1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 56 * @hw: pointer to the HW structure 57 * @mem: ptr to mem struct to fill out 58 * @size: size of memory requested 59 * @alignment: what to align the allocation to 60 **/ 61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 62 struct iavf_dma_mem *mem, 63 u64 size, u32 alignment) 64 { 65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 66 67 if (!mem) 68 return IAVF_ERR_PARAM; 69 70 mem->size = ALIGN(size, alignment); 71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 72 (dma_addr_t *)&mem->pa, GFP_KERNEL); 73 if (mem->va) 74 return 0; 75 else 76 return IAVF_ERR_NO_MEMORY; 77 } 78 79 /** 80 * iavf_free_dma_mem_d - OS specific memory free for shared code 81 * @hw: pointer to the HW structure 82 * @mem: ptr to mem struct to free 83 **/ 84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 85 struct iavf_dma_mem *mem) 86 { 87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 88 89 if (!mem || !mem->va) 90 return IAVF_ERR_PARAM; 91 dma_free_coherent(&adapter->pdev->dev, mem->size, 92 mem->va, (dma_addr_t)mem->pa); 93 return 0; 94 } 95 96 /** 97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 98 * @hw: pointer to the HW structure 99 * @mem: ptr to mem struct to fill out 100 * @size: size of memory requested 101 **/ 102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 103 struct iavf_virt_mem *mem, u32 size) 104 { 105 if (!mem) 106 return IAVF_ERR_PARAM; 107 108 mem->size = size; 109 mem->va = kzalloc(size, GFP_KERNEL); 110 111 if (mem->va) 112 return 0; 113 else 114 return IAVF_ERR_NO_MEMORY; 115 } 116 117 /** 118 * iavf_free_virt_mem_d - OS specific memory free for shared code 119 * @hw: pointer to the HW structure 120 * @mem: ptr to mem struct to free 121 **/ 122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 123 struct iavf_virt_mem *mem) 124 { 125 if (!mem) 126 return IAVF_ERR_PARAM; 127 128 /* it's ok to kfree a NULL pointer */ 129 kfree(mem->va); 130 131 return 0; 132 } 133 134 /** 135 * iavf_schedule_reset - Set the flags and schedule a reset event 136 * @adapter: board private structure 137 **/ 138 void iavf_schedule_reset(struct iavf_adapter *adapter) 139 { 140 if (!(adapter->flags & 141 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 142 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 143 queue_work(iavf_wq, &adapter->reset_task); 144 } 145 } 146 147 /** 148 * iavf_tx_timeout - Respond to a Tx Hang 149 * @netdev: network interface device structure 150 * @txqueue: queue number that is timing out 151 **/ 152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 153 { 154 struct iavf_adapter *adapter = netdev_priv(netdev); 155 156 adapter->tx_timeout_count++; 157 iavf_schedule_reset(adapter); 158 } 159 160 /** 161 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 162 * @adapter: board private structure 163 **/ 164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 165 { 166 struct iavf_hw *hw = &adapter->hw; 167 168 if (!adapter->msix_entries) 169 return; 170 171 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 172 173 iavf_flush(hw); 174 175 synchronize_irq(adapter->msix_entries[0].vector); 176 } 177 178 /** 179 * iavf_misc_irq_enable - Enable default interrupt generation settings 180 * @adapter: board private structure 181 **/ 182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 183 { 184 struct iavf_hw *hw = &adapter->hw; 185 186 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 187 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 188 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 189 190 iavf_flush(hw); 191 } 192 193 /** 194 * iavf_irq_disable - Mask off interrupt generation on the NIC 195 * @adapter: board private structure 196 **/ 197 static void iavf_irq_disable(struct iavf_adapter *adapter) 198 { 199 int i; 200 struct iavf_hw *hw = &adapter->hw; 201 202 if (!adapter->msix_entries) 203 return; 204 205 for (i = 1; i < adapter->num_msix_vectors; i++) { 206 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 207 synchronize_irq(adapter->msix_entries[i].vector); 208 } 209 iavf_flush(hw); 210 } 211 212 /** 213 * iavf_irq_enable_queues - Enable interrupt for specified queues 214 * @adapter: board private structure 215 * @mask: bitmap of queues to enable 216 **/ 217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 218 { 219 struct iavf_hw *hw = &adapter->hw; 220 int i; 221 222 for (i = 1; i < adapter->num_msix_vectors; i++) { 223 if (mask & BIT(i - 1)) { 224 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 225 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 226 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 227 } 228 } 229 } 230 231 /** 232 * iavf_irq_enable - Enable default interrupt generation settings 233 * @adapter: board private structure 234 * @flush: boolean value whether to run rd32() 235 **/ 236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 237 { 238 struct iavf_hw *hw = &adapter->hw; 239 240 iavf_misc_irq_enable(adapter); 241 iavf_irq_enable_queues(adapter, ~0); 242 243 if (flush) 244 iavf_flush(hw); 245 } 246 247 /** 248 * iavf_msix_aq - Interrupt handler for vector 0 249 * @irq: interrupt number 250 * @data: pointer to netdev 251 **/ 252 static irqreturn_t iavf_msix_aq(int irq, void *data) 253 { 254 struct net_device *netdev = data; 255 struct iavf_adapter *adapter = netdev_priv(netdev); 256 struct iavf_hw *hw = &adapter->hw; 257 258 /* handle non-queue interrupts, these reads clear the registers */ 259 rd32(hw, IAVF_VFINT_ICR01); 260 rd32(hw, IAVF_VFINT_ICR0_ENA1); 261 262 /* schedule work on the private workqueue */ 263 queue_work(iavf_wq, &adapter->adminq_task); 264 265 return IRQ_HANDLED; 266 } 267 268 /** 269 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 270 * @irq: interrupt number 271 * @data: pointer to a q_vector 272 **/ 273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 274 { 275 struct iavf_q_vector *q_vector = data; 276 277 if (!q_vector->tx.ring && !q_vector->rx.ring) 278 return IRQ_HANDLED; 279 280 napi_schedule_irqoff(&q_vector->napi); 281 282 return IRQ_HANDLED; 283 } 284 285 /** 286 * iavf_map_vector_to_rxq - associate irqs with rx queues 287 * @adapter: board private structure 288 * @v_idx: interrupt number 289 * @r_idx: queue number 290 **/ 291 static void 292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 293 { 294 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 295 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 296 struct iavf_hw *hw = &adapter->hw; 297 298 rx_ring->q_vector = q_vector; 299 rx_ring->next = q_vector->rx.ring; 300 rx_ring->vsi = &adapter->vsi; 301 q_vector->rx.ring = rx_ring; 302 q_vector->rx.count++; 303 q_vector->rx.next_update = jiffies + 1; 304 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 305 q_vector->ring_mask |= BIT(r_idx); 306 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 307 q_vector->rx.current_itr >> 1); 308 q_vector->rx.current_itr = q_vector->rx.target_itr; 309 } 310 311 /** 312 * iavf_map_vector_to_txq - associate irqs with tx queues 313 * @adapter: board private structure 314 * @v_idx: interrupt number 315 * @t_idx: queue number 316 **/ 317 static void 318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 319 { 320 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 321 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 322 struct iavf_hw *hw = &adapter->hw; 323 324 tx_ring->q_vector = q_vector; 325 tx_ring->next = q_vector->tx.ring; 326 tx_ring->vsi = &adapter->vsi; 327 q_vector->tx.ring = tx_ring; 328 q_vector->tx.count++; 329 q_vector->tx.next_update = jiffies + 1; 330 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 331 q_vector->num_ringpairs++; 332 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 333 q_vector->tx.target_itr >> 1); 334 q_vector->tx.current_itr = q_vector->tx.target_itr; 335 } 336 337 /** 338 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 339 * @adapter: board private structure to initialize 340 * 341 * This function maps descriptor rings to the queue-specific vectors 342 * we were allotted through the MSI-X enabling code. Ideally, we'd have 343 * one vector per ring/queue, but on a constrained vector budget, we 344 * group the rings as "efficiently" as possible. You would add new 345 * mapping configurations in here. 346 **/ 347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 348 { 349 int rings_remaining = adapter->num_active_queues; 350 int ridx = 0, vidx = 0; 351 int q_vectors; 352 353 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 354 355 for (; ridx < rings_remaining; ridx++) { 356 iavf_map_vector_to_rxq(adapter, vidx, ridx); 357 iavf_map_vector_to_txq(adapter, vidx, ridx); 358 359 /* In the case where we have more queues than vectors, continue 360 * round-robin on vectors until all queues are mapped. 361 */ 362 if (++vidx >= q_vectors) 363 vidx = 0; 364 } 365 366 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 367 } 368 369 /** 370 * iavf_irq_affinity_notify - Callback for affinity changes 371 * @notify: context as to what irq was changed 372 * @mask: the new affinity mask 373 * 374 * This is a callback function used by the irq_set_affinity_notifier function 375 * so that we may register to receive changes to the irq affinity masks. 376 **/ 377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 378 const cpumask_t *mask) 379 { 380 struct iavf_q_vector *q_vector = 381 container_of(notify, struct iavf_q_vector, affinity_notify); 382 383 cpumask_copy(&q_vector->affinity_mask, mask); 384 } 385 386 /** 387 * iavf_irq_affinity_release - Callback for affinity notifier release 388 * @ref: internal core kernel usage 389 * 390 * This is a callback function used by the irq_set_affinity_notifier function 391 * to inform the current notification subscriber that they will no longer 392 * receive notifications. 393 **/ 394 static void iavf_irq_affinity_release(struct kref *ref) {} 395 396 /** 397 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 398 * @adapter: board private structure 399 * @basename: device basename 400 * 401 * Allocates MSI-X vectors for tx and rx handling, and requests 402 * interrupts from the kernel. 403 **/ 404 static int 405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 406 { 407 unsigned int vector, q_vectors; 408 unsigned int rx_int_idx = 0, tx_int_idx = 0; 409 int irq_num, err; 410 int cpu; 411 412 iavf_irq_disable(adapter); 413 /* Decrement for Other and TCP Timer vectors */ 414 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 415 416 for (vector = 0; vector < q_vectors; vector++) { 417 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 418 419 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 420 421 if (q_vector->tx.ring && q_vector->rx.ring) { 422 snprintf(q_vector->name, sizeof(q_vector->name), 423 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 424 tx_int_idx++; 425 } else if (q_vector->rx.ring) { 426 snprintf(q_vector->name, sizeof(q_vector->name), 427 "iavf-%s-rx-%d", basename, rx_int_idx++); 428 } else if (q_vector->tx.ring) { 429 snprintf(q_vector->name, sizeof(q_vector->name), 430 "iavf-%s-tx-%d", basename, tx_int_idx++); 431 } else { 432 /* skip this unused q_vector */ 433 continue; 434 } 435 err = request_irq(irq_num, 436 iavf_msix_clean_rings, 437 0, 438 q_vector->name, 439 q_vector); 440 if (err) { 441 dev_info(&adapter->pdev->dev, 442 "Request_irq failed, error: %d\n", err); 443 goto free_queue_irqs; 444 } 445 /* register for affinity change notifications */ 446 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 447 q_vector->affinity_notify.release = 448 iavf_irq_affinity_release; 449 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 450 /* Spread the IRQ affinity hints across online CPUs. Note that 451 * get_cpu_mask returns a mask with a permanent lifetime so 452 * it's safe to use as a hint for irq_set_affinity_hint. 453 */ 454 cpu = cpumask_local_spread(q_vector->v_idx, -1); 455 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 456 } 457 458 return 0; 459 460 free_queue_irqs: 461 while (vector) { 462 vector--; 463 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 464 irq_set_affinity_notifier(irq_num, NULL); 465 irq_set_affinity_hint(irq_num, NULL); 466 free_irq(irq_num, &adapter->q_vectors[vector]); 467 } 468 return err; 469 } 470 471 /** 472 * iavf_request_misc_irq - Initialize MSI-X interrupts 473 * @adapter: board private structure 474 * 475 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 476 * vector is only for the admin queue, and stays active even when the netdev 477 * is closed. 478 **/ 479 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 480 { 481 struct net_device *netdev = adapter->netdev; 482 int err; 483 484 snprintf(adapter->misc_vector_name, 485 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 486 dev_name(&adapter->pdev->dev)); 487 err = request_irq(adapter->msix_entries[0].vector, 488 &iavf_msix_aq, 0, 489 adapter->misc_vector_name, netdev); 490 if (err) { 491 dev_err(&adapter->pdev->dev, 492 "request_irq for %s failed: %d\n", 493 adapter->misc_vector_name, err); 494 free_irq(adapter->msix_entries[0].vector, netdev); 495 } 496 return err; 497 } 498 499 /** 500 * iavf_free_traffic_irqs - Free MSI-X interrupts 501 * @adapter: board private structure 502 * 503 * Frees all MSI-X vectors other than 0. 504 **/ 505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 506 { 507 int vector, irq_num, q_vectors; 508 509 if (!adapter->msix_entries) 510 return; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (vector = 0; vector < q_vectors; vector++) { 515 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 516 irq_set_affinity_notifier(irq_num, NULL); 517 irq_set_affinity_hint(irq_num, NULL); 518 free_irq(irq_num, &adapter->q_vectors[vector]); 519 } 520 } 521 522 /** 523 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 524 * @adapter: board private structure 525 * 526 * Frees MSI-X vector 0. 527 **/ 528 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 529 { 530 struct net_device *netdev = adapter->netdev; 531 532 if (!adapter->msix_entries) 533 return; 534 535 free_irq(adapter->msix_entries[0].vector, netdev); 536 } 537 538 /** 539 * iavf_configure_tx - Configure Transmit Unit after Reset 540 * @adapter: board private structure 541 * 542 * Configure the Tx unit of the MAC after a reset. 543 **/ 544 static void iavf_configure_tx(struct iavf_adapter *adapter) 545 { 546 struct iavf_hw *hw = &adapter->hw; 547 int i; 548 549 for (i = 0; i < adapter->num_active_queues; i++) 550 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 551 } 552 553 /** 554 * iavf_configure_rx - Configure Receive Unit after Reset 555 * @adapter: board private structure 556 * 557 * Configure the Rx unit of the MAC after a reset. 