1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_pdev_to_adapter - go from pci_dev to adapter 56 * @pdev: pci_dev pointer 57 */ 58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 59 { 60 return netdev_priv(pci_get_drvdata(pdev)); 61 } 62 63 /** 64 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 65 * @hw: pointer to the HW structure 66 * @mem: ptr to mem struct to fill out 67 * @size: size of memory requested 68 * @alignment: what to align the allocation to 69 **/ 70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 71 struct iavf_dma_mem *mem, 72 u64 size, u32 alignment) 73 { 74 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 75 76 if (!mem) 77 return IAVF_ERR_PARAM; 78 79 mem->size = ALIGN(size, alignment); 80 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 81 (dma_addr_t *)&mem->pa, GFP_KERNEL); 82 if (mem->va) 83 return 0; 84 else 85 return IAVF_ERR_NO_MEMORY; 86 } 87 88 /** 89 * iavf_free_dma_mem_d - OS specific memory free for shared code 90 * @hw: pointer to the HW structure 91 * @mem: ptr to mem struct to free 92 **/ 93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 94 struct iavf_dma_mem *mem) 95 { 96 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 97 98 if (!mem || !mem->va) 99 return IAVF_ERR_PARAM; 100 dma_free_coherent(&adapter->pdev->dev, mem->size, 101 mem->va, (dma_addr_t)mem->pa); 102 return 0; 103 } 104 105 /** 106 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 107 * @hw: pointer to the HW structure 108 * @mem: ptr to mem struct to fill out 109 * @size: size of memory requested 110 **/ 111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 112 struct iavf_virt_mem *mem, u32 size) 113 { 114 if (!mem) 115 return IAVF_ERR_PARAM; 116 117 mem->size = size; 118 mem->va = kzalloc(size, GFP_KERNEL); 119 120 if (mem->va) 121 return 0; 122 else 123 return IAVF_ERR_NO_MEMORY; 124 } 125 126 /** 127 * iavf_free_virt_mem_d - OS specific memory free for shared code 128 * @hw: pointer to the HW structure 129 * @mem: ptr to mem struct to free 130 **/ 131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 132 struct iavf_virt_mem *mem) 133 { 134 if (!mem) 135 return IAVF_ERR_PARAM; 136 137 /* it's ok to kfree a NULL pointer */ 138 kfree(mem->va); 139 140 return 0; 141 } 142 143 /** 144 * iavf_lock_timeout - try to lock mutex but give up after timeout 145 * @lock: mutex that should be locked 146 * @msecs: timeout in msecs 147 * 148 * Returns 0 on success, negative on failure 149 **/ 150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 151 { 152 unsigned int wait, delay = 10; 153 154 for (wait = 0; wait < msecs; wait += delay) { 155 if (mutex_trylock(lock)) 156 return 0; 157 158 msleep(delay); 159 } 160 161 return -1; 162 } 163 164 /** 165 * iavf_schedule_reset - Set the flags and schedule a reset event 166 * @adapter: board private structure 167 **/ 168 void iavf_schedule_reset(struct iavf_adapter *adapter) 169 { 170 if (!(adapter->flags & 171 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 172 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 173 queue_work(iavf_wq, &adapter->reset_task); 174 } 175 } 176 177 /** 178 * iavf_schedule_request_stats - Set the flags and schedule statistics request 179 * @adapter: board private structure 180 * 181 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 182 * request and refresh ethtool stats 183 **/ 184 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 185 { 186 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 187 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 188 } 189 190 /** 191 * iavf_tx_timeout - Respond to a Tx Hang 192 * @netdev: network interface device structure 193 * @txqueue: queue number that is timing out 194 **/ 195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 196 { 197 struct iavf_adapter *adapter = netdev_priv(netdev); 198 199 adapter->tx_timeout_count++; 200 iavf_schedule_reset(adapter); 201 } 202 203 /** 204 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 205 * @adapter: board private structure 206 **/ 207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 208 { 209 struct iavf_hw *hw = &adapter->hw; 210 211 if (!adapter->msix_entries) 212 return; 213 214 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 215 216 iavf_flush(hw); 217 218 synchronize_irq(adapter->msix_entries[0].vector); 219 } 220 221 /** 222 * iavf_misc_irq_enable - Enable default interrupt generation settings 223 * @adapter: board private structure 224 **/ 225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 226 { 227 struct iavf_hw *hw = &adapter->hw; 228 229 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 230 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 231 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 232 233 iavf_flush(hw); 234 } 235 236 /** 237 * iavf_irq_disable - Mask off interrupt generation on the NIC 238 * @adapter: board private structure 239 **/ 240 static void iavf_irq_disable(struct iavf_adapter *adapter) 241 { 242 int i; 243 struct iavf_hw *hw = &adapter->hw; 244 245 if (!adapter->msix_entries) 246 return; 247 248 for (i = 1; i < adapter->num_msix_vectors; i++) { 249 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 250 synchronize_irq(adapter->msix_entries[i].vector); 251 } 252 iavf_flush(hw); 253 } 254 255 /** 256 * iavf_irq_enable_queues - Enable interrupt for specified queues 257 * @adapter: board private structure 258 * @mask: bitmap of queues to enable 259 **/ 260 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 261 { 262 struct iavf_hw *hw = &adapter->hw; 263 int i; 264 265 for (i = 1; i < adapter->num_msix_vectors; i++) { 266 if (mask & BIT(i - 1)) { 267 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 268 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 269 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 270 } 271 } 272 } 273 274 /** 275 * iavf_irq_enable - Enable default interrupt generation settings 276 * @adapter: board private structure 277 * @flush: boolean value whether to run rd32() 278 **/ 279 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 280 { 281 struct iavf_hw *hw = &adapter->hw; 282 283 iavf_misc_irq_enable(adapter); 284 iavf_irq_enable_queues(adapter, ~0); 285 286 if (flush) 287 iavf_flush(hw); 288 } 289 290 /** 291 * iavf_msix_aq - Interrupt handler for vector 0 292 * @irq: interrupt number 293 * @data: pointer to netdev 294 **/ 295 static irqreturn_t iavf_msix_aq(int irq, void *data) 296 { 297 struct net_device *netdev = data; 298 struct iavf_adapter *adapter = netdev_priv(netdev); 299 struct iavf_hw *hw = &adapter->hw; 300 301 /* handle non-queue interrupts, these reads clear the registers */ 302 rd32(hw, IAVF_VFINT_ICR01); 303 rd32(hw, IAVF_VFINT_ICR0_ENA1); 304 305 if (adapter->state != __IAVF_REMOVE) 306 /* schedule work on the private workqueue */ 307 queue_work(iavf_wq, &adapter->adminq_task); 308 309 return IRQ_HANDLED; 310 } 311 312 /** 313 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 314 * @irq: interrupt number 315 * @data: pointer to a q_vector 316 **/ 317 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 318 { 319 struct iavf_q_vector *q_vector = data; 320 321 if (!q_vector->tx.ring && !q_vector->rx.ring) 322 return IRQ_HANDLED; 323 324 napi_schedule_irqoff(&q_vector->napi); 325 326 return IRQ_HANDLED; 327 } 328 329 /** 330 * iavf_map_vector_to_rxq - associate irqs with rx queues 331 * @adapter: board private structure 332 * @v_idx: interrupt number 333 * @r_idx: queue number 334 **/ 335 static void 336 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 337 { 338 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 339 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 340 struct iavf_hw *hw = &adapter->hw; 341 342 rx_ring->q_vector = q_vector; 343 rx_ring->next = q_vector->rx.ring; 344 rx_ring->vsi = &adapter->vsi; 345 q_vector->rx.ring = rx_ring; 346 q_vector->rx.count++; 347 q_vector->rx.next_update = jiffies + 1; 348 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 349 q_vector->ring_mask |= BIT(r_idx); 350 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 351 q_vector->rx.current_itr >> 1); 352 q_vector->rx.current_itr = q_vector->rx.target_itr; 353 } 354 355 /** 356 * iavf_map_vector_to_txq - associate irqs with tx queues 357 * @adapter: board private structure 358 * @v_idx: interrupt number 359 * @t_idx: queue number 360 **/ 361 static void 362 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 363 { 364 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 365 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 366 struct iavf_hw *hw = &adapter->hw; 367 368 tx_ring->q_vector = q_vector; 369 tx_ring->next = q_vector->tx.ring; 370 tx_ring->vsi = &adapter->vsi; 371 q_vector->tx.ring = tx_ring; 372 q_vector->tx.count++; 373 q_vector->tx.next_update = jiffies + 1; 374 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 375 q_vector->num_ringpairs++; 376 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 377 q_vector->tx.target_itr >> 1); 378 q_vector->tx.current_itr = q_vector->tx.target_itr; 379 } 380 381 /** 382 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 383 * @adapter: board private structure to initialize 384 * 385 * This function maps descriptor rings to the queue-specific vectors 386 * we were allotted through the MSI-X enabling code. Ideally, we'd have 387 * one vector per ring/queue, but on a constrained vector budget, we 388 * group the rings as "efficiently" as possible. You would add new 389 * mapping configurations in here. 390 **/ 391 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 392 { 393 int rings_remaining = adapter->num_active_queues; 394 int ridx = 0, vidx = 0; 395 int q_vectors; 396 397 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 398 399 for (; ridx < rings_remaining; ridx++) { 400 iavf_map_vector_to_rxq(adapter, vidx, ridx); 401 iavf_map_vector_to_txq(adapter, vidx, ridx); 402 403 /* In the case where we have more queues than vectors, continue 404 * round-robin on vectors until all queues are mapped. 405 */ 406 if (++vidx >= q_vectors) 407 vidx = 0; 408 } 409 410 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 411 } 412 413 /** 414 * iavf_irq_affinity_notify - Callback for affinity changes 415 * @notify: context as to what irq was changed 416 * @mask: the new affinity mask 417 * 418 * This is a callback function used by the irq_set_affinity_notifier function 419 * so that we may register to receive changes to the irq affinity masks. 420 **/ 421 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 422 const cpumask_t *mask) 423 { 424 struct iavf_q_vector *q_vector = 425 container_of(notify, struct iavf_q_vector, affinity_notify); 426 427 cpumask_copy(&q_vector->affinity_mask, mask); 428 } 429 430 /** 431 * iavf_irq_affinity_release - Callback for affinity notifier release 432 * @ref: internal core kernel usage 433 * 434 * This is a callback function used by the irq_set_affinity_notifier function 435 * to inform the current notification subscriber that they will no longer 436 * receive notifications. 437 **/ 438 static void iavf_irq_affinity_release(struct kref *ref) {} 439 440 /** 441 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 442 * @adapter: board private structure 443 * @basename: device basename 444 * 445 * Allocates MSI-X vectors for tx and rx handling, and requests 446 * interrupts from the kernel. 447 **/ 448 static int 449 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 450 { 451 unsigned int vector, q_vectors; 452 unsigned int rx_int_idx = 0, tx_int_idx = 0; 453 int irq_num, err; 454 int cpu; 455 456 iavf_irq_disable(adapter); 457 /* Decrement for Other and TCP Timer vectors */ 458 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 459 460 for (vector = 0; vector < q_vectors; vector++) { 461 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 462 463 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 464 465 if (q_vector->tx.ring && q_vector->rx.ring) { 466 snprintf(q_vector->name, sizeof(q_vector->name), 467 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 468 tx_int_idx++; 469 } else if (q_vector->rx.ring) { 470 snprintf(q_vector->name, sizeof(q_vector->name), 471 "iavf-%s-rx-%u", basename, rx_int_idx++); 472 } else if (q_vector->tx.ring) { 473 snprintf(q_vector->name, sizeof(q_vector->name), 474 "iavf-%s-tx-%u", basename, tx_int_idx++); 475 } else { 476 /* skip this unused q_vector */ 477 continue; 478 } 479 err = request_irq(irq_num, 480 iavf_msix_clean_rings, 481 0, 482 q_vector->name, 483 q_vector); 484 if (err) { 485 dev_info(&adapter->pdev->dev, 486 "Request_irq failed, error: %d\n", err); 487 goto free_queue_irqs; 488 } 489 /* register for affinity change notifications */ 490 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 491 q_vector->affinity_notify.release = 492 iavf_irq_affinity_release; 493 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 494 /* Spread the IRQ affinity hints across online CPUs. Note that 495 * get_cpu_mask returns a mask with a permanent lifetime so 496 * it's safe to use as a hint for irq_update_affinity_hint. 497 */ 498 cpu = cpumask_local_spread(q_vector->v_idx, -1); 499 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 500 } 501 502 return 0; 503 504 free_queue_irqs: 505 while (vector) { 506 vector--; 507 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 508 irq_set_affinity_notifier(irq_num, NULL); 509 irq_update_affinity_hint(irq_num, NULL); 510 free_irq(irq_num, &adapter->q_vectors[vector]); 511 } 512 return err; 513 } 514 515 /** 516 * iavf_request_misc_irq - Initialize MSI-X interrupts 517 * @adapter: board private structure 518 * 519 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 520 * vector is only for the admin queue, and stays active even when the netdev 521 * is closed. 522 **/ 523 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 524 { 525 struct net_device *netdev = adapter->netdev; 526 int err; 527 528 snprintf(adapter->misc_vector_name, 529 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 530 dev_name(&adapter->pdev->dev)); 531 err = request_irq(adapter->msix_entries[0].vector, 532 &iavf_msix_aq, 0, 533 adapter->misc_vector_name, netdev); 534 if (err) { 535 dev_err(&adapter->pdev->dev, 536 "request_irq for %s failed: %d\n", 537 adapter->misc_vector_name, err); 538 free_irq(adapter->msix_entries[0].vector, netdev); 539 } 540 return err; 541 } 542 543 /** 544 * iavf_free_traffic_irqs - Free MSI-X interrupts 545 * @adapter: board private structure 546 * 547 * Frees all MSI-X vectors other than 0. 548 **/ 549 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 550 { 551 int vector, irq_num, q_vectors; 552 553 if (!adapter->msix_entries) 554 return; 555 556 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 557 558 for (vector = 0; vector < q_vectors; vector++) { 559 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 560 irq_set_affinity_notifier(irq_num, NULL); 561 irq_update_affinity_hint(irq_num, NULL); 562 free_irq(irq_num, &adapter->q_vectors[vector]); 563 } 564 } 565 566 /** 567 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 568 * @adapter: board private structure 569 * 570 * Frees MSI-X vector 0. 571 **/ 572 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 573 { 574 struct net_device *netdev = adapter->netdev; 575 576 if (!adapter->msix_entries) 577 return; 578 579 free_irq(adapter->msix_entries[0].vector, netdev); 580 } 581 582 /** 583 * iavf_configure_tx - Configure Transmit Unit after Reset 584 * @adapter: board private structure 585 * 586 * Configure the Tx unit of the MAC after a reset. 587 **/ 588 static void iavf_configure_tx(struct iavf_adapter *adapter) 589 { 590 struct iavf_hw *hw = &adapter->hw; 591 int i; 592 593 for (i = 0; i < adapter->num_active_queues; i++) 594 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 595 } 596 597 /** 598 * iavf_configure_rx - Configure Receive Unit after Reset 599 * @adapter: board private structure 600 * 601 * Configure the Rx unit of the MAC after a reset. 602 **/ 603 static void iavf_configure_rx(struct iavf_adapter *adapter) 604 { 605 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 606 struct iavf_hw *hw = &adapter->hw; 607 int i; 608 609 /* Legacy Rx will always default to a 2048 buffer size. */ 610 #if (PAGE_SIZE < 8192) 611 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 612 struct net_device *netdev = adapter->netdev; 613 614 /* For jumbo frames on systems with 4K pages we have to use 615 * an order 1 page, so we might as well increase the size 616 * of our Rx buffer to make better use of the available space 617 */ 618 rx_buf_len = IAVF_RXBUFFER_3072; 619 620 /* We use a 1536 buffer size for configurations with 621 * standard Ethernet mtu. On x86 this gives us enough room 622 * for shared info and 192 bytes of padding. 623 */ 624 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 625 (netdev->mtu <= ETH_DATA_LEN)) 626 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 627 } 628 #endif 629 630 for (i = 0; i < adapter->num_active_queues; i++) { 631 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 632 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 633 634 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 635 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 636 else 637 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 638 } 639 } 640 641 /** 642 * iavf_find_vlan - Search filter list for specific vlan filter 643 * @adapter: board private structure 644 * @vlan: vlan tag 645 * 646 * Returns ptr to the filter object or NULL. Must be called while holding the 647 * mac_vlan_list_lock. 648 **/ 649 static struct 650 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 651 struct iavf_vlan vlan) 652 { 653 struct iavf_vlan_filter *f; 654 655 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 656 if (f->vlan.vid == vlan.vid && 657 f->vlan.tpid == vlan.tpid) 658 return f; 659 } 660 661 return NULL; 662 } 663 664 /** 665 * iavf_add_vlan - Add a vlan filter to the list 666 * @adapter: board private structure 667 * @vlan: VLAN tag 668 * 669 * Returns ptr to the filter object or NULL when no memory available. 