1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 171 * @hw: pointer to the HW structure 172 * @mem: ptr to mem struct to fill out 173 * @size: size of memory requested 174 * @alignment: what to align the allocation to 175 **/ 176 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 177 struct iavf_dma_mem *mem, 178 u64 size, u32 alignment) 179 { 180 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 181 182 if (!mem) 183 return IAVF_ERR_PARAM; 184 185 mem->size = ALIGN(size, alignment); 186 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 187 (dma_addr_t *)&mem->pa, GFP_KERNEL); 188 if (mem->va) 189 return 0; 190 else 191 return IAVF_ERR_NO_MEMORY; 192 } 193 194 /** 195 * iavf_free_dma_mem_d - OS specific memory free for shared code 196 * @hw: pointer to the HW structure 197 * @mem: ptr to mem struct to free 198 **/ 199 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 200 struct iavf_dma_mem *mem) 201 { 202 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 203 204 if (!mem || !mem->va) 205 return IAVF_ERR_PARAM; 206 dma_free_coherent(&adapter->pdev->dev, mem->size, 207 mem->va, (dma_addr_t)mem->pa); 208 return 0; 209 } 210 211 /** 212 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 213 * @hw: pointer to the HW structure 214 * @mem: ptr to mem struct to fill out 215 * @size: size of memory requested 216 **/ 217 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 218 struct iavf_virt_mem *mem, u32 size) 219 { 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = size; 224 mem->va = kzalloc(size, GFP_KERNEL); 225 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_virt_mem_d - OS specific memory free for shared code 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 238 struct iavf_virt_mem *mem) 239 { 240 if (!mem) 241 return IAVF_ERR_PARAM; 242 243 /* it's ok to kfree a NULL pointer */ 244 kfree(mem->va); 245 246 return 0; 247 } 248 249 /** 250 * iavf_lock_timeout - try to lock mutex but give up after timeout 251 * @lock: mutex that should be locked 252 * @msecs: timeout in msecs 253 * 254 * Returns 0 on success, negative on failure 255 **/ 256 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 257 { 258 unsigned int wait, delay = 10; 259 260 for (wait = 0; wait < msecs; wait += delay) { 261 if (mutex_trylock(lock)) 262 return 0; 263 264 msleep(delay); 265 } 266 267 return -1; 268 } 269 270 /** 271 * iavf_schedule_reset - Set the flags and schedule a reset event 272 * @adapter: board private structure 273 **/ 274 void iavf_schedule_reset(struct iavf_adapter *adapter) 275 { 276 if (!(adapter->flags & 277 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 278 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 279 queue_work(adapter->wq, &adapter->reset_task); 280 } 281 } 282 283 /** 284 * iavf_schedule_request_stats - Set the flags and schedule statistics request 285 * @adapter: board private structure 286 * 287 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 288 * request and refresh ethtool stats 289 **/ 290 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 291 { 292 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 293 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 294 } 295 296 /** 297 * iavf_tx_timeout - Respond to a Tx Hang 298 * @netdev: network interface device structure 299 * @txqueue: queue number that is timing out 300 **/ 301 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 302 { 303 struct iavf_adapter *adapter = netdev_priv(netdev); 304 305 adapter->tx_timeout_count++; 306 iavf_schedule_reset(adapter); 307 } 308 309 /** 310 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 311 * @adapter: board private structure 312 **/ 313 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 314 { 315 struct iavf_hw *hw = &adapter->hw; 316 317 if (!adapter->msix_entries) 318 return; 319 320 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 321 322 iavf_flush(hw); 323 324 synchronize_irq(adapter->msix_entries[0].vector); 325 } 326 327 /** 328 * iavf_misc_irq_enable - Enable default interrupt generation settings 329 * @adapter: board private structure 330 **/ 331 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 332 { 333 struct iavf_hw *hw = &adapter->hw; 334 335 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 336 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 337 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 338 339 iavf_flush(hw); 340 } 341 342 /** 343 * iavf_irq_disable - Mask off interrupt generation on the NIC 344 * @adapter: board private structure 345 **/ 346 static void iavf_irq_disable(struct iavf_adapter *adapter) 347 { 348 int i; 349 struct iavf_hw *hw = &adapter->hw; 350 351 if (!adapter->msix_entries) 352 return; 353 354 for (i = 1; i < adapter->num_msix_vectors; i++) { 355 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 356 synchronize_irq(adapter->msix_entries[i].vector); 357 } 358 iavf_flush(hw); 359 } 360 361 /** 362 * iavf_irq_enable_queues - Enable interrupt for specified queues 363 * @adapter: board private structure 364 * @mask: bitmap of queues to enable 365 **/ 366 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 367 { 368 struct iavf_hw *hw = &adapter->hw; 369 int i; 370 371 for (i = 1; i < adapter->num_msix_vectors; i++) { 372 if (mask & BIT(i - 1)) { 373 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 374 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 375 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 376 } 377 } 378 } 379 380 /** 381 * iavf_irq_enable - Enable default interrupt generation settings 382 * @adapter: board private structure 383 * @flush: boolean value whether to run rd32() 384 **/ 385 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 386 { 387 struct iavf_hw *hw = &adapter->hw; 388 389 iavf_misc_irq_enable(adapter); 390 iavf_irq_enable_queues(adapter, ~0); 391 392 if (flush) 393 iavf_flush(hw); 394 } 395 396 /** 397 * iavf_msix_aq - Interrupt handler for vector 0 398 * @irq: interrupt number 399 * @data: pointer to netdev 400 **/ 401 static irqreturn_t iavf_msix_aq(int irq, void *data) 402 { 403 struct net_device *netdev = data; 404 struct iavf_adapter *adapter = netdev_priv(netdev); 405 struct iavf_hw *hw = &adapter->hw; 406 407 /* handle non-queue interrupts, these reads clear the registers */ 408 rd32(hw, IAVF_VFINT_ICR01); 409 rd32(hw, IAVF_VFINT_ICR0_ENA1); 410 411 if (adapter->state != __IAVF_REMOVE) 412 /* schedule work on the private workqueue */ 413 queue_work(adapter->wq, &adapter->adminq_task); 414 415 return IRQ_HANDLED; 416 } 417 418 /** 419 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 420 * @irq: interrupt number 421 * @data: pointer to a q_vector 422 **/ 423 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 424 { 425 struct iavf_q_vector *q_vector = data; 426 427 if (!q_vector->tx.ring && !q_vector->rx.ring) 428 return IRQ_HANDLED; 429 430 napi_schedule_irqoff(&q_vector->napi); 431 432 return IRQ_HANDLED; 433 } 434 435 /** 436 * iavf_map_vector_to_rxq - associate irqs with rx queues 437 * @adapter: board private structure 438 * @v_idx: interrupt number 439 * @r_idx: queue number 440 **/ 441 static void 442 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 443 { 444 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 445 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 446 struct iavf_hw *hw = &adapter->hw; 447 448 rx_ring->q_vector = q_vector; 449 rx_ring->next = q_vector->rx.ring; 450 rx_ring->vsi = &adapter->vsi; 451 q_vector->rx.ring = rx_ring; 452 q_vector->rx.count++; 453 q_vector->rx.next_update = jiffies + 1; 454 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 455 q_vector->ring_mask |= BIT(r_idx); 456 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 457 q_vector->rx.current_itr >> 1); 458 q_vector->rx.current_itr = q_vector->rx.target_itr; 459 } 460 461 /** 462 * iavf_map_vector_to_txq - associate irqs with tx queues 463 * @adapter: board private structure 464 * @v_idx: interrupt number 465 * @t_idx: queue number 466 **/ 467 static void 468 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 469 { 470 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 471 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 472 struct iavf_hw *hw = &adapter->hw; 473 474 tx_ring->q_vector = q_vector; 475 tx_ring->next = q_vector->tx.ring; 476 tx_ring->vsi = &adapter->vsi; 477 q_vector->tx.ring = tx_ring; 478 q_vector->tx.count++; 479 q_vector->tx.next_update = jiffies + 1; 480 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 481 q_vector->num_ringpairs++; 482 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 483 q_vector->tx.target_itr >> 1); 484 q_vector->tx.current_itr = q_vector->tx.target_itr; 485 } 486 487 /** 488 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 489 * @adapter: board private structure to initialize 490 * 491 * This function maps descriptor rings to the queue-specific vectors 492 * we were allotted through the MSI-X enabling code. Ideally, we'd have 493 * one vector per ring/queue, but on a constrained vector budget, we 494 * group the rings as "efficiently" as possible. You would add new 495 * mapping configurations in here. 496 **/ 497 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 498 { 499 int rings_remaining = adapter->num_active_queues; 500 int ridx = 0, vidx = 0; 501 int q_vectors; 502 503 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 504 505 for (; ridx < rings_remaining; ridx++) { 506 iavf_map_vector_to_rxq(adapter, vidx, ridx); 507 iavf_map_vector_to_txq(adapter, vidx, ridx); 508 509 /* In the case where we have more queues than vectors, continue 510 * round-robin on vectors until all queues are mapped. 511 */ 512 if (++vidx >= q_vectors) 513 vidx = 0; 514 } 515 516 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 517 } 518 519 /** 520 * iavf_irq_affinity_notify - Callback for affinity changes 521 * @notify: context as to what irq was changed 522 * @mask: the new affinity mask 523 * 524 * This is a callback function used by the irq_set_affinity_notifier function 525 * so that we may register to receive changes to the irq affinity masks. 526 **/ 527 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 528 const cpumask_t *mask) 529 { 530 struct iavf_q_vector *q_vector = 531 container_of(notify, struct iavf_q_vector, affinity_notify); 532 533 cpumask_copy(&q_vector->affinity_mask, mask); 534 } 535 536 /** 537 * iavf_irq_affinity_release - Callback for affinity notifier release 538 * @ref: internal core kernel usage 539 * 540 * This is a callback function used by the irq_set_affinity_notifier function 541 * to inform the current notification subscriber that they will no longer 542 * receive notifications. 543 **/ 544 static void iavf_irq_affinity_release(struct kref *ref) {} 545 546 /** 547 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 548 * @adapter: board private structure 549 * @basename: device basename 550 * 551 * Allocates MSI-X vectors for tx and rx handling, and requests 552 * interrupts from the kernel. 553 **/ 554 static int 555 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 556 { 557 unsigned int vector, q_vectors; 558 unsigned int rx_int_idx = 0, tx_int_idx = 0; 559 int irq_num, err; 560 int cpu; 561 562 iavf_irq_disable(adapter); 563 /* Decrement for Other and TCP Timer vectors */ 564 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 565 566 for (vector = 0; vector < q_vectors; vector++) { 567 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 568 569 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 570 571 if (q_vector->tx.ring && q_vector->rx.ring) { 572 snprintf(q_vector->name, sizeof(q_vector->name), 573 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 574 tx_int_idx++; 575 } else if (q_vector->rx.ring) { 576 snprintf(q_vector->name, sizeof(q_vector->name), 577 "iavf-%s-rx-%u", basename, rx_int_idx++); 578 } else if (q_vector->tx.ring) { 579 snprintf(q_vector->name, sizeof(q_vector->name), 580 "iavf-%s-tx-%u", basename, tx_int_idx++); 581 } else { 582 /* skip this unused q_vector */ 583 continue; 584 } 585 err = request_irq(irq_num, 586 iavf_msix_clean_rings, 587 0, 588 q_vector->name, 589 q_vector); 590 if (err) { 591 dev_info(&adapter->pdev->dev, 592 "Request_irq failed, error: %d\n", err); 593 goto free_queue_irqs; 594 } 595 /* register for affinity change notifications */ 596 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 597 q_vector->affinity_notify.release = 598 iavf_irq_affinity_release; 599 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 600 /* Spread the IRQ affinity hints across online CPUs. Note that 601 * get_cpu_mask returns a mask with a permanent lifetime so 602 * it's safe to use as a hint for irq_update_affinity_hint. 603 */ 604 cpu = cpumask_local_spread(q_vector->v_idx, -1); 605 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 606 } 607 608 return 0; 609 610 free_queue_irqs: 611 while (vector) { 612 vector--; 613 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 614 irq_set_affinity_notifier(irq_num, NULL); 615 irq_update_affinity_hint(irq_num, NULL); 616 free_irq(irq_num, &adapter->q_vectors[vector]); 617 } 618 return err; 619 } 620 621 /** 622 * iavf_request_misc_irq - Initialize MSI-X interrupts 623 * @adapter: board private structure 624 * 625 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 626 * vector is only for the admin queue, and stays active even when the netdev 627 * is closed. 628 **/ 629 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 630 { 631 struct net_device *netdev = adapter->netdev; 632 int err; 633 634 snprintf(adapter->misc_vector_name, 635 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 636 dev_name(&adapter->pdev->dev)); 637 err = request_irq(adapter->msix_entries[0].vector, 638 &iavf_msix_aq, 0, 639 adapter->misc_vector_name, netdev); 640 if (err) { 641 dev_err(&adapter->pdev->dev, 642 "request_irq for %s failed: %d\n", 643 adapter->misc_vector_name, err); 644 free_irq(adapter->msix_entries[0].vector, netdev); 645 } 646 return err; 647 } 648 649 /** 650 * iavf_free_traffic_irqs - Free MSI-X interrupts 651 * @adapter: board private structure 652 * 653 * Frees all MSI-X vectors other than 0. 654 **/ 655 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 656 { 657 int vector, irq_num, q_vectors; 658 659 if (!adapter->msix_entries) 660 return; 661 662 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 663 664 for (vector = 0; vector < q_vectors; vector++) { 665 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 666 irq_set_affinity_notifier(irq_num, NULL); 667 irq_update_affinity_hint(irq_num, NULL); 668 free_irq(irq_num, &adapter->q_vectors[vector]); 669 } 670 } 671 672 /** 673 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 674 * @adapter: board private structure 675 * 676 * Frees MSI-X vector 0. 677 **/ 678 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 679 { 680 struct net_device *netdev = adapter->netdev; 681 682 if (!adapter->msix_entries) 683 return; 684 685 free_irq(adapter->msix_entries[0].vector, netdev); 686 } 687 688 /** 689 * iavf_configure_tx - Configure Transmit Unit after Reset 690 * @adapter: board private structure 691 * 692 * Configure the Tx unit of the MAC after a reset. 693 **/ 694 static void iavf_configure_tx(struct iavf_adapter *adapter) 695 { 696 struct iavf_hw *hw = &adapter->hw; 697 int i; 698 699 for (i = 0; i < adapter->num_active_queues; i++) 700 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 701 } 702 703 /** 704 * iavf_configure_rx - Configure Receive Unit after Reset 705 * @adapter: board private structure 706 * 707 * Configure the Rx unit of the MAC after a reset. 708 **/ 709 static void iavf_configure_rx(struct iavf_adapter *adapter) 710 { 711 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 712 struct iavf_hw *hw = &adapter->hw; 713 int i; 714 715 /* Legacy Rx will always default to a 2048 buffer size. */ 716 #if (PAGE_SIZE < 8192) 717 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 718 struct net_device *netdev = adapter->netdev; 719 720 /* For jumbo frames on systems with 4K pages we have to use 721 * an order 1 page, so we might as well increase the size 722 * of our Rx buffer to make better use of the available space 723 */ 724 rx_buf_len = IAVF_RXBUFFER_3072; 725 726 /* We use a 1536 buffer size for configurations with 727 * standard Ethernet mtu. On x86 this gives us enough room 728 * for shared info and 192 bytes of padding. 729 */ 730 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 731 (netdev->mtu <= ETH_DATA_LEN)) 732 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 733 } 734 #endif 735 736 for (i = 0; i < adapter->num_active_queues; i++) { 737 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 738 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 739 740 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 741 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 742 else 743 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 744 } 745 } 746 747 /** 748 * iavf_find_vlan - Search filter list for specific vlan filter 749 * @adapter: board private structure 750 * @vlan: vlan tag 751 * 752 * Returns ptr to the filter object or NULL. Must be called while holding the 753 * mac_vlan_list_lock. 754 **/ 755 static struct 756 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 757 struct iavf_vlan vlan) 758 { 759 struct iavf_vlan_filter *f; 760 761 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 762 if (f->vlan.vid == vlan.vid && 763 f->vlan.tpid == vlan.tpid) 764 return f; 765 } 766 767 return NULL; 768 } 769 770 /** 771 * iavf_add_vlan - Add a vlan filter to the list 772 * @adapter: board private structure 773 * @vlan: VLAN tag 774 * 775 * Returns ptr to the filter object or NULL when no memory available. 