558 **/ 559 static void iavf_configure_rx(struct iavf_adapter *adapter) 560 { 561 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 562 struct iavf_hw *hw = &adapter->hw; 563 int i; 564 565 /* Legacy Rx will always default to a 2048 buffer size. */ 566 #if (PAGE_SIZE < 8192) 567 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 568 struct net_device *netdev = adapter->netdev; 569 570 /* For jumbo frames on systems with 4K pages we have to use 571 * an order 1 page, so we might as well increase the size 572 * of our Rx buffer to make better use of the available space 573 */ 574 rx_buf_len = IAVF_RXBUFFER_3072; 575 576 /* We use a 1536 buffer size for configurations with 577 * standard Ethernet mtu. On x86 this gives us enough room 578 * for shared info and 192 bytes of padding. 579 */ 580 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 581 (netdev->mtu <= ETH_DATA_LEN)) 582 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 583 } 584 #endif 585 586 for (i = 0; i < adapter->num_active_queues; i++) { 587 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 588 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 589 590 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 591 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 592 else 593 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 594 } 595 } 596 597 /** 598 * iavf_find_vlan - Search filter list for specific vlan filter 599 * @adapter: board private structure 600 * @vlan: vlan tag 601 * 602 * Returns ptr to the filter object or NULL. Must be called while holding the 603 * mac_vlan_list_lock. 604 **/ 605 static struct 606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 607 { 608 struct iavf_vlan_filter *f; 609 610 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 611 if (vlan == f->vlan) 612 return f; 613 } 614 return NULL; 615 } 616 617 /** 618 * iavf_add_vlan - Add a vlan filter to the list 619 * @adapter: board private structure 620 * @vlan: VLAN tag 621 * 622 * Returns ptr to the filter object or NULL when no memory available. 623 **/ 624 static struct 625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 626 { 627 struct iavf_vlan_filter *f = NULL; 628 629 spin_lock_bh(&adapter->mac_vlan_list_lock); 630 631 f = iavf_find_vlan(adapter, vlan); 632 if (!f) { 633 f = kzalloc(sizeof(*f), GFP_ATOMIC); 634 if (!f) 635 goto clearout; 636 637 f->vlan = vlan; 638 639 list_add_tail(&f->list, &adapter->vlan_filter_list); 640 f->add = true; 641 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 642 } 643 644 clearout: 645 spin_unlock_bh(&adapter->mac_vlan_list_lock); 646 return f; 647 } 648 649 /** 650 * iavf_del_vlan - Remove a vlan filter from the list 651 * @adapter: board private structure 652 * @vlan: VLAN tag 653 **/ 654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 655 { 656 struct iavf_vlan_filter *f; 657 658 spin_lock_bh(&adapter->mac_vlan_list_lock); 659 660 f = iavf_find_vlan(adapter, vlan); 661 if (f) { 662 f->remove = true; 663 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 664 } 665 666 spin_unlock_bh(&adapter->mac_vlan_list_lock); 667 } 668 669 /** 670 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 671 * @netdev: network device struct 672 * @proto: unused protocol data 673 * @vid: VLAN tag 674 **/ 675 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 676 __always_unused __be16 proto, u16 vid) 677 { 678 struct iavf_adapter *adapter = netdev_priv(netdev); 679 680 if (!VLAN_ALLOWED(adapter)) 681 return -EIO; 682 if (iavf_add_vlan(adapter, vid) == NULL) 683 return -ENOMEM; 684 return 0; 685 } 686 687 /** 688 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 689 * @netdev: network device struct 690 * @proto: unused protocol data 691 * @vid: VLAN tag 692 **/ 693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 694 __always_unused __be16 proto, u16 vid) 695 { 696 struct iavf_adapter *adapter = netdev_priv(netdev); 697 698 if (VLAN_ALLOWED(adapter)) { 699 iavf_del_vlan(adapter, vid); 700 return 0; 701 } 702 return -EIO; 703 } 704 705 /** 706 * iavf_find_filter - Search filter list for specific mac filter 707 * @adapter: board private structure 708 * @macaddr: the MAC address 709 * 710 * Returns ptr to the filter object or NULL. Must be called while holding the 711 * mac_vlan_list_lock. 712 **/ 713 static struct 714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 715 const u8 *macaddr) 716 { 717 struct iavf_mac_filter *f; 718 719 if (!macaddr) 720 return NULL; 721 722 list_for_each_entry(f, &adapter->mac_filter_list, list) { 723 if (ether_addr_equal(macaddr, f->macaddr)) 724 return f; 725 } 726 return NULL; 727 } 728 729 /** 730 * iavf_add_filter - Add a mac filter to the filter list 731 * @adapter: board private structure 732 * @macaddr: the MAC address 733 * 734 * Returns ptr to the filter object or NULL when no memory available. 735 **/ 736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 737 const u8 *macaddr) 738 { 739 struct iavf_mac_filter *f; 740 741 if (!macaddr) 742 return NULL; 743 744 f = iavf_find_filter(adapter, macaddr); 745 if (!f) { 746 f = kzalloc(sizeof(*f), GFP_ATOMIC); 747 if (!f) 748 return f; 749 750 ether_addr_copy(f->macaddr, macaddr); 751 752 list_add_tail(&f->list, &adapter->mac_filter_list); 753 f->add = true; 754 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 755 } else { 756 f->remove = false; 757 } 758 759 return f; 760 } 761 762 /** 763 * iavf_set_mac - NDO callback to set port mac address 764 * @netdev: network interface device structure 765 * @p: pointer to an address structure 766 * 767 * Returns 0 on success, negative on failure 768 **/ 769 static int iavf_set_mac(struct net_device *netdev, void *p) 770 { 771 struct iavf_adapter *adapter = netdev_priv(netdev); 772 struct iavf_hw *hw = &adapter->hw; 773 struct iavf_mac_filter *f; 774 struct sockaddr *addr = p; 775 776 if (!is_valid_ether_addr(addr->sa_data)) 777 return -EADDRNOTAVAIL; 778 779 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 780 return 0; 781 782 spin_lock_bh(&adapter->mac_vlan_list_lock); 783 784 f = iavf_find_filter(adapter, hw->mac.addr); 785 if (f) { 786 f->remove = true; 787 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 788 } 789 790 f = iavf_add_filter(adapter, addr->sa_data); 791 792 spin_unlock_bh(&adapter->mac_vlan_list_lock); 793 794 if (f) { 795 ether_addr_copy(hw->mac.addr, addr->sa_data); 796 } 797 798 return (f == NULL) ? -ENOMEM : 0; 799 } 800 801 /** 802 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 803 * @netdev: the netdevice 804 * @addr: address to add 805 * 806 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 807 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 808 */ 809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 810 { 811 struct iavf_adapter *adapter = netdev_priv(netdev); 812 813 if (iavf_add_filter(adapter, addr)) 814 return 0; 815 else 816 return -ENOMEM; 817 } 818 819 /** 820 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 821 * @netdev: the netdevice 822 * @addr: address to add 823 * 824 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 825 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 826 */ 827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 828 { 829 struct iavf_adapter *adapter = netdev_priv(netdev); 830 struct iavf_mac_filter *f; 831 832 /* Under some circumstances, we might receive a request to delete 833 * our own device address from our uc list. Because we store the 834 * device address in the VSI's MAC/VLAN filter list, we need to ignore 835 * such requests and not delete our device address from this list. 836 */ 837 if (ether_addr_equal(addr, netdev->dev_addr)) 838 return 0; 839 840 f = iavf_find_filter(adapter, addr); 841 if (f) { 842 f->remove = true; 843 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 844 } 845 return 0; 846 } 847 848 /** 849 * iavf_set_rx_mode - NDO callback to set the netdev filters 850 * @netdev: network interface device structure 851 **/ 852 static void iavf_set_rx_mode(struct net_device *netdev) 853 { 854 struct iavf_adapter *adapter = netdev_priv(netdev); 855 856 spin_lock_bh(&adapter->mac_vlan_list_lock); 857 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 858 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 859 spin_unlock_bh(&adapter->mac_vlan_list_lock); 860 861 if (netdev->flags & IFF_PROMISC && 862 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 863 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 864 else if (!(netdev->flags & IFF_PROMISC) && 865 adapter->flags & IAVF_FLAG_PROMISC_ON) 866 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 867 868 if (netdev->flags & IFF_ALLMULTI && 869 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 870 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 871 else if (!(netdev->flags & IFF_ALLMULTI) && 872 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 873 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 874 } 875 876 /** 877 * iavf_napi_enable_all - enable NAPI on all queue vectors 878 * @adapter: board private structure 879 **/ 880 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 881 { 882 int q_idx; 883 struct iavf_q_vector *q_vector; 884 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 885 886 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 887 struct napi_struct *napi; 888 889 q_vector = &adapter->q_vectors[q_idx]; 890 napi = &q_vector->napi; 891 napi_enable(napi); 892 } 893 } 894 895 /** 896 * iavf_napi_disable_all - disable NAPI on all queue vectors 897 * @adapter: board private structure 898 **/ 899 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 900 { 901 int q_idx; 902 struct iavf_q_vector *q_vector; 903 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 904 905 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 906 q_vector = &adapter->q_vectors[q_idx]; 907 napi_disable(&q_vector->napi); 908 } 909 } 910 911 /** 912 * iavf_configure - set up transmit and receive data structures 913 * @adapter: board private structure 914 **/ 915 static void iavf_configure(struct iavf_adapter *adapter) 916 { 917 struct net_device *netdev = adapter->netdev; 918 int i; 919 920 iavf_set_rx_mode(netdev); 921 922 iavf_configure_tx(adapter); 923 iavf_configure_rx(adapter); 924 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 925 926 for (i = 0; i < adapter->num_active_queues; i++) { 927 struct iavf_ring *ring = &adapter->rx_rings[i]; 928 929 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 930 } 931 } 932 933 /** 934 * iavf_up_complete - Finish the last steps of bringing up a connection 935 * @adapter: board private structure 936 * 937 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 938 **/ 939 static void iavf_up_complete(struct iavf_adapter *adapter) 940 { 941 adapter->state = __IAVF_RUNNING; 942 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 943 944 iavf_napi_enable_all(adapter); 945 946 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 947 if (CLIENT_ENABLED(adapter)) 948 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 949 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 950 } 951 952 /** 953 * iavf_down - Shutdown the connection processing 954 * @adapter: board private structure 955 * 956 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 957 **/ 958 void iavf_down(struct iavf_adapter *adapter) 959 { 960 struct net_device *netdev = adapter->netdev; 961 struct iavf_vlan_filter *vlf; 962 struct iavf_mac_filter *f; 963 struct iavf_cloud_filter *cf; 964 965 if (adapter->state <= __IAVF_DOWN_PENDING) 966 return; 967 968 netif_carrier_off(netdev); 969 netif_tx_disable(netdev); 970 adapter->link_up = false; 971 iavf_napi_disable_all(adapter); 972 iavf_irq_disable(adapter); 973 974 spin_lock_bh(&adapter->mac_vlan_list_lock); 975 976 /* clear the sync flag on all filters */ 977 __dev_uc_unsync(adapter->netdev, NULL); 978 __dev_mc_unsync(adapter->netdev, NULL); 979 980 /* remove all MAC filters */ 981 list_for_each_entry(f, &adapter->mac_filter_list, list) { 982 f->remove = true; 983 } 984 985 /* remove all VLAN filters */ 986 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 987 vlf->remove = true; 988 } 989 990 spin_unlock_bh(&adapter->mac_vlan_list_lock); 991 992 /* remove all cloud filters */ 993 spin_lock_bh(&adapter->cloud_filter_list_lock); 994 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 995 cf->del = true; 996 } 997 spin_unlock_bh(&adapter->cloud_filter_list_lock); 998 999 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1000 adapter->state != __IAVF_RESETTING) { 1001 /* cancel any current operation */ 1002 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1003 /* Schedule operations to close down the HW. Don't wait 1004 * here for this to complete. The watchdog is still running 1005 * and it will take care of this. 1006 */ 1007 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1008 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1009 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1010 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1011 } 1012 1013 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1014 } 1015 1016 /** 1017 * iavf_acquire_msix_vectors - Setup the MSIX capability 1018 * @adapter: board private structure 1019 * @vectors: number of vectors to request 1020 * 1021 * Work with the OS to set up the MSIX vectors needed. 1022 * 1023 * Returns 0 on success, negative on failure 1024 **/ 1025 static int 1026 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1027 { 1028 int err, vector_threshold; 1029 1030 /* We'll want at least 3 (vector_threshold): 1031 * 0) Other (Admin Queue and link, mostly) 1032 * 1) TxQ[0] Cleanup 1033 * 2) RxQ[0] Cleanup 1034 */ 1035 vector_threshold = MIN_MSIX_COUNT; 1036 1037 /* The more we get, the more we will assign to Tx/Rx Cleanup 1038 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1039 * Right now, we simply care about how many we'll get; we'll 1040 * set them up later while requesting irq's. 1041 */ 1042 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1043 vector_threshold, vectors); 1044 if (err < 0) { 1045 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1046 kfree(adapter->msix_entries); 1047 adapter->msix_entries = NULL; 1048 return err; 1049 } 1050 1051 /* Adjust for only the vectors we'll use, which is minimum 1052 * of max_msix_q_vectors + NONQ_VECS, or the number of 1053 * vectors we were allocated. 1054 */ 1055 adapter->num_msix_vectors = err; 1056 return 0; 1057 } 1058 1059 /** 1060 * iavf_free_queues - Free memory for all rings 1061 * @adapter: board private structure to initialize 1062 * 1063 * Free all of the memory associated with queue pairs. 1064 **/ 1065 static void iavf_free_queues(struct iavf_adapter *adapter) 1066 { 1067 if (!adapter->vsi_res) 1068 return; 1069 adapter->num_active_queues = 0; 1070 kfree(adapter->tx_rings); 1071 adapter->tx_rings = NULL; 1072 kfree(adapter->rx_rings); 1073 adapter->rx_rings = NULL; 1074 } 1075 1076 /** 1077 * iavf_alloc_queues - Allocate memory for all rings 1078 * @adapter: board private structure to initialize 1079 * 1080 * We allocate one ring per queue at run-time since we don't know the 1081 * number of queues at compile-time. The polling_netdev array is 1082 * intended for Multiqueue, but should work fine with a single queue. 