1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_is_reset_in_progress - Check if a reset is in progress 171 * @adapter: board private structure 172 */ 173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 174 { 175 if (adapter->state == __IAVF_RESETTING || 176 adapter->flags & (IAVF_FLAG_RESET_PENDING | 177 IAVF_FLAG_RESET_NEEDED)) 178 return true; 179 180 return false; 181 } 182 183 /** 184 * iavf_wait_for_reset - Wait for reset to finish. 185 * @adapter: board private structure 186 * 187 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 188 */ 189 int iavf_wait_for_reset(struct iavf_adapter *adapter) 190 { 191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 192 !iavf_is_reset_in_progress(adapter), 193 msecs_to_jiffies(5000)); 194 195 /* If ret < 0 then it means wait was interrupted. 196 * If ret == 0 then it means we got a timeout while waiting 197 * for reset to finish. 198 * If ret > 0 it means reset has finished. 199 */ 200 if (ret > 0) 201 return 0; 202 else if (ret < 0) 203 return -EINTR; 204 else 205 return -EBUSY; 206 } 207 208 /** 209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 210 * @hw: pointer to the HW structure 211 * @mem: ptr to mem struct to fill out 212 * @size: size of memory requested 213 * @alignment: what to align the allocation to 214 **/ 215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 216 struct iavf_dma_mem *mem, 217 u64 size, u32 alignment) 218 { 219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 220 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = ALIGN(size, alignment); 225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 226 (dma_addr_t *)&mem->pa, GFP_KERNEL); 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_dma_mem - wrapper for DMA memory freeing 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 239 { 240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 241 242 if (!mem || !mem->va) 243 return IAVF_ERR_PARAM; 244 dma_free_coherent(&adapter->pdev->dev, mem->size, 245 mem->va, (dma_addr_t)mem->pa); 246 return 0; 247 } 248 249 /** 250 * iavf_allocate_virt_mem - virt memory alloc wrapper 251 * @hw: pointer to the HW structure 252 * @mem: ptr to mem struct to fill out 253 * @size: size of memory requested 254 **/ 255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 256 struct iavf_virt_mem *mem, u32 size) 257 { 258 if (!mem) 259 return IAVF_ERR_PARAM; 260 261 mem->size = size; 262 mem->va = kzalloc(size, GFP_KERNEL); 263 264 if (mem->va) 265 return 0; 266 else 267 return IAVF_ERR_NO_MEMORY; 268 } 269 270 /** 271 * iavf_free_virt_mem - virt memory free wrapper 272 * @hw: pointer to the HW structure 273 * @mem: ptr to mem struct to free 274 **/ 275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 276 { 277 kfree(mem->va); 278 } 279 280 /** 281 * iavf_lock_timeout - try to lock mutex but give up after timeout 282 * @lock: mutex that should be locked 283 * @msecs: timeout in msecs 284 * 285 * Returns 0 on success, negative on failure 286 **/ 287 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 288 { 289 unsigned int wait, delay = 10; 290 291 for (wait = 0; wait < msecs; wait += delay) { 292 if (mutex_trylock(lock)) 293 return 0; 294 295 msleep(delay); 296 } 297 298 return -1; 299 } 300 301 /** 302 * iavf_schedule_reset - Set the flags and schedule a reset event 303 * @adapter: board private structure 304 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 305 **/ 306 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 307 { 308 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 309 !(adapter->flags & 310 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 311 adapter->flags |= flags; 312 queue_work(adapter->wq, &adapter->reset_task); 313 } 314 } 315 316 /** 317 * iavf_schedule_aq_request - Set the flags and schedule aq request 318 * @adapter: board private structure 319 * @flags: requested aq flags 320 **/ 321 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 322 { 323 adapter->aq_required |= flags; 324 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 325 } 326 327 /** 328 * iavf_tx_timeout - Respond to a Tx Hang 329 * @netdev: network interface device structure 330 * @txqueue: queue number that is timing out 331 **/ 332 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 333 { 334 struct iavf_adapter *adapter = netdev_priv(netdev); 335 336 adapter->tx_timeout_count++; 337 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 