174 	if (err)
3175 		goto err_setup_tx;
3176 
3177 	/* allocate receive descriptors */
3178 	err = iavf_setup_all_rx_resources(adapter);
3179 	if (err)
3180 		goto err_setup_rx;
3181 
3182 	/* clear any pending interrupts, may auto mask */
3183 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3184 	if (err)
3185 		goto err_req_irq;
3186 
3187 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3188 
3189 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3190 
3191 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3192 
3193 	iavf_configure(adapter);
3194 
3195 	iavf_up_complete(adapter);
3196 
3197 	iavf_irq_enable(adapter, true);
3198 
3199 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3200 
3201 	return 0;
3202 
3203 err_req_irq:
3204 	iavf_down(adapter);
3205 	iavf_free_traffic_irqs(adapter);
3206 err_setup_rx:
3207 	iavf_free_all_rx_resources(adapter);
3208 err_setup_tx:
3209 	iavf_free_all_tx_resources(adapter);
3210 err_unlock:
3211 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3212 
3213 	return err;
3214 }
3215 
3216 /**
3217  * iavf_close - Disables a network interface
3218  * @netdev: network interface device structure
3219  *
3220  * Returns 0, this is not allowed to fail
3221  *
3222  * The close entry point is called when an interface is de-activated
3223  * by the OS.  The hardware is still under the drivers control, but
3224  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3225  * are freed, along with all transmit and receive resources.
3226  **/
3227 static int iavf_close(struct net_device *netdev)
3228 {
3229 	struct iavf_adapter *adapter = netdev_priv(netdev);
3230 	int status;
3231 
3232 	if (adapter->state <= __IAVF_DOWN_PENDING)
3233 		return 0;
3234 
3235 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3236 				&adapter->crit_section))
3237 		usleep_range(500, 1000);
3238 
3239 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3240 	if (CLIENT_ENABLED(adapter))
3241 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3242 
3243 	iavf_down(adapter);
3244 	adapter->state = __IAVF_DOWN_PENDING;
3245 	iavf_free_traffic_irqs(adapter);
3246 
3247 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3248 
3249 	/* We explicitly don't free resources here because the hardware is
3250 	 * still active and can DMA into memory. Resources are cleared in
3251 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3252 	 * driver that the rings have been stopped.
3253 	 *
3254 	 * Also, we wait for state to transition to __IAVF_DOWN before
3255 	 * returning. State change occurs in iavf_virtchnl_completion() after
3256 	 * VF resources are released (which occurs after PF driver processes and
3257 	 * responds to admin queue commands).
3258 	 */
3259 
3260 	status = wait_event_timeout(adapter->down_waitqueue,
3261 				    adapter->state == __IAVF_DOWN,
3262 				    msecs_to_jiffies(500));
3263 	if (!status)
3264 		netdev_warn(netdev, "Device resources not yet released\n");
3265 	return 0;
3266 }
3267 
3268 /**
3269  * iavf_change_mtu - Change the Maximum Transfer Unit
3270  * @netdev: network interface device structure
3271  * @new_mtu: new value for maximum frame size
3272  *
3273  * Returns 0 on success, negative on failure
3274  **/
3275 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3276 {
3277 	struct iavf_adapter *adapter = netdev_priv(netdev);
3278 
3279 	netdev->mtu = new_mtu;
3280 	if (CLIENT_ENABLED(adapter)) {
3281 		iavf_notify_client_l2_params(&adapter->vsi);
3282 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3283 	}
3284 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3285 	queue_work(iavf_wq, &adapter->reset_task);
3286 
3287 	return 0;
3288 }
3289 
3290 /**
3291  * iavf_set_features - set the netdev feature flags
3292  * @netdev: ptr to the netdev being adjusted
3293  * @features: the feature set that the stack is suggesting
3294  * Note: expects to be called while under rtnl_lock()
3295  **/
3296 static int iavf_set_features(struct net_device *netdev,
3297 			     netdev_features_t features)
3298 {
3299 	struct iavf_adapter *adapter = netdev_priv(netdev);
3300 
3301 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3302 	 * of VLAN offload
3303 	 */
3304 	if (!VLAN_ALLOWED(adapter)) {
3305 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3306 			return -EINVAL;
3307 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3308 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3309 			adapter->aq_required |=