1083 **/ 1084 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1085 { 1086 int i, num_active_queues; 1087 1088 /* If we're in reset reallocating queues we don't actually know yet for 1089 * certain the PF gave us the number of queues we asked for but we'll 1090 * assume it did. Once basic reset is finished we'll confirm once we 1091 * start negotiating config with PF. 1092 */ 1093 if (adapter->num_req_queues) 1094 num_active_queues = adapter->num_req_queues; 1095 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1096 adapter->num_tc) 1097 num_active_queues = adapter->ch_config.total_qps; 1098 else 1099 num_active_queues = min_t(int, 1100 adapter->vsi_res->num_queue_pairs, 1101 (int)(num_online_cpus())); 1102 1103 1104 adapter->tx_rings = kcalloc(num_active_queues, 1105 sizeof(struct iavf_ring), GFP_KERNEL); 1106 if (!adapter->tx_rings) 1107 goto err_out; 1108 adapter->rx_rings = kcalloc(num_active_queues, 1109 sizeof(struct iavf_ring), GFP_KERNEL); 1110 if (!adapter->rx_rings) 1111 goto err_out; 1112 1113 for (i = 0; i < num_active_queues; i++) { 1114 struct iavf_ring *tx_ring; 1115 struct iavf_ring *rx_ring; 1116 1117 tx_ring = &adapter->tx_rings[i]; 1118 1119 tx_ring->queue_index = i; 1120 tx_ring->netdev = adapter->netdev; 1121 tx_ring->dev = &adapter->pdev->dev; 1122 tx_ring->count = adapter->tx_desc_count; 1123 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1124 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1125 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1126 1127 rx_ring = &adapter->rx_rings[i]; 1128 rx_ring->queue_index = i; 1129 rx_ring->netdev = adapter->netdev; 1130 rx_ring->dev = &adapter->pdev->dev; 1131 rx_ring->count = adapter->rx_desc_count; 1132 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1133 } 1134 1135 adapter->num_active_queues = num_active_queues; 1136 1137 return 0; 1138 1139 err_out: 1140 iavf_free_queues(adapter); 1141 return -ENOMEM; 1142 } 1143 1144 /** 1145 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1146 * @adapter: board private structure to initialize 1147 * 1148 * Attempt to configure the interrupts using the best available 1149 * capabilities of the hardware and the kernel. 1150 **/ 1151 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1152 { 1153 int vector, v_budget; 1154 int pairs = 0; 1155 int err = 0; 1156 1157 if (!adapter->vsi_res) { 1158 err = -EIO; 1159 goto out; 1160 } 1161 pairs = adapter->num_active_queues; 1162 1163 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1164 * us much good if we have more vectors than CPUs. However, we already 1165 * limit the total number of queues by the number of CPUs so we do not 1166 * need any further limiting here. 1167 */ 1168 v_budget = min_t(int, pairs + NONQ_VECS, 1169 (int)adapter->vf_res->max_vectors); 1170 1171 adapter->msix_entries = kcalloc(v_budget, 1172 sizeof(struct msix_entry), GFP_KERNEL); 1173 if (!adapter->msix_entries) { 1174 err = -ENOMEM; 1175 goto out; 1176 } 1177 1178 for (vector = 0; vector < v_budget; vector++) 1179 adapter->msix_entries[vector].entry = vector; 1180 1181 err = iavf_acquire_msix_vectors(adapter, v_budget); 1182 1183 out: 1184 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1185 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1186 return err; 1187 } 1188 1189 /** 1190 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1191 * @adapter: board private structure 1192 * 1193 * Return 0 on success, negative on failure 1194 **/ 1195 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1196 { 1197 struct iavf_aqc_get_set_rss_key_data *rss_key = 1198 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1199 struct iavf_hw *hw = &adapter->hw; 1200 int ret = 0; 1201 1202 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1203 /* bail because we already have a command pending */ 1204 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1205 adapter->current_op); 1206 return -EBUSY; 1207 } 1208 1209 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1210 if (ret) { 1211 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1212 iavf_stat_str(hw, ret), 1213 iavf_aq_str(hw, hw->aq.asq_last_status)); 1214 return ret; 1215 1216 } 1217 1218 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1219 adapter->rss_lut, adapter->rss_lut_size); 1220 if (ret) { 1221 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1222 iavf_stat_str(hw, ret), 1223 iavf_aq_str(hw, hw->aq.asq_last_status)); 1224 } 1225 1226 return ret; 1227 1228 } 1229 1230 /** 1231 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1232 * @adapter: board private structure 1233 * 1234 * Returns 0 on success, negative on failure 1235 **/ 1236 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1237 { 1238 struct iavf_hw *hw = &adapter->hw; 1239 u32 *dw; 1240 u16 i; 1241 1242 dw = (u32 *)adapter->rss_key; 1243 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1244 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1245 1246 dw = (u32 *)adapter->rss_lut; 1247 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1248 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1249 1250 iavf_flush(hw); 1251 1252 return 0; 1253 } 1254 1255 /** 1256 * iavf_config_rss - Configure RSS keys and lut 1257 * @adapter: board private structure 1258 * 1259 * Returns 0 on success, negative on failure 1260 **/ 1261 int iavf_config_rss(struct iavf_adapter *adapter) 1262 { 1263 1264 if (RSS_PF(adapter)) { 1265 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1266 IAVF_FLAG_AQ_SET_RSS_KEY; 1267 return 0; 1268 } else if (RSS_AQ(adapter)) { 1269 return iavf_config_rss_aq(adapter); 1270 } else { 1271 return iavf_config_rss_reg(adapter); 1272 } 1273 } 1274 1275 /** 1276 * iavf_fill_rss_lut - Fill the lut with default values 1277 * @adapter: board private structure 1278 **/ 1279 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1280 { 1281 u16 i; 1282 1283 for (i = 0; i < adapter->rss_lut_size; i++) 1284 adapter->rss_lut[i] = i % adapter->num_active_queues; 1285 } 1286 1287 /** 1288 * iavf_init_rss - Prepare for RSS 1289 * @adapter: board private structure 1290 * 1291 * Return 0 on success, negative on failure 1292 **/ 1293 static int iavf_init_rss(struct iavf_adapter *adapter) 1294 { 1295 struct iavf_hw *hw = &adapter->hw; 1296 int ret; 1297 1298 if (!RSS_PF(adapter)) { 1299 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1300 if (adapter->vf_res->vf_cap_flags & 1301 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1302 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1303 else 1304 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1305 1306 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1307 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1308 } 1309 1310 iavf_fill_rss_lut(adapter); 1311 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1312 ret = iavf_config_rss(adapter); 1313 1314 return ret; 1315 } 1316 1317 /** 1318 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1319 * @adapter: board private structure to initialize 1320 * 1321 * We allocate one q_vector per queue interrupt. If allocation fails we 1322 * return -ENOMEM. 1323 **/ 1324 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1325 { 1326 int q_idx = 0, num_q_vectors; 1327 struct iavf_q_vector *q_vector; 1328 1329 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1330 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1331 GFP_KERNEL); 1332 if (!adapter->q_vectors) 1333 return -ENOMEM; 1334 1335 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1336 q_vector = &adapter->q_vectors[q_idx]; 1337 q_vector->adapter = adapter; 1338 q_vector->vsi = &adapter->vsi; 1339 q_vector->v_idx = q_idx; 1340 q_vector->reg_idx = q_idx; 1341 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1342 netif_napi_add(adapter->netdev, &q_vector->napi, 1343 iavf_napi_poll, NAPI_POLL_WEIGHT); 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1351 * @adapter: board private structure to initialize 1352 * 1353 * This function frees the memory allocated to the q_vectors. In addition if 1354 * NAPI is enabled it will delete any references to the NAPI struct prior 1355 * to freeing the q_vector. 1356 **/ 1357 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1358 { 1359 int q_idx, num_q_vectors; 1360 int napi_vectors; 1361 1362 if (!adapter->q_vectors) 1363 return; 1364 1365 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1366 napi_vectors = adapter->num_active_queues; 1367 1368 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1369 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1370 1371 if (q_idx < napi_vectors) 1372 netif_napi_del(&q_vector->napi); 1373 } 1374 kfree(adapter->q_vectors); 1375 adapter->q_vectors = NULL; 1376 } 1377 1378 /** 1379 * iavf_reset_interrupt_capability - Reset MSIX setup 1380 * @adapter: board private structure 1381 * 1382 **/ 1383 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1384 { 1385 if (!adapter->msix_entries) 1386 return; 1387 1388 pci_disable_msix(adapter->pdev); 1389 kfree(adapter->msix_entries); 1390 adapter->msix_entries = NULL; 1391 } 1392 1393 /** 1394 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1395 * @adapter: board private structure to initialize 1396 * 1397 **/ 1398 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1399 { 1400 int err; 1401 1402 err = iavf_alloc_queues(adapter); 1403 if (err) { 1404 dev_err(&adapter->pdev->dev, 1405 "Unable to allocate memory for queues\n"); 1406 goto err_alloc_queues; 1407 } 1408 1409 rtnl_lock(); 1410 err = iavf_set_interrupt_capability(adapter); 1411 rtnl_unlock(); 1412 if (err) { 1413 dev_err(&adapter->pdev->dev, 1414 "Unable to setup interrupt capabilities\n"); 1415 goto err_set_interrupt; 1416 } 1417 1418 err = iavf_alloc_q_vectors(adapter); 1419 if (err) { 1420 dev_err(&adapter->pdev->dev, 1421 "Unable to allocate memory for queue vectors\n"); 1422 goto err_alloc_q_vectors; 1423 } 1424 1425 /* If we've made it so far while ADq flag being ON, then we haven't 1426 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1427 * resources have been allocated in the reset path. 1428 * Now we can truly claim that ADq is enabled. 1429 */ 1430 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1431 adapter->num_tc) 1432 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1433 adapter->num_tc); 1434 1435 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1436 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1437 adapter->num_active_queues); 1438 1439 return 0; 1440 err_alloc_q_vectors: 1441 iavf_reset_interrupt_capability(adapter); 1442 err_set_interrupt: 1443 iavf_free_queues(adapter); 1444 err_alloc_queues: 1445 return err; 1446 } 1447 1448 /** 1449 * iavf_free_rss - Free memory used by RSS structs 1450 * @adapter: board private structure 1451 **/ 1452 static void iavf_free_rss(struct iavf_adapter *adapter) 1453 { 1454 kfree(adapter->rss_key); 1455 adapter->rss_key = NULL; 1456 1457 kfree(adapter->rss_lut); 1458 adapter->rss_lut = NULL; 1459 } 1460 1461 /** 1462 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1463 * @adapter: board private structure 1464 * 1465 * Returns 0 on success, negative on failure 1466 **/ 1467 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1468 { 1469 struct net_device *netdev = adapter->netdev; 1470 int err; 1471 1472 if (netif_running(netdev)) 1473 iavf_free_traffic_irqs(adapter); 1474 iavf_free_misc_irq(adapter); 1475 iavf_reset_interrupt_capability(adapter); 1476 iavf_free_q_vectors(adapter); 1477 iavf_free_queues(adapter); 1478 1479 err = iavf_init_interrupt_scheme(adapter); 1480 if (err) 1481 goto err; 1482 1483 netif_tx_stop_all_queues(netdev); 1484 1485 err = iavf_request_misc_irq(adapter); 1486 if (err) 1487 goto err; 1488 1489 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1490 1491 iavf_map_rings_to_vectors(adapter); 1492 1493 if (RSS_AQ(adapter)) 1494 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1495 else 1496 err = iavf_init_rss(adapter); 1497 err: 1498 return err; 1499 } 1500 1501 /** 1502 * iavf_process_aq_command - process aq_required flags 1503 * and sends aq command 1504 * @adapter: pointer to iavf adapter structure 1505 * 1506 * Returns 0 on success 1507 * Returns error code if no command was sent 1508 * or error code if the command failed. 1509 **/ 1510 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1511 { 1512 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1513 return iavf_send_vf_config_msg(adapter); 1514 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1515 iavf_disable_queues(adapter); 1516 return 0; 1517 } 1518 1519 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1520 iavf_map_queues(adapter); 1521 return 0; 1522 } 1523 1524 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1525 iavf_add_ether_addrs(adapter); 1526 return 0; 1527 } 1528 1529 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1530 iavf_add_vlans(adapter); 1531 return 0; 1532 } 1533 1534 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1535 iavf_del_ether_addrs(adapter); 1536 return 0; 1537 } 1538 1539 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1540 iavf_del_vlans(adapter); 1541 return 0; 1542 } 1543 1544 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1545 iavf_enable_vlan_stripping(adapter); 1546 return 0; 1547 } 1548 1549 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1550 iavf_disable_vlan_stripping(adapter); 1551 return 0; 1552 } 1553 1554 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1555 iavf_configure_queues(adapter); 1556 return 0; 1557 } 1558 1559 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1560 iavf_enable_queues(adapter); 1561 return 0; 1562 } 1563 1564 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1565 /* This message goes straight to the firmware, not the 1566 * PF, so we don't have to set current_op as we will 1567 * not get a response through the ARQ. 1568 */ 1569 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1570 return 0; 1571 } 1572 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1573 iavf_get_hena(adapter); 1574 return 0; 1575 } 1576 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1577 iavf_set_hena(adapter); 1578 return 0; 1579 } 1580 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1581 iavf_set_rss_key(adapter); 1582 return 0; 1583 } 1584 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1585 iavf_set_rss_lut(adapter); 1586 return 0; 1587 } 1588 1589 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1590 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1591 FLAG_VF_MULTICAST_PROMISC); 1592 return 0; 1593 } 1594 1595 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1596 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1597 return 0; 1598 } 1599 1600 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1601 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1602 iavf_set_promiscuous(adapter, 0); 1603 return 0; 1604 } 1605 1606 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1607 iavf_enable_channels(adapter); 1608 return 0; 1609 } 1610 1611 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1612 iavf_disable_channels(adapter); 1613 return 0; 1614 } 1615 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1616 iavf_add_cloud_filter(adapter); 1617 return 0; 1618 } 1619 1620 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1621 iavf_del_cloud_filter(adapter); 1622 return 0; 1623 } 1624 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1625 iavf_del_cloud_filter(adapter); 1626 return 0; 1627 } 1628 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1629 iavf_add_cloud_filter(adapter); 1630 return 0; 1631 } 1632 return -EAGAIN; 1633 } 1634 1635 /** 1636 * iavf_startup - first step of driver startup 1637 * @adapter: board private structure 1638 * 1639 * Function process __IAVF_STARTUP driver state. 