670 **/ 671 static struct 672 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 673 struct iavf_vlan vlan) 674 { 675 struct iavf_vlan_filter *f = NULL; 676 677 spin_lock_bh(&adapter->mac_vlan_list_lock); 678 679 f = iavf_find_vlan(adapter, vlan); 680 if (!f) { 681 f = kzalloc(sizeof(*f), GFP_ATOMIC); 682 if (!f) 683 goto clearout; 684 685 f->vlan = vlan; 686 687 list_add_tail(&f->list, &adapter->vlan_filter_list); 688 f->add = true; 689 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 690 } 691 692 clearout: 693 spin_unlock_bh(&adapter->mac_vlan_list_lock); 694 return f; 695 } 696 697 /** 698 * iavf_del_vlan - Remove a vlan filter from the list 699 * @adapter: board private structure 700 * @vlan: VLAN tag 701 **/ 702 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 703 { 704 struct iavf_vlan_filter *f; 705 706 spin_lock_bh(&adapter->mac_vlan_list_lock); 707 708 f = iavf_find_vlan(adapter, vlan); 709 if (f) { 710 f->remove = true; 711 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 712 } 713 714 spin_unlock_bh(&adapter->mac_vlan_list_lock); 715 } 716 717 /** 718 * iavf_restore_filters 719 * @adapter: board private structure 720 * 721 * Restore existing non MAC filters when VF netdev comes back up 722 **/ 723 static void iavf_restore_filters(struct iavf_adapter *adapter) 724 { 725 u16 vid; 726 727 /* re-add all VLAN filters */ 728 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 729 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 730 731 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 732 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 733 } 734 735 /** 736 * iavf_get_num_vlans_added - get number of VLANs added 737 * @adapter: board private structure 738 */ 739 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 740 { 741 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 742 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 743 } 744 745 /** 746 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 747 * @adapter: board private structure 748 * 749 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 750 * do not impose a limit as that maintains current behavior and for 751 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 752 **/ 753 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 754 { 755 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 756 * never been a limit on the VF driver side 757 */ 758 if (VLAN_ALLOWED(adapter)) 759 return VLAN_N_VID; 760 else if (VLAN_V2_ALLOWED(adapter)) 761 return adapter->vlan_v2_caps.filtering.max_filters; 762 763 return 0; 764 } 765 766 /** 767 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 768 * @adapter: board private structure 769 **/ 770 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 771 { 772 if (iavf_get_num_vlans_added(adapter) < 773 iavf_get_max_vlans_allowed(adapter)) 774 return false; 775 776 return true; 777 } 778 779 /** 780 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 781 * @netdev: network device struct 782 * @proto: unused protocol data 783 * @vid: VLAN tag 784 **/ 785 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 786 __always_unused __be16 proto, u16 vid) 787 { 788 struct iavf_adapter *adapter = netdev_priv(netdev); 789 790 if (!VLAN_FILTERING_ALLOWED(adapter)) 791 return -EIO; 792 793 if (iavf_max_vlans_added(adapter)) { 794 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 795 iavf_get_max_vlans_allowed(adapter)); 796 return -EIO; 797 } 798 799 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 800 return -ENOMEM; 801 802 if (proto == cpu_to_be16(ETH_P_8021Q)) 803 set_bit(vid, adapter->vsi.active_cvlans); 804 else 805 set_bit(vid, adapter->vsi.active_svlans); 806 807 return 0; 808 } 809 810 /** 811 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 812 * @netdev: network device struct 813 * @proto: unused protocol data 814 * @vid: VLAN tag 815 **/ 816 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 817 __always_unused __be16 proto, u16 vid) 818 { 819 struct iavf_adapter *adapter = netdev_priv(netdev); 820 821 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 822 if (proto == cpu_to_be16(ETH_P_8021Q)) 823 clear_bit(vid, adapter->vsi.active_cvlans); 824 else 825 clear_bit(vid, adapter->vsi.active_svlans); 826 827 return 0; 828 } 829 830 /** 831 * iavf_find_filter - Search filter list for specific mac filter 832 * @adapter: board private structure 833 * @macaddr: the MAC address 834 * 835 * Returns ptr to the filter object or NULL. Must be called while holding the 836 * mac_vlan_list_lock. 837 **/ 838 static struct 839 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 840 const u8 *macaddr) 841 { 842 struct iavf_mac_filter *f; 843 844 if (!macaddr) 845 return NULL; 846 847 list_for_each_entry(f, &adapter->mac_filter_list, list) { 848 if (ether_addr_equal(macaddr, f->macaddr)) 849 return f; 850 } 851 return NULL; 852 } 853 854 /** 855 * iavf_add_filter - Add a mac filter to the filter list 856 * @adapter: board private structure 857 * @macaddr: the MAC address 858 * 859 * Returns ptr to the filter object or NULL when no memory available. 860 **/ 861 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 862 const u8 *macaddr) 863 { 864 struct iavf_mac_filter *f; 865 866 if (!macaddr) 867 return NULL; 868 869 f = iavf_find_filter(adapter, macaddr); 870 if (!f) { 871 f = kzalloc(sizeof(*f), GFP_ATOMIC); 872 if (!f) 873 return f; 874 875 ether_addr_copy(f->macaddr, macaddr); 876 877 list_add_tail(&f->list, &adapter->mac_filter_list); 878 f->add = true; 879 f->is_new_mac = true; 880 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 881 } else { 882 f->remove = false; 883 } 884 885 return f; 886 } 887 888 /** 889 * iavf_set_mac - NDO callback to set port mac address 890 * @netdev: network interface device structure 891 * @p: pointer to an address structure 892 * 893 * Returns 0 on success, negative on failure 894 **/ 895 static int iavf_set_mac(struct net_device *netdev, void *p) 896 { 897 struct iavf_adapter *adapter = netdev_priv(netdev); 898 struct iavf_hw *hw = &adapter->hw; 899 struct iavf_mac_filter *f; 900 struct sockaddr *addr = p; 901 902 if (!is_valid_ether_addr(addr->sa_data)) 903 return -EADDRNOTAVAIL; 904 905 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 906 return 0; 907 908 spin_lock_bh(&adapter->mac_vlan_list_lock); 909 910 f = iavf_find_filter(adapter, hw->mac.addr); 911 if (f) { 912 f->remove = true; 913 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 914 } 915 916 f = iavf_add_filter(adapter, addr->sa_data); 917 918 spin_unlock_bh(&adapter->mac_vlan_list_lock); 919 920 if (f) { 921 ether_addr_copy(hw->mac.addr, addr->sa_data); 922 } 923 924 return (f == NULL) ? -ENOMEM : 0; 925 } 926 927 /** 928 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 929 * @netdev: the netdevice 930 * @addr: address to add 931 * 932 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 933 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 934 */ 935 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 936 { 937 struct iavf_adapter *adapter = netdev_priv(netdev); 938 939 if (iavf_add_filter(adapter, addr)) 940 return 0; 941 else 942 return -ENOMEM; 943 } 944 945 /** 946 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 947 * @netdev: the netdevice 948 * @addr: address to add 949 * 950 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 951 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 952 */ 953 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 954 { 955 struct iavf_adapter *adapter = netdev_priv(netdev); 956 struct iavf_mac_filter *f; 957 958 /* Under some circumstances, we might receive a request to delete 959 * our own device address from our uc list. Because we store the 960 * device address in the VSI's MAC/VLAN filter list, we need to ignore 961 * such requests and not delete our device address from this list. 962 */ 963 if (ether_addr_equal(addr, netdev->dev_addr)) 964 return 0; 965 966 f = iavf_find_filter(adapter, addr); 967 if (f) { 968 f->remove = true; 969 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 970 } 971 return 0; 972 } 973 974 /** 975 * iavf_set_rx_mode - NDO callback to set the netdev filters 976 * @netdev: network interface device structure 977 **/ 978 static void iavf_set_rx_mode(struct net_device *netdev) 979 { 980 struct iavf_adapter *adapter = netdev_priv(netdev); 981 982 spin_lock_bh(&adapter->mac_vlan_list_lock); 983 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 984 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 985 spin_unlock_bh(&adapter->mac_vlan_list_lock); 986 987 if (netdev->flags & IFF_PROMISC && 988 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 989 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 990 else if (!(netdev->flags & IFF_PROMISC) && 991 adapter->flags & IAVF_FLAG_PROMISC_ON) 992 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 993 994 if (netdev->flags & IFF_ALLMULTI && 995 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 996 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 997 else if (!(netdev->flags & IFF_ALLMULTI) && 998 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 999 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1000 } 1001 1002 /** 1003 * iavf_napi_enable_all - enable NAPI on all queue vectors 1004 * @adapter: board private structure 1005 **/ 1006 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1007 { 1008 int q_idx; 1009 struct iavf_q_vector *q_vector; 1010 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1011 1012 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1013 struct napi_struct *napi; 1014 1015 q_vector = &adapter->q_vectors[q_idx]; 1016 napi = &q_vector->napi; 1017 napi_enable(napi); 1018 } 1019 } 1020 1021 /** 1022 * iavf_napi_disable_all - disable NAPI on all queue vectors 1023 * @adapter: board private structure 1024 **/ 1025 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1026 { 1027 int q_idx; 1028 struct iavf_q_vector *q_vector; 1029 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1030 1031 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1032 q_vector = &adapter->q_vectors[q_idx]; 1033 napi_disable(&q_vector->napi); 1034 } 1035 } 1036 1037 /** 1038 * iavf_configure - set up transmit and receive data structures 1039 * @adapter: board private structure 1040 **/ 1041 static void iavf_configure(struct iavf_adapter *adapter) 1042 { 1043 struct net_device *netdev = adapter->netdev; 1044 int i; 1045 1046 iavf_set_rx_mode(netdev); 1047 1048 iavf_configure_tx(adapter); 1049 iavf_configure_rx(adapter); 1050 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1051 1052 for (i = 0; i < adapter->num_active_queues; i++) { 1053 struct iavf_ring *ring = &adapter->rx_rings[i]; 1054 1055 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1056 } 1057 } 1058 1059 /** 1060 * iavf_up_complete - Finish the last steps of bringing up a connection 1061 * @adapter: board private structure 1062 * 1063 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1064 **/ 1065 static void iavf_up_complete(struct iavf_adapter *adapter) 1066 { 1067 iavf_change_state(adapter, __IAVF_RUNNING); 1068 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1069 1070 iavf_napi_enable_all(adapter); 1071 1072 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1073 if (CLIENT_ENABLED(adapter)) 1074 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1075 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1076 } 1077 1078 /** 1079 * iavf_down - Shutdown the connection processing 1080 * @adapter: board private structure 1081 * 1082 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1083 **/ 1084 void iavf_down(struct iavf_adapter *adapter) 1085 { 1086 struct net_device *netdev = adapter->netdev; 1087 struct iavf_vlan_filter *vlf; 1088 struct iavf_cloud_filter *cf; 1089 struct iavf_fdir_fltr *fdir; 1090 struct iavf_mac_filter *f; 1091 struct iavf_adv_rss *rss; 1092 1093 if (adapter->state <= __IAVF_DOWN_PENDING) 1094 return; 1095 1096 netif_carrier_off(netdev); 1097 netif_tx_disable(netdev); 1098 adapter->link_up = false; 1099 iavf_napi_disable_all(adapter); 1100 iavf_irq_disable(adapter); 1101 1102 spin_lock_bh(&adapter->mac_vlan_list_lock); 1103 1104 /* clear the sync flag on all filters */ 1105 __dev_uc_unsync(adapter->netdev, NULL); 1106 __dev_mc_unsync(adapter->netdev, NULL); 1107 1108 /* remove all MAC filters */ 1109 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1110 f->remove = true; 1111 } 1112 1113 /* remove all VLAN filters */ 1114 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1115 vlf->remove = true; 1116 } 1117 1118 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1119 1120 /* remove all cloud filters */ 1121 spin_lock_bh(&adapter->cloud_filter_list_lock); 1122 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1123 cf->del = true; 1124 } 1125 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1126 1127 /* remove all Flow Director filters */ 1128 spin_lock_bh(&adapter->fdir_fltr_lock); 1129 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1130 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1131 } 1132 spin_unlock_bh(&adapter->fdir_fltr_lock); 1133 1134 /* remove all advance RSS configuration */ 1135 spin_lock_bh(&adapter->adv_rss_lock); 1136 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1137 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1138 spin_unlock_bh(&adapter->adv_rss_lock); 1139 1140 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1141 /* cancel any current operation */ 1142 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1143 /* Schedule operations to close down the HW. Don't wait 1144 * here for this to complete. The watchdog is still running 1145 * and it will take care of this. 1146 */ 1147 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1148 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1150 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1151 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1152 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1153 } 1154 1155 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1156 } 1157 1158 /** 1159 * iavf_acquire_msix_vectors - Setup the MSIX capability 1160 * @adapter: board private structure 1161 * @vectors: number of vectors to request 1162 * 1163 * Work with the OS to set up the MSIX vectors needed. 1164 * 1165 * Returns 0 on success, negative on failure 1166 **/ 1167 static int 1168 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1169 { 1170 int err, vector_threshold; 1171 1172 /* We'll want at least 3 (vector_threshold): 1173 * 0) Other (Admin Queue and link, mostly) 1174 * 1) TxQ[0] Cleanup 1175 * 2) RxQ[0] Cleanup 1176 */ 1177 vector_threshold = MIN_MSIX_COUNT; 1178 1179 /* The more we get, the more we will assign to Tx/Rx Cleanup 1180 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1181 * Right now, we simply care about how many we'll get; we'll 1182 * set them up later while requesting irq's. 1183 */ 1184 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1185 vector_threshold, vectors); 1186 if (err < 0) { 1187 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1188 kfree(adapter->msix_entries); 1189 adapter->msix_entries = NULL; 1190 return err; 1191 } 1192 1193 /* Adjust for only the vectors we'll use, which is minimum 1194 * of max_msix_q_vectors + NONQ_VECS, or the number of 1195 * vectors we were allocated. 1196 */ 1197 adapter->num_msix_vectors = err; 1198 return 0; 1199 } 1200 1201 /** 1202 * iavf_free_queues - Free memory for all rings 1203 * @adapter: board private structure to initialize 1204 * 1205 * Free all of the memory associated with queue pairs. 1206 **/ 1207 static void iavf_free_queues(struct iavf_adapter *adapter) 1208 { 1209 if (!adapter->vsi_res) 1210 return; 1211 adapter->num_active_queues = 0; 1212 kfree(adapter->tx_rings); 1213 adapter->tx_rings = NULL; 1214 kfree(adapter->rx_rings); 1215 adapter->rx_rings = NULL; 1216 } 1217 1218 /** 1219 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1220 * @adapter: board private structure 1221 * 1222 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1223 * stripped in certain descriptor fields. Instead of checking the offload 1224 * capability bits in the hot path, cache the location the ring specific 1225 * flags. 1226 */ 1227 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1228 { 1229 int i; 1230 1231 for (i = 0; i < adapter->num_active_queues; i++) { 1232 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1233 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1234 1235 /* prevent multiple L2TAG bits being set after VFR */ 1236 tx_ring->flags &= 1237 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1238 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1239 rx_ring->flags &= 1240 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1241 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1242 1243 if (VLAN_ALLOWED(adapter)) { 1244 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1245 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1246 } else if (VLAN_V2_ALLOWED(adapter)) { 1247 struct virtchnl_vlan_supported_caps *stripping_support; 1248 struct virtchnl_vlan_supported_caps *insertion_support; 1249 1250 stripping_support = 1251 &adapter->vlan_v2_caps.offloads.stripping_support; 1252 insertion_support = 1253 &adapter->vlan_v2_caps.offloads.insertion_support; 1254 1255 if (stripping_support->outer) { 1256 if (stripping_support->outer & 1257 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1258 rx_ring->flags |= 1259 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1260 else if (stripping_support->outer & 1261 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1262 rx_ring->flags |= 1263 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1264 } else if (stripping_support->inner) { 1265 if (stripping_support->inner & 1266 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1267 rx_ring->flags |= 1268 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1269 else if (stripping_support->inner & 1270 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1271 rx_ring->flags |= 1272 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1273 } 1274 1275 if (insertion_support->outer) { 1276 if (insertion_support->outer & 1277 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1278 tx_ring->flags |= 1279 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1280 else if (insertion_support->outer & 1281 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1282 tx_ring->flags |= 1283 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1284 } else if (insertion_support->inner) { 1285 if (insertion_support->inner & 1286 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1287 tx_ring->flags |= 1288 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1289 else if (insertion_support->inner & 1290 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1291 tx_ring->flags |= 1292 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1293 } 1294 } 1295 } 1296 } 1297 1298 /** 1299 * iavf_alloc_queues - Allocate memory for all rings 1300 * @adapter: board private structure to initialize 1301 * 1302 * We allocate one ring per queue at run-time since we don't know the 1303 * number of queues at compile-time. The polling_netdev array is 1304 * intended for Multiqueue, but should work fine with a single queue. 