1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_is_reset_in_progress - Check if a reset is in progress 171 * @adapter: board private structure 172 */ 173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 174 { 175 if (adapter->state == __IAVF_RESETTING || 176 adapter->flags & (IAVF_FLAG_RESET_PENDING | 177 IAVF_FLAG_RESET_NEEDED)) 178 return true; 179 180 return false; 181 } 182 183 /** 184 * iavf_wait_for_reset - Wait for reset to finish. 185 * @adapter: board private structure 186 * 187 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 188 */ 189 int iavf_wait_for_reset(struct iavf_adapter *adapter) 190 { 191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 192 !iavf_is_reset_in_progress(adapter), 193 msecs_to_jiffies(5000)); 194 195 /* If ret < 0 then it means wait was interrupted. 196 * If ret == 0 then it means we got a timeout while waiting 197 * for reset to finish. 198 * If ret > 0 it means reset has finished. 199 */ 200 if (ret > 0) 201 return 0; 202 else if (ret < 0) 203 return -EINTR; 204 else 205 return -EBUSY; 206 } 207 208 /** 209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 210 * @hw: pointer to the HW structure 211 * @mem: ptr to mem struct to fill out 212 * @size: size of memory requested 213 * @alignment: what to align the allocation to 214 **/ 215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 216 struct iavf_dma_mem *mem, 217 u64 size, u32 alignment) 218 { 219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 220 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = ALIGN(size, alignment); 225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 226 (dma_addr_t *)&mem->pa, GFP_KERNEL); 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_dma_mem - wrapper for DMA memory freeing 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 239 { 240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 241 242 if (!mem || !mem->va) 243 return IAVF_ERR_PARAM; 244 dma_free_coherent(&adapter->pdev->dev, mem->size, 245 mem->va, (dma_addr_t)mem->pa); 246 return 0; 247 } 248 249 /** 250 * iavf_allocate_virt_mem - virt memory alloc wrapper 251 * @hw: pointer to the HW structure 252 * @mem: ptr to mem struct to fill out 253 * @size: size of memory requested 254 **/ 255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 256 struct iavf_virt_mem *mem, u32 size) 257 { 258 if (!mem) 259 return IAVF_ERR_PARAM; 260 261 mem->size = size; 262 mem->va = kzalloc(size, GFP_KERNEL); 263 264 if (mem->va) 265 return 0; 266 else 267 return IAVF_ERR_NO_MEMORY; 268 } 269 270 /** 271 * iavf_free_virt_mem - virt memory free wrapper 272 * @hw: pointer to the HW structure 273 * @mem: ptr to mem struct to free 274 **/ 275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 276 { 277 kfree(mem->va); 278 } 279 280 /** 281 * iavf_lock_timeout - try to lock mutex but give up after timeout 282 * @lock: mutex that should be locked 283 * @msecs: timeout in msecs 284 * 285 * Returns 0 on success, negative on failure 286 **/ 287 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 288 { 289 unsigned int wait, delay = 10; 290 291 for (wait = 0; wait < msecs; wait += delay) { 292 if (mutex_trylock(lock)) 293 return 0; 294 295 msleep(delay); 296 } 297 298 return -1; 299 } 300 301 /** 302 * iavf_schedule_reset - Set the flags and schedule a reset event 303 * @adapter: board private structure 304 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 305 **/ 306 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 307 { 308 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 309 !(adapter->flags & 310 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 311 adapter->flags |= flags; 312 queue_work(adapter->wq, &adapter->reset_task); 313 } 314 } 315 316 /** 317 * iavf_schedule_request_stats - Set the flags and schedule statistics request 318 * @adapter: board private structure 319 * 320 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 321 * request and refresh ethtool stats 322 **/ 323 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 324 { 325 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 326 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 327 } 328 329 /** 330 * iavf_tx_timeout - Respond to a Tx Hang 331 * @netdev: network interface device structure 332 * @txqueue: queue number that is timing out 333 **/ 334 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 335 { 336 struct iavf_adapter *adapter = netdev_priv(netdev); 337 338 adapter->tx_timeout_count++; 339 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 340 } 341 342 /** 343 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 344 * @adapter: board private structure 345 **/ 346 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 347 { 348 struct iavf_hw *hw = &adapter->hw; 349 350 if (!adapter->msix_entries) 351 return; 352 353 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 354 355 iavf_flush(hw); 356 357 synchronize_irq(adapter->msix_entries[0].vector); 358 } 359 360 /** 361 * iavf_misc_irq_enable - Enable default interrupt generation settings 362 * @adapter: board private structure 363 **/ 364 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 365 { 366 struct iavf_hw *hw = &adapter->hw; 367 368 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 369 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 370 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 371 372 iavf_flush(hw); 373 } 374 375 /** 376 * iavf_irq_disable - Mask off interrupt generation on the NIC 377 * @adapter: board private structure 378 **/ 379 static void iavf_irq_disable(struct iavf_adapter *adapter) 380 { 381 int i; 382 struct iavf_hw *hw = &adapter->hw; 383 384 if (!adapter->msix_entries) 385 return; 386 387 for (i = 1; i < adapter->num_msix_vectors; i++) { 388 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 389 synchronize_irq(adapter->msix_entries[i].vector); 390 } 391 iavf_flush(hw); 392 } 393 394 /** 395 * iavf_irq_enable_queues - Enable interrupt for all queues 396 * @adapter: board private structure 397 **/ 398 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 399 { 400 struct iavf_hw *hw = &adapter->hw; 401 int i; 402 403 for (i = 1; i < adapter->num_msix_vectors; i++) { 404 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 405 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 406 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 407 } 408 } 409 410 /** 411 * iavf_irq_enable - Enable default interrupt generation settings 412 * @adapter: board private structure 413 * @flush: boolean value whether to run rd32() 414 **/ 415 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 416 { 417 struct iavf_hw *hw = &adapter->hw; 418 419 iavf_misc_irq_enable(adapter); 420 iavf_irq_enable_queues(adapter); 421 422 if (flush) 423 iavf_flush(hw); 424 } 425 426 /** 427 * iavf_msix_aq - Interrupt handler for vector 0 428 * @irq: interrupt number 429 * @data: pointer to netdev 430 **/ 431 static irqreturn_t iavf_msix_aq(int irq, void *data) 432 { 433 struct net_device *netdev = data; 434 struct iavf_adapter *adapter = netdev_priv(netdev); 435 struct iavf_hw *hw = &adapter->hw; 436 437 /* handle non-queue interrupts, these reads clear the registers */ 438 rd32(hw, IAVF_VFINT_ICR01); 439 rd32(hw, IAVF_VFINT_ICR0_ENA1); 440 441 if (adapter->state != __IAVF_REMOVE) 442 /* schedule work on the private workqueue */ 443 queue_work(adapter->wq, &adapter->adminq_task); 444 445 return IRQ_HANDLED; 446 } 447 448 /** 449 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 450 * @irq: interrupt number 451 * @data: pointer to a q_vector 452 **/ 453 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 454 { 455 struct iavf_q_vector *q_vector = data; 456 457 if (!q_vector->tx.ring && !q_vector->rx.ring) 458 return IRQ_HANDLED; 459 460 napi_schedule_irqoff(&q_vector->napi); 461 462 return IRQ_HANDLED; 463 } 464 465 /** 466 * iavf_map_vector_to_rxq - associate irqs with rx queues 467 * @adapter: board private structure 468 * @v_idx: interrupt number 469 * @r_idx: queue number 470 **/ 471 static void 472 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 473 { 474 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 475 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 476 struct iavf_hw *hw = &adapter->hw; 477 478 rx_ring->q_vector = q_vector; 479 rx_ring->next = q_vector->rx.ring; 480 rx_ring->vsi = &adapter->vsi; 481 q_vector->rx.ring = rx_ring; 482 q_vector->rx.count++; 483 q_vector->rx.next_update = jiffies + 1; 484 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 485 q_vector->ring_mask |= BIT(r_idx); 486 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 487 q_vector->rx.current_itr >> 1); 488 q_vector->rx.current_itr = q_vector->rx.target_itr; 489 } 490 491 /** 492 * iavf_map_vector_to_txq - associate irqs with tx queues 493 * @adapter: board private structure 494 * @v_idx: interrupt number 495 * @t_idx: queue number 496 **/ 497 static void 498 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 499 { 500 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 501 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 502 struct iavf_hw *hw = &adapter->hw; 503 504 tx_ring->q_vector = q_vector; 505 tx_ring->next = q_vector->tx.ring; 506 tx_ring->vsi = &adapter->vsi; 507 q_vector->tx.ring = tx_ring; 508 q_vector->tx.count++; 509 q_vector->tx.next_update = jiffies + 1; 510 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 511 q_vector->num_ringpairs++; 512 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 513 q_vector->tx.target_itr >> 1); 514 q_vector->tx.current_itr = q_vector->tx.target_itr; 515 } 516 517 /** 518 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 519 * @adapter: board private structure to initialize 520 * 521 * This function maps descriptor rings to the queue-specific vectors 522 * we were allotted through the MSI-X enabling code. Ideally, we'd have 523 * one vector per ring/queue, but on a constrained vector budget, we 524 * group the rings as "efficiently" as possible. You would add new 525 * mapping configurations in here. 526 **/ 527 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 528 { 529 int rings_remaining = adapter->num_active_queues; 530 int ridx = 0, vidx = 0; 531 int q_vectors; 532 533 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 534 535 for (; ridx < rings_remaining; ridx++) { 536 iavf_map_vector_to_rxq(adapter, vidx, ridx); 537 iavf_map_vector_to_txq(adapter, vidx, ridx); 538 539 /* In the case where we have more queues than vectors, continue 540 * round-robin on vectors until all queues are mapped. 541 */ 542 if (++vidx >= q_vectors) 543 vidx = 0; 544 } 545 546 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 547 } 548 549 /** 550 * iavf_irq_affinity_notify - Callback for affinity changes 551 * @notify: context as to what irq was changed 552 * @mask: the new affinity mask 553 * 554 * This is a callback function used by the irq_set_affinity_notifier function 555 * so that we may register to receive changes to the irq affinity masks. 556 **/ 557 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 558 const cpumask_t *mask) 559 { 560 struct iavf_q_vector *q_vector = 561 container_of(notify, struct iavf_q_vector, affinity_notify); 562 563 cpumask_copy(&q_vector->affinity_mask, mask); 564 } 565 566 /** 567 * iavf_irq_affinity_release - Callback for affinity notifier release 568 * @ref: internal core kernel usage 569 * 570 * This is a callback function used by the irq_set_affinity_notifier function 571 * to inform the current notification subscriber that they will no longer 572 * receive notifications. 573 **/ 574 static void iavf_irq_affinity_release(struct kref *ref) {} 575 576 /** 577 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 578 * @adapter: board private structure 579 * @basename: device basename 580 * 581 * Allocates MSI-X vectors for tx and rx handling, and requests 582 * interrupts from the kernel. 583 **/ 584 static int 585 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 586 { 587 unsigned int vector, q_vectors; 588 unsigned int rx_int_idx = 0, tx_int_idx = 0; 589 int irq_num, err; 590 int cpu; 591 592 iavf_irq_disable(adapter); 593 /* Decrement for Other and TCP Timer vectors */ 594 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 595 596 for (vector = 0; vector < q_vectors; vector++) { 597 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 598 599 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 600 601 if (q_vector->tx.ring && q_vector->rx.ring) { 602 snprintf(q_vector->name, sizeof(q_vector->name), 603 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 604 tx_int_idx++; 605 } else if (q_vector->rx.ring) { 606 snprintf(q_vector->name, sizeof(q_vector->name), 607 "iavf-%s-rx-%u", basename, rx_int_idx++); 608 } else if (q_vector->tx.ring) { 609 snprintf(q_vector->name, sizeof(q_vector->name), 610 "iavf-%s-tx-%u", basename, tx_int_idx++); 611 } else { 612 /* skip this unused q_vector */ 613 continue; 614 } 615 err = request_irq(irq_num, 616 iavf_msix_clean_rings, 617 0, 618 q_vector->name, 619 q_vector); 620 if (err) { 621 dev_info(&adapter->pdev->dev, 622 "Request_irq failed, error: %d\n", err); 623 goto free_queue_irqs; 624 } 625 /* register for affinity change notifications */ 626 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 627 q_vector->affinity_notify.release = 628 iavf_irq_affinity_release; 629 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 630 /* Spread the IRQ affinity hints across online CPUs. Note that 631 * get_cpu_mask returns a mask with a permanent lifetime so 632 * it's safe to use as a hint for irq_update_affinity_hint. 633 */ 634 cpu = cpumask_local_spread(q_vector->v_idx, -1); 635 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 636 } 637 638 return 0; 639 640 free_queue_irqs: 641 while (vector) { 642 vector--; 643 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 644 irq_set_affinity_notifier(irq_num, NULL); 645 irq_update_affinity_hint(irq_num, NULL); 646 free_irq(irq_num, &adapter->q_vectors[vector]); 647 } 648 return err; 649 } 650 651 /** 652 * iavf_request_misc_irq - Initialize MSI-X interrupts 653 * @adapter: board private structure 654 * 655 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 656 * vector is only for the admin queue, and stays active even when the netdev 657 * is closed. 658 **/ 659 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 660 { 661 struct net_device *netdev = adapter->netdev; 662 int err; 663 664 snprintf(adapter->misc_vector_name, 665 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 666 dev_name(&adapter->pdev->dev)); 667 err = request_irq(adapter->msix_entries[0].vector, 668 &iavf_msix_aq, 0, 669 adapter->misc_vector_name, netdev); 670 if (err) { 671 dev_err(&adapter->pdev->dev, 672 "request_irq for %s failed: %d\n", 673 adapter->misc_vector_name, err); 674 free_irq(adapter->msix_entries[0].vector, netdev); 675 } 676 return err; 677 } 678 679 /** 680 * iavf_free_traffic_irqs - Free MSI-X interrupts 681 * @adapter: board private structure 682 * 683 * Frees all MSI-X vectors other than 0. 684 **/ 685 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 686 { 687 int vector, irq_num, q_vectors; 688 689 if (!adapter->msix_entries) 690 return; 691 692 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 693 694 for (vector = 0; vector < q_vectors; vector++) { 695 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 696 irq_set_affinity_notifier(irq_num, NULL); 697 irq_update_affinity_hint(irq_num, NULL); 698 free_irq(irq_num, &adapter->q_vectors[vector]); 699 } 700 } 701 702 /** 703 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 704 * @adapter: board private structure 705 * 706 * Frees MSI-X vector 0. 707 **/ 708 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 709 { 710 struct net_device *netdev = adapter->netdev; 711 712 if (!adapter->msix_entries) 713 return; 714 715 free_irq(adapter->msix_entries[0].vector, netdev); 716 } 717 718 /** 719 * iavf_configure_tx - Configure Transmit Unit after Reset 720 * @adapter: board private structure 721 * 722 * Configure the Tx unit of the MAC after a reset. 723 **/ 724 static void iavf_configure_tx(struct iavf_adapter *adapter) 725 { 726 struct iavf_hw *hw = &adapter->hw; 727 int i; 728 729 for (i = 0; i < adapter->num_active_queues; i++) 730 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 731 } 732 733 /** 734 * iavf_configure_rx - Configure Receive Unit after Reset 735 * @adapter: board private structure 736 * 737 * Configure the Rx unit of the MAC after a reset. 738 **/ 739 static void iavf_configure_rx(struct iavf_adapter *adapter) 740 { 741 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 742 struct iavf_hw *hw = &adapter->hw; 743 int i; 744 745 /* Legacy Rx will always default to a 2048 buffer size. */ 746 #if (PAGE_SIZE < 8192) 747 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 748 struct net_device *netdev = adapter->netdev; 749 750 /* For jumbo frames on systems with 4K pages we have to use 751 * an order 1 page, so we might as well increase the size 752 * of our Rx buffer to make better use of the available space 753 */ 754 rx_buf_len = IAVF_RXBUFFER_3072; 755 756 /* We use a 1536 buffer size for configurations with 757 * standard Ethernet mtu. On x86 this gives us enough room 758 * for shared info and 192 bytes of padding. 759 */ 760 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 761 (netdev->mtu <= ETH_DATA_LEN)) 762 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 763 } 764 #endif 765 766 for (i = 0; i < adapter->num_active_queues; i++) { 767 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 768 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 769 770 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 771 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 772 else 773 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 774 } 775 } 776 777 /** 778 * iavf_find_vlan - Search filter list for specific vlan filter 779 * @adapter: board private structure 780 * @vlan: vlan tag 781 * 782 * Returns ptr to the filter object or NULL. Must be called while holding the 783 * mac_vlan_list_lock. 784 **/ 785 static struct 786 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 787 struct iavf_vlan vlan) 788 { 789 struct iavf_vlan_filter *f; 790 791 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 792 if (f->vlan.vid == vlan.vid && 793 f->vlan.tpid == vlan.tpid) 794 return f; 795 } 796 797 return NULL; 798 } 799 800 /** 801 * iavf_add_vlan - Add a vlan filter to the list 802 * @adapter: board private structure 803 * @vlan: VLAN tag 804 * 805 * Returns ptr to the filter object or NULL when no memory available. 