1640 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1641 * when fails it returns -EAGAIN 1642 **/ 1643 static int iavf_startup(struct iavf_adapter *adapter) 1644 { 1645 struct pci_dev *pdev = adapter->pdev; 1646 struct iavf_hw *hw = &adapter->hw; 1647 int err; 1648 1649 WARN_ON(adapter->state != __IAVF_STARTUP); 1650 1651 /* driver loaded, probe complete */ 1652 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1653 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1654 err = iavf_set_mac_type(hw); 1655 if (err) { 1656 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1657 goto err; 1658 } 1659 1660 err = iavf_check_reset_complete(hw); 1661 if (err) { 1662 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1663 err); 1664 goto err; 1665 } 1666 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1667 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1668 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1669 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1670 1671 err = iavf_init_adminq(hw); 1672 if (err) { 1673 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1674 goto err; 1675 } 1676 err = iavf_send_api_ver(adapter); 1677 if (err) { 1678 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1679 iavf_shutdown_adminq(hw); 1680 goto err; 1681 } 1682 adapter->state = __IAVF_INIT_VERSION_CHECK; 1683 err: 1684 return err; 1685 } 1686 1687 /** 1688 * iavf_init_version_check - second step of driver startup 1689 * @adapter: board private structure 1690 * 1691 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1692 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1693 * when fails it returns -EAGAIN 1694 **/ 1695 static int iavf_init_version_check(struct iavf_adapter *adapter) 1696 { 1697 struct pci_dev *pdev = adapter->pdev; 1698 struct iavf_hw *hw = &adapter->hw; 1699 int err = -EAGAIN; 1700 1701 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1702 1703 if (!iavf_asq_done(hw)) { 1704 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1705 iavf_shutdown_adminq(hw); 1706 adapter->state = __IAVF_STARTUP; 1707 goto err; 1708 } 1709 1710 /* aq msg sent, awaiting reply */ 1711 err = iavf_verify_api_ver(adapter); 1712 if (err) { 1713 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1714 err = iavf_send_api_ver(adapter); 1715 else 1716 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1717 adapter->pf_version.major, 1718 adapter->pf_version.minor, 1719 VIRTCHNL_VERSION_MAJOR, 1720 VIRTCHNL_VERSION_MINOR); 1721 goto err; 1722 } 1723 err = iavf_send_vf_config_msg(adapter); 1724 if (err) { 1725 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1726 err); 1727 goto err; 1728 } 1729 adapter->state = __IAVF_INIT_GET_RESOURCES; 1730 1731 err: 1732 return err; 1733 } 1734 1735 /** 1736 * iavf_init_get_resources - third step of driver startup 1737 * @adapter: board private structure 1738 * 1739 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1740 * finishes driver initialization procedure. 1741 * When success the state is changed to __IAVF_DOWN 1742 * when fails it returns -EAGAIN 1743 **/ 1744 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1745 { 1746 struct net_device *netdev = adapter->netdev; 1747 struct pci_dev *pdev = adapter->pdev; 1748 struct iavf_hw *hw = &adapter->hw; 1749 int err; 1750 1751 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1752 /* aq msg sent, awaiting reply */ 1753 if (!adapter->vf_res) { 1754 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 1755 GFP_KERNEL); 1756 if (!adapter->vf_res) { 1757 err = -ENOMEM; 1758 goto err; 1759 } 1760 } 1761 err = iavf_get_vf_config(adapter); 1762 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1763 err = iavf_send_vf_config_msg(adapter); 1764 goto err; 1765 } else if (err == IAVF_ERR_PARAM) { 1766 /* We only get ERR_PARAM if the device is in a very bad 1767 * state or if we've been disabled for previous bad 1768 * behavior. Either way, we're done now. 1769 */ 1770 iavf_shutdown_adminq(hw); 1771 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1772 return 0; 1773 } 1774 if (err) { 1775 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1776 goto err_alloc; 1777 } 1778 1779 err = iavf_process_config(adapter); 1780 if (err) 1781 goto err_alloc; 1782 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1783 1784 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1785 1786 netdev->netdev_ops = &iavf_netdev_ops; 1787 iavf_set_ethtool_ops(netdev); 1788 netdev->watchdog_timeo = 5 * HZ; 1789 1790 /* MTU range: 68 - 9710 */ 1791 netdev->min_mtu = ETH_MIN_MTU; 1792 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1793 1794 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1795 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1796 adapter->hw.mac.addr); 1797 eth_hw_addr_random(netdev); 1798 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1799 } else { 1800 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1801 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1802 } 1803 1804 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1805 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1806 err = iavf_init_interrupt_scheme(adapter); 1807 if (err) 1808 goto err_sw_init; 1809 iavf_map_rings_to_vectors(adapter); 1810 if (adapter->vf_res->vf_cap_flags & 1811 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1812 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1813 1814 err = iavf_request_misc_irq(adapter); 1815 if (err) 1816 goto err_sw_init; 1817 1818 netif_carrier_off(netdev); 1819 adapter->link_up = false; 1820 1821 /* set the semaphore to prevent any callbacks after device registration 1822 * up to time when state of driver will be set to __IAVF_DOWN 1823 */ 1824 rtnl_lock(); 1825 if (!adapter->netdev_registered) { 1826 err = register_netdevice(netdev); 1827 if (err) { 1828 rtnl_unlock(); 1829 goto err_register; 1830 } 1831 } 1832 1833 adapter->netdev_registered = true; 1834 1835 netif_tx_stop_all_queues(netdev); 1836 if (CLIENT_ALLOWED(adapter)) { 1837 err = iavf_lan_add_device(adapter); 1838 if (err) 1839 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1840 err); 1841 } 1842 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1843 if (netdev->features & NETIF_F_GRO) 1844 dev_info(&pdev->dev, "GRO is enabled\n"); 1845 1846 adapter->state = __IAVF_DOWN; 1847 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1848 rtnl_unlock(); 1849 1850 iavf_misc_irq_enable(adapter); 1851 wake_up(&adapter->down_waitqueue); 1852 1853 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1854 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1855 if (!adapter->rss_key || !adapter->rss_lut) { 1856 err = -ENOMEM; 1857 goto err_mem; 1858 } 1859 if (RSS_AQ(adapter)) 1860 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1861 else 1862 iavf_init_rss(adapter); 1863 1864 return err; 1865 err_mem: 1866 iavf_free_rss(adapter); 1867 err_register: 1868 iavf_free_misc_irq(adapter); 1869 err_sw_init: 1870 iavf_reset_interrupt_capability(adapter); 1871 err_alloc: 1872 kfree(adapter->vf_res); 1873 adapter->vf_res = NULL; 1874 err: 1875 return err; 1876 } 1877 1878 /** 1879 * iavf_watchdog_task - Periodic call-back task 1880 * @work: pointer to work_struct 1881 **/ 1882 static void iavf_watchdog_task(struct work_struct *work) 1883 { 1884 struct iavf_adapter *adapter = container_of(work, 1885 struct iavf_adapter, 1886 watchdog_task.work); 1887 struct iavf_hw *hw = &adapter->hw; 1888 u32 reg_val; 1889 1890 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) 1891 goto restart_watchdog; 1892 1893 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1894 adapter->state = __IAVF_COMM_FAILED; 1895 1896 switch (adapter->state) { 1897 case __IAVF_COMM_FAILED: 1898 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1899 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1900 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1901 reg_val == VIRTCHNL_VFR_COMPLETED) { 1902 /* A chance for redemption! */ 1903 dev_err(&adapter->pdev->dev, 1904 "Hardware came out of reset. Attempting reinit.\n"); 1905 adapter->state = __IAVF_STARTUP; 1906 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1907 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1908 clear_bit(__IAVF_IN_CRITICAL_TASK, 1909 &adapter->crit_section); 1910 /* Don't reschedule the watchdog, since we've restarted 1911 * the init task. When init_task contacts the PF and 1912 * gets everything set up again, it'll restart the 1913 * watchdog for us. Down, boy. Sit. Stay. Woof. 1914 */ 1915 return; 1916 } 1917 adapter->aq_required = 0; 1918 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1919 clear_bit(__IAVF_IN_CRITICAL_TASK, 1920 &adapter->crit_section); 1921 queue_delayed_work(iavf_wq, 1922 &adapter->watchdog_task, 1923 msecs_to_jiffies(10)); 1924 goto watchdog_done; 1925 case __IAVF_RESETTING: 1926 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1927 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1928 return; 1929 case __IAVF_DOWN: 1930 case __IAVF_DOWN_PENDING: 1931 case __IAVF_TESTING: 1932 case __IAVF_RUNNING: 1933 if (adapter->current_op) { 1934 if (!iavf_asq_done(hw)) { 1935 dev_dbg(&adapter->pdev->dev, 1936 "Admin queue timeout\n"); 1937 iavf_send_api_ver(adapter); 1938 } 1939 } else { 1940 /* An error will be returned if no commands were 1941 * processed; use this opportunity to update stats 1942 */ 1943 if (iavf_process_aq_command(adapter) && 1944 adapter->state == __IAVF_RUNNING) 1945 iavf_request_stats(adapter); 1946 } 1947 break; 1948 case __IAVF_REMOVE: 1949 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1950 return; 1951 default: 1952 goto restart_watchdog; 1953 } 1954 1955 /* check for hw reset */ 1956 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1957 if (!reg_val) { 1958 adapter->state = __IAVF_RESETTING; 1959 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1960 adapter->aq_required = 0; 1961 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1962 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 1963 queue_work(iavf_wq, &adapter->reset_task); 1964 goto watchdog_done; 1965 } 1966 1967 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 1968 watchdog_done: 1969 if (adapter->state == __IAVF_RUNNING || 1970 adapter->state == __IAVF_COMM_FAILED) 1971 iavf_detect_recover_hung(&adapter->vsi); 1972 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1973 restart_watchdog: 1974 if (adapter->aq_required) 1975 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 1976 msecs_to_jiffies(20)); 1977 else 1978 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1979 queue_work(iavf_wq, &adapter->adminq_task); 1980 } 1981 1982 static void iavf_disable_vf(struct iavf_adapter *adapter) 1983 { 1984 struct iavf_mac_filter *f, *ftmp; 1985 struct iavf_vlan_filter *fv, *fvtmp; 1986 struct iavf_cloud_filter *cf, *cftmp; 1987 1988 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 1989 1990 /* We don't use netif_running() because it may be true prior to 1991 * ndo_open() returning, so we can't assume it means all our open 1992 * tasks have finished, since we're not holding the rtnl_lock here. 1993 */ 1994 if (adapter->state == __IAVF_RUNNING) { 1995 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1996 netif_carrier_off(adapter->netdev); 1997 netif_tx_disable(adapter->netdev); 1998 adapter->link_up = false; 1999 iavf_napi_disable_all(adapter); 2000 iavf_irq_disable(adapter); 2001 iavf_free_traffic_irqs(adapter); 2002 iavf_free_all_tx_resources(adapter); 2003 iavf_free_all_rx_resources(adapter); 2004 } 2005 2006 spin_lock_bh(&adapter->mac_vlan_list_lock); 2007 2008 /* Delete all of the filters */ 2009 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2010 list_del(&f->list); 2011 kfree(f); 2012 } 2013 2014 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2015 list_del(&fv->list); 2016 kfree(fv); 2017 } 2018 2019 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2020 2021 spin_lock_bh(&adapter->cloud_filter_list_lock); 2022 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2023 list_del(&cf->list); 2024 kfree(cf); 2025 adapter->num_cloud_filters--; 2026 } 2027 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2028 2029 iavf_free_misc_irq(adapter); 2030 iavf_reset_interrupt_capability(adapter); 2031 iavf_free_queues(adapter); 2032 iavf_free_q_vectors(adapter); 2033 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2034 iavf_shutdown_adminq(&adapter->hw); 2035 adapter->netdev->flags &= ~IFF_UP; 2036 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2037 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2038 adapter->state = __IAVF_DOWN; 2039 wake_up(&adapter->down_waitqueue); 2040 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2041 } 2042 2043 /** 2044 * iavf_reset_task - Call-back task to handle hardware reset 2045 * @work: pointer to work_struct 2046 * 2047 * During reset we need to shut down and reinitialize the admin queue 2048 * before we can use it to communicate with the PF again. We also clear 2049 * and reinit the rings because that context is lost as well. 2050 **/ 2051 static void iavf_reset_task(struct work_struct *work) 2052 { 2053 struct iavf_adapter *adapter = container_of(work, 2054 struct iavf_adapter, 2055 reset_task); 2056 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2057 struct net_device *netdev = adapter->netdev; 2058 struct iavf_hw *hw = &adapter->hw; 2059 struct iavf_mac_filter *f, *ftmp; 2060 struct iavf_vlan_filter *vlf; 2061 struct iavf_cloud_filter *cf; 2062 u32 reg_val; 2063 int i = 0, err; 2064 bool running; 2065 2066 /* When device is being removed it doesn't make sense to run the reset 2067 * task, just return in such a case. 2068 */ 2069 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2070 return; 2071 2072 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, 2073 &adapter->crit_section)) 2074 usleep_range(500, 1000); 2075 if (CLIENT_ENABLED(adapter)) { 2076 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2077 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2078 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2079 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2080 cancel_delayed_work_sync(&adapter->client_task); 2081 iavf_notify_client_close(&adapter->vsi, true); 2082 } 2083 iavf_misc_irq_disable(adapter); 2084 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2085 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2086 /* Restart the AQ here. If we have been reset but didn't 2087 * detect it, or if the PF had to reinit, our AQ will be hosed. 