1305 **/ 1306 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1307 { 1308 int i, num_active_queues; 1309 1310 /* If we're in reset reallocating queues we don't actually know yet for 1311 * certain the PF gave us the number of queues we asked for but we'll 1312 * assume it did. Once basic reset is finished we'll confirm once we 1313 * start negotiating config with PF. 1314 */ 1315 if (adapter->num_req_queues) 1316 num_active_queues = adapter->num_req_queues; 1317 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1318 adapter->num_tc) 1319 num_active_queues = adapter->ch_config.total_qps; 1320 else 1321 num_active_queues = min_t(int, 1322 adapter->vsi_res->num_queue_pairs, 1323 (int)(num_online_cpus())); 1324 1325 1326 adapter->tx_rings = kcalloc(num_active_queues, 1327 sizeof(struct iavf_ring), GFP_KERNEL); 1328 if (!adapter->tx_rings) 1329 goto err_out; 1330 adapter->rx_rings = kcalloc(num_active_queues, 1331 sizeof(struct iavf_ring), GFP_KERNEL); 1332 if (!adapter->rx_rings) 1333 goto err_out; 1334 1335 for (i = 0; i < num_active_queues; i++) { 1336 struct iavf_ring *tx_ring; 1337 struct iavf_ring *rx_ring; 1338 1339 tx_ring = &adapter->tx_rings[i]; 1340 1341 tx_ring->queue_index = i; 1342 tx_ring->netdev = adapter->netdev; 1343 tx_ring->dev = &adapter->pdev->dev; 1344 tx_ring->count = adapter->tx_desc_count; 1345 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1346 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1347 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1348 1349 rx_ring = &adapter->rx_rings[i]; 1350 rx_ring->queue_index = i; 1351 rx_ring->netdev = adapter->netdev; 1352 rx_ring->dev = &adapter->pdev->dev; 1353 rx_ring->count = adapter->rx_desc_count; 1354 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1355 } 1356 1357 adapter->num_active_queues = num_active_queues; 1358 1359 iavf_set_queue_vlan_tag_loc(adapter); 1360 1361 return 0; 1362 1363 err_out: 1364 iavf_free_queues(adapter); 1365 return -ENOMEM; 1366 } 1367 1368 /** 1369 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1370 * @adapter: board private structure to initialize 1371 * 1372 * Attempt to configure the interrupts using the best available 1373 * capabilities of the hardware and the kernel. 1374 **/ 1375 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1376 { 1377 int vector, v_budget; 1378 int pairs = 0; 1379 int err = 0; 1380 1381 if (!adapter->vsi_res) { 1382 err = -EIO; 1383 goto out; 1384 } 1385 pairs = adapter->num_active_queues; 1386 1387 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1388 * us much good if we have more vectors than CPUs. However, we already 1389 * limit the total number of queues by the number of CPUs so we do not 1390 * need any further limiting here. 1391 */ 1392 v_budget = min_t(int, pairs + NONQ_VECS, 1393 (int)adapter->vf_res->max_vectors); 1394 1395 adapter->msix_entries = kcalloc(v_budget, 1396 sizeof(struct msix_entry), GFP_KERNEL); 1397 if (!adapter->msix_entries) { 1398 err = -ENOMEM; 1399 goto out; 1400 } 1401 1402 for (vector = 0; vector < v_budget; vector++) 1403 adapter->msix_entries[vector].entry = vector; 1404 1405 err = iavf_acquire_msix_vectors(adapter, v_budget); 1406 1407 out: 1408 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1409 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1410 return err; 1411 } 1412 1413 /** 1414 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1415 * @adapter: board private structure 1416 * 1417 * Return 0 on success, negative on failure 1418 **/ 1419 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1420 { 1421 struct iavf_aqc_get_set_rss_key_data *rss_key = 1422 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1423 struct iavf_hw *hw = &adapter->hw; 1424 int ret = 0; 1425 1426 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1427 /* bail because we already have a command pending */ 1428 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1429 adapter->current_op); 1430 return -EBUSY; 1431 } 1432 1433 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1434 if (ret) { 1435 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1436 iavf_stat_str(hw, ret), 1437 iavf_aq_str(hw, hw->aq.asq_last_status)); 1438 return ret; 1439 1440 } 1441 1442 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1443 adapter->rss_lut, adapter->rss_lut_size); 1444 if (ret) { 1445 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1446 iavf_stat_str(hw, ret), 1447 iavf_aq_str(hw, hw->aq.asq_last_status)); 1448 } 1449 1450 return ret; 1451 1452 } 1453 1454 /** 1455 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1456 * @adapter: board private structure 1457 * 1458 * Returns 0 on success, negative on failure 1459 **/ 1460 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1461 { 1462 struct iavf_hw *hw = &adapter->hw; 1463 u32 *dw; 1464 u16 i; 1465 1466 dw = (u32 *)adapter->rss_key; 1467 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1468 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1469 1470 dw = (u32 *)adapter->rss_lut; 1471 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1472 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1473 1474 iavf_flush(hw); 1475 1476 return 0; 1477 } 1478 1479 /** 1480 * iavf_config_rss - Configure RSS keys and lut 1481 * @adapter: board private structure 1482 * 1483 * Returns 0 on success, negative on failure 1484 **/ 1485 int iavf_config_rss(struct iavf_adapter *adapter) 1486 { 1487 1488 if (RSS_PF(adapter)) { 1489 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1490 IAVF_FLAG_AQ_SET_RSS_KEY; 1491 return 0; 1492 } else if (RSS_AQ(adapter)) { 1493 return iavf_config_rss_aq(adapter); 1494 } else { 1495 return iavf_config_rss_reg(adapter); 1496 } 1497 } 1498 1499 /** 1500 * iavf_fill_rss_lut - Fill the lut with default values 1501 * @adapter: board private structure 1502 **/ 1503 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1504 { 1505 u16 i; 1506 1507 for (i = 0; i < adapter->rss_lut_size; i++) 1508 adapter->rss_lut[i] = i % adapter->num_active_queues; 1509 } 1510 1511 /** 1512 * iavf_init_rss - Prepare for RSS 1513 * @adapter: board private structure 1514 * 1515 * Return 0 on success, negative on failure 1516 **/ 1517 static int iavf_init_rss(struct iavf_adapter *adapter) 1518 { 1519 struct iavf_hw *hw = &adapter->hw; 1520 int ret; 1521 1522 if (!RSS_PF(adapter)) { 1523 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1524 if (adapter->vf_res->vf_cap_flags & 1525 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1526 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1527 else 1528 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1529 1530 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1531 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1532 } 1533 1534 iavf_fill_rss_lut(adapter); 1535 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1536 ret = iavf_config_rss(adapter); 1537 1538 return ret; 1539 } 1540 1541 /** 1542 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1543 * @adapter: board private structure to initialize 1544 * 1545 * We allocate one q_vector per queue interrupt. If allocation fails we 1546 * return -ENOMEM. 1547 **/ 1548 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1549 { 1550 int q_idx = 0, num_q_vectors; 1551 struct iavf_q_vector *q_vector; 1552 1553 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1554 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1555 GFP_KERNEL); 1556 if (!adapter->q_vectors) 1557 return -ENOMEM; 1558 1559 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1560 q_vector = &adapter->q_vectors[q_idx]; 1561 q_vector->adapter = adapter; 1562 q_vector->vsi = &adapter->vsi; 1563 q_vector->v_idx = q_idx; 1564 q_vector->reg_idx = q_idx; 1565 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1566 netif_napi_add(adapter->netdev, &q_vector->napi, 1567 iavf_napi_poll, NAPI_POLL_WEIGHT); 1568 } 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1575 * @adapter: board private structure to initialize 1576 * 1577 * This function frees the memory allocated to the q_vectors. In addition if 1578 * NAPI is enabled it will delete any references to the NAPI struct prior 1579 * to freeing the q_vector. 1580 **/ 1581 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1582 { 1583 int q_idx, num_q_vectors; 1584 int napi_vectors; 1585 1586 if (!adapter->q_vectors) 1587 return; 1588 1589 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1590 napi_vectors = adapter->num_active_queues; 1591 1592 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1593 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1594 1595 if (q_idx < napi_vectors) 1596 netif_napi_del(&q_vector->napi); 1597 } 1598 kfree(adapter->q_vectors); 1599 adapter->q_vectors = NULL; 1600 } 1601 1602 /** 1603 * iavf_reset_interrupt_capability - Reset MSIX setup 1604 * @adapter: board private structure 1605 * 1606 **/ 1607 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1608 { 1609 if (!adapter->msix_entries) 1610 return; 1611 1612 pci_disable_msix(adapter->pdev); 1613 kfree(adapter->msix_entries); 1614 adapter->msix_entries = NULL; 1615 } 1616 1617 /** 1618 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1619 * @adapter: board private structure to initialize 1620 * 1621 **/ 1622 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1623 { 1624 int err; 1625 1626 err = iavf_alloc_queues(adapter); 1627 if (err) { 1628 dev_err(&adapter->pdev->dev, 1629 "Unable to allocate memory for queues\n"); 1630 goto err_alloc_queues; 1631 } 1632 1633 rtnl_lock(); 1634 err = iavf_set_interrupt_capability(adapter); 1635 rtnl_unlock(); 1636 if (err) { 1637 dev_err(&adapter->pdev->dev, 1638 "Unable to setup interrupt capabilities\n"); 1639 goto err_set_interrupt; 1640 } 1641 1642 err = iavf_alloc_q_vectors(adapter); 1643 if (err) { 1644 dev_err(&adapter->pdev->dev, 1645 "Unable to allocate memory for queue vectors\n"); 1646 goto err_alloc_q_vectors; 1647 } 1648 1649 /* If we've made it so far while ADq flag being ON, then we haven't 1650 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1651 * resources have been allocated in the reset path. 1652 * Now we can truly claim that ADq is enabled. 1653 */ 1654 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1655 adapter->num_tc) 1656 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1657 adapter->num_tc); 1658 1659 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1660 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1661 adapter->num_active_queues); 1662 1663 return 0; 1664 err_alloc_q_vectors: 1665 iavf_reset_interrupt_capability(adapter); 1666 err_set_interrupt: 1667 iavf_free_queues(adapter); 1668 err_alloc_queues: 1669 return err; 1670 } 1671 1672 /** 1673 * iavf_free_rss - Free memory used by RSS structs 1674 * @adapter: board private structure 1675 **/ 1676 static void iavf_free_rss(struct iavf_adapter *adapter) 1677 { 1678 kfree(adapter->rss_key); 1679 adapter->rss_key = NULL; 1680 1681 kfree(adapter->rss_lut); 1682 adapter->rss_lut = NULL; 1683 } 1684 1685 /** 1686 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1687 * @adapter: board private structure 1688 * 1689 * Returns 0 on success, negative on failure 1690 **/ 1691 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1692 { 1693 struct net_device *netdev = adapter->netdev; 1694 int err; 1695 1696 if (netif_running(netdev)) 1697 iavf_free_traffic_irqs(adapter); 1698 iavf_free_misc_irq(adapter); 1699 iavf_reset_interrupt_capability(adapter); 1700 iavf_free_q_vectors(adapter); 1701 iavf_free_queues(adapter); 1702 1703 err = iavf_init_interrupt_scheme(adapter); 1704 if (err) 1705 goto err; 1706 1707 netif_tx_stop_all_queues(netdev); 1708 1709 err = iavf_request_misc_irq(adapter); 1710 if (err) 1711 goto err; 1712 1713 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1714 1715 iavf_map_rings_to_vectors(adapter); 1716 err: 1717 return err; 1718 } 1719 1720 /** 1721 * iavf_process_aq_command - process aq_required flags 1722 * and sends aq command 1723 * @adapter: pointer to iavf adapter structure 1724 * 1725 * Returns 0 on success 1726 * Returns error code if no command was sent 1727 * or error code if the command failed. 1728 **/ 1729 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1730 { 1731 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1732 return iavf_send_vf_config_msg(adapter); 1733 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1734 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1735 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1736 iavf_disable_queues(adapter); 1737 return 0; 1738 } 1739 1740 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1741 iavf_map_queues(adapter); 1742 return 0; 1743 } 1744 1745 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1746 iavf_add_ether_addrs(adapter); 1747 return 0; 1748 } 1749 1750 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1751 iavf_add_vlans(adapter); 1752 return 0; 1753 } 1754 1755 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1756 iavf_del_ether_addrs(adapter); 1757 return 0; 1758 } 1759 1760 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1761 iavf_del_vlans(adapter); 1762 return 0; 1763 } 1764 1765 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1766 iavf_enable_vlan_stripping(adapter); 1767 return 0; 1768 } 1769 1770 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1771 iavf_disable_vlan_stripping(adapter); 1772 return 0; 1773 } 1774 1775 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1776 iavf_configure_queues(adapter); 1777 return 0; 1778 } 1779 1780 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1781 iavf_enable_queues(adapter); 1782 return 0; 1783 } 1784 1785 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1786 /* This message goes straight to the firmware, not the 1787 * PF, so we don't have to set current_op as we will 1788 * not get a response through the ARQ. 1789 */ 1790 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1791 return 0; 1792 } 1793 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1794 iavf_get_hena(adapter); 1795 return 0; 1796 } 1797 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1798 iavf_set_hena(adapter); 1799 return 0; 1800 } 1801 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1802 iavf_set_rss_key(adapter); 1803 return 0; 1804 } 1805 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1806 iavf_set_rss_lut(adapter); 1807 return 0; 1808 } 1809 1810 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1811 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1812 FLAG_VF_MULTICAST_PROMISC); 1813 return 0; 1814 } 1815 1816 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1817 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1818 return 0; 1819 } 1820 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 1821 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1822 iavf_set_promiscuous(adapter, 0); 1823 return 0; 1824 } 1825 1826 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1827 iavf_enable_channels(adapter); 1828 return 0; 1829 } 1830 1831 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1832 iavf_disable_channels(adapter); 1833 return 0; 1834 } 1835 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1836 iavf_add_cloud_filter(adapter); 1837 return 0; 1838 } 1839 1840 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1841 iavf_del_cloud_filter(adapter); 1842 return 0; 1843 } 1844 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1845 iavf_del_cloud_filter(adapter); 1846 return 0; 1847 } 1848 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1849 iavf_add_cloud_filter(adapter); 1850 return 0; 1851 } 1852 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1853 iavf_add_fdir_filter(adapter); 1854 return IAVF_SUCCESS; 1855 } 1856 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1857 iavf_del_fdir_filter(adapter); 1858 return IAVF_SUCCESS; 1859 } 1860 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1861 iavf_add_adv_rss_cfg(adapter); 1862 return 0; 1863 } 1864 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1865 iavf_del_adv_rss_cfg(adapter); 1866 return 0; 1867 } 1868 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 1869 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1870 return 0; 1871 } 1872 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 1873 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1874 return 0; 1875 } 1876 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 1877 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1878 return 0; 1879 } 1880 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 1881 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1882 return 0; 1883 } 1884 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 1885 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 1886 return 0; 1887 } 1888 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 1889 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 1890 return 0; 1891 } 1892 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 1893 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 1894 return 0; 1895 } 1896 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 1897 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 1898 return 0; 1899 } 1900 1901 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 1902 iavf_request_stats(adapter); 1903 return 0; 1904 } 1905 1906 return -EAGAIN; 1907 } 1908 1909 /** 1910 * iavf_set_vlan_offload_features - set VLAN offload configuration 1911 * @adapter: board private structure 1912 * @prev_features: previous features used for comparison 1913 * @features: updated features used for configuration 1914 * 1915 * Set the aq_required bit(s) based on the requested features passed in to 1916 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 1917 * the watchdog if any changes are requested to expedite the request via 1918 * virtchnl. 