3310 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3311 		else
3312 			adapter->aq_required |=
3313 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 /**
3320  * iavf_features_check - Validate encapsulated packet conforms to limits
3321  * @skb: skb buff
3322  * @dev: This physical port's netdev
3323  * @features: Offload features that the stack believes apply
3324  **/
3325 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3326 					     struct net_device *dev,
3327 					     netdev_features_t features)
3328 {
3329 	size_t len;
3330 
3331 	/* No point in doing any of this if neither checksum nor GSO are
3332 	 * being requested for this frame.  We can rule out both by just
3333 	 * checking for CHECKSUM_PARTIAL
3334 	 */
3335 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3336 		return features;
3337 
3338 	/* We cannot support GSO if the MSS is going to be less than
3339 	 * 64 bytes.  If it is then we need to drop support for GSO.
3340 	 */
3341 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3342 		features &= ~NETIF_F_GSO_MASK;
3343 
3344 	/* MACLEN can support at most 63 words */
3345 	len = skb_network_header(skb) - skb->data;
3346 	if (len & ~(63 * 2))
3347 		goto out_err;
3348 
3349 	/* IPLEN and EIPLEN can support at most 127 dwords */
3350 	len = skb_transport_header(skb) - skb_network_header(skb);
3351 	if (len & ~(127 * 4))
3352 		goto out_err;
3353 
3354 	if (skb->encapsulation) {
3355 		/* L4TUNLEN can support 127 words */
3356 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3357 		if (len & ~(127 * 2))
3358 			goto out_err;
3359 
3360 		/* IPLEN can support at most 127 dwords */
3361 		len = skb_inner_transport_header(skb) -
3362 		      skb_inner_network_header(skb);
3363 		if (len & ~(127 * 4))
3364 			goto out_err;
3365 	}
3366 
3367 	/* No need to validate L4LEN as TCP is the only protocol with a
3368 	 * a flexible value and we support all possible values supported
3369 	 * by TCP, which is at most 15 dwords
3370 	 */
3371 
3372 	return features;
3373 out_err:
3374 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3375 }
3376 
3377 /**
3378  * iavf_fix_features - fix up the netdev feature bits
3379  * @netdev: our net device
3380  * @features: desired feature bits
3381  *
3382  * Returns fixed-up features bits
3383  **/
3384 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3385 					   netdev_features_t features)
3386 {
3387 	struct iavf_adapter *adapter = netdev_priv(netdev);
3388 
3389 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3390 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3391 			      NETIF_F_HW_VLAN_CTAG_RX |
3392 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3393 
3394 	return features;
3395 }
3396 
3397 static const struct net_device_ops iavf_netdev_ops = {
3398 	.ndo_open		= iavf_open,
3399 	.ndo_stop		= iavf_close,
3400 	.ndo_start_xmit		= iavf_xmit_frame,
3401 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3402 	.ndo_validate_addr	= eth_validate_addr,
3403 	.ndo_set_mac_address	= iavf_set_mac,
3404 	.ndo_change_mtu		= iavf_change_mtu,
3405 	.ndo_tx_timeout		= iavf_tx_timeout,
3406 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3407 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3408 	.ndo_features_check	= iavf_features_check,
3409 	.ndo_fix_features	= iavf_fix_features,
3410 	.ndo_set_features	= iavf_set_features,
3411 	.ndo_setup_tc		= iavf_setup_tc,
3412 };
3413 
3414 /**
3415  * iavf_check_reset_complete - check that VF reset is complete
3416  * @hw: pointer to hw struct
3417  *
3418  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3419  **/
3420 static int iavf_check_reset_complete(struct iavf_hw *hw)
3421 {
3422 	u32 rstat;
3423 	int i;
3424 
3425 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3426 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3427 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3428 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3429 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3430 			return 0;
3431 		usleep_range(10, 20);
3432 	}
3433 	return -EBUSY;
3434 }
3435 
3436 /**
3437  * iavf_process_config - Process the config information we got from the PF
3438  * @adapter: board private structure
3439  *
3440  * Verify that we have a valid config struct, and set up our netdev features
3441  * and our VSI struct.