806 **/ 807 static struct 808 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 809 struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f = NULL; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (!f) { 817 f = kzalloc(sizeof(*f), GFP_ATOMIC); 818 if (!f) 819 goto clearout; 820 821 f->vlan = vlan; 822 823 list_add_tail(&f->list, &adapter->vlan_filter_list); 824 f->state = IAVF_VLAN_ADD; 825 adapter->num_vlan_filters++; 826 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 827 } 828 829 clearout: 830 spin_unlock_bh(&adapter->mac_vlan_list_lock); 831 return f; 832 } 833 834 /** 835 * iavf_del_vlan - Remove a vlan filter from the list 836 * @adapter: board private structure 837 * @vlan: VLAN tag 838 **/ 839 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 840 { 841 struct iavf_vlan_filter *f; 842 843 spin_lock_bh(&adapter->mac_vlan_list_lock); 844 845 f = iavf_find_vlan(adapter, vlan); 846 if (f) { 847 f->state = IAVF_VLAN_REMOVE; 848 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 849 } 850 851 spin_unlock_bh(&adapter->mac_vlan_list_lock); 852 } 853 854 /** 855 * iavf_restore_filters 856 * @adapter: board private structure 857 * 858 * Restore existing non MAC filters when VF netdev comes back up 859 **/ 860 static void iavf_restore_filters(struct iavf_adapter *adapter) 861 { 862 struct iavf_vlan_filter *f; 863 864 /* re-add all VLAN filters */ 865 spin_lock_bh(&adapter->mac_vlan_list_lock); 866 867 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 868 if (f->state == IAVF_VLAN_INACTIVE) 869 f->state = IAVF_VLAN_ADD; 870 } 871 872 spin_unlock_bh(&adapter->mac_vlan_list_lock); 873 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 874 } 875 876 /** 877 * iavf_get_num_vlans_added - get number of VLANs added 878 * @adapter: board private structure 879 */ 880 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 881 { 882 return adapter->num_vlan_filters; 883 } 884 885 /** 886 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 887 * @adapter: board private structure 888 * 889 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 890 * do not impose a limit as that maintains current behavior and for 891 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 892 **/ 893 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 894 { 895 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 896 * never been a limit on the VF driver side 897 */ 898 if (VLAN_ALLOWED(adapter)) 899 return VLAN_N_VID; 900 else if (VLAN_V2_ALLOWED(adapter)) 901 return adapter->vlan_v2_caps.filtering.max_filters; 902 903 return 0; 904 } 905 906 /** 907 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 908 * @adapter: board private structure 909 **/ 910 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 911 { 912 if (iavf_get_num_vlans_added(adapter) < 913 iavf_get_max_vlans_allowed(adapter)) 914 return false; 915 916 return true; 917 } 918 919 /** 920 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 921 * @netdev: network device struct 922 * @proto: unused protocol data 923 * @vid: VLAN tag 924 **/ 925 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 926 __always_unused __be16 proto, u16 vid) 927 { 928 struct iavf_adapter *adapter = netdev_priv(netdev); 929 930 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 931 if (!vid) 932 return 0; 933 934 if (!VLAN_FILTERING_ALLOWED(adapter)) 935 return -EIO; 936 937 if (iavf_max_vlans_added(adapter)) { 938 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 939 iavf_get_max_vlans_allowed(adapter)); 940 return -EIO; 941 } 942 943 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 944 return -ENOMEM; 945 946 return 0; 947 } 948 949 /** 950 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 951 * @netdev: network device struct 952 * @proto: unused protocol data 953 * @vid: VLAN tag 954 **/ 955 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 956 __always_unused __be16 proto, u16 vid) 957 { 958 struct iavf_adapter *adapter = netdev_priv(netdev); 959 960 /* We do not track VLAN 0 filter */ 961 if (!vid) 962 return 0; 963 964 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 965 return 0; 966 } 967 968 /** 969 * iavf_find_filter - Search filter list for specific mac filter 970 * @adapter: board private structure 971 * @macaddr: the MAC address 972 * 973 * Returns ptr to the filter object or NULL. Must be called while holding the 974 * mac_vlan_list_lock. 975 **/ 976 static struct 977 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 978 const u8 *macaddr) 979 { 980 struct iavf_mac_filter *f; 981 982 if (!macaddr) 983 return NULL; 984 985 list_for_each_entry(f, &adapter->mac_filter_list, list) { 986 if (ether_addr_equal(macaddr, f->macaddr)) 987 return f; 988 } 989 return NULL; 990 } 991 992 /** 993 * iavf_add_filter - Add a mac filter to the filter list 994 * @adapter: board private structure 995 * @macaddr: the MAC address 996 * 997 * Returns ptr to the filter object or NULL when no memory available. 998 **/ 999 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1000 const u8 *macaddr) 1001 { 1002 struct iavf_mac_filter *f; 1003 1004 if (!macaddr) 1005 return NULL; 1006 1007 f = iavf_find_filter(adapter, macaddr); 1008 if (!f) { 1009 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1010 if (!f) 1011 return f; 1012 1013 ether_addr_copy(f->macaddr, macaddr); 1014 1015 list_add_tail(&f->list, &adapter->mac_filter_list); 1016 f->add = true; 1017 f->add_handled = false; 1018 f->is_new_mac = true; 1019 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1020 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1021 } else { 1022 f->remove = false; 1023 } 1024 1025 return f; 1026 } 1027 1028 /** 1029 * iavf_replace_primary_mac - Replace current primary address 1030 * @adapter: board private structure 1031 * @new_mac: new MAC address to be applied 1032 * 1033 * Replace current dev_addr and send request to PF for removal of previous 1034 * primary MAC address filter and addition of new primary MAC filter. 1035 * Return 0 for success, -ENOMEM for failure. 1036 * 1037 * Do not call this with mac_vlan_list_lock! 1038 **/ 1039 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1040 const u8 *new_mac) 1041 { 1042 struct iavf_hw *hw = &adapter->hw; 1043 struct iavf_mac_filter *new_f; 1044 struct iavf_mac_filter *old_f; 1045 1046 spin_lock_bh(&adapter->mac_vlan_list_lock); 1047 1048 new_f = iavf_add_filter(adapter, new_mac); 1049 if (!new_f) { 1050 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1051 return -ENOMEM; 1052 } 1053 1054 old_f = iavf_find_filter(adapter, hw->mac.addr); 1055 if (old_f) { 1056 old_f->is_primary = false; 1057 old_f->remove = true; 1058 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1059 } 1060 /* Always send the request to add if changing primary MAC, 1061 * even if filter is already present on the list 1062 */ 1063 new_f->is_primary = true; 1064 new_f->add = true; 1065 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1066 ether_addr_copy(hw->mac.addr, new_mac); 1067 1068 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1069 1070 /* schedule the watchdog task to immediately process the request */ 1071 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1072 return 0; 1073 } 1074 1075 /** 1076 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1077 * @netdev: network interface device structure 1078 * @macaddr: MAC address to set 1079 * 1080 * Returns true on success, false on failure 1081 */ 1082 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1083 const u8 *macaddr) 1084 { 1085 struct iavf_adapter *adapter = netdev_priv(netdev); 1086 struct iavf_mac_filter *f; 1087 bool ret = false; 1088 1089 spin_lock_bh(&adapter->mac_vlan_list_lock); 1090 1091 f = iavf_find_filter(adapter, macaddr); 1092 1093 if (!f || (!f->add && f->add_handled)) 1094 ret = true; 1095 1096 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1097 1098 return ret; 1099 } 1100 1101 /** 1102 * iavf_set_mac - NDO callback to set port MAC address 1103 * @netdev: network interface device structure 1104 * @p: pointer to an address structure 1105 * 1106 * Returns 0 on success, negative on failure 1107 */ 1108 static int iavf_set_mac(struct net_device *netdev, void *p) 1109 { 1110 struct iavf_adapter *adapter = netdev_priv(netdev); 1111 struct sockaddr *addr = p; 1112 int ret; 1113 1114 if (!is_valid_ether_addr(addr->sa_data)) 1115 return -EADDRNOTAVAIL; 1116 1117 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1118 1119 if (ret) 1120 return ret; 1121 1122 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1123 iavf_is_mac_set_handled(netdev, addr->sa_data), 1124 msecs_to_jiffies(2500)); 1125 1126 /* If ret < 0 then it means wait was interrupted. 1127 * If ret == 0 then it means we got a timeout. 1128 * else it means we got response for set MAC from PF, 1129 * check if netdev MAC was updated to requested MAC, 1130 * if yes then set MAC succeeded otherwise it failed return -EACCES 1131 */ 1132 if (ret < 0) 1133 return ret; 1134 1135 if (!ret) 1136 return -EAGAIN; 1137 1138 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1139 return -EACCES; 1140 1141 return 0; 1142 } 1143 1144 /** 1145 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1146 * @netdev: the netdevice 1147 * @addr: address to add 1148 * 1149 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1150 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1151 */ 1152 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1153 { 1154 struct iavf_adapter *adapter = netdev_priv(netdev); 1155 1156 if (iavf_add_filter(adapter, addr)) 1157 return 0; 1158 else 1159 return -ENOMEM; 1160 } 1161 1162 /** 1163 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1164 * @netdev: the netdevice 1165 * @addr: address to add 1166 * 1167 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1168 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1169 */ 1170 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1171 { 1172 struct iavf_adapter *adapter = netdev_priv(netdev); 1173 struct iavf_mac_filter *f; 1174 1175 /* Under some circumstances, we might receive a request to delete 1176 * our own device address from our uc list. Because we store the 1177 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1178 * such requests and not delete our device address from this list. 1179 */ 1180 if (ether_addr_equal(addr, netdev->dev_addr)) 1181 return 0; 1182 1183 f = iavf_find_filter(adapter, addr); 1184 if (f) { 1185 f->remove = true; 1186 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1187 } 1188 return 0; 1189 } 1190 1191 /** 1192 * iavf_set_rx_mode - NDO callback to set the netdev filters 1193 * @netdev: network interface device structure 1194 **/ 1195 static void iavf_set_rx_mode(struct net_device *netdev) 1196 { 1197 struct iavf_adapter *adapter = netdev_priv(netdev); 1198 1199 spin_lock_bh(&adapter->mac_vlan_list_lock); 1200 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1201 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1202 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1203 1204 if (netdev->flags & IFF_PROMISC && 1205 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1206 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1207 else if (!(netdev->flags & IFF_PROMISC) && 1208 adapter->flags & IAVF_FLAG_PROMISC_ON) 1209 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1210 1211 if (netdev->flags & IFF_ALLMULTI && 1212 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1213 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1214 else if (!(netdev->flags & IFF_ALLMULTI) && 1215 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1216 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1217 } 1218 1219 /** 1220 * iavf_napi_enable_all - enable NAPI on all queue vectors 1221 * @adapter: board private structure 1222 **/ 1223 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1224 { 1225 int q_idx; 1226 struct iavf_q_vector *q_vector; 1227 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1228 1229 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1230 struct napi_struct *napi; 1231 1232 q_vector = &adapter->q_vectors[q_idx]; 1233 napi = &q_vector->napi; 1234 napi_enable(napi); 1235 } 1236 } 1237 1238 /** 1239 * iavf_napi_disable_all - disable NAPI on all queue vectors 1240 * @adapter: board private structure 1241 **/ 1242 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1243 { 1244 int q_idx; 1245 struct iavf_q_vector *q_vector; 1246 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1247 1248 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1249 q_vector = &adapter->q_vectors[q_idx]; 1250 napi_disable(&q_vector->napi); 1251 } 1252 } 1253 1254 /** 1255 * iavf_configure - set up transmit and receive data structures 1256 * @adapter: board private structure 1257 **/ 1258 static void iavf_configure(struct iavf_adapter *adapter) 1259 { 1260 struct net_device *netdev = adapter->netdev; 1261 int i; 1262 1263 iavf_set_rx_mode(netdev); 1264 1265 iavf_configure_tx(adapter); 1266 iavf_configure_rx(adapter); 1267 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1268 1269 for (i = 0; i < adapter->num_active_queues; i++) { 1270 struct iavf_ring *ring = &adapter->rx_rings[i]; 1271 1272 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1273 } 1274 } 1275 1276 /** 1277 * iavf_up_complete - Finish the last steps of bringing up a connection 1278 * @adapter: board private structure 1279 * 1280 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1281 **/ 1282 static void iavf_up_complete(struct iavf_adapter *adapter) 1283 { 1284 iavf_change_state(adapter, __IAVF_RUNNING); 1285 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1286 1287 iavf_napi_enable_all(adapter); 1288 1289 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1290 if (CLIENT_ENABLED(adapter)) 1291 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1292 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1293 } 1294 1295 /** 1296 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1297 * yet and mark other to be removed. 1298 * @adapter: board private structure 1299 **/ 1300 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1301 { 1302 struct iavf_vlan_filter *vlf, *vlftmp; 1303 struct iavf_mac_filter *f, *ftmp; 1304 1305 spin_lock_bh(&adapter->mac_vlan_list_lock); 1306 /* clear the sync flag on all filters */ 1307 __dev_uc_unsync(adapter->netdev, NULL); 1308 __dev_mc_unsync(adapter->netdev, NULL); 1309 1310 /* remove all MAC filters */ 1311 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1312 list) { 1313 if (f->add) { 1314 list_del(&f->list); 1315 kfree(f); 1316 } else { 1317 f->remove = true; 1318 } 1319 } 1320 1321 /* disable all VLAN filters */ 1322 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1323 list) 1324 vlf->state = IAVF_VLAN_DISABLE; 1325 1326 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1327 } 1328 1329 /** 1330 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1331 * mark other to be removed. 1332 * @adapter: board private structure 1333 **/ 1334 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1335 { 1336 struct iavf_cloud_filter *cf, *cftmp; 1337 1338 /* remove all cloud filters */ 1339 spin_lock_bh(&adapter->cloud_filter_list_lock); 1340 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1341 list) { 1342 if (cf->add) { 1343 list_del(&cf->list); 1344 kfree(cf); 1345 adapter->num_cloud_filters--; 1346 } else { 1347 cf->del = true; 1348 } 1349 } 1350 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1351 } 1352 1353 /** 1354 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1355 * other to be removed. 1356 * @adapter: board private structure 1357 **/ 1358 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1359 { 1360 struct iavf_fdir_fltr *fdir, *fdirtmp; 1361 1362 /* remove all Flow Director filters */ 1363 spin_lock_bh(&adapter->fdir_fltr_lock); 1364 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1365 list) { 1366 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1367 list_del(&fdir->list); 1368 kfree(fdir); 1369 adapter->fdir_active_fltr--; 1370 } else { 1371 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1372 } 1373 } 1374 spin_unlock_bh(&adapter->fdir_fltr_lock); 1375 } 1376 1377 /** 1378 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1379 * other to be removed. 1380 * @adapter: board private structure 1381 **/ 1382 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1383 { 1384 struct iavf_adv_rss *rss, *rsstmp; 1385 1386 /* remove all advance RSS configuration */ 1387 spin_lock_bh(&adapter->adv_rss_lock); 1388 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1389 list) { 1390 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1391 list_del(&rss->list); 1392 kfree(rss); 1393 } else { 1394 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1395 } 1396 } 1397 spin_unlock_bh(&adapter->adv_rss_lock); 1398 } 1399 1400 /** 1401 * iavf_down - Shutdown the connection processing 1402 * @adapter: board private structure 1403 * 1404 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1405 **/ 1406 void iavf_down(struct iavf_adapter *adapter) 1407 { 1408 struct net_device *netdev = adapter->netdev; 1409 1410 if (adapter->state <= __IAVF_DOWN_PENDING) 1411 return; 1412 1413 netif_carrier_off(netdev); 1414 netif_tx_disable(netdev); 1415 adapter->link_up = false; 1416 iavf_napi_disable_all(adapter); 1417 iavf_irq_disable(adapter); 1418 1419 iavf_clear_mac_vlan_filters(adapter); 1420 iavf_clear_cloud_filters(adapter); 1421 iavf_clear_fdir_filters(adapter); 1422 iavf_clear_adv_rss_conf(adapter); 1423 1424 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1425 /* cancel any current operation */ 1426 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1427 /* Schedule operations to close down the HW. Don't wait 1428 * here for this to complete. The watchdog is still running 1429 * and it will take care of this. 1430 */ 1431 if (!list_empty(&adapter->mac_filter_list)) 1432 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1433 if (!list_empty(&adapter->vlan_filter_list)) 1434 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1435 if (!list_empty(&adapter->cloud_filter_list)) 1436 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1437 if (!list_empty(&adapter->fdir_list_head)) 1438 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1439 if (!list_empty(&adapter->adv_rss_list_head)) 1440 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1441 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1442 } 1443 1444 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1445 } 1446 1447 /** 1448 * iavf_acquire_msix_vectors - Setup the MSIX capability 1449 * @adapter: board private structure 1450 * @vectors: number of vectors to request 1451 * 1452 * Work with the OS to set up the MSIX vectors needed. 1453 * 1454 * Returns 0 on success, negative on failure 1455 **/ 1456 static int 1457 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1458 { 1459 int err, vector_threshold; 1460 1461 /* We'll want at least 3 (vector_threshold): 1462 * 0) Other (Admin Queue and link, mostly) 1463 * 1) TxQ[0] Cleanup 1464 * 2) RxQ[0] Cleanup 1465 */ 1466 vector_threshold = MIN_MSIX_COUNT; 1467 1468 /* The more we get, the more we will assign to Tx/Rx Cleanup 1469 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1470 * Right now, we simply care about how many we'll get; we'll 1471 * set them up later while requesting irq's. 1472 */ 1473 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1474 vector_threshold, vectors); 1475 if (err < 0) { 1476 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1477 kfree(adapter->msix_entries); 1478 adapter->msix_entries = NULL; 1479 return err; 1480 } 1481 1482 /* Adjust for only the vectors we'll use, which is minimum 1483 * of max_msix_q_vectors + NONQ_VECS, or the number of 1484 * vectors we were allocated. 1485 */ 1486 adapter->num_msix_vectors = err; 1487 return 0; 1488 } 1489 1490 /** 1491 * iavf_free_queues - Free memory for all rings 1492 * @adapter: board private structure to initialize 1493 * 1494 * Free all of the memory associated with queue pairs. 1495 **/ 1496 static void iavf_free_queues(struct iavf_adapter *adapter) 1497 { 1498 if (!adapter->vsi_res) 1499 return; 1500 adapter->num_active_queues = 0; 1501 kfree(adapter->tx_rings); 1502 adapter->tx_rings = NULL; 1503 kfree(adapter->rx_rings); 1504 adapter->rx_rings = NULL; 1505 } 1506 1507 /** 1508 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1509 * @adapter: board private structure 1510 * 1511 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1512 * stripped in certain descriptor fields. Instead of checking the offload 1513 * capability bits in the hot path, cache the location the ring specific 1514 * flags. 