1919 **/ 1920 void 1921 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 1922 netdev_features_t prev_features, 1923 netdev_features_t features) 1924 { 1925 bool enable_stripping = true, enable_insertion = true; 1926 u16 vlan_ethertype = 0; 1927 u64 aq_required = 0; 1928 1929 /* keep cases separate because one ethertype for offloads can be 1930 * disabled at the same time as another is disabled, so check for an 1931 * enabled ethertype first, then check for disabled. Default to 1932 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 1933 * stripping. 1934 */ 1935 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 1936 vlan_ethertype = ETH_P_8021AD; 1937 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 1938 vlan_ethertype = ETH_P_8021Q; 1939 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 1940 vlan_ethertype = ETH_P_8021AD; 1941 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 1942 vlan_ethertype = ETH_P_8021Q; 1943 else 1944 vlan_ethertype = ETH_P_8021Q; 1945 1946 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 1947 enable_stripping = false; 1948 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 1949 enable_insertion = false; 1950 1951 if (VLAN_ALLOWED(adapter)) { 1952 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 1953 * stripping via virtchnl. VLAN insertion can be toggled on the 1954 * netdev, but it doesn't require a virtchnl message 1955 */ 1956 if (enable_stripping) 1957 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 1958 else 1959 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 1960 1961 } else if (VLAN_V2_ALLOWED(adapter)) { 1962 switch (vlan_ethertype) { 1963 case ETH_P_8021Q: 1964 if (enable_stripping) 1965 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 1966 else 1967 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 1968 1969 if (enable_insertion) 1970 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 1971 else 1972 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 1973 break; 1974 case ETH_P_8021AD: 1975 if (enable_stripping) 1976 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 1977 else 1978 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 1979 1980 if (enable_insertion) 1981 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 1982 else 1983 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 1984 break; 1985 } 1986 } 1987 1988 if (aq_required) { 1989 adapter->aq_required |= aq_required; 1990 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1991 } 1992 } 1993 1994 /** 1995 * iavf_startup - first step of driver startup 1996 * @adapter: board private structure 1997 * 1998 * Function process __IAVF_STARTUP driver state. 1999 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2000 * when fails the state is changed to __IAVF_INIT_FAILED 2001 **/ 2002 static void iavf_startup(struct iavf_adapter *adapter) 2003 { 2004 struct pci_dev *pdev = adapter->pdev; 2005 struct iavf_hw *hw = &adapter->hw; 2006 int err; 2007 2008 WARN_ON(adapter->state != __IAVF_STARTUP); 2009 2010 /* driver loaded, probe complete */ 2011 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2012 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2013 err = iavf_set_mac_type(hw); 2014 if (err) { 2015 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 2016 goto err; 2017 } 2018 2019 err = iavf_check_reset_complete(hw); 2020 if (err) { 2021 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2022 err); 2023 goto err; 2024 } 2025 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2026 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2027 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2028 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2029 2030 err = iavf_init_adminq(hw); 2031 if (err) { 2032 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 2033 goto err; 2034 } 2035 err = iavf_send_api_ver(adapter); 2036 if (err) { 2037 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 2038 iavf_shutdown_adminq(hw); 2039 goto err; 2040 } 2041 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2042 return; 2043 err: 2044 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2045 } 2046 2047 /** 2048 * iavf_init_version_check - second step of driver startup 2049 * @adapter: board private structure 2050 * 2051 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2052 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2053 * when fails the state is changed to __IAVF_INIT_FAILED 2054 **/ 2055 static void iavf_init_version_check(struct iavf_adapter *adapter) 2056 { 2057 struct pci_dev *pdev = adapter->pdev; 2058 struct iavf_hw *hw = &adapter->hw; 2059 int err = -EAGAIN; 2060 2061 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2062 2063 if (!iavf_asq_done(hw)) { 2064 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2065 iavf_shutdown_adminq(hw); 2066 iavf_change_state(adapter, __IAVF_STARTUP); 2067 goto err; 2068 } 2069 2070 /* aq msg sent, awaiting reply */ 2071 err = iavf_verify_api_ver(adapter); 2072 if (err) { 2073 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 2074 err = iavf_send_api_ver(adapter); 2075 else 2076 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2077 adapter->pf_version.major, 2078 adapter->pf_version.minor, 2079 VIRTCHNL_VERSION_MAJOR, 2080 VIRTCHNL_VERSION_MINOR); 2081 goto err; 2082 } 2083 err = iavf_send_vf_config_msg(adapter); 2084 if (err) { 2085 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2086 err); 2087 goto err; 2088 } 2089 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2090 return; 2091 err: 2092 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2093 } 2094 2095 /** 2096 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2097 * @adapter: board private structure 2098 */ 2099 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2100 { 2101 int i, num_req_queues = adapter->num_req_queues; 2102 struct iavf_vsi *vsi = &adapter->vsi; 2103 2104 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2105 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2106 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2107 } 2108 if (!adapter->vsi_res) { 2109 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2110 return -ENODEV; 2111 } 2112 2113 if (num_req_queues && 2114 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2115 /* Problem. The PF gave us fewer queues than what we had 2116 * negotiated in our request. Need a reset to see if we can't 2117 * get back to a working state. 2118 */ 2119 dev_err(&adapter->pdev->dev, 2120 "Requested %d queues, but PF only gave us %d.\n", 2121 num_req_queues, 2122 adapter->vsi_res->num_queue_pairs); 2123 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2124 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2125 iavf_schedule_reset(adapter); 2126 2127 return -EAGAIN; 2128 } 2129 adapter->num_req_queues = 0; 2130 adapter->vsi.id = adapter->vsi_res->vsi_id; 2131 2132 adapter->vsi.back = adapter; 2133 adapter->vsi.base_vector = 1; 2134 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 2135 vsi->netdev = adapter->netdev; 2136 vsi->qs_handle = adapter->vsi_res->qset_handle; 2137 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2138 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2139 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2140 } else { 2141 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2142 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2143 } 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * iavf_init_get_resources - third step of driver startup 2150 * @adapter: board private structure 2151 * 2152 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2153 * finishes driver initialization procedure. 2154 * When success the state is changed to __IAVF_DOWN 2155 * when fails the state is changed to __IAVF_INIT_FAILED 2156 **/ 2157 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2158 { 2159 struct pci_dev *pdev = adapter->pdev; 2160 struct iavf_hw *hw = &adapter->hw; 2161 int err; 2162 2163 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2164 /* aq msg sent, awaiting reply */ 2165 if (!adapter->vf_res) { 2166 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2167 GFP_KERNEL); 2168 if (!adapter->vf_res) { 2169 err = -ENOMEM; 2170 goto err; 2171 } 2172 } 2173 err = iavf_get_vf_config(adapter); 2174 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 2175 err = iavf_send_vf_config_msg(adapter); 2176 goto err_alloc; 2177 } else if (err == IAVF_ERR_PARAM) { 2178 /* We only get ERR_PARAM if the device is in a very bad 2179 * state or if we've been disabled for previous bad 2180 * behavior. Either way, we're done now. 2181 */ 2182 iavf_shutdown_adminq(hw); 2183 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2184 return; 2185 } 2186 if (err) { 2187 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2188 goto err_alloc; 2189 } 2190 2191 err = iavf_parse_vf_resource_msg(adapter); 2192 if (err) 2193 goto err_alloc; 2194 2195 err = iavf_send_vf_offload_vlan_v2_msg(adapter); 2196 if (err == -EOPNOTSUPP) { 2197 /* underlying PF doesn't support VIRTCHNL_VF_OFFLOAD_VLAN_V2, so 2198 * go directly to finishing initialization 2199 */ 2200 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2201 return; 2202 } else if (err) { 2203 dev_err(&pdev->dev, "Unable to send offload vlan v2 request (%d)\n", 2204 err); 2205 goto err_alloc; 2206 } 2207 2208 /* underlying PF supports VIRTCHNL_VF_OFFLOAD_VLAN_V2, so update the 2209 * state accordingly 2210 */ 2211 iavf_change_state(adapter, __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS); 2212 return; 2213 2214 err_alloc: 2215 kfree(adapter->vf_res); 2216 adapter->vf_res = NULL; 2217 err: 2218 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2219 } 2220 2221 /** 2222 * iavf_init_get_offload_vlan_v2_caps - part of driver startup 2223 * @adapter: board private structure 2224 * 2225 * Function processes __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS driver state if the 2226 * VF negotiates VIRTCHNL_VF_OFFLOAD_VLAN_V2. If VIRTCHNL_VF_OFFLOAD_VLAN_V2 is 2227 * not negotiated, then this state will never be entered. 2228 **/ 2229 static void iavf_init_get_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2230 { 2231 int ret; 2232 2233 WARN_ON(adapter->state != __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS); 2234 2235 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2236 2237 ret = iavf_get_vf_vlan_v2_caps(adapter); 2238 if (ret) { 2239 if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 2240 iavf_send_vf_offload_vlan_v2_msg(adapter); 2241 goto err; 2242 } 2243 2244 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2245 return; 2246 err: 2247 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2248 } 2249 2250 /** 2251 * iavf_init_config_adapter - last part of driver startup 2252 * @adapter: board private structure 2253 * 2254 * After all the supported capabilities are negotiated, then the 2255 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2256 */ 2257 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2258 { 2259 struct net_device *netdev = adapter->netdev; 2260 struct pci_dev *pdev = adapter->pdev; 2261 int err; 2262 2263 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2264 2265 if (iavf_process_config(adapter)) 2266 goto err; 2267 2268 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2269 2270 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2271 2272 netdev->netdev_ops = &iavf_netdev_ops; 2273 iavf_set_ethtool_ops(netdev); 2274 netdev->watchdog_timeo = 5 * HZ; 2275 2276 /* MTU range: 68 - 9710 */ 2277 netdev->min_mtu = ETH_MIN_MTU; 2278 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2279 2280 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2281 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2282 adapter->hw.mac.addr); 2283 eth_hw_addr_random(netdev); 2284 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2285 } else { 2286 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2287 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2288 } 2289 2290 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2291 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2292 err = iavf_init_interrupt_scheme(adapter); 2293 if (err) 2294 goto err_sw_init; 2295 iavf_map_rings_to_vectors(adapter); 2296 if (adapter->vf_res->vf_cap_flags & 2297 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2298 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2299 2300 err = iavf_request_misc_irq(adapter); 2301 if (err) 2302 goto err_sw_init; 2303 2304 netif_carrier_off(netdev); 2305 adapter->link_up = false; 2306 2307 /* set the semaphore to prevent any callbacks after device registration 2308 * up to time when state of driver will be set to __IAVF_DOWN 2309 */ 2310 rtnl_lock(); 2311 if (!adapter->netdev_registered) { 2312 err = register_netdevice(netdev); 2313 if (err) { 2314 rtnl_unlock(); 2315 goto err_register; 2316 } 2317 } 2318 2319 adapter->netdev_registered = true; 2320 2321 netif_tx_stop_all_queues(netdev); 2322 if (CLIENT_ALLOWED(adapter)) { 2323 err = iavf_lan_add_device(adapter); 2324 if (err) 2325 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2326 err); 2327 } 2328 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2329 if (netdev->features & NETIF_F_GRO) 2330 dev_info(&pdev->dev, "GRO is enabled\n"); 2331 2332 iavf_change_state(adapter, __IAVF_DOWN); 2333 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2334 rtnl_unlock(); 2335 2336 iavf_misc_irq_enable(adapter); 2337 wake_up(&adapter->down_waitqueue); 2338 2339 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2340 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2341 if (!adapter->rss_key || !adapter->rss_lut) { 2342 err = -ENOMEM; 2343 goto err_mem; 2344 } 2345 if (RSS_AQ(adapter)) 2346 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2347 else 2348 iavf_init_rss(adapter); 2349 2350 if (VLAN_V2_ALLOWED(adapter)) 2351 /* request initial VLAN offload settings */ 2352 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2353 2354 return; 2355 err_mem: 2356 iavf_free_rss(adapter); 2357 err_register: 2358 iavf_free_misc_irq(adapter); 2359 err_sw_init: 2360 iavf_reset_interrupt_capability(adapter); 2361 err: 2362 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2363 } 2364 2365 /** 2366 * iavf_watchdog_task - Periodic call-back task 2367 * @work: pointer to work_struct 2368 **/ 2369 static void iavf_watchdog_task(struct work_struct *work) 2370 { 2371 struct iavf_adapter *adapter = container_of(work, 2372 struct iavf_adapter, 2373 watchdog_task.work); 2374 struct iavf_hw *hw = &adapter->hw; 2375 u32 reg_val; 2376 2377 if (!mutex_trylock(&adapter->crit_lock)) { 2378 if (adapter->state == __IAVF_REMOVE) 2379 return; 2380 2381 goto restart_watchdog; 2382 } 2383 2384 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2385 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2386 2387 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2388 adapter->aq_required = 0; 2389 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2390 mutex_unlock(&adapter->crit_lock); 2391 queue_work(iavf_wq, &adapter->reset_task); 2392 return; 2393 } 2394 2395 switch (adapter->state) { 2396 case __IAVF_STARTUP: 2397 iavf_startup(adapter); 2398 mutex_unlock(&adapter->crit_lock); 2399 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2400 msecs_to_jiffies(30)); 2401 return; 2402 case __IAVF_INIT_VERSION_CHECK: 2403 iavf_init_version_check(adapter); 2404 mutex_unlock(&adapter->crit_lock); 2405 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2406 msecs_to_jiffies(30)); 2407 return; 2408 case __IAVF_INIT_GET_RESOURCES: 2409 iavf_init_get_resources(adapter); 2410 mutex_unlock(&adapter->crit_lock); 2411 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2412 msecs_to_jiffies(1)); 2413 return; 2414 case __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS: 2415 iavf_init_get_offload_vlan_v2_caps(adapter); 2416 mutex_unlock(&adapter->crit_lock); 2417 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2418 msecs_to_jiffies(1)); 2419 return; 2420 case __IAVF_INIT_CONFIG_ADAPTER: 2421 iavf_init_config_adapter(adapter); 2422 mutex_unlock(&adapter->crit_lock); 2423 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2424 msecs_to_jiffies(1)); 2425 return; 2426 case __IAVF_INIT_FAILED: 2427 if (test_bit(__IAVF_IN_REMOVE_TASK, 2428 &adapter->crit_section)) { 2429 /* Do not update the state and do not reschedule 2430 * watchdog task, iavf_remove should handle this state 2431 * as it can loop forever 2432 */ 2433 mutex_unlock(&adapter->crit_lock); 2434 return; 2435 } 2436 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2437 dev_err(&adapter->pdev->dev, 2438 "Failed to communicate with PF; waiting before retry\n"); 2439 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2440 iavf_shutdown_adminq(hw); 2441 mutex_unlock(&adapter->crit_lock); 2442 queue_delayed_work(iavf_wq, 2443 &adapter->watchdog_task, (5 * HZ)); 2444 return; 2445 } 2446 /* Try again from failed step*/ 2447 iavf_change_state(adapter, adapter->last_state); 2448 mutex_unlock(&adapter->crit_lock); 2449 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2450 return; 2451 case __IAVF_COMM_FAILED: 2452 if (test_bit(__IAVF_IN_REMOVE_TASK, 2453 &adapter->crit_section)) { 2454 /* Set state to __IAVF_INIT_FAILED and perform remove 2455 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2456 * doesn't bring the state back to __IAVF_COMM_FAILED. 2457 */ 2458 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2459 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2460 mutex_unlock(&adapter->crit_lock); 2461 return; 2462 } 2463 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2464 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2465 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2466 reg_val == VIRTCHNL_VFR_COMPLETED) { 2467 /* A chance for redemption! */ 2468 dev_err(&adapter->pdev->dev, 2469 "Hardware came out of reset. Attempting reinit.