1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 	switch (status) {
57 	case IAVF_SUCCESS:
58 		return 0;
59 	case IAVF_ERR_PARAM:
60 	case IAVF_ERR_MAC_TYPE:
61 	case IAVF_ERR_INVALID_MAC_ADDR:
62 	case IAVF_ERR_INVALID_LINK_SETTINGS:
63 	case IAVF_ERR_INVALID_PD_ID:
64 	case IAVF_ERR_INVALID_QP_ID:
65 	case IAVF_ERR_INVALID_CQ_ID:
66 	case IAVF_ERR_INVALID_CEQ_ID:
67 	case IAVF_ERR_INVALID_AEQ_ID:
68 	case IAVF_ERR_INVALID_SIZE:
69 	case IAVF_ERR_INVALID_ARP_INDEX:
70 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 	case IAVF_ERR_INVALID_FRAG_COUNT:
73 	case IAVF_ERR_INVALID_ALIGNMENT:
74 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 	case IAVF_ERR_INVALID_VF_ID:
77 	case IAVF_ERR_INVALID_HMCFN_ID:
78 	case IAVF_ERR_INVALID_PBLE_INDEX:
79 	case IAVF_ERR_INVALID_SD_INDEX:
80 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 	case IAVF_ERR_INVALID_SD_TYPE:
82 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 		return -EINVAL;
86 	case IAVF_ERR_NVM:
87 	case IAVF_ERR_NVM_CHECKSUM:
88 	case IAVF_ERR_PHY:
89 	case IAVF_ERR_CONFIG:
90 	case IAVF_ERR_UNKNOWN_PHY:
91 	case IAVF_ERR_LINK_SETUP:
92 	case IAVF_ERR_ADAPTER_STOPPED:
93 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 	case IAVF_ERR_RESET_FAILED:
96 	case IAVF_ERR_BAD_PTR:
97 	case IAVF_ERR_SWFW_SYNC:
98 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 	case IAVF_ERR_QUEUE_EMPTY:
100 	case IAVF_ERR_FLUSHED_QUEUE:
101 	case IAVF_ERR_OPCODE_MISMATCH:
102 	case IAVF_ERR_CQP_COMPL_ERROR:
103 	case IAVF_ERR_BACKING_PAGE_ERROR:
104 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 	case IAVF_ERR_MEMCPY_FAILED:
106 	case IAVF_ERR_SRQ_ENABLED:
107 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 	case IAVF_ERR_ADMIN_QUEUE_FULL:
109 	case IAVF_ERR_BAD_IWARP_CQE:
110 	case IAVF_ERR_NVM_BLANK_MODE:
111 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 	case IAVF_ERR_DIAG_TEST_FAILED:
113 	case IAVF_ERR_FIRMWARE_API_VERSION:
114 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 		return -EIO;
116 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 		return -ENODEV;
118 	case IAVF_ERR_NO_AVAILABLE_VSI:
119 	case IAVF_ERR_RING_FULL:
120 		return -ENOSPC;
121 	case IAVF_ERR_NO_MEMORY:
122 		return -ENOMEM;
123 	case IAVF_ERR_TIMEOUT:
124 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 		return -ETIMEDOUT;
126 	case IAVF_ERR_NOT_IMPLEMENTED:
127 	case IAVF_NOT_SUPPORTED:
128 		return -EOPNOTSUPP;
129 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 		return -EALREADY;
131 	case IAVF_ERR_NOT_READY:
132 		return -EBUSY;
133 	case IAVF_ERR_BUF_TOO_SHORT:
134 		return -EMSGSIZE;
135 	}
136 
137 	return -EIO;
138 }
139 
140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 	switch (v_status) {
143 	case VIRTCHNL_STATUS_SUCCESS:
144 		return 0;
145 	case VIRTCHNL_STATUS_ERR_PARAM:
146 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 		return -EINVAL;
148 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 		return -ENOMEM;
150 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 		return -EIO;
154 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 		return -EOPNOTSUPP;
156 	}
157 
158 	return -EIO;
159 }
160 
161 /**
162  * iavf_pdev_to_adapter - go from pci_dev to adapter
163  * @pdev: pci_dev pointer
164  */
165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 	return netdev_priv(pci_get_drvdata(pdev));
168 }
169 
170 /**
171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172  * @hw:   pointer to the HW structure
173  * @mem:  ptr to mem struct to fill out
174  * @size: size of memory requested
175  * @alignment: what to align the allocation to
176  **/
177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 					 struct iavf_dma_mem *mem,
179 					 u64 size, u32 alignment)
180 {
181 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182 
183 	if (!mem)
184 		return IAVF_ERR_PARAM;
185 
186 	mem->size = ALIGN(size, alignment);
187 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 	if (mem->va)
190 		return 0;
191 	else
192 		return IAVF_ERR_NO_MEMORY;
193 }
194 
195 /**
196  * iavf_free_dma_mem_d - OS specific memory free for shared code
197  * @hw:   pointer to the HW structure
198  * @mem:  ptr to mem struct to free
199  **/
200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 				     struct iavf_dma_mem *mem)
202 {
203 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204 
205 	if (!mem || !mem->va)
206 		return IAVF_ERR_PARAM;
207 	dma_free_coherent(&adapter->pdev->dev, mem->size,
208 			  mem->va, (dma_addr_t)mem->pa);
209 	return 0;
210 }
211 
212 /**
213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214  * @hw:   pointer to the HW structure
215  * @mem:  ptr to mem struct to fill out
216  * @size: size of memory requested
217  **/
218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 					  struct iavf_virt_mem *mem, u32 size)
220 {
221 	if (!mem)
222 		return IAVF_ERR_PARAM;
223 
224 	mem->size = size;
225 	mem->va = kzalloc(size, GFP_KERNEL);
226 
227 	if (mem->va)
228 		return 0;
229 	else
230 		return IAVF_ERR_NO_MEMORY;
231 }
232 
233 /**
234  * iavf_free_virt_mem_d - OS specific memory free for shared code
235  * @hw:   pointer to the HW structure
236  * @mem:  ptr to mem struct to free
237  **/
238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 				      struct iavf_virt_mem *mem)
240 {
241 	if (!mem)
242 		return IAVF_ERR_PARAM;
243 
244 	/* it's ok to kfree a NULL pointer */
245 	kfree(mem->va);
246 
247 	return 0;
248 }
249 
250 /**
251  * iavf_lock_timeout - try to lock mutex but give up after timeout
252  * @lock: mutex that should be locked
253  * @msecs: timeout in msecs
254  *
255  * Returns 0 on success, negative on failure
256  **/
257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 	unsigned int wait, delay = 10;
260 
261 	for (wait = 0; wait < msecs; wait += delay) {
262 		if (mutex_trylock(lock))
263 			return 0;
264 
265 		msleep(delay);
266 	}
267 
268 	return -1;
269 }
270 
271 /**
272  * iavf_schedule_reset - Set the flags and schedule a reset event
273  * @adapter: board private structure
274  **/
275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 	if (!(adapter->flags &
278 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 		queue_work(iavf_wq, &adapter->reset_task);
281 	}
282 }
283 
284 /**
285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
286  * @adapter: board private structure
287  *
288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289  * request and refresh ethtool stats
290  **/
291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296 
297 /**
298  * iavf_tx_timeout - Respond to a Tx Hang
299  * @netdev: network interface device structure
300  * @txqueue: queue number that is timing out
301  **/
302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 	struct iavf_adapter *adapter = netdev_priv(netdev);
305 
306 	adapter->tx_timeout_count++;
307 	iavf_schedule_reset(adapter);
308 }
309 
310 /**
311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312  * @adapter: board private structure
313  **/
314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 	struct iavf_hw *hw = &adapter->hw;
317 
318 	if (!adapter->msix_entries)
319 		return;
320 
321 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322 
323 	iavf_flush(hw);
324 
325 	synchronize_irq(adapter->msix_entries[0].vector);
326 }
327 
328 /**
329  * iavf_misc_irq_enable - Enable default interrupt generation settings
330  * @adapter: board private structure
331  **/
332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 	struct iavf_hw *hw = &adapter->hw;
335 
336 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339 
340 	iavf_flush(hw);
341 }
342 
343 /**
344  * iavf_irq_disable - Mask off interrupt generation on the NIC
345  * @adapter: board private structure
346  **/
347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 	int i;
350 	struct iavf_hw *hw = &adapter->hw;
351 
352 	if (!adapter->msix_entries)
353 		return;
354 
355 	for (i = 1; i < adapter->num_msix_vectors; i++) {
356 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 		synchronize_irq(adapter->msix_entries[i].vector);
358 	}
359 	iavf_flush(hw);
360 }
361 
362 /**
363  * iavf_irq_enable_queues - Enable interrupt for specified queues
364  * @adapter: board private structure
365  * @mask: bitmap of queues to enable
366  **/
367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 	struct iavf_hw *hw = &adapter->hw;
370 	int i;
371 
372 	for (i = 1; i < adapter->num_msix_vectors; i++) {
373 		if (mask & BIT(i - 1)) {
374 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 		}
378 	}
379 }
380 
381 /**
382  * iavf_irq_enable - Enable default interrupt generation settings
383  * @adapter: board private structure
384  * @flush: boolean value whether to run rd32()
385  **/
386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 	struct iavf_hw *hw = &adapter->hw;
389 
390 	iavf_misc_irq_enable(adapter);
391 	iavf_irq_enable_queues(adapter, ~0);
392 
393 	if (flush)
394 		iavf_flush(hw);
395 }
396 
397 /**
398  * iavf_msix_aq - Interrupt handler for vector 0
399  * @irq: interrupt number
400  * @data: pointer to netdev
401  **/
402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 	struct net_device *netdev = data;
405 	struct iavf_adapter *adapter = netdev_priv(netdev);
406 	struct iavf_hw *hw = &adapter->hw;
407 
408 	/* handle non-queue interrupts, these reads clear the registers */
409 	rd32(hw, IAVF_VFINT_ICR01);
410 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
411 
412 	if (adapter->state != __IAVF_REMOVE)
413 		/* schedule work on the private workqueue */
414 		queue_work(iavf_wq, &adapter->adminq_task);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /**
420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421  * @irq: interrupt number
422  * @data: pointer to a q_vector
423  **/
424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 	struct iavf_q_vector *q_vector = data;
427 
428 	if (!q_vector->tx.ring && !q_vector->rx.ring)
429 		return IRQ_HANDLED;
430 
431 	napi_schedule_irqoff(&q_vector->napi);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * iavf_map_vector_to_rxq - associate irqs with rx queues
438  * @adapter: board private structure
439  * @v_idx: interrupt number
440  * @r_idx: queue number
441  **/
442 static void
443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 	struct iavf_hw *hw = &adapter->hw;
448 
449 	rx_ring->q_vector = q_vector;
450 	rx_ring->next = q_vector->rx.ring;
451 	rx_ring->vsi = &adapter->vsi;
452 	q_vector->rx.ring = rx_ring;
453 	q_vector->rx.count++;
454 	q_vector->rx.next_update = jiffies + 1;
455 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 	q_vector->ring_mask |= BIT(r_idx);
457 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 	     q_vector->rx.current_itr >> 1);
459 	q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461 
462 /**
463  * iavf_map_vector_to_txq - associate irqs with tx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @t_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	tx_ring->q_vector = q_vector;
476 	tx_ring->next = q_vector->tx.ring;
477 	tx_ring->vsi = &adapter->vsi;
478 	q_vector->tx.ring = tx_ring;
479 	q_vector->tx.count++;
480 	q_vector->tx.next_update = jiffies + 1;
481 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 	q_vector->num_ringpairs++;
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 	     q_vector->tx.target_itr >> 1);
485 	q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487 
488 /**
489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490  * @adapter: board private structure to initialize
491  *
492  * This function maps descriptor rings to the queue-specific vectors
493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
494  * one vector per ring/queue, but on a constrained vector budget, we
495  * group the rings as "efficiently" as possible.  You would add new
496  * mapping configurations in here.
497  **/
498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 	int rings_remaining = adapter->num_active_queues;
501 	int ridx = 0, vidx = 0;
502 	int q_vectors;
503 
504 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505 
506 	for (; ridx < rings_remaining; ridx++) {
507 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 		iavf_map_vector_to_txq(adapter, vidx, ridx);
509 
510 		/* In the case where we have more queues than vectors, continue
511 		 * round-robin on vectors until all queues are mapped.
512 		 */
513 		if (++vidx >= q_vectors)
514 			vidx = 0;
515 	}
516 
517 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519 
520 /**
521  * iavf_irq_affinity_notify - Callback for affinity changes
522  * @notify: context as to what irq was changed
523  * @mask: the new affinity mask
524  *
525  * This is a callback function used by the irq_set_affinity_notifier function
526  * so that we may register to receive changes to the irq affinity masks.
527  **/
528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 				     const cpumask_t *mask)
530 {
531 	struct iavf_q_vector *q_vector =
532 		container_of(notify, struct iavf_q_vector, affinity_notify);
533 
534 	cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536 
537 /**
538  * iavf_irq_affinity_release - Callback for affinity notifier release
539  * @ref: internal core kernel usage
540  *
541  * This is a callback function used by the irq_set_affinity_notifier function
542  * to inform the current notification subscriber that they will no longer
543  * receive notifications.
544  **/
545 static void iavf_irq_affinity_release(struct kref *ref) {}
546 
547 /**
548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549  * @adapter: board private structure
550  * @basename: device basename
551  *
552  * Allocates MSI-X vectors for tx and rx handling, and requests
553  * interrupts from the kernel.
554  **/
555 static int
556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 	unsigned int vector, q_vectors;
559 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 	int irq_num, err;
561 	int cpu;
562 
563 	iavf_irq_disable(adapter);
564 	/* Decrement for Other and TCP Timer vectors */
565 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566 
567 	for (vector = 0; vector < q_vectors; vector++) {
568 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569 
570 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571 
572 		if (q_vector->tx.ring && q_vector->rx.ring) {
573 			snprintf(q_vector->name, sizeof(q_vector->name),
574 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 			tx_int_idx++;
576 		} else if (q_vector->rx.ring) {
577 			snprintf(q_vector->name, sizeof(q_vector->name),
578 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 		} else if (q_vector->tx.ring) {
580 			snprintf(q_vector->name, sizeof(q_vector->name),
581 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 		} else {
583 			/* skip this unused q_vector */
584 			continue;
585 		}
586 		err = request_irq(irq_num,
587 				  iavf_msix_clean_rings,
588 				  0,
589 				  q_vector->name,
590 				  q_vector);
591 		if (err) {
592 			dev_info(&adapter->pdev->dev,
593 				 "Request_irq failed, error: %d\n", err);
594 			goto free_queue_irqs;
595 		}
596 		/* register for affinity change notifications */
597 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 		q_vector->affinity_notify.release =
599 						   iavf_irq_affinity_release;
600 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 		/* Spread the IRQ affinity hints across online CPUs. Note that
602 		 * get_cpu_mask returns a mask with a permanent lifetime so
603 		 * it's safe to use as a hint for irq_update_affinity_hint.
604 		 */
605 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 	}
608 
609 	return 0;
610 
611 free_queue_irqs:
612 	while (vector) {
613 		vector--;
614 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 		irq_set_affinity_notifier(irq_num, NULL);
616 		irq_update_affinity_hint(irq_num, NULL);
617 		free_irq(irq_num, &adapter->q_vectors[vector]);
618 	}
619 	return err;
620 }
621 
622 /**
623  * iavf_request_misc_irq - Initialize MSI-X interrupts
624  * @adapter: board private structure
625  *
626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627  * vector is only for the admin queue, and stays active even when the netdev
628  * is closed.
629  **/
630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 	struct net_device *netdev = adapter->netdev;
633 	int err;
634 
635 	snprintf(adapter->misc_vector_name,
636 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 		 dev_name(&adapter->pdev->dev));
638 	err = request_irq(adapter->msix_entries[0].vector,
639 			  &iavf_msix_aq, 0,
640 			  adapter->misc_vector_name, netdev);
641 	if (err) {
642 		dev_err(&adapter->pdev->dev,
643 			"request_irq for %s failed: %d\n",
644 			adapter->misc_vector_name, err);
645 		free_irq(adapter->msix_entries[0].vector, netdev);
646 	}
647 	return err;
648 }
649 
650 /**
651  * iavf_free_traffic_irqs - Free MSI-X interrupts
652  * @adapter: board private structure
653  *
654  * Frees all MSI-X vectors other than 0.
655  **/
656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 	int vector, irq_num, q_vectors;
659 
660 	if (!adapter->msix_entries)
661 		return;
662 
663 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664 
665 	for (vector = 0; vector < q_vectors; vector++) {
666 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 		irq_set_affinity_notifier(irq_num, NULL);
668 		irq_update_affinity_hint(irq_num, NULL);
669 		free_irq(irq_num, &adapter->q_vectors[vector]);
670 	}
671 }
672 
673 /**
674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675  * @adapter: board private structure
676  *
677  * Frees MSI-X vector 0.
678  **/
679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 	struct net_device *netdev = adapter->netdev;
682 
683 	if (!adapter->msix_entries)
684 		return;
685 
686 	free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688 
689 /**
690  * iavf_configure_tx - Configure Transmit Unit after Reset
691  * @adapter: board private structure
692  *
693  * Configure the Tx unit of the MAC after a reset.
694  **/
695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 	struct iavf_hw *hw = &adapter->hw;
698 	int i;
699 
700 	for (i = 0; i < adapter->num_active_queues; i++)
701 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703 
704 /**
705  * iavf_configure_rx - Configure Receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  **/
710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 	struct iavf_hw *hw = &adapter->hw;
714 	int i;
715 
716 	/* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 		struct net_device *netdev = adapter->netdev;
720 
721 		/* For jumbo frames on systems with 4K pages we have to use
722 		 * an order 1 page, so we might as well increase the size
723 		 * of our Rx buffer to make better use of the available space
724 		 */
725 		rx_buf_len = IAVF_RXBUFFER_3072;
726 
727 		/* We use a 1536 buffer size for configurations with
728 		 * standard Ethernet mtu.  On x86 this gives us enough room
729 		 * for shared info and 192 bytes of padding.