3442  **/
3443 int iavf_process_config(struct iavf_adapter *adapter)
3444 {
3445 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3446 	int i, num_req_queues = adapter->num_req_queues;
3447 	struct net_device *netdev = adapter->netdev;
3448 	struct iavf_vsi *vsi = &adapter->vsi;
3449 	netdev_features_t hw_enc_features;
3450 	netdev_features_t hw_features;
3451 
3452 	/* got VF config message back from PF, now we can parse it */
3453 	for (i = 0; i < vfres->num_vsis; i++) {
3454 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3455 			adapter->vsi_res = &vfres->vsi_res[i];
3456 	}
3457 	if (!adapter->vsi_res) {
3458 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3459 		return -ENODEV;
3460 	}
3461 
3462 	if (num_req_queues &&
3463 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3464 		/* Problem.  The PF gave us fewer queues than what we had
3465 		 * negotiated in our request.  Need a reset to see if we can't
3466 		 * get back to a working state.
3467 		 */
3468 		dev_err(&adapter->pdev->dev,
3469 			"Requested %d queues, but PF only gave us %d.\n",
3470 			num_req_queues,
3471 			adapter->vsi_res->num_queue_pairs);
3472 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3473 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3474 		iavf_schedule_reset(adapter);
3475 		return -ENODEV;
3476 	}
3477 	adapter->num_req_queues = 0;
3478 
3479 	hw_enc_features = NETIF_F_SG			|
3480 			  NETIF_F_IP_CSUM		|
3481 			  NETIF_F_IPV6_CSUM		|
3482 			  NETIF_F_HIGHDMA		|
3483 			  NETIF_F_SOFT_FEATURES	|
3484 			  NETIF_F_TSO			|
3485 			  NETIF_F_TSO_ECN		|
3486 			  NETIF_F_TSO6			|
3487 			  NETIF_F_SCTP_CRC		|
3488 			  NETIF_F_RXHASH		|
3489 			  NETIF_F_RXCSUM		|
3490 			  0;
3491 
3492 	/* advertise to stack only if offloads for encapsulated packets is
3493 	 * supported
3494 	 */
3495 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3496 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3497 				   NETIF_F_GSO_GRE		|
3498 				   NETIF_F_GSO_GRE_CSUM		|
3499 				   NETIF_F_GSO_IPXIP4		|
3500 				   NETIF_F_GSO_IPXIP6		|
3501 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3502 				   NETIF_F_GSO_PARTIAL		|
3503 				   0;
3504 
3505 		if (!(vfres->vf_cap_flags &
3506 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3507 			netdev->gso_partial_features |=
3508 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3509 
3510 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3511 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3512 		netdev->hw_enc_features |= hw_enc_features;
3513 	}
3514 	/* record features VLANs can make use of */
3515 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3516 
3517 	/* Write features and hw_features separately to avoid polluting
3518 	 * with, or dropping, features that are set when we registered.
3519 	 */
3520 	hw_features = hw_enc_features;
3521 
3522 	/* Enable VLAN features if supported */
3523 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3524 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3525 				NETIF_F_HW_VLAN_CTAG_RX);
3526 	/* Enable cloud filter if ADQ is supported */
3527 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3528 		hw_features |= NETIF_F_HW_TC;
3529 
3530 	netdev->hw_features |= hw_features;
3531 
3532 	netdev->features |= hw_features;
3533 
3534 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3535 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3536 
3537 	netdev->priv_flags |= IFF_UNICAST_FLT;
3538 
3539 	/* Do not turn on offloads when they are requested to be turned off.