2088 */ 2089 iavf_shutdown_adminq(hw); 2090 iavf_init_adminq(hw); 2091 iavf_request_reset(adapter); 2092 } 2093 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2094 2095 /* poll until we see the reset actually happen */ 2096 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2097 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2098 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2099 if (!reg_val) 2100 break; 2101 usleep_range(5000, 10000); 2102 } 2103 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2104 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2105 goto continue_reset; /* act like the reset happened */ 2106 } 2107 2108 /* wait until the reset is complete and the PF is responding to us */ 2109 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2110 /* sleep first to make sure a minimum wait time is met */ 2111 msleep(IAVF_RESET_WAIT_MS); 2112 2113 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2114 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2115 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2116 break; 2117 } 2118 2119 pci_set_master(adapter->pdev); 2120 2121 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2122 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2123 reg_val); 2124 iavf_disable_vf(adapter); 2125 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2126 return; /* Do not attempt to reinit. It's dead, Jim. */ 2127 } 2128 2129 continue_reset: 2130 /* We don't use netif_running() because it may be true prior to 2131 * ndo_open() returning, so we can't assume it means all our open 2132 * tasks have finished, since we're not holding the rtnl_lock here. 2133 */ 2134 running = ((adapter->state == __IAVF_RUNNING) || 2135 (adapter->state == __IAVF_RESETTING)); 2136 2137 if (running) { 2138 netif_carrier_off(netdev); 2139 netif_tx_stop_all_queues(netdev); 2140 adapter->link_up = false; 2141 iavf_napi_disable_all(adapter); 2142 } 2143 iavf_irq_disable(adapter); 2144 2145 adapter->state = __IAVF_RESETTING; 2146 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2147 2148 /* free the Tx/Rx rings and descriptors, might be better to just 2149 * re-use them sometime in the future 2150 */ 2151 iavf_free_all_rx_resources(adapter); 2152 iavf_free_all_tx_resources(adapter); 2153 2154 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2155 /* kill and reinit the admin queue */ 2156 iavf_shutdown_adminq(hw); 2157 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2158 err = iavf_init_adminq(hw); 2159 if (err) 2160 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2161 err); 2162 adapter->aq_required = 0; 2163 2164 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2165 err = iavf_reinit_interrupt_scheme(adapter); 2166 if (err) 2167 goto reset_err; 2168 } 2169 2170 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2171 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2172 2173 spin_lock_bh(&adapter->mac_vlan_list_lock); 2174 2175 /* Delete filter for the current MAC address, it could have 2176 * been changed by the PF via administratively set MAC. 2177 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2178 */ 2179 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2180 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2181 list_del(&f->list); 2182 kfree(f); 2183 } 2184 } 2185 /* re-add all MAC filters */ 2186 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2187 f->add = true; 2188 } 2189 /* re-add all VLAN filters */ 2190 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2191 vlf->add = true; 2192 } 2193 2194 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2195 2196 /* check if TCs are running and re-add all cloud filters */ 2197 spin_lock_bh(&adapter->cloud_filter_list_lock); 2198 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2199 adapter->num_tc) { 2200 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2201 cf->add = true; 2202 } 2203 } 2204 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2205 2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2208 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2209 iavf_misc_irq_enable(adapter); 2210 2211 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2212 2213 /* We were running when the reset started, so we need to restore some 2214 * state here. 2215 */ 2216 if (running) { 2217 /* allocate transmit descriptors */ 2218 err = iavf_setup_all_tx_resources(adapter); 2219 if (err) 2220 goto reset_err; 2221 2222 /* allocate receive descriptors */ 2223 err = iavf_setup_all_rx_resources(adapter); 2224 if (err) 2225 goto reset_err; 2226 2227 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2228 err = iavf_request_traffic_irqs(adapter, netdev->name); 2229 if (err) 2230 goto reset_err; 2231 2232 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2233 } 2234 2235 iavf_configure(adapter); 2236 2237 iavf_up_complete(adapter); 2238 2239 iavf_irq_enable(adapter, true); 2240 } else { 2241 adapter->state = __IAVF_DOWN; 2242 wake_up(&adapter->down_waitqueue); 2243 } 2244 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2245 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2246 2247 return; 2248 reset_err: 2249 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2250 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2251 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2252 iavf_close(netdev); 2253 } 2254 2255 /** 2256 * iavf_adminq_task - worker thread to clean the admin queue 2257 * @work: pointer to work_struct containing our data 2258 **/ 2259 static void iavf_adminq_task(struct work_struct *work) 2260 { 2261 struct iavf_adapter *adapter = 2262 container_of(work, struct iavf_adapter, adminq_task); 2263 struct iavf_hw *hw = &adapter->hw; 2264 struct iavf_arq_event_info event; 2265 enum virtchnl_ops v_op; 2266 enum iavf_status ret, v_ret; 2267 u32 val, oldval; 2268 u16 pending; 2269 2270 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2271 goto out; 2272 2273 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2274 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2275 if (!event.msg_buf) 2276 goto out; 2277 2278 do { 2279 ret = iavf_clean_arq_element(hw, &event, &pending); 2280 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2281 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2282 2283 if (ret || !v_op) 2284 break; /* No event to process or error cleaning ARQ */ 2285 2286 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2287 event.msg_len); 2288 if (pending != 0) 2289 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2290 } while (pending); 2291 2292 if ((adapter->flags & 2293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2294 adapter->state == __IAVF_RESETTING) 2295 goto freedom; 2296 2297 /* check for error indications */ 2298 val = rd32(hw, hw->aq.arq.len); 2299 if (val == 0xdeadbeef) /* indicates device in reset */ 2300 goto freedom; 2301 oldval = val; 2302 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2303 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2304 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2305 } 2306 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2307 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2308 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2309 } 2310 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2311 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2312 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2313 } 2314 if (oldval != val) 2315 wr32(hw, hw->aq.arq.len, val); 2316 2317 val = rd32(hw, hw->aq.asq.len); 2318 oldval = val; 2319 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2320 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2321 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2322 } 2323 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2324 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2325 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2326 } 2327 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2328 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2329 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2330 } 2331 if (oldval != val) 2332 wr32(hw, hw->aq.asq.len, val); 2333 2334 freedom: 2335 kfree(event.msg_buf); 2336 out: 2337 /* re-enable Admin queue interrupt cause */ 2338 iavf_misc_irq_enable(adapter); 2339 } 2340 2341 /** 2342 * iavf_client_task - worker thread to perform client work 2343 * @work: pointer to work_struct containing our data 2344 * 2345 * This task handles client interactions. Because client calls can be 2346 * reentrant, we can't handle them in the watchdog. 2347 **/ 2348 static void iavf_client_task(struct work_struct *work) 2349 { 2350 struct iavf_adapter *adapter = 2351 container_of(work, struct iavf_adapter, client_task.work); 2352 2353 /* If we can't get the client bit, just give up. We'll be rescheduled 2354 * later. 2355 */ 2356 2357 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) 2358 return; 2359 2360 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2361 iavf_client_subtask(adapter); 2362 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2363 goto out; 2364 } 2365 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2366 iavf_notify_client_l2_params(&adapter->vsi); 2367 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2368 goto out; 2369 } 2370 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2371 iavf_notify_client_close(&adapter->vsi, false); 2372 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2373 goto out; 2374 } 2375 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2376 iavf_notify_client_open(&adapter->vsi); 2377 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2378 } 2379 out: 2380 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2381 } 2382 2383 /** 2384 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2385 * @adapter: board private structure 2386 * 2387 * Free all transmit software resources 2388 **/ 2389 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2390 { 2391 int i; 2392 2393 if (!adapter->tx_rings) 2394 return; 2395 2396 for (i = 0; i < adapter->num_active_queues; i++) 2397 if (adapter->tx_rings[i].desc) 2398 iavf_free_tx_resources(&adapter->tx_rings[i]); 2399 } 2400 2401 /** 2402 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2403 * @adapter: board private structure 2404 * 2405 * If this function returns with an error, then it's possible one or 2406 * more of the rings is populated (while the rest are not). It is the 2407 * callers duty to clean those orphaned rings. 2408 * 2409 * Return 0 on success, negative on failure 2410 **/ 2411 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2412 { 2413 int i, err = 0; 2414 2415 for (i = 0; i < adapter->num_active_queues; i++) { 2416 adapter->tx_rings[i].count = adapter->tx_desc_count; 2417 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2418 if (!err) 2419 continue; 2420 dev_err(&adapter->pdev->dev, 2421 "Allocation for Tx Queue %u failed\n", i); 2422 break; 2423 } 2424 2425 return err; 2426 } 2427 2428 /** 2429 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2430 * @adapter: board private structure 2431 * 2432 * If this function returns with an error, then it's possible one or 2433 * more of the rings is populated (while the rest are not). It is the 2434 * callers duty to clean those orphaned rings. 2435 * 2436 * Return 0 on success, negative on failure 2437 **/ 2438 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2439 { 2440 int i, err = 0; 2441 2442 for (i = 0; i < adapter->num_active_queues; i++) { 2443 adapter->rx_rings[i].count = adapter->rx_desc_count; 2444 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2445 if (!err) 2446 continue; 2447 dev_err(&adapter->pdev->dev, 2448 "Allocation for Rx Queue %u failed\n", i); 2449 break; 2450 } 2451 return err; 2452 } 2453 2454 /** 2455 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2456 * @adapter: board private structure 2457 * 2458 * Free all receive software resources 2459 **/ 2460 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2461 { 2462 int i; 2463 2464 if (!adapter->rx_rings) 2465 return; 2466 2467 for (i = 0; i < adapter->num_active_queues; i++) 2468 if (adapter->rx_rings[i].desc) 2469 iavf_free_rx_resources(&adapter->rx_rings[i]); 2470 } 2471 2472 /** 2473 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2474 * @adapter: board private structure 2475 * @max_tx_rate: max Tx bw for a tc 2476 **/ 2477 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2478 u64 max_tx_rate) 2479 { 2480 int speed = 0, ret = 0; 2481 2482 if (ADV_LINK_SUPPORT(adapter)) { 2483 if (adapter->link_speed_mbps < U32_MAX) { 2484 speed = adapter->link_speed_mbps; 2485 goto validate_bw; 2486 } else { 2487 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 2488 return -EINVAL; 2489 } 2490 } 2491 2492 switch (adapter->link_speed) { 2493 case VIRTCHNL_LINK_SPEED_40GB: 2494 speed = SPEED_40000; 2495 break; 2496 case VIRTCHNL_LINK_SPEED_25GB: 2497 speed = SPEED_25000; 2498 break; 2499 case VIRTCHNL_LINK_SPEED_20GB: 2500 speed = SPEED_20000; 2501 break; 2502 case VIRTCHNL_LINK_SPEED_10GB: 2503 speed = SPEED_10000; 2504 break; 2505 case VIRTCHNL_LINK_SPEED_5GB: 2506 speed = SPEED_5000; 2507 break; 2508 case VIRTCHNL_LINK_SPEED_2_5GB: 2509 speed = SPEED_2500; 2510 break; 2511 case VIRTCHNL_LINK_SPEED_1GB: 2512 speed = SPEED_1000; 2513 break; 2514 case VIRTCHNL_LINK_SPEED_100MB: 2515 speed = SPEED_100; 2516 break; 2517 default: 2518 break; 2519 } 2520 2521 validate_bw: 2522 if (max_tx_rate > speed) { 2523 dev_err(&adapter->pdev->dev, 2524 "Invalid tx rate specified\n"); 2525 ret = -EINVAL; 2526 } 2527 2528 return ret; 2529 } 2530 2531 /** 2532 * iavf_validate_channel_config - validate queue mapping info 2533 * @adapter: board private structure 2534 * @mqprio_qopt: queue parameters 2535 * 2536 * This function validates if the config provided by the user to 2537 * configure queue channels is valid or not. Returns 0 on a valid 2538 * config. 