338 } 339 340 /** 341 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 342 * @adapter: board private structure 343 **/ 344 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 345 { 346 struct iavf_hw *hw = &adapter->hw; 347 348 if (!adapter->msix_entries) 349 return; 350 351 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 352 353 iavf_flush(hw); 354 355 synchronize_irq(adapter->msix_entries[0].vector); 356 } 357 358 /** 359 * iavf_misc_irq_enable - Enable default interrupt generation settings 360 * @adapter: board private structure 361 **/ 362 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 363 { 364 struct iavf_hw *hw = &adapter->hw; 365 366 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 367 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 368 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 369 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_disable - Mask off interrupt generation on the NIC 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_disable(struct iavf_adapter *adapter) 378 { 379 int i; 380 struct iavf_hw *hw = &adapter->hw; 381 382 if (!adapter->msix_entries) 383 return; 384 385 for (i = 1; i < adapter->num_msix_vectors; i++) { 386 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 387 synchronize_irq(adapter->msix_entries[i].vector); 388 } 389 iavf_flush(hw); 390 } 391 392 /** 393 * iavf_irq_enable_queues - Enable interrupt for all queues 394 * @adapter: board private structure 395 **/ 396 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 397 { 398 struct iavf_hw *hw = &adapter->hw; 399 int i; 400 401 for (i = 1; i < adapter->num_msix_vectors; i++) { 402 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 403 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 404 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 405 } 406 } 407 408 /** 409 * iavf_irq_enable - Enable default interrupt generation settings 410 * @adapter: board private structure 411 * @flush: boolean value whether to run rd32() 412 **/ 413 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 414 { 415 struct iavf_hw *hw = &adapter->hw; 416 417 iavf_misc_irq_enable(adapter); 418 iavf_irq_enable_queues(adapter); 419 420 if (flush) 421 iavf_flush(hw); 422 } 423 424 /** 425 * iavf_msix_aq - Interrupt handler for vector 0 426 * @irq: interrupt number 427 * @data: pointer to netdev 428 **/ 429 static irqreturn_t iavf_msix_aq(int irq, void *data) 430 { 431 struct net_device *netdev = data; 432 struct iavf_adapter *adapter = netdev_priv(netdev); 433 struct iavf_hw *hw = &adapter->hw; 434 435 /* handle non-queue interrupts, these reads clear the registers */ 436 rd32(hw, IAVF_VFINT_ICR01); 437 rd32(hw, IAVF_VFINT_ICR0_ENA1); 438 439 if (adapter->state != __IAVF_REMOVE) 440 /* schedule work on the private workqueue */ 441 queue_work(adapter->wq, &adapter->adminq_task); 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 448 * @irq: interrupt number 449 * @data: pointer to a q_vector 450 **/ 451 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 452 { 453 struct iavf_q_vector *q_vector = data; 454 455 if (!q_vector->tx.ring && !q_vector->rx.ring) 456 return IRQ_HANDLED; 457 458 napi_schedule_irqoff(&q_vector->napi); 459 460 return IRQ_HANDLED; 461 } 462 463 /** 464 * iavf_map_vector_to_rxq - associate irqs with rx queues 465 * @adapter: board private structure 466 * @v_idx: interrupt number 467 * @r_idx: queue number 468 **/ 469 static void 470 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 471 { 472 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 473 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 474 struct iavf_hw *hw = &adapter->hw; 475 476 rx_ring->q_vector = q_vector; 477 rx_ring->next = q_vector->rx.ring; 478 rx_ring->vsi = &adapter->vsi; 479 q_vector->rx.ring = rx_ring; 480 q_vector->rx.count++; 481 q_vector->rx.next_update = jiffies + 1; 482 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 483 q_vector->ring_mask |= BIT(r_idx); 484 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 485 q_vector->rx.current_itr >> 1); 486 q_vector->rx.current_itr = q_vector->rx.target_itr; 487 } 488 489 /** 490 * iavf_map_vector_to_txq - associate irqs with tx queues 491 * @adapter: board private structure 492 * @v_idx: interrupt number 493 * @t_idx: queue number 494 **/ 495 static void 496 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 497 { 498 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 