3540 	 * TSO needs minimum 576 bytes to work correctly.
3541 	 */
3542 	if (netdev->wanted_features) {
3543 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3544 		    netdev->mtu < 576)
3545 			netdev->features &= ~NETIF_F_TSO;
3546 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3547 		    netdev->mtu < 576)
3548 			netdev->features &= ~NETIF_F_TSO6;
3549 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3550 			netdev->features &= ~NETIF_F_TSO_ECN;
3551 		if (!(netdev->wanted_features & NETIF_F_GRO))
3552 			netdev->features &= ~NETIF_F_GRO;
3553 		if (!(netdev->wanted_features & NETIF_F_GSO))
3554 			netdev->features &= ~NETIF_F_GSO;
3555 	}
3556 
3557 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3558 
3559 	adapter->vsi.back = adapter;
3560 	adapter->vsi.base_vector = 1;
3561 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3562 	vsi->netdev = adapter->netdev;
3563 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3564 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3565 		adapter->rss_key_size = vfres->rss_key_size;
3566 		adapter->rss_lut_size = vfres->rss_lut_size;
3567 	} else {
3568 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3569 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 /**
3576  * iavf_init_task - worker thread to perform delayed initialization
3577  * @work: pointer to work_struct containing our data
3578  *
3579  * This task completes the work that was begun in probe. Due to the nature
3580  * of VF-PF communications, we may need to wait tens of milliseconds to get
3581  * responses back from the PF. Rather than busy-wait in probe and bog down the
3582  * whole system, we'll do it in a task so we can sleep.
3583  * This task only runs during driver init. Once we've established
3584  * communications with the PF driver and set up our netdev, the watchdog
3585  * takes over.
3586  **/
3587 static void iavf_init_task(struct work_struct *work)
3588 {
3589 	struct iavf_adapter *adapter = container_of(work,
3590 						    struct iavf_adapter,
3591 						    init_task.work);
3592 	struct iavf_hw *hw = &adapter->hw;
3593 
3594 	switch (adapter->state) {
3595 	case __IAVF_STARTUP:
3596 		if (iavf_startup(adapter) < 0)
3597 			goto init_failed;
3598 		break;
3599 	case __IAVF_INIT_VERSION_CHECK:
3600 		if (iavf_init_version_check(adapter) < 0)
3601 			goto init_failed;
3602 		break;
3603 	case __IAVF_INIT_GET_RESOURCES:
3604 		if (iavf_init_get_resources(adapter) < 0)
3605 			goto init_failed;
3606 		return;
3607 	default:
3608 		goto init_failed;
3609 	}
3610 
3611 	queue_delayed_work(iavf_wq, &adapter->init_task,
3612 			   msecs_to_jiffies(30));
3613 	return;
3614 init_failed:
3615 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3616 		dev_err(&adapter->pdev->dev,
3617 			"Failed to communicate with PF; waiting before retry\n");
3618 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3619 		iavf_shutdown_adminq(hw);
3620 		adapter->state = __IAVF_STARTUP;
3621 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3622 		return;
3623 	}
3624 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3625 }
3626 
3627 /**
3628  * iavf_shutdown - Shutdown the device in preparation for a reboot
3629  * @pdev: pci device structure
3630  **/
3631 static void iavf_shutdown(struct pci_dev *pdev)
3632 {
3633 	struct net_device *netdev = pci_get_drvdata(pdev);
3634 	struct iavf_adapter *adapter = netdev_priv(netdev);
3635 
3636 	netif_device_detach(netdev);
3637 
3638 	if (netif_running(netdev))
3639 		iavf_close(netdev);
3640 
3641 	/* Prevent the watchdog from running. */
3642 	adapter->state = __IAVF_REMOVE;
3643 	adapter->aq_required = 0;
3644 
3645 #ifdef CONFIG_PM
3646 	pci_save_state(pdev);
3647 
3648 #endif
3649 	pci_disable_device(pdev);
3650 }
3651 
3652 /**
3653  * iavf_probe - Device Initialization Routine
3654  * @pdev: PCI device information struct
3655  * @ent: entry in iavf_pci_tbl
3656  *
3657  * Returns 0 on success, negative on failure
3658  *
3659  * iavf_probe initializes an adapter identified by a pci_dev structure.