2539 **/ 2540 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2541 struct tc_mqprio_qopt_offload *mqprio_qopt) 2542 { 2543 u64 total_max_rate = 0; 2544 int i, num_qps = 0; 2545 u64 tx_rate = 0; 2546 int ret = 0; 2547 2548 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2549 mqprio_qopt->qopt.num_tc < 1) 2550 return -EINVAL; 2551 2552 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2553 if (!mqprio_qopt->qopt.count[i] || 2554 mqprio_qopt->qopt.offset[i] != num_qps) 2555 return -EINVAL; 2556 if (mqprio_qopt->min_rate[i]) { 2557 dev_err(&adapter->pdev->dev, 2558 "Invalid min tx rate (greater than 0) specified\n"); 2559 return -EINVAL; 2560 } 2561 /*convert to Mbps */ 2562 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2563 IAVF_MBPS_DIVISOR); 2564 total_max_rate += tx_rate; 2565 num_qps += mqprio_qopt->qopt.count[i]; 2566 } 2567 if (num_qps > IAVF_MAX_REQ_QUEUES) 2568 return -EINVAL; 2569 2570 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2571 return ret; 2572 } 2573 2574 /** 2575 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 2576 * @adapter: board private structure 2577 **/ 2578 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2579 { 2580 struct iavf_cloud_filter *cf, *cftmp; 2581 2582 spin_lock_bh(&adapter->cloud_filter_list_lock); 2583 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2584 list) { 2585 list_del(&cf->list); 2586 kfree(cf); 2587 adapter->num_cloud_filters--; 2588 } 2589 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2590 } 2591 2592 /** 2593 * __iavf_setup_tc - configure multiple traffic classes 2594 * @netdev: network interface device structure 2595 * @type_data: tc offload data 2596 * 2597 * This function processes the config information provided by the 2598 * user to configure traffic classes/queue channels and packages the 2599 * information to request the PF to setup traffic classes. 2600 * 2601 * Returns 0 on success. 2602 **/ 2603 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2604 { 2605 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2606 struct iavf_adapter *adapter = netdev_priv(netdev); 2607 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2608 u8 num_tc = 0, total_qps = 0; 2609 int ret = 0, netdev_tc = 0; 2610 u64 max_tx_rate; 2611 u16 mode; 2612 int i; 2613 2614 num_tc = mqprio_qopt->qopt.num_tc; 2615 mode = mqprio_qopt->mode; 2616 2617 /* delete queue_channel */ 2618 if (!mqprio_qopt->qopt.hw) { 2619 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2620 /* reset the tc configuration */ 2621 netdev_reset_tc(netdev); 2622 adapter->num_tc = 0; 2623 netif_tx_stop_all_queues(netdev); 2624 netif_tx_disable(netdev); 2625 iavf_del_all_cloud_filters(adapter); 2626 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2627 goto exit; 2628 } else { 2629 return -EINVAL; 2630 } 2631 } 2632 2633 /* add queue channel */ 2634 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2635 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2636 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2637 return -EOPNOTSUPP; 2638 } 2639 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2640 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2641 return -EINVAL; 2642 } 2643 2644 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2645 if (ret) 2646 return ret; 2647 /* Return if same TC config is requested */ 2648 if (adapter->num_tc == num_tc) 2649 return 0; 2650 adapter->num_tc = num_tc; 2651 2652 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2653 if (i < num_tc) { 2654 adapter->ch_config.ch_info[i].count = 2655 mqprio_qopt->qopt.count[i]; 2656 adapter->ch_config.ch_info[i].offset = 2657 mqprio_qopt->qopt.offset[i]; 2658 total_qps += mqprio_qopt->qopt.count[i]; 2659 max_tx_rate = mqprio_qopt->max_rate[i]; 2660 /* convert to Mbps */ 2661 max_tx_rate = div_u64(max_tx_rate, 2662 IAVF_MBPS_DIVISOR); 2663 adapter->ch_config.ch_info[i].max_tx_rate = 2664 max_tx_rate; 2665 } else { 2666 adapter->ch_config.ch_info[i].count = 1; 2667 adapter->ch_config.ch_info[i].offset = 0; 2668 } 2669 } 2670 adapter->ch_config.total_qps = total_qps; 2671 netif_tx_stop_all_queues(netdev); 2672 netif_tx_disable(netdev); 2673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2674 netdev_reset_tc(netdev); 2675 /* Report the tc mapping up the stack */ 2676 netdev_set_num_tc(adapter->netdev, num_tc); 2677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2678 u16 qcount = mqprio_qopt->qopt.count[i]; 2679 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2680 2681 if (i < num_tc) 2682 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2683 qoffset); 2684 } 2685 } 2686 exit: 2687 return ret; 2688 } 2689 2690 /** 2691 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2692 * @adapter: board private structure 2693 * @f: pointer to struct flow_cls_offload 2694 * @filter: pointer to cloud filter structure 2695 */ 2696 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2697 struct flow_cls_offload *f, 2698 struct iavf_cloud_filter *filter) 2699 { 2700 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2701 struct flow_dissector *dissector = rule->match.dissector; 2702 u16 n_proto_mask = 0; 2703 u16 n_proto_key = 0; 2704 u8 field_flags = 0; 2705 u16 addr_type = 0; 2706 u16 n_proto = 0; 2707 int i = 0; 2708 struct virtchnl_filter *vf = &filter->f; 2709 2710 if (dissector->used_keys & 2711 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2712 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2713 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2714 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2715 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2716 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2717 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2718 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2719 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2720 dissector->used_keys); 2721 return -EOPNOTSUPP; 2722 } 2723 2724 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2725 struct flow_match_enc_keyid match; 2726 2727 flow_rule_match_enc_keyid(rule, &match); 2728 if (match.mask->keyid != 0) 2729 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2730 } 2731 2732 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2733 struct flow_match_basic match; 2734 2735 flow_rule_match_basic(rule, &match); 2736 n_proto_key = ntohs(match.key->n_proto); 2737 n_proto_mask = ntohs(match.mask->n_proto); 2738 2739 if (n_proto_key == ETH_P_ALL) { 2740 n_proto_key = 0; 2741 n_proto_mask = 0; 2742 } 2743 n_proto = n_proto_key & n_proto_mask; 2744 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2745 return -EINVAL; 2746 if (n_proto == ETH_P_IPV6) { 2747 /* specify flow type as TCP IPv6 */ 2748 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2749 } 2750 2751 if (match.key->ip_proto != IPPROTO_TCP) { 2752 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2753 return -EINVAL; 2754 } 2755 } 2756 2757 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2758 struct flow_match_eth_addrs match; 2759 2760 flow_rule_match_eth_addrs(rule, &match); 2761 2762 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2763 if (!is_zero_ether_addr(match.mask->dst)) { 2764 if (is_broadcast_ether_addr(match.mask->dst)) { 2765 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2766 } else { 2767 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2768 match.mask->dst); 2769 return IAVF_ERR_CONFIG; 2770 } 2771 } 2772 2773 if (!is_zero_ether_addr(match.mask->src)) { 2774 if (is_broadcast_ether_addr(match.mask->src)) { 2775 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2776 } else { 2777 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2778 match.mask->src); 2779 return IAVF_ERR_CONFIG; 2780 } 2781 } 2782 2783 if (!is_zero_ether_addr(match.key->dst)) 2784 if (is_valid_ether_addr(match.key->dst) || 2785 is_multicast_ether_addr(match.key->dst)) { 2786 /* set the mask if a valid dst_mac address */ 2787 for (i = 0; i < ETH_ALEN; i++) 2788 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2789 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2790 match.key->dst); 2791 } 2792 2793 if (!is_zero_ether_addr(match.key->src)) 2794 if (is_valid_ether_addr(match.key->src) || 2795 is_multicast_ether_addr(match.key->src)) { 2796 /* set the mask if a valid dst_mac address */ 2797 for (i = 0; i < ETH_ALEN; i++) 2798 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2799 ether_addr_copy(vf->data.tcp_spec.src_mac, 2800 match.key->src); 2801 } 2802 } 2803 2804 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2805 struct flow_match_vlan match; 2806 2807 flow_rule_match_vlan(rule, &match); 2808 if (match.mask->vlan_id) { 2809 if (match.mask->vlan_id == VLAN_VID_MASK) { 2810 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2811 } else { 2812 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2813 match.mask->vlan_id); 2814 return IAVF_ERR_CONFIG; 2815 } 2816 } 2817 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2818 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2819 } 2820 2821 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2822 struct flow_match_control match; 2823 2824 flow_rule_match_control(rule, &match); 2825 addr_type = match.key->addr_type; 2826 } 2827 2828 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2829 struct flow_match_ipv4_addrs match; 2830 2831 flow_rule_match_ipv4_addrs(rule, &match); 2832 if (match.mask->dst) { 2833 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2834 field_flags |= IAVF_CLOUD_FIELD_IIP; 2835 } else { 2836 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2837 be32_to_cpu(match.mask->dst)); 2838 return IAVF_ERR_CONFIG; 2839 } 2840 } 2841 2842 if (match.mask->src) { 2843 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2844 field_flags |= IAVF_CLOUD_FIELD_IIP; 2845 } else { 2846 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2847 be32_to_cpu(match.mask->dst)); 2848 return IAVF_ERR_CONFIG; 2849 } 2850 } 2851 2852 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2853 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2854 return IAVF_ERR_CONFIG; 2855 } 2856 if (match.key->dst) { 2857 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2858 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2859 } 2860 if (match.key->src) { 2861 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2862 vf->data.tcp_spec.src_ip[0] = match.key->src; 2863 } 2864 } 2865 2866 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2867 struct flow_match_ipv6_addrs match; 2868 2869 flow_rule_match_ipv6_addrs(rule, &match); 2870 2871 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2872 if (ipv6_addr_any(&match.mask->dst)) { 2873 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2874 IPV6_ADDR_ANY); 2875 return IAVF_ERR_CONFIG; 2876 } 2877 2878 /* src and dest IPv6 address should not be LOOPBACK 2879 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2880 */ 2881 if (ipv6_addr_loopback(&match.key->dst) || 2882 ipv6_addr_loopback(&match.key->src)) { 2883 dev_err(&adapter->pdev->dev, 2884 "ipv6 addr should not be loopback\n"); 2885 return IAVF_ERR_CONFIG; 2886 } 2887 if (!ipv6_addr_any(&match.mask->dst) || 2888 !ipv6_addr_any(&match.mask->src)) 2889 field_flags |= IAVF_CLOUD_FIELD_IIP; 2890 2891 for (i = 0; i < 4; i++) 2892 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2893 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2894 sizeof(vf->data.tcp_spec.dst_ip)); 2895 for (i = 0; i < 4; i++) 2896 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2897 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2898 sizeof(vf->data.tcp_spec.src_ip)); 2899 } 2900 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2901 struct flow_match_ports match; 2902 2903 flow_rule_match_ports(rule, &match); 2904 if (match.mask->src) { 2905 if (match.mask->src == cpu_to_be16(0xffff)) { 2906 field_flags |= IAVF_CLOUD_FIELD_IIP; 2907 } else { 2908 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2909 be16_to_cpu(match.mask->src)); 2910 return IAVF_ERR_CONFIG; 2911 } 2912 } 2913 2914 if (match.mask->dst) { 2915 if (match.mask->dst == cpu_to_be16(0xffff)) { 2916 field_flags |= IAVF_CLOUD_FIELD_IIP; 2917 } else { 2918 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2919 be16_to_cpu(match.mask->dst)); 2920 return IAVF_ERR_CONFIG; 2921 } 2922 } 2923 if (match.key->dst) { 2924 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2925 vf->data.tcp_spec.dst_port = match.key->dst; 2926 } 2927 2928 if (match.key->src) { 2929 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2930 vf->data.tcp_spec.src_port = match.key->src; 2931 } 2932 } 2933 vf->field_flags = field_flags; 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * iavf_handle_tclass - Forward to a traffic class on the device 2940 * @adapter: board private structure 2941 * @tc: traffic class index on the device 2942 * @filter: pointer to cloud filter structure 2943 */ 2944 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 2945 struct iavf_cloud_filter *filter) 2946 { 2947 if (tc == 0) 2948 return 0; 2949 if (tc < adapter->num_tc) { 2950 if (!filter->f.data.tcp_spec.dst_port) { 2951 dev_err(&adapter->pdev->dev, 2952 "Specify destination port to redirect to traffic class other than TC0\n"); 2953 return -EINVAL; 2954 } 2955 } 2956 /* redirect to a traffic class on the same device */ 2957 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 2958 filter->f.action_meta = tc; 2959 return 0; 2960 } 2961 2962 /** 2963 * iavf_configure_clsflower - Add tc flower filters 2964 * @adapter: board private structure 2965 * @cls_flower: Pointer to struct flow_cls_offload 2966 */ 2967 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 2968 struct flow_cls_offload *cls_flower) 2969 { 2970 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2971 struct iavf_cloud_filter *filter = NULL; 2972 int err = -EINVAL, count = 50; 2973 2974 if (tc < 0) { 2975 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 2976 return -EINVAL; 2977 } 2978 2979 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2980 if (!filter) 2981 return -ENOMEM; 2982 2983 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 2984 &adapter->crit_section)) { 2985 if (--count == 0) 2986 goto err; 2987 udelay(1); 2988 } 2989 2990 filter->cookie = cls_flower->cookie; 2991 2992 /* set the mask to all zeroes to begin with */ 2993 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 2994 /* start out with flow type and eth type IPv4 to begin with */ 2995 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 2996 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 2997 if (err < 0) 2998 goto err; 2999 3000 err = iavf_handle_tclass(adapter, tc, filter); 3001 if (err < 0) 3002 goto err; 3003 3004 /* add filter to the list */ 3005 spin_lock_bh(&adapter->cloud_filter_list_lock); 3006 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3007 adapter->num_cloud_filters++; 3008 filter->add = true; 3009 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3010 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3011 err: 3012 if (err) 3013 kfree(filter); 3014 3015 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3016 return err; 3017 } 3018 3019 /* iavf_find_cf - Find the cloud filter in the list 3020 * @adapter: Board private structure 