499 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 500 struct iavf_hw *hw = &adapter->hw; 501 502 tx_ring->q_vector = q_vector; 503 tx_ring->next = q_vector->tx.ring; 504 tx_ring->vsi = &adapter->vsi; 505 q_vector->tx.ring = tx_ring; 506 q_vector->tx.count++; 507 q_vector->tx.next_update = jiffies + 1; 508 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 509 q_vector->num_ringpairs++; 510 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 511 q_vector->tx.target_itr >> 1); 512 q_vector->tx.current_itr = q_vector->tx.target_itr; 513 } 514 515 /** 516 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 517 * @adapter: board private structure to initialize 518 * 519 * This function maps descriptor rings to the queue-specific vectors 520 * we were allotted through the MSI-X enabling code. Ideally, we'd have 521 * one vector per ring/queue, but on a constrained vector budget, we 522 * group the rings as "efficiently" as possible. You would add new 523 * mapping configurations in here. 524 **/ 525 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 526 { 527 int rings_remaining = adapter->num_active_queues; 528 int ridx = 0, vidx = 0; 529 int q_vectors; 530 531 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 532 533 for (; ridx < rings_remaining; ridx++) { 534 iavf_map_vector_to_rxq(adapter, vidx, ridx); 535 iavf_map_vector_to_txq(adapter, vidx, ridx); 536 537 /* In the case where we have more queues than vectors, continue 538 * round-robin on vectors until all queues are mapped. 539 */ 540 if (++vidx >= q_vectors) 541 vidx = 0; 542 } 543 544 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 545 } 546 547 /** 548 * iavf_irq_affinity_notify - Callback for affinity changes 549 * @notify: context as to what irq was changed 550 * @mask: the new affinity mask 551 * 552 * This is a callback function used by the irq_set_affinity_notifier function 553 * so that we may register to receive changes to the irq affinity masks. 554 **/ 555 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 556 const cpumask_t *mask) 557 { 558 struct iavf_q_vector *q_vector = 559 container_of(notify, struct iavf_q_vector, affinity_notify); 560 561 cpumask_copy(&q_vector->affinity_mask, mask); 562 } 563 564 /** 565 * iavf_irq_affinity_release - Callback for affinity notifier release 566 * @ref: internal core kernel usage 567 * 568 * This is a callback function used by the irq_set_affinity_notifier function 569 * to inform the current notification subscriber that they will no longer 570 * receive notifications. 571 **/ 572 static void iavf_irq_affinity_release(struct kref *ref) {} 573 574 /** 575 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 576 * @adapter: board private structure 577 * @basename: device basename 578 * 579 * Allocates MSI-X vectors for tx and rx handling, and requests 580 * interrupts from the kernel. 581 **/ 582 static int 583 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 584 { 585 unsigned int vector, q_vectors; 586 unsigned int rx_int_idx = 0, tx_int_idx = 0; 587 int irq_num, err; 588 int cpu; 589 590 iavf_irq_disable(adapter); 591 /* Decrement for Other and TCP Timer vectors */ 592 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 593 594 for (vector = 0; vector < q_vectors; vector++) { 595 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 596 597 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 598 599 if (q_vector->tx.ring && q_vector->rx.ring) { 600 snprintf(q_vector->name, sizeof(q_vector->name), 601 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 602 tx_int_idx++; 603 } else if (q_vector->rx.ring) { 604 snprintf(q_vector->name, sizeof(q_vector->name), 605 "iavf-%s-rx-%u", basename, rx_int_idx++); 606 } else if (q_vector->tx.ring) { 607 snprintf(q_vector->name, sizeof(q_vector->name), 608 "iavf-%s-tx-%u", basename, tx_int_idx++); 609 } else { 610 /* skip this unused q_vector */ 611 continue; 612 } 613 err = request_irq(irq_num, 614 iavf_msix_clean_rings, 615 0, 616 q_vector->name, 617 q_vector); 618 if (err) { 619 dev_info(&adapter->pdev->dev, 620 "Request_irq failed, error: %d\n", err); 621 goto free_queue_irqs; 622 } 623 /* register for affinity change notifications */ 624 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 625 q_vector->affinity_notify.release = 626 iavf_irq_affinity_release; 627 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 628 /* Spread the IRQ affinity