730 		 */
731 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 		    (netdev->mtu <= ETH_DATA_LEN))
733 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 	}
735 #endif
736 
737 	for (i = 0; i < adapter->num_active_queues; i++) {
738 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740 
741 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 		else
744 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 	}
746 }
747 
748 /**
749  * iavf_find_vlan - Search filter list for specific vlan filter
750  * @adapter: board private structure
751  * @vlan: vlan tag
752  *
753  * Returns ptr to the filter object or NULL. Must be called while holding the
754  * mac_vlan_list_lock.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 				 struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f;
761 
762 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 		if (f->vlan.vid == vlan.vid &&
764 		    f->vlan.tpid == vlan.tpid)
765 			return f;
766 	}
767 
768 	return NULL;
769 }
770 
771 /**
772  * iavf_add_vlan - Add a vlan filter to the list
773  * @adapter: board private structure
774  * @vlan: VLAN tag
775  *
776  * Returns ptr to the filter object or NULL when no memory available.
777  **/
778 static struct
779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 				struct iavf_vlan vlan)
781 {
782 	struct iavf_vlan_filter *f = NULL;
783 
784 	spin_lock_bh(&adapter->mac_vlan_list_lock);
785 
786 	f = iavf_find_vlan(adapter, vlan);
787 	if (!f) {
788 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 		if (!f)
790 			goto clearout;
791 
792 		f->vlan = vlan;
793 
794 		list_add_tail(&f->list, &adapter->vlan_filter_list);
795 		f->add = true;
796 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 	}
798 
799 clearout:
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 	return f;
802 }
803 
804 /**
805  * iavf_del_vlan - Remove a vlan filter from the list
806  * @adapter: board private structure
807  * @vlan: VLAN tag
808  **/
809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	spin_lock_bh(&adapter->mac_vlan_list_lock);
814 
815 	f = iavf_find_vlan(adapter, vlan);
816 	if (f) {
817 		f->remove = true;
818 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823 
824 /**
825  * iavf_restore_filters
826  * @adapter: board private structure
827  *
828  * Restore existing non MAC filters when VF netdev comes back up
829  **/
830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 	u16 vid;
833 
834 	/* re-add all VLAN filters */
835 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837 
838 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841 
842 /**
843  * iavf_get_num_vlans_added - get number of VLANs added
844  * @adapter: board private structure
845  */
846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851 
852 /**
853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854  * @adapter: board private structure
855  *
856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857  * do not impose a limit as that maintains current behavior and for
858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859  **/
860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 	 * never been a limit on the VF driver side
864 	 */
865 	if (VLAN_ALLOWED(adapter))
866 		return VLAN_N_VID;
867 	else if (VLAN_V2_ALLOWED(adapter))
868 		return adapter->vlan_v2_caps.filtering.max_filters;
869 
870 	return 0;
871 }
872 
873 /**
874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875  * @adapter: board private structure
876  **/
877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 	if (iavf_get_num_vlans_added(adapter) <
880 	    iavf_get_max_vlans_allowed(adapter))
881 		return false;
882 
883 	return true;
884 }
885 
886 /**
887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888  * @netdev: network device struct
889  * @proto: unused protocol data
890  * @vid: VLAN tag
891  **/
892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 				__always_unused __be16 proto, u16 vid)
894 {
895 	struct iavf_adapter *adapter = netdev_priv(netdev);
896 
897 	if (!VLAN_FILTERING_ALLOWED(adapter))
898 		return -EIO;
899 
900 	if (iavf_max_vlans_added(adapter)) {
901 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 			   iavf_get_max_vlans_allowed(adapter));
903 		return -EIO;
904 	}
905 
906 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 		return -ENOMEM;
908 
909 	return 0;
910 }
911 
912 /**
913  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
914  * @netdev: network device struct
915  * @proto: unused protocol data
916  * @vid: VLAN tag
917  **/
918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
919 				 __always_unused __be16 proto, u16 vid)
920 {
921 	struct iavf_adapter *adapter = netdev_priv(netdev);
922 
923 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
924 	if (proto == cpu_to_be16(ETH_P_8021Q))
925 		clear_bit(vid, adapter->vsi.active_cvlans);
926 	else
927 		clear_bit(vid, adapter->vsi.active_svlans);
928 
929 	return 0;
930 }
931 
932 /**
933  * iavf_find_filter - Search filter list for specific mac filter
934  * @adapter: board private structure
935  * @macaddr: the MAC address
936  *
937  * Returns ptr to the filter object or NULL. Must be called while holding the
938  * mac_vlan_list_lock.
939  **/
940 static struct
941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 				  const u8 *macaddr)
943 {
944 	struct iavf_mac_filter *f;
945 
946 	if (!macaddr)
947 		return NULL;
948 
949 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 		if (ether_addr_equal(macaddr, f->macaddr))
951 			return f;
952 	}
953 	return NULL;
954 }
955 
956 /**
957  * iavf_add_filter - Add a mac filter to the filter list
958  * @adapter: board private structure
959  * @macaddr: the MAC address
960  *
961  * Returns ptr to the filter object or NULL when no memory available.
962  **/
963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 					const u8 *macaddr)
965 {
966 	struct iavf_mac_filter *f;
967 
968 	if (!macaddr)
969 		return NULL;
970 
971 	f = iavf_find_filter(adapter, macaddr);
972 	if (!f) {
973 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 		if (!f)
975 			return f;
976 
977 		ether_addr_copy(f->macaddr, macaddr);
978 
979 		list_add_tail(&f->list, &adapter->mac_filter_list);
980 		f->add = true;
981 		f->add_handled = false;
982 		f->is_new_mac = true;
983 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 	} else {
986 		f->remove = false;
987 	}
988 
989 	return f;
990 }
991 
992 /**
993  * iavf_replace_primary_mac - Replace current primary address
994  * @adapter: board private structure
995  * @new_mac: new MAC address to be applied
996  *
997  * Replace current dev_addr and send request to PF for removal of previous
998  * primary MAC address filter and addition of new primary MAC filter.
999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 			     const u8 *new_mac)
1005 {
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *f;
1008 
1009 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1010 
1011 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1012 		f->is_primary = false;
1013 	}
1014 
1015 	f = iavf_find_filter(adapter, hw->mac.addr);
1016 	if (f) {
1017 		f->remove = true;
1018 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 	}
1020 
1021 	f = iavf_add_filter(adapter, new_mac);
1022 
1023 	if (f) {
1024 		/* Always send the request to add if changing primary MAC
1025 		 * even if filter is already present on the list
1026 		 */
1027 		f->is_primary = true;
1028 		f->add = true;
1029 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1030 		ether_addr_copy(hw->mac.addr, new_mac);
1031 	}
1032 
1033 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1034 
1035 	/* schedule the watchdog task to immediately process the request */
1036 	if (f) {
1037 		queue_work(iavf_wq, &adapter->watchdog_task.work);
1038 		return 0;
1039 	}
1040 	return -ENOMEM;
1041 }
1042 
1043 /**
1044  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1045  * @netdev: network interface device structure
1046  * @macaddr: MAC address to set
1047  *
1048  * Returns true on success, false on failure
1049  */
1050 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1051 				    const u8 *macaddr)
1052 {
1053 	struct iavf_adapter *adapter = netdev_priv(netdev);
1054 	struct iavf_mac_filter *f;
1055 	bool ret = false;
1056 
1057 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1058 
1059 	f = iavf_find_filter(adapter, macaddr);
1060 
1061 	if (!f || (!f->add && f->add_handled))
1062 		ret = true;
1063 
1064 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * iavf_set_mac - NDO callback to set port MAC address
1071  * @netdev: network interface device structure
1072  * @p: pointer to an address structure
1073  *
1074  * Returns 0 on success, negative on failure
1075  */
1076 static int iavf_set_mac(struct net_device *netdev, void *p)
1077 {
1078 	struct iavf_adapter *adapter = netdev_priv(netdev);
1079 	struct sockaddr *addr = p;
1080 	int ret;
1081 
1082 	if (!is_valid_ether_addr(addr->sa_data))
1083 		return -EADDRNOTAVAIL;
1084 
1085 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1086 
1087 	if (ret)
1088 		return ret;
1089 
1090 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1091 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1092 					       msecs_to_jiffies(2500));
1093 
1094 	/* If ret < 0 then it means wait was interrupted.
1095 	 * If ret == 0 then it means we got a timeout.
1096 	 * else it means we got response for set MAC from PF,
1097 	 * check if netdev MAC was updated to requested MAC,
1098 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1099 	 */
1100 	if (ret < 0)
1101 		return ret;
1102 
1103 	if (!ret)
1104 		return -EAGAIN;
1105 
1106 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1107 		return -EACCES;
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1114  * @netdev: the netdevice
1115  * @addr: address to add
1116  *
1117  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1118  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1119  */
1120 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1121 {
1122 	struct iavf_adapter *adapter = netdev_priv(netdev);
1123 
1124 	if (iavf_add_filter(adapter, addr))
1125 		return 0;
1126 	else
1127 		return -ENOMEM;
1128 }
1129 
1130 /**
1131  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1132  * @netdev: the netdevice
1133  * @addr: address to add
1134  *
1135  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1136  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1137  */
1138 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1139 {
1140 	struct iavf_adapter *adapter = netdev_priv(netdev);
1141 	struct iavf_mac_filter *f;
1142 
1143 	/* Under some circumstances, we might receive a request to delete
1144 	 * our own device address from our uc list. Because we store the
1145 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1146 	 * such requests and not delete our device address from this list.
1147 	 */
1148 	if (ether_addr_equal(addr, netdev->dev_addr))
1149 		return 0;
1150 
1151 	f = iavf_find_filter(adapter, addr);
1152 	if (f) {
1153 		f->remove = true;
1154 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /**
1160  * iavf_set_rx_mode - NDO callback to set the netdev filters
1161  * @netdev: network interface device structure
1162  **/
1163 static void iavf_set_rx_mode(struct net_device *netdev)
1164 {
1165 	struct iavf_adapter *adapter = netdev_priv(netdev);
1166 
1167 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1168 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1169 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1170 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1171 
1172 	if (netdev->flags & IFF_PROMISC &&
1173 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1174 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1175 	else if (!(netdev->flags & IFF_PROMISC) &&
1176 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1177 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1178 
1179 	if (netdev->flags & IFF_ALLMULTI &&
1180 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1181 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1182 	else if (!(netdev->flags & IFF_ALLMULTI) &&
1183 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1184 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1185 }
1186 
1187 /**
1188  * iavf_napi_enable_all - enable NAPI on all queue vectors
1189  * @adapter: board private structure
1190  **/
1191 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1192 {
1193 	int q_idx;
1194 	struct iavf_q_vector *q_vector;
1195 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1196 
1197 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1198 		struct napi_struct *napi;
1199 
1200 		q_vector = &adapter->q_vectors[q_idx];
1201 		napi = &q_vector->napi;
1202 		napi_enable(napi);
1203 	}
1204 }
1205 
1206 /**
1207  * iavf_napi_disable_all - disable NAPI on all queue vectors
1208  * @adapter: board private structure
1209  **/
1210 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1211 {
1212 	int q_idx;
1213 	struct iavf_q_vector *q_vector;
1214 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1215 
1216 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1217 		q_vector = &adapter->q_vectors[q_idx];
1218 		napi_disable(&q_vector->napi);
1219 	}
1220 }
1221 
1222 /**
1223  * iavf_configure - set up transmit and receive data structures
1224  * @adapter: board private structure
1225  **/
1226 static void iavf_configure(struct iavf_adapter *adapter)
1227 {
1228 	struct net_device *netdev = adapter->netdev;
1229 	int i;
1230 
1231 	iavf_set_rx_mode(netdev);
1232 
1233 	iavf_configure_tx(adapter);
1234 	iavf_configure_rx(adapter);
1235 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1236 
1237 	for (i = 0; i < adapter->num_active_queues; i++) {
1238 		struct iavf_ring *ring = &adapter->rx_rings[i];
1239 
1240 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1241 	}
1242 }
1243 
1244 /**
1245  * iavf_up_complete - Finish the last steps of bringing up a connection
1246  * @adapter: board private structure
1247  *
1248  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1249  **/
1250 static void iavf_up_complete(struct iavf_adapter *adapter)
1251 {
1252 	iavf_change_state(adapter, __IAVF_RUNNING);
1253 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1254 
1255 	iavf_napi_enable_all(adapter);
1256 
1257 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1258 	if (CLIENT_ENABLED(adapter))
1259 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1260 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1261 }
1262 
1263 /**
1264  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1265  * yet and mark other to be removed.
1266  * @adapter: board private structure
1267  **/
1268 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1269 {
1270 	struct iavf_vlan_filter *vlf, *vlftmp;
1271 	struct iavf_mac_filter *f, *ftmp;
1272 
1273 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1274 	/* clear the sync flag on all filters */
1275 	__dev_uc_unsync(adapter->netdev, NULL);
1276 	__dev_mc_unsync(adapter->netdev, NULL);
1277 
1278 	/* remove all MAC filters */
1279 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1280 				 list) {
1281 		if (f->add) {
1282 			list_del(&f->list);
1283 			kfree(f);
1284 		} else {
1285 			f->remove = true;
1286 		}
1287 	}
1288 
1289 	/* remove all VLAN filters */
1290 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1291 				 list) {
1292 		if (vlf->add) {
1293 			list_del(&vlf->list);
1294 			kfree(vlf);
1295 		} else {
1296 			vlf->remove = true;
1297 		}
1298 	}
1299 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300 }
1301 
1302 /**
1303  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304  * mark other to be removed.
1305  * @adapter: board private structure
1306  **/
1307 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308 {
1309 	struct iavf_cloud_filter *cf, *cftmp;
1310 
1311 	/* remove all cloud filters */
1312 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1313 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314 				 list) {
1315 		if (cf->add) {
1316 			list_del(&cf->list);
1317 			kfree(cf);
1318 			adapter->num_cloud_filters--;
1319 		} else {
1320 			cf->del = true;
1321 		}
1322 	}
1323 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324 }
1325 
1326 /**
1327  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328  * other to be removed.
1329  * @adapter: board private structure
1330  **/
1331 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332 {
1333 	struct iavf_fdir_fltr *fdir, *fdirtmp;
1334 
1335 	/* remove all Flow Director filters */
1336 	spin_lock_bh(&adapter->fdir_fltr_lock);
1337 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1338 				 list) {
1339 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1340 			list_del(&fdir->list);
1341 			kfree(fdir);
1342 			adapter->fdir_active_fltr--;
1343 		} else {
1344 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1345 		}
1346 	}
1347 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1348 }
1349 
1350 /**
1351  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1352  * other to be removed.
1353  * @adapter: board private structure
1354  **/
1355 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1356 {
1357 	struct iavf_adv_rss *rss, *rsstmp;
1358 
1359 	/* remove all advance RSS configuration */
1360 	spin_lock_bh(&adapter->adv_rss_lock);
1361 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1362 				 list) {
1363 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1364 			list_del(&rss->list);
1365 			kfree(rss);
1366 		} else {
1367 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1368 		}
1369 	}
1370 	spin_unlock_bh(&adapter->adv_rss_lock);
1371 }
1372 
1373 /**
1374  * iavf_down - Shutdown the connection processing
1375  * @adapter: board private structure
1376  *
1377  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1378  **/
1379 void iavf_down(struct iavf_adapter *adapter)
1380 {
1381 	struct net_device *netdev = adapter->netdev;
1382 
1383 	if (adapter->state <= __IAVF_DOWN_PENDING)
1384 		return;
1385 
1386 	netif_carrier_off(netdev);
1387 	netif_tx_disable(netdev);
1388 	adapter->link_up = false;
1389 	iavf_napi_disable_all(adapter);
1390 	iavf_irq_disable(adapter);
1391 
1392 	iavf_clear_mac_vlan_filters(adapter);
1393 	iavf_clear_cloud_filters(adapter);
1394 	iavf_clear_fdir_filters(adapter);
1395 	iavf_clear_adv_rss_conf(adapter);
1396 
1397 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1398 		/* cancel any current operation */
1399 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1400 		/* Schedule operations to close down the HW. Don't wait
1401 		 * here for this to complete. The watchdog is still running
1402 		 * and it will take care of this.
1403 		 */
1404 		if (!list_empty(&adapter->mac_filter_list))
1405 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1406 		if (!list_empty(&adapter->vlan_filter_list))
1407 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1408 		if (!list_empty(&adapter->cloud_filter_list))
1409 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1410 		if (!list_empty(&adapter->fdir_list_head))
1411 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1412 		if (!list_empty(&adapter->adv_rss_list_head))
1413 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1414 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1415 	}
1416 
1417 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1418 }
1419 
1420 /**
1421  * iavf_acquire_msix_vectors - Setup the MSIX capability
1422  * @adapter: board private structure
1423  * @vectors: number of vectors to request
1424  *
1425  * Work with the OS to set up the MSIX vectors needed.
1426  *
1427  * Returns 0 on success, negative on failure
1428  **/
1429 static int
1430 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1431 {
1432 	int err, vector_threshold;
1433 
1434 	/* We'll want at least 3 (vector_threshold):
1435 	 * 0) Other (Admin Queue and link, mostly)
1436 	 * 1) TxQ[0] Cleanup
1437 	 * 2) RxQ[0] Cleanup
1438 	 */
1439 	vector_threshold = MIN_MSIX_COUNT;
1440 
1441 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1442 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1443 	 * Right now, we simply care about how many we'll get; we'll
1444 	 * set them up later while requesting irq's.
1445 	 */
1446 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1447 				    vector_threshold, vectors);
1448 	if (err < 0) {
1449 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1450 		kfree(adapter->msix_entries);
1451 		adapter->msix_entries = NULL;
1452 		return err;
1453 	}
1454 
1455 	/* Adjust for only the vectors we'll use, which is minimum
1456 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1457 	 * vectors we were allocated.
1458 	 */
1459 	adapter->num_msix_vectors = err;
1460 	return 0;
1461 }
1462 
1463 /**
1464  * iavf_free_queues - Free memory for all rings
1465  * @adapter: board private structure to initialize
1466  *
1467  * Free all of the memory associated with queue pairs.