1515 */ 1516 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1517 { 1518 int i; 1519 1520 for (i = 0; i < adapter->num_active_queues; i++) { 1521 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1522 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1523 1524 /* prevent multiple L2TAG bits being set after VFR */ 1525 tx_ring->flags &= 1526 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1527 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1528 rx_ring->flags &= 1529 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1530 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1531 1532 if (VLAN_ALLOWED(adapter)) { 1533 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 } else if (VLAN_V2_ALLOWED(adapter)) { 1536 struct virtchnl_vlan_supported_caps *stripping_support; 1537 struct virtchnl_vlan_supported_caps *insertion_support; 1538 1539 stripping_support = 1540 &adapter->vlan_v2_caps.offloads.stripping_support; 1541 insertion_support = 1542 &adapter->vlan_v2_caps.offloads.insertion_support; 1543 1544 if (stripping_support->outer) { 1545 if (stripping_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1547 rx_ring->flags |= 1548 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1549 else if (stripping_support->outer & 1550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1551 rx_ring->flags |= 1552 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1553 } else if (stripping_support->inner) { 1554 if (stripping_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1556 rx_ring->flags |= 1557 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1558 else if (stripping_support->inner & 1559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1560 rx_ring->flags |= 1561 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1562 } 1563 1564 if (insertion_support->outer) { 1565 if (insertion_support->outer & 1566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1567 tx_ring->flags |= 1568 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1569 else if (insertion_support->outer & 1570 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1571 tx_ring->flags |= 1572 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1573 } else if (insertion_support->inner) { 1574 if (insertion_support->inner & 1575 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1576 tx_ring->flags |= 1577 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1578 else if (insertion_support->inner & 1579 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1580 tx_ring->flags |= 1581 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1582 } 1583 } 1584 } 1585 } 1586 1587 /** 1588 * iavf_alloc_queues - Allocate memory for all rings 1589 * @adapter: board private structure to initialize 1590 * 1591 * We allocate one ring per queue at run-time since we don't know the 1592 * number of queues at compile-time. The polling_netdev array is 1593 * intended for Multiqueue, but should work fine with a single queue. 1594 **/ 1595 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1596 { 1597 int i, num_active_queues; 1598 1599 /* If we're in reset reallocating queues we don't actually know yet for 1600 * certain the PF gave us the number of queues we asked for but we'll 1601 * assume it did. Once basic reset is finished we'll confirm once we 1602 * start negotiating config with PF. 1603 */ 1604 if (adapter->num_req_queues) 1605 num_active_queues = adapter->num_req_queues; 1606 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1607 adapter->num_tc) 1608 num_active_queues = adapter->ch_config.total_qps; 1609 else 1610 num_active_queues = min_t(int, 1611 adapter->vsi_res->num_queue_pairs, 1612 (int)(num_online_cpus())); 1613 1614 1615 adapter->tx_rings = kcalloc(num_active_queues, 1616 sizeof(struct iavf_ring), GFP_KERNEL); 1617 if (!adapter->tx_rings) 1618 goto err_out; 1619 adapter->rx_rings = kcalloc(num_active_queues, 1620 sizeof(struct iavf_ring), GFP_KERNEL); 1621 if (!adapter->rx_rings) 1622 goto err_out; 1623 1624 for (i = 0; i < num_active_queues; i++) { 1625 struct iavf_ring *tx_ring; 1626 struct iavf_ring *rx_ring; 1627 1628 tx_ring = &adapter->tx_rings[i]; 1629 1630 tx_ring->queue_index = i; 1631 tx_ring->netdev = adapter->netdev; 1632 tx_ring->dev = &adapter->pdev->dev; 1633 tx_ring->count = adapter->tx_desc_count; 1634 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1635 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1636 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1637 1638 rx_ring = &adapter->rx_rings[i]; 1639 rx_ring->queue_index = i; 1640 rx_ring->netdev = adapter->netdev; 1641 rx_ring->dev = &adapter->pdev->dev; 1642 rx_ring->count = adapter->rx_desc_count; 1643 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1644 } 1645 1646 adapter->num_active_queues = num_active_queues; 1647 1648 iavf_set_queue_vlan_tag_loc(adapter); 1649 1650 return 0; 1651 1652 err_out: 1653 iavf_free_queues(adapter); 1654 return -ENOMEM; 1655 } 1656 1657 /** 1658 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1659 * @adapter: board private structure to initialize 1660 * 1661 * Attempt to configure the interrupts using the best available 1662 * capabilities of the hardware and the kernel. 1663 **/ 1664 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1665 { 1666 int vector, v_budget; 1667 int pairs = 0; 1668 int err = 0; 1669 1670 if (!adapter->vsi_res) { 1671 err = -EIO; 1672 goto out; 1673 } 1674 pairs = adapter->num_active_queues; 1675 1676 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1677 * us much good if we have more vectors than CPUs. However, we already 1678 * limit the total number of queues by the number of CPUs so we do not 1679 * need any further limiting here. 1680 */ 1681 v_budget = min_t(int, pairs + NONQ_VECS, 1682 (int)adapter->vf_res->max_vectors); 1683 1684 adapter->msix_entries = kcalloc(v_budget, 1685 sizeof(struct msix_entry), GFP_KERNEL); 1686 if (!adapter->msix_entries) { 1687 err = -ENOMEM; 1688 goto out; 1689 } 1690 1691 for (vector = 0; vector < v_budget; vector++) 1692 adapter->msix_entries[vector].entry = vector; 1693 1694 err = iavf_acquire_msix_vectors(adapter, v_budget); 1695 if (!err) 1696 iavf_schedule_finish_config(adapter); 1697 1698 out: 1699 return err; 1700 } 1701 1702 /** 1703 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1704 * @adapter: board private structure 1705 * 1706 * Return 0 on success, negative on failure 1707 **/ 1708 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1709 { 1710 struct iavf_aqc_get_set_rss_key_data *rss_key = 1711 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1712 struct iavf_hw *hw = &adapter->hw; 1713 enum iavf_status status; 1714 1715 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1716 /* bail because we already have a command pending */ 1717 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1718 adapter->current_op); 1719 return -EBUSY; 1720 } 1721 1722 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1723 if (status) { 1724 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1725 iavf_stat_str(hw, status), 1726 iavf_aq_str(hw, hw->aq.asq_last_status)); 1727 return iavf_status_to_errno(status); 1728 1729 } 1730 1731 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1732 adapter->rss_lut, adapter->rss_lut_size); 1733 if (status) { 1734 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1735 iavf_stat_str(hw, status), 1736 iavf_aq_str(hw, hw->aq.asq_last_status)); 1737 return iavf_status_to_errno(status); 1738 } 1739 1740 return 0; 1741 1742 } 1743 1744 /** 1745 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1746 * @adapter: board private structure 1747 * 1748 * Returns 0 on success, negative on failure 1749 **/ 1750 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1751 { 1752 struct iavf_hw *hw = &adapter->hw; 1753 u32 *dw; 1754 u16 i; 1755 1756 dw = (u32 *)adapter->rss_key; 1757 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1758 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1759 1760 dw = (u32 *)adapter->rss_lut; 1761 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1762 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1763 1764 iavf_flush(hw); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * iavf_config_rss - Configure RSS keys and lut 1771 * @adapter: board private structure 1772 * 1773 * Returns 0 on success, negative on failure 1774 **/ 1775 int iavf_config_rss(struct iavf_adapter *adapter) 1776 { 1777 1778 if (RSS_PF(adapter)) { 1779 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1780 IAVF_FLAG_AQ_SET_RSS_KEY; 1781 return 0; 1782 } else if (RSS_AQ(adapter)) { 1783 return iavf_config_rss_aq(adapter); 1784 } else { 1785 return iavf_config_rss_reg(adapter); 1786 } 1787 } 1788 1789 /** 1790 * iavf_fill_rss_lut - Fill the lut with default values 1791 * @adapter: board private structure 1792 **/ 1793 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1794 { 1795 u16 i; 1796 1797 for (i = 0; i < adapter->rss_lut_size; i++) 1798 adapter->rss_lut[i] = i % adapter->num_active_queues; 1799 } 1800 1801 /** 1802 * iavf_init_rss - Prepare for RSS 1803 * @adapter: board private structure 1804 * 1805 * Return 0 on success, negative on failure 1806 **/ 1807 static int iavf_init_rss(struct iavf_adapter *adapter) 1808 { 1809 struct iavf_hw *hw = &adapter->hw; 1810 1811 if (!RSS_PF(adapter)) { 1812 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1813 if (adapter->vf_res->vf_cap_flags & 1814 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1815 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1816 else 1817 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1818 1819 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1820 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1821 } 1822 1823 iavf_fill_rss_lut(adapter); 1824 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1825 1826 return iavf_config_rss(adapter); 1827 } 1828 1829 /** 1830 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1831 * @adapter: board private structure to initialize 1832 * 1833 * We allocate one q_vector per queue interrupt. If allocation fails we 1834 * return -ENOMEM. 1835 **/ 1836 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1837 { 1838 int q_idx = 0, num_q_vectors; 1839 struct iavf_q_vector *q_vector; 1840 1841 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1842 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1843 GFP_KERNEL); 1844 if (!adapter->q_vectors) 1845 return -ENOMEM; 1846 1847 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1848 q_vector = &adapter->q_vectors[q_idx]; 1849 q_vector->adapter = adapter; 1850 q_vector->vsi = &adapter->vsi; 1851 q_vector->v_idx = q_idx; 1852 q_vector->reg_idx = q_idx; 1853 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1854 netif_napi_add(adapter->netdev, &q_vector->napi, 1855 iavf_napi_poll); 1856 } 1857 1858 return 0; 1859 } 1860 1861 /** 1862 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1863 * @adapter: board private structure to initialize 1864 * 1865 * This function frees the memory allocated to the q_vectors. In addition if 1866 * NAPI is enabled it will delete any references to the NAPI struct prior 1867 * to freeing the q_vector. 1868 **/ 1869 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1870 { 1871 int q_idx, num_q_vectors; 1872 1873 if (!adapter->q_vectors) 1874 return; 1875 1876 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1877 1878 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1879 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1880 1881 netif_napi_del(&q_vector->napi); 1882 } 1883 kfree(adapter->q_vectors); 1884 adapter->q_vectors = NULL; 1885 } 1886 1887 /** 1888 * iavf_reset_interrupt_capability - Reset MSIX setup 1889 * @adapter: board private structure 1890 * 1891 **/ 1892 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1893 { 1894 if (!adapter->msix_entries) 1895 return; 1896 1897 pci_disable_msix(adapter->pdev); 1898 kfree(adapter->msix_entries); 1899 adapter->msix_entries = NULL; 1900 } 1901 1902 /** 1903 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1904 * @adapter: board private structure to initialize 1905 * 1906 **/ 1907 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1908 { 1909 int err; 1910 1911 err = iavf_alloc_queues(adapter); 1912 if (err) { 1913 dev_err(&adapter->pdev->dev, 1914 "Unable to allocate memory for queues\n"); 1915 goto err_alloc_queues; 1916 } 1917 1918 err = iavf_set_interrupt_capability(adapter); 1919 if (err) { 1920 dev_err(&adapter->pdev->dev, 1921 "Unable to setup interrupt capabilities\n"); 1922 goto err_set_interrupt; 1923 } 1924 1925 err = iavf_alloc_q_vectors(adapter); 1926 if (err) { 1927 dev_err(&adapter->pdev->dev, 1928 "Unable to allocate memory for queue vectors\n"); 1929 goto err_alloc_q_vectors; 1930 } 1931 1932 /* If we've made it so far while ADq flag being ON, then we haven't 1933 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1934 * resources have been allocated in the reset path. 1935 * Now we can truly claim that ADq is enabled. 1936 */ 1937 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1938 adapter->num_tc) 1939 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1940 adapter->num_tc); 1941 1942 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1943 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1944 adapter->num_active_queues); 1945 1946 return 0; 1947 err_alloc_q_vectors: 1948 iavf_reset_interrupt_capability(adapter); 1949 err_set_interrupt: 1950 iavf_free_queues(adapter); 1951 err_alloc_queues: 1952 return err; 1953 } 1954 1955 /** 1956 * iavf_free_rss - Free memory used by RSS structs 1957 * @adapter: board private structure 1958 **/ 1959 static void iavf_free_rss(struct iavf_adapter *adapter) 1960 { 1961 kfree(adapter->rss_key); 1962 adapter->rss_key = NULL; 1963 1964 kfree(adapter->rss_lut); 1965 adapter->rss_lut = NULL; 1966 } 1967 1968 /** 1969 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1970 * @adapter: board private structure 1971 * @running: true if adapter->state == __IAVF_RUNNING 1972 * 1973 * Returns 0 on success, negative on failure 1974 **/ 1975 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 int err; 1979 1980 if (running) 1981 iavf_free_traffic_irqs(adapter); 1982 iavf_free_misc_irq(adapter); 1983 iavf_reset_interrupt_capability(adapter); 1984 iavf_free_q_vectors(adapter); 1985 iavf_free_queues(adapter); 1986 1987 err = iavf_init_interrupt_scheme(adapter); 1988 if (err) 1989 goto err; 1990 1991 netif_tx_stop_all_queues(netdev); 1992 1993 err = iavf_request_misc_irq(adapter); 1994 if (err) 1995 goto err; 1996 1997 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1998 1999 iavf_map_rings_to_vectors(adapter); 2000 err: 2001 return err; 2002 } 2003 2004 /** 2005 * iavf_finish_config - do all netdev work that needs RTNL 2006 * @work: our work_struct 2007 * 2008 * Do work that needs both RTNL and crit_lock. 2009 **/ 2010 static void iavf_finish_config(struct work_struct *work) 2011 { 2012 struct iavf_adapter *adapter; 2013 int pairs, err; 2014 2015 adapter = container_of(work, struct iavf_adapter, finish_config); 2016 2017 /* Always take RTNL first to prevent circular lock dependency */ 2018 rtnl_lock(); 2019 mutex_lock(&adapter->crit_lock); 2020 2021 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2022 adapter->netdev_registered && 2023 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2024 netdev_update_features(adapter->netdev); 2025 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2026 } 2027 2028 switch (adapter->state) { 2029 case __IAVF_DOWN: 2030 if (!adapter->netdev_registered) { 2031 err = register_netdevice(adapter->netdev); 2032 if (err) { 2033 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2034 err); 2035 2036 /* go back and try again.*/ 2037 iavf_free_rss(adapter); 2038 iavf_free_misc_irq(adapter); 2039 iavf_reset_interrupt_capability(adapter); 2040 iavf_change_state(adapter, 2041 __IAVF_INIT_CONFIG_ADAPTER); 2042 goto out; 2043 } 2044 adapter->netdev_registered = true; 2045 } 2046 2047 /* Set the real number of queues when reset occurs while 2048 * state == __IAVF_DOWN 2049 */ 2050 fallthrough; 2051 case __IAVF_RUNNING: 2052 pairs = adapter->num_active_queues; 2053 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2054 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2055 break; 2056 2057 default: 2058 break; 2059 } 2060 2061 out: 2062 mutex_unlock(&adapter->crit_lock); 2063 rtnl_unlock(); 2064 } 2065 2066 /** 2067 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2068 * @adapter: board private structure 2069 **/ 2070 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2071 { 2072 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2073 queue_work(adapter->wq, &adapter->finish_config); 2074 } 2075 2076 /** 2077 * iavf_process_aq_command - process aq_required flags 2078 * and sends aq command 2079 * @adapter: pointer to iavf adapter structure 2080 * 2081 * Returns 0 on success 2082 * Returns error code if no command was sent 2083 * or error code if the command failed. 2084 **/ 2085 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2086 { 2087 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2088 return iavf_send_vf_config_msg(adapter); 2089 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2090 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2091 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2092 iavf_disable_queues(adapter); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2097 iavf_map_queues(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2102 iavf_add_ether_addrs(adapter); 2103 return 0; 2104 } 2105 2106 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2107 iavf_add_vlans(adapter); 2108 return 0; 2109 } 2110 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2112 iavf_del_ether_addrs(adapter); 2113 return 0; 2114 } 2115 2116 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2117 iavf_del_vlans(adapter); 2118 return 0; 2119 } 2120 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2122 iavf_enable_vlan_stripping(adapter); 2123 return 0; 2124 } 2125 2126 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2127 iavf_disable_vlan_stripping(adapter); 2128 return 0; 2129 } 2130 2131 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2132 iavf_configure_queues(adapter); 2133 return 0; 2134 } 2135 2136 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2137 iavf_enable_queues(adapter); 2138 return 0; 2139 } 2140 2141 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2142 /* This message goes straight to the firmware, not the 2143 * PF, so we don't have to set current_op as we will 2144 * not get a response through the ARQ. 2145 */ 2146 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2150 iavf_get_hena(adapter); 2151 return 0; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2154 iavf_set_hena(adapter); 2155 return 0; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2158 iavf_set_rss_key(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2162 iavf_set_rss_lut(adapter); 2163 return 0; 2164 } 2165 2166 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2167 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2168 FLAG_VF_MULTICAST_PROMISC); 2169 return 0; 2170 } 2171 2172 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2173 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2174 return 0; 2175 } 2176 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2177 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2178 iavf_set_promiscuous(adapter, 0); 2179 return 0; 2180 } 2181 2182 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2183 iavf_enable_channels(adapter); 2184 return 0; 2185 } 2186 2187 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2188 iavf_disable_channels(adapter); 2189 return 0; 2190 } 2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2192 iavf_add_cloud_filter(adapter); 2193 return 0; 2194 } 2195 2196 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2197 iavf_del_cloud_filter(adapter); 2198 return 0; 2199 } 2200 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2201 iavf_del_cloud_filter(adapter); 2202 return 0; 2203 } 2204 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2205 iavf_add_cloud_filter(adapter); 2206 return 0; 2207 } 2208 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2209 iavf_add_fdir_filter(adapter); 2210 return IAVF_SUCCESS; 2211 } 2212 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2213 iavf_del_fdir_filter(adapter); 2214 return IAVF_SUCCESS; 2215 } 2216 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2217 iavf_add_adv_rss_cfg(adapter); 2218 return 0; 2219 } 2220 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2221 iavf_del_adv_rss_cfg(adapter); 2222 return 0; 2223 } 2224 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2225 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2226 return 0; 2227 } 2228 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2229 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2230 return 0; 2231 } 2232 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2233 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2234 return 0; 2235 } 2236 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2237 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2238 return 0; 2239 } 2240 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2241 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2242 return 0; 2243 } 2244 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2245 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2246 return 0; 2247 } 2248 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2249 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2250 return 0; 2251 } 2252 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2253 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2254 return 0; 2255 } 2256 2257 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2258 iavf_request_stats(adapter); 2259 return 0; 2260 } 2261 2262 return -EAGAIN; 2263 } 2264 2265 /** 2266 * iavf_set_vlan_offload_features - set VLAN offload configuration 2267 * @adapter: board private structure 2268 * @prev_features: previous features used for comparison 2269 * @features: updated features used for configuration 2270 * 2271 * Set the aq_required bit(s) based on the requested features passed in to 2272 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2273 * the watchdog if any changes are requested to expedite the request via 2274 * virtchnl. 