3660  * The OS initialization, configuring of the adapter private structure,
3661  * and a hardware reset occur.
3662  **/
3663 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3664 {
3665 	struct net_device *netdev;
3666 	struct iavf_adapter *adapter = NULL;
3667 	struct iavf_hw *hw = NULL;
3668 	int err;
3669 
3670 	err = pci_enable_device(pdev);
3671 	if (err)
3672 		return err;
3673 
3674 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3675 	if (err) {
3676 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3677 		if (err) {
3678 			dev_err(&pdev->dev,
3679 				"DMA configuration failed: 0x%x\n", err);
3680 			goto err_dma;
3681 		}
3682 	}
3683 
3684 	err = pci_request_regions(pdev, iavf_driver_name);
3685 	if (err) {
3686 		dev_err(&pdev->dev,
3687 			"pci_request_regions failed 0x%x\n", err);
3688 		goto err_pci_reg;
3689 	}
3690 
3691 	pci_enable_pcie_error_reporting(pdev);
3692 
3693 	pci_set_master(pdev);
3694 
3695 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3696 				   IAVF_MAX_REQ_QUEUES);
3697 	if (!netdev) {
3698 		err = -ENOMEM;
3699 		goto err_alloc_etherdev;
3700 	}
3701 
3702 	SET_NETDEV_DEV(netdev, &pdev->dev);
3703 
3704 	pci_set_drvdata(pdev, netdev);
3705 	adapter = netdev_priv(netdev);
3706 
3707 	adapter->netdev = netdev;
3708 	adapter->pdev = pdev;
3709 
3710 	hw = &adapter->hw;
3711 	hw->back = adapter;
3712 
3713 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3714 	adapter->state = __IAVF_STARTUP;
3715 
3716 	/* Call save state here because it relies on the adapter struct. */
3717 	pci_save_state(pdev);
3718 
3719 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3720 			      pci_resource_len(pdev, 0));
3721 	if (!hw->hw_addr) {
3722 		err = -EIO;
3723 		goto err_ioremap;
3724 	}
3725 	hw->vendor_id = pdev->vendor;
3726 	hw->device_id = pdev->device;
3727 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3728 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3729 	hw->subsystem_device_id = pdev->subsystem_device;
3730 	hw->bus.device = PCI_SLOT(pdev->devfn);
3731 	hw->bus.func = PCI_FUNC(pdev->devfn);
3732 	hw->bus.bus_id = pdev->bus->number;
3733 
3734 	/* set up the locks for the AQ, do this only once in probe
3735 	 * and destroy them only once in remove
3736 	 */
3737 	mutex_init(&hw->aq.asq_mutex);
3738 	mutex_init(&hw->aq.arq_mutex);
3739 
3740 	spin_lock_init(&adapter->mac_vlan_list_lock);
3741 	spin_lock_init(&adapter->cloud_filter_list_lock);
3742 
3743 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3744 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3745 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3746 
3747 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3748 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3749 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3750 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3751 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3752 	queue_delayed_work(iavf_wq, &adapter->init_task,
3753 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3754 
3755 	/* Setup the wait queue for indicating transition to down status */
3756 	init_waitqueue_head(&adapter->down_waitqueue);
3757 
3758 	return 0;
3759 
3760 err_ioremap:
3761 	free_netdev(netdev);
3762 err_alloc_etherdev:
3763 	pci_release_regions(pdev);
3764 err_pci_reg:
3765 err_dma:
3766 	pci_disable_device(pdev);
3767 	return err;
3768 }
3769 
3770 /**
3771  * iavf_suspend - Power management suspend routine
3772  * @dev_d: device info pointer
3773  *
3774  * Called when the system (VM) is entering sleep/suspend.