1468  **/
1469 static void iavf_free_queues(struct iavf_adapter *adapter)
1470 {
1471 	if (!adapter->vsi_res)
1472 		return;
1473 	adapter->num_active_queues = 0;
1474 	kfree(adapter->tx_rings);
1475 	adapter->tx_rings = NULL;
1476 	kfree(adapter->rx_rings);
1477 	adapter->rx_rings = NULL;
1478 }
1479 
1480 /**
1481  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1482  * @adapter: board private structure
1483  *
1484  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1485  * stripped in certain descriptor fields. Instead of checking the offload
1486  * capability bits in the hot path, cache the location the ring specific
1487  * flags.
1488  */
1489 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < adapter->num_active_queues; i++) {
1494 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1495 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1496 
1497 		/* prevent multiple L2TAG bits being set after VFR */
1498 		tx_ring->flags &=
1499 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1500 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1501 		rx_ring->flags &=
1502 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1503 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1504 
1505 		if (VLAN_ALLOWED(adapter)) {
1506 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1507 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1508 		} else if (VLAN_V2_ALLOWED(adapter)) {
1509 			struct virtchnl_vlan_supported_caps *stripping_support;
1510 			struct virtchnl_vlan_supported_caps *insertion_support;
1511 
1512 			stripping_support =
1513 				&adapter->vlan_v2_caps.offloads.stripping_support;
1514 			insertion_support =
1515 				&adapter->vlan_v2_caps.offloads.insertion_support;
1516 
1517 			if (stripping_support->outer) {
1518 				if (stripping_support->outer &
1519 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1520 					rx_ring->flags |=
1521 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1522 				else if (stripping_support->outer &
1523 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1524 					rx_ring->flags |=
1525 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1526 			} else if (stripping_support->inner) {
1527 				if (stripping_support->inner &
1528 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1529 					rx_ring->flags |=
1530 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1531 				else if (stripping_support->inner &
1532 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1533 					rx_ring->flags |=
1534 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1535 			}
1536 
1537 			if (insertion_support->outer) {
1538 				if (insertion_support->outer &
1539 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1540 					tx_ring->flags |=
1541 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1542 				else if (insertion_support->outer &
1543 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1544 					tx_ring->flags |=
1545 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1546 			} else if (insertion_support->inner) {
1547 				if (insertion_support->inner &
1548 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1549 					tx_ring->flags |=
1550 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1551 				else if (insertion_support->inner &
1552 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1553 					tx_ring->flags |=
1554 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1555 			}
1556 		}
1557 	}
1558 }
1559 
1560 /**
1561  * iavf_alloc_queues - Allocate memory for all rings
1562  * @adapter: board private structure to initialize
1563  *
1564  * We allocate one ring per queue at run-time since we don't know the
1565  * number of queues at compile-time.  The polling_netdev array is
1566  * intended for Multiqueue, but should work fine with a single queue.
1567  **/
1568 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1569 {
1570 	int i, num_active_queues;
1571 
1572 	/* If we're in reset reallocating queues we don't actually know yet for
1573 	 * certain the PF gave us the number of queues we asked for but we'll
1574 	 * assume it did.  Once basic reset is finished we'll confirm once we
1575 	 * start negotiating config with PF.
1576 	 */
1577 	if (adapter->num_req_queues)
1578 		num_active_queues = adapter->num_req_queues;
1579 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1580 		 adapter->num_tc)
1581 		num_active_queues = adapter->ch_config.total_qps;
1582 	else
1583 		num_active_queues = min_t(int,
1584 					  adapter->vsi_res->num_queue_pairs,
1585 					  (int)(num_online_cpus()));
1586 
1587 
1588 	adapter->tx_rings = kcalloc(num_active_queues,
1589 				    sizeof(struct iavf_ring), GFP_KERNEL);
1590 	if (!adapter->tx_rings)
1591 		goto err_out;
1592 	adapter->rx_rings = kcalloc(num_active_queues,
1593 				    sizeof(struct iavf_ring), GFP_KERNEL);
1594 	if (!adapter->rx_rings)
1595 		goto err_out;
1596 
1597 	for (i = 0; i < num_active_queues; i++) {
1598 		struct iavf_ring *tx_ring;
1599 		struct iavf_ring *rx_ring;
1600 
1601 		tx_ring = &adapter->tx_rings[i];
1602 
1603 		tx_ring->queue_index = i;
1604 		tx_ring->netdev = adapter->netdev;
1605 		tx_ring->dev = &adapter->pdev->dev;
1606 		tx_ring->count = adapter->tx_desc_count;
1607 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1608 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1609 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1610 
1611 		rx_ring = &adapter->rx_rings[i];
1612 		rx_ring->queue_index = i;
1613 		rx_ring->netdev = adapter->netdev;
1614 		rx_ring->dev = &adapter->pdev->dev;
1615 		rx_ring->count = adapter->rx_desc_count;
1616 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1617 	}
1618 
1619 	adapter->num_active_queues = num_active_queues;
1620 
1621 	iavf_set_queue_vlan_tag_loc(adapter);
1622 
1623 	return 0;
1624 
1625 err_out:
1626 	iavf_free_queues(adapter);
1627 	return -ENOMEM;
1628 }
1629 
1630 /**
1631  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1632  * @adapter: board private structure to initialize
1633  *
1634  * Attempt to configure the interrupts using the best available
1635  * capabilities of the hardware and the kernel.
1636  **/
1637 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1638 {
1639 	int vector, v_budget;
1640 	int pairs = 0;
1641 	int err = 0;
1642 
1643 	if (!adapter->vsi_res) {
1644 		err = -EIO;
1645 		goto out;
1646 	}
1647 	pairs = adapter->num_active_queues;
1648 
1649 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1650 	 * us much good if we have more vectors than CPUs. However, we already
1651 	 * limit the total number of queues by the number of CPUs so we do not
1652 	 * need any further limiting here.
1653 	 */
1654 	v_budget = min_t(int, pairs + NONQ_VECS,
1655 			 (int)adapter->vf_res->max_vectors);
1656 
1657 	adapter->msix_entries = kcalloc(v_budget,
1658 					sizeof(struct msix_entry), GFP_KERNEL);
1659 	if (!adapter->msix_entries) {
1660 		err = -ENOMEM;
1661 		goto out;
1662 	}
1663 
1664 	for (vector = 0; vector < v_budget; vector++)
1665 		adapter->msix_entries[vector].entry = vector;
1666 
1667 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1668 
1669 out:
1670 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1671 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1672 	return err;
1673 }
1674 
1675 /**
1676  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1677  * @adapter: board private structure
1678  *
1679  * Return 0 on success, negative on failure
1680  **/
1681 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1682 {
1683 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1684 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1685 	struct iavf_hw *hw = &adapter->hw;
1686 	enum iavf_status status;
1687 
1688 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1689 		/* bail because we already have a command pending */
1690 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1691 			adapter->current_op);
1692 		return -EBUSY;
1693 	}
1694 
1695 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1696 	if (status) {
1697 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1698 			iavf_stat_str(hw, status),
1699 			iavf_aq_str(hw, hw->aq.asq_last_status));
1700 		return iavf_status_to_errno(status);
1701 
1702 	}
1703 
1704 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1705 				     adapter->rss_lut, adapter->rss_lut_size);
1706 	if (status) {
1707 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1708 			iavf_stat_str(hw, status),
1709 			iavf_aq_str(hw, hw->aq.asq_last_status));
1710 		return iavf_status_to_errno(status);
1711 	}
1712 
1713 	return 0;
1714 
1715 }
1716 
1717 /**
1718  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1719  * @adapter: board private structure
1720  *
1721  * Returns 0 on success, negative on failure
1722  **/
1723 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1724 {
1725 	struct iavf_hw *hw = &adapter->hw;
1726 	u32 *dw;
1727 	u16 i;
1728 
1729 	dw = (u32 *)adapter->rss_key;
1730 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1731 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1732 
1733 	dw = (u32 *)adapter->rss_lut;
1734 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1735 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1736 
1737 	iavf_flush(hw);
1738 
1739 	return 0;
1740 }
1741 
1742 /**
1743  * iavf_config_rss - Configure RSS keys and lut
1744  * @adapter: board private structure
1745  *
1746  * Returns 0 on success, negative on failure
1747  **/
1748 int iavf_config_rss(struct iavf_adapter *adapter)
1749 {
1750 
1751 	if (RSS_PF(adapter)) {
1752 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1753 					IAVF_FLAG_AQ_SET_RSS_KEY;
1754 		return 0;
1755 	} else if (RSS_AQ(adapter)) {
1756 		return iavf_config_rss_aq(adapter);
1757 	} else {
1758 		return iavf_config_rss_reg(adapter);
1759 	}
1760 }
1761 
1762 /**
1763  * iavf_fill_rss_lut - Fill the lut with default values
1764  * @adapter: board private structure
1765  **/
1766 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1767 {
1768 	u16 i;
1769 
1770 	for (i = 0; i < adapter->rss_lut_size; i++)
1771 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1772 }
1773 
1774 /**
1775  * iavf_init_rss - Prepare for RSS
1776  * @adapter: board private structure
1777  *
1778  * Return 0 on success, negative on failure
1779  **/
1780 static int iavf_init_rss(struct iavf_adapter *adapter)
1781 {
1782 	struct iavf_hw *hw = &adapter->hw;
1783 
1784 	if (!RSS_PF(adapter)) {
1785 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1786 		if (adapter->vf_res->vf_cap_flags &
1787 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1788 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1789 		else
1790 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1791 
1792 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1793 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1794 	}
1795 
1796 	iavf_fill_rss_lut(adapter);
1797 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1798 
1799 	return iavf_config_rss(adapter);
1800 }
1801 
1802 /**
1803  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1804  * @adapter: board private structure to initialize
1805  *
1806  * We allocate one q_vector per queue interrupt.  If allocation fails we
1807  * return -ENOMEM.
1808  **/
1809 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1810 {
1811 	int q_idx = 0, num_q_vectors;
1812 	struct iavf_q_vector *q_vector;
1813 
1814 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1815 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1816 				     GFP_KERNEL);
1817 	if (!adapter->q_vectors)
1818 		return -ENOMEM;
1819 
1820 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1821 		q_vector = &adapter->q_vectors[q_idx];
1822 		q_vector->adapter = adapter;
1823 		q_vector->vsi = &adapter->vsi;
1824 		q_vector->v_idx = q_idx;
1825 		q_vector->reg_idx = q_idx;
1826 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1827 		netif_napi_add(adapter->netdev, &q_vector->napi,
1828 			       iavf_napi_poll);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1836  * @adapter: board private structure to initialize
1837  *
1838  * This function frees the memory allocated to the q_vectors.  In addition if
1839  * NAPI is enabled it will delete any references to the NAPI struct prior
1840  * to freeing the q_vector.
1841  **/
1842 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1843 {
1844 	int q_idx, num_q_vectors;
1845 	int napi_vectors;
1846 
1847 	if (!adapter->q_vectors)
1848 		return;
1849 
1850 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1851 	napi_vectors = adapter->num_active_queues;
1852 
1853 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1854 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1855 
1856 		if (q_idx < napi_vectors)
1857 			netif_napi_del(&q_vector->napi);
1858 	}
1859 	kfree(adapter->q_vectors);
1860 	adapter->q_vectors = NULL;
1861 }
1862 
1863 /**
1864  * iavf_reset_interrupt_capability - Reset MSIX setup
1865  * @adapter: board private structure
1866  *
1867  **/
1868 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1869 {
1870 	if (!adapter->msix_entries)
1871 		return;
1872 
1873 	pci_disable_msix(adapter->pdev);
1874 	kfree(adapter->msix_entries);
1875 	adapter->msix_entries = NULL;
1876 }
1877 
1878 /**
1879  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1880  * @adapter: board private structure to initialize
1881  *
1882  **/
1883 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1884 {
1885 	int err;
1886 
1887 	err = iavf_alloc_queues(adapter);
1888 	if (err) {
1889 		dev_err(&adapter->pdev->dev,
1890 			"Unable to allocate memory for queues\n");
1891 		goto err_alloc_queues;
1892 	}
1893 
1894 	rtnl_lock();
1895 	err = iavf_set_interrupt_capability(adapter);
1896 	rtnl_unlock();
1897 	if (err) {
1898 		dev_err(&adapter->pdev->dev,
1899 			"Unable to setup interrupt capabilities\n");
1900 		goto err_set_interrupt;
1901 	}
1902 
1903 	err = iavf_alloc_q_vectors(adapter);
1904 	if (err) {
1905 		dev_err(&adapter->pdev->dev,
1906 			"Unable to allocate memory for queue vectors\n");
1907 		goto err_alloc_q_vectors;
1908 	}
1909 
1910 	/* If we've made it so far while ADq flag being ON, then we haven't
1911 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1912 	 * resources have been allocated in the reset path.
1913 	 * Now we can truly claim that ADq is enabled.
1914 	 */
1915 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1916 	    adapter->num_tc)
1917 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1918 			 adapter->num_tc);
1919 
1920 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1921 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1922 		 adapter->num_active_queues);
1923 
1924 	return 0;
1925 err_alloc_q_vectors:
1926 	iavf_reset_interrupt_capability(adapter);
1927 err_set_interrupt:
1928 	iavf_free_queues(adapter);
1929 err_alloc_queues:
1930 	return err;
1931 }
1932 
1933 /**
1934  * iavf_free_rss - Free memory used by RSS structs
1935  * @adapter: board private structure
1936  **/
1937 static void iavf_free_rss(struct iavf_adapter *adapter)
1938 {
1939 	kfree(adapter->rss_key);
1940 	adapter->rss_key = NULL;
1941 
1942 	kfree(adapter->rss_lut);
1943 	adapter->rss_lut = NULL;
1944 }
1945 
1946 /**
1947  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1948  * @adapter: board private structure
1949  *
1950  * Returns 0 on success, negative on failure
1951  **/
1952 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1953 {
1954 	struct net_device *netdev = adapter->netdev;
1955 	int err;
1956 
1957 	if (netif_running(netdev))
1958 		iavf_free_traffic_irqs(adapter);
1959 	iavf_free_misc_irq(adapter);
1960 	iavf_reset_interrupt_capability(adapter);
1961 	iavf_free_q_vectors(adapter);
1962 	iavf_free_queues(adapter);
1963 
1964 	err =  iavf_init_interrupt_scheme(adapter);
1965 	if (err)
1966 		goto err;
1967 
1968 	netif_tx_stop_all_queues(netdev);
1969 
1970 	err = iavf_request_misc_irq(adapter);
1971 	if (err)
1972 		goto err;
1973 
1974 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1975 
1976 	iavf_map_rings_to_vectors(adapter);
1977 err:
1978 	return err;
1979 }
1980 
1981 /**
1982  * iavf_process_aq_command - process aq_required flags
1983  * and sends aq command
1984  * @adapter: pointer to iavf adapter structure
1985  *
1986  * Returns 0 on success
1987  * Returns error code if no command was sent
1988  * or error code if the command failed.
1989  **/
1990 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1991 {
1992 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1993 		return iavf_send_vf_config_msg(adapter);
1994 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1995 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1996 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1997 		iavf_disable_queues(adapter);
1998 		return 0;
1999 	}
2000 
2001 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2002 		iavf_map_queues(adapter);
2003 		return 0;
2004 	}
2005 
2006 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2007 		iavf_add_ether_addrs(adapter);
2008 		return 0;
2009 	}
2010 
2011 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2012 		iavf_add_vlans(adapter);
2013 		return 0;
2014 	}
2015 
2016 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2017 		iavf_del_ether_addrs(adapter);
2018 		return 0;
2019 	}
2020 
2021 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2022 		iavf_del_vlans(adapter);
2023 		return 0;
2024 	}
2025 
2026 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2027 		iavf_enable_vlan_stripping(adapter);
2028 		return 0;
2029 	}
2030 
2031 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2032 		iavf_disable_vlan_stripping(adapter);
2033 		return 0;
2034 	}
2035 
2036 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2037 		iavf_configure_queues(adapter);
2038 		return 0;
2039 	}
2040 
2041 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2042 		iavf_enable_queues(adapter);
2043 		return 0;
2044 	}
2045 
2046 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2047 		/* This message goes straight to the firmware, not the
2048 		 * PF, so we don't have to set current_op as we will
2049 		 * not get a response through the ARQ.
2050 		 */
2051 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2052 		return 0;
2053 	}
2054 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2055 		iavf_get_hena(adapter);
2056 		return 0;
2057 	}
2058 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2059 		iavf_set_hena(adapter);
2060 		return 0;
2061 	}
2062 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2063 		iavf_set_rss_key(adapter);
2064 		return 0;
2065 	}
2066 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2067 		iavf_set_rss_lut(adapter);
2068 		return 0;
2069 	}
2070 
2071 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2072 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2073 				       FLAG_VF_MULTICAST_PROMISC);
2074 		return 0;
2075 	}
2076 
2077 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2078 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2079 		return 0;
2080 	}
2081 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2082 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2083 		iavf_set_promiscuous(adapter, 0);
2084 		return 0;
2085 	}
2086 
2087 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2088 		iavf_enable_channels(adapter);
2089 		return 0;
2090 	}
2091 
2092 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2093 		iavf_disable_channels(adapter);
2094 		return 0;
2095 	}
2096 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2097 		iavf_add_cloud_filter(adapter);
2098 		return 0;
2099 	}
2100 
2101 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2102 		iavf_del_cloud_filter(adapter);
2103 		return 0;
2104 	}
2105 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2106 		iavf_del_cloud_filter(adapter);
2107 		return 0;
2108 	}
2109 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2110 		iavf_add_cloud_filter(adapter);
2111 		return 0;
2112 	}
2113 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2114 		iavf_add_fdir_filter(adapter);
2115 		return IAVF_SUCCESS;
2116 	}
2117 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2118 		iavf_del_fdir_filter(adapter);
2119 		return IAVF_SUCCESS;
2120 	}
2121 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2122 		iavf_add_adv_rss_cfg(adapter);
2123 		return 0;
2124 	}
2125 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2126 		iavf_del_adv_rss_cfg(adapter);
2127 		return 0;
2128 	}
2129 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2130 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2131 		return 0;
2132 	}
2133 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2134 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2135 		return 0;
2136 	}
2137 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2138 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2139 		return 0;
2140 	}
2141 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2142 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2143 		return 0;
2144 	}
2145 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2146 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2147 		return 0;
2148 	}
2149 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2150 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2151 		return 0;
2152 	}
2153 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2154 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2155 		return 0;
2156 	}
2157 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2158 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2159 		return 0;
2160 	}
2161 
2162 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2163 		iavf_request_stats(adapter);
2164 		return 0;
2165 	}
2166 
2167 	return -EAGAIN;
2168 }
2169 
2170 /**
2171  * iavf_set_vlan_offload_features - set VLAN offload configuration
2172  * @adapter: board private structure
2173  * @prev_features: previous features used for comparison
2174  * @features: updated features used for configuration
2175  *
2176  * Set the aq_required bit(s) based on the requested features passed in to
2177  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2178  * the watchdog if any changes are requested to expedite the request via
2179  * virtchnl.