776 **/ 777 static struct 778 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 779 struct iavf_vlan vlan) 780 { 781 struct iavf_vlan_filter *f = NULL; 782 783 spin_lock_bh(&adapter->mac_vlan_list_lock); 784 785 f = iavf_find_vlan(adapter, vlan); 786 if (!f) { 787 f = kzalloc(sizeof(*f), GFP_ATOMIC); 788 if (!f) 789 goto clearout; 790 791 f->vlan = vlan; 792 793 list_add_tail(&f->list, &adapter->vlan_filter_list); 794 f->add = true; 795 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 796 } 797 798 clearout: 799 spin_unlock_bh(&adapter->mac_vlan_list_lock); 800 return f; 801 } 802 803 /** 804 * iavf_del_vlan - Remove a vlan filter from the list 805 * @adapter: board private structure 806 * @vlan: VLAN tag 807 **/ 808 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 809 { 810 struct iavf_vlan_filter *f; 811 812 spin_lock_bh(&adapter->mac_vlan_list_lock); 813 814 f = iavf_find_vlan(adapter, vlan); 815 if (f) { 816 f->remove = true; 817 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 818 } 819 820 spin_unlock_bh(&adapter->mac_vlan_list_lock); 821 } 822 823 /** 824 * iavf_restore_filters 825 * @adapter: board private structure 826 * 827 * Restore existing non MAC filters when VF netdev comes back up 828 **/ 829 static void iavf_restore_filters(struct iavf_adapter *adapter) 830 { 831 u16 vid; 832 833 /* re-add all VLAN filters */ 834 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 835 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 836 837 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 838 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 839 } 840 841 /** 842 * iavf_get_num_vlans_added - get number of VLANs added 843 * @adapter: board private structure 844 */ 845 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 846 { 847 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 848 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 849 } 850 851 /** 852 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 853 * @adapter: board private structure 854 * 855 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 856 * do not impose a limit as that maintains current behavior and for 857 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 858 **/ 859 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 860 { 861 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 862 * never been a limit on the VF driver side 863 */ 864 if (VLAN_ALLOWED(adapter)) 865 return VLAN_N_VID; 866 else if (VLAN_V2_ALLOWED(adapter)) 867 return adapter->vlan_v2_caps.filtering.max_filters; 868 869 return 0; 870 } 871 872 /** 873 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 874 * @adapter: board private structure 875 **/ 876 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 877 { 878 if (iavf_get_num_vlans_added(adapter) < 879 iavf_get_max_vlans_allowed(adapter)) 880 return false; 881 882 return true; 883 } 884 885 /** 886 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 887 * @netdev: network device struct 888 * @proto: unused protocol data 889 * @vid: VLAN tag 890 **/ 891 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 892 __always_unused __be16 proto, u16 vid) 893 { 894 struct iavf_adapter *adapter = netdev_priv(netdev); 895 896 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 897 if (!vid) 898 return 0; 899 900 if (!VLAN_FILTERING_ALLOWED(adapter)) 901 return -EIO; 902 903 if (iavf_max_vlans_added(adapter)) { 904 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 905 iavf_get_max_vlans_allowed(adapter)); 906 return -EIO; 907 } 908 909 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 910 return -ENOMEM; 911 912 return 0; 913 } 914 915 /** 916 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 917 * @netdev: network device struct 918 * @proto: unused protocol data 919 * @vid: VLAN tag 920 **/ 921 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 922 __always_unused __be16 proto, u16 vid) 923 { 924 struct iavf_adapter *adapter = netdev_priv(netdev); 925 926 /* We do not track VLAN 0 filter */ 927 if (!vid) 928 return 0; 929 930 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 931 if (proto == cpu_to_be16(ETH_P_8021Q)) 932 clear_bit(vid, adapter->vsi.active_cvlans); 933 else 934 clear_bit(vid, adapter->vsi.active_svlans); 935 936 return 0; 937 } 938 939 /** 940 * iavf_find_filter - Search filter list for specific mac filter 941 * @adapter: board private structure 942 * @macaddr: the MAC address 943 * 944 * Returns ptr to the filter object or NULL. Must be called while holding the 945 * mac_vlan_list_lock. 946 **/ 947 static struct 948 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 949 const u8 *macaddr) 950 { 951 struct iavf_mac_filter *f; 952 953 if (!macaddr) 954 return NULL; 955 956 list_for_each_entry(f, &adapter->mac_filter_list, list) { 957 if (ether_addr_equal(macaddr, f->macaddr)) 958 return f; 959 } 960 return NULL; 961 } 962 963 /** 964 * iavf_add_filter - Add a mac filter to the filter list 965 * @adapter: board private structure 966 * @macaddr: the MAC address 967 * 968 * Returns ptr to the filter object or NULL when no memory available. 969 **/ 970 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 971 const u8 *macaddr) 972 { 973 struct iavf_mac_filter *f; 974 975 if (!macaddr) 976 return NULL; 977 978 f = iavf_find_filter(adapter, macaddr); 979 if (!f) { 980 f = kzalloc(sizeof(*f), GFP_ATOMIC); 981 if (!f) 982 return f; 983 984 ether_addr_copy(f->macaddr, macaddr); 985 986 list_add_tail(&f->list, &adapter->mac_filter_list); 987 f->add = true; 988 f->add_handled = false; 989 f->is_new_mac = true; 990 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 991 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 992 } else { 993 f->remove = false; 994 } 995 996 return f; 997 } 998 999 /** 1000 * iavf_replace_primary_mac - Replace current primary address 1001 * @adapter: board private structure 1002 * @new_mac: new MAC address to be applied 1003 * 1004 * Replace current dev_addr and send request to PF for removal of previous 1005 * primary MAC address filter and addition of new primary MAC filter. 1006 * Return 0 for success, -ENOMEM for failure. 1007 * 1008 * Do not call this with mac_vlan_list_lock! 1009 **/ 1010 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1011 const u8 *new_mac) 1012 { 1013 struct iavf_hw *hw = &adapter->hw; 1014 struct iavf_mac_filter *f; 1015 1016 spin_lock_bh(&adapter->mac_vlan_list_lock); 1017 1018 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1019 f->is_primary = false; 1020 } 1021 1022 f = iavf_find_filter(adapter, hw->mac.addr); 1023 if (f) { 1024 f->remove = true; 1025 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1026 } 1027 1028 f = iavf_add_filter(adapter, new_mac); 1029 1030 if (f) { 1031 /* Always send the request to add if changing primary MAC 1032 * even if filter is already present on the list 1033 */ 1034 f->is_primary = true; 1035 f->add = true; 1036 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1037 ether_addr_copy(hw->mac.addr, new_mac); 1038 } 1039 1040 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1041 1042 /* schedule the watchdog task to immediately process the request */ 1043 if (f) { 1044 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1045 return 0; 1046 } 1047 return -ENOMEM; 1048 } 1049 1050 /** 1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1052 * @netdev: network interface device structure 1053 * @macaddr: MAC address to set 1054 * 1055 * Returns true on success, false on failure 1056 */ 1057 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1058 const u8 *macaddr) 1059 { 1060 struct iavf_adapter *adapter = netdev_priv(netdev); 1061 struct iavf_mac_filter *f; 1062 bool ret = false; 1063 1064 spin_lock_bh(&adapter->mac_vlan_list_lock); 1065 1066 f = iavf_find_filter(adapter, macaddr); 1067 1068 if (!f || (!f->add && f->add_handled)) 1069 ret = true; 1070 1071 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1072 1073 return ret; 1074 } 1075 1076 /** 1077 * iavf_set_mac - NDO callback to set port MAC address 1078 * @netdev: network interface device structure 1079 * @p: pointer to an address structure 1080 * 1081 * Returns 0 on success, negative on failure 1082 */ 1083 static int iavf_set_mac(struct net_device *netdev, void *p) 1084 { 1085 struct iavf_adapter *adapter = netdev_priv(netdev); 1086 struct sockaddr *addr = p; 1087 int ret; 1088 1089 if (!is_valid_ether_addr(addr->sa_data)) 1090 return -EADDRNOTAVAIL; 1091 1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1093 1094 if (ret) 1095 return ret; 1096 1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1098 iavf_is_mac_set_handled(netdev, addr->sa_data), 1099 msecs_to_jiffies(2500)); 1100 1101 /* If ret < 0 then it means wait was interrupted. 1102 * If ret == 0 then it means we got a timeout. 1103 * else it means we got response for set MAC from PF, 1104 * check if netdev MAC was updated to requested MAC, 1105 * if yes then set MAC succeeded otherwise it failed return -EACCES 1106 */ 1107 if (ret < 0) 1108 return ret; 1109 1110 if (!ret) 1111 return -EAGAIN; 1112 1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1114 return -EACCES; 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1121 * @netdev: the netdevice 1122 * @addr: address to add 1123 * 1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1126 */ 1127 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1128 { 1129 struct iavf_adapter *adapter = netdev_priv(netdev); 1130 1131 if (iavf_add_filter(adapter, addr)) 1132 return 0; 1133 else 1134 return -ENOMEM; 1135 } 1136 1137 /** 1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1139 * @netdev: the netdevice 1140 * @addr: address to add 1141 * 1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1144 */ 1145 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1146 { 1147 struct iavf_adapter *adapter = netdev_priv(netdev); 1148 struct iavf_mac_filter *f; 1149 1150 /* Under some circumstances, we might receive a request to delete 1151 * our own device address from our uc list. Because we store the 1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1153 * such requests and not delete our device address from this list. 1154 */ 1155 if (ether_addr_equal(addr, netdev->dev_addr)) 1156 return 0; 1157 1158 f = iavf_find_filter(adapter, addr); 1159 if (f) { 1160 f->remove = true; 1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1162 } 1163 return 0; 1164 } 1165 1166 /** 1167 * iavf_set_rx_mode - NDO callback to set the netdev filters 1168 * @netdev: network interface device structure 1169 **/ 1170 static void iavf_set_rx_mode(struct net_device *netdev) 1171 { 1172 struct iavf_adapter *adapter = netdev_priv(netdev); 1173 1174 spin_lock_bh(&adapter->mac_vlan_list_lock); 1175 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1176 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1177 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1178 1179 if (netdev->flags & IFF_PROMISC && 1180 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1181 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1182 else if (!(netdev->flags & IFF_PROMISC) && 1183 adapter->flags & IAVF_FLAG_PROMISC_ON) 1184 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1185 1186 if (netdev->flags & IFF_ALLMULTI && 1187 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1188 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1189 else if (!(netdev->flags & IFF_ALLMULTI) && 1190 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1191 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1192 } 1193 1194 /** 1195 * iavf_napi_enable_all - enable NAPI on all queue vectors 1196 * @adapter: board private structure 1197 **/ 1198 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1199 { 1200 int q_idx; 1201 struct iavf_q_vector *q_vector; 1202 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1203 1204 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1205 struct napi_struct *napi; 1206 1207 q_vector = &adapter->q_vectors[q_idx]; 1208 napi = &q_vector->napi; 1209 napi_enable(napi); 1210 } 1211 } 1212 1213 /** 1214 * iavf_napi_disable_all - disable NAPI on all queue vectors 1215 * @adapter: board private structure 1216 **/ 1217 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1218 { 1219 int q_idx; 1220 struct iavf_q_vector *q_vector; 1221 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1222 1223 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1224 q_vector = &adapter->q_vectors[q_idx]; 1225 napi_disable(&q_vector->napi); 1226 } 1227 } 1228 1229 /** 1230 * iavf_configure - set up transmit and receive data structures 1231 * @adapter: board private structure 1232 **/ 1233 static void iavf_configure(struct iavf_adapter *adapter) 1234 { 1235 struct net_device *netdev = adapter->netdev; 1236 int i; 1237 1238 iavf_set_rx_mode(netdev); 1239 1240 iavf_configure_tx(adapter); 1241 iavf_configure_rx(adapter); 1242 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1243 1244 for (i = 0; i < adapter->num_active_queues; i++) { 1245 struct iavf_ring *ring = &adapter->rx_rings[i]; 1246 1247 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1248 } 1249 } 1250 1251 /** 1252 * iavf_up_complete - Finish the last steps of bringing up a connection 1253 * @adapter: board private structure 1254 * 1255 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1256 **/ 1257 static void iavf_up_complete(struct iavf_adapter *adapter) 1258 { 1259 iavf_change_state(adapter, __IAVF_RUNNING); 1260 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1261 1262 iavf_napi_enable_all(adapter); 1263 1264 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1265 if (CLIENT_ENABLED(adapter)) 1266 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1267 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1268 } 1269 1270 /** 1271 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1272 * yet and mark other to be removed. 1273 * @adapter: board private structure 1274 **/ 1275 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1276 { 1277 struct iavf_vlan_filter *vlf, *vlftmp; 1278 struct iavf_mac_filter *f, *ftmp; 1279 1280 spin_lock_bh(&adapter->mac_vlan_list_lock); 1281 /* clear the sync flag on all filters */ 1282 __dev_uc_unsync(adapter->netdev, NULL); 1283 __dev_mc_unsync(adapter->netdev, NULL); 1284 1285 /* remove all MAC filters */ 1286 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1287 list) { 1288 if (f->add) { 1289 list_del(&f->list); 1290 kfree(f); 1291 } else { 1292 f->remove = true; 1293 } 1294 } 1295 1296 /* remove all VLAN filters */ 1297 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1298 list) { 1299 if (vlf->add) { 1300 list_del(&vlf->list); 1301 kfree(vlf); 1302 } else { 1303 vlf->remove = true; 1304 } 1305 } 1306 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1307 } 1308 1309 /** 1310 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1311 * mark other to be removed. 1312 * @adapter: board private structure 1313 **/ 1314 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1315 { 1316 struct iavf_cloud_filter *cf, *cftmp; 1317 1318 /* remove all cloud filters */ 1319 spin_lock_bh(&adapter->cloud_filter_list_lock); 1320 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1321 list) { 1322 if (cf->add) { 1323 list_del(&cf->list); 1324 kfree(cf); 1325 adapter->num_cloud_filters--; 1326 } else { 1327 cf->del = true; 1328 } 1329 } 1330 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1331 } 1332 1333 /** 1334 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1335 * other to be removed. 1336 * @adapter: board private structure 1337 **/ 1338 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1339 { 1340 struct iavf_fdir_fltr *fdir, *fdirtmp; 1341 1342 /* remove all Flow Director filters */ 1343 spin_lock_bh(&adapter->fdir_fltr_lock); 1344 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1345 list) { 1346 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1347 list_del(&fdir->list); 1348 kfree(fdir); 1349 adapter->fdir_active_fltr--; 1350 } else { 1351 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1352 } 1353 } 1354 spin_unlock_bh(&adapter->fdir_fltr_lock); 1355 } 1356 1357 /** 1358 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1359 * other to be removed. 1360 * @adapter: board private structure 1361 **/ 1362 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1363 { 1364 struct iavf_adv_rss *rss, *rsstmp; 1365 1366 /* remove all advance RSS configuration */ 1367 spin_lock_bh(&adapter->adv_rss_lock); 1368 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1369 list) { 1370 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1371 list_del(&rss->list); 1372 kfree(rss); 1373 } else { 1374 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1375 } 1376 } 1377 spin_unlock_bh(&adapter->adv_rss_lock); 1378 } 1379 1380 /** 1381 * iavf_down - Shutdown the connection processing 1382 * @adapter: board private structure 1383 * 1384 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1385 **/ 1386 void iavf_down(struct iavf_adapter *adapter) 1387 { 1388 struct net_device *netdev = adapter->netdev; 1389 1390 if (adapter->state <= __IAVF_DOWN_PENDING) 1391 return; 1392 1393 netif_carrier_off(netdev); 1394 netif_tx_disable(netdev); 1395 adapter->link_up = false; 1396 iavf_napi_disable_all(adapter); 1397 iavf_irq_disable(adapter); 1398 1399 iavf_clear_mac_vlan_filters(adapter); 1400 iavf_clear_cloud_filters(adapter); 1401 iavf_clear_fdir_filters(adapter); 1402 iavf_clear_adv_rss_conf(adapter); 1403 1404 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1405 /* cancel any current operation */ 1406 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1407 /* Schedule operations to close down the HW. Don't wait 1408 * here for this to complete. The watchdog is still running 1409 * and it will take care of this. 1410 */ 1411 if (!list_empty(&adapter->mac_filter_list)) 1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1413 if (!list_empty(&adapter->vlan_filter_list)) 1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1415 if (!list_empty(&adapter->cloud_filter_list)) 1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1417 if (!list_empty(&adapter->fdir_list_head)) 1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1419 if (!list_empty(&adapter->adv_rss_list_head)) 1420 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1421 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1422 } 1423 1424 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1425 } 1426 1427 /** 1428 * iavf_acquire_msix_vectors - Setup the MSIX capability 1429 * @adapter: board private structure 1430 * @vectors: number of vectors to request 1431 * 1432 * Work with the OS to set up the MSIX vectors needed. 1433 * 1434 * Returns 0 on success, negative on failure 1435 **/ 1436 static int 1437 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1438 { 1439 int err, vector_threshold; 1440 1441 /* We'll want at least 3 (vector_threshold): 1442 * 0) Other (Admin Queue and link, mostly) 1443 * 1) TxQ[0] Cleanup 1444 * 2) RxQ[0] Cleanup 1445 */ 1446 vector_threshold = MIN_MSIX_COUNT; 1447 1448 /* The more we get, the more we will assign to Tx/Rx Cleanup 1449 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1450 * Right now, we simply care about how many we'll get; we'll 1451 * set them up later while requesting irq's. 1452 */ 1453 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1454 vector_threshold, vectors); 1455 if (err < 0) { 1456 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1457 kfree(adapter->msix_entries); 1458 adapter->msix_entries = NULL; 1459 return err; 1460 } 1461 1462 /* Adjust for only the vectors we'll use, which is minimum 1463 * of max_msix_q_vectors + NONQ_VECS, or the number of 1464 * vectors we were allocated. 1465 */ 1466 adapter->num_msix_vectors = err; 1467 return 0; 1468 } 1469 1470 /** 1471 * iavf_free_queues - Free memory for all rings 1472 * @adapter: board private structure to initialize 1473 * 1474 * Free all of the memory associated with queue pairs. 1475 **/ 1476 static void iavf_free_queues(struct iavf_adapter *adapter) 1477 { 1478 if (!adapter->vsi_res) 1479 return; 1480 adapter->num_active_queues = 0; 1481 kfree(adapter->tx_rings); 1482 adapter->tx_rings = NULL; 1483 kfree(adapter->rx_rings); 1484 adapter->rx_rings = NULL; 1485 } 1486 1487 /** 1488 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1489 * @adapter: board private structure 1490 * 1491 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1492 * stripped in certain descriptor fields. Instead of checking the offload 1493 * capability bits in the hot path, cache the location the ring specific 1494 * flags. 