\n"); 2470 /* When init task contacts the PF and 2471 * gets everything set up again, it'll restart the 2472 * watchdog for us. Down, boy. Sit. Stay. Woof. 2473 */ 2474 iavf_change_state(adapter, __IAVF_STARTUP); 2475 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2476 } 2477 adapter->aq_required = 0; 2478 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2479 mutex_unlock(&adapter->crit_lock); 2480 queue_delayed_work(iavf_wq, 2481 &adapter->watchdog_task, 2482 msecs_to_jiffies(10)); 2483 return; 2484 case __IAVF_RESETTING: 2485 mutex_unlock(&adapter->crit_lock); 2486 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2487 return; 2488 case __IAVF_DOWN: 2489 case __IAVF_DOWN_PENDING: 2490 case __IAVF_TESTING: 2491 case __IAVF_RUNNING: 2492 if (adapter->current_op) { 2493 if (!iavf_asq_done(hw)) { 2494 dev_dbg(&adapter->pdev->dev, 2495 "Admin queue timeout\n"); 2496 iavf_send_api_ver(adapter); 2497 } 2498 } else { 2499 int ret = iavf_process_aq_command(adapter); 2500 2501 /* An error will be returned if no commands were 2502 * processed; use this opportunity to update stats 2503 * if the error isn't -ENOTSUPP 2504 */ 2505 if (ret && ret != -EOPNOTSUPP && 2506 adapter->state == __IAVF_RUNNING) 2507 iavf_request_stats(adapter); 2508 } 2509 if (adapter->state == __IAVF_RUNNING) 2510 iavf_detect_recover_hung(&adapter->vsi); 2511 break; 2512 case __IAVF_REMOVE: 2513 default: 2514 mutex_unlock(&adapter->crit_lock); 2515 return; 2516 } 2517 2518 /* check for hw reset */ 2519 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2520 if (!reg_val) { 2521 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2522 adapter->aq_required = 0; 2523 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2524 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2525 queue_work(iavf_wq, &adapter->reset_task); 2526 mutex_unlock(&adapter->crit_lock); 2527 queue_delayed_work(iavf_wq, 2528 &adapter->watchdog_task, HZ * 2); 2529 return; 2530 } 2531 2532 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2533 mutex_unlock(&adapter->crit_lock); 2534 restart_watchdog: 2535 if (adapter->state >= __IAVF_DOWN) 2536 queue_work(iavf_wq, &adapter->adminq_task); 2537 if (adapter->aq_required) 2538 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2539 msecs_to_jiffies(20)); 2540 else 2541 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2542 } 2543 2544 static void iavf_disable_vf(struct iavf_adapter *adapter) 2545 { 2546 struct iavf_mac_filter *f, *ftmp; 2547 struct iavf_vlan_filter *fv, *fvtmp; 2548 struct iavf_cloud_filter *cf, *cftmp; 2549 2550 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2551 2552 /* We don't use netif_running() because it may be true prior to 2553 * ndo_open() returning, so we can't assume it means all our open 2554 * tasks have finished, since we're not holding the rtnl_lock here. 2555 */ 2556 if (adapter->state == __IAVF_RUNNING) { 2557 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2558 netif_carrier_off(adapter->netdev); 2559 netif_tx_disable(adapter->netdev); 2560 adapter->link_up = false; 2561 iavf_napi_disable_all(adapter); 2562 iavf_irq_disable(adapter); 2563 iavf_free_traffic_irqs(adapter); 2564 iavf_free_all_tx_resources(adapter); 2565 iavf_free_all_rx_resources(adapter); 2566 } 2567 2568 spin_lock_bh(&adapter->mac_vlan_list_lock); 2569 2570 /* Delete all of the filters */ 2571 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2572 list_del(&f->list); 2573 kfree(f); 2574 } 2575 2576 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2577 list_del(&fv->list); 2578 kfree(fv); 2579 } 2580 2581 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2582 2583 spin_lock_bh(&adapter->cloud_filter_list_lock); 2584 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2585 list_del(&cf->list); 2586 kfree(cf); 2587 adapter->num_cloud_filters--; 2588 } 2589 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2590 2591 iavf_free_misc_irq(adapter); 2592 iavf_reset_interrupt_capability(adapter); 2593 iavf_free_q_vectors(adapter); 2594 iavf_free_queues(adapter); 2595 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2596 iavf_shutdown_adminq(&adapter->hw); 2597 adapter->netdev->flags &= ~IFF_UP; 2598 mutex_unlock(&adapter->crit_lock); 2599 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2600 iavf_change_state(adapter, __IAVF_DOWN); 2601 wake_up(&adapter->down_waitqueue); 2602 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2603 } 2604 2605 /** 2606 * iavf_reset_task - Call-back task to handle hardware reset 2607 * @work: pointer to work_struct 2608 * 2609 * During reset we need to shut down and reinitialize the admin queue 2610 * before we can use it to communicate with the PF again. We also clear 2611 * and reinit the rings because that context is lost as well. 2612 **/ 2613 static void iavf_reset_task(struct work_struct *work) 2614 { 2615 struct iavf_adapter *adapter = container_of(work, 2616 struct iavf_adapter, 2617 reset_task); 2618 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2619 struct net_device *netdev = adapter->netdev; 2620 struct iavf_hw *hw = &adapter->hw; 2621 struct iavf_mac_filter *f, *ftmp; 2622 struct iavf_cloud_filter *cf; 2623 u32 reg_val; 2624 int i = 0, err; 2625 bool running; 2626 2627 /* When device is being removed it doesn't make sense to run the reset 2628 * task, just return in such a case. 2629 */ 2630 if (!mutex_trylock(&adapter->crit_lock)) { 2631 if (adapter->state != __IAVF_REMOVE) 2632 queue_work(iavf_wq, &adapter->reset_task); 2633 2634 return; 2635 } 2636 2637 while (!mutex_trylock(&adapter->client_lock)) 2638 usleep_range(500, 1000); 2639 if (CLIENT_ENABLED(adapter)) { 2640 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2641 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2642 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2643 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2644 cancel_delayed_work_sync(&adapter->client_task); 2645 iavf_notify_client_close(&adapter->vsi, true); 2646 } 2647 iavf_misc_irq_disable(adapter); 2648 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2649 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2650 /* Restart the AQ here. If we have been reset but didn't 2651 * detect it, or if the PF had to reinit, our AQ will be hosed. 2652 */ 2653 iavf_shutdown_adminq(hw); 2654 iavf_init_adminq(hw); 2655 iavf_request_reset(adapter); 2656 } 2657 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2658 2659 /* poll until we see the reset actually happen */ 2660 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2661 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2662 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2663 if (!reg_val) 2664 break; 2665 usleep_range(5000, 10000); 2666 } 2667 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2668 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2669 goto continue_reset; /* act like the reset happened */ 2670 } 2671 2672 /* wait until the reset is complete and the PF is responding to us */ 2673 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2674 /* sleep first to make sure a minimum wait time is met */ 2675 msleep(IAVF_RESET_WAIT_MS); 2676 2677 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2678 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2679 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2680 break; 2681 } 2682 2683 pci_set_master(adapter->pdev); 2684 pci_restore_msi_state(adapter->pdev); 2685 2686 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2687 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2688 reg_val); 2689 iavf_disable_vf(adapter); 2690 mutex_unlock(&adapter->client_lock); 2691 mutex_unlock(&adapter->crit_lock); 2692 return; /* Do not attempt to reinit. It's dead, Jim. */ 2693 } 2694 2695 continue_reset: 2696 /* We don't use netif_running() because it may be true prior to 2697 * ndo_open() returning, so we can't assume it means all our open 2698 * tasks have finished, since we're not holding the rtnl_lock here. 2699 */ 2700 running = adapter->state == __IAVF_RUNNING; 2701 2702 if (running) { 2703 netdev->flags &= ~IFF_UP; 2704 netif_carrier_off(netdev); 2705 netif_tx_stop_all_queues(netdev); 2706 adapter->link_up = false; 2707 iavf_napi_disable_all(adapter); 2708 } 2709 iavf_irq_disable(adapter); 2710 2711 iavf_change_state(adapter, __IAVF_RESETTING); 2712 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2713 2714 /* free the Tx/Rx rings and descriptors, might be better to just 2715 * re-use them sometime in the future 2716 */ 2717 iavf_free_all_rx_resources(adapter); 2718 iavf_free_all_tx_resources(adapter); 2719 2720 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2721 /* kill and reinit the admin queue */ 2722 iavf_shutdown_adminq(hw); 2723 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2724 err = iavf_init_adminq(hw); 2725 if (err) 2726 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2727 err); 2728 adapter->aq_required = 0; 2729 2730 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2731 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2732 err = iavf_reinit_interrupt_scheme(adapter); 2733 if (err) 2734 goto reset_err; 2735 } 2736 2737 if (RSS_AQ(adapter)) { 2738 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2739 } else { 2740 err = iavf_init_rss(adapter); 2741 if (err) 2742 goto reset_err; 2743 } 2744 2745 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2746 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 2747 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 2748 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 2749 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 2750 * been successfully sent and negotiated 2751 */ 2752 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 2753 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2754 2755 spin_lock_bh(&adapter->mac_vlan_list_lock); 2756 2757 /* Delete filter for the current MAC address, it could have 2758 * been changed by the PF via administratively set MAC. 2759 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2760 */ 2761 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2762 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2763 list_del(&f->list); 2764 kfree(f); 2765 } 2766 } 2767 /* re-add all MAC filters */ 2768 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2769 f->add = true; 2770 } 2771 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2772 2773 /* check if TCs are running and re-add all cloud filters */ 2774 spin_lock_bh(&adapter->cloud_filter_list_lock); 2775 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2776 adapter->num_tc) { 2777 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2778 cf->add = true; 2779 } 2780 } 2781 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2782 2783 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2784 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2785 iavf_misc_irq_enable(adapter); 2786 2787 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2788 2789 /* We were running when the reset started, so we need to restore some 2790 * state here. 2791 */ 2792 if (running) { 2793 /* allocate transmit descriptors */ 2794 err = iavf_setup_all_tx_resources(adapter); 2795 if (err) 2796 goto reset_err; 2797 2798 /* allocate receive descriptors */ 2799 err = iavf_setup_all_rx_resources(adapter); 2800 if (err) 2801 goto reset_err; 2802 2803 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2804 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2805 err = iavf_request_traffic_irqs(adapter, netdev->name); 2806 if (err) 2807 goto reset_err; 2808 2809 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 2810 } 2811 2812 iavf_configure(adapter); 2813 2814 /* iavf_up_complete() will switch device back 2815 * to __IAVF_RUNNING 2816 */ 2817 iavf_up_complete(adapter); 2818 netdev->flags |= IFF_UP; 2819 iavf_irq_enable(adapter, true); 2820 } else { 2821 iavf_change_state(adapter, __IAVF_DOWN); 2822 wake_up(&adapter->down_waitqueue); 2823 } 2824 2825 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2826 2827 mutex_unlock(&adapter->client_lock); 2828 mutex_unlock(&adapter->crit_lock); 2829 2830 return; 2831 reset_err: 2832 mutex_unlock(&adapter->client_lock); 2833 mutex_unlock(&adapter->crit_lock); 2834 if (running) { 2835 iavf_change_state(adapter, __IAVF_RUNNING); 2836 netdev->flags |= IFF_UP; 2837 } 2838 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2839 iavf_close(netdev); 2840 } 2841 2842 /** 2843 * iavf_adminq_task - worker thread to clean the admin queue 2844 * @work: pointer to work_struct containing our data 2845 **/ 2846 static void iavf_adminq_task(struct work_struct *work) 2847 { 2848 struct iavf_adapter *adapter = 2849 container_of(work, struct iavf_adapter, adminq_task); 2850 struct iavf_hw *hw = &adapter->hw; 2851 struct iavf_arq_event_info event; 2852 enum virtchnl_ops v_op; 2853 enum iavf_status ret, v_ret; 2854 u32 val, oldval; 2855 u16 pending; 2856 2857 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2858 goto out; 2859 2860 if (!mutex_trylock(&adapter->crit_lock)) { 2861 if (adapter->state == __IAVF_REMOVE) 2862 return; 2863 2864 queue_work(iavf_wq, &adapter->adminq_task); 2865 goto out; 2866 } 2867 2868 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2869 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2870 if (!event.msg_buf) 2871 goto out; 2872 2873 do { 2874 ret = iavf_clean_arq_element(hw, &event, &pending); 2875 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2876 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2877 2878 if (ret || !v_op) 2879 break; /* No event to process or error cleaning ARQ */ 2880 2881 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2882 event.msg_len); 2883 if (pending != 0) 2884 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2885 } while (pending); 2886 mutex_unlock(&adapter->crit_lock); 2887 2888 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 2889 if (adapter->netdev_registered || 2890 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2891 struct net_device *netdev = adapter->netdev; 2892 2893 rtnl_lock(); 2894 netdev_update_features(netdev); 2895 rtnl_unlock(); 2896 /* Request VLAN offload settings */ 2897 if (VLAN_V2_ALLOWED(adapter)) 2898 iavf_set_vlan_offload_features 2899 (adapter, 0, netdev->features); 2900 2901 iavf_set_queue_vlan_tag_loc(adapter); 2902 } 2903 2904 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2905 } 2906 if ((adapter->flags & 2907 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2908 adapter->state == __IAVF_RESETTING) 2909 goto freedom; 2910 2911 /* check for error indications */ 2912 val = rd32(hw, hw->aq.arq.len); 2913 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 2914 goto freedom; 2915 oldval = val; 2916 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2917 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2918 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2919 } 2920 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2921 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2922 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2923 } 2924 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2925 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2926 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2927 } 2928 if (oldval != val) 2929 wr32(hw, hw->aq.arq.len, val); 2930 2931 val = rd32(hw, hw->aq.asq.len); 2932 oldval = val; 2933 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2934 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2935 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2936 } 2937 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2938 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2939 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2940 } 2941 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2942 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2943 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2944 } 2945 if (oldval != val) 2946 wr32(hw, hw->aq.asq.len, val); 2947 2948 freedom: 2949 kfree(event.msg_buf); 2950 out: 2951 /* re-enable Admin queue interrupt cause */ 2952 iavf_misc_irq_enable(adapter); 2953 } 2954 2955 /** 2956 * iavf_client_task - worker thread to perform client work 2957 * @work: pointer to work_struct containing our data 2958 * 2959 * This task handles client interactions. Because client calls can be 2960 * reentrant, we can't handle them in the watchdog. 2961 **/ 2962 static void iavf_client_task(struct work_struct *work) 2963 { 2964 struct iavf_adapter *adapter = 2965 container_of(work, struct iavf_adapter, client_task.work); 2966 2967 /* If we can't get the client bit, just give up. We'll be rescheduled 2968 * later. 2969 */ 2970 2971 if (!mutex_trylock(&adapter->client_lock)) 2972 return; 2973 2974 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2975 iavf_client_subtask(adapter); 2976 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2977 goto out; 2978 } 2979 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2980 iavf_notify_client_l2_params(&adapter->vsi); 2981 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2982 goto out; 2983 } 2984 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2985 iavf_notify_client_close(&adapter->vsi, false); 2986 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2987 goto out; 2988 } 2989 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2990 iavf_notify_client_open(&adapter->vsi); 2991 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2992 } 2993 out: 2994 mutex_unlock(&adapter->client_lock); 2995 } 2996 2997 /** 2998 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2999 * @adapter: board private structure 3000 * 3001 * Free all transmit software resources 3002 **/ 3003 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3004 { 3005 int i; 3006 3007 if (!adapter->tx_rings) 3008 return; 3009 3010 for (i = 0; i < adapter->num_active_queues; i++) 3011 if (adapter->tx_rings[i].desc) 3012 iavf_free_tx_resources(&adapter->tx_rings[i]); 3013 } 3014 3015 /** 3016 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3017 * @adapter: board private structure 3018 * 3019 * If this function returns with an error, then it's possible one or 3020 * more of the rings is populated (while the rest are not). It is the 3021 * callers duty to clean those orphaned rings. 