2180  **/
2181 void
2182 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2183 			       netdev_features_t prev_features,
2184 			       netdev_features_t features)
2185 {
2186 	bool enable_stripping = true, enable_insertion = true;
2187 	u16 vlan_ethertype = 0;
2188 	u64 aq_required = 0;
2189 
2190 	/* keep cases separate because one ethertype for offloads can be
2191 	 * disabled at the same time as another is disabled, so check for an
2192 	 * enabled ethertype first, then check for disabled. Default to
2193 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2194 	 * stripping.
2195 	 */
2196 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2197 		vlan_ethertype = ETH_P_8021AD;
2198 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2199 		vlan_ethertype = ETH_P_8021Q;
2200 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2201 		vlan_ethertype = ETH_P_8021AD;
2202 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2203 		vlan_ethertype = ETH_P_8021Q;
2204 	else
2205 		vlan_ethertype = ETH_P_8021Q;
2206 
2207 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2208 		enable_stripping = false;
2209 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2210 		enable_insertion = false;
2211 
2212 	if (VLAN_ALLOWED(adapter)) {
2213 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2214 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2215 		 * netdev, but it doesn't require a virtchnl message
2216 		 */
2217 		if (enable_stripping)
2218 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2219 		else
2220 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2221 
2222 	} else if (VLAN_V2_ALLOWED(adapter)) {
2223 		switch (vlan_ethertype) {
2224 		case ETH_P_8021Q:
2225 			if (enable_stripping)
2226 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2227 			else
2228 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2229 
2230 			if (enable_insertion)
2231 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2232 			else
2233 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2234 			break;
2235 		case ETH_P_8021AD:
2236 			if (enable_stripping)
2237 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2238 			else
2239 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2240 
2241 			if (enable_insertion)
2242 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2243 			else
2244 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2245 			break;
2246 		}
2247 	}
2248 
2249 	if (aq_required) {
2250 		adapter->aq_required |= aq_required;
2251 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2252 	}
2253 }
2254 
2255 /**
2256  * iavf_startup - first step of driver startup
2257  * @adapter: board private structure
2258  *
2259  * Function process __IAVF_STARTUP driver state.
2260  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2261  * when fails the state is changed to __IAVF_INIT_FAILED
2262  **/
2263 static void iavf_startup(struct iavf_adapter *adapter)
2264 {
2265 	struct pci_dev *pdev = adapter->pdev;
2266 	struct iavf_hw *hw = &adapter->hw;
2267 	enum iavf_status status;
2268 	int ret;
2269 
2270 	WARN_ON(adapter->state != __IAVF_STARTUP);
2271 
2272 	/* driver loaded, probe complete */
2273 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2274 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2275 	status = iavf_set_mac_type(hw);
2276 	if (status) {
2277 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2278 		goto err;
2279 	}
2280 
2281 	ret = iavf_check_reset_complete(hw);
2282 	if (ret) {
2283 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2284 			 ret);
2285 		goto err;
2286 	}
2287 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2288 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2289 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2290 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2291 
2292 	status = iavf_init_adminq(hw);
2293 	if (status) {
2294 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2295 			status);
2296 		goto err;
2297 	}
2298 	ret = iavf_send_api_ver(adapter);
2299 	if (ret) {
2300 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2301 		iavf_shutdown_adminq(hw);
2302 		goto err;
2303 	}
2304 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2305 	return;
2306 err:
2307 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2308 }
2309 
2310 /**
2311  * iavf_init_version_check - second step of driver startup
2312  * @adapter: board private structure
2313  *
2314  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2315  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2316  * when fails the state is changed to __IAVF_INIT_FAILED
2317  **/
2318 static void iavf_init_version_check(struct iavf_adapter *adapter)
2319 {
2320 	struct pci_dev *pdev = adapter->pdev;
2321 	struct iavf_hw *hw = &adapter->hw;
2322 	int err = -EAGAIN;
2323 
2324 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2325 
2326 	if (!iavf_asq_done(hw)) {
2327 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2328 		iavf_shutdown_adminq(hw);
2329 		iavf_change_state(adapter, __IAVF_STARTUP);
2330 		goto err;
2331 	}
2332 
2333 	/* aq msg sent, awaiting reply */
2334 	err = iavf_verify_api_ver(adapter);
2335 	if (err) {
2336 		if (err == -EALREADY)
2337 			err = iavf_send_api_ver(adapter);
2338 		else
2339 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2340 				adapter->pf_version.major,
2341 				adapter->pf_version.minor,
2342 				VIRTCHNL_VERSION_MAJOR,
2343 				VIRTCHNL_VERSION_MINOR);
2344 		goto err;
2345 	}
2346 	err = iavf_send_vf_config_msg(adapter);
2347 	if (err) {
2348 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2349 			err);
2350 		goto err;
2351 	}
2352 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2353 	return;
2354 err:
2355 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2356 }
2357 
2358 /**
2359  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2360  * @adapter: board private structure
2361  */
2362 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2363 {
2364 	int i, num_req_queues = adapter->num_req_queues;
2365 	struct iavf_vsi *vsi = &adapter->vsi;
2366 
2367 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2368 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2369 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2370 	}
2371 	if (!adapter->vsi_res) {
2372 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2373 		return -ENODEV;
2374 	}
2375 
2376 	if (num_req_queues &&
2377 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2378 		/* Problem.  The PF gave us fewer queues than what we had
2379 		 * negotiated in our request.  Need a reset to see if we can't
2380 		 * get back to a working state.
2381 		 */
2382 		dev_err(&adapter->pdev->dev,
2383 			"Requested %d queues, but PF only gave us %d.\n",
2384 			num_req_queues,
2385 			adapter->vsi_res->num_queue_pairs);
2386 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2387 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2388 		iavf_schedule_reset(adapter);
2389 
2390 		return -EAGAIN;
2391 	}
2392 	adapter->num_req_queues = 0;
2393 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2394 
2395 	adapter->vsi.back = adapter;
2396 	adapter->vsi.base_vector = 1;
2397 	vsi->netdev = adapter->netdev;
2398 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2399 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2400 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2401 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2402 	} else {
2403 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2404 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * iavf_init_get_resources - third step of driver startup
2412  * @adapter: board private structure
2413  *
2414  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2415  * finishes driver initialization procedure.
2416  * When success the state is changed to __IAVF_DOWN
2417  * when fails the state is changed to __IAVF_INIT_FAILED
2418  **/
2419 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2420 {
2421 	struct pci_dev *pdev = adapter->pdev;
2422 	struct iavf_hw *hw = &adapter->hw;
2423 	int err;
2424 
2425 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2426 	/* aq msg sent, awaiting reply */
2427 	if (!adapter->vf_res) {
2428 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2429 					  GFP_KERNEL);
2430 		if (!adapter->vf_res) {
2431 			err = -ENOMEM;
2432 			goto err;
2433 		}
2434 	}
2435 	err = iavf_get_vf_config(adapter);
2436 	if (err == -EALREADY) {
2437 		err = iavf_send_vf_config_msg(adapter);
2438 		goto err;
2439 	} else if (err == -EINVAL) {
2440 		/* We only get -EINVAL if the device is in a very bad
2441 		 * state or if we've been disabled for previous bad
2442 		 * behavior. Either way, we're done now.
2443 		 */
2444 		iavf_shutdown_adminq(hw);
2445 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2446 		return;
2447 	}
2448 	if (err) {
2449 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2450 		goto err_alloc;
2451 	}
2452 
2453 	err = iavf_parse_vf_resource_msg(adapter);
2454 	if (err) {
2455 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2456 			err);
2457 		goto err_alloc;
2458 	}
2459 	/* Some features require additional messages to negotiate extended
2460 	 * capabilities. These are processed in sequence by the
2461 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2462 	 */
2463 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2464 
2465 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2466 	return;
2467 
2468 err_alloc:
2469 	kfree(adapter->vf_res);
2470 	adapter->vf_res = NULL;
2471 err:
2472 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2473 }
2474 
2475 /**
2476  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2477  * @adapter: board private structure
2478  *
2479  * Function processes send of the extended VLAN V2 capability message to the
2480  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2481  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2482  */
2483 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2484 {
2485 	int ret;
2486 
2487 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2488 
2489 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2490 	if (ret && ret == -EOPNOTSUPP) {
2491 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2492 		 * we did not send the capability exchange message and do not
2493 		 * expect a response.
2494 		 */
2495 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2496 	}
2497 
2498 	/* We sent the message, so move on to the next step */
2499 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2500 }
2501 
2502 /**
2503  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2504  * @adapter: board private structure
2505  *
2506  * Function processes receipt of the extended VLAN V2 capability message from
2507  * the PF.
2508  **/
2509 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2510 {
2511 	int ret;
2512 
2513 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2514 
2515 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2516 
2517 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2518 	if (ret)
2519 		goto err;
2520 
2521 	/* We've processed receipt of the VLAN V2 caps message */
2522 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2523 	return;
2524 err:
2525 	/* We didn't receive a reply. Make sure we try sending again when
2526 	 * __IAVF_INIT_FAILED attempts to recover.
2527 	 */
2528 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2529 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2530 }
2531 
2532 /**
2533  * iavf_init_process_extended_caps - Part of driver startup
2534  * @adapter: board private structure
2535  *
2536  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2537  * handles negotiating capabilities for features which require an additional
2538  * message.
2539  *
2540  * Once all extended capabilities exchanges are finished, the driver will
2541  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2542  */
2543 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2544 {
2545 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2546 
2547 	/* Process capability exchange for VLAN V2 */
2548 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2549 		iavf_init_send_offload_vlan_v2_caps(adapter);
2550 		return;
2551 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2552 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2553 		return;
2554 	}
2555 
2556 	/* When we reach here, no further extended capabilities exchanges are
2557 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2558 	 */
2559 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2560 }
2561 
2562 /**
2563  * iavf_init_config_adapter - last part of driver startup
2564  * @adapter: board private structure
2565  *
2566  * After all the supported capabilities are negotiated, then the
2567  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2568  */
2569 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2570 {
2571 	struct net_device *netdev = adapter->netdev;
2572 	struct pci_dev *pdev = adapter->pdev;
2573 	int err;
2574 
2575 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2576 
2577 	if (iavf_process_config(adapter))
2578 		goto err;
2579 
2580 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2581 
2582 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2583 
2584 	netdev->netdev_ops = &iavf_netdev_ops;
2585 	iavf_set_ethtool_ops(netdev);
2586 	netdev->watchdog_timeo = 5 * HZ;
2587 
2588 	/* MTU range: 68 - 9710 */
2589 	netdev->min_mtu = ETH_MIN_MTU;
2590 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2591 
2592 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2593 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2594 			 adapter->hw.mac.addr);
2595 		eth_hw_addr_random(netdev);
2596 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2597 	} else {
2598 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2599 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2600 	}
2601 
2602 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2603 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2604 	err = iavf_init_interrupt_scheme(adapter);
2605 	if (err)
2606 		goto err_sw_init;
2607 	iavf_map_rings_to_vectors(adapter);
2608 	if (adapter->vf_res->vf_cap_flags &
2609 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2610 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2611 
2612 	err = iavf_request_misc_irq(adapter);
2613 	if (err)
2614 		goto err_sw_init;
2615 
2616 	netif_carrier_off(netdev);
2617 	adapter->link_up = false;
2618 
2619 	/* set the semaphore to prevent any callbacks after device registration
2620 	 * up to time when state of driver will be set to __IAVF_DOWN
2621 	 */
2622 	rtnl_lock();
2623 	if (!adapter->netdev_registered) {
2624 		err = register_netdevice(netdev);
2625 		if (err) {
2626 			rtnl_unlock();
2627 			goto err_register;
2628 		}
2629 	}
2630 
2631 	adapter->netdev_registered = true;
2632 
2633 	netif_tx_stop_all_queues(netdev);
2634 	if (CLIENT_ALLOWED(adapter)) {
2635 		err = iavf_lan_add_device(adapter);
2636 		if (err)
2637 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2638 				 err);
2639 	}
2640 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2641 	if (netdev->features & NETIF_F_GRO)
2642 		dev_info(&pdev->dev, "GRO is enabled\n");
2643 
2644 	iavf_change_state(adapter, __IAVF_DOWN);
2645 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2646 	rtnl_unlock();
2647 
2648 	iavf_misc_irq_enable(adapter);
2649 	wake_up(&adapter->down_waitqueue);
2650 
2651 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2652 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2653 	if (!adapter->rss_key || !adapter->rss_lut) {
2654 		err = -ENOMEM;
2655 		goto err_mem;
2656 	}
2657 	if (RSS_AQ(adapter))
2658 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2659 	else
2660 		iavf_init_rss(adapter);
2661 
2662 	if (VLAN_V2_ALLOWED(adapter))
2663 		/* request initial VLAN offload settings */
2664 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2665 
2666 	return;
2667 err_mem:
2668 	iavf_free_rss(adapter);
2669 err_register:
2670 	iavf_free_misc_irq(adapter);
2671 err_sw_init:
2672 	iavf_reset_interrupt_capability(adapter);
2673 err:
2674 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2675 }
2676 
2677 /**
2678  * iavf_watchdog_task - Periodic call-back task
2679  * @work: pointer to work_struct
2680  **/
2681 static void iavf_watchdog_task(struct work_struct *work)
2682 {
2683 	struct iavf_adapter *adapter = container_of(work,
2684 						    struct iavf_adapter,
2685 						    watchdog_task.work);
2686 	struct iavf_hw *hw = &adapter->hw;
2687 	u32 reg_val;
2688 
2689 	if (!mutex_trylock(&adapter->crit_lock)) {
2690 		if (adapter->state == __IAVF_REMOVE)
2691 			return;
2692 
2693 		goto restart_watchdog;
2694 	}
2695 
2696 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2697 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2698 
2699 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2700 		adapter->aq_required = 0;
2701 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2702 		mutex_unlock(&adapter->crit_lock);
2703 		queue_work(iavf_wq, &adapter->reset_task);
2704 		return;
2705 	}
2706 
2707 	switch (adapter->state) {
2708 	case __IAVF_STARTUP:
2709 		iavf_startup(adapter);
2710 		mutex_unlock(&adapter->crit_lock);
2711 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2712 				   msecs_to_jiffies(30));
2713 		return;
2714 	case __IAVF_INIT_VERSION_CHECK:
2715 		iavf_init_version_check(adapter);
2716 		mutex_unlock(&adapter->crit_lock);
2717 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2718 				   msecs_to_jiffies(30));
2719 		return;
2720 	case __IAVF_INIT_GET_RESOURCES:
2721 		iavf_init_get_resources(adapter);
2722 		mutex_unlock(&adapter->crit_lock);
2723 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2724 				   msecs_to_jiffies(1));
2725 		return;
2726 	case __IAVF_INIT_EXTENDED_CAPS:
2727 		iavf_init_process_extended_caps(adapter);
2728 		mutex_unlock(&adapter->crit_lock);
2729 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2730 				   msecs_to_jiffies(1));
2731 		return;
2732 	case __IAVF_INIT_CONFIG_ADAPTER:
2733 		iavf_init_config_adapter(adapter);
2734 		mutex_unlock(&adapter->crit_lock);
2735 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2736 				   msecs_to_jiffies(1));
2737 		return;
2738 	case __IAVF_INIT_FAILED:
2739 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2740 			     &adapter->crit_section)) {
2741 			/* Do not update the state and do not reschedule
2742 			 * watchdog task, iavf_remove should handle this state
2743 			 * as it can loop forever
2744 			 */
2745 			mutex_unlock(&adapter->crit_lock);
2746 			return;
2747 		}
2748 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2749 			dev_err(&adapter->pdev->dev,
2750 				"Failed to communicate with PF; waiting before retry\n");
2751 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2752 			iavf_shutdown_adminq(hw);
2753 			mutex_unlock(&adapter->crit_lock);
2754 			queue_delayed_work(iavf_wq,
2755 					   &adapter->watchdog_task, (5 * HZ));
2756 			return;
2757 		}
2758 		/* Try again from failed step*/
2759 		iavf_change_state(adapter, adapter->last_state);
2760 		mutex_unlock(&adapter->crit_lock);
2761 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2762 		return;
2763 	case __IAVF_COMM_FAILED:
2764 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2765 			     &adapter->crit_section)) {
2766 			/* Set state to __IAVF_INIT_FAILED and perform remove
2767 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2768 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2769 			 */
2770 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2771 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2772 			mutex_unlock(&adapter->crit_lock);
2773 			return;
2774 		}
2775 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2776 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2777 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2778 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2779 			/* A chance for redemption! */
2780 			dev_err(&adapter->pdev->dev,
2781 				"Hardware came out of reset. Attempting reinit.\n");
2782 			/* When init task contacts the PF and
2783 			 * gets everything set up again, it'll restart the
2784 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2785 			 */
2786 			iavf_change_state(adapter, __IAVF_STARTUP);
2787 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2788 		}
2789 		adapter->aq_required = 0;
2790 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2791 		mutex_unlock(&adapter->crit_lock);
2792 		queue_delayed_work(iavf_wq,
2793 				   &adapter->watchdog_task,
2794 				   msecs_to_jiffies(10));
2795 		return;
2796 	case __IAVF_RESETTING:
2797 		mutex_unlock(&adapter->crit_lock);
2798 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2799 		return;
2800 	case __IAVF_DOWN:
2801 	case __IAVF_DOWN_PENDING:
2802 	case __IAVF_TESTING:
2803 	case __IAVF_RUNNING:
2804 		if (adapter->current_op) {
2805 			if (!iavf_asq_done(hw)) {
2806 				dev_dbg(&adapter->pdev->dev,
2807 					"Admin queue timeout\n");
2808 				iavf_send_api_ver(adapter);
2809 			}
2810 		} else {
2811 			int ret = iavf_process_aq_command(adapter);
2812 
2813 			/* An error will be returned if no commands were
2814 			 * processed; use this opportunity to update stats
2815 			 * if the error isn't -ENOTSUPP
2816 			 */
2817 			if (ret && ret != -EOPNOTSUPP &&
2818 			    adapter->state == __IAVF_RUNNING)
2819 				iavf_request_stats(adapter);
2820 		}
2821 		if (adapter->state == __IAVF_RUNNING)
2822 			iavf_detect_recover_hung(&adapter->vsi);
2823 		break;
2824 	case __IAVF_REMOVE:
2825 	default:
2826 		mutex_unlock(&adapter->crit_lock);
2827 		return;
2828 	}
2829 
2830 	/* check for hw reset */
2831 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2832 	if (!reg_val) {
2833 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2834 		adapter->aq_required = 0;
2835 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2836 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2837 		queue_work(iavf_wq, &adapter->reset_task);
2838 		mutex_unlock(&adapter->crit_lock);
2839 		queue_delayed_work(iavf_wq,
2840 				   &adapter->watchdog_task, HZ * 2);
2841 		return;
2842 	}
2843 
2844 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2845 	mutex_unlock(&adapter->crit_lock);
2846 restart_watchdog:
2847 	if (adapter->state >= __IAVF_DOWN)
2848 		queue_work(iavf_wq, &adapter->adminq_task);
2849 	if (adapter->aq_required)
2850 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2851 				   msecs_to_jiffies(20));
2852 	else
2853 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2854 }
2855 
2856 /**
2857  * iavf_disable_vf - disable VF
2858  * @adapter: board private structure
2859  *
2860  * Set communication failed flag and free all resources.