1495 */ 1496 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1497 { 1498 int i; 1499 1500 for (i = 0; i < adapter->num_active_queues; i++) { 1501 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1502 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1503 1504 /* prevent multiple L2TAG bits being set after VFR */ 1505 tx_ring->flags &= 1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1507 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1508 rx_ring->flags &= 1509 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1510 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1511 1512 if (VLAN_ALLOWED(adapter)) { 1513 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1514 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1515 } else if (VLAN_V2_ALLOWED(adapter)) { 1516 struct virtchnl_vlan_supported_caps *stripping_support; 1517 struct virtchnl_vlan_supported_caps *insertion_support; 1518 1519 stripping_support = 1520 &adapter->vlan_v2_caps.offloads.stripping_support; 1521 insertion_support = 1522 &adapter->vlan_v2_caps.offloads.insertion_support; 1523 1524 if (stripping_support->outer) { 1525 if (stripping_support->outer & 1526 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1527 rx_ring->flags |= 1528 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1529 else if (stripping_support->outer & 1530 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1531 rx_ring->flags |= 1532 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1533 } else if (stripping_support->inner) { 1534 if (stripping_support->inner & 1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1536 rx_ring->flags |= 1537 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1538 else if (stripping_support->inner & 1539 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1540 rx_ring->flags |= 1541 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1542 } 1543 1544 if (insertion_support->outer) { 1545 if (insertion_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1547 tx_ring->flags |= 1548 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1549 else if (insertion_support->outer & 1550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1551 tx_ring->flags |= 1552 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1553 } else if (insertion_support->inner) { 1554 if (insertion_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1556 tx_ring->flags |= 1557 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1558 else if (insertion_support->inner & 1559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1560 tx_ring->flags |= 1561 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1562 } 1563 } 1564 } 1565 } 1566 1567 /** 1568 * iavf_alloc_queues - Allocate memory for all rings 1569 * @adapter: board private structure to initialize 1570 * 1571 * We allocate one ring per queue at run-time since we don't know the 1572 * number of queues at compile-time. The polling_netdev array is 1573 * intended for Multiqueue, but should work fine with a single queue. 1574 **/ 1575 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1576 { 1577 int i, num_active_queues; 1578 1579 /* If we're in reset reallocating queues we don't actually know yet for 1580 * certain the PF gave us the number of queues we asked for but we'll 1581 * assume it did. Once basic reset is finished we'll confirm once we 1582 * start negotiating config with PF. 1583 */ 1584 if (adapter->num_req_queues) 1585 num_active_queues = adapter->num_req_queues; 1586 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1587 adapter->num_tc) 1588 num_active_queues = adapter->ch_config.total_qps; 1589 else 1590 num_active_queues = min_t(int, 1591 adapter->vsi_res->num_queue_pairs, 1592 (int)(num_online_cpus())); 1593 1594 1595 adapter->tx_rings = kcalloc(num_active_queues, 1596 sizeof(struct iavf_ring), GFP_KERNEL); 1597 if (!adapter->tx_rings) 1598 goto err_out; 1599 adapter->rx_rings = kcalloc(num_active_queues, 1600 sizeof(struct iavf_ring), GFP_KERNEL); 1601 if (!adapter->rx_rings) 1602 goto err_out; 1603 1604 for (i = 0; i < num_active_queues; i++) { 1605 struct iavf_ring *tx_ring; 1606 struct iavf_ring *rx_ring; 1607 1608 tx_ring = &adapter->tx_rings[i]; 1609 1610 tx_ring->queue_index = i; 1611 tx_ring->netdev = adapter->netdev; 1612 tx_ring->dev = &adapter->pdev->dev; 1613 tx_ring->count = adapter->tx_desc_count; 1614 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1615 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1616 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1617 1618 rx_ring = &adapter->rx_rings[i]; 1619 rx_ring->queue_index = i; 1620 rx_ring->netdev = adapter->netdev; 1621 rx_ring->dev = &adapter->pdev->dev; 1622 rx_ring->count = adapter->rx_desc_count; 1623 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1624 } 1625 1626 adapter->num_active_queues = num_active_queues; 1627 1628 iavf_set_queue_vlan_tag_loc(adapter); 1629 1630 return 0; 1631 1632 err_out: 1633 iavf_free_queues(adapter); 1634 return -ENOMEM; 1635 } 1636 1637 /** 1638 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1639 * @adapter: board private structure to initialize 1640 * 1641 * Attempt to configure the interrupts using the best available 1642 * capabilities of the hardware and the kernel. 1643 **/ 1644 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1645 { 1646 int vector, v_budget; 1647 int pairs = 0; 1648 int err = 0; 1649 1650 if (!adapter->vsi_res) { 1651 err = -EIO; 1652 goto out; 1653 } 1654 pairs = adapter->num_active_queues; 1655 1656 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1657 * us much good if we have more vectors than CPUs. However, we already 1658 * limit the total number of queues by the number of CPUs so we do not 1659 * need any further limiting here. 1660 */ 1661 v_budget = min_t(int, pairs + NONQ_VECS, 1662 (int)adapter->vf_res->max_vectors); 1663 1664 adapter->msix_entries = kcalloc(v_budget, 1665 sizeof(struct msix_entry), GFP_KERNEL); 1666 if (!adapter->msix_entries) { 1667 err = -ENOMEM; 1668 goto out; 1669 } 1670 1671 for (vector = 0; vector < v_budget; vector++) 1672 adapter->msix_entries[vector].entry = vector; 1673 1674 err = iavf_acquire_msix_vectors(adapter, v_budget); 1675 1676 out: 1677 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1678 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1679 return err; 1680 } 1681 1682 /** 1683 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1684 * @adapter: board private structure 1685 * 1686 * Return 0 on success, negative on failure 1687 **/ 1688 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1689 { 1690 struct iavf_aqc_get_set_rss_key_data *rss_key = 1691 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1692 struct iavf_hw *hw = &adapter->hw; 1693 enum iavf_status status; 1694 1695 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1696 /* bail because we already have a command pending */ 1697 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1698 adapter->current_op); 1699 return -EBUSY; 1700 } 1701 1702 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1703 if (status) { 1704 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1705 iavf_stat_str(hw, status), 1706 iavf_aq_str(hw, hw->aq.asq_last_status)); 1707 return iavf_status_to_errno(status); 1708 1709 } 1710 1711 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1712 adapter->rss_lut, adapter->rss_lut_size); 1713 if (status) { 1714 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1715 iavf_stat_str(hw, status), 1716 iavf_aq_str(hw, hw->aq.asq_last_status)); 1717 return iavf_status_to_errno(status); 1718 } 1719 1720 return 0; 1721 1722 } 1723 1724 /** 1725 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1726 * @adapter: board private structure 1727 * 1728 * Returns 0 on success, negative on failure 1729 **/ 1730 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1731 { 1732 struct iavf_hw *hw = &adapter->hw; 1733 u32 *dw; 1734 u16 i; 1735 1736 dw = (u32 *)adapter->rss_key; 1737 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1738 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1739 1740 dw = (u32 *)adapter->rss_lut; 1741 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1742 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1743 1744 iavf_flush(hw); 1745 1746 return 0; 1747 } 1748 1749 /** 1750 * iavf_config_rss - Configure RSS keys and lut 1751 * @adapter: board private structure 1752 * 1753 * Returns 0 on success, negative on failure 1754 **/ 1755 int iavf_config_rss(struct iavf_adapter *adapter) 1756 { 1757 1758 if (RSS_PF(adapter)) { 1759 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1760 IAVF_FLAG_AQ_SET_RSS_KEY; 1761 return 0; 1762 } else if (RSS_AQ(adapter)) { 1763 return iavf_config_rss_aq(adapter); 1764 } else { 1765 return iavf_config_rss_reg(adapter); 1766 } 1767 } 1768 1769 /** 1770 * iavf_fill_rss_lut - Fill the lut with default values 1771 * @adapter: board private structure 1772 **/ 1773 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1774 { 1775 u16 i; 1776 1777 for (i = 0; i < adapter->rss_lut_size; i++) 1778 adapter->rss_lut[i] = i % adapter->num_active_queues; 1779 } 1780 1781 /** 1782 * iavf_init_rss - Prepare for RSS 1783 * @adapter: board private structure 1784 * 1785 * Return 0 on success, negative on failure 1786 **/ 1787 static int iavf_init_rss(struct iavf_adapter *adapter) 1788 { 1789 struct iavf_hw *hw = &adapter->hw; 1790 1791 if (!RSS_PF(adapter)) { 1792 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1793 if (adapter->vf_res->vf_cap_flags & 1794 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1795 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1796 else 1797 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1798 1799 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1800 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1801 } 1802 1803 iavf_fill_rss_lut(adapter); 1804 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1805 1806 return iavf_config_rss(adapter); 1807 } 1808 1809 /** 1810 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1811 * @adapter: board private structure to initialize 1812 * 1813 * We allocate one q_vector per queue interrupt. If allocation fails we 1814 * return -ENOMEM. 1815 **/ 1816 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1817 { 1818 int q_idx = 0, num_q_vectors; 1819 struct iavf_q_vector *q_vector; 1820 1821 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1822 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1823 GFP_KERNEL); 1824 if (!adapter->q_vectors) 1825 return -ENOMEM; 1826 1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1828 q_vector = &adapter->q_vectors[q_idx]; 1829 q_vector->adapter = adapter; 1830 q_vector->vsi = &adapter->vsi; 1831 q_vector->v_idx = q_idx; 1832 q_vector->reg_idx = q_idx; 1833 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1834 netif_napi_add(adapter->netdev, &q_vector->napi, 1835 iavf_napi_poll); 1836 } 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1843 * @adapter: board private structure to initialize 1844 * 1845 * This function frees the memory allocated to the q_vectors. In addition if 1846 * NAPI is enabled it will delete any references to the NAPI struct prior 1847 * to freeing the q_vector. 1848 **/ 1849 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1850 { 1851 int q_idx, num_q_vectors; 1852 int napi_vectors; 1853 1854 if (!adapter->q_vectors) 1855 return; 1856 1857 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1858 napi_vectors = adapter->num_active_queues; 1859 1860 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1861 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1862 1863 if (q_idx < napi_vectors) 1864 netif_napi_del(&q_vector->napi); 1865 } 1866 kfree(adapter->q_vectors); 1867 adapter->q_vectors = NULL; 1868 } 1869 1870 /** 1871 * iavf_reset_interrupt_capability - Reset MSIX setup 1872 * @adapter: board private structure 1873 * 1874 **/ 1875 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1876 { 1877 if (!adapter->msix_entries) 1878 return; 1879 1880 pci_disable_msix(adapter->pdev); 1881 kfree(adapter->msix_entries); 1882 adapter->msix_entries = NULL; 1883 } 1884 1885 /** 1886 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1887 * @adapter: board private structure to initialize 1888 * 1889 **/ 1890 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1891 { 1892 int err; 1893 1894 err = iavf_alloc_queues(adapter); 1895 if (err) { 1896 dev_err(&adapter->pdev->dev, 1897 "Unable to allocate memory for queues\n"); 1898 goto err_alloc_queues; 1899 } 1900 1901 rtnl_lock(); 1902 err = iavf_set_interrupt_capability(adapter); 1903 rtnl_unlock(); 1904 if (err) { 1905 dev_err(&adapter->pdev->dev, 1906 "Unable to setup interrupt capabilities\n"); 1907 goto err_set_interrupt; 1908 } 1909 1910 err = iavf_alloc_q_vectors(adapter); 1911 if (err) { 1912 dev_err(&adapter->pdev->dev, 1913 "Unable to allocate memory for queue vectors\n"); 1914 goto err_alloc_q_vectors; 1915 } 1916 1917 /* If we've made it so far while ADq flag being ON, then we haven't 1918 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1919 * resources have been allocated in the reset path. 1920 * Now we can truly claim that ADq is enabled. 1921 */ 1922 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1923 adapter->num_tc) 1924 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1925 adapter->num_tc); 1926 1927 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1928 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1929 adapter->num_active_queues); 1930 1931 return 0; 1932 err_alloc_q_vectors: 1933 iavf_reset_interrupt_capability(adapter); 1934 err_set_interrupt: 1935 iavf_free_queues(adapter); 1936 err_alloc_queues: 1937 return err; 1938 } 1939 1940 /** 1941 * iavf_free_rss - Free memory used by RSS structs 1942 * @adapter: board private structure 1943 **/ 1944 static void iavf_free_rss(struct iavf_adapter *adapter) 1945 { 1946 kfree(adapter->rss_key); 1947 adapter->rss_key = NULL; 1948 1949 kfree(adapter->rss_lut); 1950 adapter->rss_lut = NULL; 1951 } 1952 1953 /** 1954 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1955 * @adapter: board private structure 1956 * 1957 * Returns 0 on success, negative on failure 1958 **/ 1959 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1960 { 1961 struct net_device *netdev = adapter->netdev; 1962 int err; 1963 1964 if (netif_running(netdev)) 1965 iavf_free_traffic_irqs(adapter); 1966 iavf_free_misc_irq(adapter); 1967 iavf_reset_interrupt_capability(adapter); 1968 iavf_free_q_vectors(adapter); 1969 iavf_free_queues(adapter); 1970 1971 err = iavf_init_interrupt_scheme(adapter); 1972 if (err) 1973 goto err; 1974 1975 netif_tx_stop_all_queues(netdev); 1976 1977 err = iavf_request_misc_irq(adapter); 1978 if (err) 1979 goto err; 1980 1981 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1982 1983 iavf_map_rings_to_vectors(adapter); 1984 err: 1985 return err; 1986 } 1987 1988 /** 1989 * iavf_process_aq_command - process aq_required flags 1990 * and sends aq command 1991 * @adapter: pointer to iavf adapter structure 1992 * 1993 * Returns 0 on success 1994 * Returns error code if no command was sent 1995 * or error code if the command failed. 1996 **/ 1997 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1998 { 1999 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2000 return iavf_send_vf_config_msg(adapter); 2001 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2002 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2003 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2004 iavf_disable_queues(adapter); 2005 return 0; 2006 } 2007 2008 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2009 iavf_map_queues(adapter); 2010 return 0; 2011 } 2012 2013 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2014 iavf_add_ether_addrs(adapter); 2015 return 0; 2016 } 2017 2018 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2019 iavf_add_vlans(adapter); 2020 return 0; 2021 } 2022 2023 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2024 iavf_del_ether_addrs(adapter); 2025 return 0; 2026 } 2027 2028 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2029 iavf_del_vlans(adapter); 2030 return 0; 2031 } 2032 2033 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2034 iavf_enable_vlan_stripping(adapter); 2035 return 0; 2036 } 2037 2038 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2039 iavf_disable_vlan_stripping(adapter); 2040 return 0; 2041 } 2042 2043 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2044 iavf_configure_queues(adapter); 2045 return 0; 2046 } 2047 2048 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2049 iavf_enable_queues(adapter); 2050 return 0; 2051 } 2052 2053 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2054 /* This message goes straight to the firmware, not the 2055 * PF, so we don't have to set current_op as we will 2056 * not get a response through the ARQ. 2057 */ 2058 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2059 return 0; 2060 } 2061 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2062 iavf_get_hena(adapter); 2063 return 0; 2064 } 2065 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2066 iavf_set_hena(adapter); 2067 return 0; 2068 } 2069 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2070 iavf_set_rss_key(adapter); 2071 return 0; 2072 } 2073 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2074 iavf_set_rss_lut(adapter); 2075 return 0; 2076 } 2077 2078 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2079 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2080 FLAG_VF_MULTICAST_PROMISC); 2081 return 0; 2082 } 2083 2084 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2085 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2086 return 0; 2087 } 2088 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2089 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2090 iavf_set_promiscuous(adapter, 0); 2091 return 0; 2092 } 2093 2094 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2095 iavf_enable_channels(adapter); 2096 return 0; 2097 } 2098 2099 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2100 iavf_disable_channels(adapter); 2101 return 0; 2102 } 2103 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2104 iavf_add_cloud_filter(adapter); 2105 return 0; 2106 } 2107 2108 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2109 iavf_del_cloud_filter(adapter); 2110 return 0; 2111 } 2112 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2113 iavf_del_cloud_filter(adapter); 2114 return 0; 2115 } 2116 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2117 iavf_add_cloud_filter(adapter); 2118 return 0; 2119 } 2120 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2121 iavf_add_fdir_filter(adapter); 2122 return IAVF_SUCCESS; 2123 } 2124 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2125 iavf_del_fdir_filter(adapter); 2126 return IAVF_SUCCESS; 2127 } 2128 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2129 iavf_add_adv_rss_cfg(adapter); 2130 return 0; 2131 } 2132 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2133 iavf_del_adv_rss_cfg(adapter); 2134 return 0; 2135 } 2136 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2137 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2138 return 0; 2139 } 2140 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2141 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2142 return 0; 2143 } 2144 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2145 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2146 return 0; 2147 } 2148 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2149 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2150 return 0; 2151 } 2152 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2153 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2154 return 0; 2155 } 2156 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2157 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2158 return 0; 2159 } 2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2161 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2162 return 0; 2163 } 2164 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2165 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2166 return 0; 2167 } 2168 2169 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2170 iavf_request_stats(adapter); 2171 return 0; 2172 } 2173 2174 return -EAGAIN; 2175 } 2176 2177 /** 2178 * iavf_set_vlan_offload_features - set VLAN offload configuration 2179 * @adapter: board private structure 2180 * @prev_features: previous features used for comparison 2181 * @features: updated features used for configuration 2182 * 2183 * Set the aq_required bit(s) based on the requested features passed in to 2184 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2185 * the watchdog if any changes are requested to expedite the request via 2186 * virtchnl. 