2275 **/ 2276 static void 2277 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2278 netdev_features_t prev_features, 2279 netdev_features_t features) 2280 { 2281 bool enable_stripping = true, enable_insertion = true; 2282 u16 vlan_ethertype = 0; 2283 u64 aq_required = 0; 2284 2285 /* keep cases separate because one ethertype for offloads can be 2286 * disabled at the same time as another is disabled, so check for an 2287 * enabled ethertype first, then check for disabled. Default to 2288 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2289 * stripping. 2290 */ 2291 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2292 vlan_ethertype = ETH_P_8021AD; 2293 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2294 vlan_ethertype = ETH_P_8021Q; 2295 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2296 vlan_ethertype = ETH_P_8021AD; 2297 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2298 vlan_ethertype = ETH_P_8021Q; 2299 else 2300 vlan_ethertype = ETH_P_8021Q; 2301 2302 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2303 enable_stripping = false; 2304 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2305 enable_insertion = false; 2306 2307 if (VLAN_ALLOWED(adapter)) { 2308 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2309 * stripping via virtchnl. VLAN insertion can be toggled on the 2310 * netdev, but it doesn't require a virtchnl message 2311 */ 2312 if (enable_stripping) 2313 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2314 else 2315 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2316 2317 } else if (VLAN_V2_ALLOWED(adapter)) { 2318 switch (vlan_ethertype) { 2319 case ETH_P_8021Q: 2320 if (enable_stripping) 2321 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2322 else 2323 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2324 2325 if (enable_insertion) 2326 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2327 else 2328 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2329 break; 2330 case ETH_P_8021AD: 2331 if (enable_stripping) 2332 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2333 else 2334 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2335 2336 if (enable_insertion) 2337 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2338 else 2339 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2340 break; 2341 } 2342 } 2343 2344 if (aq_required) { 2345 adapter->aq_required |= aq_required; 2346 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2347 } 2348 } 2349 2350 /** 2351 * iavf_startup - first step of driver startup 2352 * @adapter: board private structure 2353 * 2354 * Function process __IAVF_STARTUP driver state. 2355 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2356 * when fails the state is changed to __IAVF_INIT_FAILED 2357 **/ 2358 static void iavf_startup(struct iavf_adapter *adapter) 2359 { 2360 struct pci_dev *pdev = adapter->pdev; 2361 struct iavf_hw *hw = &adapter->hw; 2362 enum iavf_status status; 2363 int ret; 2364 2365 WARN_ON(adapter->state != __IAVF_STARTUP); 2366 2367 /* driver loaded, probe complete */ 2368 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2369 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2370 status = iavf_set_mac_type(hw); 2371 if (status) { 2372 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2373 goto err; 2374 } 2375 2376 ret = iavf_check_reset_complete(hw); 2377 if (ret) { 2378 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2379 ret); 2380 goto err; 2381 } 2382 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2383 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2384 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2385 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2386 2387 status = iavf_init_adminq(hw); 2388 if (status) { 2389 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2390 status); 2391 goto err; 2392 } 2393 ret = iavf_send_api_ver(adapter); 2394 if (ret) { 2395 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2396 iavf_shutdown_adminq(hw); 2397 goto err; 2398 } 2399 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2400 return; 2401 err: 2402 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2403 } 2404 2405 /** 2406 * iavf_init_version_check - second step of driver startup 2407 * @adapter: board private structure 2408 * 2409 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2410 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2411 * when fails the state is changed to __IAVF_INIT_FAILED 2412 **/ 2413 static void iavf_init_version_check(struct iavf_adapter *adapter) 2414 { 2415 struct pci_dev *pdev = adapter->pdev; 2416 struct iavf_hw *hw = &adapter->hw; 2417 int err = -EAGAIN; 2418 2419 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2420 2421 if (!iavf_asq_done(hw)) { 2422 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2423 iavf_shutdown_adminq(hw); 2424 iavf_change_state(adapter, __IAVF_STARTUP); 2425 goto err; 2426 } 2427 2428 /* aq msg sent, awaiting reply */ 2429 err = iavf_verify_api_ver(adapter); 2430 if (err) { 2431 if (err == -EALREADY) 2432 err = iavf_send_api_ver(adapter); 2433 else 2434 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2435 adapter->pf_version.major, 2436 adapter->pf_version.minor, 2437 VIRTCHNL_VERSION_MAJOR, 2438 VIRTCHNL_VERSION_MINOR); 2439 goto err; 2440 } 2441 err = iavf_send_vf_config_msg(adapter); 2442 if (err) { 2443 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2444 err); 2445 goto err; 2446 } 2447 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2448 return; 2449 err: 2450 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2451 } 2452 2453 /** 2454 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2455 * @adapter: board private structure 2456 */ 2457 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2458 { 2459 int i, num_req_queues = adapter->num_req_queues; 2460 struct iavf_vsi *vsi = &adapter->vsi; 2461 2462 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2463 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2464 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2465 } 2466 if (!adapter->vsi_res) { 2467 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2468 return -ENODEV; 2469 } 2470 2471 if (num_req_queues && 2472 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2473 /* Problem. The PF gave us fewer queues than what we had 2474 * negotiated in our request. Need a reset to see if we can't 2475 * get back to a working state. 2476 */ 2477 dev_err(&adapter->pdev->dev, 2478 "Requested %d queues, but PF only gave us %d.\n", 2479 num_req_queues, 2480 adapter->vsi_res->num_queue_pairs); 2481 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2482 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2483 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2484 2485 return -EAGAIN; 2486 } 2487 adapter->num_req_queues = 0; 2488 adapter->vsi.id = adapter->vsi_res->vsi_id; 2489 2490 adapter->vsi.back = adapter; 2491 adapter->vsi.base_vector = 1; 2492 vsi->netdev = adapter->netdev; 2493 vsi->qs_handle = adapter->vsi_res->qset_handle; 2494 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2495 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2496 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2497 } else { 2498 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2499 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2500 } 2501 2502 return 0; 2503 } 2504 2505 /** 2506 * iavf_init_get_resources - third step of driver startup 2507 * @adapter: board private structure 2508 * 2509 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2510 * finishes driver initialization procedure. 2511 * When success the state is changed to __IAVF_DOWN 2512 * when fails the state is changed to __IAVF_INIT_FAILED 2513 **/ 2514 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2515 { 2516 struct pci_dev *pdev = adapter->pdev; 2517 struct iavf_hw *hw = &adapter->hw; 2518 int err; 2519 2520 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2521 /* aq msg sent, awaiting reply */ 2522 if (!adapter->vf_res) { 2523 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2524 GFP_KERNEL); 2525 if (!adapter->vf_res) { 2526 err = -ENOMEM; 2527 goto err; 2528 } 2529 } 2530 err = iavf_get_vf_config(adapter); 2531 if (err == -EALREADY) { 2532 err = iavf_send_vf_config_msg(adapter); 2533 goto err; 2534 } else if (err == -EINVAL) { 2535 /* We only get -EINVAL if the device is in a very bad 2536 * state or if we've been disabled for previous bad 2537 * behavior. Either way, we're done now. 2538 */ 2539 iavf_shutdown_adminq(hw); 2540 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2541 return; 2542 } 2543 if (err) { 2544 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2545 goto err_alloc; 2546 } 2547 2548 err = iavf_parse_vf_resource_msg(adapter); 2549 if (err) { 2550 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2551 err); 2552 goto err_alloc; 2553 } 2554 /* Some features require additional messages to negotiate extended 2555 * capabilities. These are processed in sequence by the 2556 * __IAVF_INIT_EXTENDED_CAPS driver state. 2557 */ 2558 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2559 2560 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2561 return; 2562 2563 err_alloc: 2564 kfree(adapter->vf_res); 2565 adapter->vf_res = NULL; 2566 err: 2567 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2568 } 2569 2570 /** 2571 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2572 * @adapter: board private structure 2573 * 2574 * Function processes send of the extended VLAN V2 capability message to the 2575 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2576 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2577 */ 2578 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2579 { 2580 int ret; 2581 2582 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2583 2584 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2585 if (ret && ret == -EOPNOTSUPP) { 2586 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2587 * we did not send the capability exchange message and do not 2588 * expect a response. 2589 */ 2590 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2591 } 2592 2593 /* We sent the message, so move on to the next step */ 2594 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2595 } 2596 2597 /** 2598 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2599 * @adapter: board private structure 2600 * 2601 * Function processes receipt of the extended VLAN V2 capability message from 2602 * the PF. 2603 **/ 2604 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2605 { 2606 int ret; 2607 2608 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2609 2610 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2611 2612 ret = iavf_get_vf_vlan_v2_caps(adapter); 2613 if (ret) 2614 goto err; 2615 2616 /* We've processed receipt of the VLAN V2 caps message */ 2617 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2618 return; 2619 err: 2620 /* We didn't receive a reply. Make sure we try sending again when 2621 * __IAVF_INIT_FAILED attempts to recover. 2622 */ 2623 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2624 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2625 } 2626 2627 /** 2628 * iavf_init_process_extended_caps - Part of driver startup 2629 * @adapter: board private structure 2630 * 2631 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2632 * handles negotiating capabilities for features which require an additional 2633 * message. 2634 * 2635 * Once all extended capabilities exchanges are finished, the driver will 2636 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2637 */ 2638 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2639 { 2640 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2641 2642 /* Process capability exchange for VLAN V2 */ 2643 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2644 iavf_init_send_offload_vlan_v2_caps(adapter); 2645 return; 2646 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2647 iavf_init_recv_offload_vlan_v2_caps(adapter); 2648 return; 2649 } 2650 2651 /* When we reach here, no further extended capabilities exchanges are 2652 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2653 */ 2654 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2655 } 2656 2657 /** 2658 * iavf_init_config_adapter - last part of driver startup 2659 * @adapter: board private structure 2660 * 2661 * After all the supported capabilities are negotiated, then the 2662 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2663 */ 2664 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2665 { 2666 struct net_device *netdev = adapter->netdev; 2667 struct pci_dev *pdev = adapter->pdev; 2668 int err; 2669 2670 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2671 2672 if (iavf_process_config(adapter)) 2673 goto err; 2674 2675 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2676 2677 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2678 2679 netdev->netdev_ops = &iavf_netdev_ops; 2680 iavf_set_ethtool_ops(netdev); 2681 netdev->watchdog_timeo = 5 * HZ; 2682 2683 /* MTU range: 68 - 9710 */ 2684 netdev->min_mtu = ETH_MIN_MTU; 2685 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2686 2687 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2688 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2689 adapter->hw.mac.addr); 2690 eth_hw_addr_random(netdev); 2691 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2692 } else { 2693 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2694 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2695 } 2696 2697 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2698 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2699 err = iavf_init_interrupt_scheme(adapter); 2700 if (err) 2701 goto err_sw_init; 2702 iavf_map_rings_to_vectors(adapter); 2703 if (adapter->vf_res->vf_cap_flags & 2704 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2705 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2706 2707 err = iavf_request_misc_irq(adapter); 2708 if (err) 2709 goto err_sw_init; 2710 2711 netif_carrier_off(netdev); 2712 adapter->link_up = false; 2713 netif_tx_stop_all_queues(netdev); 2714 2715 if (CLIENT_ALLOWED(adapter)) { 2716 err = iavf_lan_add_device(adapter); 2717 if (err) 2718 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2719 err); 2720 } 2721 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2722 if (netdev->features & NETIF_F_GRO) 2723 dev_info(&pdev->dev, "GRO is enabled\n"); 2724 2725 iavf_change_state(adapter, __IAVF_DOWN); 2726 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2727 2728 iavf_misc_irq_enable(adapter); 2729 wake_up(&adapter->down_waitqueue); 2730 2731 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2732 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2733 if (!adapter->rss_key || !adapter->rss_lut) { 2734 err = -ENOMEM; 2735 goto err_mem; 2736 } 2737 if (RSS_AQ(adapter)) 2738 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2739 else 2740 iavf_init_rss(adapter); 2741 2742 if (VLAN_V2_ALLOWED(adapter)) 2743 /* request initial VLAN offload settings */ 2744 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2745 2746 iavf_schedule_finish_config(adapter); 2747 return; 2748 2749 err_mem: 2750 iavf_free_rss(adapter); 2751 iavf_free_misc_irq(adapter); 2752 err_sw_init: 2753 iavf_reset_interrupt_capability(adapter); 2754 err: 2755 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2756 } 2757 2758 /** 2759 * iavf_watchdog_task - Periodic call-back task 2760 * @work: pointer to work_struct 2761 **/ 2762 static void iavf_watchdog_task(struct work_struct *work) 2763 { 2764 struct iavf_adapter *adapter = container_of(work, 2765 struct iavf_adapter, 2766 watchdog_task.work); 2767 struct iavf_hw *hw = &adapter->hw; 2768 u32 reg_val; 2769 2770 if (!mutex_trylock(&adapter->crit_lock)) { 2771 if (adapter->state == __IAVF_REMOVE) 2772 return; 2773 2774 goto restart_watchdog; 2775 } 2776 2777 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2778 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2779 2780 switch (adapter->state) { 2781 case __IAVF_STARTUP: 2782 iavf_startup(adapter); 2783 mutex_unlock(&adapter->crit_lock); 2784 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2785 msecs_to_jiffies(30)); 2786 return; 2787 case __IAVF_INIT_VERSION_CHECK: 2788 iavf_init_version_check(adapter); 2789 mutex_unlock(&adapter->crit_lock); 2790 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2791 msecs_to_jiffies(30)); 2792 return; 2793 case __IAVF_INIT_GET_RESOURCES: 2794 iavf_init_get_resources(adapter); 2795 mutex_unlock(&adapter->crit_lock); 2796 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2797 msecs_to_jiffies(1)); 2798 return; 2799 case __IAVF_INIT_EXTENDED_CAPS: 2800 iavf_init_process_extended_caps(adapter); 2801 mutex_unlock(&adapter->crit_lock); 2802 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2803 msecs_to_jiffies(1)); 2804 return; 2805 case __IAVF_INIT_CONFIG_ADAPTER: 2806 iavf_init_config_adapter(adapter); 2807 mutex_unlock(&adapter->crit_lock); 2808 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2809 msecs_to_jiffies(1)); 2810 return; 2811 case __IAVF_INIT_FAILED: 2812 if (test_bit(__IAVF_IN_REMOVE_TASK, 2813 &adapter->crit_section)) { 2814 /* Do not update the state and do not reschedule 2815 * watchdog task, iavf_remove should handle this state 2816 * as it can loop forever 2817 */ 2818 mutex_unlock(&adapter->crit_lock); 2819 return; 2820 } 2821 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2822 dev_err(&adapter->pdev->dev, 2823 "Failed to communicate with PF; waiting before retry\n"); 2824 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2825 iavf_shutdown_adminq(hw); 2826 mutex_unlock(&adapter->crit_lock); 2827 queue_delayed_work(adapter->wq, 2828 &adapter->watchdog_task, (5 * HZ)); 2829 return; 2830 } 2831 /* Try again from failed step*/ 2832 iavf_change_state(adapter, adapter->last_state); 2833 mutex_unlock(&adapter->crit_lock); 2834 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2835 return; 2836 case __IAVF_COMM_FAILED: 2837 if (test_bit(__IAVF_IN_REMOVE_TASK, 2838 &adapter->crit_section)) { 2839 /* Set state to __IAVF_INIT_FAILED and perform remove 2840 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2841 * doesn't bring the state back to __IAVF_COMM_FAILED. 