2861  * NOTE: This function is expected to be called with crit_lock being held.
2862  **/
2863 static void iavf_disable_vf(struct iavf_adapter *adapter)
2864 {
2865 	struct iavf_mac_filter *f, *ftmp;
2866 	struct iavf_vlan_filter *fv, *fvtmp;
2867 	struct iavf_cloud_filter *cf, *cftmp;
2868 
2869 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2870 
2871 	/* We don't use netif_running() because it may be true prior to
2872 	 * ndo_open() returning, so we can't assume it means all our open
2873 	 * tasks have finished, since we're not holding the rtnl_lock here.
2874 	 */
2875 	if (adapter->state == __IAVF_RUNNING) {
2876 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2877 		netif_carrier_off(adapter->netdev);
2878 		netif_tx_disable(adapter->netdev);
2879 		adapter->link_up = false;
2880 		iavf_napi_disable_all(adapter);
2881 		iavf_irq_disable(adapter);
2882 		iavf_free_traffic_irqs(adapter);
2883 		iavf_free_all_tx_resources(adapter);
2884 		iavf_free_all_rx_resources(adapter);
2885 	}
2886 
2887 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2888 
2889 	/* Delete all of the filters */
2890 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2891 		list_del(&f->list);
2892 		kfree(f);
2893 	}
2894 
2895 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2896 		list_del(&fv->list);
2897 		kfree(fv);
2898 	}
2899 
2900 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2901 
2902 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2903 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2904 		list_del(&cf->list);
2905 		kfree(cf);
2906 		adapter->num_cloud_filters--;
2907 	}
2908 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2909 
2910 	iavf_free_misc_irq(adapter);
2911 	iavf_reset_interrupt_capability(adapter);
2912 	iavf_free_q_vectors(adapter);
2913 	iavf_free_queues(adapter);
2914 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2915 	iavf_shutdown_adminq(&adapter->hw);
2916 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2917 	iavf_change_state(adapter, __IAVF_DOWN);
2918 	wake_up(&adapter->down_waitqueue);
2919 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2920 }
2921 
2922 /**
2923  * iavf_reset_task - Call-back task to handle hardware reset
2924  * @work: pointer to work_struct
2925  *
2926  * During reset we need to shut down and reinitialize the admin queue
2927  * before we can use it to communicate with the PF again. We also clear
2928  * and reinit the rings because that context is lost as well.
2929  **/
2930 static void iavf_reset_task(struct work_struct *work)
2931 {
2932 	struct iavf_adapter *adapter = container_of(work,
2933 						      struct iavf_adapter,
2934 						      reset_task);
2935 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2936 	struct net_device *netdev = adapter->netdev;
2937 	struct iavf_hw *hw = &adapter->hw;
2938 	struct iavf_mac_filter *f, *ftmp;
2939 	struct iavf_cloud_filter *cf;
2940 	enum iavf_status status;
2941 	u32 reg_val;
2942 	int i = 0, err;
2943 	bool running;
2944 
2945 	/* Detach interface to avoid subsequent NDO callbacks */
2946 	rtnl_lock();
2947 	netif_device_detach(netdev);
2948 	rtnl_unlock();
2949 
2950 	/* When device is being removed it doesn't make sense to run the reset
2951 	 * task, just return in such a case.
2952 	 */
2953 	if (!mutex_trylock(&adapter->crit_lock)) {
2954 		if (adapter->state != __IAVF_REMOVE)
2955 			queue_work(iavf_wq, &adapter->reset_task);
2956 
2957 		goto reset_finish;
2958 	}
2959 
2960 	while (!mutex_trylock(&adapter->client_lock))
2961 		usleep_range(500, 1000);
2962 	if (CLIENT_ENABLED(adapter)) {
2963 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2964 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2965 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2966 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2967 		cancel_delayed_work_sync(&adapter->client_task);
2968 		iavf_notify_client_close(&adapter->vsi, true);
2969 	}
2970 	iavf_misc_irq_disable(adapter);
2971 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2972 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2973 		/* Restart the AQ here. If we have been reset but didn't
2974 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2975 		 */
2976 		iavf_shutdown_adminq(hw);
2977 		iavf_init_adminq(hw);
2978 		iavf_request_reset(adapter);
2979 	}
2980 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2981 
2982 	/* poll until we see the reset actually happen */
2983 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2984 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2985 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2986 		if (!reg_val)
2987 			break;
2988 		usleep_range(5000, 10000);
2989 	}
2990 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2991 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2992 		goto continue_reset; /* act like the reset happened */
2993 	}
2994 
2995 	/* wait until the reset is complete and the PF is responding to us */
2996 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2997 		/* sleep first to make sure a minimum wait time is met */
2998 		msleep(IAVF_RESET_WAIT_MS);
2999 
3000 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3001 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3002 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3003 			break;
3004 	}
3005 
3006 	pci_set_master(adapter->pdev);
3007 	pci_restore_msi_state(adapter->pdev);
3008 
3009 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3010 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3011 			reg_val);
3012 		iavf_disable_vf(adapter);
3013 		mutex_unlock(&adapter->client_lock);
3014 		mutex_unlock(&adapter->crit_lock);
3015 		if (netif_running(netdev)) {
3016 			rtnl_lock();
3017 			dev_close(netdev);
3018 			rtnl_unlock();
3019 		}
3020 		return; /* Do not attempt to reinit. It's dead, Jim. */
3021 	}
3022 
3023 continue_reset:
3024 	/* We don't use netif_running() because it may be true prior to
3025 	 * ndo_open() returning, so we can't assume it means all our open
3026 	 * tasks have finished, since we're not holding the rtnl_lock here.
3027 	 */
3028 	running = adapter->state == __IAVF_RUNNING;
3029 
3030 	if (running) {
3031 		netif_carrier_off(netdev);
3032 		netif_tx_stop_all_queues(netdev);
3033 		adapter->link_up = false;
3034 		iavf_napi_disable_all(adapter);
3035 	}
3036 	iavf_irq_disable(adapter);
3037 
3038 	iavf_change_state(adapter, __IAVF_RESETTING);
3039 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3040 
3041 	/* free the Tx/Rx rings and descriptors, might be better to just
3042 	 * re-use them sometime in the future
3043 	 */
3044 	iavf_free_all_rx_resources(adapter);
3045 	iavf_free_all_tx_resources(adapter);
3046 
3047 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3048 	/* kill and reinit the admin queue */
3049 	iavf_shutdown_adminq(hw);
3050 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3051 	status = iavf_init_adminq(hw);
3052 	if (status) {
3053 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3054 			 status);
3055 		goto reset_err;
3056 	}
3057 	adapter->aq_required = 0;
3058 
3059 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3060 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3061 		err = iavf_reinit_interrupt_scheme(adapter);
3062 		if (err)
3063 			goto reset_err;
3064 	}
3065 
3066 	if (RSS_AQ(adapter)) {
3067 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3068 	} else {
3069 		err = iavf_init_rss(adapter);
3070 		if (err)
3071 			goto reset_err;
3072 	}
3073 
3074 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3075 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3076 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3077 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3078 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3079 	 * been successfully sent and negotiated
3080 	 */
3081 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3082 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3083 
3084 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3085 
3086 	/* Delete filter for the current MAC address, it could have
3087 	 * been changed by the PF via administratively set MAC.
3088 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3089 	 */
3090 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3091 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3092 			list_del(&f->list);
3093 			kfree(f);
3094 		}
3095 	}
3096 	/* re-add all MAC filters */
3097 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3098 		f->add = true;
3099 	}
3100 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3101 
3102 	/* check if TCs are running and re-add all cloud filters */
3103 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3104 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3105 	    adapter->num_tc) {
3106 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3107 			cf->add = true;
3108 		}
3109 	}
3110 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3111 
3112 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3113 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3114 	iavf_misc_irq_enable(adapter);
3115 
3116 	bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3117 	bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3118 
3119 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
3120 
3121 	/* We were running when the reset started, so we need to restore some
3122 	 * state here.
3123 	 */
3124 	if (running) {
3125 		/* allocate transmit descriptors */
3126 		err = iavf_setup_all_tx_resources(adapter);
3127 		if (err)
3128 			goto reset_err;
3129 
3130 		/* allocate receive descriptors */
3131 		err = iavf_setup_all_rx_resources(adapter);
3132 		if (err)
3133 			goto reset_err;
3134 
3135 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3136 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3137 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3138 			if (err)
3139 				goto reset_err;
3140 
3141 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3142 		}
3143 
3144 		iavf_configure(adapter);
3145 
3146 		/* iavf_up_complete() will switch device back
3147 		 * to __IAVF_RUNNING
3148 		 */
3149 		iavf_up_complete(adapter);
3150 
3151 		iavf_irq_enable(adapter, true);
3152 	} else {
3153 		iavf_change_state(adapter, __IAVF_DOWN);
3154 		wake_up(&adapter->down_waitqueue);
3155 	}
3156 
3157 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3158 
3159 	mutex_unlock(&adapter->client_lock);
3160 	mutex_unlock(&adapter->crit_lock);
3161 
3162 	goto reset_finish;
3163 reset_err:
3164 	if (running) {
3165 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3166 		iavf_free_traffic_irqs(adapter);
3167 	}
3168 	iavf_disable_vf(adapter);
3169 
3170 	mutex_unlock(&adapter->client_lock);
3171 	mutex_unlock(&adapter->crit_lock);
3172 
3173 	if (netif_running(netdev)) {
3174 		/* Close device to ensure that Tx queues will not be started
3175 		 * during netif_device_attach() at the end of the reset task.
3176 		 */
3177 		rtnl_lock();
3178 		dev_close(netdev);
3179 		rtnl_unlock();
3180 	}
3181 
3182 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3183 reset_finish:
3184 	rtnl_lock();
3185 	netif_device_attach(netdev);
3186 	rtnl_unlock();
3187 }
3188 
3189 /**
3190  * iavf_adminq_task - worker thread to clean the admin queue
3191  * @work: pointer to work_struct containing our data
3192  **/
3193 static void iavf_adminq_task(struct work_struct *work)
3194 {
3195 	struct iavf_adapter *adapter =
3196 		container_of(work, struct iavf_adapter, adminq_task);
3197 	struct iavf_hw *hw = &adapter->hw;
3198 	struct iavf_arq_event_info event;
3199 	enum virtchnl_ops v_op;
3200 	enum iavf_status ret, v_ret;
3201 	u32 val, oldval;
3202 	u16 pending;
3203 
3204 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3205 		goto out;
3206 
3207 	if (!mutex_trylock(&adapter->crit_lock)) {
3208 		if (adapter->state == __IAVF_REMOVE)
3209 			return;
3210 
3211 		queue_work(iavf_wq, &adapter->adminq_task);
3212 		goto out;
3213 	}
3214 
3215 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3216 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3217 	if (!event.msg_buf)
3218 		goto out;
3219 
3220 	do {
3221 		ret = iavf_clean_arq_element(hw, &event, &pending);
3222 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3223 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3224 
3225 		if (ret || !v_op)
3226 			break; /* No event to process or error cleaning ARQ */
3227 
3228 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3229 					 event.msg_len);
3230 		if (pending != 0)
3231 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3232 	} while (pending);
3233 	mutex_unlock(&adapter->crit_lock);
3234 
3235 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3236 		if (adapter->netdev_registered ||
3237 		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3238 			struct net_device *netdev = adapter->netdev;
3239 
3240 			rtnl_lock();
3241 			netdev_update_features(netdev);
3242 			rtnl_unlock();
3243 			/* Request VLAN offload settings */
3244 			if (VLAN_V2_ALLOWED(adapter))
3245 				iavf_set_vlan_offload_features
3246 					(adapter, 0, netdev->features);
3247 
3248 			iavf_set_queue_vlan_tag_loc(adapter);
3249 		}
3250 
3251 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3252 	}
3253 	if ((adapter->flags &
3254 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3255 	    adapter->state == __IAVF_RESETTING)
3256 		goto freedom;
3257 
3258 	/* check for error indications */
3259 	val = rd32(hw, hw->aq.arq.len);
3260 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3261 		goto freedom;
3262 	oldval = val;
3263 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3264 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3265 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3266 	}
3267 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3268 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3269 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3270 	}
3271 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3272 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3273 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3274 	}
3275 	if (oldval != val)
3276 		wr32(hw, hw->aq.arq.len, val);
3277 
3278 	val = rd32(hw, hw->aq.asq.len);
3279 	oldval = val;
3280 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3281 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3282 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3283 	}
3284 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3285 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3286 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3287 	}
3288 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3289 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3290 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3291 	}
3292 	if (oldval != val)
3293 		wr32(hw, hw->aq.asq.len, val);
3294 
3295 freedom:
3296 	kfree(event.msg_buf);
3297 out:
3298 	/* re-enable Admin queue interrupt cause */
3299 	iavf_misc_irq_enable(adapter);
3300 }
3301 
3302 /**
3303  * iavf_client_task - worker thread to perform client work
3304  * @work: pointer to work_struct containing our data
3305  *
3306  * This task handles client interactions. Because client calls can be
3307  * reentrant, we can't handle them in the watchdog.
3308  **/
3309 static void iavf_client_task(struct work_struct *work)
3310 {
3311 	struct iavf_adapter *adapter =
3312 		container_of(work, struct iavf_adapter, client_task.work);
3313 
3314 	/* If we can't get the client bit, just give up. We'll be rescheduled
3315 	 * later.
3316 	 */
3317 
3318 	if (!mutex_trylock(&adapter->client_lock))
3319 		return;
3320 
3321 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3322 		iavf_client_subtask(adapter);
3323 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3324 		goto out;
3325 	}
3326 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3327 		iavf_notify_client_l2_params(&adapter->vsi);
3328 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3329 		goto out;
3330 	}
3331 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3332 		iavf_notify_client_close(&adapter->vsi, false);
3333 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3334 		goto out;
3335 	}
3336 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3337 		iavf_notify_client_open(&adapter->vsi);
3338 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3339 	}
3340 out:
3341 	mutex_unlock(&adapter->client_lock);
3342 }
3343 
3344 /**
3345  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3346  * @adapter: board private structure
3347  *
3348  * Free all transmit software resources
3349  **/
3350 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3351 {
3352 	int i;
3353 
3354 	if (!adapter->tx_rings)
3355 		return;
3356 
3357 	for (i = 0; i < adapter->num_active_queues; i++)
3358 		if (adapter->tx_rings[i].desc)
3359 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3360 }
3361 
3362 /**
3363  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3364  * @adapter: board private structure
3365  *
3366  * If this function returns with an error, then it's possible one or
3367  * more of the rings is populated (while the rest are not).  It is the
3368  * callers duty to clean those orphaned rings.
3369  *
3370  * Return 0 on success, negative on failure
3371  **/
3372 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3373 {
3374 	int i, err = 0;
3375 
3376 	for (i = 0; i < adapter->num_active_queues; i++) {
3377 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3378 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3379 		if (!err)
3380 			continue;
3381 		dev_err(&adapter->pdev->dev,
3382 			"Allocation for Tx Queue %u failed\n", i);
3383 		break;
3384 	}
3385 
3386 	return err;
3387 }
3388 
3389 /**
3390  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3391  * @adapter: board private structure
3392  *
3393  * If this function returns with an error, then it's possible one or
3394  * more of the rings is populated (while the rest are not).  It is the
3395  * callers duty to clean those orphaned rings.