2187 **/ 2188 void 2189 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2190 netdev_features_t prev_features, 2191 netdev_features_t features) 2192 { 2193 bool enable_stripping = true, enable_insertion = true; 2194 u16 vlan_ethertype = 0; 2195 u64 aq_required = 0; 2196 2197 /* keep cases separate because one ethertype for offloads can be 2198 * disabled at the same time as another is disabled, so check for an 2199 * enabled ethertype first, then check for disabled. Default to 2200 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2201 * stripping. 2202 */ 2203 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2204 vlan_ethertype = ETH_P_8021AD; 2205 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2206 vlan_ethertype = ETH_P_8021Q; 2207 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2208 vlan_ethertype = ETH_P_8021AD; 2209 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2210 vlan_ethertype = ETH_P_8021Q; 2211 else 2212 vlan_ethertype = ETH_P_8021Q; 2213 2214 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2215 enable_stripping = false; 2216 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2217 enable_insertion = false; 2218 2219 if (VLAN_ALLOWED(adapter)) { 2220 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2221 * stripping via virtchnl. VLAN insertion can be toggled on the 2222 * netdev, but it doesn't require a virtchnl message 2223 */ 2224 if (enable_stripping) 2225 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2226 else 2227 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2228 2229 } else if (VLAN_V2_ALLOWED(adapter)) { 2230 switch (vlan_ethertype) { 2231 case ETH_P_8021Q: 2232 if (enable_stripping) 2233 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2234 else 2235 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2236 2237 if (enable_insertion) 2238 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2239 else 2240 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2241 break; 2242 case ETH_P_8021AD: 2243 if (enable_stripping) 2244 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2245 else 2246 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2247 2248 if (enable_insertion) 2249 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2250 else 2251 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2252 break; 2253 } 2254 } 2255 2256 if (aq_required) { 2257 adapter->aq_required |= aq_required; 2258 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2259 } 2260 } 2261 2262 /** 2263 * iavf_startup - first step of driver startup 2264 * @adapter: board private structure 2265 * 2266 * Function process __IAVF_STARTUP driver state. 2267 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2268 * when fails the state is changed to __IAVF_INIT_FAILED 2269 **/ 2270 static void iavf_startup(struct iavf_adapter *adapter) 2271 { 2272 struct pci_dev *pdev = adapter->pdev; 2273 struct iavf_hw *hw = &adapter->hw; 2274 enum iavf_status status; 2275 int ret; 2276 2277 WARN_ON(adapter->state != __IAVF_STARTUP); 2278 2279 /* driver loaded, probe complete */ 2280 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2281 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2282 status = iavf_set_mac_type(hw); 2283 if (status) { 2284 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2285 goto err; 2286 } 2287 2288 ret = iavf_check_reset_complete(hw); 2289 if (ret) { 2290 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2291 ret); 2292 goto err; 2293 } 2294 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2295 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2296 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2297 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2298 2299 status = iavf_init_adminq(hw); 2300 if (status) { 2301 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2302 status); 2303 goto err; 2304 } 2305 ret = iavf_send_api_ver(adapter); 2306 if (ret) { 2307 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2308 iavf_shutdown_adminq(hw); 2309 goto err; 2310 } 2311 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2312 return; 2313 err: 2314 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2315 } 2316 2317 /** 2318 * iavf_init_version_check - second step of driver startup 2319 * @adapter: board private structure 2320 * 2321 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2322 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2323 * when fails the state is changed to __IAVF_INIT_FAILED 2324 **/ 2325 static void iavf_init_version_check(struct iavf_adapter *adapter) 2326 { 2327 struct pci_dev *pdev = adapter->pdev; 2328 struct iavf_hw *hw = &adapter->hw; 2329 int err = -EAGAIN; 2330 2331 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2332 2333 if (!iavf_asq_done(hw)) { 2334 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2335 iavf_shutdown_adminq(hw); 2336 iavf_change_state(adapter, __IAVF_STARTUP); 2337 goto err; 2338 } 2339 2340 /* aq msg sent, awaiting reply */ 2341 err = iavf_verify_api_ver(adapter); 2342 if (err) { 2343 if (err == -EALREADY) 2344 err = iavf_send_api_ver(adapter); 2345 else 2346 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2347 adapter->pf_version.major, 2348 adapter->pf_version.minor, 2349 VIRTCHNL_VERSION_MAJOR, 2350 VIRTCHNL_VERSION_MINOR); 2351 goto err; 2352 } 2353 err = iavf_send_vf_config_msg(adapter); 2354 if (err) { 2355 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2356 err); 2357 goto err; 2358 } 2359 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2360 return; 2361 err: 2362 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2363 } 2364 2365 /** 2366 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2367 * @adapter: board private structure 2368 */ 2369 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2370 { 2371 int i, num_req_queues = adapter->num_req_queues; 2372 struct iavf_vsi *vsi = &adapter->vsi; 2373 2374 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2375 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2376 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2377 } 2378 if (!adapter->vsi_res) { 2379 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2380 return -ENODEV; 2381 } 2382 2383 if (num_req_queues && 2384 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2385 /* Problem. The PF gave us fewer queues than what we had 2386 * negotiated in our request. Need a reset to see if we can't 2387 * get back to a working state. 2388 */ 2389 dev_err(&adapter->pdev->dev, 2390 "Requested %d queues, but PF only gave us %d.\n", 2391 num_req_queues, 2392 adapter->vsi_res->num_queue_pairs); 2393 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2394 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2395 iavf_schedule_reset(adapter); 2396 2397 return -EAGAIN; 2398 } 2399 adapter->num_req_queues = 0; 2400 adapter->vsi.id = adapter->vsi_res->vsi_id; 2401 2402 adapter->vsi.back = adapter; 2403 adapter->vsi.base_vector = 1; 2404 vsi->netdev = adapter->netdev; 2405 vsi->qs_handle = adapter->vsi_res->qset_handle; 2406 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2407 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2408 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2409 } else { 2410 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2411 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2412 } 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * iavf_init_get_resources - third step of driver startup 2419 * @adapter: board private structure 2420 * 2421 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2422 * finishes driver initialization procedure. 2423 * When success the state is changed to __IAVF_DOWN 2424 * when fails the state is changed to __IAVF_INIT_FAILED 2425 **/ 2426 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2427 { 2428 struct pci_dev *pdev = adapter->pdev; 2429 struct iavf_hw *hw = &adapter->hw; 2430 int err; 2431 2432 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2433 /* aq msg sent, awaiting reply */ 2434 if (!adapter->vf_res) { 2435 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2436 GFP_KERNEL); 2437 if (!adapter->vf_res) { 2438 err = -ENOMEM; 2439 goto err; 2440 } 2441 } 2442 err = iavf_get_vf_config(adapter); 2443 if (err == -EALREADY) { 2444 err = iavf_send_vf_config_msg(adapter); 2445 goto err; 2446 } else if (err == -EINVAL) { 2447 /* We only get -EINVAL if the device is in a very bad 2448 * state or if we've been disabled for previous bad 2449 * behavior. Either way, we're done now. 2450 */ 2451 iavf_shutdown_adminq(hw); 2452 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2453 return; 2454 } 2455 if (err) { 2456 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2457 goto err_alloc; 2458 } 2459 2460 err = iavf_parse_vf_resource_msg(adapter); 2461 if (err) { 2462 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2463 err); 2464 goto err_alloc; 2465 } 2466 /* Some features require additional messages to negotiate extended 2467 * capabilities. These are processed in sequence by the 2468 * __IAVF_INIT_EXTENDED_CAPS driver state. 2469 */ 2470 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2471 2472 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2473 return; 2474 2475 err_alloc: 2476 kfree(adapter->vf_res); 2477 adapter->vf_res = NULL; 2478 err: 2479 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2480 } 2481 2482 /** 2483 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2484 * @adapter: board private structure 2485 * 2486 * Function processes send of the extended VLAN V2 capability message to the 2487 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2488 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2489 */ 2490 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2491 { 2492 int ret; 2493 2494 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2495 2496 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2497 if (ret && ret == -EOPNOTSUPP) { 2498 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2499 * we did not send the capability exchange message and do not 2500 * expect a response. 2501 */ 2502 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2503 } 2504 2505 /* We sent the message, so move on to the next step */ 2506 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2507 } 2508 2509 /** 2510 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2511 * @adapter: board private structure 2512 * 2513 * Function processes receipt of the extended VLAN V2 capability message from 2514 * the PF. 2515 **/ 2516 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2517 { 2518 int ret; 2519 2520 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2521 2522 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2523 2524 ret = iavf_get_vf_vlan_v2_caps(adapter); 2525 if (ret) 2526 goto err; 2527 2528 /* We've processed receipt of the VLAN V2 caps message */ 2529 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2530 return; 2531 err: 2532 /* We didn't receive a reply. Make sure we try sending again when 2533 * __IAVF_INIT_FAILED attempts to recover. 2534 */ 2535 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2536 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2537 } 2538 2539 /** 2540 * iavf_init_process_extended_caps - Part of driver startup 2541 * @adapter: board private structure 2542 * 2543 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2544 * handles negotiating capabilities for features which require an additional 2545 * message. 2546 * 2547 * Once all extended capabilities exchanges are finished, the driver will 2548 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2549 */ 2550 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2551 { 2552 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2553 2554 /* Process capability exchange for VLAN V2 */ 2555 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2556 iavf_init_send_offload_vlan_v2_caps(adapter); 2557 return; 2558 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2559 iavf_init_recv_offload_vlan_v2_caps(adapter); 2560 return; 2561 } 2562 2563 /* When we reach here, no further extended capabilities exchanges are 2564 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2565 */ 2566 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2567 } 2568 2569 /** 2570 * iavf_init_config_adapter - last part of driver startup 2571 * @adapter: board private structure 2572 * 2573 * After all the supported capabilities are negotiated, then the 2574 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2575 */ 2576 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2577 { 2578 struct net_device *netdev = adapter->netdev; 2579 struct pci_dev *pdev = adapter->pdev; 2580 int err; 2581 2582 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2583 2584 if (iavf_process_config(adapter)) 2585 goto err; 2586 2587 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2588 2589 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2590 2591 netdev->netdev_ops = &iavf_netdev_ops; 2592 iavf_set_ethtool_ops(netdev); 2593 netdev->watchdog_timeo = 5 * HZ; 2594 2595 /* MTU range: 68 - 9710 */ 2596 netdev->min_mtu = ETH_MIN_MTU; 2597 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2598 2599 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2600 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2601 adapter->hw.mac.addr); 2602 eth_hw_addr_random(netdev); 2603 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2604 } else { 2605 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2606 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2607 } 2608 2609 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2610 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2611 err = iavf_init_interrupt_scheme(adapter); 2612 if (err) 2613 goto err_sw_init; 2614 iavf_map_rings_to_vectors(adapter); 2615 if (adapter->vf_res->vf_cap_flags & 2616 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2617 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2618 2619 err = iavf_request_misc_irq(adapter); 2620 if (err) 2621 goto err_sw_init; 2622 2623 netif_carrier_off(netdev); 2624 adapter->link_up = false; 2625 2626 /* set the semaphore to prevent any callbacks after device registration 2627 * up to time when state of driver will be set to __IAVF_DOWN 2628 */ 2629 rtnl_lock(); 2630 if (!adapter->netdev_registered) { 2631 err = register_netdevice(netdev); 2632 if (err) { 2633 rtnl_unlock(); 2634 goto err_register; 2635 } 2636 } 2637 2638 adapter->netdev_registered = true; 2639 2640 netif_tx_stop_all_queues(netdev); 2641 if (CLIENT_ALLOWED(adapter)) { 2642 err = iavf_lan_add_device(adapter); 2643 if (err) 2644 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2645 err); 2646 } 2647 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2648 if (netdev->features & NETIF_F_GRO) 2649 dev_info(&pdev->dev, "GRO is enabled\n"); 2650 2651 iavf_change_state(adapter, __IAVF_DOWN); 2652 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2653 rtnl_unlock(); 2654 2655 iavf_misc_irq_enable(adapter); 2656 wake_up(&adapter->down_waitqueue); 2657 2658 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2659 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2660 if (!adapter->rss_key || !adapter->rss_lut) { 2661 err = -ENOMEM; 2662 goto err_mem; 2663 } 2664 if (RSS_AQ(adapter)) 2665 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2666 else 2667 iavf_init_rss(adapter); 2668 2669 if (VLAN_V2_ALLOWED(adapter)) 2670 /* request initial VLAN offload settings */ 2671 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2672 2673 return; 2674 err_mem: 2675 iavf_free_rss(adapter); 2676 err_register: 2677 iavf_free_misc_irq(adapter); 2678 err_sw_init: 2679 iavf_reset_interrupt_capability(adapter); 2680 err: 2681 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2682 } 2683 2684 /** 2685 * iavf_watchdog_task - Periodic call-back task 2686 * @work: pointer to work_struct 2687 **/ 2688 static void iavf_watchdog_task(struct work_struct *work) 2689 { 2690 struct iavf_adapter *adapter = container_of(work, 2691 struct iavf_adapter, 2692 watchdog_task.work); 2693 struct iavf_hw *hw = &adapter->hw; 2694 u32 reg_val; 2695 2696 if (!mutex_trylock(&adapter->crit_lock)) { 2697 if (adapter->state == __IAVF_REMOVE) 2698 return; 2699 2700 goto restart_watchdog; 2701 } 2702 2703 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2704 adapter->netdev_registered && 2705 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 2706 rtnl_trylock()) { 2707 netdev_update_features(adapter->netdev); 2708 rtnl_unlock(); 2709 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2710 } 2711 2712 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2713 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2714 2715 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2716 adapter->aq_required = 0; 2717 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2718 mutex_unlock(&adapter->crit_lock); 2719 queue_work(adapter->wq, &adapter->reset_task); 2720 return; 2721 } 2722 2723 switch (adapter->state) { 2724 case __IAVF_STARTUP: 2725 iavf_startup(adapter); 2726 mutex_unlock(&adapter->crit_lock); 2727 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2728 msecs_to_jiffies(30)); 2729 return; 2730 case __IAVF_INIT_VERSION_CHECK: 2731 iavf_init_version_check(adapter); 2732 mutex_unlock(&adapter->crit_lock); 2733 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2734 msecs_to_jiffies(30)); 2735 return; 2736 case __IAVF_INIT_GET_RESOURCES: 2737 iavf_init_get_resources(adapter); 2738 mutex_unlock(&adapter->crit_lock); 2739 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2740 msecs_to_jiffies(1)); 2741 return; 2742 case __IAVF_INIT_EXTENDED_CAPS: 2743 iavf_init_process_extended_caps(adapter); 2744 mutex_unlock(&adapter->crit_lock); 2745 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2746 msecs_to_jiffies(1)); 2747 return; 2748 case __IAVF_INIT_CONFIG_ADAPTER: 2749 iavf_init_config_adapter(adapter); 2750 mutex_unlock(&adapter->crit_lock); 2751 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2752 msecs_to_jiffies(1)); 2753 return; 2754 case __IAVF_INIT_FAILED: 2755 if (test_bit(__IAVF_IN_REMOVE_TASK, 2756 &adapter->crit_section)) { 2757 /* Do not update the state and do not reschedule 2758 * watchdog task, iavf_remove should handle this state 2759 * as it can loop forever 2760 */ 2761 mutex_unlock(&adapter->crit_lock); 2762 return; 2763 } 2764 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2765 dev_err(&adapter->pdev->dev, 2766 "Failed to communicate with PF; waiting before retry\n"); 2767 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2768 iavf_shutdown_adminq(hw); 2769 mutex_unlock(&adapter->crit_lock); 2770 queue_delayed_work(adapter->wq, 2771 &adapter->watchdog_task, (5 * HZ)); 2772 return; 2773 } 2774 /* Try again from failed step*/ 2775 iavf_change_state(adapter, adapter->last_state); 2776 mutex_unlock(&adapter->crit_lock); 2777 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2778 return; 2779 case __IAVF_COMM_FAILED: 2780 if (test_bit(__IAVF_IN_REMOVE_TASK, 2781 &adapter->crit_section)) { 2782 /* Set state to __IAVF_INIT_FAILED and perform remove 2783 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2784 * doesn't bring the state back to __IAVF_COMM_FAILED. 