hints across online CPUs. Note that 629 * get_cpu_mask returns a mask with a permanent lifetime so 630 * it's safe to use as a hint for irq_update_affinity_hint. 631 */ 632 cpu = cpumask_local_spread(q_vector->v_idx, -1); 633 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 634 } 635 636 return 0; 637 638 free_queue_irqs: 639 while (vector) { 640 vector--; 641 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 642 irq_set_affinity_notifier(irq_num, NULL); 643 irq_update_affinity_hint(irq_num, NULL); 644 free_irq(irq_num, &adapter->q_vectors[vector]); 645 } 646 return err; 647 } 648 649 /** 650 * iavf_request_misc_irq - Initialize MSI-X interrupts 651 * @adapter: board private structure 652 * 653 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 654 * vector is only for the admin queue, and stays active even when the netdev 655 * is closed. 656 **/ 657 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 658 { 659 struct net_device *netdev = adapter->netdev; 660 int err; 661 662 snprintf(adapter->misc_vector_name, 663 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 664 dev_name(&adapter->pdev->dev)); 665 err = request_irq(adapter->msix_entries[0].vector, 666 &iavf_msix_aq, 0, 667 adapter->misc_vector_name, netdev); 668 if (err) { 669 dev_err(&adapter->pdev->dev, 670 "request_irq for %s failed: %d\n", 671 adapter->misc_vector_name, err); 672 free_irq(adapter->msix_entries[0].vector, netdev); 673 } 674 return err; 675 } 676 677 /** 678 * iavf_free_traffic_irqs - Free MSI-X interrupts 679 * @adapter: board private structure 680 * 681 * Frees all MSI-X vectors other than 0. 682 **/ 683 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 684 { 685 int vector, irq_num, q_vectors; 686 687 if (!adapter->msix_entries) 688 return; 689 690 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 691 692 for (vector = 0; vector < q_vectors; vector++) { 693 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 694 irq_set_affinity_notifier(irq_num, NULL); 695 irq_update_affinity_hint(irq_num, NULL); 696 free_irq(irq_num, &adapter->q_vectors[vector]); 697 } 698 } 699 700 /** 701 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 702 * @adapter: board private structure 703 * 704 * Frees MSI-X vector 0. 705 **/ 706 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 710 if (!adapter->msix_entries) 711 return; 712 713 free_irq(adapter->msix_entries[0].vector, netdev); 714 } 715 716 /** 717 * iavf_configure_tx - Configure Transmit Unit after Reset 718 * @adapter: board private structure 719 * 720 * Configure the Tx unit of the MAC after a reset. 721 **/ 722 static void iavf_configure_tx(struct iavf_adapter *adapter) 723 { 724 struct iavf_hw *hw = &adapter->hw; 725 int i; 726 727 for (i = 0; i < adapter->num_active_queues; i++) 728 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 729 } 730 731 /** 732 * iavf_configure_rx - Configure Receive Unit after Reset 733 * @adapter: board private structure 734 * 735 * Configure the Rx unit of the MAC after a reset. 736 **/ 737 static void iavf_configure_rx(struct iavf_adapter *adapter) 738 { 739 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 740 struct iavf_hw *hw = &adapter->hw; 741 int i; 742 743 /* Legacy Rx will always default to a 2048 buffer size. */ 744 #if (PAGE_SIZE < 8192) 745 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 746 struct net_device *netdev = adapter->netdev; 747 748 /* For jumbo frames on systems with 4K pages we have to use 749 * an order 1 page, so we might as well increase the size 750 * of our Rx buffer to make better use of the available space 751 */ 752 rx_buf_len = IAVF_RXBUFFER_3072; 753 754 /* We use a 1536 buffer size for configurations with 755 * standard Ethernet mtu. On x86 this gives us enough room 756 * for shared info and 192 bytes of padding. 