3396  *
3397  * Return 0 on success, negative on failure
3398  **/
3399 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3400 {
3401 	int i, err = 0;
3402 
3403 	for (i = 0; i < adapter->num_active_queues; i++) {
3404 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3405 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3406 		if (!err)
3407 			continue;
3408 		dev_err(&adapter->pdev->dev,
3409 			"Allocation for Rx Queue %u failed\n", i);
3410 		break;
3411 	}
3412 	return err;
3413 }
3414 
3415 /**
3416  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3417  * @adapter: board private structure
3418  *
3419  * Free all receive software resources
3420  **/
3421 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3422 {
3423 	int i;
3424 
3425 	if (!adapter->rx_rings)
3426 		return;
3427 
3428 	for (i = 0; i < adapter->num_active_queues; i++)
3429 		if (adapter->rx_rings[i].desc)
3430 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3431 }
3432 
3433 /**
3434  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3435  * @adapter: board private structure
3436  * @max_tx_rate: max Tx bw for a tc
3437  **/
3438 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3439 				      u64 max_tx_rate)
3440 {
3441 	int speed = 0, ret = 0;
3442 
3443 	if (ADV_LINK_SUPPORT(adapter)) {
3444 		if (adapter->link_speed_mbps < U32_MAX) {
3445 			speed = adapter->link_speed_mbps;
3446 			goto validate_bw;
3447 		} else {
3448 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3449 			return -EINVAL;
3450 		}
3451 	}
3452 
3453 	switch (adapter->link_speed) {
3454 	case VIRTCHNL_LINK_SPEED_40GB:
3455 		speed = SPEED_40000;
3456 		break;
3457 	case VIRTCHNL_LINK_SPEED_25GB:
3458 		speed = SPEED_25000;
3459 		break;
3460 	case VIRTCHNL_LINK_SPEED_20GB:
3461 		speed = SPEED_20000;
3462 		break;
3463 	case VIRTCHNL_LINK_SPEED_10GB:
3464 		speed = SPEED_10000;
3465 		break;
3466 	case VIRTCHNL_LINK_SPEED_5GB:
3467 		speed = SPEED_5000;
3468 		break;
3469 	case VIRTCHNL_LINK_SPEED_2_5GB:
3470 		speed = SPEED_2500;
3471 		break;
3472 	case VIRTCHNL_LINK_SPEED_1GB:
3473 		speed = SPEED_1000;
3474 		break;
3475 	case VIRTCHNL_LINK_SPEED_100MB:
3476 		speed = SPEED_100;
3477 		break;
3478 	default:
3479 		break;
3480 	}
3481 
3482 validate_bw:
3483 	if (max_tx_rate > speed) {
3484 		dev_err(&adapter->pdev->dev,
3485 			"Invalid tx rate specified\n");
3486 		ret = -EINVAL;
3487 	}
3488 
3489 	return ret;
3490 }
3491 
3492 /**
3493  * iavf_validate_ch_config - validate queue mapping info
3494  * @adapter: board private structure
3495  * @mqprio_qopt: queue parameters
3496  *
3497  * This function validates if the config provided by the user to
3498  * configure queue channels is valid or not. Returns 0 on a valid
3499  * config.
3500  **/
3501 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3502 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3503 {
3504 	u64 total_max_rate = 0;
3505 	u32 tx_rate_rem = 0;
3506 	int i, num_qps = 0;
3507 	u64 tx_rate = 0;
3508 	int ret = 0;
3509 
3510 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3511 	    mqprio_qopt->qopt.num_tc < 1)
3512 		return -EINVAL;
3513 
3514 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3515 		if (!mqprio_qopt->qopt.count[i] ||
3516 		    mqprio_qopt->qopt.offset[i] != num_qps)
3517 			return -EINVAL;
3518 		if (mqprio_qopt->min_rate[i]) {
3519 			dev_err(&adapter->pdev->dev,
3520 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3521 				i);
3522 			return -EINVAL;
3523 		}
3524 
3525 		/* convert to Mbps */
3526 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3527 				  IAVF_MBPS_DIVISOR);
3528 
3529 		if (mqprio_qopt->max_rate[i] &&
3530 		    tx_rate < IAVF_MBPS_QUANTA) {
3531 			dev_err(&adapter->pdev->dev,
3532 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3533 				i, IAVF_MBPS_QUANTA);
3534 			return -EINVAL;
3535 		}
3536 
3537 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3538 
3539 		if (tx_rate_rem != 0) {
3540 			dev_err(&adapter->pdev->dev,
3541 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3542 				i, IAVF_MBPS_QUANTA);
3543 			return -EINVAL;
3544 		}
3545 
3546 		total_max_rate += tx_rate;
3547 		num_qps += mqprio_qopt->qopt.count[i];
3548 	}
3549 	if (num_qps > adapter->num_active_queues) {
3550 		dev_err(&adapter->pdev->dev,
3551 			"Cannot support requested number of queues\n");
3552 		return -EINVAL;
3553 	}
3554 
3555 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3556 	return ret;
3557 }
3558 
3559 /**
3560  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3561  * @adapter: board private structure
3562  **/
3563 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3564 {
3565 	struct iavf_cloud_filter *cf, *cftmp;
3566 
3567 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3568 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3569 				 list) {
3570 		list_del(&cf->list);
3571 		kfree(cf);
3572 		adapter->num_cloud_filters--;
3573 	}
3574 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3575 }
3576 
3577 /**
3578  * __iavf_setup_tc - configure multiple traffic classes
3579  * @netdev: network interface device structure
3580  * @type_data: tc offload data
3581  *
3582  * This function processes the config information provided by the
3583  * user to configure traffic classes/queue channels and packages the
3584  * information to request the PF to setup traffic classes.
3585  *
3586  * Returns 0 on success.
3587  **/
3588 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3589 {
3590 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3591 	struct iavf_adapter *adapter = netdev_priv(netdev);
3592 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3593 	u8 num_tc = 0, total_qps = 0;
3594 	int ret = 0, netdev_tc = 0;
3595 	u64 max_tx_rate;
3596 	u16 mode;
3597 	int i;
3598 
3599 	num_tc = mqprio_qopt->qopt.num_tc;
3600 	mode = mqprio_qopt->mode;
3601 
3602 	/* delete queue_channel */
3603 	if (!mqprio_qopt->qopt.hw) {
3604 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3605 			/* reset the tc configuration */
3606 			netdev_reset_tc(netdev);
3607 			adapter->num_tc = 0;
3608 			netif_tx_stop_all_queues(netdev);
3609 			netif_tx_disable(netdev);
3610 			iavf_del_all_cloud_filters(adapter);
3611 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3612 			total_qps = adapter->orig_num_active_queues;
3613 			goto exit;
3614 		} else {
3615 			return -EINVAL;
3616 		}
3617 	}
3618 
3619 	/* add queue channel */
3620 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3621 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3622 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3623 			return -EOPNOTSUPP;
3624 		}
3625 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3626 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3627 			return -EINVAL;
3628 		}
3629 
3630 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3631 		if (ret)
3632 			return ret;
3633 		/* Return if same TC config is requested */
3634 		if (adapter->num_tc == num_tc)
3635 			return 0;
3636 		adapter->num_tc = num_tc;
3637 
3638 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3639 			if (i < num_tc) {
3640 				adapter->ch_config.ch_info[i].count =
3641 					mqprio_qopt->qopt.count[i];
3642 				adapter->ch_config.ch_info[i].offset =
3643 					mqprio_qopt->qopt.offset[i];
3644 				total_qps += mqprio_qopt->qopt.count[i];
3645 				max_tx_rate = mqprio_qopt->max_rate[i];
3646 				/* convert to Mbps */
3647 				max_tx_rate = div_u64(max_tx_rate,
3648 						      IAVF_MBPS_DIVISOR);
3649 				adapter->ch_config.ch_info[i].max_tx_rate =
3650 					max_tx_rate;
3651 			} else {
3652 				adapter->ch_config.ch_info[i].count = 1;
3653 				adapter->ch_config.ch_info[i].offset = 0;
3654 			}
3655 		}
3656 
3657 		/* Take snapshot of original config such as "num_active_queues"
3658 		 * It is used later when delete ADQ flow is exercised, so that
3659 		 * once delete ADQ flow completes, VF shall go back to its
3660 		 * original queue configuration
3661 		 */
3662 
3663 		adapter->orig_num_active_queues = adapter->num_active_queues;
3664 
3665 		/* Store queue info based on TC so that VF gets configured
3666 		 * with correct number of queues when VF completes ADQ config
3667 		 * flow
3668 		 */
3669 		adapter->ch_config.total_qps = total_qps;
3670 
3671 		netif_tx_stop_all_queues(netdev);
3672 		netif_tx_disable(netdev);
3673 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3674 		netdev_reset_tc(netdev);
3675 		/* Report the tc mapping up the stack */
3676 		netdev_set_num_tc(adapter->netdev, num_tc);
3677 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3678 			u16 qcount = mqprio_qopt->qopt.count[i];
3679 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3680 
3681 			if (i < num_tc)
3682 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3683 						    qoffset);
3684 		}
3685 	}
3686 exit:
3687 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3688 		return 0;
3689 
3690 	netif_set_real_num_rx_queues(netdev, total_qps);
3691 	netif_set_real_num_tx_queues(netdev, total_qps);
3692 
3693 	return ret;
3694 }
3695 
3696 /**
3697  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3698  * @adapter: board private structure
3699  * @f: pointer to struct flow_cls_offload
3700  * @filter: pointer to cloud filter structure
3701  */
3702 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3703 				 struct flow_cls_offload *f,
3704 				 struct iavf_cloud_filter *filter)
3705 {
3706 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3707 	struct flow_dissector *dissector = rule->match.dissector;
3708 	u16 n_proto_mask = 0;
3709 	u16 n_proto_key = 0;
3710 	u8 field_flags = 0;
3711 	u16 addr_type = 0;
3712 	u16 n_proto = 0;
3713 	int i = 0;
3714 	struct virtchnl_filter *vf = &filter->f;
3715 
3716 	if (dissector->used_keys &
3717 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3718 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3719 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3720 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3721 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3722 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3723 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3724 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3725 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3726 			dissector->used_keys);
3727 		return -EOPNOTSUPP;
3728 	}
3729 
3730 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3731 		struct flow_match_enc_keyid match;
3732 
3733 		flow_rule_match_enc_keyid(rule, &match);
3734 		if (match.mask->keyid != 0)
3735 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3736 	}
3737 
3738 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3739 		struct flow_match_basic match;
3740 
3741 		flow_rule_match_basic(rule, &match);
3742 		n_proto_key = ntohs(match.key->n_proto);
3743 		n_proto_mask = ntohs(match.mask->n_proto);
3744 
3745 		if (n_proto_key == ETH_P_ALL) {
3746 			n_proto_key = 0;
3747 			n_proto_mask = 0;
3748 		}
3749 		n_proto = n_proto_key & n_proto_mask;
3750 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3751 			return -EINVAL;
3752 		if (n_proto == ETH_P_IPV6) {
3753 			/* specify flow type as TCP IPv6 */
3754 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3755 		}
3756 
3757 		if (match.key->ip_proto != IPPROTO_TCP) {
3758 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3759 			return -EINVAL;
3760 		}
3761 	}
3762 
3763 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3764 		struct flow_match_eth_addrs match;
3765 
3766 		flow_rule_match_eth_addrs(rule, &match);
3767 
3768 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3769 		if (!is_zero_ether_addr(match.mask->dst)) {
3770 			if (is_broadcast_ether_addr(match.mask->dst)) {
3771 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3772 			} else {
3773 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3774 					match.mask->dst);
3775 				return -EINVAL;
3776 			}
3777 		}
3778 
3779 		if (!is_zero_ether_addr(match.mask->src)) {
3780 			if (is_broadcast_ether_addr(match.mask->src)) {
3781 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3782 			} else {
3783 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3784 					match.mask->src);
3785 				return -EINVAL;
3786 			}
3787 		}
3788 
3789 		if (!is_zero_ether_addr(match.key->dst))
3790 			if (is_valid_ether_addr(match.key->dst) ||
3791 			    is_multicast_ether_addr(match.key->dst)) {
3792 				/* set the mask if a valid dst_mac address */
3793 				for (i = 0; i < ETH_ALEN; i++)
3794 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3795 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3796 						match.key->dst);
3797 			}
3798 
3799 		if (!is_zero_ether_addr(match.key->src))
3800 			if (is_valid_ether_addr(match.key->src) ||
3801 			    is_multicast_ether_addr(match.key->src)) {
3802 				/* set the mask if a valid dst_mac address */
3803 				for (i = 0; i < ETH_ALEN; i++)
3804 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3805 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3806 						match.key->src);
3807 		}
3808 	}
3809 
3810 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3811 		struct flow_match_vlan match;
3812 
3813 		flow_rule_match_vlan(rule, &match);
3814 		if (match.mask->vlan_id) {
3815 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3816 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3817 			} else {
3818 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3819 					match.mask->vlan_id);
3820 				return -EINVAL;
3821 			}
3822 		}
3823 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3824 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3825 	}
3826 
3827 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3828 		struct flow_match_control match;
3829 
3830 		flow_rule_match_control(rule, &match);
3831 		addr_type = match.key->addr_type;
3832 	}
3833 
3834 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3835 		struct flow_match_ipv4_addrs match;
3836 
3837 		flow_rule_match_ipv4_addrs(rule, &match);
3838 		if (match.mask->dst) {
3839 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3840 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3841 			} else {
3842 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3843 					be32_to_cpu(match.mask->dst));
3844 				return -EINVAL;
3845 			}
3846 		}
3847 
3848 		if (match.mask->src) {
3849 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3850 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3851 			} else {
3852 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3853 					be32_to_cpu(match.mask->dst));
3854 				return -EINVAL;
3855 			}
3856 		}
3857 
3858 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3859 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3860 			return -EINVAL;
3861 		}
3862 		if (match.key->dst) {
3863 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3864 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3865 		}
3866 		if (match.key->src) {
3867 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3868 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3869 		}
3870 	}
3871 
3872 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3873 		struct flow_match_ipv6_addrs match;
3874 
3875 		flow_rule_match_ipv6_addrs(rule, &match);
3876 
3877 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3878 		if (ipv6_addr_any(&match.mask->dst)) {
3879 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3880 				IPV6_ADDR_ANY);
3881 			return -EINVAL;
3882 		}
3883 
3884 		/* src and dest IPv6 address should not be LOOPBACK
3885 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3886 		 */
3887 		if (ipv6_addr_loopback(&match.key->dst) ||
3888 		    ipv6_addr_loopback(&match.key->src)) {
3889 			dev_err(&adapter->pdev->dev,
3890 				"ipv6 addr should not be loopback\n");
3891 			return -EINVAL;
3892 		}
3893 		if (!ipv6_addr_any(&match.mask->dst) ||
3894 		    !ipv6_addr_any(&match.mask->src))
3895 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3896 
3897 		for (i = 0; i < 4; i++)
3898 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3899 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3900 		       sizeof(vf->data.tcp_spec.dst_ip));
3901 		for (i = 0; i < 4; i++)
3902 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3903 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3904 		       sizeof(vf->data.tcp_spec.src_ip));
3905 	}
3906 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3907 		struct flow_match_ports match;
3908 
3909 		flow_rule_match_ports(rule, &match);
3910 		if (match.mask->src) {
3911 			if (match.mask->src == cpu_to_be16(0xffff)) {
3912 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3913 			} else {
3914 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3915 					be16_to_cpu(match.mask->src));
3916 				return -EINVAL;
3917 			}
3918 		}
3919 
3920 		if (match.mask->dst) {
3921 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3922 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3923 			} else {
3924 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3925 					be16_to_cpu(match.mask->dst));
3926 				return -EINVAL;
3927 			}
3928 		}
3929 		if (match.key->dst) {
3930 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3931 			vf->data.tcp_spec.dst_port = match.key->dst;
3932 		}
3933 
3934 		if (match.key->src) {
3935 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3936 			vf->data.tcp_spec.src_port = match.key->src;
3937 		}
3938 	}
3939 	vf->field_flags = field_flags;
3940 
3941 	return 0;
3942 }
3943 
3944 /**
3945  * iavf_handle_tclass - Forward to a traffic class on the device
3946  * @adapter: board private structure
3947  * @tc: traffic class index on the device
3948  * @filter: pointer to cloud filter structure
3949  */
3950 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3951 			      struct iavf_cloud_filter *filter)
3952 {
3953 	if (tc == 0)
3954 		return 0;
3955 	if (tc < adapter->num_tc) {
3956 		if (!filter->f.data.tcp_spec.dst_port) {
3957 			dev_err(&adapter->pdev->dev,
3958 				"Specify destination port to redirect to traffic class other than TC0\n");
3959 			return -EINVAL;
3960 		}
3961 	}
3962 	/* redirect to a traffic class on the same device */
3963 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3964 	filter->f.action_meta = tc;
3965 	return 0;
3966 }
3967 
3968 /**
3969  * iavf_find_cf - Find the cloud filter in the list
3970  * @adapter: Board private structure
3971  * @cookie: filter specific cookie
3972  *
3973  * Returns ptr to the filter object or NULL. Must be called while holding the
3974  * cloud_filter_list_lock.