2842 */ 2843 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2844 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2845 mutex_unlock(&adapter->crit_lock); 2846 return; 2847 } 2848 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2849 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2850 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2851 reg_val == VIRTCHNL_VFR_COMPLETED) { 2852 /* A chance for redemption! */ 2853 dev_err(&adapter->pdev->dev, 2854 "Hardware came out of reset. Attempting reinit.\n"); 2855 /* When init task contacts the PF and 2856 * gets everything set up again, it'll restart the 2857 * watchdog for us. Down, boy. Sit. Stay. Woof. 2858 */ 2859 iavf_change_state(adapter, __IAVF_STARTUP); 2860 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2861 } 2862 adapter->aq_required = 0; 2863 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2864 mutex_unlock(&adapter->crit_lock); 2865 queue_delayed_work(adapter->wq, 2866 &adapter->watchdog_task, 2867 msecs_to_jiffies(10)); 2868 return; 2869 case __IAVF_RESETTING: 2870 mutex_unlock(&adapter->crit_lock); 2871 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2872 HZ * 2); 2873 return; 2874 case __IAVF_DOWN: 2875 case __IAVF_DOWN_PENDING: 2876 case __IAVF_TESTING: 2877 case __IAVF_RUNNING: 2878 if (adapter->current_op) { 2879 if (!iavf_asq_done(hw)) { 2880 dev_dbg(&adapter->pdev->dev, 2881 "Admin queue timeout\n"); 2882 iavf_send_api_ver(adapter); 2883 } 2884 } else { 2885 int ret = iavf_process_aq_command(adapter); 2886 2887 /* An error will be returned if no commands were 2888 * processed; use this opportunity to update stats 2889 * if the error isn't -ENOTSUPP 2890 */ 2891 if (ret && ret != -EOPNOTSUPP && 2892 adapter->state == __IAVF_RUNNING) 2893 iavf_request_stats(adapter); 2894 } 2895 if (adapter->state == __IAVF_RUNNING) 2896 iavf_detect_recover_hung(&adapter->vsi); 2897 break; 2898 case __IAVF_REMOVE: 2899 default: 2900 mutex_unlock(&adapter->crit_lock); 2901 return; 2902 } 2903 2904 /* check for hw reset */ 2905 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2906 if (!reg_val) { 2907 adapter->aq_required = 0; 2908 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2909 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2910 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2911 mutex_unlock(&adapter->crit_lock); 2912 queue_delayed_work(adapter->wq, 2913 &adapter->watchdog_task, HZ * 2); 2914 return; 2915 } 2916 2917 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2918 mutex_unlock(&adapter->crit_lock); 2919 restart_watchdog: 2920 if (adapter->state >= __IAVF_DOWN) 2921 queue_work(adapter->wq, &adapter->adminq_task); 2922 if (adapter->aq_required) 2923 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2924 msecs_to_jiffies(20)); 2925 else 2926 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2927 HZ * 2); 2928 } 2929 2930 /** 2931 * iavf_disable_vf - disable VF 2932 * @adapter: board private structure 2933 * 2934 * Set communication failed flag and free all resources. 2935 * NOTE: This function is expected to be called with crit_lock being held. 2936 **/ 2937 static void iavf_disable_vf(struct iavf_adapter *adapter) 2938 { 2939 struct iavf_mac_filter *f, *ftmp; 2940 struct iavf_vlan_filter *fv, *fvtmp; 2941 struct iavf_cloud_filter *cf, *cftmp; 2942 2943 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2944 2945 /* We don't use netif_running() because it may be true prior to 2946 * ndo_open() returning, so we can't assume it means all our open 2947 * tasks have finished, since we're not holding the rtnl_lock here. 2948 */ 2949 if (adapter->state == __IAVF_RUNNING) { 2950 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2951 netif_carrier_off(adapter->netdev); 2952 netif_tx_disable(adapter->netdev); 2953 adapter->link_up = false; 2954 iavf_napi_disable_all(adapter); 2955 iavf_irq_disable(adapter); 2956 iavf_free_traffic_irqs(adapter); 2957 iavf_free_all_tx_resources(adapter); 2958 iavf_free_all_rx_resources(adapter); 2959 } 2960 2961 spin_lock_bh(&adapter->mac_vlan_list_lock); 2962 2963 /* Delete all of the filters */ 2964 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2965 list_del(&f->list); 2966 kfree(f); 2967 } 2968 2969 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2970 list_del(&fv->list); 2971 kfree(fv); 2972 } 2973 adapter->num_vlan_filters = 0; 2974 2975 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2976 2977 spin_lock_bh(&adapter->cloud_filter_list_lock); 2978 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2979 list_del(&cf->list); 2980 kfree(cf); 2981 adapter->num_cloud_filters--; 2982 } 2983 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2984 2985 iavf_free_misc_irq(adapter); 2986 iavf_reset_interrupt_capability(adapter); 2987 iavf_free_q_vectors(adapter); 2988 iavf_free_queues(adapter); 2989 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2990 iavf_shutdown_adminq(&adapter->hw); 2991 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2992 iavf_change_state(adapter, __IAVF_DOWN); 2993 wake_up(&adapter->down_waitqueue); 2994 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2995 } 2996 2997 /** 2998 * iavf_reset_task - Call-back task to handle hardware reset 2999 * @work: pointer to work_struct 3000 * 3001 * During reset we need to shut down and reinitialize the admin queue 3002 * before we can use it to communicate with the PF again. We also clear 3003 * and reinit the rings because that context is lost as well. 3004 **/ 3005 static void iavf_reset_task(struct work_struct *work) 3006 { 3007 struct iavf_adapter *adapter = container_of(work, 3008 struct iavf_adapter, 3009 reset_task); 3010 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3011 struct net_device *netdev = adapter->netdev; 3012 struct iavf_hw *hw = &adapter->hw; 3013 struct iavf_mac_filter *f, *ftmp; 3014 struct iavf_cloud_filter *cf; 3015 enum iavf_status status; 3016 u32 reg_val; 3017 int i = 0, err; 3018 bool running; 3019 3020 /* When device is being removed it doesn't make sense to run the reset 3021 * task, just return in such a case. 3022 */ 3023 if (!mutex_trylock(&adapter->crit_lock)) { 3024 if (adapter->state != __IAVF_REMOVE) 3025 queue_work(adapter->wq, &adapter->reset_task); 3026 3027 return; 3028 } 3029 3030 while (!mutex_trylock(&adapter->client_lock)) 3031 usleep_range(500, 1000); 3032 if (CLIENT_ENABLED(adapter)) { 3033 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 3034 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 3035 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 3036 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 3037 cancel_delayed_work_sync(&adapter->client_task); 3038 iavf_notify_client_close(&adapter->vsi, true); 3039 } 3040 iavf_misc_irq_disable(adapter); 3041 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3042 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3043 /* Restart the AQ here. If we have been reset but didn't 3044 * detect it, or if the PF had to reinit, our AQ will be hosed. 3045 */ 3046 iavf_shutdown_adminq(hw); 3047 iavf_init_adminq(hw); 3048 iavf_request_reset(adapter); 3049 } 3050 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3051 3052 /* poll until we see the reset actually happen */ 3053 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3054 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3055 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3056 if (!reg_val) 3057 break; 3058 usleep_range(5000, 10000); 3059 } 3060 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3061 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3062 goto continue_reset; /* act like the reset happened */ 3063 } 3064 3065 /* wait until the reset is complete and the PF is responding to us */ 3066 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3067 /* sleep first to make sure a minimum wait time is met */ 3068 msleep(IAVF_RESET_WAIT_MS); 3069 3070 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3071 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3072 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3073 break; 3074 } 3075 3076 pci_set_master(adapter->pdev); 3077 pci_restore_msi_state(adapter->pdev); 3078 3079 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3080 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3081 reg_val); 3082 iavf_disable_vf(adapter); 3083 mutex_unlock(&adapter->client_lock); 3084 mutex_unlock(&adapter->crit_lock); 3085 return; /* Do not attempt to reinit. It's dead, Jim. */ 3086 } 3087 3088 continue_reset: 3089 /* We don't use netif_running() because it may be true prior to 3090 * ndo_open() returning, so we can't assume it means all our open 3091 * tasks have finished, since we're not holding the rtnl_lock here. 3092 */ 3093 running = adapter->state == __IAVF_RUNNING; 3094 3095 if (running) { 3096 netif_carrier_off(netdev); 3097 netif_tx_stop_all_queues(netdev); 3098 adapter->link_up = false; 3099 iavf_napi_disable_all(adapter); 3100 } 3101 iavf_irq_disable(adapter); 3102 3103 iavf_change_state(adapter, __IAVF_RESETTING); 3104 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3105 3106 /* free the Tx/Rx rings and descriptors, might be better to just 3107 * re-use them sometime in the future 3108 */ 3109 iavf_free_all_rx_resources(adapter); 3110 iavf_free_all_tx_resources(adapter); 3111 3112 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3113 /* kill and reinit the admin queue */ 3114 iavf_shutdown_adminq(hw); 3115 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3116 status = iavf_init_adminq(hw); 3117 if (status) { 3118 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3119 status); 3120 goto reset_err; 3121 } 3122 adapter->aq_required = 0; 3123 3124 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3125 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3126 err = iavf_reinit_interrupt_scheme(adapter, running); 3127 if (err) 3128 goto reset_err; 3129 } 3130 3131 if (RSS_AQ(adapter)) { 3132 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3133 } else { 3134 err = iavf_init_rss(adapter); 3135 if (err) 3136 goto reset_err; 3137 } 3138 3139 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3140 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3141 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3142 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3143 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3144 * been successfully sent and negotiated 3145 */ 3146 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3147 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3148 3149 spin_lock_bh(&adapter->mac_vlan_list_lock); 3150 3151 /* Delete filter for the current MAC address, it could have 3152 * been changed by the PF via administratively set MAC. 3153 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3154 */ 3155 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3156 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3157 list_del(&f->list); 3158 kfree(f); 3159 } 3160 } 3161 /* re-add all MAC filters */ 3162 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3163 f->add = true; 3164 } 3165 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3166 3167 /* check if TCs are running and re-add all cloud filters */ 3168 spin_lock_bh(&adapter->cloud_filter_list_lock); 3169 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3170 adapter->num_tc) { 3171 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3172 cf->add = true; 3173 } 3174 } 3175 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3176 3177 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3178 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3179 iavf_misc_irq_enable(adapter); 3180 3181 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3182 3183 /* We were running when the reset started, so we need to restore some 3184 * state here. 3185 */ 3186 if (running) { 3187 /* allocate transmit descriptors */ 3188 err = iavf_setup_all_tx_resources(adapter); 3189 if (err) 3190 goto reset_err; 3191 3192 /* allocate receive descriptors */ 3193 err = iavf_setup_all_rx_resources(adapter); 3194 if (err) 3195 goto reset_err; 3196 3197 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3198 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3199 err = iavf_request_traffic_irqs(adapter, netdev->name); 3200 if (err) 3201 goto reset_err; 3202 3203 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3204 } 3205 3206 iavf_configure(adapter); 3207 3208 /* iavf_up_complete() will switch device back 3209 * to __IAVF_RUNNING 3210 */ 3211 iavf_up_complete(adapter); 3212 3213 iavf_irq_enable(adapter, true); 3214 } else { 3215 iavf_change_state(adapter, __IAVF_DOWN); 3216 wake_up(&adapter->down_waitqueue); 3217 } 3218 3219 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3220 3221 wake_up(&adapter->reset_waitqueue); 3222 mutex_unlock(&adapter->client_lock); 3223 mutex_unlock(&adapter->crit_lock); 3224 3225 return; 3226 reset_err: 3227 if (running) { 3228 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3229 iavf_free_traffic_irqs(adapter); 3230 } 3231 iavf_disable_vf(adapter); 3232 3233 mutex_unlock(&adapter->client_lock); 3234 mutex_unlock(&adapter->crit_lock); 3235 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3236 } 3237 3238 /** 3239 * iavf_adminq_task - worker thread to clean the admin queue 3240 * @work: pointer to work_struct containing our data 3241 **/ 3242 static void iavf_adminq_task(struct work_struct *work) 3243 { 3244 struct iavf_adapter *adapter = 3245 container_of(work, struct iavf_adapter, adminq_task); 3246 struct iavf_hw *hw = &adapter->hw; 3247 struct iavf_arq_event_info event; 3248 enum virtchnl_ops v_op; 3249 enum iavf_status ret, v_ret; 3250 u32 val, oldval; 3251 u16 pending; 3252 3253 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3254 goto out; 3255 3256 if (!mutex_trylock(&adapter->crit_lock)) { 3257 if (adapter->state == __IAVF_REMOVE) 3258 return; 3259 3260 queue_work(adapter->wq, &adapter->adminq_task); 3261 goto out; 3262 } 3263 3264 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3265 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3266 if (!event.msg_buf) 3267 goto out; 3268 3269 do { 3270 ret = iavf_clean_arq_element(hw, &event, &pending); 3271 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3272 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3273 3274 if (ret || !v_op) 3275 break; /* No event to process or error cleaning ARQ */ 3276 3277 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3278 event.msg_len); 3279 if (pending != 0) 3280 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3281 } while (pending); 3282 mutex_unlock(&adapter->crit_lock); 3283 3284 if (iavf_is_reset_in_progress(adapter)) 3285 goto freedom; 3286 3287 /* check for error indications */ 3288 val = rd32(hw, hw->aq.arq.len); 3289 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3290 goto freedom; 3291 oldval = val; 3292 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3293 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3294 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3295 } 3296 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3297 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3298 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3299 } 3300 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3301 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3302 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3303 } 3304 if (oldval != val) 3305 wr32(hw, hw->aq.arq.len, val); 3306 3307 val = rd32(hw, hw->aq.asq.len); 3308 oldval = val; 3309 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3310 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3311 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3312 } 3313 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3314 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3315 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3316 } 3317 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3318 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3319 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3320 } 3321 if (oldval != val) 3322 wr32(hw, hw->aq.asq.len, val); 3323 3324 freedom: 3325 kfree(event.msg_buf); 3326 out: 3327 /* re-enable Admin queue interrupt cause */ 3328 iavf_misc_irq_enable(adapter); 3329 } 3330 3331 /** 3332 * iavf_client_task - worker thread to perform client work 3333 * @work: pointer to work_struct containing our data 3334 * 3335 * This task handles client interactions. Because client calls can be 3336 * reentrant, we can't handle them in the watchdog. 3337 **/ 3338 static void iavf_client_task(struct work_struct *work) 3339 { 3340 struct iavf_adapter *adapter = 3341 container_of(work, struct iavf_adapter, client_task.work); 3342 3343 /* If we can't get the client bit, just give up. We'll be rescheduled 3344 * later. 3345 */ 3346 3347 if (!mutex_trylock(&adapter->client_lock)) 3348 return; 3349 3350 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3351 iavf_client_subtask(adapter); 3352 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3353 goto out; 3354 } 3355 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3356 iavf_notify_client_l2_params(&adapter->vsi); 3357 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3358 goto out; 3359 } 3360 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3361 iavf_notify_client_close(&adapter->vsi, false); 3362 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3363 goto out; 3364 } 3365 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3366 iavf_notify_client_open(&adapter->vsi); 3367 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3368 } 3369 out: 3370 mutex_unlock(&adapter->client_lock); 3371 } 3372 3373 /** 3374 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3375 * @adapter: board private structure 3376 * 3377 * Free all transmit software resources 3378 **/ 3379 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3380 { 3381 int i; 3382 3383 if (!adapter->tx_rings) 3384 return; 3385 3386 for (i = 0; i < adapter->num_active_queues; i++) 3387 if (adapter->tx_rings[i].desc) 3388 iavf_free_tx_resources(&adapter->tx_rings[i]); 3389 } 3390 3391 /** 3392 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3393 * @adapter: board private structure 3394 * 3395 * If this function returns with an error, then it's possible one or 3396 * more of the rings is populated (while the rest are not). It is the 3397 * callers duty to clean those orphaned rings. 