757 */ 758 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 759 (netdev->mtu <= ETH_DATA_LEN)) 760 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 761 } 762 #endif 763 764 for (i = 0; i < adapter->num_active_queues; i++) { 765 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 766 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 767 768 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 769 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 770 else 771 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 772 } 773 } 774 775 /** 776 * iavf_find_vlan - Search filter list for specific vlan filter 777 * @adapter: board private structure 778 * @vlan: vlan tag 779 * 780 * Returns ptr to the filter object or NULL. Must be called while holding the 781 * mac_vlan_list_lock. 782 **/ 783 static struct 784 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 785 struct iavf_vlan vlan) 786 { 787 struct iavf_vlan_filter *f; 788 789 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 790 if (f->vlan.vid == vlan.vid && 791 f->vlan.tpid == vlan.tpid) 792 return f; 793 } 794 795 return NULL; 796 } 797 798 /** 799 * iavf_add_vlan - Add a vlan filter to the list 800 * @adapter: board private structure 801 * @vlan: VLAN tag 802 * 803 * Returns ptr to the filter object or NULL when no memory available. 804 **/ 805 static struct 806 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 807 struct iavf_vlan vlan) 808 { 809 struct iavf_vlan_filter *f = NULL; 810 811 spin_lock_bh(&adapter->mac_vlan_list_lock); 812 813 f = iavf_find_vlan(adapter, vlan); 814 if (!f) { 815 f = kzalloc(sizeof(*f), GFP_ATOMIC); 816 if (!f) 817 goto clearout; 818 819 f->vlan = vlan; 820 821 list_add_tail(&f->list, &adapter->vlan_filter_list); 822 f->state = IAVF_VLAN_ADD; 823 adapter->num_vlan_filters++; 824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 825 } 826 827 clearout: 828 spin_unlock_bh(&adapter->mac_vlan_list_lock); 829 return f; 830 } 831 832 /** 833 * iavf_del_vlan - Remove a vlan filter from the list 834 * @adapter: board private structure 835 * @vlan: VLAN tag 836 **/ 837 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 838 { 839 struct iavf_vlan_filter *f; 840 841 spin_lock_bh(&adapter->mac_vlan_list_lock); 842 843 f = iavf_find_vlan(adapter, vlan); 844 if (f) { 845 f->state = IAVF_VLAN_REMOVE; 846 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 847 } 848 849 spin_unlock_bh(&adapter->mac_vlan_list_lock); 850 } 851 852 /** 853 * iavf_restore_filters 854 * @adapter: board private structure 855 * 856 * Restore existing non MAC filters when VF netdev comes back up 857 **/ 858 static void iavf_restore_filters(struct iavf_adapter *adapter) 859 { 860 struct iavf_vlan_filter *f; 861 862 /* re-add all VLAN filters */ 863 spin_lock_bh(&adapter->mac_vlan_list_lock); 864 865 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 866 if (f->state == IAVF_VLAN_INACTIVE) 867 f->state = IAVF_VLAN_ADD; 868 } 869 870 spin_unlock_bh(&adapter->mac_vlan_list_lock); 871 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 872 } 873 874 /** 875 * iavf_get_num_vlans_added - get number of VLANs added 876 * @adapter: board private structure 877 */ 878 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 879 { 880 return adapter->num_vlan_filters; 881 } 882 883 /** 884 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 885 * @adapter: board private structure 886 * 887 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 888 * do not impose a limit as that maintains current behavior and for 889 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 890 **/ 891 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 892 { 893 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 894 * never been a limit on the VF driver side 895 */ 896 if (VLAN_ALLOWED(adapter)) 897 return VLAN_N_VID; 898 else if (VLAN_V2_ALLOWED(adapter)) 899 return adapter->vlan_v2_caps.filtering.max_filters; 900 901 return 0; 902 } 903 904 /** 905 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 906 * @adapter: board private structure 907 **/ 908 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 909 { 910 if (iavf_get_num_vlans_added(adapter) < 911 iavf_get_max_vlans_allowed(adapter)) 912 return false; 913 914 return true; 915 } 916 917 /** 918 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 919 * @netdev: network device struct 920 * @proto: unused protocol data 921 * @vid: VLAN tag 922 **/ 923 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 924 __always_unused __be16 proto, u16 vid) 925 { 926 struct iavf_adapter *adapter = netdev_priv(netdev); 927 928 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 929 if (!vid) 930 return 0; 931 932 if (!VLAN_FILTERING_ALLOWED(adapter)) 933 return -EIO; 934 935 if (iavf_max_vlans_added(adapter)) { 936 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 937 iavf_get_max_vlans_allowed(adapter)); 938 return -EIO; 939 } 940 941 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 942 return -ENOMEM; 943 944 return 0; 945 } 