3022 * 3023 * Return 0 on success, negative on failure 3024 **/ 3025 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3026 { 3027 int i, err = 0; 3028 3029 for (i = 0; i < adapter->num_active_queues; i++) { 3030 adapter->tx_rings[i].count = adapter->tx_desc_count; 3031 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3032 if (!err) 3033 continue; 3034 dev_err(&adapter->pdev->dev, 3035 "Allocation for Tx Queue %u failed\n", i); 3036 break; 3037 } 3038 3039 return err; 3040 } 3041 3042 /** 3043 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3044 * @adapter: board private structure 3045 * 3046 * If this function returns with an error, then it's possible one or 3047 * more of the rings is populated (while the rest are not). It is the 3048 * callers duty to clean those orphaned rings. 3049 * 3050 * Return 0 on success, negative on failure 3051 **/ 3052 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3053 { 3054 int i, err = 0; 3055 3056 for (i = 0; i < adapter->num_active_queues; i++) { 3057 adapter->rx_rings[i].count = adapter->rx_desc_count; 3058 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3059 if (!err) 3060 continue; 3061 dev_err(&adapter->pdev->dev, 3062 "Allocation for Rx Queue %u failed\n", i); 3063 break; 3064 } 3065 return err; 3066 } 3067 3068 /** 3069 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3070 * @adapter: board private structure 3071 * 3072 * Free all receive software resources 3073 **/ 3074 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3075 { 3076 int i; 3077 3078 if (!adapter->rx_rings) 3079 return; 3080 3081 for (i = 0; i < adapter->num_active_queues; i++) 3082 if (adapter->rx_rings[i].desc) 3083 iavf_free_rx_resources(&adapter->rx_rings[i]); 3084 } 3085 3086 /** 3087 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3088 * @adapter: board private structure 3089 * @max_tx_rate: max Tx bw for a tc 3090 **/ 3091 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3092 u64 max_tx_rate) 3093 { 3094 int speed = 0, ret = 0; 3095 3096 if (ADV_LINK_SUPPORT(adapter)) { 3097 if (adapter->link_speed_mbps < U32_MAX) { 3098 speed = adapter->link_speed_mbps; 3099 goto validate_bw; 3100 } else { 3101 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3102 return -EINVAL; 3103 } 3104 } 3105 3106 switch (adapter->link_speed) { 3107 case VIRTCHNL_LINK_SPEED_40GB: 3108 speed = SPEED_40000; 3109 break; 3110 case VIRTCHNL_LINK_SPEED_25GB: 3111 speed = SPEED_25000; 3112 break; 3113 case VIRTCHNL_LINK_SPEED_20GB: 3114 speed = SPEED_20000; 3115 break; 3116 case VIRTCHNL_LINK_SPEED_10GB: 3117 speed = SPEED_10000; 3118 break; 3119 case VIRTCHNL_LINK_SPEED_5GB: 3120 speed = SPEED_5000; 3121 break; 3122 case VIRTCHNL_LINK_SPEED_2_5GB: 3123 speed = SPEED_2500; 3124 break; 3125 case VIRTCHNL_LINK_SPEED_1GB: 3126 speed = SPEED_1000; 3127 break; 3128 case VIRTCHNL_LINK_SPEED_100MB: 3129 speed = SPEED_100; 3130 break; 3131 default: 3132 break; 3133 } 3134 3135 validate_bw: 3136 if (max_tx_rate > speed) { 3137 dev_err(&adapter->pdev->dev, 3138 "Invalid tx rate specified\n"); 3139 ret = -EINVAL; 3140 } 3141 3142 return ret; 3143 } 3144 3145 /** 3146 * iavf_validate_ch_config - validate queue mapping info 3147 * @adapter: board private structure 3148 * @mqprio_qopt: queue parameters 3149 * 3150 * This function validates if the config provided by the user to 3151 * configure queue channels is valid or not. Returns 0 on a valid 3152 * config. 3153 **/ 3154 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3155 struct tc_mqprio_qopt_offload *mqprio_qopt) 3156 { 3157 u64 total_max_rate = 0; 3158 int i, num_qps = 0; 3159 u64 tx_rate = 0; 3160 int ret = 0; 3161 3162 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3163 mqprio_qopt->qopt.num_tc < 1) 3164 return -EINVAL; 3165 3166 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3167 if (!mqprio_qopt->qopt.count[i] || 3168 mqprio_qopt->qopt.offset[i] != num_qps) 3169 return -EINVAL; 3170 if (mqprio_qopt->min_rate[i]) { 3171 dev_err(&adapter->pdev->dev, 3172 "Invalid min tx rate (greater than 0) specified\n"); 3173 return -EINVAL; 3174 } 3175 /*convert to Mbps */ 3176 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3177 IAVF_MBPS_DIVISOR); 3178 total_max_rate += tx_rate; 3179 num_qps += mqprio_qopt->qopt.count[i]; 3180 } 3181 if (num_qps > adapter->num_active_queues) { 3182 dev_err(&adapter->pdev->dev, 3183 "Cannot support requested number of queues\n"); 3184 return -EINVAL; 3185 } 3186 3187 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3188 return ret; 3189 } 3190 3191 /** 3192 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3193 * @adapter: board private structure 3194 **/ 3195 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3196 { 3197 struct iavf_cloud_filter *cf, *cftmp; 3198 3199 spin_lock_bh(&adapter->cloud_filter_list_lock); 3200 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3201 list) { 3202 list_del(&cf->list); 3203 kfree(cf); 3204 adapter->num_cloud_filters--; 3205 } 3206 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3207 } 3208 3209 /** 3210 * __iavf_setup_tc - configure multiple traffic classes 3211 * @netdev: network interface device structure 3212 * @type_data: tc offload data 3213 * 3214 * This function processes the config information provided by the 3215 * user to configure traffic classes/queue channels and packages the 3216 * information to request the PF to setup traffic classes. 3217 * 3218 * Returns 0 on success. 3219 **/ 3220 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3221 { 3222 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3223 struct iavf_adapter *adapter = netdev_priv(netdev); 3224 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3225 u8 num_tc = 0, total_qps = 0; 3226 int ret = 0, netdev_tc = 0; 3227 u64 max_tx_rate; 3228 u16 mode; 3229 int i; 3230 3231 num_tc = mqprio_qopt->qopt.num_tc; 3232 mode = mqprio_qopt->mode; 3233 3234 /* delete queue_channel */ 3235 if (!mqprio_qopt->qopt.hw) { 3236 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3237 /* reset the tc configuration */ 3238 netdev_reset_tc(netdev); 3239 adapter->num_tc = 0; 3240 netif_tx_stop_all_queues(netdev); 3241 netif_tx_disable(netdev); 3242 iavf_del_all_cloud_filters(adapter); 3243 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3244 goto exit; 3245 } else { 3246 return -EINVAL; 3247 } 3248 } 3249 3250 /* add queue channel */ 3251 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3252 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3253 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3254 return -EOPNOTSUPP; 3255 } 3256 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3257 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3258 return -EINVAL; 3259 } 3260 3261 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3262 if (ret) 3263 return ret; 3264 /* Return if same TC config is requested */ 3265 if (adapter->num_tc == num_tc) 3266 return 0; 3267 adapter->num_tc = num_tc; 3268 3269 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3270 if (i < num_tc) { 3271 adapter->ch_config.ch_info[i].count = 3272 mqprio_qopt->qopt.count[i]; 3273 adapter->ch_config.ch_info[i].offset = 3274 mqprio_qopt->qopt.offset[i]; 3275 total_qps += mqprio_qopt->qopt.count[i]; 3276 max_tx_rate = mqprio_qopt->max_rate[i]; 3277 /* convert to Mbps */ 3278 max_tx_rate = div_u64(max_tx_rate, 3279 IAVF_MBPS_DIVISOR); 3280 adapter->ch_config.ch_info[i].max_tx_rate = 3281 max_tx_rate; 3282 } else { 3283 adapter->ch_config.ch_info[i].count = 1; 3284 adapter->ch_config.ch_info[i].offset = 0; 3285 } 3286 } 3287 adapter->ch_config.total_qps = total_qps; 3288 netif_tx_stop_all_queues(netdev); 3289 netif_tx_disable(netdev); 3290 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3291 netdev_reset_tc(netdev); 3292 /* Report the tc mapping up the stack */ 3293 netdev_set_num_tc(adapter->netdev, num_tc); 3294 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3295 u16 qcount = mqprio_qopt->qopt.count[i]; 3296 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3297 3298 if (i < num_tc) 3299 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3300 qoffset); 3301 } 3302 } 3303 exit: 3304 return ret; 3305 } 3306 3307 /** 3308 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3309 * @adapter: board private structure 3310 * @f: pointer to struct flow_cls_offload 3311 * @filter: pointer to cloud filter structure 3312 */ 3313 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3314 struct flow_cls_offload *f, 3315 struct iavf_cloud_filter *filter) 3316 { 3317 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3318 struct flow_dissector *dissector = rule->match.dissector; 3319 u16 n_proto_mask = 0; 3320 u16 n_proto_key = 0; 3321 u8 field_flags = 0; 3322 u16 addr_type = 0; 3323 u16 n_proto = 0; 3324 int i = 0; 3325 struct virtchnl_filter *vf = &filter->f; 3326 3327 if (dissector->used_keys & 3328 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3329 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3330 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3331 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3332 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3333 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3334 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3335 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3336 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3337 dissector->used_keys); 3338 return -EOPNOTSUPP; 3339 } 3340 3341 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3342 struct flow_match_enc_keyid match; 3343 3344 flow_rule_match_enc_keyid(rule, &match); 3345 if (match.mask->keyid != 0) 3346 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3347 } 3348 3349 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3350 struct flow_match_basic match; 3351 3352 flow_rule_match_basic(rule, &match); 3353 n_proto_key = ntohs(match.key->n_proto); 3354 n_proto_mask = ntohs(match.mask->n_proto); 3355 3356 if (n_proto_key == ETH_P_ALL) { 3357 n_proto_key = 0; 3358 n_proto_mask = 0; 3359 } 3360 n_proto = n_proto_key & n_proto_mask; 3361 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3362 return -EINVAL; 3363 if (n_proto == ETH_P_IPV6) { 3364 /* specify flow type as TCP IPv6 */ 3365 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3366 } 3367 3368 if (match.key->ip_proto != IPPROTO_TCP) { 3369 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3370 return -EINVAL; 3371 } 3372 } 3373 3374 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3375 struct flow_match_eth_addrs match; 3376 3377 flow_rule_match_eth_addrs(rule, &match); 3378 3379 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3380 if (!is_zero_ether_addr(match.mask->dst)) { 3381 if (is_broadcast_ether_addr(match.mask->dst)) { 3382 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3383 } else { 3384 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3385 match.mask->dst); 3386 return -EINVAL; 3387 } 3388 } 3389 3390 if (!is_zero_ether_addr(match.mask->src)) { 3391 if (is_broadcast_ether_addr(match.mask->src)) { 3392 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3393 } else { 3394 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3395 match.mask->src); 3396 return -EINVAL; 3397 } 3398 } 3399 3400 if (!is_zero_ether_addr(match.key->dst)) 3401 if (is_valid_ether_addr(match.key->dst) || 3402 is_multicast_ether_addr(match.key->dst)) { 3403 /* set the mask if a valid dst_mac address */ 3404 for (i = 0; i < ETH_ALEN; i++) 3405 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3406 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3407 match.key->dst); 3408 } 3409 3410 if (!is_zero_ether_addr(match.key->src)) 3411 if (is_valid_ether_addr(match.key->src) || 3412 is_multicast_ether_addr(match.key->src)) { 3413 /* set the mask if a valid dst_mac address */ 3414 for (i = 0; i < ETH_ALEN; i++) 3415 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3416 ether_addr_copy(vf->data.tcp_spec.src_mac, 3417 match.key->src); 3418 } 3419 } 3420 3421 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3422 struct flow_match_vlan match; 3423 3424 flow_rule_match_vlan(rule, &match); 3425 if (match.mask->vlan_id) { 3426 if (match.mask->vlan_id == VLAN_VID_MASK) { 3427 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3428 } else { 3429 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3430 match.mask->vlan_id); 3431 return -EINVAL; 3432 } 3433 } 3434 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3435 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3436 } 3437 3438 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3439 struct flow_match_control match; 3440 3441 flow_rule_match_control(rule, &match); 3442 addr_type = match.key->addr_type; 3443 } 3444 3445 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3446 struct flow_match_ipv4_addrs match; 3447 3448 flow_rule_match_ipv4_addrs(rule, &match); 3449 if (match.mask->dst) { 3450 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3451 field_flags |= IAVF_CLOUD_FIELD_IIP; 3452 } else { 3453 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3454 be32_to_cpu(match.mask->dst)); 3455 return -EINVAL; 3456 } 3457 } 3458 3459 if (match.mask->src) { 3460 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3461 field_flags |= IAVF_CLOUD_FIELD_IIP; 3462 } else { 3463 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3464 be32_to_cpu(match.mask->dst)); 3465 return -EINVAL; 3466 } 3467 } 3468 3469 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3470 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3471 return -EINVAL; 3472 } 3473 if (match.key->dst) { 3474 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3475 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3476 } 3477 if (match.key->src) { 3478 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3479 vf->data.tcp_spec.src_ip[0] = match.key->src; 3480 } 3481 } 3482 3483 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3484 struct flow_match_ipv6_addrs match; 3485 3486 flow_rule_match_ipv6_addrs(rule, &match); 3487 3488 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3489 if (ipv6_addr_any(&match.mask->dst)) { 3490 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3491 IPV6_ADDR_ANY); 3492 return -EINVAL; 3493 } 3494 3495 /* src and dest IPv6 address should not be LOOPBACK 3496 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3497 */ 3498 if (ipv6_addr_loopback(&match.key->dst) || 3499 ipv6_addr_loopback(&match.key->src)) { 3500 dev_err(&adapter->pdev->dev, 3501 "ipv6 addr should not be loopback\n"); 3502 return -EINVAL; 3503 } 3504 if (!ipv6_addr_any(&match.mask->dst) || 3505 !ipv6_addr_any(&match.mask->src)) 3506 field_flags |= IAVF_CLOUD_FIELD_IIP; 3507 3508 for (i = 0; i < 4; i++) 3509 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3510 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3511 sizeof(vf->data.tcp_spec.dst_ip)); 3512 for (i = 0; i < 4; i++) 3513 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3514 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3515 sizeof(vf->data.tcp_spec.src_ip)); 3516 } 3517 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3518 struct flow_match_ports match; 3519 3520 flow_rule_match_ports(rule, &match); 3521 if (match.mask->src) { 3522 if (match.mask->src == cpu_to_be16(0xffff)) { 3523 field_flags |= IAVF_CLOUD_FIELD_IIP; 3524 } else { 3525 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3526 be16_to_cpu(match.mask->src)); 3527 return -EINVAL; 3528 } 3529 } 3530 3531 if (match.mask->dst) { 3532 if (match.mask->dst == cpu_to_be16(0xffff)) { 3533 field_flags |= IAVF_CLOUD_FIELD_IIP; 3534 } else { 3535 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3536 be16_to_cpu(match.mask->dst)); 3537 return -EINVAL; 3538 } 3539 } 3540 if (match.key->dst) { 3541 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3542 vf->data.tcp_spec.dst_port = match.key->dst; 3543 } 3544 3545 if (match.key->src) { 3546 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3547 vf->data.tcp_spec.src_port = match.key->src; 3548 } 3549 } 3550 vf->field_flags = field_flags; 3551 3552 return 0; 3553 } 3554 3555 /** 3556 * iavf_handle_tclass - Forward to a traffic class on the device 3557 * @adapter: board private structure 3558 * @tc: traffic class index on the device 3559 * @filter: pointer to cloud filter structure 3560 */ 3561 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3562 struct iavf_cloud_filter *filter) 3563 { 3564 if (tc == 0) 3565 return 0; 3566 if (tc < adapter->num_tc) { 3567 if (!filter->f.data.tcp_spec.dst_port) { 3568 dev_err(&adapter->pdev->dev, 3569 "Specify destination port to redirect to traffic class other than TC0\n"); 3570 return -EINVAL; 3571 } 3572 } 3573 /* redirect to a traffic class on the same device */ 3574 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3575 filter->f.action_meta = tc; 3576 return 0; 3577 } 3578 3579 /** 3580 * iavf_configure_clsflower - Add tc flower filters 3581 * @adapter: board private structure 3582 * @cls_flower: Pointer to struct flow_cls_offload 3583 */ 3584 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3585 struct flow_cls_offload *cls_flower) 3586 { 3587 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3588 struct iavf_cloud_filter *filter = NULL; 3589 int err = -EINVAL, count = 50; 3590 3591 if (tc < 0) { 3592 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3593 return -EINVAL; 3594 } 3595 3596 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3597 if (!filter) 3598 return -ENOMEM; 3599 3600 while (!mutex_trylock(&adapter->crit_lock)) { 3601 if (--count == 0) { 3602 kfree(filter); 3603 return err; 3604 } 3605 udelay(1); 3606 } 3607 3608 filter->cookie = cls_flower->cookie; 3609 3610 /* set the mask to all zeroes to begin with */ 3611 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3612 /* start out with flow type and eth type IPv4 to begin with */ 3613 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3614 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3615 if (err) 3616 goto err; 3617 3618 err = iavf_handle_tclass(adapter, tc, filter); 3619 if (err) 3620 goto err; 3621 3622 /* add filter to the list */ 3623 spin_lock_bh(&adapter->cloud_filter_list_lock); 3624 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3625 adapter->num_cloud_filters++; 3626 filter->add = true; 3627 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3628 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3629 err: 3630 if (err) 3631 kfree(filter); 3632 3633 mutex_unlock(&adapter->crit_lock); 3634 return err; 3635 } 3636 3637 /* iavf_find_cf - Find the cloud filter in the list 3638 * @adapter: Board private structure 3639 * @cookie: filter specific cookie 3640 * 3641 * Returns ptr to the filter object or NULL. Must be called while holding the 3642 * cloud_filter_list_lock. 3643 */ 3644 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3645 unsigned long *cookie) 3646 { 3647 struct iavf_cloud_filter *filter = NULL; 3648 3649 if (!cookie) 3650 return NULL; 3651 3652 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3653 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3654 return filter; 3655 } 3656 return NULL; 3657 } 3658 3659 /** 3660 * iavf_delete_clsflower - Remove tc flower filters 3661 * @adapter: board private structure 3662 * @cls_flower: Pointer to struct flow_cls_offload 3663 */ 3664 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3665 struct flow_cls_offload *cls_flower) 3666 { 3667 struct iavf_cloud_filter *filter = NULL; 3668 int err = 0; 3669 3670 spin_lock_bh(&adapter->cloud_filter_list_lock); 3671 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3672 if (filter) { 3673 filter->del = true; 3674 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3675 } else { 3676 err = -EINVAL; 3677 } 3678 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3679 3680 return err; 3681 } 3682 3683 /** 3684 * iavf_setup_tc_cls_flower - flower classifier offloads 3685 * @adapter: board private structure 3686 * @cls_flower: pointer to flow_cls_offload struct with flow info 3687 */ 3688 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3689 struct flow_cls_offload *cls_flower) 3690 { 3691 switch (cls_flower->command) { 3692 case FLOW_CLS_REPLACE: 3693 return iavf_configure_clsflower(adapter, cls_flower); 3694 case FLOW_CLS_DESTROY: 3695 return iavf_delete_clsflower(adapter, cls_flower); 3696 case FLOW_CLS_STATS: 3697 return -EOPNOTSUPP; 3698 default: 3699 return -EOPNOTSUPP; 3700 } 3701 } 3702 3703 /** 3704 * iavf_setup_tc_block_cb - block callback for tc 3705 * @type: type of offload 3706 * @type_data: offload data 3707 * @cb_priv: 3708 * 3709 * This function is the block callback for traffic classes 3710 **/ 3711 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3712 void *cb_priv) 3713 { 3714 struct iavf_adapter *adapter = cb_priv; 3715 3716 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3717 return -EOPNOTSUPP; 3718 3719 switch (type) { 3720 case TC_SETUP_CLSFLOWER: 3721 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3722 default: 3723 return -EOPNOTSUPP; 3724 } 3725 } 3726 3727 static LIST_HEAD(iavf_block_cb_list); 3728 3729 /** 3730 * iavf_setup_tc - configure multiple traffic classes 3731 * @netdev: network interface device structure 3732 * @type: type of offload 3733 * @type_data: tc offload data 3734 * 3735 * This function is the callback to ndo_setup_tc in the 3736 * netdev_ops. 3737 * 3738 * Returns 0 on success 3739 **/ 3740 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3741 void *type_data) 3742 { 3743 struct iavf_adapter *adapter = netdev_priv(netdev); 3744 3745 switch (type) { 3746 case TC_SETUP_QDISC_MQPRIO: 3747 return __iavf_setup_tc(netdev, type_data); 3748 case TC_SETUP_BLOCK: 3749 return flow_block_cb_setup_simple(type_data, 3750 &iavf_block_cb_list, 3751 iavf_setup_tc_block_cb, 3752 adapter, adapter, true); 3753 default: 3754 return -EOPNOTSUPP; 3755 } 3756 } 3757 3758 /** 3759 * iavf_open - Called when a network interface is made active 3760 * @netdev: network interface device structure 3761 * 3762 * Returns 0 on success, negative value on failure 3763 * 3764 * The open entry point is called when a network interface is made 3765 * active by the system (IFF_UP). At this point all resources needed 3766 * for transmit and receive operations are allocated, the interrupt 3767 * handler is registered with the OS, the watchdog is started, 3768 * and the stack is notified that the interface is ready. 3769 **/ 3770 static int iavf_open(struct net_device *netdev) 3771 { 3772 struct iavf_adapter *adapter = netdev_priv(netdev); 3773 int err; 3774 3775 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3776 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3777 return -EIO; 3778 } 3779 3780 while (!mutex_trylock(&adapter->crit_lock)) 3781 usleep_range(500, 1000); 3782 3783 if (adapter->state != __IAVF_DOWN) { 3784 err = -EBUSY; 3785 goto err_unlock; 3786 } 3787 3788 if (adapter->state == __IAVF_RUNNING && 3789 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 3790 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 3791 err = 0; 3792 goto err_unlock; 3793 } 3794 3795 /* allocate transmit descriptors */ 3796 err = iavf_setup_all_tx_resources(adapter); 3797 if (err) 3798 goto err_setup_tx; 3799 3800 /* allocate receive descriptors */ 3801 err = iavf_setup_all_rx_resources(adapter); 3802 if (err) 3803 goto err_setup_rx; 3804 3805 /* clear any pending interrupts, may auto mask */ 3806 err = iavf_request_traffic_irqs(adapter, netdev->name); 3807 if (err) 3808 goto err_req_irq; 3809 3810 spin_lock_bh(&adapter->mac_vlan_list_lock); 3811 3812 iavf_add_filter(adapter, adapter->hw.mac.addr); 3813 3814 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3815 3816 /* Restore VLAN filters that were removed with IFF_DOWN */ 3817 iavf_restore_filters(adapter); 3818 3819 iavf_configure(adapter); 3820 3821 iavf_up_complete(adapter); 3822 3823 iavf_irq_enable(adapter, true); 3824 3825 mutex_unlock(&adapter->crit_lock); 3826 3827 return 0; 3828 3829 err_req_irq: 3830 iavf_down(adapter); 3831 iavf_free_traffic_irqs(adapter); 3832 err_setup_rx: 3833 iavf_free_all_rx_resources(adapter); 3834 err_setup_tx: 3835 iavf_free_all_tx_resources(adapter); 3836 err_unlock: 3837 mutex_unlock(&adapter->crit_lock); 3838 3839 return err; 3840 } 3841 3842 /** 3843 * iavf_close - Disables a network interface 3844 * @netdev: network interface device structure 3845 * 3846 * Returns 0, this is not allowed to fail 3847 * 3848 * The close entry point is called when an interface is de-activated 3849 * by the OS. The hardware is still under the drivers control, but 3850 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3851 * are freed, along with all transmit and receive resources. 3852 **/ 3853 static int iavf_close(struct net_device *netdev) 3854 { 3855 struct iavf_adapter *adapter = netdev_priv(netdev); 3856 int status; 3857 3858 mutex_lock(&adapter->crit_lock); 3859 3860 if (adapter->state <= __IAVF_DOWN_PENDING) { 3861 mutex_unlock(&adapter->crit_lock); 3862 return 0; 3863 } 3864 3865 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3866 if (CLIENT_ENABLED(adapter)) 3867 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3868 3869 iavf_down(adapter); 3870 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 3871 iavf_free_traffic_irqs(adapter); 3872 3873 mutex_unlock(&adapter->crit_lock); 3874 3875 /* We explicitly don't free resources here because the hardware is 3876 * still active and can DMA into memory. Resources are cleared in 3877 * iavf_virtchnl_completion() after we get confirmation from the PF 3878 * driver that the rings have been stopped. 3879 * 3880 * Also, we wait for state to transition to __IAVF_DOWN before 3881 * returning. State change occurs in iavf_virtchnl_completion() after 3882 * VF resources are released (which occurs after PF driver processes and 3883 * responds to admin queue commands). 3884 */ 3885 3886 status = wait_event_timeout(adapter->down_waitqueue, 3887 adapter->state == __IAVF_DOWN, 3888 msecs_to_jiffies(500)); 3889 if (!status) 3890 netdev_warn(netdev, "Device resources not yet released\n"); 3891 return 0; 3892 } 3893 3894 /** 3895 * iavf_change_mtu - Change the Maximum Transfer Unit 3896 * @netdev: network interface device structure 3897 * @new_mtu: new value for maximum frame size 3898 * 3899 * Returns 0 on success, negative on failure 3900 **/ 3901 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3902 { 3903 struct iavf_adapter *adapter = netdev_priv(netdev); 3904 3905 netdev_dbg(netdev, "changing MTU from %d to %d\n", 3906 netdev->mtu, new_mtu); 3907 netdev->mtu = new_mtu; 3908 if (CLIENT_ENABLED(adapter)) { 3909 iavf_notify_client_l2_params(&adapter->vsi); 3910 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3911 } 3912 3913 if (netif_running(netdev)) { 3914 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3915 queue_work(iavf_wq, &adapter->reset_task); 3916 } 3917 3918 return 0; 3919 } 3920 3921 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 3922 NETIF_F_HW_VLAN_CTAG_TX | \ 3923 NETIF_F_HW_VLAN_STAG_RX | \ 3924 NETIF_F_HW_VLAN_STAG_TX) 3925 3926 /** 3927 * iavf_set_features - set the netdev feature flags 3928 * @netdev: ptr to the netdev being adjusted 3929 * @features: the feature set that the stack is suggesting 3930 * Note: expects to be called while under rtnl_lock() 3931 **/ 3932 static int iavf_set_features(struct net_device *netdev, 3933 netdev_features_t features) 3934 { 3935 struct iavf_adapter *adapter = netdev_priv(netdev); 3936 3937 /* trigger update on any VLAN feature change */ 3938 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 3939 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 3940 iavf_set_vlan_offload_features(adapter, netdev->features, 3941 features); 3942 3943 return 0; 3944 } 3945 3946 /** 3947 * iavf_features_check - Validate encapsulated packet conforms to limits 3948 * @skb: skb buff 3949 * @dev: This physical port's netdev 3950 * @features: Offload features that the stack believes apply 3951 **/ 3952 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3953 struct net_device *dev, 3954 netdev_features_t features) 3955 { 3956 size_t len; 3957 3958 /* No point in doing any of this if neither checksum nor GSO are 3959 * being requested for this frame. We can rule out both by just 3960 * checking for CHECKSUM_PARTIAL 3961 */ 3962 if (skb->ip_summed != CHECKSUM_PARTIAL) 3963 return features; 3964 3965 /* We cannot support GSO if the MSS is going to be less than 3966 * 64 bytes. If it is then we need to drop support for GSO. 3967 */ 3968 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3969 features &= ~NETIF_F_GSO_MASK; 3970 3971 /* MACLEN can support at most 63 words */ 3972 len = skb_network_header(skb) - skb->data; 3973 if (len & ~(63 * 2)) 3974 goto out_err; 3975 3976 /* IPLEN and EIPLEN can support at most 127 dwords */ 3977 len = skb_transport_header(skb) - skb_network_header(skb); 3978 if (len & ~(127 * 4)) 3979 goto out_err; 3980 3981 if (skb->encapsulation) { 3982 /* L4TUNLEN can support 127 words */ 3983 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3984 if (len & ~(127 * 2)) 3985 goto out_err; 3986 3987 /* IPLEN can support at most 127 dwords */ 3988 len = skb_inner_transport_header(skb) - 3989 skb_inner_network_header(skb); 3990 if (len & ~(127 * 4)) 3991 goto out_err; 3992 } 3993 3994 /* No need to validate L4LEN as TCP is the only protocol with a 3995 * a flexible value and we support all possible values supported 3996 * by TCP, which is at most 15 dwords 3997 */ 3998 3999 return features; 4000 out_err: 4001 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4002 } 4003 4004 /** 4005 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4006 * @adapter: board private structure 4007 * 4008 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4009 * were negotiated determine the VLAN features that can be toggled on and off. 4010 **/ 4011 static netdev_features_t 4012 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4013 { 4014 netdev_features_t hw_features = 0; 4015 4016 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4017 return hw_features; 4018 4019 /* Enable VLAN features if supported */ 4020 if (VLAN_ALLOWED(adapter)) { 4021 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4022 NETIF_F_HW_VLAN_CTAG_RX); 4023 } else if (VLAN_V2_ALLOWED(adapter)) { 4024 struct virtchnl_vlan_caps *vlan_v2_caps = 4025 &adapter->vlan_v2_caps; 4026 struct virtchnl_vlan_supported_caps *stripping_support = 4027 &vlan_v2_caps->offloads.stripping_support; 4028 struct virtchnl_vlan_supported_caps *insertion_support = 4029 &vlan_v2_caps->offloads.insertion_support; 4030 4031 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4032 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4033 if (stripping_support->outer & 4034 VIRTCHNL_VLAN_ETHERTYPE_8100) 4035 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4036 if (stripping_support->outer & 4037 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4038 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4039 } else if (stripping_support->inner != 4040 VIRTCHNL_VLAN_UNSUPPORTED && 4041 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4042 if (stripping_support->inner & 4043 VIRTCHNL_VLAN_ETHERTYPE_8100) 4044 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4045 } 4046 4047 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4048 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4049 if (insertion_support->outer & 4050 VIRTCHNL_VLAN_ETHERTYPE_8100) 4051 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4052 if (insertion_support->outer & 4053 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4054 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4055 } else if (insertion_support->inner && 4056 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4057 if (insertion_support->inner & 4058 VIRTCHNL_VLAN_ETHERTYPE_8100) 4059 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4060 } 4061 } 4062 4063 return hw_features; 4064 } 4065 4066 /** 4067 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4068 * @adapter: board private structure 4069 * 4070 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4071 * were negotiated determine the VLAN features that are enabled by default. 4072 **/ 4073 static netdev_features_t 4074 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4075 { 4076 netdev_features_t features = 0; 4077 4078 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4079 return features; 4080 4081 if (VLAN_ALLOWED(adapter)) { 4082 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4083 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4084 } else if (VLAN_V2_ALLOWED(adapter)) { 4085 struct virtchnl_vlan_caps *vlan_v2_caps = 4086 &adapter->vlan_v2_caps; 4087 struct virtchnl_vlan_supported_caps *filtering_support = 4088 &vlan_v2_caps->filtering.filtering_support; 4089 struct virtchnl_vlan_supported_caps *stripping_support = 4090 &vlan_v2_caps->offloads.stripping_support; 4091 struct virtchnl_vlan_supported_caps *insertion_support = 4092 &vlan_v2_caps->offloads.insertion_support; 4093 u32 ethertype_init; 4094 4095 /* give priority to outer stripping and don't support both outer 4096 * and inner stripping 4097 */ 4098 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4099 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4100 if (stripping_support->outer & 4101 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4102 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4103 features |= NETIF_F_HW_VLAN_CTAG_RX; 4104 else if (stripping_support->outer & 4105 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4106 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4107 features |= NETIF_F_HW_VLAN_STAG_RX; 4108 } else if (stripping_support->inner != 4109 VIRTCHNL_VLAN_UNSUPPORTED) { 4110 if (stripping_support->inner & 4111 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4112 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4113 features |= NETIF_F_HW_VLAN_CTAG_RX; 4114 } 4115 4116 /* give priority to outer insertion and don't support both outer 4117 * and inner insertion 4118 */ 4119 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4120 if (insertion_support->outer & 4121 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4122 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4123 features |= NETIF_F_HW_VLAN_CTAG_TX; 4124 else if (insertion_support->outer & 4125 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4126 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4127 features |= NETIF_F_HW_VLAN_STAG_TX; 4128 } else if (insertion_support->inner != 4129 VIRTCHNL_VLAN_UNSUPPORTED) { 4130 if (insertion_support->inner & 4131 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4132 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4133 features |= NETIF_F_HW_VLAN_CTAG_TX; 4134 } 4135 4136 /* give priority to outer filtering and don't bother if both 4137 * outer and inner filtering are enabled 4138 */ 4139 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4140 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4141 if (filtering_support->outer & 4142 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4143 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4144 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4145 if (filtering_support->outer & 4146 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4147 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4148 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4149 } else if (filtering_support->inner != 4150 VIRTCHNL_VLAN_UNSUPPORTED) { 4151 if (filtering_support->inner & 4152 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4153 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4154 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4155 if (filtering_support->inner & 4156 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4157 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4158 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4159 } 4160 } 4161 4162 return features; 4163 } 4164 4165 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4166 (!(((requested) & (feature_bit)) && \ 4167 !