3398 * 3399 * Return 0 on success, negative on failure 3400 **/ 3401 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3402 { 3403 int i, err = 0; 3404 3405 for (i = 0; i < adapter->num_active_queues; i++) { 3406 adapter->tx_rings[i].count = adapter->tx_desc_count; 3407 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3408 if (!err) 3409 continue; 3410 dev_err(&adapter->pdev->dev, 3411 "Allocation for Tx Queue %u failed\n", i); 3412 break; 3413 } 3414 3415 return err; 3416 } 3417 3418 /** 3419 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3420 * @adapter: board private structure 3421 * 3422 * If this function returns with an error, then it's possible one or 3423 * more of the rings is populated (while the rest are not). It is the 3424 * callers duty to clean those orphaned rings. 3425 * 3426 * Return 0 on success, negative on failure 3427 **/ 3428 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3429 { 3430 int i, err = 0; 3431 3432 for (i = 0; i < adapter->num_active_queues; i++) { 3433 adapter->rx_rings[i].count = adapter->rx_desc_count; 3434 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3435 if (!err) 3436 continue; 3437 dev_err(&adapter->pdev->dev, 3438 "Allocation for Rx Queue %u failed\n", i); 3439 break; 3440 } 3441 return err; 3442 } 3443 3444 /** 3445 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3446 * @adapter: board private structure 3447 * 3448 * Free all receive software resources 3449 **/ 3450 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3451 { 3452 int i; 3453 3454 if (!adapter->rx_rings) 3455 return; 3456 3457 for (i = 0; i < adapter->num_active_queues; i++) 3458 if (adapter->rx_rings[i].desc) 3459 iavf_free_rx_resources(&adapter->rx_rings[i]); 3460 } 3461 3462 /** 3463 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3464 * @adapter: board private structure 3465 * @max_tx_rate: max Tx bw for a tc 3466 **/ 3467 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3468 u64 max_tx_rate) 3469 { 3470 int speed = 0, ret = 0; 3471 3472 if (ADV_LINK_SUPPORT(adapter)) { 3473 if (adapter->link_speed_mbps < U32_MAX) { 3474 speed = adapter->link_speed_mbps; 3475 goto validate_bw; 3476 } else { 3477 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3478 return -EINVAL; 3479 } 3480 } 3481 3482 switch (adapter->link_speed) { 3483 case VIRTCHNL_LINK_SPEED_40GB: 3484 speed = SPEED_40000; 3485 break; 3486 case VIRTCHNL_LINK_SPEED_25GB: 3487 speed = SPEED_25000; 3488 break; 3489 case VIRTCHNL_LINK_SPEED_20GB: 3490 speed = SPEED_20000; 3491 break; 3492 case VIRTCHNL_LINK_SPEED_10GB: 3493 speed = SPEED_10000; 3494 break; 3495 case VIRTCHNL_LINK_SPEED_5GB: 3496 speed = SPEED_5000; 3497 break; 3498 case VIRTCHNL_LINK_SPEED_2_5GB: 3499 speed = SPEED_2500; 3500 break; 3501 case VIRTCHNL_LINK_SPEED_1GB: 3502 speed = SPEED_1000; 3503 break; 3504 case VIRTCHNL_LINK_SPEED_100MB: 3505 speed = SPEED_100; 3506 break; 3507 default: 3508 break; 3509 } 3510 3511 validate_bw: 3512 if (max_tx_rate > speed) { 3513 dev_err(&adapter->pdev->dev, 3514 "Invalid tx rate specified\n"); 3515 ret = -EINVAL; 3516 } 3517 3518 return ret; 3519 } 3520 3521 /** 3522 * iavf_validate_ch_config - validate queue mapping info 3523 * @adapter: board private structure 3524 * @mqprio_qopt: queue parameters 3525 * 3526 * This function validates if the config provided by the user to 3527 * configure queue channels is valid or not. Returns 0 on a valid 3528 * config. 3529 **/ 3530 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3531 struct tc_mqprio_qopt_offload *mqprio_qopt) 3532 { 3533 u64 total_max_rate = 0; 3534 u32 tx_rate_rem = 0; 3535 int i, num_qps = 0; 3536 u64 tx_rate = 0; 3537 int ret = 0; 3538 3539 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3540 mqprio_qopt->qopt.num_tc < 1) 3541 return -EINVAL; 3542 3543 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3544 if (!mqprio_qopt->qopt.count[i] || 3545 mqprio_qopt->qopt.offset[i] != num_qps) 3546 return -EINVAL; 3547 if (mqprio_qopt->min_rate[i]) { 3548 dev_err(&adapter->pdev->dev, 3549 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3550 i); 3551 return -EINVAL; 3552 } 3553 3554 /* convert to Mbps */ 3555 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3556 IAVF_MBPS_DIVISOR); 3557 3558 if (mqprio_qopt->max_rate[i] && 3559 tx_rate < IAVF_MBPS_QUANTA) { 3560 dev_err(&adapter->pdev->dev, 3561 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3562 i, IAVF_MBPS_QUANTA); 3563 return -EINVAL; 3564 } 3565 3566 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3567 3568 if (tx_rate_rem != 0) { 3569 dev_err(&adapter->pdev->dev, 3570 "Invalid max tx rate for TC%d, not divisible by %d\n", 3571 i, IAVF_MBPS_QUANTA); 3572 return -EINVAL; 3573 } 3574 3575 total_max_rate += tx_rate; 3576 num_qps += mqprio_qopt->qopt.count[i]; 3577 } 3578 if (num_qps > adapter->num_active_queues) { 3579 dev_err(&adapter->pdev->dev, 3580 "Cannot support requested number of queues\n"); 3581 return -EINVAL; 3582 } 3583 3584 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3585 return ret; 3586 } 3587 3588 /** 3589 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3590 * @adapter: board private structure 3591 **/ 3592 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3593 { 3594 struct iavf_cloud_filter *cf, *cftmp; 3595 3596 spin_lock_bh(&adapter->cloud_filter_list_lock); 3597 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3598 list) { 3599 list_del(&cf->list); 3600 kfree(cf); 3601 adapter->num_cloud_filters--; 3602 } 3603 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3604 } 3605 3606 /** 3607 * __iavf_setup_tc - configure multiple traffic classes 3608 * @netdev: network interface device structure 3609 * @type_data: tc offload data 3610 * 3611 * This function processes the config information provided by the 3612 * user to configure traffic classes/queue channels and packages the 3613 * information to request the PF to setup traffic classes. 3614 * 3615 * Returns 0 on success. 3616 **/ 3617 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3618 { 3619 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3620 struct iavf_adapter *adapter = netdev_priv(netdev); 3621 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3622 u8 num_tc = 0, total_qps = 0; 3623 int ret = 0, netdev_tc = 0; 3624 u64 max_tx_rate; 3625 u16 mode; 3626 int i; 3627 3628 num_tc = mqprio_qopt->qopt.num_tc; 3629 mode = mqprio_qopt->mode; 3630 3631 /* delete queue_channel */ 3632 if (!mqprio_qopt->qopt.hw) { 3633 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3634 /* reset the tc configuration */ 3635 netdev_reset_tc(netdev); 3636 adapter->num_tc = 0; 3637 netif_tx_stop_all_queues(netdev); 3638 netif_tx_disable(netdev); 3639 iavf_del_all_cloud_filters(adapter); 3640 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3641 total_qps = adapter->orig_num_active_queues; 3642 goto exit; 3643 } else { 3644 return -EINVAL; 3645 } 3646 } 3647 3648 /* add queue channel */ 3649 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3650 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3651 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3652 return -EOPNOTSUPP; 3653 } 3654 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3655 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3656 return -EINVAL; 3657 } 3658 3659 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3660 if (ret) 3661 return ret; 3662 /* Return if same TC config is requested */ 3663 if (adapter->num_tc == num_tc) 3664 return 0; 3665 adapter->num_tc = num_tc; 3666 3667 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3668 if (i < num_tc) { 3669 adapter->ch_config.ch_info[i].count = 3670 mqprio_qopt->qopt.count[i]; 3671 adapter->ch_config.ch_info[i].offset = 3672 mqprio_qopt->qopt.offset[i]; 3673 total_qps += mqprio_qopt->qopt.count[i]; 3674 max_tx_rate = mqprio_qopt->max_rate[i]; 3675 /* convert to Mbps */ 3676 max_tx_rate = div_u64(max_tx_rate, 3677 IAVF_MBPS_DIVISOR); 3678 adapter->ch_config.ch_info[i].max_tx_rate = 3679 max_tx_rate; 3680 } else { 3681 adapter->ch_config.ch_info[i].count = 1; 3682 adapter->ch_config.ch_info[i].offset = 0; 3683 } 3684 } 3685 3686 /* Take snapshot of original config such as "num_active_queues" 3687 * It is used later when delete ADQ flow is exercised, so that 3688 * once delete ADQ flow completes, VF shall go back to its 3689 * original queue configuration 3690 */ 3691 3692 adapter->orig_num_active_queues = adapter->num_active_queues; 3693 3694 /* Store queue info based on TC so that VF gets configured 3695 * with correct number of queues when VF completes ADQ config 3696 * flow 3697 */ 3698 adapter->ch_config.total_qps = total_qps; 3699 3700 netif_tx_stop_all_queues(netdev); 3701 netif_tx_disable(netdev); 3702 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3703 netdev_reset_tc(netdev); 3704 /* Report the tc mapping up the stack */ 3705 netdev_set_num_tc(adapter->netdev, num_tc); 3706 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3707 u16 qcount = mqprio_qopt->qopt.count[i]; 3708 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3709 3710 if (i < num_tc) 3711 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3712 qoffset); 3713 } 3714 } 3715 exit: 3716 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3717 return 0; 3718 3719 netif_set_real_num_rx_queues(netdev, total_qps); 3720 netif_set_real_num_tx_queues(netdev, total_qps); 3721 3722 return ret; 3723 } 3724 3725 /** 3726 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3727 * @adapter: board private structure 3728 * @f: pointer to struct flow_cls_offload 3729 * @filter: pointer to cloud filter structure 3730 */ 3731 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3732 struct flow_cls_offload *f, 3733 struct iavf_cloud_filter *filter) 3734 { 3735 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3736 struct flow_dissector *dissector = rule->match.dissector; 3737 u16 n_proto_mask = 0; 3738 u16 n_proto_key = 0; 3739 u8 field_flags = 0; 3740 u16 addr_type = 0; 3741 u16 n_proto = 0; 3742 int i = 0; 3743 struct virtchnl_filter *vf = &filter->f; 3744 3745 if (dissector->used_keys & 3746 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3747 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3748 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3749 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3750 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3751 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3752 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3753 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3754 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3755 dissector->used_keys); 3756 return -EOPNOTSUPP; 3757 } 3758 3759 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3760 struct flow_match_enc_keyid match; 3761 3762 flow_rule_match_enc_keyid(rule, &match); 3763 if (match.mask->keyid != 0) 3764 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3765 } 3766 3767 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3768 struct flow_match_basic match; 3769 3770 flow_rule_match_basic(rule, &match); 3771 n_proto_key = ntohs(match.key->n_proto); 3772 n_proto_mask = ntohs(match.mask->n_proto); 3773 3774 if (n_proto_key == ETH_P_ALL) { 3775 n_proto_key = 0; 3776 n_proto_mask = 0; 3777 } 3778 n_proto = n_proto_key & n_proto_mask; 3779 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3780 return -EINVAL; 3781 if (n_proto == ETH_P_IPV6) { 3782 /* specify flow type as TCP IPv6 */ 3783 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3784 } 3785 3786 if (match.key->ip_proto != IPPROTO_TCP) { 3787 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3788 return -EINVAL; 3789 } 3790 } 3791 3792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3793 struct flow_match_eth_addrs match; 3794 3795 flow_rule_match_eth_addrs(rule, &match); 3796 3797 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3798 if (!is_zero_ether_addr(match.mask->dst)) { 3799 if (is_broadcast_ether_addr(match.mask->dst)) { 3800 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3801 } else { 3802 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3803 match.mask->dst); 3804 return -EINVAL; 3805 } 3806 } 3807 3808 if (!is_zero_ether_addr(match.mask->src)) { 3809 if (is_broadcast_ether_addr(match.mask->src)) { 3810 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3811 } else { 3812 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3813 match.mask->src); 3814 return -EINVAL; 3815 } 3816 } 3817 3818 if (!is_zero_ether_addr(match.key->dst)) 3819 if (is_valid_ether_addr(match.key->dst) || 3820 is_multicast_ether_addr(match.key->dst)) { 3821 /* set the mask if a valid dst_mac address */ 3822 for (i = 0; i < ETH_ALEN; i++) 3823 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3824 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3825 match.key->dst); 3826 } 3827 3828 if (!is_zero_ether_addr(match.key->src)) 3829 if (is_valid_ether_addr(match.key->src) || 3830 is_multicast_ether_addr(match.key->src)) { 3831 /* set the mask if a valid dst_mac address */ 3832 for (i = 0; i < ETH_ALEN; i++) 3833 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3834 ether_addr_copy(vf->data.tcp_spec.src_mac, 3835 match.key->src); 3836 } 3837 } 3838 3839 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3840 struct flow_match_vlan match; 3841 3842 flow_rule_match_vlan(rule, &match); 3843 if (match.mask->vlan_id) { 3844 if (match.mask->vlan_id == VLAN_VID_MASK) { 3845 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3846 } else { 3847 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3848 match.mask->vlan_id); 3849 return -EINVAL; 3850 } 3851 } 3852 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3853 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3854 } 3855 3856 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3857 struct flow_match_control match; 3858 3859 flow_rule_match_control(rule, &match); 3860 addr_type = match.key->addr_type; 3861 } 3862 3863 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3864 struct flow_match_ipv4_addrs match; 3865 3866 flow_rule_match_ipv4_addrs(rule, &match); 3867 if (match.mask->dst) { 3868 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3869 field_flags |= IAVF_CLOUD_FIELD_IIP; 3870 } else { 3871 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3872 be32_to_cpu(match.mask->dst)); 3873 return -EINVAL; 3874 } 3875 } 3876 3877 if (match.mask->src) { 3878 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3879 field_flags |= IAVF_CLOUD_FIELD_IIP; 3880 } else { 3881 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3882 be32_to_cpu(match.mask->src)); 3883 return -EINVAL; 3884 } 3885 } 3886 3887 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3888 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3889 return -EINVAL; 3890 } 3891 if (match.key->dst) { 3892 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3893 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3894 } 3895 if (match.key->src) { 3896 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3897 vf->data.tcp_spec.src_ip[0] = match.key->src; 3898 } 3899 } 3900 3901 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3902 struct flow_match_ipv6_addrs match; 3903 3904 flow_rule_match_ipv6_addrs(rule, &match); 3905 3906 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3907 if (ipv6_addr_any(&match.mask->dst)) { 3908 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3909 IPV6_ADDR_ANY); 3910 return -EINVAL; 3911 } 3912 3913 /* src and dest IPv6 address should not be LOOPBACK 3914 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3915 */ 3916 if (ipv6_addr_loopback(&match.key->dst) || 3917 ipv6_addr_loopback(&match.key->src)) { 3918 dev_err(&adapter->pdev->dev, 3919 "ipv6 addr should not be loopback\n"); 3920 return -EINVAL; 3921 } 3922 if (!ipv6_addr_any(&match.mask->dst) || 3923 !ipv6_addr_any(&match.mask->src)) 3924 field_flags |= IAVF_CLOUD_FIELD_IIP; 3925 3926 for (i = 0; i < 4; i++) 3927 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3928 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3929 sizeof(vf->data.tcp_spec.dst_ip)); 3930 for (i = 0; i < 4; i++) 3931 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3932 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3933 sizeof(vf->data.tcp_spec.src_ip)); 3934 } 3935 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3936 struct flow_match_ports match; 3937 3938 flow_rule_match_ports(rule, &match); 3939 if (match.mask->src) { 3940 if (match.mask->src == cpu_to_be16(0xffff)) { 3941 field_flags |= IAVF_CLOUD_FIELD_IIP; 3942 } else { 3943 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3944 be16_to_cpu(match.mask->src)); 3945 return -EINVAL; 3946 } 3947 } 3948 3949 if (match.mask->dst) { 3950 if (match.mask->dst == cpu_to_be16(0xffff)) { 3951 field_flags |= IAVF_CLOUD_FIELD_IIP; 3952 } else { 3953 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3954 be16_to_cpu(match.mask->dst)); 3955 return -EINVAL; 3956 } 3957 } 3958 if (match.key->dst) { 3959 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3960 vf->data.tcp_spec.dst_port = match.key->dst; 3961 } 3962 3963 if (match.key->src) { 3964 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3965 vf->data.tcp_spec.src_port = match.key->src; 3966 } 3967 } 3968 vf->field_flags = field_flags; 3969 3970 return 0; 3971 } 3972 3973 /** 3974 * iavf_handle_tclass - Forward to a traffic class on the device 3975 * @adapter: board private structure 3976 * @tc: traffic class index on the device 3977 * @filter: pointer to cloud filter structure 3978 */ 3979 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3980 struct iavf_cloud_filter *filter) 3981 { 3982 if (tc == 0) 3983 return 0; 3984 if (tc < adapter->num_tc) { 3985 if (!filter->f.data.tcp_spec.dst_port) { 3986 dev_err(&adapter->pdev->dev, 3987 "Specify destination port to redirect to traffic class other than TC0\n"); 3988 return -EINVAL; 3989 } 3990 } 3991 /* redirect to a traffic class on the same device */ 3992 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3993 filter->f.action_meta = tc; 3994 return 0; 3995 } 3996 3997 /** 3998 * iavf_find_cf - Find the cloud filter in the list 3999 * @adapter: Board private structure 4000 * @cookie: filter specific cookie 4001 * 4002 * Returns ptr to the filter object or NULL. Must be called while holding the 4003 * cloud_filter_list_lock. 4004 */ 4005 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4006 unsigned long *cookie) 4007 { 4008 struct iavf_cloud_filter *filter = NULL; 4009 4010 if (!cookie) 4011 return NULL; 4012 4013 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4014 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4015 return filter; 4016 } 4017 return NULL; 4018 } 4019 4020 /** 4021 * iavf_configure_clsflower - Add tc flower filters 4022 * @adapter: board private structure 4023 * @cls_flower: Pointer to struct flow_cls_offload 4024 */ 4025 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4026 struct flow_cls_offload *cls_flower) 4027 { 4028 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4029 struct iavf_cloud_filter *filter = NULL; 4030 int err = -EINVAL, count = 50; 4031 4032 if (tc < 0) { 4033 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4034 return -EINVAL; 4035 } 4036 4037 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4038 if (!filter) 4039 return -ENOMEM; 4040 4041 while (!mutex_trylock(&adapter->crit_lock)) { 4042 if (--count == 0) { 4043 kfree(filter); 4044 return err; 4045 } 4046 udelay(1); 4047 } 4048 4049 filter->cookie = cls_flower->cookie; 4050 4051 /* bail out