946 947 /** 948 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 949 * @netdev: network device struct 950 * @proto: unused protocol data 951 * @vid: VLAN tag 952 **/ 953 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 954 __always_unused __be16 proto, u16 vid) 955 { 956 struct iavf_adapter *adapter = netdev_priv(netdev); 957 958 /* We do not track VLAN 0 filter */ 959 if (!vid) 960 return 0; 961 962 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 963 return 0; 964 } 965 966 /** 967 * iavf_find_filter - Search filter list for specific mac filter 968 * @adapter: board private structure 969 * @macaddr: the MAC address 970 * 971 * Returns ptr to the filter object or NULL. Must be called while holding the 972 * mac_vlan_list_lock. 973 **/ 974 static struct 975 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 976 const u8 *macaddr) 977 { 978 struct iavf_mac_filter *f; 979 980 if (!macaddr) 981 return NULL; 982 983 list_for_each_entry(f, &adapter->mac_filter_list, list) { 984 if (ether_addr_equal(macaddr, f->macaddr)) 985 return f; 986 } 987 return NULL; 988 } 989 990 /** 991 * iavf_add_filter - Add a mac filter to the filter list 992 * @adapter: board private structure 993 * @macaddr: the MAC address 994 * 995 * Returns ptr to the filter object or NULL when no memory available. 996 **/ 997 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 998 const u8 *macaddr) 999 { 1000 struct iavf_mac_filter *f; 1001 1002 if (!macaddr) 1003 return NULL; 1004 1005 f = iavf_find_filter(adapter, macaddr); 1006 if (!f) { 1007 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1008 if (!f) 1009 return f; 1010 1011 ether_addr_copy(f->macaddr, macaddr); 1012 1013 list_add_tail(&f->list, &adapter->mac_filter_list); 1014 f->add = true; 1015 f->add_handled = false; 1016 f->is_new_mac = true; 1017 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1018 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1019 } else { 1020 f->remove = false; 1021 } 1022 1023 return f; 1024 } 1025 1026 /** 1027 * iavf_replace_primary_mac - Replace current primary address 1028 * @adapter: board private structure 1029 * @new_mac: new MAC address to be applied 1030 * 1031 * Replace current dev_addr and send request to PF for removal of previous 1032 * primary MAC address filter and addition of new primary MAC filter. 1033 * Return 0 for success, -ENOMEM for failure. 1034 * 1035 * Do not call this with mac_vlan_list_lock! 1036 **/ 1037 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1038 const u8 *new_mac) 1039 { 1040 struct iavf_hw *hw = &adapter->hw; 1041 struct iavf_mac_filter *new_f; 1042 struct iavf_mac_filter *old_f; 1043 1044 spin_lock_bh(&adapter->mac_vlan_list_lock); 1045 1046 new_f = iavf_add_filter(adapter, new_mac); 1047 if (!new_f) { 1048 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1049 return -ENOMEM; 1050 } 1051 1052 old_f = iavf_find_filter(adapter, hw->mac.addr); 1053 if (old_f) { 1054 old_f->is_primary = false; 1055 old_f->remove = true; 1056 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1057 } 1058 /* Always send the request to add if changing primary MAC, 1059 * even if filter is already present on the list 1060 */ 1061 new_f->is_primary = true; 1062 new_f->add = true; 1063 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1064 ether_addr_copy(hw->mac.addr, new_mac); 1065 1066 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1067 1068 /* schedule the watchdog task to immediately process the request */ 1069 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1070 return 0; 1071 } 1072 1073 /** 1074 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1075 * @netdev: network interface device structure 1076 * @macaddr: MAC address to set 1077 * 1078 * Returns true on success, false on failure 1079 */ 1080 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1081 const u8 *macaddr) 1082 { 1083 struct iavf_adapter *adapter = netdev_priv(netdev); 1084 struct iavf_mac_filter *f; 1085 bool ret = false; 1086 1087 spin_lock_bh(&adapter->mac_vlan_list_lock); 1088 1089 f = iavf_find_filter(adapter, macaddr); 1090 1091 if (!f || (!f->add && f->add_handled)) 1092 ret = true; 1093 1094 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1095 1096 return ret; 1097 } 1098 1099 /** 1100 * iavf_set_mac - NDO callback to set port MAC address 1101 * @netdev: network interface device structure 1102 * @p: pointer to an address structure 1103 * 1104 * Returns 0 on success, negative on failure 1105 */ 1106 static int iavf_set_mac(struct net_device *netdev, void *p) 1107 { 1108 struct iavf_adapter *adapter = netdev_priv(netdev); 1109 struct sockaddr *addr = p; 1110 int ret; 1111 1112 if (!is_valid_ether_addr(addr->sa_data)) 1113 return -EADDRNOTAVAIL; 1114 1115 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1116 1117 if (ret) 1118 return ret; 1119 1120 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1121 iavf_is_mac_set_handled(netdev, addr->sa_data), 1122 msecs_to_jiffies(2500)); 1123 1124 /* If ret < 0 then it means wait was interrupted. 