2785 */ 2786 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2787 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2788 mutex_unlock(&adapter->crit_lock); 2789 return; 2790 } 2791 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2792 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2793 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2794 reg_val == VIRTCHNL_VFR_COMPLETED) { 2795 /* A chance for redemption! */ 2796 dev_err(&adapter->pdev->dev, 2797 "Hardware came out of reset. Attempting reinit.\n"); 2798 /* When init task contacts the PF and 2799 * gets everything set up again, it'll restart the 2800 * watchdog for us. Down, boy. Sit. Stay. Woof. 2801 */ 2802 iavf_change_state(adapter, __IAVF_STARTUP); 2803 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2804 } 2805 adapter->aq_required = 0; 2806 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2807 mutex_unlock(&adapter->crit_lock); 2808 queue_delayed_work(adapter->wq, 2809 &adapter->watchdog_task, 2810 msecs_to_jiffies(10)); 2811 return; 2812 case __IAVF_RESETTING: 2813 mutex_unlock(&adapter->crit_lock); 2814 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2815 HZ * 2); 2816 return; 2817 case __IAVF_DOWN: 2818 case __IAVF_DOWN_PENDING: 2819 case __IAVF_TESTING: 2820 case __IAVF_RUNNING: 2821 if (adapter->current_op) { 2822 if (!iavf_asq_done(hw)) { 2823 dev_dbg(&adapter->pdev->dev, 2824 "Admin queue timeout\n"); 2825 iavf_send_api_ver(adapter); 2826 } 2827 } else { 2828 int ret = iavf_process_aq_command(adapter); 2829 2830 /* An error will be returned if no commands were 2831 * processed; use this opportunity to update stats 2832 * if the error isn't -ENOTSUPP 2833 */ 2834 if (ret && ret != -EOPNOTSUPP && 2835 adapter->state == __IAVF_RUNNING) 2836 iavf_request_stats(adapter); 2837 } 2838 if (adapter->state == __IAVF_RUNNING) 2839 iavf_detect_recover_hung(&adapter->vsi); 2840 break; 2841 case __IAVF_REMOVE: 2842 default: 2843 mutex_unlock(&adapter->crit_lock); 2844 return; 2845 } 2846 2847 /* check for hw reset */ 2848 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2849 if (!reg_val) { 2850 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2851 adapter->aq_required = 0; 2852 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2853 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2854 queue_work(adapter->wq, &adapter->reset_task); 2855 mutex_unlock(&adapter->crit_lock); 2856 queue_delayed_work(adapter->wq, 2857 &adapter->watchdog_task, HZ * 2); 2858 return; 2859 } 2860 2861 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2862 mutex_unlock(&adapter->crit_lock); 2863 restart_watchdog: 2864 if (adapter->state >= __IAVF_DOWN) 2865 queue_work(adapter->wq, &adapter->adminq_task); 2866 if (adapter->aq_required) 2867 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2868 msecs_to_jiffies(20)); 2869 else 2870 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2871 HZ * 2); 2872 } 2873 2874 /** 2875 * iavf_disable_vf - disable VF 2876 * @adapter: board private structure 2877 * 2878 * Set communication failed flag and free all resources. 2879 * NOTE: This function is expected to be called with crit_lock being held. 2880 **/ 2881 static void iavf_disable_vf(struct iavf_adapter *adapter) 2882 { 2883 struct iavf_mac_filter *f, *ftmp; 2884 struct iavf_vlan_filter *fv, *fvtmp; 2885 struct iavf_cloud_filter *cf, *cftmp; 2886 2887 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2888 2889 /* We don't use netif_running() because it may be true prior to 2890 * ndo_open() returning, so we can't assume it means all our open 2891 * tasks have finished, since we're not holding the rtnl_lock here. 2892 */ 2893 if (adapter->state == __IAVF_RUNNING) { 2894 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2895 netif_carrier_off(adapter->netdev); 2896 netif_tx_disable(adapter->netdev); 2897 adapter->link_up = false; 2898 iavf_napi_disable_all(adapter); 2899 iavf_irq_disable(adapter); 2900 iavf_free_traffic_irqs(adapter); 2901 iavf_free_all_tx_resources(adapter); 2902 iavf_free_all_rx_resources(adapter); 2903 } 2904 2905 spin_lock_bh(&adapter->mac_vlan_list_lock); 2906 2907 /* Delete all of the filters */ 2908 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2909 list_del(&f->list); 2910 kfree(f); 2911 } 2912 2913 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2914 list_del(&fv->list); 2915 kfree(fv); 2916 } 2917 2918 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2919 2920 spin_lock_bh(&adapter->cloud_filter_list_lock); 2921 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2922 list_del(&cf->list); 2923 kfree(cf); 2924 adapter->num_cloud_filters--; 2925 } 2926 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2927 2928 iavf_free_misc_irq(adapter); 2929 iavf_reset_interrupt_capability(adapter); 2930 iavf_free_q_vectors(adapter); 2931 iavf_free_queues(adapter); 2932 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2933 iavf_shutdown_adminq(&adapter->hw); 2934 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2935 iavf_change_state(adapter, __IAVF_DOWN); 2936 wake_up(&adapter->down_waitqueue); 2937 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2938 } 2939 2940 /** 2941 * iavf_reset_task - Call-back task to handle hardware reset 2942 * @work: pointer to work_struct 2943 * 2944 * During reset we need to shut down and reinitialize the admin queue 2945 * before we can use it to communicate with the PF again. We also clear 2946 * and reinit the rings because that context is lost as well. 2947 **/ 2948 static void iavf_reset_task(struct work_struct *work) 2949 { 2950 struct iavf_adapter *adapter = container_of(work, 2951 struct iavf_adapter, 2952 reset_task); 2953 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2954 struct net_device *netdev = adapter->netdev; 2955 struct iavf_hw *hw = &adapter->hw; 2956 struct iavf_mac_filter *f, *ftmp; 2957 struct iavf_cloud_filter *cf; 2958 enum iavf_status status; 2959 u32 reg_val; 2960 int i = 0, err; 2961 bool running; 2962 2963 /* Detach interface to avoid subsequent NDO callbacks */ 2964 rtnl_lock(); 2965 netif_device_detach(netdev); 2966 rtnl_unlock(); 2967 2968 /* When device is being removed it doesn't make sense to run the reset 2969 * task, just return in such a case. 2970 */ 2971 if (!mutex_trylock(&adapter->crit_lock)) { 2972 if (adapter->state != __IAVF_REMOVE) 2973 queue_work(adapter->wq, &adapter->reset_task); 2974 2975 goto reset_finish; 2976 } 2977 2978 while (!mutex_trylock(&adapter->client_lock)) 2979 usleep_range(500, 1000); 2980 if (CLIENT_ENABLED(adapter)) { 2981 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2982 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2983 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2984 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2985 cancel_delayed_work_sync(&adapter->client_task); 2986 iavf_notify_client_close(&adapter->vsi, true); 2987 } 2988 iavf_misc_irq_disable(adapter); 2989 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2990 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2991 /* Restart the AQ here. If we have been reset but didn't 2992 * detect it, or if the PF had to reinit, our AQ will be hosed. 2993 */ 2994 iavf_shutdown_adminq(hw); 2995 iavf_init_adminq(hw); 2996 iavf_request_reset(adapter); 2997 } 2998 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2999 3000 /* poll until we see the reset actually happen */ 3001 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3002 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3003 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3004 if (!reg_val) 3005 break; 3006 usleep_range(5000, 10000); 3007 } 3008 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3009 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3010 goto continue_reset; /* act like the reset happened */ 3011 } 3012 3013 /* wait until the reset is complete and the PF is responding to us */ 3014 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3015 /* sleep first to make sure a minimum wait time is met */ 3016 msleep(IAVF_RESET_WAIT_MS); 3017 3018 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3019 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3020 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3021 break; 3022 } 3023 3024 pci_set_master(adapter->pdev); 3025 pci_restore_msi_state(adapter->pdev); 3026 3027 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3028 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3029 reg_val); 3030 iavf_disable_vf(adapter); 3031 mutex_unlock(&adapter->client_lock); 3032 mutex_unlock(&adapter->crit_lock); 3033 if (netif_running(netdev)) { 3034 rtnl_lock(); 3035 dev_close(netdev); 3036 rtnl_unlock(); 3037 } 3038 return; /* Do not attempt to reinit. It's dead, Jim. */ 3039 } 3040 3041 continue_reset: 3042 /* We don't use netif_running() because it may be true prior to 3043 * ndo_open() returning, so we can't assume it means all our open 3044 * tasks have finished, since we're not holding the rtnl_lock here. 3045 */ 3046 running = adapter->state == __IAVF_RUNNING; 3047 3048 if (running) { 3049 netif_carrier_off(netdev); 3050 netif_tx_stop_all_queues(netdev); 3051 adapter->link_up = false; 3052 iavf_napi_disable_all(adapter); 3053 } 3054 iavf_irq_disable(adapter); 3055 3056 iavf_change_state(adapter, __IAVF_RESETTING); 3057 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3058 3059 /* free the Tx/Rx rings and descriptors, might be better to just 3060 * re-use them sometime in the future 3061 */ 3062 iavf_free_all_rx_resources(adapter); 3063 iavf_free_all_tx_resources(adapter); 3064 3065 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3066 /* kill and reinit the admin queue */ 3067 iavf_shutdown_adminq(hw); 3068 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3069 status = iavf_init_adminq(hw); 3070 if (status) { 3071 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3072 status); 3073 goto reset_err; 3074 } 3075 adapter->aq_required = 0; 3076 3077 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3078 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3079 err = iavf_reinit_interrupt_scheme(adapter); 3080 if (err) 3081 goto reset_err; 3082 } 3083 3084 if (RSS_AQ(adapter)) { 3085 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3086 } else { 3087 err = iavf_init_rss(adapter); 3088 if (err) 3089 goto reset_err; 3090 } 3091 3092 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3093 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3094 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3095 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3096 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3097 * been successfully sent and negotiated 3098 */ 3099 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3100 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3101 3102 spin_lock_bh(&adapter->mac_vlan_list_lock); 3103 3104 /* Delete filter for the current MAC address, it could have 3105 * been changed by the PF via administratively set MAC. 3106 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3107 */ 3108 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3109 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3110 list_del(&f->list); 3111 kfree(f); 3112 } 3113 } 3114 /* re-add all MAC filters */ 3115 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3116 f->add = true; 3117 } 3118 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3119 3120 /* check if TCs are running and re-add all cloud filters */ 3121 spin_lock_bh(&adapter->cloud_filter_list_lock); 3122 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3123 adapter->num_tc) { 3124 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3125 cf->add = true; 3126 } 3127 } 3128 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3129 3130 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3131 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3132 iavf_misc_irq_enable(adapter); 3133 3134 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3135 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3136 3137 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3138 3139 /* We were running when the reset started, so we need to restore some 3140 * state here. 3141 */ 3142 if (running) { 3143 /* allocate transmit descriptors */ 3144 err = iavf_setup_all_tx_resources(adapter); 3145 if (err) 3146 goto reset_err; 3147 3148 /* allocate receive descriptors */ 3149 err = iavf_setup_all_rx_resources(adapter); 3150 if (err) 3151 goto reset_err; 3152 3153 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3154 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3155 err = iavf_request_traffic_irqs(adapter, netdev->name); 3156 if (err) 3157 goto reset_err; 3158 3159 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3160 } 3161 3162 iavf_configure(adapter); 3163 3164 /* iavf_up_complete() will switch device back 3165 * to __IAVF_RUNNING 3166 */ 3167 iavf_up_complete(adapter); 3168 3169 iavf_irq_enable(adapter, true); 3170 } else { 3171 iavf_change_state(adapter, __IAVF_DOWN); 3172 wake_up(&adapter->down_waitqueue); 3173 } 3174 3175 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3176 3177 mutex_unlock(&adapter->client_lock); 3178 mutex_unlock(&adapter->crit_lock); 3179 3180 goto reset_finish; 3181 reset_err: 3182 if (running) { 3183 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3184 iavf_free_traffic_irqs(adapter); 3185 } 3186 iavf_disable_vf(adapter); 3187 3188 mutex_unlock(&adapter->client_lock); 3189 mutex_unlock(&adapter->crit_lock); 3190 3191 if (netif_running(netdev)) { 3192 /* Close device to ensure that Tx queues will not be started 3193 * during netif_device_attach() at the end of the reset task. 3194 */ 3195 rtnl_lock(); 3196 dev_close(netdev); 3197 rtnl_unlock(); 3198 } 3199 3200 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3201 reset_finish: 3202 rtnl_lock(); 3203 netif_device_attach(netdev); 3204 rtnl_unlock(); 3205 } 3206 3207 /** 3208 * iavf_adminq_task - worker thread to clean the admin queue 3209 * @work: pointer to work_struct containing our data 3210 **/ 3211 static void iavf_adminq_task(struct work_struct *work) 3212 { 3213 struct iavf_adapter *adapter = 3214 container_of(work, struct iavf_adapter, adminq_task); 3215 struct iavf_hw *hw = &adapter->hw; 3216 struct iavf_arq_event_info event; 3217 enum virtchnl_ops v_op; 3218 enum iavf_status ret, v_ret; 3219 u32 val, oldval; 3220 u16 pending; 3221 3222 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3223 goto out; 3224 3225 if (!mutex_trylock(&adapter->crit_lock)) { 3226 if (adapter->state == __IAVF_REMOVE) 3227 return; 3228 3229 queue_work(adapter->wq, &adapter->adminq_task); 3230 goto out; 3231 } 3232 3233 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3234 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3235 if (!event.msg_buf) 3236 goto out; 3237 3238 do { 3239 ret = iavf_clean_arq_element(hw, &event, &pending); 3240 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3241 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3242 3243 if (ret || !v_op) 3244 break; /* No event to process or error cleaning ARQ */ 3245 3246 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3247 event.msg_len); 3248 if (pending != 0) 3249 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3250 } while (pending); 3251 mutex_unlock(&adapter->crit_lock); 3252 3253 if ((adapter->flags & 3254 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3255 adapter->state == __IAVF_RESETTING) 3256 goto freedom; 3257 3258 /* check for error indications */ 3259 val = rd32(hw, hw->aq.arq.len); 3260 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3261 goto freedom; 3262 oldval = val; 3263 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3264 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3265 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3266 } 3267 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3268 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3269 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3270 } 3271 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3272 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3273 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3274 } 3275 if (oldval != val) 3276 wr32(hw, hw->aq.arq.len, val); 3277 3278 val = rd32(hw, hw->aq.asq.len); 3279 oldval = val; 3280 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3281 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3282 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3283 } 3284 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3285 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3286 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3287 } 3288 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3289 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3290 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3291 } 3292 if (oldval != val) 3293 wr32(hw, hw->aq.asq.len, val); 3294 3295 freedom: 3296 kfree(event.msg_buf); 3297 out: 3298 /* re-enable Admin queue interrupt cause */ 3299 iavf_misc_irq_enable(adapter); 3300 } 3301 3302 /** 3303 * iavf_client_task - worker thread to perform client work 3304 * @work: pointer to work_struct containing our data 3305 * 3306 * This task handles client interactions. Because client calls can be 3307 * reentrant, we can't handle them in the watchdog. 3308 **/ 3309 static void iavf_client_task(struct work_struct *work) 3310 { 3311 struct iavf_adapter *adapter = 3312 container_of(work, struct iavf_adapter, client_task.work); 3313 3314 /* If we can't get the client bit, just give up. We'll be rescheduled 3315 * later. 3316 */ 3317 3318 if (!mutex_trylock(&adapter->client_lock)) 3319 return; 3320 3321 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3322 iavf_client_subtask(adapter); 3323 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3324 goto out; 3325 } 3326 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3327 iavf_notify_client_l2_params(&adapter->vsi); 3328 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3329 goto out; 3330 } 3331 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3332 iavf_notify_client_close(&adapter->vsi, false); 3333 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3334 goto out; 3335 } 3336 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3337 iavf_notify_client_open(&adapter->vsi); 3338 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3339 } 3340 out: 3341 mutex_unlock(&adapter->client_lock); 3342 } 3343 3344 /** 3345 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3346 * @adapter: board private structure 3347 * 3348 * Free all transmit software resources 3349 **/ 3350 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3351 { 3352 int i; 3353 3354 if (!adapter->tx_rings) 3355 return; 3356 3357 for (i = 0; i < adapter->num_active_queues; i++) 3358 if (adapter->tx_rings[i].desc) 3359 iavf_free_tx_resources(&adapter->tx_rings[i]); 3360 } 3361 3362 /** 3363 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3364 * @adapter: board private structure 3365 * 3366 * If this function returns with an error, then it's possible one or 3367 * more of the rings is populated (while the rest are not). It is the 3368 * callers duty to clean those orphaned rings. 