3775  **/
3776 static int __maybe_unused iavf_suspend(struct device *dev_d)
3777 {
3778 	struct net_device *netdev = dev_get_drvdata(dev_d);
3779 	struct iavf_adapter *adapter = netdev_priv(netdev);
3780 
3781 	netif_device_detach(netdev);
3782 
3783 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784 				&adapter->crit_section))
3785 		usleep_range(500, 1000);
3786 
3787 	if (netif_running(netdev)) {
3788 		rtnl_lock();
3789 		iavf_down(adapter);
3790 		rtnl_unlock();
3791 	}
3792 	iavf_free_misc_irq(adapter);
3793 	iavf_reset_interrupt_capability(adapter);
3794 
3795 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796 
3797 	return 0;
3798 }
3799 
3800 /**
3801  * iavf_resume - Power management resume routine
3802  * @dev_d: device info pointer
3803  *
3804  * Called when the system (VM) is resumed from sleep/suspend.
3805  **/
3806 static int __maybe_unused iavf_resume(struct device *dev_d)
3807 {
3808 	struct pci_dev *pdev = to_pci_dev(dev_d);
3809 	struct net_device *netdev = pci_get_drvdata(pdev);
3810 	struct iavf_adapter *adapter = netdev_priv(netdev);
3811 	u32 err;
3812 
3813 	pci_set_master(pdev);
3814 
3815 	rtnl_lock();
3816 	err = iavf_set_interrupt_capability(adapter);
3817 	if (err) {
3818 		rtnl_unlock();
3819 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820 		return err;
3821 	}
3822 	err = iavf_request_misc_irq(adapter);
3823 	rtnl_unlock();
3824 	if (err) {
3825 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826 		return err;
3827 	}
3828 
3829 	queue_work(iavf_wq, &adapter->reset_task);
3830 
3831 	netif_device_attach(netdev);
3832 
3833 	return err;
3834 }
3835 
3836 /**
3837  * iavf_remove - Device Removal Routine
3838  * @pdev: PCI device information struct
3839  *
3840  * iavf_remove is called by the PCI subsystem to alert the driver
3841  * that it should release a PCI device.  The could be caused by a
3842  * Hot-Plug event, or because the driver is going to be removed from
3843  * memory.