3975  */
3976 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3977 					      unsigned long *cookie)
3978 {
3979 	struct iavf_cloud_filter *filter = NULL;
3980 
3981 	if (!cookie)
3982 		return NULL;
3983 
3984 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3985 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3986 			return filter;
3987 	}
3988 	return NULL;
3989 }
3990 
3991 /**
3992  * iavf_configure_clsflower - Add tc flower filters
3993  * @adapter: board private structure
3994  * @cls_flower: Pointer to struct flow_cls_offload
3995  */
3996 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3997 				    struct flow_cls_offload *cls_flower)
3998 {
3999 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4000 	struct iavf_cloud_filter *filter = NULL;
4001 	int err = -EINVAL, count = 50;
4002 
4003 	if (tc < 0) {
4004 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4005 		return -EINVAL;
4006 	}
4007 
4008 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4009 	if (!filter)
4010 		return -ENOMEM;
4011 
4012 	while (!mutex_trylock(&adapter->crit_lock)) {
4013 		if (--count == 0) {
4014 			kfree(filter);
4015 			return err;
4016 		}
4017 		udelay(1);
4018 	}
4019 
4020 	filter->cookie = cls_flower->cookie;
4021 
4022 	/* bail out here if filter already exists */
4023 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4024 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4025 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4026 		err = -EEXIST;
4027 		goto spin_unlock;
4028 	}
4029 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4030 
4031 	/* set the mask to all zeroes to begin with */
4032 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4033 	/* start out with flow type and eth type IPv4 to begin with */
4034 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4035 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4036 	if (err)
4037 		goto err;
4038 
4039 	err = iavf_handle_tclass(adapter, tc, filter);
4040 	if (err)
4041 		goto err;
4042 
4043 	/* add filter to the list */
4044 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4045 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4046 	adapter->num_cloud_filters++;
4047 	filter->add = true;
4048 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4049 spin_unlock:
4050 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4051 err:
4052 	if (err)
4053 		kfree(filter);
4054 
4055 	mutex_unlock(&adapter->crit_lock);
4056 	return err;
4057 }
4058 
4059 /**
4060  * iavf_delete_clsflower - Remove tc flower filters
4061  * @adapter: board private structure
4062  * @cls_flower: Pointer to struct flow_cls_offload
4063  */
4064 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4065 				 struct flow_cls_offload *cls_flower)
4066 {
4067 	struct iavf_cloud_filter *filter = NULL;
4068 	int err = 0;
4069 
4070 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4071 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4072 	if (filter) {
4073 		filter->del = true;
4074 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4075 	} else {
4076 		err = -EINVAL;
4077 	}
4078 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4079 
4080 	return err;
4081 }
4082 
4083 /**
4084  * iavf_setup_tc_cls_flower - flower classifier offloads
4085  * @adapter: board private structure
4086  * @cls_flower: pointer to flow_cls_offload struct with flow info
4087  */
4088 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4089 				    struct flow_cls_offload *cls_flower)
4090 {
4091 	switch (cls_flower->command) {
4092 	case FLOW_CLS_REPLACE:
4093 		return iavf_configure_clsflower(adapter, cls_flower);
4094 	case FLOW_CLS_DESTROY:
4095 		return iavf_delete_clsflower(adapter, cls_flower);
4096 	case FLOW_CLS_STATS:
4097 		return -EOPNOTSUPP;
4098 	default:
4099 		return -EOPNOTSUPP;
4100 	}
4101 }
4102 
4103 /**
4104  * iavf_setup_tc_block_cb - block callback for tc
4105  * @type: type of offload
4106  * @type_data: offload data
4107  * @cb_priv:
4108  *
4109  * This function is the block callback for traffic classes
4110  **/
4111 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4112 				  void *cb_priv)
4113 {
4114 	struct iavf_adapter *adapter = cb_priv;
4115 
4116 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4117 		return -EOPNOTSUPP;
4118 
4119 	switch (type) {
4120 	case TC_SETUP_CLSFLOWER:
4121 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4122 	default:
4123 		return -EOPNOTSUPP;
4124 	}
4125 }
4126 
4127 static LIST_HEAD(iavf_block_cb_list);
4128 
4129 /**
4130  * iavf_setup_tc - configure multiple traffic classes
4131  * @netdev: network interface device structure
4132  * @type: type of offload
4133  * @type_data: tc offload data
4134  *
4135  * This function is the callback to ndo_setup_tc in the
4136  * netdev_ops.
4137  *
4138  * Returns 0 on success
4139  **/
4140 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4141 			 void *type_data)
4142 {
4143 	struct iavf_adapter *adapter = netdev_priv(netdev);
4144 
4145 	switch (type) {
4146 	case TC_SETUP_QDISC_MQPRIO:
4147 		return __iavf_setup_tc(netdev, type_data);
4148 	case TC_SETUP_BLOCK:
4149 		return flow_block_cb_setup_simple(type_data,
4150 						  &iavf_block_cb_list,
4151 						  iavf_setup_tc_block_cb,
4152 						  adapter, adapter, true);
4153 	default:
4154 		return -EOPNOTSUPP;
4155 	}
4156 }
4157 
4158 /**
4159  * iavf_open - Called when a network interface is made active
4160  * @netdev: network interface device structure
4161  *
4162  * Returns 0 on success, negative value on failure
4163  *
4164  * The open entry point is called when a network interface is made
4165  * active by the system (IFF_UP).  At this point all resources needed
4166  * for transmit and receive operations are allocated, the interrupt
4167  * handler is registered with the OS, the watchdog is started,
4168  * and the stack is notified that the interface is ready.
4169  **/
4170 static int iavf_open(struct net_device *netdev)
4171 {
4172 	struct iavf_adapter *adapter = netdev_priv(netdev);
4173 	int err;
4174 
4175 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4176 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4177 		return -EIO;
4178 	}
4179 
4180 	while (!mutex_trylock(&adapter->crit_lock)) {
4181 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4182 		 * is already taken and iavf_open is called from an upper
4183 		 * device's notifier reacting on NETDEV_REGISTER event.
4184 		 * We have to leave here to avoid dead lock.
4185 		 */
4186 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4187 			return -EBUSY;
4188 
4189 		usleep_range(500, 1000);
4190 	}
4191 
4192 	if (adapter->state != __IAVF_DOWN) {
4193 		err = -EBUSY;
4194 		goto err_unlock;
4195 	}
4196 
4197 	if (adapter->state == __IAVF_RUNNING &&
4198 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4199 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4200 		err = 0;
4201 		goto err_unlock;
4202 	}
4203 
4204 	/* allocate transmit descriptors */
4205 	err = iavf_setup_all_tx_resources(adapter);
4206 	if (err)
4207 		goto err_setup_tx;
4208 
4209 	/* allocate receive descriptors */
4210 	err = iavf_setup_all_rx_resources(adapter);
4211 	if (err)
4212 		goto err_setup_rx;
4213 
4214 	/* clear any pending interrupts, may auto mask */
4215 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4216 	if (err)
4217 		goto err_req_irq;
4218 
4219 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4220 
4221 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4222 
4223 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4224 
4225 	/* Restore VLAN filters that were removed with IFF_DOWN */
4226 	iavf_restore_filters(adapter);
4227 
4228 	iavf_configure(adapter);
4229 
4230 	iavf_up_complete(adapter);
4231 
4232 	iavf_irq_enable(adapter, true);
4233 
4234 	mutex_unlock(&adapter->crit_lock);
4235 
4236 	return 0;
4237 
4238 err_req_irq:
4239 	iavf_down(adapter);
4240 	iavf_free_traffic_irqs(adapter);
4241 err_setup_rx:
4242 	iavf_free_all_rx_resources(adapter);
4243 err_setup_tx:
4244 	iavf_free_all_tx_resources(adapter);
4245 err_unlock:
4246 	mutex_unlock(&adapter->crit_lock);
4247 
4248 	return err;
4249 }
4250 
4251 /**
4252  * iavf_close - Disables a network interface
4253  * @netdev: network interface device structure
4254  *
4255  * Returns 0, this is not allowed to fail
4256  *
4257  * The close entry point is called when an interface is de-activated
4258  * by the OS.  The hardware is still under the drivers control, but
4259  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4260  * are freed, along with all transmit and receive resources.
4261  **/
4262 static int iavf_close(struct net_device *netdev)
4263 {
4264 	struct iavf_adapter *adapter = netdev_priv(netdev);
4265 	u64 aq_to_restore;
4266 	int status;
4267 
4268 	mutex_lock(&adapter->crit_lock);
4269 
4270 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4271 		mutex_unlock(&adapter->crit_lock);
4272 		return 0;
4273 	}
4274 
4275 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4276 	if (CLIENT_ENABLED(adapter))
4277 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4278 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4279 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4280 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4281 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4282 	 * disable queues possible for vf. Give only necessary flags to
4283 	 * iavf_down and save other to set them right before iavf_close()
4284 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4285 	 * iavf will be in DOWN state.
4286 	 */
4287 	aq_to_restore = adapter->aq_required;
4288 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4289 
4290 	/* Remove flags which we do not want to send after close or we want to
4291 	 * send before disable queues.
4292 	 */
4293 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4294 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4295 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4296 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4297 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4298 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4299 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4300 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4301 
4302 	iavf_down(adapter);
4303 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4304 	iavf_free_traffic_irqs(adapter);
4305 
4306 	mutex_unlock(&adapter->crit_lock);
4307 
4308 	/* We explicitly don't free resources here because the hardware is
4309 	 * still active and can DMA into memory. Resources are cleared in
4310 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4311 	 * driver that the rings have been stopped.
4312 	 *
4313 	 * Also, we wait for state to transition to __IAVF_DOWN before
4314 	 * returning. State change occurs in iavf_virtchnl_completion() after
4315 	 * VF resources are released (which occurs after PF driver processes and
4316 	 * responds to admin queue commands).
4317 	 */
4318 
4319 	status = wait_event_timeout(adapter->down_waitqueue,
4320 				    adapter->state == __IAVF_DOWN,
4321 				    msecs_to_jiffies(500));
4322 	if (!status)
4323 		netdev_warn(netdev, "Device resources not yet released\n");
4324 
4325 	mutex_lock(&adapter->crit_lock);
4326 	adapter->aq_required |= aq_to_restore;
4327 	mutex_unlock(&adapter->crit_lock);
4328 	return 0;
4329 }
4330 
4331 /**
4332  * iavf_change_mtu - Change the Maximum Transfer Unit
4333  * @netdev: network interface device structure
4334  * @new_mtu: new value for maximum frame size
4335  *
4336  * Returns 0 on success, negative on failure
4337  **/
4338 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4339 {
4340 	struct iavf_adapter *adapter = netdev_priv(netdev);
4341 
4342 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4343 		   netdev->mtu, new_mtu);
4344 	netdev->mtu = new_mtu;
4345 	if (CLIENT_ENABLED(adapter)) {
4346 		iavf_notify_client_l2_params(&adapter->vsi);
4347 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4348 	}
4349 
4350 	if (netif_running(netdev)) {
4351 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4352 		queue_work(iavf_wq, &adapter->reset_task);
4353 	}
4354 
4355 	return 0;
4356 }
4357 
4358 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4359 					 NETIF_F_HW_VLAN_CTAG_TX | \
4360 					 NETIF_F_HW_VLAN_STAG_RX | \
4361 					 NETIF_F_HW_VLAN_STAG_TX)
4362 
4363 /**
4364  * iavf_set_features - set the netdev feature flags
4365  * @netdev: ptr to the netdev being adjusted
4366  * @features: the feature set that the stack is suggesting
4367  * Note: expects to be called while under rtnl_lock()
4368  **/
4369 static int iavf_set_features(struct net_device *netdev,
4370 			     netdev_features_t features)
4371 {
4372 	struct iavf_adapter *adapter = netdev_priv(netdev);
4373 
4374 	/* trigger update on any VLAN feature change */
4375 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4376 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4377 		iavf_set_vlan_offload_features(adapter, netdev->features,
4378 					       features);
4379 
4380 	return 0;
4381 }
4382 
4383 /**
4384  * iavf_features_check - Validate encapsulated packet conforms to limits
4385  * @skb: skb buff
4386  * @dev: This physical port's netdev
4387  * @features: Offload features that the stack believes apply
4388  **/
4389 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4390 					     struct net_device *dev,
4391 					     netdev_features_t features)
4392 {
4393 	size_t len;
4394 
4395 	/* No point in doing any of this if neither checksum nor GSO are
4396 	 * being requested for this frame.  We can rule out both by just
4397 	 * checking for CHECKSUM_PARTIAL
4398 	 */
4399 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4400 		return features;
4401 
4402 	/* We cannot support GSO if the MSS is going to be less than
4403 	 * 64 bytes.  If it is then we need to drop support for GSO.
4404 	 */
4405 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4406 		features &= ~NETIF_F_GSO_MASK;
4407 
4408 	/* MACLEN can support at most 63 words */
4409 	len = skb_network_header(skb) - skb->data;
4410 	if (len & ~(63 * 2))
4411 		goto out_err;
4412 
4413 	/* IPLEN and EIPLEN can support at most 127 dwords */
4414 	len = skb_transport_header(skb) - skb_network_header(skb);
4415 	if (len & ~(127 * 4))
4416 		goto out_err;
4417 
4418 	if (skb->encapsulation) {
4419 		/* L4TUNLEN can support 127 words */
4420 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4421 		if (len & ~(127 * 2))
4422 			goto out_err;
4423 
4424 		/* IPLEN can support at most 127 dwords */
4425 		len = skb_inner_transport_header(skb) -
4426 		      skb_inner_network_header(skb);
4427 		if (len & ~(127 * 4))
4428 			goto out_err;
4429 	}
4430 
4431 	/* No need to validate L4LEN as TCP is the only protocol with a
4432 	 * flexible value and we support all possible values supported
4433 	 * by TCP, which is at most 15 dwords
4434 	 */
4435 
4436 	return features;
4437 out_err:
4438 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4439 }
4440 
4441 /**
4442  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4443  * @adapter: board private structure
4444  *
4445  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4446  * were negotiated determine the VLAN features that can be toggled on and off.
4447  **/
4448 static netdev_features_t
4449 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4450 {
4451 	netdev_features_t hw_features = 0;
4452 
4453 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4454 		return hw_features;
4455 
4456 	/* Enable VLAN features if supported */
4457 	if (VLAN_ALLOWED(adapter)) {
4458 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4459 				NETIF_F_HW_VLAN_CTAG_RX);
4460 	} else if (VLAN_V2_ALLOWED(adapter)) {
4461 		struct virtchnl_vlan_caps *vlan_v2_caps =
4462 			&adapter->vlan_v2_caps;
4463 		struct virtchnl_vlan_supported_caps *stripping_support =
4464 			&vlan_v2_caps->offloads.stripping_support;
4465 		struct virtchnl_vlan_supported_caps *insertion_support =
4466 			&vlan_v2_caps->offloads.insertion_support;
4467 
4468 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4469 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4470 			if (stripping_support->outer &
4471 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4472 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4473 			if (stripping_support->outer &
4474 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4475 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4476 		} else if (stripping_support->inner !=
4477 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4478 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4479 			if (stripping_support->inner &
4480 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4481 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4482 		}
4483 
4484 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4485 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4486 			if (insertion_support->outer &
4487 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4488 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4489 			if (insertion_support->outer &
4490 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4491 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4492 		} else if (insertion_support->inner &&
4493 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4494 			if (insertion_support->inner &
4495 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4496 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4497 		}
4498 	}
4499 
4500 	return hw_features;
4501 }
4502 
4503 /**
4504  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4505  * @adapter: board private structure
4506  *
4507  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4508  * were negotiated determine the VLAN features that are enabled by default.
4509  **/
4510 static netdev_features_t
4511 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4512 {
4513 	netdev_features_t features = 0;
4514 
4515 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4516 		return features;
4517 
4518 	if (VLAN_ALLOWED(adapter)) {
4519 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4520 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4521 	} else if (VLAN_V2_ALLOWED(adapter)) {
4522 		struct virtchnl_vlan_caps *vlan_v2_caps =
4523 			&adapter->vlan_v2_caps;
4524 		struct virtchnl_vlan_supported_caps *filtering_support =
4525 			&vlan_v2_caps->filtering.filtering_support;
4526 		struct virtchnl_vlan_supported_caps *stripping_support =
4527 			&vlan_v2_caps->offloads.stripping_support;
4528 		struct virtchnl_vlan_supported_caps *insertion_support =
4529 			&vlan_v2_caps->offloads.insertion_support;
4530 		u32 ethertype_init;
4531 
4532 		/* give priority to outer stripping and don't support both outer
4533 		 * and inner stripping
4534 		 */
4535 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4536 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4537 			if (stripping_support->outer &
4538 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4539 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4540 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4541 			else if (stripping_support->outer &
4542 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4543 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4544 				features |= NETIF_F_HW_VLAN_STAG_RX;
4545 		} else if (stripping_support->inner !=
4546 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4547 			if (stripping_support->inner &
4548 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4549 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4550 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4551 		}
4552 
4553 		/* give priority to outer insertion and don't support both outer
4554 		 * and inner insertion
4555 		 */
4556 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4557 			if (insertion_support->outer &
4558 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4559 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4560 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4561 			else if (insertion_support->outer &
4562 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4563 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4564 				features |= NETIF_F_HW_VLAN_STAG_TX;
4565 		} else if (insertion_support->inner !=
4566 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4567 			if (insertion_support->inner &
4568 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4569 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4570 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4571 		}
4572 
4573 		/* give priority to outer filtering and don't bother if both
4574 		 * outer and inner filtering are enabled
4575 		 */
4576 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4577 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4578 			if (filtering_support->outer &
4579 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4580 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4581 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4582 			if (filtering_support->outer &
4583 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4584 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4585 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4586 		} else if (filtering_support->inner !=
4587 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4588 			if (filtering_support->inner &
4589 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4590 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4591 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4592 			if (filtering_support->inner &
4593 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4594 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4595 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4596 		}
4597 	}
4598 
4599 	return features;
4600 }
4601 
4602 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4603 	(!(((requested) & (feature_bit)) && \
4604 	   !((allowed) & (feature_bit))))
4605 
4606 /**
4607  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4608  * @adapter: board private structure
4609  * @requested_features: stack requested NETDEV features
4610  **/
4611 static netdev_features_t
4612 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4613 			      netdev_features_t requested_features)
4614 {
4615 	netdev_features_t allowed_features;
4616 
4617 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4618 		iavf_get_netdev_vlan_features(adapter);
4619 
4620 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4621 					      allowed_features,
4622 					      NETIF_F_HW_VLAN_CTAG_TX))
4623 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4624 
4625 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4626 					      allowed_features,
4627 					      NETIF_F_HW_VLAN_CTAG_RX))
4628 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4629 
4630 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4631 					      allowed_features,
4632 					      NETIF_F_HW_VLAN_STAG_TX))
4633 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4634 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4635 					      allowed_features,
4636 					      NETIF_F_HW_VLAN_STAG_RX))
4637 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4638 
4639 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4640 					      allowed_features,
4641 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4642 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4643 
4644 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4645 					      allowed_features,
4646 					      NETIF_F_HW_VLAN_STAG_FILTER))
4647 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4648 
4649 	if ((requested_features &
4650 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4651 	    (requested_features &
4652 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4653 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4654 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4655 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4656 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4657 					NETIF_F_HW_VLAN_STAG_TX);
4658 	}
4659 
4660 	return requested_features;
4661 }
4662 
4663 /**
4664  * iavf_fix_features - fix up the netdev feature bits
4665  * @netdev: our net device
4666  * @features: desired feature bits
4667  *
4668  * Returns fixed-up features bits
4669  **/
4670 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4671 					   netdev_features_t features)
4672 {
4673 	struct iavf_adapter *adapter = netdev_priv(netdev);
4674 
4675 	return iavf_fix_netdev_vlan_features(adapter, features);
4676 }
4677 
4678 static const struct net_device_ops iavf_netdev_ops = {
4679 	.ndo_open		= iavf_open,
4680 	.ndo_stop		= iavf_close,
4681 	.ndo_start_xmit		= iavf_xmit_frame,
4682 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4683 	.ndo_validate_addr	= eth_validate_addr,
4684 	.ndo_set_mac_address	= iavf_set_mac,
4685 	.ndo_change_mtu		= iavf_change_mtu,
4686 	.ndo_tx_timeout		= iavf_tx_timeout,
4687 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4688 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4689 	.ndo_features_check	= iavf_features_check,
4690 	.ndo_fix_features	= iavf_fix_features,
4691 	.ndo_set_features	= iavf_set_features,
4692 	.ndo_setup_tc		= iavf_setup_tc,
4693 };
4694 
4695 /**
4696  * iavf_check_reset_complete - check that VF reset is complete
4697  * @hw: pointer to hw struct
4698  *
4699  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4700  **/
4701 static int iavf_check_reset_complete(struct iavf_hw *hw)
4702 {
4703 	u32 rstat;
4704 	int i;
4705 
4706 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4707 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4708 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4709 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4710 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4711 			return 0;
4712 		usleep_range(10, 20);
4713 	}
4714 	return -EBUSY;
4715 }
4716 
4717 /**
4718  * iavf_process_config - Process the config information we got from the PF
4719  * @adapter: board private structure
4720  *
4721  * Verify that we have a valid config struct, and set up our netdev features
4722  * and our VSI struct.