3021 * @cookie: filter specific cookie 3022 * 3023 * Returns ptr to the filter object or NULL. Must be called while holding the 3024 * cloud_filter_list_lock. 3025 */ 3026 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3027 unsigned long *cookie) 3028 { 3029 struct iavf_cloud_filter *filter = NULL; 3030 3031 if (!cookie) 3032 return NULL; 3033 3034 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3035 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3036 return filter; 3037 } 3038 return NULL; 3039 } 3040 3041 /** 3042 * iavf_delete_clsflower - Remove tc flower filters 3043 * @adapter: board private structure 3044 * @cls_flower: Pointer to struct flow_cls_offload 3045 */ 3046 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3047 struct flow_cls_offload *cls_flower) 3048 { 3049 struct iavf_cloud_filter *filter = NULL; 3050 int err = 0; 3051 3052 spin_lock_bh(&adapter->cloud_filter_list_lock); 3053 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3054 if (filter) { 3055 filter->del = true; 3056 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3057 } else { 3058 err = -EINVAL; 3059 } 3060 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3061 3062 return err; 3063 } 3064 3065 /** 3066 * iavf_setup_tc_cls_flower - flower classifier offloads 3067 * @adapter: board private structure 3068 * @cls_flower: pointer to flow_cls_offload struct with flow info 3069 */ 3070 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3071 struct flow_cls_offload *cls_flower) 3072 { 3073 switch (cls_flower->command) { 3074 case FLOW_CLS_REPLACE: 3075 return iavf_configure_clsflower(adapter, cls_flower); 3076 case FLOW_CLS_DESTROY: 3077 return iavf_delete_clsflower(adapter, cls_flower); 3078 case FLOW_CLS_STATS: 3079 return -EOPNOTSUPP; 3080 default: 3081 return -EOPNOTSUPP; 3082 } 3083 } 3084 3085 /** 3086 * iavf_setup_tc_block_cb - block callback for tc 3087 * @type: type of offload 3088 * @type_data: offload data 3089 * @cb_priv: 3090 * 3091 * This function is the block callback for traffic classes 3092 **/ 3093 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3094 void *cb_priv) 3095 { 3096 struct iavf_adapter *adapter = cb_priv; 3097 3098 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3099 return -EOPNOTSUPP; 3100 3101 switch (type) { 3102 case TC_SETUP_CLSFLOWER: 3103 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3104 default: 3105 return -EOPNOTSUPP; 3106 } 3107 } 3108 3109 static LIST_HEAD(iavf_block_cb_list); 3110 3111 /** 3112 * iavf_setup_tc - configure multiple traffic classes 3113 * @netdev: network interface device structure 3114 * @type: type of offload 3115 * @type_data: tc offload data 3116 * 3117 * This function is the callback to ndo_setup_tc in the 3118 * netdev_ops. 3119 * 3120 * Returns 0 on success 3121 **/ 3122 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3123 void *type_data) 3124 { 3125 struct iavf_adapter *adapter = netdev_priv(netdev); 3126 3127 switch (type) { 3128 case TC_SETUP_QDISC_MQPRIO: 3129 return __iavf_setup_tc(netdev, type_data); 3130 case TC_SETUP_BLOCK: 3131 return flow_block_cb_setup_simple(type_data, 3132 &iavf_block_cb_list, 3133 iavf_setup_tc_block_cb, 3134 adapter, adapter, true); 3135 default: 3136 return -EOPNOTSUPP; 3137 } 3138 } 3139 3140 /** 3141 * iavf_open - Called when a network interface is made active 3142 * @netdev: network interface device structure 3143 * 3144 * Returns 0 on success, negative value on failure 3145 * 3146 * The open entry point is called when a network interface is made 3147 * active by the system (IFF_UP). At this point all resources needed 3148 * for transmit and receive operations are allocated, the interrupt 3149 * handler is registered with the OS, the watchdog is started, 3150 * and the stack is notified that the interface is ready. 3151 **/ 3152 static int iavf_open(struct net_device *netdev) 3153 { 3154 struct iavf_adapter *adapter = netdev_priv(netdev); 3155 int err; 3156 3157 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3158 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3159 return -EIO; 3160 } 3161 3162 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3163 &adapter->crit_section)) 3164 usleep_range(500, 1000); 3165 3166 if (adapter->state != __IAVF_DOWN) { 3167 err = -EBUSY; 3168 goto err_unlock; 3169 } 3170 3171 /* allocate transmit descriptors */ 3172 err = iavf_setup_all_tx_resources(adapter); 3173 if (err) 3174 goto err_setup_tx; 3175 3176 /* allocate receive descriptors */ 3177 err = iavf_setup_all_rx_resources(adapter); 3178 if (err) 3179 goto err_setup_rx; 3180 3181 /* clear any pending interrupts, may auto mask */ 3182 err = iavf_request_traffic_irqs(adapter, netdev->name); 3183 if (err) 3184 goto err_req_irq; 3185 3186 spin_lock_bh(&adapter->mac_vlan_list_lock); 3187 3188 iavf_add_filter(adapter, adapter->hw.mac.addr); 3189 3190 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3191 3192 iavf_configure(adapter); 3193 3194 iavf_up_complete(adapter); 3195 3196 iavf_irq_enable(adapter, true); 3197 3198 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3199 3200 return 0; 3201 3202 err_req_irq: 3203 iavf_down(adapter); 3204 iavf_free_traffic_irqs(adapter); 3205 err_setup_rx: 3206 iavf_free_all_rx_resources(adapter); 3207 err_setup_tx: 3208 iavf_free_all_tx_resources(adapter); 3209 err_unlock: 3210 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3211 3212 return err; 3213 } 3214 3215 /** 3216 * iavf_close - Disables a network interface 3217 * @netdev: network interface device structure 3218 * 3219 * Returns 0, this is not allowed to fail 3220 * 3221 * The close entry point is called when an interface is de-activated 3222 * by the OS. The hardware is still under the drivers control, but 3223 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3224 * are freed, along with all transmit and receive resources. 3225 **/ 3226 static int iavf_close(struct net_device *netdev) 3227 { 3228 struct iavf_adapter *adapter = netdev_priv(netdev); 3229 int status; 3230 3231 if (adapter->state <= __IAVF_DOWN_PENDING) 3232 return 0; 3233 3234 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3235 &adapter->crit_section)) 3236 usleep_range(500, 1000); 3237 3238 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3239 if (CLIENT_ENABLED(adapter)) 3240 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3241 3242 iavf_down(adapter); 3243 adapter->state = __IAVF_DOWN_PENDING; 3244 iavf_free_traffic_irqs(adapter); 3245 3246 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3247 3248 /* We explicitly don't free resources here because the hardware is 3249 * still active and can DMA into memory. Resources are cleared in 3250 * iavf_virtchnl_completion() after we get confirmation from the PF 3251 * driver that the rings have been stopped. 3252 * 3253 * Also, we wait for state to transition to __IAVF_DOWN before 3254 * returning. State change occurs in iavf_virtchnl_completion() after 3255 * VF resources are released (which occurs after PF driver processes and 3256 * responds to admin queue commands). 3257 */ 3258 3259 status = wait_event_timeout(adapter->down_waitqueue, 3260 adapter->state == __IAVF_DOWN, 3261 msecs_to_jiffies(500)); 3262 if (!status) 3263 netdev_warn(netdev, "Device resources not yet released\n"); 3264 return 0; 3265 } 3266 3267 /** 3268 * iavf_change_mtu - Change the Maximum Transfer Unit 3269 * @netdev: network interface device structure 3270 * @new_mtu: new value for maximum frame size 3271 * 3272 * Returns 0 on success, negative on failure 3273 **/ 3274 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3275 { 3276 struct iavf_adapter *adapter = netdev_priv(netdev); 3277 3278 netdev->mtu = new_mtu; 3279 if (CLIENT_ENABLED(adapter)) { 3280 iavf_notify_client_l2_params(&adapter->vsi); 3281 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3282 } 3283 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3284 queue_work(iavf_wq, &adapter->reset_task); 3285 3286 return 0; 3287 } 3288 3289 /** 3290 * iavf_set_features - set the netdev feature flags 3291 * @netdev: ptr to the netdev being adjusted 3292 * @features: the feature set that the stack is suggesting 3293 * Note: expects to be called while under rtnl_lock() 3294 **/ 3295 static int iavf_set_features(struct net_device *netdev, 3296 netdev_features_t features) 3297 { 3298 struct iavf_adapter *adapter = netdev_priv(netdev); 3299 3300 /* Don't allow changing VLAN_RX flag when adapter is not capable 3301 * of VLAN offload 3302 */ 3303 if (!VLAN_ALLOWED(adapter)) { 3304 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3305 return -EINVAL; 3306 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3307 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3308 adapter->aq_required |= 3309 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3310 else 3311 adapter->aq_required |= 3312 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3313 } 3314 3315 return 0; 3316 } 3317 3318 /** 3319 * iavf_features_check - Validate encapsulated packet conforms to limits 3320 * @skb: skb buff 3321 * @dev: This physical port's netdev 3322 * @features: Offload features that the stack believes apply 3323 **/ 3324 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3325 struct net_device *dev, 3326 netdev_features_t features) 3327 { 3328 size_t len; 3329 3330 /* No point in doing any of this if neither checksum nor GSO are 3331 * being requested for this frame. We can rule out both by just 3332 * checking for CHECKSUM_PARTIAL 3333 */ 3334 if (skb->ip_summed != CHECKSUM_PARTIAL) 3335 return features; 3336 3337 /* We cannot support GSO if the MSS is going to be less than 3338 * 64 bytes. If it is then we need to drop support for GSO. 3339 */ 3340 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3341 features &= ~NETIF_F_GSO_MASK; 3342 3343 /* MACLEN can support at most 63 words */ 3344 len = skb_network_header(skb) - skb->data; 3345 if (len & ~(63 * 2)) 3346 goto out_err; 3347 3348 /* IPLEN and EIPLEN can support at most 127 dwords */ 3349 len = skb_transport_header(skb) - skb_network_header(skb); 3350 if (len & ~(127 * 4)) 3351 goto out_err; 3352 3353 if (skb->encapsulation) { 3354 /* L4TUNLEN can support 127 words */ 3355 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3356 if (len & ~(127 * 2)) 3357 goto out_err; 3358 3359 /* IPLEN can support at most 127 dwords */ 3360 len = skb_inner_transport_header(skb) - 3361 skb_inner_network_header(skb); 3362 if (len & ~(127 * 4)) 3363 goto out_err; 3364 } 3365 3366 /* No need to validate L4LEN as TCP is the only protocol with a 3367 * a flexible value and we support all possible values supported 3368 * by TCP, which is at most 15 dwords 3369 */ 3370 3371 return features; 3372 out_err: 3373 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3374 } 3375 3376 /** 3377 * iavf_fix_features - fix up the netdev feature bits 3378 * @netdev: our net device 3379 * @features: desired feature bits 3380 * 3381 * Returns fixed-up features bits 3382 **/ 3383 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3384 netdev_features_t features) 3385 { 3386 struct iavf_adapter *adapter = netdev_priv(netdev); 3387 3388 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3389 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3390 NETIF_F_HW_VLAN_CTAG_RX | 3391 NETIF_F_HW_VLAN_CTAG_FILTER); 3392 3393 return features; 3394 } 3395 3396 static const struct net_device_ops iavf_netdev_ops = { 3397 .ndo_open = iavf_open, 3398 .ndo_stop = iavf_close, 3399 .ndo_start_xmit = iavf_xmit_frame, 3400 .ndo_set_rx_mode = iavf_set_rx_mode, 3401 .ndo_validate_addr = eth_validate_addr, 3402 .ndo_set_mac_address = iavf_set_mac, 3403 .ndo_change_mtu = iavf_change_mtu, 3404 .ndo_tx_timeout = iavf_tx_timeout, 3405 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3406 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3407 .ndo_features_check = iavf_features_check, 3408 .ndo_fix_features = iavf_fix_features, 3409 .ndo_set_features = iavf_set_features, 3410 .ndo_setup_tc = iavf_setup_tc, 3411 }; 3412 3413 /** 3414 * iavf_check_reset_complete - check that VF reset is complete 3415 * @hw: pointer to hw struct 3416 * 3417 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3418 **/ 3419 static int iavf_check_reset_complete(struct iavf_hw *hw) 3420 { 3421 u32 rstat; 3422 int i; 3423 3424 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3425 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3426 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3427 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3428 (rstat == VIRTCHNL_VFR_COMPLETED)) 3429 return 0; 3430 usleep_range(10, 20); 3431 } 3432 return -EBUSY; 3433 } 3434 3435 /** 3436 * iavf_process_config - Process the config information we got from the PF 3437 * @adapter: board private structure 3438 * 3439 * Verify that we have a valid config struct, and set up our netdev features 3440 * and our VSI struct. 3441 **/ 3442 int iavf_process_config(struct iavf_adapter *adapter) 3443 { 3444 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3445 int i, num_req_queues = adapter->num_req_queues; 3446 struct net_device *netdev = adapter->netdev; 3447 struct iavf_vsi *vsi = &adapter->vsi; 3448 netdev_features_t hw_enc_features; 3449 netdev_features_t hw_features; 3450 3451 /* got VF config message back from PF, now we can parse it */ 3452 for (i = 0; i < vfres->num_vsis; i++) { 3453 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3454 adapter->vsi_res = &vfres->vsi_res[i]; 3455 } 3456 if (!adapter->vsi_res) { 3457 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3458 return -ENODEV; 3459 } 3460 3461 if (num_req_queues && 3462 num_req_queues > adapter->vsi_res->num_queue_pairs) { 3463 /* Problem. The PF gave us fewer queues than what we had 3464 * negotiated in our request. Need a reset to see if we can't 3465 * get back to a working state. 3466 */ 3467 dev_err(&adapter->pdev->dev, 3468 "Requested %d queues, but PF only gave us %d.\n", 3469 num_req_queues, 3470 adapter->vsi_res->num_queue_pairs); 3471 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3472 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3473 iavf_schedule_reset(adapter); 3474 return -ENODEV; 3475 } 3476 adapter->num_req_queues = 0; 3477 3478 hw_enc_features = NETIF_F_SG | 3479 NETIF_F_IP_CSUM | 3480 NETIF_F_IPV6_CSUM | 3481 NETIF_F_HIGHDMA | 3482 NETIF_F_SOFT_FEATURES | 3483 NETIF_F_TSO | 3484 NETIF_F_TSO_ECN | 3485 NETIF_F_TSO6 | 3486 NETIF_F_SCTP_CRC | 3487 NETIF_F_RXHASH | 3488 NETIF_F_RXCSUM | 3489 0; 3490 3491 /* advertise to stack only if offloads for encapsulated packets is 3492 * supported 3493 */ 3494 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3495 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3496 NETIF_F_GSO_GRE | 3497 NETIF_F_GSO_GRE_CSUM | 3498 NETIF_F_GSO_IPXIP4 | 3499 NETIF_F_GSO_IPXIP6 | 3500 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3501 NETIF_F_GSO_PARTIAL | 3502 0; 3503 3504 if (!