3844  **/
3845 static void iavf_remove(struct pci_dev *pdev)
3846 {
3847 	struct net_device *netdev = pci_get_drvdata(pdev);
3848 	struct iavf_adapter *adapter = netdev_priv(netdev);
3849 	struct iavf_vlan_filter *vlf, *vlftmp;
3850 	struct iavf_mac_filter *f, *ftmp;
3851 	struct iavf_cloud_filter *cf, *cftmp;
3852 	struct iavf_hw *hw = &adapter->hw;
3853 	int err;
3854 	/* Indicate we are in remove and not to run reset_task */
3855 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 	cancel_delayed_work_sync(&adapter->init_task);
3857 	cancel_work_sync(&adapter->reset_task);
3858 	cancel_delayed_work_sync(&adapter->client_task);
3859 	if (adapter->netdev_registered) {
3860 		unregister_netdev(netdev);
3861 		adapter->netdev_registered = false;
3862 	}
3863 	if (CLIENT_ALLOWED(adapter)) {
3864 		err = iavf_lan_del_device(adapter);
3865 		if (err)
3866 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 				 err);
3868 	}
3869 
3870 	/* Shut down all the garbage mashers on the detention level */
3871 	adapter->state = __IAVF_REMOVE;
3872 	adapter->aq_required = 0;
3873 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 	iavf_request_reset(adapter);
3875 	msleep(50);
3876 	/* If the FW isn't responding, kick it once, but only once. */
3877 	if (!iavf_asq_done(hw)) {
3878 		iavf_request_reset(adapter);
3879 		msleep(50);
3880 	}
3881 	iavf_free_all_tx_resources(adapter);
3882 	iavf_free_all_rx_resources(adapter);
3883 	iavf_misc_irq_disable(adapter);
3884 	iavf_free_misc_irq(adapter);
3885 	iavf_reset_interrupt_capability(adapter);
3886 	iavf_free_q_vectors(adapter);
3887 
3888 	cancel_delayed_work_sync(&adapter->watchdog_task);
3889 
3890 	cancel_work_sync(&adapter->adminq_task);
3891 
3892 	iavf_free_rss(adapter);
3893 
3894 	if (hw->aq.asq.count)
3895 		iavf_shutdown_adminq(hw);
3896 
3897 	/* destroy the locks only once, here */
3898 	mutex_destroy(&hw->aq.arq_mutex);
3899 	mutex_destroy(&hw->aq.asq_mutex);
3900 
3901 	iounmap(hw->hw_addr);
3902 	pci_release_regions(pdev);
3903 	iavf_free_all_tx_resources(adapter);
3904 	iavf_free_all_rx_resources(adapter);
3905 	iavf_free_queues(adapter);
3906 	kfree(adapter->vf_res);
3907 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 	/* If we got removed before an up/down sequence, we've got a filter
3909 	 * hanging out there that we need to get rid of.
3910 	 */
3911 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 		list_del(&f->list);
3913 		kfree(f);
3914 	}
3915 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 				 list) {
3917 		list_del(&vlf->list);
3918 		kfree(vlf);
3919 	}
3920 
3921 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922 
3923 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 		list_del(&cf->list);
3926 		kfree(cf);
3927 	}
3928 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929 
3930 	free_netdev(netdev);
3931 
3932 	pci_disable_pcie_error_reporting(pdev);
3933 
3934 	pci_disable_device(pdev);
3935 }
3936 
3937 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938 
3939 static struct pci_driver iavf_driver = {
3940 	.name      = iavf_driver_name,
3941 	.id_table  = iavf_pci_tbl,
3942 	.probe     = iavf_probe,
3943 	.remove    = iavf_remove,
3944 	.driver.pm = &iavf_pm_ops,
3945 	.shutdown  = iavf_shutdown,
3946 };
3947 
3948 /**
3949  * iavf_init_module - Driver Registration Routine
3950  *
3951  * iavf_init_module is the first routine called when the driver is
3952  * loaded. All it does is register with the PCI subsystem.
3953  **/
3954 static int __init iavf_init_module(void)
3955 {
3956 	int ret;
3957 
3958 	pr_info("iavf: %s\n", iavf_driver_string);
3959 
3960 	pr_info("%s\n", iavf_copyright);
3961 
3962 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963 				  iavf_driver_name);
3964 	if (!iavf_wq) {
3965 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966 		return -ENOMEM;
3967 	}
3968 	ret = pci_register_driver(&iavf_driver);
3969 	return ret;
3970 }
3971 
3972 module_init(iavf_init_module);
3973 
3974 /**
3975  * iavf_exit_module - Driver Exit Cleanup Routine
3976  *
3977  * iavf_exit_module is called just before the driver is removed
3978  * from memory.
3979  **/
3980 static void __exit iavf_exit_module(void)
3981 {
3982 	pci_unregister_driver(&iavf_driver);
3983 	destroy_workqueue(iavf_wq);
3984 }
3985 
3986 module_exit(iavf_exit_module);
3987 
3988 /* iavf_main.c */
3989