here if filter already exists */ 4052 spin_lock_bh(&adapter->cloud_filter_list_lock); 4053 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4054 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4055 err = -EEXIST; 4056 goto spin_unlock; 4057 } 4058 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4059 4060 /* set the mask to all zeroes to begin with */ 4061 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4062 /* start out with flow type and eth type IPv4 to begin with */ 4063 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4064 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4065 if (err) 4066 goto err; 4067 4068 err = iavf_handle_tclass(adapter, tc, filter); 4069 if (err) 4070 goto err; 4071 4072 /* add filter to the list */ 4073 spin_lock_bh(&adapter->cloud_filter_list_lock); 4074 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4075 adapter->num_cloud_filters++; 4076 filter->add = true; 4077 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4078 spin_unlock: 4079 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4080 err: 4081 if (err) 4082 kfree(filter); 4083 4084 mutex_unlock(&adapter->crit_lock); 4085 return err; 4086 } 4087 4088 /** 4089 * iavf_delete_clsflower - Remove tc flower filters 4090 * @adapter: board private structure 4091 * @cls_flower: Pointer to struct flow_cls_offload 4092 */ 4093 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4094 struct flow_cls_offload *cls_flower) 4095 { 4096 struct iavf_cloud_filter *filter = NULL; 4097 int err = 0; 4098 4099 spin_lock_bh(&adapter->cloud_filter_list_lock); 4100 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4101 if (filter) { 4102 filter->del = true; 4103 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4104 } else { 4105 err = -EINVAL; 4106 } 4107 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4108 4109 return err; 4110 } 4111 4112 /** 4113 * iavf_setup_tc_cls_flower - flower classifier offloads 4114 * @adapter: board private structure 4115 * @cls_flower: pointer to flow_cls_offload struct with flow info 4116 */ 4117 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4118 struct flow_cls_offload *cls_flower) 4119 { 4120 switch (cls_flower->command) { 4121 case FLOW_CLS_REPLACE: 4122 return iavf_configure_clsflower(adapter, cls_flower); 4123 case FLOW_CLS_DESTROY: 4124 return iavf_delete_clsflower(adapter, cls_flower); 4125 case FLOW_CLS_STATS: 4126 return -EOPNOTSUPP; 4127 default: 4128 return -EOPNOTSUPP; 4129 } 4130 } 4131 4132 /** 4133 * iavf_setup_tc_block_cb - block callback for tc 4134 * @type: type of offload 4135 * @type_data: offload data 4136 * @cb_priv: 4137 * 4138 * This function is the block callback for traffic classes 4139 **/ 4140 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4141 void *cb_priv) 4142 { 4143 struct iavf_adapter *adapter = cb_priv; 4144 4145 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4146 return -EOPNOTSUPP; 4147 4148 switch (type) { 4149 case TC_SETUP_CLSFLOWER: 4150 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4151 default: 4152 return -EOPNOTSUPP; 4153 } 4154 } 4155 4156 static LIST_HEAD(iavf_block_cb_list); 4157 4158 /** 4159 * iavf_setup_tc - configure multiple traffic classes 4160 * @netdev: network interface device structure 4161 * @type: type of offload 4162 * @type_data: tc offload data 4163 * 4164 * This function is the callback to ndo_setup_tc in the 4165 * netdev_ops. 4166 * 4167 * Returns 0 on success 4168 **/ 4169 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4170 void *type_data) 4171 { 4172 struct iavf_adapter *adapter = netdev_priv(netdev); 4173 4174 switch (type) { 4175 case TC_SETUP_QDISC_MQPRIO: 4176 return __iavf_setup_tc(netdev, type_data); 4177 case TC_SETUP_BLOCK: 4178 return flow_block_cb_setup_simple(type_data, 4179 &iavf_block_cb_list, 4180 iavf_setup_tc_block_cb, 4181 adapter, adapter, true); 4182 default: 4183 return -EOPNOTSUPP; 4184 } 4185 } 4186 4187 /** 4188 * iavf_open - Called when a network interface is made active 4189 * @netdev: network interface device structure 4190 * 4191 * Returns 0 on success, negative value on failure 4192 * 4193 * The open entry point is called when a network interface is made 4194 * active by the system (IFF_UP). At this point all resources needed 4195 * for transmit and receive operations are allocated, the interrupt 4196 * handler is registered with the OS, the watchdog is started, 4197 * and the stack is notified that the interface is ready. 4198 **/ 4199 static int iavf_open(struct net_device *netdev) 4200 { 4201 struct iavf_adapter *adapter = netdev_priv(netdev); 4202 int err; 4203 4204 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4205 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4206 return -EIO; 4207 } 4208 4209 while (!mutex_trylock(&adapter->crit_lock)) { 4210 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4211 * is already taken and iavf_open is called from an upper 4212 * device's notifier reacting on NETDEV_REGISTER event. 4213 * We have to leave here to avoid dead lock. 4214 */ 4215 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4216 return -EBUSY; 4217 4218 usleep_range(500, 1000); 4219 } 4220 4221 if (adapter->state != __IAVF_DOWN) { 4222 err = -EBUSY; 4223 goto err_unlock; 4224 } 4225 4226 if (adapter->state == __IAVF_RUNNING && 4227 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4228 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4229 err = 0; 4230 goto err_unlock; 4231 } 4232 4233 /* allocate transmit descriptors */ 4234 err = iavf_setup_all_tx_resources(adapter); 4235 if (err) 4236 goto err_setup_tx; 4237 4238 /* allocate receive descriptors */ 4239 err = iavf_setup_all_rx_resources(adapter); 4240 if (err) 4241 goto err_setup_rx; 4242 4243 /* clear any pending interrupts, may auto mask */ 4244 err = iavf_request_traffic_irqs(adapter, netdev->name); 4245 if (err) 4246 goto err_req_irq; 4247 4248 spin_lock_bh(&adapter->mac_vlan_list_lock); 4249 4250 iavf_add_filter(adapter, adapter->hw.mac.addr); 4251 4252 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4253 4254 /* Restore VLAN filters that were removed with IFF_DOWN */ 4255 iavf_restore_filters(adapter); 4256 4257 iavf_configure(adapter); 4258 4259 iavf_up_complete(adapter); 4260 4261 iavf_irq_enable(adapter, true); 4262 4263 mutex_unlock(&adapter->crit_lock); 4264 4265 return 0; 4266 4267 err_req_irq: 4268 iavf_down(adapter); 4269 iavf_free_traffic_irqs(adapter); 4270 err_setup_rx: 4271 iavf_free_all_rx_resources(adapter); 4272 err_setup_tx: 4273 iavf_free_all_tx_resources(adapter); 4274 err_unlock: 4275 mutex_unlock(&adapter->crit_lock); 4276 4277 return err; 4278 } 4279 4280 /** 4281 * iavf_close - Disables a network interface 4282 * @netdev: network interface device structure 4283 * 4284 * Returns 0, this is not allowed to fail 4285 * 4286 * The close entry point is called when an interface is de-activated 4287 * by the OS. The hardware is still under the drivers control, but 4288 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4289 * are freed, along with all transmit and receive resources. 4290 **/ 4291 static int iavf_close(struct net_device *netdev) 4292 { 4293 struct iavf_adapter *adapter = netdev_priv(netdev); 4294 u64 aq_to_restore; 4295 int status; 4296 4297 mutex_lock(&adapter->crit_lock); 4298 4299 if (adapter->state <= __IAVF_DOWN_PENDING) { 4300 mutex_unlock(&adapter->crit_lock); 4301 return 0; 4302 } 4303 4304 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4305 if (CLIENT_ENABLED(adapter)) 4306 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4307 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4308 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4309 * deadlock with adminq_task() until iavf_close timeouts. We must send 4310 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4311 * disable queues possible for vf. Give only necessary flags to 4312 * iavf_down and save other to set them right before iavf_close() 4313 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4314 * iavf will be in DOWN state. 4315 */ 4316 aq_to_restore = adapter->aq_required; 4317 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4318 4319 /* Remove flags which we do not want to send after close or we want to 4320 * send before disable queues. 4321 */ 4322 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4323 IAVF_FLAG_AQ_ENABLE_QUEUES | 4324 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4325 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4326 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4327 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4328 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4329 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4330 4331 iavf_down(adapter); 4332 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4333 iavf_free_traffic_irqs(adapter); 4334 4335 mutex_unlock(&adapter->crit_lock); 4336 4337 /* We explicitly don't free resources here because the hardware is 4338 * still active and can DMA into memory. Resources are cleared in 4339 * iavf_virtchnl_completion() after we get confirmation from the PF 4340 * driver that the rings have been stopped. 4341 * 4342 * Also, we wait for state to transition to __IAVF_DOWN before 4343 * returning. State change occurs in iavf_virtchnl_completion() after 4344 * VF resources are released (which occurs after PF driver processes and 4345 * responds to admin queue commands). 4346 */ 4347 4348 status = wait_event_timeout(adapter->down_waitqueue, 4349 adapter->state == __IAVF_DOWN, 4350 msecs_to_jiffies(500)); 4351 if (!status) 4352 netdev_warn(netdev, "Device resources not yet released\n"); 4353 4354 mutex_lock(&adapter->crit_lock); 4355 adapter->aq_required |= aq_to_restore; 4356 mutex_unlock(&adapter->crit_lock); 4357 return 0; 4358 } 4359 4360 /** 4361 * iavf_change_mtu - Change the Maximum Transfer Unit 4362 * @netdev: network interface device structure 4363 * @new_mtu: new value for maximum frame size 4364 * 4365 * Returns 0 on success, negative on failure 4366 **/ 4367 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4368 { 4369 struct iavf_adapter *adapter = netdev_priv(netdev); 4370 int ret = 0; 4371 4372 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4373 netdev->mtu, new_mtu); 4374 netdev->mtu = new_mtu; 4375 if (CLIENT_ENABLED(adapter)) { 4376 iavf_notify_client_l2_params(&adapter->vsi); 4377 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4378 } 4379 4380 if (netif_running(netdev)) { 4381 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4382 ret = iavf_wait_for_reset(adapter); 4383 if (ret < 0) 4384 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4385 else if (ret) 4386 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4387 } 4388 4389 return ret; 4390 } 4391 4392 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4393 NETIF_F_HW_VLAN_CTAG_TX | \ 4394 NETIF_F_HW_VLAN_STAG_RX | \ 4395 NETIF_F_HW_VLAN_STAG_TX) 4396 4397 /** 4398 * iavf_set_features - set the netdev feature flags 4399 * @netdev: ptr to the netdev being adjusted 4400 * @features: the feature set that the stack is suggesting 4401 * Note: expects to be called while under rtnl_lock() 4402 **/ 4403 static int iavf_set_features(struct net_device *netdev, 4404 netdev_features_t features) 4405 { 4406 struct iavf_adapter *adapter = netdev_priv(netdev); 4407 4408 /* trigger update on any VLAN feature change */ 4409 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4410 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4411 iavf_set_vlan_offload_features(adapter, netdev->features, 4412 features); 4413 4414 return 0; 4415 } 4416 4417 /** 4418 * iavf_features_check - Validate encapsulated packet conforms to limits 4419 * @skb: skb buff 4420 * @dev: This physical port's netdev 4421 * @features: Offload features that the stack believes apply 4422 **/ 4423 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4424 struct net_device *dev, 4425 netdev_features_t features) 4426 { 4427 size_t len; 4428 4429 /* No point in doing any of this if neither checksum nor GSO are 4430 * being requested for this frame. We can rule out both by just 4431 * checking for CHECKSUM_PARTIAL 4432 */ 4433 if (skb->ip_summed != CHECKSUM_PARTIAL) 4434 return features; 4435 4436 /* We cannot support GSO if the MSS is going to be less than 4437 * 64 bytes. If it is then we need to drop support for GSO. 4438 */ 4439 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4440 features &= ~NETIF_F_GSO_MASK; 4441 4442 /* MACLEN can support at most 63 words */ 4443 len = skb_network_header(skb) - skb->data; 4444 if (len & ~(63 * 2)) 4445 goto out_err; 4446 4447 /* IPLEN and EIPLEN can support at most 127 dwords */ 4448 len = skb_transport_header(skb) - skb_network_header(skb); 4449 if (len & ~(127 * 4)) 4450 goto out_err; 4451 4452 if (skb->encapsulation) { 4453 /* L4TUNLEN can support 127 words */ 4454 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4455 if (len & ~(127 * 2)) 4456 goto out_err; 4457 4458 /* IPLEN can support at most 127 dwords */ 4459 len = skb_inner_transport_header(skb) - 4460 skb_inner_network_header(skb); 4461 if (len & ~(127 * 4)) 4462 goto out_err; 4463 } 4464 4465 /* No need to validate L4LEN as TCP is the only protocol with a 4466 * flexible value and we support all possible values supported 4467 * by TCP, which is at most 15 dwords 4468 */ 4469 4470 return features; 4471 out_err: 4472 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4473 } 4474 4475 /** 4476 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4477 * @adapter: board private structure 4478 * 4479 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4480 * were negotiated determine the VLAN features that can be toggled on and off. 4481 **/ 4482 static netdev_features_t 4483 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4484 { 4485 netdev_features_t hw_features = 0; 4486 4487 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4488 return hw_features; 4489 4490 /* Enable VLAN features if supported */ 4491 if (VLAN_ALLOWED(adapter)) { 4492 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4493 NETIF_F_HW_VLAN_CTAG_RX); 4494 } else if (VLAN_V2_ALLOWED(adapter)) { 4495 struct virtchnl_vlan_caps *vlan_v2_caps = 4496 &adapter->vlan_v2_caps; 4497 struct virtchnl_vlan_supported_caps *stripping_support = 4498 &vlan_v2_caps->offloads.stripping_support; 4499 struct virtchnl_vlan_supported_caps *insertion_support = 4500 &vlan_v2_caps->offloads.insertion_support; 4501 4502 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4503 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4504 if (stripping_support->outer & 4505 VIRTCHNL_VLAN_ETHERTYPE_8100) 4506 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4507 if (stripping_support->outer & 4508 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4509 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4510 } else if (stripping_support->inner != 4511 VIRTCHNL_VLAN_UNSUPPORTED && 4512 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4513 if (stripping_support->inner & 4514 VIRTCHNL_VLAN_ETHERTYPE_8100) 4515 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4516 } 4517 4518 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4519 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4520 if (insertion_support->outer & 4521 VIRTCHNL_VLAN_ETHERTYPE_8100) 4522 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4523 if (insertion_support->outer & 4524 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4525 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4526 } else if (insertion_support->inner && 4527 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4528 if (insertion_support->inner & 4529 VIRTCHNL_VLAN_ETHERTYPE_8100) 4530 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4531 } 4532 } 4533 4534 return hw_features; 4535 } 4536 4537 /** 4538 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4539 * @adapter: board private structure 4540 * 4541 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4542 * were negotiated determine the VLAN features that are enabled by default. 4543 **/ 4544 static netdev_features_t 4545 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4546 { 4547 netdev_features_t features = 0; 4548 4549 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4550 return features; 4551 4552 if (VLAN_ALLOWED(adapter)) { 4553 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4554 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4555 } else if (VLAN_V2_ALLOWED(adapter)) { 4556 struct virtchnl_vlan_caps *vlan_v2_caps = 4557 &adapter->vlan_v2_caps; 4558 struct virtchnl_vlan_supported_caps *filtering_support = 4559 &vlan_v2_caps->filtering.filtering_support; 4560 struct virtchnl_vlan_supported_caps *stripping_support = 4561 &vlan_v2_caps->offloads.stripping_support; 4562 struct virtchnl_vlan_supported_caps *insertion_support = 4563 &vlan_v2_caps->offloads.insertion_support; 4564 u32 ethertype_init; 4565 4566 /* give priority to outer stripping and don't support both outer 4567 * and inner stripping 4568 */ 4569 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4570 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4571 if (stripping_support->outer & 4572 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4573 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4574 features |= NETIF_F_HW_VLAN_CTAG_RX; 4575 else if (stripping_support->outer & 4576 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4577 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4578 features |= NETIF_F_HW_VLAN_STAG_RX; 4579 } else if (stripping_support->inner != 4580 VIRTCHNL_VLAN_UNSUPPORTED) { 4581 if (stripping_support->inner & 4582 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4584 features |= NETIF_F_HW_VLAN_CTAG_RX; 4585 } 4586 4587 /* give priority to outer insertion and don't support both outer 4588 * and inner insertion 4589 */ 4590 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4591 if (insertion_support->outer & 4592 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4593 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4594 features |= NETIF_F_HW_VLAN_CTAG_TX; 4595 else if (insertion_support->outer & 4596 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4597 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4598 features |= NETIF_F_HW_VLAN_STAG_TX; 4599 } else if (insertion_support->inner != 4600 VIRTCHNL_VLAN_UNSUPPORTED) { 4601 if (insertion_support->inner & 4602 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4603 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4604 features |= NETIF_F_HW_VLAN_CTAG_TX; 4605 } 4606 4607 /* give priority to outer filtering and don't bother if both 4608 * outer and inner filtering are enabled 4609 */ 4610 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4611 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4612 if (filtering_support->outer & 4613 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4614 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4615 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4616 if (filtering_support->outer & 4617 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4618 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4619 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4620 } else if (filtering_support->inner != 4621 VIRTCHNL_VLAN_UNSUPPORTED) { 4622 if (filtering_support->inner & 4623 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4624 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4625 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4626 if (filtering_support->inner & 4627 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4628 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4629 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4630 } 4631 } 4632 4633 return features; 4634 } 4635 4636 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4637 (!