3369 * 3370 * Return 0 on success, negative on failure 3371 **/ 3372 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3373 { 3374 int i, err = 0; 3375 3376 for (i = 0; i < adapter->num_active_queues; i++) { 3377 adapter->tx_rings[i].count = adapter->tx_desc_count; 3378 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3379 if (!err) 3380 continue; 3381 dev_err(&adapter->pdev->dev, 3382 "Allocation for Tx Queue %u failed\n", i); 3383 break; 3384 } 3385 3386 return err; 3387 } 3388 3389 /** 3390 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3391 * @adapter: board private structure 3392 * 3393 * If this function returns with an error, then it's possible one or 3394 * more of the rings is populated (while the rest are not). It is the 3395 * callers duty to clean those orphaned rings. 3396 * 3397 * Return 0 on success, negative on failure 3398 **/ 3399 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3400 { 3401 int i, err = 0; 3402 3403 for (i = 0; i < adapter->num_active_queues; i++) { 3404 adapter->rx_rings[i].count = adapter->rx_desc_count; 3405 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3406 if (!err) 3407 continue; 3408 dev_err(&adapter->pdev->dev, 3409 "Allocation for Rx Queue %u failed\n", i); 3410 break; 3411 } 3412 return err; 3413 } 3414 3415 /** 3416 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3417 * @adapter: board private structure 3418 * 3419 * Free all receive software resources 3420 **/ 3421 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3422 { 3423 int i; 3424 3425 if (!adapter->rx_rings) 3426 return; 3427 3428 for (i = 0; i < adapter->num_active_queues; i++) 3429 if (adapter->rx_rings[i].desc) 3430 iavf_free_rx_resources(&adapter->rx_rings[i]); 3431 } 3432 3433 /** 3434 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3435 * @adapter: board private structure 3436 * @max_tx_rate: max Tx bw for a tc 3437 **/ 3438 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3439 u64 max_tx_rate) 3440 { 3441 int speed = 0, ret = 0; 3442 3443 if (ADV_LINK_SUPPORT(adapter)) { 3444 if (adapter->link_speed_mbps < U32_MAX) { 3445 speed = adapter->link_speed_mbps; 3446 goto validate_bw; 3447 } else { 3448 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3449 return -EINVAL; 3450 } 3451 } 3452 3453 switch (adapter->link_speed) { 3454 case VIRTCHNL_LINK_SPEED_40GB: 3455 speed = SPEED_40000; 3456 break; 3457 case VIRTCHNL_LINK_SPEED_25GB: 3458 speed = SPEED_25000; 3459 break; 3460 case VIRTCHNL_LINK_SPEED_20GB: 3461 speed = SPEED_20000; 3462 break; 3463 case VIRTCHNL_LINK_SPEED_10GB: 3464 speed = SPEED_10000; 3465 break; 3466 case VIRTCHNL_LINK_SPEED_5GB: 3467 speed = SPEED_5000; 3468 break; 3469 case VIRTCHNL_LINK_SPEED_2_5GB: 3470 speed = SPEED_2500; 3471 break; 3472 case VIRTCHNL_LINK_SPEED_1GB: 3473 speed = SPEED_1000; 3474 break; 3475 case VIRTCHNL_LINK_SPEED_100MB: 3476 speed = SPEED_100; 3477 break; 3478 default: 3479 break; 3480 } 3481 3482 validate_bw: 3483 if (max_tx_rate > speed) { 3484 dev_err(&adapter->pdev->dev, 3485 "Invalid tx rate specified\n"); 3486 ret = -EINVAL; 3487 } 3488 3489 return ret; 3490 } 3491 3492 /** 3493 * iavf_validate_ch_config - validate queue mapping info 3494 * @adapter: board private structure 3495 * @mqprio_qopt: queue parameters 3496 * 3497 * This function validates if the config provided by the user to 3498 * configure queue channels is valid or not. Returns 0 on a valid 3499 * config. 3500 **/ 3501 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3502 struct tc_mqprio_qopt_offload *mqprio_qopt) 3503 { 3504 u64 total_max_rate = 0; 3505 u32 tx_rate_rem = 0; 3506 int i, num_qps = 0; 3507 u64 tx_rate = 0; 3508 int ret = 0; 3509 3510 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3511 mqprio_qopt->qopt.num_tc < 1) 3512 return -EINVAL; 3513 3514 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3515 if (!mqprio_qopt->qopt.count[i] || 3516 mqprio_qopt->qopt.offset[i] != num_qps) 3517 return -EINVAL; 3518 if (mqprio_qopt->min_rate[i]) { 3519 dev_err(&adapter->pdev->dev, 3520 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3521 i); 3522 return -EINVAL; 3523 } 3524 3525 /* convert to Mbps */ 3526 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3527 IAVF_MBPS_DIVISOR); 3528 3529 if (mqprio_qopt->max_rate[i] && 3530 tx_rate < IAVF_MBPS_QUANTA) { 3531 dev_err(&adapter->pdev->dev, 3532 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3533 i, IAVF_MBPS_QUANTA); 3534 return -EINVAL; 3535 } 3536 3537 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3538 3539 if (tx_rate_rem != 0) { 3540 dev_err(&adapter->pdev->dev, 3541 "Invalid max tx rate for TC%d, not divisible by %d\n", 3542 i, IAVF_MBPS_QUANTA); 3543 return -EINVAL; 3544 } 3545 3546 total_max_rate += tx_rate; 3547 num_qps += mqprio_qopt->qopt.count[i]; 3548 } 3549 if (num_qps > adapter->num_active_queues) { 3550 dev_err(&adapter->pdev->dev, 3551 "Cannot support requested number of queues\n"); 3552 return -EINVAL; 3553 } 3554 3555 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3556 return ret; 3557 } 3558 3559 /** 3560 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3561 * @adapter: board private structure 3562 **/ 3563 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3564 { 3565 struct iavf_cloud_filter *cf, *cftmp; 3566 3567 spin_lock_bh(&adapter->cloud_filter_list_lock); 3568 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3569 list) { 3570 list_del(&cf->list); 3571 kfree(cf); 3572 adapter->num_cloud_filters--; 3573 } 3574 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3575 } 3576 3577 /** 3578 * __iavf_setup_tc - configure multiple traffic classes 3579 * @netdev: network interface device structure 3580 * @type_data: tc offload data 3581 * 3582 * This function processes the config information provided by the 3583 * user to configure traffic classes/queue channels and packages the 3584 * information to request the PF to setup traffic classes. 3585 * 3586 * Returns 0 on success. 3587 **/ 3588 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3589 { 3590 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3591 struct iavf_adapter *adapter = netdev_priv(netdev); 3592 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3593 u8 num_tc = 0, total_qps = 0; 3594 int ret = 0, netdev_tc = 0; 3595 u64 max_tx_rate; 3596 u16 mode; 3597 int i; 3598 3599 num_tc = mqprio_qopt->qopt.num_tc; 3600 mode = mqprio_qopt->mode; 3601 3602 /* delete queue_channel */ 3603 if (!mqprio_qopt->qopt.hw) { 3604 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3605 /* reset the tc configuration */ 3606 netdev_reset_tc(netdev); 3607 adapter->num_tc = 0; 3608 netif_tx_stop_all_queues(netdev); 3609 netif_tx_disable(netdev); 3610 iavf_del_all_cloud_filters(adapter); 3611 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3612 total_qps = adapter->orig_num_active_queues; 3613 goto exit; 3614 } else { 3615 return -EINVAL; 3616 } 3617 } 3618 3619 /* add queue channel */ 3620 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3621 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3622 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3623 return -EOPNOTSUPP; 3624 } 3625 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3626 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3627 return -EINVAL; 3628 } 3629 3630 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3631 if (ret) 3632 return ret; 3633 /* Return if same TC config is requested */ 3634 if (adapter->num_tc == num_tc) 3635 return 0; 3636 adapter->num_tc = num_tc; 3637 3638 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3639 if (i < num_tc) { 3640 adapter->ch_config.ch_info[i].count = 3641 mqprio_qopt->qopt.count[i]; 3642 adapter->ch_config.ch_info[i].offset = 3643 mqprio_qopt->qopt.offset[i]; 3644 total_qps += mqprio_qopt->qopt.count[i]; 3645 max_tx_rate = mqprio_qopt->max_rate[i]; 3646 /* convert to Mbps */ 3647 max_tx_rate = div_u64(max_tx_rate, 3648 IAVF_MBPS_DIVISOR); 3649 adapter->ch_config.ch_info[i].max_tx_rate = 3650 max_tx_rate; 3651 } else { 3652 adapter->ch_config.ch_info[i].count = 1; 3653 adapter->ch_config.ch_info[i].offset = 0; 3654 } 3655 } 3656 3657 /* Take snapshot of original config such as "num_active_queues" 3658 * It is used later when delete ADQ flow is exercised, so that 3659 * once delete ADQ flow completes, VF shall go back to its 3660 * original queue configuration 3661 */ 3662 3663 adapter->orig_num_active_queues = adapter->num_active_queues; 3664 3665 /* Store queue info based on TC so that VF gets configured 3666 * with correct number of queues when VF completes ADQ config 3667 * flow 3668 */ 3669 adapter->ch_config.total_qps = total_qps; 3670 3671 netif_tx_stop_all_queues(netdev); 3672 netif_tx_disable(netdev); 3673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3674 netdev_reset_tc(netdev); 3675 /* Report the tc mapping up the stack */ 3676 netdev_set_num_tc(adapter->netdev, num_tc); 3677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3678 u16 qcount = mqprio_qopt->qopt.count[i]; 3679 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3680 3681 if (i < num_tc) 3682 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3683 qoffset); 3684 } 3685 } 3686 exit: 3687 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3688 return 0; 3689 3690 netif_set_real_num_rx_queues(netdev, total_qps); 3691 netif_set_real_num_tx_queues(netdev, total_qps); 3692 3693 return ret; 3694 } 3695 3696 /** 3697 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3698 * @adapter: board private structure 3699 * @f: pointer to struct flow_cls_offload 3700 * @filter: pointer to cloud filter structure 3701 */ 3702 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3703 struct flow_cls_offload *f, 3704 struct iavf_cloud_filter *filter) 3705 { 3706 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3707 struct flow_dissector *dissector = rule->match.dissector; 3708 u16 n_proto_mask = 0; 3709 u16 n_proto_key = 0; 3710 u8 field_flags = 0; 3711 u16 addr_type = 0; 3712 u16 n_proto = 0; 3713 int i = 0; 3714 struct virtchnl_filter *vf = &filter->f; 3715 3716 if (dissector->used_keys & 3717 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3718 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3719 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3720 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3721 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3722 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3723 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3724 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3725 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3726 dissector->used_keys); 3727 return -EOPNOTSUPP; 3728 } 3729 3730 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3731 struct flow_match_enc_keyid match; 3732 3733 flow_rule_match_enc_keyid(rule, &match); 3734 if (match.mask->keyid != 0) 3735 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3736 } 3737 3738 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3739 struct flow_match_basic match; 3740 3741 flow_rule_match_basic(rule, &match); 3742 n_proto_key = ntohs(match.key->n_proto); 3743 n_proto_mask = ntohs(match.mask->n_proto); 3744 3745 if (n_proto_key == ETH_P_ALL) { 3746 n_proto_key = 0; 3747 n_proto_mask = 0; 3748 } 3749 n_proto = n_proto_key & n_proto_mask; 3750 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3751 return -EINVAL; 3752 if (n_proto == ETH_P_IPV6) { 3753 /* specify flow type as TCP IPv6 */ 3754 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3755 } 3756 3757 if (match.key->ip_proto != IPPROTO_TCP) { 3758 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3759 return -EINVAL; 3760 } 3761 } 3762 3763 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3764 struct flow_match_eth_addrs match; 3765 3766 flow_rule_match_eth_addrs(rule, &match); 3767 3768 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3769 if (!is_zero_ether_addr(match.mask->dst)) { 3770 if (is_broadcast_ether_addr(match.mask->dst)) { 3771 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3772 } else { 3773 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3774 match.mask->dst); 3775 return -EINVAL; 3776 } 3777 } 3778 3779 if (!is_zero_ether_addr(match.mask->src)) { 3780 if (is_broadcast_ether_addr(match.mask->src)) { 3781 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3782 } else { 3783 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3784 match.mask->src); 3785 return -EINVAL; 3786 } 3787 } 3788 3789 if (!is_zero_ether_addr(match.key->dst)) 3790 if (is_valid_ether_addr(match.key->dst) || 3791 is_multicast_ether_addr(match.key->dst)) { 3792 /* set the mask if a valid dst_mac address */ 3793 for (i = 0; i < ETH_ALEN; i++) 3794 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3795 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3796 match.key->dst); 3797 } 3798 3799 if (!is_zero_ether_addr(match.key->src)) 3800 if (is_valid_ether_addr(match.key->src) || 3801 is_multicast_ether_addr(match.key->src)) { 3802 /* set the mask if a valid dst_mac address */ 3803 for (i = 0; i < ETH_ALEN; i++) 3804 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3805 ether_addr_copy(vf->data.tcp_spec.src_mac, 3806 match.key->src); 3807 } 3808 } 3809 3810 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3811 struct flow_match_vlan match; 3812 3813 flow_rule_match_vlan(rule, &match); 3814 if (match.mask->vlan_id) { 3815 if (match.mask->vlan_id == VLAN_VID_MASK) { 3816 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3817 } else { 3818 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3819 match.mask->vlan_id); 3820 return -EINVAL; 3821 } 3822 } 3823 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3824 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3825 } 3826 3827 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3828 struct flow_match_control match; 3829 3830 flow_rule_match_control(rule, &match); 3831 addr_type = match.key->addr_type; 3832 } 3833 3834 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3835 struct flow_match_ipv4_addrs match; 3836 3837 flow_rule_match_ipv4_addrs(rule, &match); 3838 if (match.mask->dst) { 3839 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3840 field_flags |= IAVF_CLOUD_FIELD_IIP; 3841 } else { 3842 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3843 be32_to_cpu(match.mask->dst)); 3844 return -EINVAL; 3845 } 3846 } 3847 3848 if (match.mask->src) { 3849 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3850 field_flags |= IAVF_CLOUD_FIELD_IIP; 3851 } else { 3852 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3853 be32_to_cpu(match.mask->src)); 3854 return -EINVAL; 3855 } 3856 } 3857 3858 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3859 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3860 return -EINVAL; 3861 } 3862 if (match.key->dst) { 3863 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3864 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3865 } 3866 if (match.key->src) { 3867 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3868 vf->data.tcp_spec.src_ip[0] = match.key->src; 3869 } 3870 } 3871 3872 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3873 struct flow_match_ipv6_addrs match; 3874 3875 flow_rule_match_ipv6_addrs(rule, &match); 3876 3877 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3878 if (ipv6_addr_any(&match.mask->dst)) { 3879 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3880 IPV6_ADDR_ANY); 3881 return -EINVAL; 3882 } 3883 3884 /* src and dest IPv6 address should not be LOOPBACK 3885 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3886 */ 3887 if (ipv6_addr_loopback(&match.key->dst) || 3888 ipv6_addr_loopback(&match.key->src)) { 3889 dev_err(&adapter->pdev->dev, 3890 "ipv6 addr should not be loopback\n"); 3891 return -EINVAL; 3892 } 3893 if (!ipv6_addr_any(&match.mask->dst) || 3894 !ipv6_addr_any(&match.mask->src)) 3895 field_flags |= IAVF_CLOUD_FIELD_IIP; 3896 3897 for (i = 0; i < 4; i++) 3898 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3899 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3900 sizeof(vf->data.tcp_spec.dst_ip)); 3901 for (i = 0; i < 4; i++) 3902 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3903 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3904 sizeof(vf->data.tcp_spec.src_ip)); 3905 } 3906 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3907 struct flow_match_ports match; 3908 3909 flow_rule_match_ports(rule, &match); 3910 if (match.mask->src) { 3911 if (match.mask->src == cpu_to_be16(0xffff)) { 3912 field_flags |= IAVF_CLOUD_FIELD_IIP; 3913 } else { 3914 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3915 be16_to_cpu(match.mask->src)); 3916 return -EINVAL; 3917 } 3918 } 3919 3920 if (match.mask->dst) { 3921 if (match.mask->dst == cpu_to_be16(0xffff)) { 3922 field_flags |= IAVF_CLOUD_FIELD_IIP; 3923 } else { 3924 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3925 be16_to_cpu(match.mask->dst)); 3926 return -EINVAL; 3927 } 3928 } 3929 if (match.key->dst) { 3930 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3931 vf->data.tcp_spec.dst_port = match.key->dst; 3932 } 3933 3934 if (match.key->src) { 3935 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3936 vf->data.tcp_spec.src_port = match.key->src; 3937 } 3938 } 3939 vf->field_flags = field_flags; 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * iavf_handle_tclass - Forward to a traffic class on the device 3946 * @adapter: board private structure 3947 * @tc: traffic class index on the device 3948 * @filter: pointer to cloud filter structure 3949 */ 3950 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3951 struct iavf_cloud_filter *filter) 3952 { 3953 if (tc == 0) 3954 return 0; 3955 if (tc < adapter->num_tc) { 3956 if (!filter->f.data.tcp_spec.dst_port) { 3957 dev_err(&adapter->pdev->dev, 3958 "Specify destination port to redirect to traffic class other than TC0\n"); 3959 return -EINVAL; 3960 } 3961 } 3962 /* redirect to a traffic class on the same device */ 3963 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3964 filter->f.action_meta = tc; 3965 return 0; 3966 } 3967 3968 /** 3969 * iavf_find_cf - Find the cloud filter in the list 3970 * @adapter: Board private structure 3971 * @cookie: filter specific cookie 3972 * 3973 * Returns ptr to the filter object or NULL. Must be called while holding the 3974 * cloud_filter_list_lock. 3975 */ 3976 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3977 unsigned long *cookie) 3978 { 3979 struct iavf_cloud_filter *filter = NULL; 3980 3981 if (!cookie) 3982 return NULL; 3983 3984 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3985 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3986 return filter; 3987 } 3988 return NULL; 3989 } 3990 3991 /** 3992 * iavf_configure_clsflower - Add tc flower filters 3993 * @adapter: board private structure 3994 * @cls_flower: Pointer to struct flow_cls_offload 3995 */ 3996 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3997 struct flow_cls_offload *cls_flower) 3998 { 3999 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4000 struct iavf_cloud_filter *filter = NULL; 4001 int err = -EINVAL, count = 50; 4002 4003 if (tc < 0) { 4004 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4005 return -EINVAL; 4006 } 4007 4008 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4009 if (!filter) 4010 return -ENOMEM; 4011 4012 while (!mutex_trylock(&adapter->crit_lock)) { 4013 if (--count == 0) { 4014 kfree(filter); 4015 return err; 4016 } 4017 udelay(1); 4018 } 4019 4020 filter->cookie = cls_flower->cookie; 4021 4022 /* bail out here if filter already exists */ 4023 spin_lock_bh(&adapter->cloud_filter_list_lock); 4024 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4025 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4026 err = -EEXIST; 4027 goto spin_unlock; 4028 } 4029 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4030 4031 /* set the mask to all zeroes to begin with */ 4032 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4033 /* start out with flow type and eth type IPv4 to begin with */ 4034 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4035 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4036 if (err) 4037 goto err; 4038 4039 err = iavf_handle_tclass(adapter, tc, filter); 4040 if (err) 4041 goto err; 4042 4043 /* add filter to the list */ 4044 spin_lock_bh(&adapter->cloud_filter_list_lock); 4045 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4046 adapter->num_cloud_filters++; 4047 filter->add = true; 4048 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4049 spin_unlock: 4050 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4051 err: 4052 if (err) 4053 kfree(filter); 4054 4055 mutex_unlock(&adapter->crit_lock); 4056 return err; 4057 } 4058 4059 /** 4060 * iavf_delete_clsflower - Remove tc flower filters 4061 * @adapter: board private structure 4062 * @cls_flower: Pointer to struct flow_cls_offload 4063 */ 4064 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4065 struct flow_cls_offload *cls_flower) 4066 { 4067 struct iavf_cloud_filter *filter = NULL; 4068 int err = 0; 4069 4070 spin_lock_bh(&adapter->cloud_filter_list_lock); 4071 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4072 if (filter) { 4073 filter->del = true; 4074 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4075 } else { 4076 err = -EINVAL; 4077 } 4078 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4079 4080 return err; 4081 } 4082 4083 /** 4084 * iavf_setup_tc_cls_flower - flower classifier offloads 4085 * @adapter: board private structure 4086 * @cls_flower: pointer to flow_cls_offload struct with flow info 4087 */ 4088 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4089 struct flow_cls_offload *cls_flower) 4090 { 4091 switch (cls_flower->command) { 4092 case FLOW_CLS_REPLACE: 4093 return iavf_configure_clsflower(adapter, cls_flower); 4094 case FLOW_CLS_DESTROY: 4095 return iavf_delete_clsflower(adapter, cls_flower); 4096 case FLOW_CLS_STATS: 4097 return -EOPNOTSUPP; 4098 default: 4099 return -EOPNOTSUPP; 4100 } 4101 } 4102 4103 /** 4104 * iavf_setup_tc_block_cb - block callback for tc 4105 * @type: type of offload 4106 * @type_data: offload data 4107 * @cb_priv: 4108 * 4109 * This function is the block callback for traffic classes 4110 **/ 4111 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4112 void *cb_priv) 4113 { 4114 struct iavf_adapter *adapter = cb_priv; 4115 4116 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4117 return -EOPNOTSUPP; 4118 4119 switch (type) { 4120 case TC_SETUP_CLSFLOWER: 4121 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4122 default: 4123 return -EOPNOTSUPP; 4124 } 4125 } 4126 4127 static LIST_HEAD(iavf_block_cb_list); 4128 4129 /** 4130 * iavf_setup_tc - configure multiple traffic classes 4131 * @netdev: network interface device structure 4132 * @type: type of offload 4133 * @type_data: tc offload data 4134 * 4135 * This function is the callback to ndo_setup_tc in the 4136 * netdev_ops. 4137 * 4138 * Returns 0 on success 4139 **/ 4140 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4141 void *type_data) 4142 { 4143 struct iavf_adapter *adapter = netdev_priv(netdev); 4144 4145 switch (type) { 4146 case TC_SETUP_QDISC_MQPRIO: 4147 return __iavf_setup_tc(netdev, type_data); 4148 case TC_SETUP_BLOCK: 4149 return flow_block_cb_setup_simple(type_data, 4150 &iavf_block_cb_list, 4151 iavf_setup_tc_block_cb, 4152 adapter, adapter, true); 4153 default: 4154 return -EOPNOTSUPP; 4155 } 4156 } 4157 4158 /** 4159 * iavf_open - Called when a network interface is made active 4160 * @netdev: network interface device structure 4161 * 4162 * Returns 0 on success, negative value on failure 4163 * 4164 * The open entry point is called when a network interface is made 4165 * active by the system (IFF_UP). At this point all resources needed 4166 * for transmit and receive operations are allocated, the interrupt 4167 * handler is registered with the OS, the watchdog is started, 4168 * and the stack is notified that the interface is ready. 4169 **/ 4170 static int iavf_open(struct net_device *netdev) 4171 { 4172 struct iavf_adapter *adapter = netdev_priv(netdev); 4173 int err; 4174 4175 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4176 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4177 return -EIO; 4178 } 4179 4180 while (!mutex_trylock(&adapter->crit_lock)) { 4181 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4182 * is already taken and iavf_open is called from an upper 4183 * device's notifier reacting on NETDEV_REGISTER event. 4184 * We have to leave here to avoid dead lock. 4185 */ 4186 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4187 return -EBUSY; 4188 4189 usleep_range(500, 1000); 4190 } 4191 4192 if (adapter->state != __IAVF_DOWN) { 4193 err = -EBUSY; 4194 goto err_unlock; 4195 } 4196 4197 if (adapter->state == __IAVF_RUNNING && 4198 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4199 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4200 err = 0; 4201 goto err_unlock; 4202 } 4203 4204 /* allocate transmit descriptors */ 4205 err = iavf_setup_all_tx_resources(adapter); 4206 if (err) 4207 goto err_setup_tx; 4208 4209 /* allocate receive descriptors */ 4210 err = iavf_setup_all_rx_resources(adapter); 4211 if (err) 4212 goto err_setup_rx; 4213 4214 /* clear any pending interrupts, may auto mask */ 4215 err = iavf_request_traffic_irqs(adapter, netdev->name); 4216 if (err) 4217 goto err_req_irq; 4218 4219 spin_lock_bh(&adapter->mac_vlan_list_lock); 4220 4221 iavf_add_filter(adapter, adapter->hw.mac.addr); 4222 4223 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4224 4225 /* Restore VLAN filters that were removed with IFF_DOWN */ 4226 iavf_restore_filters(adapter); 4227 4228 iavf_configure(adapter); 4229 4230 iavf_up_complete(adapter); 4231 4232 iavf_irq_enable(adapter, true); 4233 4234 mutex_unlock(&adapter->crit_lock); 4235 4236 return 0; 4237 4238 err_req_irq: 4239 iavf_down(adapter); 4240 iavf_free_traffic_irqs(adapter); 4241 err_setup_rx: 4242 iavf_free_all_rx_resources(adapter); 4243 err_setup_tx: 4244 iavf_free_all_tx_resources(adapter); 4245 err_unlock: 4246 mutex_unlock(&adapter->crit_lock); 4247 4248 return err; 4249 } 4250 4251 /** 4252 * iavf_close - Disables a network interface 4253 * @netdev: network interface device structure 4254 * 4255 * Returns 0, this is not allowed to fail 4256 * 4257 * The close entry point is called when an interface is de-activated 4258 * by the OS. The hardware is still under the drivers control, but 4259 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4260 * are freed, along with all transmit and receive resources. 4261 **/ 4262 static int iavf_close(struct net_device *netdev) 4263 { 4264 struct iavf_adapter *adapter = netdev_priv(netdev); 4265 u64 aq_to_restore; 4266 int status; 4267 4268 mutex_lock(&adapter->crit_lock); 4269 4270 if (adapter->state <= __IAVF_DOWN_PENDING) { 4271 mutex_unlock(&adapter->crit_lock); 4272 return 0; 4273 } 4274 4275 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4276 if (CLIENT_ENABLED(adapter)) 4277 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4278 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4279 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4280 * deadlock with adminq_task() until iavf_close timeouts. We must send 4281 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4282 * disable queues possible for vf. Give only necessary flags to 4283 * iavf_down and save other to set them right before iavf_close() 4284 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4285 * iavf will be in DOWN state. 4286 */ 4287 aq_to_restore = adapter->aq_required; 4288 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4289 4290 /* Remove flags which we do not want to send after close or we want to 4291 * send before disable queues. 4292 */ 4293 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4294 IAVF_FLAG_AQ_ENABLE_QUEUES | 4295 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4296 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4297 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4298 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4299 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4300 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4301 4302 iavf_down(adapter); 4303 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4304 iavf_free_traffic_irqs(adapter); 4305 4306 mutex_unlock(&adapter->crit_lock); 4307 4308 /* We explicitly don't free resources here because the hardware is 4309 * still active and can DMA into memory. Resources are cleared in 4310 * iavf_virtchnl_completion() after we get confirmation from the PF 4311 * driver that the rings have been stopped. 4312 * 4313 * Also, we wait for state to transition to __IAVF_DOWN before 4314 * returning. State change occurs in iavf_virtchnl_completion() after 4315 * VF resources are released (which occurs after PF driver processes and 4316 * responds to admin queue commands). 4317 */ 4318 4319 status = wait_event_timeout(adapter->down_waitqueue, 4320 adapter->state == __IAVF_DOWN, 4321 msecs_to_jiffies(500)); 4322 if (!status) 4323 netdev_warn(netdev, "Device resources not yet released\n"); 4324 4325 mutex_lock(&adapter->crit_lock); 4326 adapter->aq_required |= aq_to_restore; 4327 mutex_unlock(&adapter->crit_lock); 4328 return 0; 4329 } 4330 4331 /** 4332 * iavf_change_mtu - Change the Maximum Transfer Unit 4333 * @netdev: network interface device structure 4334 * @new_mtu: new value for maximum frame size 4335 * 4336 * Returns 0 on success, negative on failure 4337 **/ 4338 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4339 { 4340 struct iavf_adapter *adapter = netdev_priv(netdev); 4341 4342 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4343 netdev->mtu, new_mtu); 4344 netdev->mtu = new_mtu; 4345 if (CLIENT_ENABLED(adapter)) { 4346 iavf_notify_client_l2_params(&adapter->vsi); 4347 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4348 } 4349 4350 if (netif_running(netdev)) { 4351 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4352 queue_work(adapter->wq, &adapter->reset_task); 4353 } 4354 4355 return 0; 4356 } 4357 4358 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4359 NETIF_F_HW_VLAN_CTAG_TX | \ 4360 NETIF_F_HW_VLAN_STAG_RX | \ 4361 NETIF_F_HW_VLAN_STAG_TX) 4362 4363 /** 4364 * iavf_set_features - set the netdev feature flags 4365 * @netdev: ptr to the netdev being adjusted 4366 * @features: the feature set that the stack is suggesting 4367 * Note: expects to be called while under rtnl_lock() 4368 **/ 4369 static int iavf_set_features(struct net_device *netdev, 4370 netdev_features_t features) 4371 { 4372 struct iavf_adapter *adapter = netdev_priv(netdev); 4373 4374 /* trigger update on any VLAN feature change */ 4375 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4376 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4377 iavf_set_vlan_offload_features(adapter, netdev->features, 4378 features); 4379 4380 return 0; 4381 } 4382 4383 /** 4384 * iavf_features_check - Validate encapsulated packet conforms to limits 4385 * @skb: skb buff 4386 * @dev: This physical port's netdev 4387 * @features: Offload features that the stack believes apply 4388 **/ 4389 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4390 struct net_device *dev, 4391 netdev_features_t features) 4392 { 4393 size_t len; 4394 4395 /* No point in doing any of this if neither checksum nor GSO are 4396 * being requested for this frame. We can rule out both by just 4397 * checking for CHECKSUM_PARTIAL 4398 */ 4399 if (skb->ip_summed != CHECKSUM_PARTIAL) 4400 return features; 4401 4402 /* We cannot support GSO if the MSS is going to be less than 4403 * 64 bytes. If it is then we need to drop support for GSO. 4404 */ 4405 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4406 features &= ~NETIF_F_GSO_MASK; 4407 4408 /* MACLEN can support at most 63 words */ 4409 len = skb_network_header(skb) - skb->data; 4410 if (len & ~(63 * 2)) 4411 goto out_err; 4412 4413 /* IPLEN and EIPLEN can support at most 127 dwords */ 4414 len = skb_transport_header(skb) - skb_network_header(skb); 4415 if (len & ~(127 * 4)) 4416 goto out_err; 4417 4418 if (skb->encapsulation) { 4419 /* L4TUNLEN can support 127 words */ 4420 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4421 if (len & ~(127 * 2)) 4422 goto out_err; 4423 4424 /* IPLEN can support at most 127 dwords */ 4425 len = skb_inner_transport_header(skb) - 4426 skb_inner_network_header(skb); 4427 if (len & ~(127 * 4)) 4428 goto out_err; 4429 } 4430 4431 /* No need to validate L4LEN as TCP is the only protocol with a 4432 * flexible value and we support all possible values supported 4433 * by TCP, which is at most 15 dwords 4434 */ 4435 4436 return features; 4437 out_err: 4438 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4439 } 4440 4441 /** 4442 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4443 * @adapter: board private structure 4444 * 4445 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4446 * were negotiated determine the VLAN features that can be toggled on and off. 4447 **/ 4448 static netdev_features_t 4449 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4450 { 4451 netdev_features_t hw_features = 0; 4452 4453 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4454 return hw_features; 4455 4456 /* Enable VLAN features if supported */ 4457 if (VLAN_ALLOWED(adapter)) { 4458 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4459 NETIF_F_HW_VLAN_CTAG_RX); 4460 } else if (VLAN_V2_ALLOWED(adapter)) { 4461 struct virtchnl_vlan_caps *vlan_v2_caps = 4462 &adapter->vlan_v2_caps; 4463 struct virtchnl_vlan_supported_caps *stripping_support = 4464 &vlan_v2_caps->offloads.stripping_support; 4465 struct virtchnl_vlan_supported_caps *insertion_support = 4466 &vlan_v2_caps->offloads.insertion_support; 4467 4468 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4469 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4470 if (stripping_support->outer & 4471 VIRTCHNL_VLAN_ETHERTYPE_8100) 4472 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4473 if (stripping_support->outer & 4474 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4475 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4476 } else if (stripping_support->inner != 4477 VIRTCHNL_VLAN_UNSUPPORTED && 4478 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4479 if (stripping_support->inner & 4480 VIRTCHNL_VLAN_ETHERTYPE_8100) 4481 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4482 } 4483 4484 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4485 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4486 if (insertion_support->outer & 4487 VIRTCHNL_VLAN_ETHERTYPE_8100) 4488 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4489 if (insertion_support->outer & 4490 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4491 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4492 } else if (insertion_support->inner && 4493 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4494 if (insertion_support->inner & 4495 VIRTCHNL_VLAN_ETHERTYPE_8100) 4496 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4497 } 4498 } 4499 4500 return hw_features; 4501 } 4502 4503 /** 4504 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4505 * @adapter: board private structure 4506 * 4507 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4508 * were negotiated determine the VLAN features that are enabled by default. 4509 **/ 4510 static netdev_features_t 4511 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4512 { 4513 netdev_features_t features = 0; 4514 4515 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4516 return features; 4517 4518 if (VLAN_ALLOWED(adapter)) { 4519 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4520 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4521 } else if (VLAN_V2_ALLOWED(adapter)) { 4522 struct virtchnl_vlan_caps *vlan_v2_caps = 4523 &adapter->vlan_v2_caps; 4524 struct virtchnl_vlan_supported_caps *filtering_support = 4525 &vlan_v2_caps->filtering.filtering_support; 4526 struct virtchnl_vlan_supported_caps *stripping_support = 4527 &vlan_v2_caps->offloads.stripping_support; 4528 struct virtchnl_vlan_supported_caps *insertion_support = 4529 &vlan_v2_caps->offloads.insertion_support; 4530 u32 ethertype_init; 4531 4532 /* give priority to outer stripping and don't support both outer 4533 * and inner stripping 4534 */ 4535 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4536 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4537 if (stripping_support->outer & 4538 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4539 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4540 features |= NETIF_F_HW_VLAN_CTAG_RX; 4541 else if (stripping_support->outer & 4542 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4543 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4544 features |= NETIF_F_HW_VLAN_STAG_RX; 4545 } else if (stripping_support->inner != 4546 VIRTCHNL_VLAN_UNSUPPORTED) { 4547 if (stripping_support->inner & 4548 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4549 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4550 features |= NETIF_F_HW_VLAN_CTAG_RX; 4551 } 4552 4553 /* give priority to outer insertion and don't support both outer 4554 * and inner insertion 4555 */ 4556 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4557 if (insertion_support->outer & 4558 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4559 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4560 features |= NETIF_F_HW_VLAN_CTAG_TX; 4561 else if (insertion_support->outer & 4562 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4563 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4564 features |= NETIF_F_HW_VLAN_STAG_TX; 4565 } else if (insertion_support->inner != 4566 VIRTCHNL_VLAN_UNSUPPORTED) { 4567 if (insertion_support->inner & 4568 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4569 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4570 features |= NETIF_F_HW_VLAN_CTAG_TX; 4571 } 4572 4573 /* give priority to outer filtering and don't bother if both 4574 * outer and inner filtering are enabled 4575 */ 4576 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4577 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4578 if (filtering_support->outer & 4579 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4580 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4581 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4582 if (filtering_support->outer & 4583 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4584 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4585 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4586 } else if (filtering_support->inner != 4587 VIRTCHNL_VLAN_UNSUPPORTED) { 4588 if (filtering_support->inner & 4589 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4590 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4591 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4592 if (filtering_support->inner & 4593 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4594 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4595 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4596 } 4597 } 4598 4599 return features; 4600 } 4601 4602 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4603 (!