(vfres->vf_cap_flags & 3505 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3506 netdev->gso_partial_features |= 3507 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3508 3509 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3510 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3511 netdev->hw_enc_features |= hw_enc_features; 3512 } 3513 /* record features VLANs can make use of */ 3514 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3515 3516 /* Write features and hw_features separately to avoid polluting 3517 * with, or dropping, features that are set when we registered. 3518 */ 3519 hw_features = hw_enc_features; 3520 3521 /* Enable VLAN features if supported */ 3522 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3523 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3524 NETIF_F_HW_VLAN_CTAG_RX); 3525 /* Enable cloud filter if ADQ is supported */ 3526 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3527 hw_features |= NETIF_F_HW_TC; 3528 3529 netdev->hw_features |= hw_features; 3530 3531 netdev->features |= hw_features; 3532 3533 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3534 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3535 3536 netdev->priv_flags |= IFF_UNICAST_FLT; 3537 3538 /* Do not turn on offloads when they are requested to be turned off. 3539 * TSO needs minimum 576 bytes to work correctly. 3540 */ 3541 if (netdev->wanted_features) { 3542 if (!(netdev->wanted_features & NETIF_F_TSO) || 3543 netdev->mtu < 576) 3544 netdev->features &= ~NETIF_F_TSO; 3545 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3546 netdev->mtu < 576) 3547 netdev->features &= ~NETIF_F_TSO6; 3548 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3549 netdev->features &= ~NETIF_F_TSO_ECN; 3550 if (!(netdev->wanted_features & NETIF_F_GRO)) 3551 netdev->features &= ~NETIF_F_GRO; 3552 if (!(netdev->wanted_features & NETIF_F_GSO)) 3553 netdev->features &= ~NETIF_F_GSO; 3554 } 3555 3556 adapter->vsi.id = adapter->vsi_res->vsi_id; 3557 3558 adapter->vsi.back = adapter; 3559 adapter->vsi.base_vector = 1; 3560 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3561 vsi->netdev = adapter->netdev; 3562 vsi->qs_handle = adapter->vsi_res->qset_handle; 3563 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3564 adapter->rss_key_size = vfres->rss_key_size; 3565 adapter->rss_lut_size = vfres->rss_lut_size; 3566 } else { 3567 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3568 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3569 } 3570 3571 return 0; 3572 } 3573 3574 /** 3575 * iavf_init_task - worker thread to perform delayed initialization 3576 * @work: pointer to work_struct containing our data 3577 * 3578 * This task completes the work that was begun in probe. Due to the nature 3579 * of VF-PF communications, we may need to wait tens of milliseconds to get 3580 * responses back from the PF. Rather than busy-wait in probe and bog down the 3581 * whole system, we'll do it in a task so we can sleep. 3582 * This task only runs during driver init. Once we've established 3583 * communications with the PF driver and set up our netdev, the watchdog 3584 * takes over. 3585 **/ 3586 static void iavf_init_task(struct work_struct *work) 3587 { 3588 struct iavf_adapter *adapter = container_of(work, 3589 struct iavf_adapter, 3590 init_task.work); 3591 struct iavf_hw *hw = &adapter->hw; 3592 3593 switch (adapter->state) { 3594 case __IAVF_STARTUP: 3595 if (iavf_startup(adapter) < 0) 3596 goto init_failed; 3597 break; 3598 case __IAVF_INIT_VERSION_CHECK: 3599 if (iavf_init_version_check(adapter) < 0) 3600 goto init_failed; 3601 break; 3602 case __IAVF_INIT_GET_RESOURCES: 3603 if (iavf_init_get_resources(adapter) < 0) 3604 goto init_failed; 3605 return; 3606 default: 3607 goto init_failed; 3608 } 3609 3610 queue_delayed_work(iavf_wq, &adapter->init_task, 3611 msecs_to_jiffies(30)); 3612 return; 3613 init_failed: 3614 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3615 dev_err(&adapter->pdev->dev, 3616 "Failed to communicate with PF; waiting before retry\n"); 3617 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3618 iavf_shutdown_adminq(hw); 3619 adapter->state = __IAVF_STARTUP; 3620 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3621 return; 3622 } 3623 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3624 } 3625 3626 /** 3627 * iavf_shutdown - Shutdown the device in preparation for a reboot 3628 * @pdev: pci device structure 3629 **/ 3630 static void iavf_shutdown(struct pci_dev *pdev) 3631 { 3632 struct net_device *netdev = pci_get_drvdata(pdev); 3633 struct iavf_adapter *adapter = netdev_priv(netdev); 3634 3635 netif_device_detach(netdev); 3636 3637 if (netif_running(netdev)) 3638 iavf_close(netdev); 3639 3640 /* Prevent the watchdog from running. */ 3641 adapter->state = __IAVF_REMOVE; 3642 adapter->aq_required = 0; 3643 3644 #ifdef CONFIG_PM 3645 pci_save_state(pdev); 3646 3647 #endif 3648 pci_disable_device(pdev); 3649 } 3650 3651 /** 3652 * iavf_probe - Device Initialization Routine 3653 * @pdev: PCI device information struct 3654 * @ent: entry in iavf_pci_tbl 3655 * 3656 * Returns 0 on success, negative on failure 3657 * 3658 * iavf_probe initializes an adapter identified by a pci_dev structure. 3659 * The OS initialization, configuring of the adapter private structure, 3660 * and a hardware reset occur. 3661 **/ 3662 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3663 { 3664 struct net_device *netdev; 3665 struct iavf_adapter *adapter = NULL; 3666 struct iavf_hw *hw = NULL; 3667 int err; 3668 3669 err = pci_enable_device(pdev); 3670 if (err) 3671 return err; 3672 3673 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3674 if (err) { 3675 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3676 if (err) { 3677 dev_err(&pdev->dev, 3678 "DMA configuration failed: 0x%x\n", err); 3679 goto err_dma; 3680 } 3681 } 3682 3683 err = pci_request_regions(pdev, iavf_driver_name); 3684 if (err) { 3685 dev_err(&pdev->dev, 3686 "pci_request_regions failed 0x%x\n", err); 3687 goto err_pci_reg; 3688 } 3689 3690 pci_enable_pcie_error_reporting(pdev); 3691 3692 pci_set_master(pdev); 3693 3694 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3695 IAVF_MAX_REQ_QUEUES); 3696 if (!netdev) { 3697 err = -ENOMEM; 3698 goto err_alloc_etherdev; 3699 } 3700 3701 SET_NETDEV_DEV(netdev, &pdev->dev); 3702 3703 pci_set_drvdata(pdev, netdev); 3704 adapter = netdev_priv(netdev); 3705 3706 adapter->netdev = netdev; 3707 adapter->pdev = pdev; 3708 3709 hw = &adapter->hw; 3710 hw->back = adapter; 3711 3712 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3713 adapter->state = __IAVF_STARTUP; 3714 3715 /* Call save state here because it relies on the adapter struct. */ 3716 pci_save_state(pdev); 3717 3718 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3719 pci_resource_len(pdev, 0)); 3720 if (!hw->hw_addr) { 3721 err = -EIO; 3722 goto err_ioremap; 3723 } 3724 hw->vendor_id = pdev->vendor; 3725 hw->device_id = pdev->device; 3726 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3727 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3728 hw->subsystem_device_id = pdev->subsystem_device; 3729 hw->bus.device = PCI_SLOT(pdev->devfn); 3730 hw->bus.func = PCI_FUNC(pdev->devfn); 3731 hw->bus.bus_id = pdev->bus->number; 3732 3733 /* set up the locks for the AQ, do this only once in probe 3734 * and destroy them only once in remove 3735 */ 3736 mutex_init(&hw->aq.asq_mutex); 3737 mutex_init(&hw->aq.arq_mutex); 3738 3739 spin_lock_init(&adapter->mac_vlan_list_lock); 3740 spin_lock_init(&adapter->cloud_filter_list_lock); 3741 3742 INIT_LIST_HEAD(&adapter->mac_filter_list); 3743 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3744 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3745 3746 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3747 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3748 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3749 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3750 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3751 queue_delayed_work(iavf_wq, &adapter->init_task, 3752 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3753 3754 /* Setup the wait queue for indicating transition to down status */ 3755 init_waitqueue_head(&adapter->down_waitqueue); 3756 3757 return 0; 3758 3759 err_ioremap: 3760 free_netdev(netdev); 3761 err_alloc_etherdev: 3762 pci_release_regions(pdev); 3763 err_pci_reg: 3764 err_dma: 3765 pci_disable_device(pdev); 3766 return err; 3767 } 3768 3769 /** 3770 * iavf_suspend - Power management suspend routine 3771 * @dev_d: device info pointer 3772 * 3773 * Called when the system (VM) is entering sleep/suspend. 3774 **/ 3775 static int __maybe_unused iavf_suspend(struct device *dev_d) 3776 { 3777 struct net_device *netdev = dev_get_drvdata(dev_d); 3778 struct iavf_adapter *adapter = netdev_priv(netdev); 3779 3780 netif_device_detach(netdev); 3781 3782 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3783 &adapter->crit_section)) 3784 usleep_range(500, 1000); 3785 3786 if (netif_running(netdev)) { 3787 rtnl_lock(); 3788 iavf_down(adapter); 3789 rtnl_unlock(); 3790 } 3791 iavf_free_misc_irq(adapter); 3792 iavf_reset_interrupt_capability(adapter); 3793 3794 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3795 3796 return 0; 3797 } 3798 3799 /** 3800 * iavf_resume - Power management resume routine 3801 * @dev_d: device info pointer 3802 * 3803 * Called when the system (VM) is resumed from sleep/suspend. 3804 **/ 3805 static int __maybe_unused iavf_resume(struct device *dev_d) 3806 { 3807 struct pci_dev *pdev = to_pci_dev(dev_d); 3808 struct net_device *netdev = pci_get_drvdata(pdev); 3809 struct iavf_adapter *adapter = netdev_priv(netdev); 3810 u32 err; 3811 3812 pci_set_master(pdev); 3813 3814 rtnl_lock(); 3815 err = iavf_set_interrupt_capability(adapter); 3816 if (err) { 3817 rtnl_unlock(); 3818 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3819 return err; 3820 } 3821 err = iavf_request_misc_irq(adapter); 3822 rtnl_unlock(); 3823 if (err) { 3824 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3825 return err; 3826 } 3827 3828 queue_work(iavf_wq, &adapter->reset_task); 3829 3830 netif_device_attach(netdev); 3831 3832 return err; 3833 } 3834 3835 /** 3836 * iavf_remove - Device Removal Routine 3837 * @pdev: PCI device information struct 3838 * 3839 * iavf_remove is called by the PCI subsystem to alert the driver 3840 * that it should release a PCI device. The could be caused by a 3841 * Hot-Plug event, or because the driver is going to be removed from 3842 * memory. 3843 **/ 3844 static void iavf_remove(struct pci_dev *pdev) 3845 { 3846 struct net_device *netdev = pci_get_drvdata(pdev); 3847 struct iavf_adapter *adapter = netdev_priv(netdev); 3848 struct iavf_vlan_filter *vlf, *vlftmp; 3849 struct iavf_mac_filter *f, *ftmp; 3850 struct iavf_cloud_filter *cf, *cftmp; 3851 struct iavf_hw *hw = &adapter->hw; 3852 int err; 3853 /* Indicate we are in remove and not to run reset_task */ 3854 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 3855 cancel_delayed_work_sync(&adapter->init_task); 3856 cancel_work_sync(&adapter->reset_task); 3857 cancel_delayed_work_sync(&adapter->client_task); 3858 if (adapter->netdev_registered) { 3859 unregister_netdev(netdev); 3860 adapter->netdev_registered = false; 3861 } 3862 if (CLIENT_ALLOWED(adapter)) { 3863 err = iavf_lan_del_device(adapter); 3864 if (err) 3865 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3866 err); 3867 } 3868 3869 /* Shut down all the garbage mashers on the detention level */ 3870 adapter->state = __IAVF_REMOVE; 3871 adapter->aq_required = 0; 3872 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3873 iavf_request_reset(adapter); 3874 msleep(50); 3875 /* If the FW isn't responding, kick it once, but only once. */ 3876 if (!iavf_asq_done(hw)) { 3877 iavf_request_reset(adapter); 3878 msleep(50); 3879 } 3880 iavf_free_all_tx_resources(adapter); 3881 iavf_free_all_rx_resources(adapter); 3882 iavf_misc_irq_disable(adapter); 3883 iavf_free_misc_irq(adapter); 3884 iavf_reset_interrupt_capability(adapter); 3885 iavf_free_q_vectors(adapter); 3886 3887 cancel_delayed_work_sync(&adapter->watchdog_task); 3888 3889 cancel_work_sync(&adapter->adminq_task); 3890 3891 iavf_free_rss(adapter); 3892 3893 if (hw->aq.asq.count) 3894 iavf_shutdown_adminq(hw); 3895 3896 /* destroy the locks only once, here */ 3897 mutex_destroy(&hw->aq.arq_mutex); 3898 mutex_destroy(&hw->aq.asq_mutex); 3899 3900 iounmap(hw->hw_addr); 3901 pci_release_regions(pdev); 3902 iavf_free_all_tx_resources(adapter); 3903 iavf_free_all_rx_resources(adapter); 3904 iavf_free_queues(adapter); 3905 kfree(adapter->vf_res); 3906 spin_lock_bh(&adapter->mac_vlan_list_lock); 3907 /* If we got removed before an up/down sequence, we've got a filter 3908 * hanging out there that we need to get rid of. 3909 */ 3910 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3911 list_del(&f->list); 3912 kfree(f); 3913 } 3914 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3915 list) { 3916 list_del(&vlf->list); 3917 kfree(vlf); 3918 } 3919 3920 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3921 3922 spin_lock_bh(&adapter->cloud_filter_list_lock); 3923 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3924 list_del(&cf->list); 3925 kfree(cf); 3926 } 3927 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3928 3929 free_netdev(netdev); 3930 3931 pci_disable_pcie_error_reporting(pdev); 3932 3933 pci_disable_device(pdev); 3934 } 3935 3936 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 3937 3938 static struct pci_driver iavf_driver = { 3939 .name = iavf_driver_name, 3940 .id_table = iavf_pci_tbl, 3941 .probe = iavf_probe, 3942 .remove = iavf_remove, 3943 .driver.pm = &iavf_pm_ops, 3944 .shutdown = iavf_shutdown, 3945 }; 3946 3947 /** 3948 * iavf_init_module - Driver Registration Routine 3949 * 3950 * iavf_init_module is the first routine called when the driver is 3951 * loaded. All it does is register with the PCI subsystem. 3952 **/ 3953 static int __init iavf_init_module(void) 3954 { 3955 int ret; 3956 3957 pr_info("iavf: %s\n", iavf_driver_string); 3958 3959 pr_info("%s\n", iavf_copyright); 3960 3961 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 3962 iavf_driver_name); 3963 if (!iavf_wq) { 3964 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 3965 return -ENOMEM; 3966 } 3967 ret = pci_register_driver(&iavf_driver); 3968 return ret; 3969 } 3970 3971 module_init(iavf_init_module); 3972 3973 /** 3974 * iavf_exit_module - Driver Exit Cleanup Routine 3975 * 3976 * iavf_exit_module is called just before the driver is removed 3977 * from memory. 3978 **/ 3979 static void __exit iavf_exit_module(void) 3980 { 3981 pci_unregister_driver(&iavf_driver); 3982 destroy_workqueue(iavf_wq); 3983 } 3984 3985 module_exit(iavf_exit_module); 3986 3987 /* iavf_main.c */ 3988