((allowed) & (feature_bit)))) 4168 4169 /** 4170 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4171 * @adapter: board private structure 4172 * @requested_features: stack requested NETDEV features 4173 **/ 4174 static netdev_features_t 4175 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4176 netdev_features_t requested_features) 4177 { 4178 netdev_features_t allowed_features; 4179 4180 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4181 iavf_get_netdev_vlan_features(adapter); 4182 4183 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4184 allowed_features, 4185 NETIF_F_HW_VLAN_CTAG_TX)) 4186 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4187 4188 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4189 allowed_features, 4190 NETIF_F_HW_VLAN_CTAG_RX)) 4191 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4192 4193 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4194 allowed_features, 4195 NETIF_F_HW_VLAN_STAG_TX)) 4196 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4197 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4198 allowed_features, 4199 NETIF_F_HW_VLAN_STAG_RX)) 4200 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4201 4202 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4203 allowed_features, 4204 NETIF_F_HW_VLAN_CTAG_FILTER)) 4205 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4206 4207 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4208 allowed_features, 4209 NETIF_F_HW_VLAN_STAG_FILTER)) 4210 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4211 4212 if ((requested_features & 4213 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4214 (requested_features & 4215 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4216 adapter->vlan_v2_caps.offloads.ethertype_match == 4217 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4218 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4219 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4220 NETIF_F_HW_VLAN_STAG_TX); 4221 } 4222 4223 return requested_features; 4224 } 4225 4226 /** 4227 * iavf_fix_features - fix up the netdev feature bits 4228 * @netdev: our net device 4229 * @features: desired feature bits 4230 * 4231 * Returns fixed-up features bits 4232 **/ 4233 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4234 netdev_features_t features) 4235 { 4236 struct iavf_adapter *adapter = netdev_priv(netdev); 4237 4238 return iavf_fix_netdev_vlan_features(adapter, features); 4239 } 4240 4241 static const struct net_device_ops iavf_netdev_ops = { 4242 .ndo_open = iavf_open, 4243 .ndo_stop = iavf_close, 4244 .ndo_start_xmit = iavf_xmit_frame, 4245 .ndo_set_rx_mode = iavf_set_rx_mode, 4246 .ndo_validate_addr = eth_validate_addr, 4247 .ndo_set_mac_address = iavf_set_mac, 4248 .ndo_change_mtu = iavf_change_mtu, 4249 .ndo_tx_timeout = iavf_tx_timeout, 4250 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4251 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4252 .ndo_features_check = iavf_features_check, 4253 .ndo_fix_features = iavf_fix_features, 4254 .ndo_set_features = iavf_set_features, 4255 .ndo_setup_tc = iavf_setup_tc, 4256 }; 4257 4258 /** 4259 * iavf_check_reset_complete - check that VF reset is complete 4260 * @hw: pointer to hw struct 4261 * 4262 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4263 **/ 4264 static int iavf_check_reset_complete(struct iavf_hw *hw) 4265 { 4266 u32 rstat; 4267 int i; 4268 4269 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4270 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4271 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4272 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4273 (rstat == VIRTCHNL_VFR_COMPLETED)) 4274 return 0; 4275 usleep_range(10, 20); 4276 } 4277 return -EBUSY; 4278 } 4279 4280 /** 4281 * iavf_process_config - Process the config information we got from the PF 4282 * @adapter: board private structure 4283 * 4284 * Verify that we have a valid config struct, and set up our netdev features 4285 * and our VSI struct. 4286 **/ 4287 int iavf_process_config(struct iavf_adapter *adapter) 4288 { 4289 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4290 netdev_features_t hw_vlan_features, vlan_features; 4291 struct net_device *netdev = adapter->netdev; 4292 netdev_features_t hw_enc_features; 4293 netdev_features_t hw_features; 4294 4295 hw_enc_features = NETIF_F_SG | 4296 NETIF_F_IP_CSUM | 4297 NETIF_F_IPV6_CSUM | 4298 NETIF_F_HIGHDMA | 4299 NETIF_F_SOFT_FEATURES | 4300 NETIF_F_TSO | 4301 NETIF_F_TSO_ECN | 4302 NETIF_F_TSO6 | 4303 NETIF_F_SCTP_CRC | 4304 NETIF_F_RXHASH | 4305 NETIF_F_RXCSUM | 4306 0; 4307 4308 /* advertise to stack only if offloads for encapsulated packets is 4309 * supported 4310 */ 4311 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4312 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4313 NETIF_F_GSO_GRE | 4314 NETIF_F_GSO_GRE_CSUM | 4315 NETIF_F_GSO_IPXIP4 | 4316 NETIF_F_GSO_IPXIP6 | 4317 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4318 NETIF_F_GSO_PARTIAL | 4319 0; 4320 4321 if (!(vfres->vf_cap_flags & 4322 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4323 netdev->gso_partial_features |= 4324 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4325 4326 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4327 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4328 netdev->hw_enc_features |= hw_enc_features; 4329 } 4330 /* record features VLANs can make use of */ 4331 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4332 4333 /* Write features and hw_features separately to avoid polluting 4334 * with, or dropping, features that are set when we registered. 4335 */ 4336 hw_features = hw_enc_features; 4337 4338 /* get HW VLAN features that can be toggled */ 4339 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4340 4341 /* Enable cloud filter if ADQ is supported */ 4342 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4343 hw_features |= NETIF_F_HW_TC; 4344 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4345 hw_features |= NETIF_F_GSO_UDP_L4; 4346 4347 netdev->hw_features |= hw_features | hw_vlan_features; 4348 vlan_features = iavf_get_netdev_vlan_features(adapter); 4349 4350 netdev->features |= hw_features | vlan_features; 4351 4352 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4353 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4354 4355 netdev->priv_flags |= IFF_UNICAST_FLT; 4356 4357 /* Do not turn on offloads when they are requested to be turned off. 4358 * TSO needs minimum 576 bytes to work correctly. 4359 */ 4360 if (netdev->wanted_features) { 4361 if (!(netdev->wanted_features & NETIF_F_TSO) || 4362 netdev->mtu < 576) 4363 netdev->features &= ~NETIF_F_TSO; 4364 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4365 netdev->mtu < 576) 4366 netdev->features &= ~NETIF_F_TSO6; 4367 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4368 netdev->features &= ~NETIF_F_TSO_ECN; 4369 if (!(netdev->wanted_features & NETIF_F_GRO)) 4370 netdev->features &= ~NETIF_F_GRO; 4371 if (!(netdev->wanted_features & NETIF_F_GSO)) 4372 netdev->features &= ~NETIF_F_GSO; 4373 } 4374 4375 return 0; 4376 } 4377 4378 /** 4379 * iavf_shutdown - Shutdown the device in preparation for a reboot 4380 * @pdev: pci device structure 4381 **/ 4382 static void iavf_shutdown(struct pci_dev *pdev) 4383 { 4384 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4385 struct net_device *netdev = adapter->netdev; 4386 4387 netif_device_detach(netdev); 4388 4389 if (netif_running(netdev)) 4390 iavf_close(netdev); 4391 4392 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4393 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4394 /* Prevent the watchdog from running. */ 4395 iavf_change_state(adapter, __IAVF_REMOVE); 4396 adapter->aq_required = 0; 4397 mutex_unlock(&adapter->crit_lock); 4398 4399 #ifdef CONFIG_PM 4400 pci_save_state(pdev); 4401 4402 #endif 4403 pci_disable_device(pdev); 4404 } 4405 4406 /** 4407 * iavf_probe - Device Initialization Routine 4408 * @pdev: PCI device information struct 4409 * @ent: entry in iavf_pci_tbl 4410 * 4411 * Returns 0 on success, negative on failure 4412 * 4413 * iavf_probe initializes an adapter identified by a pci_dev structure. 4414 * The OS initialization, configuring of the adapter private structure, 4415 * and a hardware reset occur. 4416 **/ 4417 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4418 { 4419 struct net_device *netdev; 4420 struct iavf_adapter *adapter = NULL; 4421 struct iavf_hw *hw = NULL; 4422 int err; 4423 4424 err = pci_enable_device(pdev); 4425 if (err) 4426 return err; 4427 4428 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4429 if (err) { 4430 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4431 if (err) { 4432 dev_err(&pdev->dev, 4433 "DMA configuration failed: 0x%x\n", err); 4434 goto err_dma; 4435 } 4436 } 4437 4438 err = pci_request_regions(pdev, iavf_driver_name); 4439 if (err) { 4440 dev_err(&pdev->dev, 4441 "pci_request_regions failed 0x%x\n", err); 4442 goto err_pci_reg; 4443 } 4444 4445 pci_enable_pcie_error_reporting(pdev); 4446 4447 pci_set_master(pdev); 4448 4449 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4450 IAVF_MAX_REQ_QUEUES); 4451 if (!netdev) { 4452 err = -ENOMEM; 4453 goto err_alloc_etherdev; 4454 } 4455 4456 SET_NETDEV_DEV(netdev, &pdev->dev); 4457 4458 pci_set_drvdata(pdev, netdev); 4459 adapter = netdev_priv(netdev); 4460 4461 adapter->netdev = netdev; 4462 adapter->pdev = pdev; 4463 4464 hw = &adapter->hw; 4465 hw->back = adapter; 4466 4467 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4468 iavf_change_state(adapter, __IAVF_STARTUP); 4469 4470 /* Call save state here because it relies on the adapter struct. */ 4471 pci_save_state(pdev); 4472 4473 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4474 pci_resource_len(pdev, 0)); 4475 if (!hw->hw_addr) { 4476 err = -EIO; 4477 goto err_ioremap; 4478 } 4479 hw->vendor_id = pdev->vendor; 4480 hw->device_id = pdev->device; 4481 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4482 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4483 hw->subsystem_device_id = pdev->subsystem_device; 4484 hw->bus.device = PCI_SLOT(pdev->devfn); 4485 hw->bus.func = PCI_FUNC(pdev->devfn); 4486 hw->bus.bus_id = pdev->bus->number; 4487 4488 /* set up the locks for the AQ, do this only once in probe 4489 * and destroy them only once in remove 4490 */ 4491 mutex_init(&adapter->crit_lock); 4492 mutex_init(&adapter->client_lock); 4493 mutex_init(&hw->aq.asq_mutex); 4494 mutex_init(&hw->aq.arq_mutex); 4495 4496 spin_lock_init(&adapter->mac_vlan_list_lock); 4497 spin_lock_init(&adapter->cloud_filter_list_lock); 4498 spin_lock_init(&adapter->fdir_fltr_lock); 4499 spin_lock_init(&adapter->adv_rss_lock); 4500 4501 INIT_LIST_HEAD(&adapter->mac_filter_list); 4502 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4503 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4504 INIT_LIST_HEAD(&adapter->fdir_list_head); 4505 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4506 4507 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4508 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4509 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4510 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4511 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4512 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4513 4514 /* Setup the wait queue for indicating transition to down status */ 4515 init_waitqueue_head(&adapter->down_waitqueue); 4516 4517 return 0; 4518 4519 err_ioremap: 4520 free_netdev(netdev); 4521 err_alloc_etherdev: 4522 pci_disable_pcie_error_reporting(pdev); 4523 pci_release_regions(pdev); 4524 err_pci_reg: 4525 err_dma: 4526 pci_disable_device(pdev); 4527 return err; 4528 } 4529 4530 /** 4531 * iavf_suspend - Power management suspend routine 4532 * @dev_d: device info pointer 4533 * 4534 * Called when the system (VM) is entering sleep/suspend. 4535 **/ 4536 static int __maybe_unused iavf_suspend(struct device *dev_d) 4537 { 4538 struct net_device *netdev = dev_get_drvdata(dev_d); 4539 struct iavf_adapter *adapter = netdev_priv(netdev); 4540 4541 netif_device_detach(netdev); 4542 4543 while (!mutex_trylock(&adapter->crit_lock)) 4544 usleep_range(500, 1000); 4545 4546 if (netif_running(netdev)) { 4547 rtnl_lock(); 4548 iavf_down(adapter); 4549 rtnl_unlock(); 4550 } 4551 iavf_free_misc_irq(adapter); 4552 iavf_reset_interrupt_capability(adapter); 4553 4554 mutex_unlock(&adapter->crit_lock); 4555 4556 return 0; 4557 } 4558 4559 /** 4560 * iavf_resume - Power management resume routine 4561 * @dev_d: device info pointer 4562 * 4563 * Called when the system (VM) is resumed from sleep/suspend. 4564 **/ 4565 static int __maybe_unused iavf_resume(struct device *dev_d) 4566 { 4567 struct pci_dev *pdev = to_pci_dev(dev_d); 4568 struct iavf_adapter *adapter; 4569 u32 err; 4570 4571 adapter = iavf_pdev_to_adapter(pdev); 4572 4573 pci_set_master(pdev); 4574 4575 rtnl_lock(); 4576 err = iavf_set_interrupt_capability(adapter); 4577 if (err) { 4578 rtnl_unlock(); 4579 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 4580 return err; 4581 } 4582 err = iavf_request_misc_irq(adapter); 4583 rtnl_unlock(); 4584 if (err) { 4585 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 4586 return err; 4587 } 4588 4589 queue_work(iavf_wq, &adapter->reset_task); 4590 4591 netif_device_attach(adapter->netdev); 4592 4593 return err; 4594 } 4595 4596 /** 4597 * iavf_remove - Device Removal Routine 4598 * @pdev: PCI device information struct 4599 * 4600 * iavf_remove is called by the PCI subsystem to alert the driver 4601 * that it should release a PCI device. The could be caused by a 4602 * Hot-Plug event, or because the driver is going to be removed from 4603 * memory. 4604 **/ 4605 static void iavf_remove(struct pci_dev *pdev) 4606 { 4607 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4608 struct net_device *netdev = adapter->netdev; 4609 struct iavf_fdir_fltr *fdir, *fdirtmp; 4610 struct iavf_vlan_filter *vlf, *vlftmp; 4611 struct iavf_adv_rss *rss, *rsstmp; 4612 struct iavf_mac_filter *f, *ftmp; 4613 struct iavf_cloud_filter *cf, *cftmp; 4614 struct iavf_hw *hw = &adapter->hw; 4615 int err; 4616 4617 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 4618 /* Wait until port initialization is complete. 4619 * There are flows where register/unregister netdev may race. 4620 */ 4621 while (1) { 4622 mutex_lock(&adapter->crit_lock); 4623 if (adapter->state == __IAVF_RUNNING || 4624 adapter->state == __IAVF_DOWN || 4625 adapter->state == __IAVF_INIT_FAILED) { 4626 mutex_unlock(&adapter->crit_lock); 4627 break; 4628 } 4629 4630 mutex_unlock(&adapter->crit_lock); 4631 usleep_range(500, 1000); 4632 } 4633 cancel_delayed_work_sync(&adapter->watchdog_task); 4634 4635 if (adapter->netdev_registered) { 4636 rtnl_lock(); 4637 unregister_netdevice(netdev); 4638 adapter->netdev_registered = false; 4639 rtnl_unlock(); 4640 } 4641 if (CLIENT_ALLOWED(adapter)) { 4642 err = iavf_lan_del_device(adapter); 4643 if (err) 4644 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 4645 err); 4646 } 4647 4648 mutex_lock(&adapter->crit_lock); 4649 dev_info(&adapter->pdev->dev, "Remove device\n"); 4650 iavf_change_state(adapter, __IAVF_REMOVE); 4651 4652 iavf_request_reset(adapter); 4653 msleep(50); 4654 /* If the FW isn't responding, kick it once, but only once. */ 4655 if (!iavf_asq_done(hw)) { 4656 iavf_request_reset(adapter); 4657 msleep(50); 4658 } 4659 4660 iavf_misc_irq_disable(adapter); 4661 /* Shut down all the garbage mashers on the detention level */ 4662 cancel_work_sync(&adapter->reset_task); 4663 cancel_delayed_work_sync(&adapter->watchdog_task); 4664 cancel_work_sync(&adapter->adminq_task); 4665 cancel_delayed_work_sync(&adapter->client_task); 4666 4667 adapter->aq_required = 0; 4668 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 4669 4670 iavf_free_all_tx_resources(adapter); 4671 iavf_free_all_rx_resources(adapter); 4672 iavf_free_misc_irq(adapter); 4673 4674 iavf_reset_interrupt_capability(adapter); 4675 iavf_free_q_vectors(adapter); 4676 4677 iavf_free_rss(adapter); 4678 4679 if (hw->aq.asq.count) 4680 iavf_shutdown_adminq(hw); 4681 4682 /* destroy the locks only once, here */ 4683 mutex_destroy(&hw->aq.arq_mutex); 4684 mutex_destroy(&hw->aq.asq_mutex); 4685 mutex_destroy(&adapter->client_lock); 4686 mutex_unlock(&adapter->crit_lock); 4687 mutex_destroy(&adapter->crit_lock); 4688 4689 iounmap(hw->hw_addr); 4690 pci_release_regions(pdev); 4691 iavf_free_queues(adapter); 4692 kfree(adapter->vf_res); 4693 spin_lock_bh(&adapter->mac_vlan_list_lock); 4694 /* If we got removed before an up/down sequence, we've got a filter 4695 * hanging out there that we need to get rid of. 4696 */ 4697 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 4698 list_del(&f->list); 4699 kfree(f); 4700 } 4701 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 4702 list) { 4703 list_del(&vlf->list); 4704 kfree(vlf); 4705 } 4706 4707 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4708 4709 spin_lock_bh(&adapter->cloud_filter_list_lock); 4710 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 4711 list_del(&cf->list); 4712 kfree(cf); 4713 } 4714 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4715 4716 spin_lock_bh(&adapter->fdir_fltr_lock); 4717 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 4718 list_del(&fdir->list); 4719 kfree(fdir); 4720 } 4721 spin_unlock_bh(&adapter->fdir_fltr_lock); 4722 4723 spin_lock_bh(&adapter->adv_rss_lock); 4724 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 4725 list) { 4726 list_del(&rss->list); 4727 kfree(rss); 4728 } 4729 spin_unlock_bh(&adapter->adv_rss_lock); 4730 4731 free_netdev(netdev); 4732 4733 pci_disable_pcie_error_reporting(pdev); 4734 4735 pci_disable_device(pdev); 4736 } 4737 4738 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 4739 4740 static struct pci_driver iavf_driver = { 4741 .name = iavf_driver_name, 4742 .id_table = iavf_pci_tbl, 4743 .probe = iavf_probe, 4744 .remove = iavf_remove, 4745 .driver.pm = &iavf_pm_ops, 4746 .shutdown = iavf_shutdown, 4747 }; 4748 4749 /** 4750 * iavf_init_module - Driver Registration Routine 4751 * 4752 * iavf_init_module is the first routine called when the driver is 4753 * loaded. All it does is register with the PCI subsystem. 4754 **/ 4755 static int __init iavf_init_module(void) 4756 { 4757 int ret; 4758 4759 pr_info("iavf: %s\n", iavf_driver_string); 4760 4761 pr_info("%s\n", iavf_copyright); 4762 4763 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4764 iavf_driver_name); 4765 if (!iavf_wq) { 4766 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4767 return -ENOMEM; 4768 } 4769 ret = pci_register_driver(&iavf_driver); 4770 return ret; 4771 } 4772 4773 module_init(iavf_init_module); 4774 4775 /** 4776 * iavf_exit_module - Driver Exit Cleanup Routine 4777 * 4778 * iavf_exit_module is called just before the driver is removed 4779 * from memory. 4780 **/ 4781 static void __exit iavf_exit_module(void) 4782 { 4783 pci_unregister_driver(&iavf_driver); 4784 destroy_workqueue(iavf_wq); 4785 } 4786 4787 module_exit(iavf_exit_module); 4788 4789 /* iavf_main.c */ 4790