(((requested) & (feature_bit)) && \ 4638 !((allowed) & (feature_bit)))) 4639 4640 /** 4641 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4642 * @adapter: board private structure 4643 * @requested_features: stack requested NETDEV features 4644 **/ 4645 static netdev_features_t 4646 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4647 netdev_features_t requested_features) 4648 { 4649 netdev_features_t allowed_features; 4650 4651 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4652 iavf_get_netdev_vlan_features(adapter); 4653 4654 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4655 allowed_features, 4656 NETIF_F_HW_VLAN_CTAG_TX)) 4657 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4658 4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4660 allowed_features, 4661 NETIF_F_HW_VLAN_CTAG_RX)) 4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4663 4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4665 allowed_features, 4666 NETIF_F_HW_VLAN_STAG_TX)) 4667 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4668 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4669 allowed_features, 4670 NETIF_F_HW_VLAN_STAG_RX)) 4671 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4672 4673 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4674 allowed_features, 4675 NETIF_F_HW_VLAN_CTAG_FILTER)) 4676 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4677 4678 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4679 allowed_features, 4680 NETIF_F_HW_VLAN_STAG_FILTER)) 4681 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4682 4683 if ((requested_features & 4684 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4685 (requested_features & 4686 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4687 adapter->vlan_v2_caps.offloads.ethertype_match == 4688 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4689 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4690 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4691 NETIF_F_HW_VLAN_STAG_TX); 4692 } 4693 4694 return requested_features; 4695 } 4696 4697 /** 4698 * iavf_fix_features - fix up the netdev feature bits 4699 * @netdev: our net device 4700 * @features: desired feature bits 4701 * 4702 * Returns fixed-up features bits 4703 **/ 4704 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4705 netdev_features_t features) 4706 { 4707 struct iavf_adapter *adapter = netdev_priv(netdev); 4708 4709 return iavf_fix_netdev_vlan_features(adapter, features); 4710 } 4711 4712 static const struct net_device_ops iavf_netdev_ops = { 4713 .ndo_open = iavf_open, 4714 .ndo_stop = iavf_close, 4715 .ndo_start_xmit = iavf_xmit_frame, 4716 .ndo_set_rx_mode = iavf_set_rx_mode, 4717 .ndo_validate_addr = eth_validate_addr, 4718 .ndo_set_mac_address = iavf_set_mac, 4719 .ndo_change_mtu = iavf_change_mtu, 4720 .ndo_tx_timeout = iavf_tx_timeout, 4721 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4722 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4723 .ndo_features_check = iavf_features_check, 4724 .ndo_fix_features = iavf_fix_features, 4725 .ndo_set_features = iavf_set_features, 4726 .ndo_setup_tc = iavf_setup_tc, 4727 }; 4728 4729 /** 4730 * iavf_check_reset_complete - check that VF reset is complete 4731 * @hw: pointer to hw struct 4732 * 4733 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4734 **/ 4735 static int iavf_check_reset_complete(struct iavf_hw *hw) 4736 { 4737 u32 rstat; 4738 int i; 4739 4740 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4741 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4742 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4743 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4744 (rstat == VIRTCHNL_VFR_COMPLETED)) 4745 return 0; 4746 usleep_range(10, 20); 4747 } 4748 return -EBUSY; 4749 } 4750 4751 /** 4752 * iavf_process_config - Process the config information we got from the PF 4753 * @adapter: board private structure 4754 * 4755 * Verify that we have a valid config struct, and set up our netdev features 4756 * and our VSI struct. 4757 **/ 4758 int iavf_process_config(struct iavf_adapter *adapter) 4759 { 4760 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4761 netdev_features_t hw_vlan_features, vlan_features; 4762 struct net_device *netdev = adapter->netdev; 4763 netdev_features_t hw_enc_features; 4764 netdev_features_t hw_features; 4765 4766 hw_enc_features = NETIF_F_SG | 4767 NETIF_F_IP_CSUM | 4768 NETIF_F_IPV6_CSUM | 4769 NETIF_F_HIGHDMA | 4770 NETIF_F_SOFT_FEATURES | 4771 NETIF_F_TSO | 4772 NETIF_F_TSO_ECN | 4773 NETIF_F_TSO6 | 4774 NETIF_F_SCTP_CRC | 4775 NETIF_F_RXHASH | 4776 NETIF_F_RXCSUM | 4777 0; 4778 4779 /* advertise to stack only if offloads for encapsulated packets is 4780 * supported 4781 */ 4782 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4783 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4784 NETIF_F_GSO_GRE | 4785 NETIF_F_GSO_GRE_CSUM | 4786 NETIF_F_GSO_IPXIP4 | 4787 NETIF_F_GSO_IPXIP6 | 4788 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4789 NETIF_F_GSO_PARTIAL | 4790 0; 4791 4792 if (!(vfres->vf_cap_flags & 4793 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4794 netdev->gso_partial_features |= 4795 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4796 4797 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4798 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4799 netdev->hw_enc_features |= hw_enc_features; 4800 } 4801 /* record features VLANs can make use of */ 4802 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4803 4804 /* Write features and hw_features separately to avoid polluting 4805 * with, or dropping, features that are set when we registered. 4806 */ 4807 hw_features = hw_enc_features; 4808 4809 /* get HW VLAN features that can be toggled */ 4810 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4811 4812 /* Enable cloud filter if ADQ is supported */ 4813 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4814 hw_features |= NETIF_F_HW_TC; 4815 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4816 hw_features |= NETIF_F_GSO_UDP_L4; 4817 4818 netdev->hw_features |= hw_features | hw_vlan_features; 4819 vlan_features = iavf_get_netdev_vlan_features(adapter); 4820 4821 netdev->features |= hw_features | vlan_features; 4822 4823 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4824 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4825 4826 netdev->priv_flags |= IFF_UNICAST_FLT; 4827 4828 /* Do not turn on offloads when they are requested to be turned off. 4829 * TSO needs minimum 576 bytes to work correctly. 4830 */ 4831 if (netdev->wanted_features) { 4832 if (!(netdev->wanted_features & NETIF_F_TSO) || 4833 netdev->mtu < 576) 4834 netdev->features &= ~NETIF_F_TSO; 4835 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4836 netdev->mtu < 576) 4837 netdev->features &= ~NETIF_F_TSO6; 4838 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4839 netdev->features &= ~NETIF_F_TSO_ECN; 4840 if (!(netdev->wanted_features & NETIF_F_GRO)) 4841 netdev->features &= ~NETIF_F_GRO; 4842 if (!(netdev->wanted_features & NETIF_F_GSO)) 4843 netdev->features &= ~NETIF_F_GSO; 4844 } 4845 4846 return 0; 4847 } 4848 4849 /** 4850 * iavf_shutdown - Shutdown the device in preparation for a reboot 4851 * @pdev: pci device structure 4852 **/ 4853 static void iavf_shutdown(struct pci_dev *pdev) 4854 { 4855 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4856 struct net_device *netdev = adapter->netdev; 4857 4858 netif_device_detach(netdev); 4859 4860 if (netif_running(netdev)) 4861 iavf_close(netdev); 4862 4863 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4864 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4865 /* Prevent the watchdog from running. */ 4866 iavf_change_state(adapter, __IAVF_REMOVE); 4867 adapter->aq_required = 0; 4868 mutex_unlock(&adapter->crit_lock); 4869 4870 #ifdef CONFIG_PM 4871 pci_save_state(pdev); 4872 4873 #endif 4874 pci_disable_device(pdev); 4875 } 4876 4877 /** 4878 * iavf_probe - Device Initialization Routine 4879 * @pdev: PCI device information struct 4880 * @ent: entry in iavf_pci_tbl 4881 * 4882 * Returns 0 on success, negative on failure 4883 * 4884 * iavf_probe initializes an adapter identified by a pci_dev structure. 4885 * The OS initialization, configuring of the adapter private structure, 4886 * and a hardware reset occur. 4887 **/ 4888 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4889 { 4890 struct net_device *netdev; 4891 struct iavf_adapter *adapter = NULL; 4892 struct iavf_hw *hw = NULL; 4893 int err; 4894 4895 err = pci_enable_device(pdev); 4896 if (err) 4897 return err; 4898 4899 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4900 if (err) { 4901 dev_err(&pdev->dev, 4902 "DMA configuration failed: 0x%x\n", err); 4903 goto err_dma; 4904 } 4905 4906 err = pci_request_regions(pdev, iavf_driver_name); 4907 if (err) { 4908 dev_err(&pdev->dev, 4909 "pci_request_regions failed 0x%x\n", err); 4910 goto err_pci_reg; 4911 } 4912 4913 pci_set_master(pdev); 4914 4915 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4916 IAVF_MAX_REQ_QUEUES); 4917 if (!netdev) { 4918 err = -ENOMEM; 4919 goto err_alloc_etherdev; 4920 } 4921 4922 SET_NETDEV_DEV(netdev, &pdev->dev); 4923 4924 pci_set_drvdata(pdev, netdev); 4925 adapter = netdev_priv(netdev); 4926 4927 adapter->netdev = netdev; 4928 adapter->pdev = pdev; 4929 4930 hw = &adapter->hw; 4931 hw->back = adapter; 4932 4933 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4934 iavf_driver_name); 4935 if (!adapter->wq) { 4936 err = -ENOMEM; 4937 goto err_alloc_wq; 4938 } 4939 4940 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4941 iavf_change_state(adapter, __IAVF_STARTUP); 4942 4943 /* Call save state here because it relies on the adapter struct. */ 4944 pci_save_state(pdev); 4945 4946 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4947 pci_resource_len(pdev, 0)); 4948 if (!hw->hw_addr) { 4949 err = -EIO; 4950 goto err_ioremap; 4951 } 4952 hw->vendor_id = pdev->vendor; 4953 hw->device_id = pdev->device; 4954 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4955 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4956 hw->subsystem_device_id = pdev->subsystem_device; 4957 hw->bus.device = PCI_SLOT(pdev->devfn); 4958 hw->bus.func = PCI_FUNC(pdev->devfn); 4959 hw->bus.bus_id = pdev->bus->number; 4960 4961 /* set up the locks for the AQ, do this only once in probe 4962 * and destroy them only once in remove 4963 */ 4964 mutex_init(&adapter->crit_lock); 4965 mutex_init(&adapter->client_lock); 4966 mutex_init(&hw->aq.asq_mutex); 4967 mutex_init(&hw->aq.arq_mutex); 4968 4969 spin_lock_init(&adapter->mac_vlan_list_lock); 4970 spin_lock_init(&adapter->cloud_filter_list_lock); 4971 spin_lock_init(&adapter->fdir_fltr_lock); 4972 spin_lock_init(&adapter->adv_rss_lock); 4973 4974 INIT_LIST_HEAD(&adapter->mac_filter_list); 4975 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4976 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4977 INIT_LIST_HEAD(&adapter->fdir_list_head); 4978 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4979 4980 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4981 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4982 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4983 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4984 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4985 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4986 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4987 4988 /* Setup the wait queue for indicating transition to down status */ 4989 init_waitqueue_head(&adapter->down_waitqueue); 4990 4991 /* Setup the wait queue for indicating transition to running state */ 4992 init_waitqueue_head(&adapter->reset_waitqueue); 4993 4994 /* Setup the wait queue for indicating virtchannel events */ 4995 init_waitqueue_head(&adapter->vc_waitqueue); 4996 4997 return 0; 4998 4999 err_ioremap: 5000 destroy_workqueue(adapter->wq); 5001 err_alloc_wq: 5002 free_netdev(netdev); 5003 err_alloc_etherdev: 5004 pci_release_regions(pdev); 5005 err_pci_reg: 5006 err_dma: 5007 pci_disable_device(pdev); 5008 return err; 5009 } 5010 5011 /** 5012 * iavf_suspend - Power management suspend routine 5013 * @dev_d: device info pointer 5014 * 5015 * Called when the system (VM) is entering sleep/suspend. 5016 **/ 5017 static int __maybe_unused iavf_suspend(struct device *dev_d) 5018 { 5019 struct net_device *netdev = dev_get_drvdata(dev_d); 5020 struct iavf_adapter *adapter = netdev_priv(netdev); 5021 5022 netif_device_detach(netdev); 5023 5024 while (!mutex_trylock(&adapter->crit_lock)) 5025 usleep_range(500, 1000); 5026 5027 if (netif_running(netdev)) { 5028 rtnl_lock(); 5029 iavf_down(adapter); 5030 rtnl_unlock(); 5031 } 5032 iavf_free_misc_irq(adapter); 5033 iavf_reset_interrupt_capability(adapter); 5034 5035 mutex_unlock(&adapter->crit_lock); 5036 5037 return 0; 5038 } 5039 5040 /** 5041 * iavf_resume - Power management resume routine 5042 * @dev_d: device info pointer 5043 * 5044 * Called when the system (VM) is resumed from sleep/suspend. 5045 **/ 5046 static int __maybe_unused iavf_resume(struct device *dev_d) 5047 { 5048 struct pci_dev *pdev = to_pci_dev(dev_d); 5049 struct iavf_adapter *adapter; 5050 u32 err; 5051 5052 adapter = iavf_pdev_to_adapter(pdev); 5053 5054 pci_set_master(pdev); 5055 5056 rtnl_lock(); 5057 err = iavf_set_interrupt_capability(adapter); 5058 if (err) { 5059 rtnl_unlock(); 5060 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5061 return err; 5062 } 5063 err = iavf_request_misc_irq(adapter); 5064 rtnl_unlock(); 5065 if (err) { 5066 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5067 return err; 5068 } 5069 5070 queue_work(adapter->wq, &adapter->reset_task); 5071 5072 netif_device_attach(adapter->netdev); 5073 5074 return err; 5075 } 5076 5077 /** 5078 * iavf_remove - Device Removal Routine 5079 * @pdev: PCI device information struct 5080 * 5081 * iavf_remove is called by the PCI subsystem to alert the driver 5082 * that it should release a PCI device. The could be caused by a 5083 * Hot-Plug event, or because the driver is going to be removed from 5084 * memory. 5085 **/ 5086 static void iavf_remove(struct pci_dev *pdev) 5087 { 5088 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5089 struct iavf_fdir_fltr *fdir, *fdirtmp; 5090 struct iavf_vlan_filter *vlf, *vlftmp; 5091 struct iavf_cloud_filter *cf, *cftmp; 5092 struct iavf_adv_rss *rss, *rsstmp; 5093 struct iavf_mac_filter *f, *ftmp; 5094 struct net_device *netdev; 5095 struct iavf_hw *hw; 5096 int err; 5097 5098 netdev = adapter->netdev; 5099 hw = &adapter->hw; 5100 5101 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5102 return; 5103 5104 /* Wait until port initialization is complete. 5105 * There are flows where register/unregister netdev may race. 5106 */ 5107 while (1) { 5108 mutex_lock(&adapter->crit_lock); 5109 if (adapter->state == __IAVF_RUNNING || 5110 adapter->state == __IAVF_DOWN || 5111 adapter->state == __IAVF_INIT_FAILED) { 5112 mutex_unlock(&adapter->crit_lock); 5113 break; 5114 } 5115 /* Simply return if we already went through iavf_shutdown */ 5116 if (adapter->state == __IAVF_REMOVE) { 5117 mutex_unlock(&adapter->crit_lock); 5118 return; 5119 } 5120 5121 mutex_unlock(&adapter->crit_lock); 5122 usleep_range(500, 1000); 5123 } 5124 cancel_delayed_work_sync(&adapter->watchdog_task); 5125 cancel_work_sync(&adapter->finish_config); 5126 5127 rtnl_lock(); 5128 if (adapter->netdev_registered) { 5129 unregister_netdevice(netdev); 5130 adapter->netdev_registered = false; 5131 } 5132 rtnl_unlock(); 5133 5134 if (CLIENT_ALLOWED(adapter)) { 5135 err = iavf_lan_del_device(adapter); 5136 if (err) 5137 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5138 err); 5139 } 5140 5141 mutex_lock(&adapter->crit_lock); 5142 dev_info(&adapter->pdev->dev, "Removing device\n"); 5143 iavf_change_state(adapter, __IAVF_REMOVE); 5144 5145 iavf_request_reset(adapter); 5146 msleep(50); 5147 /* If the FW isn't responding, kick it once, but only once. */ 5148 if (!iavf_asq_done(hw)) { 5149 iavf_request_reset(adapter); 5150 msleep(50); 5151 } 5152 5153 iavf_misc_irq_disable(adapter); 5154 /* Shut down all the garbage mashers on the detention level */ 5155 cancel_work_sync(&adapter->reset_task); 5156 cancel_delayed_work_sync(&adapter->watchdog_task); 5157 cancel_work_sync(&adapter->adminq_task); 5158 cancel_delayed_work_sync(&adapter->client_task); 5159 5160 adapter->aq_required = 0; 5161 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5162 5163 iavf_free_all_tx_resources(adapter); 5164 iavf_free_all_rx_resources(adapter); 5165 iavf_free_misc_irq(adapter); 5166 5167 iavf_reset_interrupt_capability(adapter); 5168 iavf_free_q_vectors(adapter); 5169 5170 iavf_free_rss(adapter); 5171 5172 if (hw->aq.asq.count) 5173 iavf_shutdown_adminq(hw); 5174 5175 /* destroy the locks only once, here */ 5176 mutex_destroy(&hw->aq.arq_mutex); 5177 mutex_destroy(&hw->aq.asq_mutex); 5178 mutex_destroy(&adapter->client_lock); 5179 mutex_unlock(&adapter->crit_lock); 5180 mutex_destroy(&adapter->crit_lock); 5181 5182 iounmap(hw->hw_addr); 5183 pci_release_regions(pdev); 5184 iavf_free_queues(adapter); 5185 kfree(adapter->vf_res); 5186 spin_lock_bh(&adapter->mac_vlan_list_lock); 5187 /* If we got removed before an up/down sequence, we've got a filter 5188 * hanging out there that we need to get rid of. 5189 */ 5190 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5191 list_del(&f->list); 5192 kfree(f); 5193 } 5194 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5195 list) { 5196 list_del(&vlf->list); 5197 kfree(vlf); 5198 } 5199 5200 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5201 5202 spin_lock_bh(&adapter->cloud_filter_list_lock); 5203 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5204 list_del(&cf->list); 5205 kfree(cf); 5206 } 5207 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5208 5209 spin_lock_bh(&adapter->fdir_fltr_lock); 5210 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5211 list_del(&fdir->list); 5212 kfree(fdir); 5213 } 5214 spin_unlock_bh(&adapter->fdir_fltr_lock); 5215 5216 spin_lock_bh(&adapter->adv_rss_lock); 5217 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5218 list) { 5219 list_del(&rss->list); 5220 kfree(rss); 5221 } 5222 spin_unlock_bh(&adapter->adv_rss_lock); 5223 5224 destroy_workqueue(adapter->wq); 5225 5226 free_netdev(netdev); 5227 5228 pci_disable_device(pdev); 5229 } 5230 5231 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5232 5233 static struct pci_driver iavf_driver = { 5234 .name = iavf_driver_name, 5235 .id_table = iavf_pci_tbl, 5236 .probe = iavf_probe, 5237 .remove = iavf_remove, 5238 .driver.pm = &iavf_pm_ops, 5239 .shutdown = iavf_shutdown, 5240 }; 5241 5242 /** 5243 * iavf_init_module - Driver Registration Routine 5244 * 5245 * iavf_init_module is the first routine called when the driver is 5246 * loaded. All it does is register with the PCI subsystem. 5247 **/ 5248 static int __init iavf_init_module(void) 5249 { 5250 pr_info("iavf: %s\n", iavf_driver_string); 5251 5252 pr_info("%s\n", iavf_copyright); 5253 5254 return pci_register_driver(&iavf_driver); 5255 } 5256 5257 module_init(iavf_init_module); 5258 5259 /** 5260 * iavf_exit_module - Driver Exit Cleanup Routine 5261 * 5262 * iavf_exit_module is called just before the driver is removed 5263 * from memory. 5264 **/ 5265 static void __exit iavf_exit_module(void) 5266 { 5267 pci_unregister_driver(&iavf_driver); 5268 } 5269 5270 module_exit(iavf_exit_module); 5271 5272 /* iavf_main.c */ 5273