4723  **/
4724 int iavf_process_config(struct iavf_adapter *adapter)
4725 {
4726 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4727 	netdev_features_t hw_vlan_features, vlan_features;
4728 	struct net_device *netdev = adapter->netdev;
4729 	netdev_features_t hw_enc_features;
4730 	netdev_features_t hw_features;
4731 
4732 	hw_enc_features = NETIF_F_SG			|
4733 			  NETIF_F_IP_CSUM		|
4734 			  NETIF_F_IPV6_CSUM		|
4735 			  NETIF_F_HIGHDMA		|
4736 			  NETIF_F_SOFT_FEATURES	|
4737 			  NETIF_F_TSO			|
4738 			  NETIF_F_TSO_ECN		|
4739 			  NETIF_F_TSO6			|
4740 			  NETIF_F_SCTP_CRC		|
4741 			  NETIF_F_RXHASH		|
4742 			  NETIF_F_RXCSUM		|
4743 			  0;
4744 
4745 	/* advertise to stack only if offloads for encapsulated packets is
4746 	 * supported
4747 	 */
4748 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4749 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4750 				   NETIF_F_GSO_GRE		|
4751 				   NETIF_F_GSO_GRE_CSUM		|
4752 				   NETIF_F_GSO_IPXIP4		|
4753 				   NETIF_F_GSO_IPXIP6		|
4754 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4755 				   NETIF_F_GSO_PARTIAL		|
4756 				   0;
4757 
4758 		if (!(vfres->vf_cap_flags &
4759 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4760 			netdev->gso_partial_features |=
4761 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4762 
4763 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4764 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4765 		netdev->hw_enc_features |= hw_enc_features;
4766 	}
4767 	/* record features VLANs can make use of */
4768 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4769 
4770 	/* Write features and hw_features separately to avoid polluting
4771 	 * with, or dropping, features that are set when we registered.
4772 	 */
4773 	hw_features = hw_enc_features;
4774 
4775 	/* get HW VLAN features that can be toggled */
4776 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4777 
4778 	/* Enable cloud filter if ADQ is supported */
4779 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4780 		hw_features |= NETIF_F_HW_TC;
4781 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4782 		hw_features |= NETIF_F_GSO_UDP_L4;
4783 
4784 	netdev->hw_features |= hw_features | hw_vlan_features;
4785 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4786 
4787 	netdev->features |= hw_features | vlan_features;
4788 
4789 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4790 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4791 
4792 	netdev->priv_flags |= IFF_UNICAST_FLT;
4793 
4794 	/* Do not turn on offloads when they are requested to be turned off.
4795 	 * TSO needs minimum 576 bytes to work correctly.
4796 	 */
4797 	if (netdev->wanted_features) {
4798 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4799 		    netdev->mtu < 576)
4800 			netdev->features &= ~NETIF_F_TSO;
4801 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4802 		    netdev->mtu < 576)
4803 			netdev->features &= ~NETIF_F_TSO6;
4804 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4805 			netdev->features &= ~NETIF_F_TSO_ECN;
4806 		if (!(netdev->wanted_features & NETIF_F_GRO))
4807 			netdev->features &= ~NETIF_F_GRO;
4808 		if (!(netdev->wanted_features & NETIF_F_GSO))
4809 			netdev->features &= ~NETIF_F_GSO;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
4815 /**
4816  * iavf_shutdown - Shutdown the device in preparation for a reboot
4817  * @pdev: pci device structure
4818  **/
4819 static void iavf_shutdown(struct pci_dev *pdev)
4820 {
4821 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4822 	struct net_device *netdev = adapter->netdev;
4823 
4824 	netif_device_detach(netdev);
4825 
4826 	if (netif_running(netdev))
4827 		iavf_close(netdev);
4828 
4829 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4830 		dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__);
4831 	/* Prevent the watchdog from running. */
4832 	iavf_change_state(adapter, __IAVF_REMOVE);
4833 	adapter->aq_required = 0;
4834 	mutex_unlock(&adapter->crit_lock);
4835 
4836 #ifdef CONFIG_PM
4837 	pci_save_state(pdev);
4838 
4839 #endif
4840 	pci_disable_device(pdev);
4841 }
4842 
4843 /**
4844  * iavf_probe - Device Initialization Routine
4845  * @pdev: PCI device information struct
4846  * @ent: entry in iavf_pci_tbl
4847  *
4848  * Returns 0 on success, negative on failure
4849  *
4850  * iavf_probe initializes an adapter identified by a pci_dev structure.
4851  * The OS initialization, configuring of the adapter private structure,
4852  * and a hardware reset occur.
4853  **/
4854 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4855 {
4856 	struct net_device *netdev;
4857 	struct iavf_adapter *adapter = NULL;
4858 	struct iavf_hw *hw = NULL;
4859 	int err;
4860 
4861 	err = pci_enable_device(pdev);
4862 	if (err)
4863 		return err;
4864 
4865 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4866 	if (err) {
4867 		dev_err(&pdev->dev,
4868 			"DMA configuration failed: 0x%x\n", err);
4869 		goto err_dma;
4870 	}
4871 
4872 	err = pci_request_regions(pdev, iavf_driver_name);
4873 	if (err) {
4874 		dev_err(&pdev->dev,
4875 			"pci_request_regions failed 0x%x\n", err);
4876 		goto err_pci_reg;
4877 	}
4878 
4879 	pci_enable_pcie_error_reporting(pdev);
4880 
4881 	pci_set_master(pdev);
4882 
4883 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4884 				   IAVF_MAX_REQ_QUEUES);
4885 	if (!netdev) {
4886 		err = -ENOMEM;
4887 		goto err_alloc_etherdev;
4888 	}
4889 
4890 	SET_NETDEV_DEV(netdev, &pdev->dev);
4891 
4892 	pci_set_drvdata(pdev, netdev);
4893 	adapter = netdev_priv(netdev);
4894 
4895 	adapter->netdev = netdev;
4896 	adapter->pdev = pdev;
4897 
4898 	hw = &adapter->hw;
4899 	hw->back = adapter;
4900 
4901 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4902 	iavf_change_state(adapter, __IAVF_STARTUP);
4903 
4904 	/* Call save state here because it relies on the adapter struct. */
4905 	pci_save_state(pdev);
4906 
4907 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4908 			      pci_resource_len(pdev, 0));
4909 	if (!hw->hw_addr) {
4910 		err = -EIO;
4911 		goto err_ioremap;
4912 	}
4913 	hw->vendor_id = pdev->vendor;
4914 	hw->device_id = pdev->device;
4915 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4916 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4917 	hw->subsystem_device_id = pdev->subsystem_device;
4918 	hw->bus.device = PCI_SLOT(pdev->devfn);
4919 	hw->bus.func = PCI_FUNC(pdev->devfn);
4920 	hw->bus.bus_id = pdev->bus->number;
4921 
4922 	/* set up the locks for the AQ, do this only once in probe
4923 	 * and destroy them only once in remove
4924 	 */
4925 	mutex_init(&adapter->crit_lock);
4926 	mutex_init(&adapter->client_lock);
4927 	mutex_init(&hw->aq.asq_mutex);
4928 	mutex_init(&hw->aq.arq_mutex);
4929 
4930 	spin_lock_init(&adapter->mac_vlan_list_lock);
4931 	spin_lock_init(&adapter->cloud_filter_list_lock);
4932 	spin_lock_init(&adapter->fdir_fltr_lock);
4933 	spin_lock_init(&adapter->adv_rss_lock);
4934 
4935 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4936 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4937 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4938 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4939 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4940 
4941 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4942 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4943 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4944 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4945 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4946 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4947 
4948 	/* Setup the wait queue for indicating transition to down status */
4949 	init_waitqueue_head(&adapter->down_waitqueue);
4950 
4951 	/* Setup the wait queue for indicating virtchannel events */
4952 	init_waitqueue_head(&adapter->vc_waitqueue);
4953 
4954 	return 0;
4955 
4956 err_ioremap:
4957 	free_netdev(netdev);
4958 err_alloc_etherdev:
4959 	pci_disable_pcie_error_reporting(pdev);
4960 	pci_release_regions(pdev);
4961 err_pci_reg:
4962 err_dma:
4963 	pci_disable_device(pdev);
4964 	return err;
4965 }
4966 
4967 /**
4968  * iavf_suspend - Power management suspend routine
4969  * @dev_d: device info pointer
4970  *
4971  * Called when the system (VM) is entering sleep/suspend.
4972  **/
4973 static int __maybe_unused iavf_suspend(struct device *dev_d)
4974 {
4975 	struct net_device *netdev = dev_get_drvdata(dev_d);
4976 	struct iavf_adapter *adapter = netdev_priv(netdev);
4977 
4978 	netif_device_detach(netdev);
4979 
4980 	while (!mutex_trylock(&adapter->crit_lock))
4981 		usleep_range(500, 1000);
4982 
4983 	if (netif_running(netdev)) {
4984 		rtnl_lock();
4985 		iavf_down(adapter);
4986 		rtnl_unlock();
4987 	}
4988 	iavf_free_misc_irq(adapter);
4989 	iavf_reset_interrupt_capability(adapter);
4990 
4991 	mutex_unlock(&adapter->crit_lock);
4992 
4993 	return 0;
4994 }
4995 
4996 /**
4997  * iavf_resume - Power management resume routine
4998  * @dev_d: device info pointer
4999  *
5000  * Called when the system (VM) is resumed from sleep/suspend.
5001  **/
5002 static int __maybe_unused iavf_resume(struct device *dev_d)
5003 {
5004 	struct pci_dev *pdev = to_pci_dev(dev_d);
5005 	struct iavf_adapter *adapter;
5006 	u32 err;
5007 
5008 	adapter = iavf_pdev_to_adapter(pdev);
5009 
5010 	pci_set_master(pdev);
5011 
5012 	rtnl_lock();
5013 	err = iavf_set_interrupt_capability(adapter);
5014 	if (err) {
5015 		rtnl_unlock();
5016 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5017 		return err;
5018 	}
5019 	err = iavf_request_misc_irq(adapter);
5020 	rtnl_unlock();
5021 	if (err) {
5022 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5023 		return err;
5024 	}
5025 
5026 	queue_work(iavf_wq, &adapter->reset_task);
5027 
5028 	netif_device_attach(adapter->netdev);
5029 
5030 	return err;
5031 }
5032 
5033 /**
5034  * iavf_remove - Device Removal Routine
5035  * @pdev: PCI device information struct
5036  *
5037  * iavf_remove is called by the PCI subsystem to alert the driver
5038  * that it should release a PCI device.  The could be caused by a
5039  * Hot-Plug event, or because the driver is going to be removed from
5040  * memory.
5041  **/
5042 static void iavf_remove(struct pci_dev *pdev)
5043 {
5044 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5045 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5046 	struct iavf_vlan_filter *vlf, *vlftmp;
5047 	struct iavf_cloud_filter *cf, *cftmp;
5048 	struct iavf_adv_rss *rss, *rsstmp;
5049 	struct iavf_mac_filter *f, *ftmp;
5050 	struct net_device *netdev;
5051 	struct iavf_hw *hw;
5052 	int err;
5053 
5054 	netdev = adapter->netdev;
5055 	hw = &adapter->hw;
5056 
5057 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5058 		return;
5059 
5060 	/* Wait until port initialization is complete.
5061 	 * There are flows where register/unregister netdev may race.
5062 	 */
5063 	while (1) {
5064 		mutex_lock(&adapter->crit_lock);
5065 		if (adapter->state == __IAVF_RUNNING ||
5066 		    adapter->state == __IAVF_DOWN ||
5067 		    adapter->state == __IAVF_INIT_FAILED) {
5068 			mutex_unlock(&adapter->crit_lock);
5069 			break;
5070 		}
5071 
5072 		mutex_unlock(&adapter->crit_lock);
5073 		usleep_range(500, 1000);
5074 	}
5075 	cancel_delayed_work_sync(&adapter->watchdog_task);
5076 
5077 	if (adapter->netdev_registered) {
5078 		rtnl_lock();
5079 		unregister_netdevice(netdev);
5080 		adapter->netdev_registered = false;
5081 		rtnl_unlock();
5082 	}
5083 	if (CLIENT_ALLOWED(adapter)) {
5084 		err = iavf_lan_del_device(adapter);
5085 		if (err)
5086 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5087 				 err);
5088 	}
5089 
5090 	mutex_lock(&adapter->crit_lock);
5091 	dev_info(&adapter->pdev->dev, "Removing device\n");
5092 	iavf_change_state(adapter, __IAVF_REMOVE);
5093 
5094 	iavf_request_reset(adapter);
5095 	msleep(50);
5096 	/* If the FW isn't responding, kick it once, but only once. */
5097 	if (!iavf_asq_done(hw)) {
5098 		iavf_request_reset(adapter);
5099 		msleep(50);
5100 	}
5101 
5102 	iavf_misc_irq_disable(adapter);
5103 	/* Shut down all the garbage mashers on the detention level */
5104 	cancel_work_sync(&adapter->reset_task);
5105 	cancel_delayed_work_sync(&adapter->watchdog_task);
5106 	cancel_work_sync(&adapter->adminq_task);
5107 	cancel_delayed_work_sync(&adapter->client_task);
5108 
5109 	adapter->aq_required = 0;
5110 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5111 
5112 	iavf_free_all_tx_resources(adapter);
5113 	iavf_free_all_rx_resources(adapter);
5114 	iavf_free_misc_irq(adapter);
5115 
5116 	iavf_reset_interrupt_capability(adapter);
5117 	iavf_free_q_vectors(adapter);
5118 
5119 	iavf_free_rss(adapter);
5120 
5121 	if (hw->aq.asq.count)
5122 		iavf_shutdown_adminq(hw);
5123 
5124 	/* destroy the locks only once, here */
5125 	mutex_destroy(&hw->aq.arq_mutex);
5126 	mutex_destroy(&hw->aq.asq_mutex);
5127 	mutex_destroy(&adapter->client_lock);
5128 	mutex_unlock(&adapter->crit_lock);
5129 	mutex_destroy(&adapter->crit_lock);
5130 
5131 	iounmap(hw->hw_addr);
5132 	pci_release_regions(pdev);
5133 	iavf_free_queues(adapter);
5134 	kfree(adapter->vf_res);
5135 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5136 	/* If we got removed before an up/down sequence, we've got a filter
5137 	 * hanging out there that we need to get rid of.
5138 	 */
5139 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5140 		list_del(&f->list);
5141 		kfree(f);
5142 	}
5143 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5144 				 list) {
5145 		list_del(&vlf->list);
5146 		kfree(vlf);
5147 	}
5148 
5149 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5150 
5151 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5152 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5153 		list_del(&cf->list);
5154 		kfree(cf);
5155 	}
5156 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5157 
5158 	spin_lock_bh(&adapter->fdir_fltr_lock);
5159 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5160 		list_del(&fdir->list);
5161 		kfree(fdir);
5162 	}
5163 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5164 
5165 	spin_lock_bh(&adapter->adv_rss_lock);
5166 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5167 				 list) {
5168 		list_del(&rss->list);
5169 		kfree(rss);
5170 	}
5171 	spin_unlock_bh(&adapter->adv_rss_lock);
5172 
5173 	free_netdev(netdev);
5174 
5175 	pci_disable_pcie_error_reporting(pdev);
5176 
5177 	pci_disable_device(pdev);
5178 }
5179 
5180 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5181 
5182 static struct pci_driver iavf_driver = {
5183 	.name      = iavf_driver_name,
5184 	.id_table  = iavf_pci_tbl,
5185 	.probe     = iavf_probe,
5186 	.remove    = iavf_remove,
5187 	.driver.pm = &iavf_pm_ops,
5188 	.shutdown  = iavf_shutdown,
5189 };
5190 
5191 /**
5192  * iavf_init_module - Driver Registration Routine
5193  *
5194  * iavf_init_module is the first routine called when the driver is
5195  * loaded. All it does is register with the PCI subsystem.
5196  **/
5197 static int __init iavf_init_module(void)
5198 {
5199 	int ret;
5200 
5201 	pr_info("iavf: %s\n", iavf_driver_string);
5202 
5203 	pr_info("%s\n", iavf_copyright);
5204 
5205 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
5206 				  iavf_driver_name);
5207 	if (!iavf_wq) {
5208 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
5209 		return -ENOMEM;
5210 	}
5211 
5212 	ret = pci_register_driver(&iavf_driver);
5213 	if (ret)
5214 		destroy_workqueue(iavf_wq);
5215 
5216 	return ret;
5217 }
5218 
5219 module_init(iavf_init_module);
5220 
5221 /**
5222  * iavf_exit_module - Driver Exit Cleanup Routine
5223  *
5224  * iavf_exit_module is called just before the driver is removed
5225  * from memory.
5226  **/
5227 static void __exit iavf_exit_module(void)
5228 {
5229 	pci_unregister_driver(&iavf_driver);
5230 	destroy_workqueue(iavf_wq);
5231 }
5232 
5233 module_exit(iavf_exit_module);
5234 
5235 /* iavf_main.c */
5236