(((requested) & (feature_bit)) && \ 4604 !((allowed) & (feature_bit)))) 4605 4606 /** 4607 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4608 * @adapter: board private structure 4609 * @requested_features: stack requested NETDEV features 4610 **/ 4611 static netdev_features_t 4612 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4613 netdev_features_t requested_features) 4614 { 4615 netdev_features_t allowed_features; 4616 4617 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4618 iavf_get_netdev_vlan_features(adapter); 4619 4620 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4621 allowed_features, 4622 NETIF_F_HW_VLAN_CTAG_TX)) 4623 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4624 4625 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4626 allowed_features, 4627 NETIF_F_HW_VLAN_CTAG_RX)) 4628 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4629 4630 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4631 allowed_features, 4632 NETIF_F_HW_VLAN_STAG_TX)) 4633 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4634 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4635 allowed_features, 4636 NETIF_F_HW_VLAN_STAG_RX)) 4637 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4638 4639 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4640 allowed_features, 4641 NETIF_F_HW_VLAN_CTAG_FILTER)) 4642 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4643 4644 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4645 allowed_features, 4646 NETIF_F_HW_VLAN_STAG_FILTER)) 4647 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4648 4649 if ((requested_features & 4650 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4651 (requested_features & 4652 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4653 adapter->vlan_v2_caps.offloads.ethertype_match == 4654 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4655 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4656 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4657 NETIF_F_HW_VLAN_STAG_TX); 4658 } 4659 4660 return requested_features; 4661 } 4662 4663 /** 4664 * iavf_fix_features - fix up the netdev feature bits 4665 * @netdev: our net device 4666 * @features: desired feature bits 4667 * 4668 * Returns fixed-up features bits 4669 **/ 4670 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4671 netdev_features_t features) 4672 { 4673 struct iavf_adapter *adapter = netdev_priv(netdev); 4674 4675 return iavf_fix_netdev_vlan_features(adapter, features); 4676 } 4677 4678 static const struct net_device_ops iavf_netdev_ops = { 4679 .ndo_open = iavf_open, 4680 .ndo_stop = iavf_close, 4681 .ndo_start_xmit = iavf_xmit_frame, 4682 .ndo_set_rx_mode = iavf_set_rx_mode, 4683 .ndo_validate_addr = eth_validate_addr, 4684 .ndo_set_mac_address = iavf_set_mac, 4685 .ndo_change_mtu = iavf_change_mtu, 4686 .ndo_tx_timeout = iavf_tx_timeout, 4687 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4688 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4689 .ndo_features_check = iavf_features_check, 4690 .ndo_fix_features = iavf_fix_features, 4691 .ndo_set_features = iavf_set_features, 4692 .ndo_setup_tc = iavf_setup_tc, 4693 }; 4694 4695 /** 4696 * iavf_check_reset_complete - check that VF reset is complete 4697 * @hw: pointer to hw struct 4698 * 4699 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4700 **/ 4701 static int iavf_check_reset_complete(struct iavf_hw *hw) 4702 { 4703 u32 rstat; 4704 int i; 4705 4706 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4707 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4708 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4709 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4710 (rstat == VIRTCHNL_VFR_COMPLETED)) 4711 return 0; 4712 usleep_range(10, 20); 4713 } 4714 return -EBUSY; 4715 } 4716 4717 /** 4718 * iavf_process_config - Process the config information we got from the PF 4719 * @adapter: board private structure 4720 * 4721 * Verify that we have a valid config struct, and set up our netdev features 4722 * and our VSI struct. 4723 **/ 4724 int iavf_process_config(struct iavf_adapter *adapter) 4725 { 4726 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4727 netdev_features_t hw_vlan_features, vlan_features; 4728 struct net_device *netdev = adapter->netdev; 4729 netdev_features_t hw_enc_features; 4730 netdev_features_t hw_features; 4731 4732 hw_enc_features = NETIF_F_SG | 4733 NETIF_F_IP_CSUM | 4734 NETIF_F_IPV6_CSUM | 4735 NETIF_F_HIGHDMA | 4736 NETIF_F_SOFT_FEATURES | 4737 NETIF_F_TSO | 4738 NETIF_F_TSO_ECN | 4739 NETIF_F_TSO6 | 4740 NETIF_F_SCTP_CRC | 4741 NETIF_F_RXHASH | 4742 NETIF_F_RXCSUM | 4743 0; 4744 4745 /* advertise to stack only if offloads for encapsulated packets is 4746 * supported 4747 */ 4748 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4749 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4750 NETIF_F_GSO_GRE | 4751 NETIF_F_GSO_GRE_CSUM | 4752 NETIF_F_GSO_IPXIP4 | 4753 NETIF_F_GSO_IPXIP6 | 4754 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4755 NETIF_F_GSO_PARTIAL | 4756 0; 4757 4758 if (!(vfres->vf_cap_flags & 4759 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4760 netdev->gso_partial_features |= 4761 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4762 4763 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4764 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4765 netdev->hw_enc_features |= hw_enc_features; 4766 } 4767 /* record features VLANs can make use of */ 4768 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4769 4770 /* Write features and hw_features separately to avoid polluting 4771 * with, or dropping, features that are set when we registered. 4772 */ 4773 hw_features = hw_enc_features; 4774 4775 /* get HW VLAN features that can be toggled */ 4776 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4777 4778 /* Enable cloud filter if ADQ is supported */ 4779 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4780 hw_features |= NETIF_F_HW_TC; 4781 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4782 hw_features |= NETIF_F_GSO_UDP_L4; 4783 4784 netdev->hw_features |= hw_features | hw_vlan_features; 4785 vlan_features = iavf_get_netdev_vlan_features(adapter); 4786 4787 netdev->features |= hw_features | vlan_features; 4788 4789 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4790 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4791 4792 netdev->priv_flags |= IFF_UNICAST_FLT; 4793 4794 /* Do not turn on offloads when they are requested to be turned off. 4795 * TSO needs minimum 576 bytes to work correctly. 4796 */ 4797 if (netdev->wanted_features) { 4798 if (!(netdev->wanted_features & NETIF_F_TSO) || 4799 netdev->mtu < 576) 4800 netdev->features &= ~NETIF_F_TSO; 4801 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4802 netdev->mtu < 576) 4803 netdev->features &= ~NETIF_F_TSO6; 4804 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4805 netdev->features &= ~NETIF_F_TSO_ECN; 4806 if (!(netdev->wanted_features & NETIF_F_GRO)) 4807 netdev->features &= ~NETIF_F_GRO; 4808 if (!(netdev->wanted_features & NETIF_F_GSO)) 4809 netdev->features &= ~NETIF_F_GSO; 4810 } 4811 4812 return 0; 4813 } 4814 4815 /** 4816 * iavf_shutdown - Shutdown the device in preparation for a reboot 4817 * @pdev: pci device structure 4818 **/ 4819 static void iavf_shutdown(struct pci_dev *pdev) 4820 { 4821 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4822 struct net_device *netdev = adapter->netdev; 4823 4824 netif_device_detach(netdev); 4825 4826 if (netif_running(netdev)) 4827 iavf_close(netdev); 4828 4829 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4830 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4831 /* Prevent the watchdog from running. */ 4832 iavf_change_state(adapter, __IAVF_REMOVE); 4833 adapter->aq_required = 0; 4834 mutex_unlock(&adapter->crit_lock); 4835 4836 #ifdef CONFIG_PM 4837 pci_save_state(pdev); 4838 4839 #endif 4840 pci_disable_device(pdev); 4841 } 4842 4843 /** 4844 * iavf_probe - Device Initialization Routine 4845 * @pdev: PCI device information struct 4846 * @ent: entry in iavf_pci_tbl 4847 * 4848 * Returns 0 on success, negative on failure 4849 * 4850 * iavf_probe initializes an adapter identified by a pci_dev structure. 4851 * The OS initialization, configuring of the adapter private structure, 4852 * and a hardware reset occur. 4853 **/ 4854 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4855 { 4856 struct net_device *netdev; 4857 struct iavf_adapter *adapter = NULL; 4858 struct iavf_hw *hw = NULL; 4859 int err; 4860 4861 err = pci_enable_device(pdev); 4862 if (err) 4863 return err; 4864 4865 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4866 if (err) { 4867 dev_err(&pdev->dev, 4868 "DMA configuration failed: 0x%x\n", err); 4869 goto err_dma; 4870 } 4871 4872 err = pci_request_regions(pdev, iavf_driver_name); 4873 if (err) { 4874 dev_err(&pdev->dev, 4875 "pci_request_regions failed 0x%x\n", err); 4876 goto err_pci_reg; 4877 } 4878 4879 pci_set_master(pdev); 4880 4881 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4882 IAVF_MAX_REQ_QUEUES); 4883 if (!netdev) { 4884 err = -ENOMEM; 4885 goto err_alloc_etherdev; 4886 } 4887 4888 SET_NETDEV_DEV(netdev, &pdev->dev); 4889 4890 pci_set_drvdata(pdev, netdev); 4891 adapter = netdev_priv(netdev); 4892 4893 adapter->netdev = netdev; 4894 adapter->pdev = pdev; 4895 4896 hw = &adapter->hw; 4897 hw->back = adapter; 4898 4899 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4900 iavf_driver_name); 4901 if (!adapter->wq) { 4902 err = -ENOMEM; 4903 goto err_alloc_wq; 4904 } 4905 4906 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4907 iavf_change_state(adapter, __IAVF_STARTUP); 4908 4909 /* Call save state here because it relies on the adapter struct. */ 4910 pci_save_state(pdev); 4911 4912 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4913 pci_resource_len(pdev, 0)); 4914 if (!hw->hw_addr) { 4915 err = -EIO; 4916 goto err_ioremap; 4917 } 4918 hw->vendor_id = pdev->vendor; 4919 hw->device_id = pdev->device; 4920 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4921 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4922 hw->subsystem_device_id = pdev->subsystem_device; 4923 hw->bus.device = PCI_SLOT(pdev->devfn); 4924 hw->bus.func = PCI_FUNC(pdev->devfn); 4925 hw->bus.bus_id = pdev->bus->number; 4926 4927 /* set up the locks for the AQ, do this only once in probe 4928 * and destroy them only once in remove 4929 */ 4930 mutex_init(&adapter->crit_lock); 4931 mutex_init(&adapter->client_lock); 4932 mutex_init(&hw->aq.asq_mutex); 4933 mutex_init(&hw->aq.arq_mutex); 4934 4935 spin_lock_init(&adapter->mac_vlan_list_lock); 4936 spin_lock_init(&adapter->cloud_filter_list_lock); 4937 spin_lock_init(&adapter->fdir_fltr_lock); 4938 spin_lock_init(&adapter->adv_rss_lock); 4939 4940 INIT_LIST_HEAD(&adapter->mac_filter_list); 4941 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4942 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4943 INIT_LIST_HEAD(&adapter->fdir_list_head); 4944 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4945 4946 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4947 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4948 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4949 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4950 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4951 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4952 4953 /* Setup the wait queue for indicating transition to down status */ 4954 init_waitqueue_head(&adapter->down_waitqueue); 4955 4956 /* Setup the wait queue for indicating virtchannel events */ 4957 init_waitqueue_head(&adapter->vc_waitqueue); 4958 4959 return 0; 4960 4961 err_ioremap: 4962 destroy_workqueue(adapter->wq); 4963 err_alloc_wq: 4964 free_netdev(netdev); 4965 err_alloc_etherdev: 4966 pci_release_regions(pdev); 4967 err_pci_reg: 4968 err_dma: 4969 pci_disable_device(pdev); 4970 return err; 4971 } 4972 4973 /** 4974 * iavf_suspend - Power management suspend routine 4975 * @dev_d: device info pointer 4976 * 4977 * Called when the system (VM) is entering sleep/suspend. 4978 **/ 4979 static int __maybe_unused iavf_suspend(struct device *dev_d) 4980 { 4981 struct net_device *netdev = dev_get_drvdata(dev_d); 4982 struct iavf_adapter *adapter = netdev_priv(netdev); 4983 4984 netif_device_detach(netdev); 4985 4986 while (!mutex_trylock(&adapter->crit_lock)) 4987 usleep_range(500, 1000); 4988 4989 if (netif_running(netdev)) { 4990 rtnl_lock(); 4991 iavf_down(adapter); 4992 rtnl_unlock(); 4993 } 4994 iavf_free_misc_irq(adapter); 4995 iavf_reset_interrupt_capability(adapter); 4996 4997 mutex_unlock(&adapter->crit_lock); 4998 4999 return 0; 5000 } 5001 5002 /** 5003 * iavf_resume - Power management resume routine 5004 * @dev_d: device info pointer 5005 * 5006 * Called when the system (VM) is resumed from sleep/suspend. 5007 **/ 5008 static int __maybe_unused iavf_resume(struct device *dev_d) 5009 { 5010 struct pci_dev *pdev = to_pci_dev(dev_d); 5011 struct iavf_adapter *adapter; 5012 u32 err; 5013 5014 adapter = iavf_pdev_to_adapter(pdev); 5015 5016 pci_set_master(pdev); 5017 5018 rtnl_lock(); 5019 err = iavf_set_interrupt_capability(adapter); 5020 if (err) { 5021 rtnl_unlock(); 5022 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5023 return err; 5024 } 5025 err = iavf_request_misc_irq(adapter); 5026 rtnl_unlock(); 5027 if (err) { 5028 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5029 return err; 5030 } 5031 5032 queue_work(adapter->wq, &adapter->reset_task); 5033 5034 netif_device_attach(adapter->netdev); 5035 5036 return err; 5037 } 5038 5039 /** 5040 * iavf_remove - Device Removal Routine 5041 * @pdev: PCI device information struct 5042 * 5043 * iavf_remove is called by the PCI subsystem to alert the driver 5044 * that it should release a PCI device. The could be caused by a 5045 * Hot-Plug event, or because the driver is going to be removed from 5046 * memory. 5047 **/ 5048 static void iavf_remove(struct pci_dev *pdev) 5049 { 5050 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5051 struct iavf_fdir_fltr *fdir, *fdirtmp; 5052 struct iavf_vlan_filter *vlf, *vlftmp; 5053 struct iavf_cloud_filter *cf, *cftmp; 5054 struct iavf_adv_rss *rss, *rsstmp; 5055 struct iavf_mac_filter *f, *ftmp; 5056 struct net_device *netdev; 5057 struct iavf_hw *hw; 5058 int err; 5059 5060 netdev = adapter->netdev; 5061 hw = &adapter->hw; 5062 5063 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5064 return; 5065 5066 /* Wait until port initialization is complete. 5067 * There are flows where register/unregister netdev may race. 5068 */ 5069 while (1) { 5070 mutex_lock(&adapter->crit_lock); 5071 if (adapter->state == __IAVF_RUNNING || 5072 adapter->state == __IAVF_DOWN || 5073 adapter->state == __IAVF_INIT_FAILED) { 5074 mutex_unlock(&adapter->crit_lock); 5075 break; 5076 } 5077 /* Simply return if we already went through iavf_shutdown */ 5078 if (adapter->state == __IAVF_REMOVE) { 5079 mutex_unlock(&adapter->crit_lock); 5080 return; 5081 } 5082 5083 mutex_unlock(&adapter->crit_lock); 5084 usleep_range(500, 1000); 5085 } 5086 cancel_delayed_work_sync(&adapter->watchdog_task); 5087 5088 if (adapter->netdev_registered) { 5089 rtnl_lock(); 5090 unregister_netdevice(netdev); 5091 adapter->netdev_registered = false; 5092 rtnl_unlock(); 5093 } 5094 if (CLIENT_ALLOWED(adapter)) { 5095 err = iavf_lan_del_device(adapter); 5096 if (err) 5097 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5098 err); 5099 } 5100 5101 mutex_lock(&adapter->crit_lock); 5102 dev_info(&adapter->pdev->dev, "Removing device\n"); 5103 iavf_change_state(adapter, __IAVF_REMOVE); 5104 5105 iavf_request_reset(adapter); 5106 msleep(50); 5107 /* If the FW isn't responding, kick it once, but only once. */ 5108 if (!iavf_asq_done(hw)) { 5109 iavf_request_reset(adapter); 5110 msleep(50); 5111 } 5112 5113 iavf_misc_irq_disable(adapter); 5114 /* Shut down all the garbage mashers on the detention level */ 5115 cancel_work_sync(&adapter->reset_task); 5116 cancel_delayed_work_sync(&adapter->watchdog_task); 5117 cancel_work_sync(&adapter->adminq_task); 5118 cancel_delayed_work_sync(&adapter->client_task); 5119 5120 adapter->aq_required = 0; 5121 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5122 5123 iavf_free_all_tx_resources(adapter); 5124 iavf_free_all_rx_resources(adapter); 5125 iavf_free_misc_irq(adapter); 5126 5127 iavf_reset_interrupt_capability(adapter); 5128 iavf_free_q_vectors(adapter); 5129 5130 iavf_free_rss(adapter); 5131 5132 if (hw->aq.asq.count) 5133 iavf_shutdown_adminq(hw); 5134 5135 /* destroy the locks only once, here */ 5136 mutex_destroy(&hw->aq.arq_mutex); 5137 mutex_destroy(&hw->aq.asq_mutex); 5138 mutex_destroy(&adapter->client_lock); 5139 mutex_unlock(&adapter->crit_lock); 5140 mutex_destroy(&adapter->crit_lock); 5141 5142 iounmap(hw->hw_addr); 5143 pci_release_regions(pdev); 5144 iavf_free_queues(adapter); 5145 kfree(adapter->vf_res); 5146 spin_lock_bh(&adapter->mac_vlan_list_lock); 5147 /* If we got removed before an up/down sequence, we've got a filter 5148 * hanging out there that we need to get rid of. 5149 */ 5150 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5151 list_del(&f->list); 5152 kfree(f); 5153 } 5154 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5155 list) { 5156 list_del(&vlf->list); 5157 kfree(vlf); 5158 } 5159 5160 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5161 5162 spin_lock_bh(&adapter->cloud_filter_list_lock); 5163 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5164 list_del(&cf->list); 5165 kfree(cf); 5166 } 5167 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5168 5169 spin_lock_bh(&adapter->fdir_fltr_lock); 5170 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5171 list_del(&fdir->list); 5172 kfree(fdir); 5173 } 5174 spin_unlock_bh(&adapter->fdir_fltr_lock); 5175 5176 spin_lock_bh(&adapter->adv_rss_lock); 5177 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5178 list) { 5179 list_del(&rss->list); 5180 kfree(rss); 5181 } 5182 spin_unlock_bh(&adapter->adv_rss_lock); 5183 5184 destroy_workqueue(adapter->wq); 5185 5186 free_netdev(netdev); 5187 5188 pci_disable_device(pdev); 5189 } 5190 5191 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5192 5193 static struct pci_driver iavf_driver = { 5194 .name = iavf_driver_name, 5195 .id_table = iavf_pci_tbl, 5196 .probe = iavf_probe, 5197 .remove = iavf_remove, 5198 .driver.pm = &iavf_pm_ops, 5199 .shutdown = iavf_shutdown, 5200 }; 5201 5202 /** 5203 * iavf_init_module - Driver Registration Routine 5204 * 5205 * iavf_init_module is the first routine called when the driver is 5206 * loaded. All it does is register with the PCI subsystem. 5207 **/ 5208 static int __init iavf_init_module(void) 5209 { 5210 pr_info("iavf: %s\n", iavf_driver_string); 5211 5212 pr_info("%s\n", iavf_copyright); 5213 5214 return pci_register_driver(&iavf_driver); 5215 } 5216 5217 module_init(iavf_init_module); 5218 5219 /** 5220 * iavf_exit_module - Driver Exit Cleanup Routine 5221 * 5222 * iavf_exit_module is called just before the driver is removed 5223 * from memory. 5224 **/ 5225 static void __exit iavf_exit_module(void) 5226 { 5227 pci_unregister_driver(&iavf_driver); 5228 } 5229 5230 module_exit(iavf_exit_module); 5231 5232 /* iavf_main.c */ 5233