1125 * If ret == 0 then it means we got a timeout. 1126 * else it means we got response for set MAC from PF, 1127 * check if netdev MAC was updated to requested MAC, 1128 * if yes then set MAC succeeded otherwise it failed return -EACCES 1129 */ 1130 if (ret < 0) 1131 return ret; 1132 1133 if (!ret) 1134 return -EAGAIN; 1135 1136 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1137 return -EACCES; 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1144 * @netdev: the netdevice 1145 * @addr: address to add 1146 * 1147 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1148 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1149 */ 1150 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1151 { 1152 struct iavf_adapter *adapter = netdev_priv(netdev); 1153 1154 if (iavf_add_filter(adapter, addr)) 1155 return 0; 1156 else 1157 return -ENOMEM; 1158 } 1159 1160 /** 1161 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1162 * @netdev: the netdevice 1163 * @addr: address to add 1164 * 1165 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1166 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1167 */ 1168 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1169 { 1170 struct iavf_adapter *adapter = netdev_priv(netdev); 1171 struct iavf_mac_filter *f; 1172 1173 /* Under some circumstances, we might receive a request to delete 1174 * our own device address from our uc list. Because we store the 1175 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1176 * such requests and not delete our device address from this list. 1177 */ 1178 if (ether_addr_equal(addr, netdev->dev_addr)) 1179 return 0; 1180 1181 f = iavf_find_filter(adapter, addr); 1182 if (f) { 1183 f->remove = true; 1184 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1185 } 1186 return 0; 1187 } 1188 1189 /** 1190 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1191 * @adapter: device specific adapter 1192 */ 1193 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1194 { 1195 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1196 (IFF_PROMISC | IFF_ALLMULTI); 1197 } 1198 1199 /** 1200 * iavf_set_rx_mode - NDO callback to set the netdev filters 1201 * @netdev: network interface device structure 1202 **/ 1203 static void iavf_set_rx_mode(struct net_device *netdev) 1204 { 1205 struct iavf_adapter *adapter = netdev_priv(netdev); 1206 1207 spin_lock_bh(&adapter->mac_vlan_list_lock); 1208 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1209 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1210 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1211 1212 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1213 if (iavf_promiscuous_mode_changed(adapter)) 1214 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1215 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1216 } 1217 1218 /** 1219 * iavf_napi_enable_all - enable NAPI on all queue vectors 1220 * @adapter: board private structure 1221 **/ 1222 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1223 { 1224 int q_idx; 1225 struct iavf_q_vector *q_vector; 1226 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1227 1228 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1229 struct napi_struct *napi; 1230 1231 q_vector = &adapter->q_vectors[q_idx]; 1232 napi = &q_vector->napi; 1233 napi_enable(napi); 1234 } 1235 } 1236 1237 /** 1238 * iavf_napi_disable_all - disable NAPI on all queue vectors 1239 * @adapter: board private structure 1240 **/ 1241 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1242 { 1243 int q_idx; 1244 struct iavf_q_vector *q_vector; 1245 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1246 1247 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1248 q_vector = &adapter->q_vectors[q_idx]; 1249 napi_disable(&q_vector->napi); 1250 } 1251 } 1252 1253 /** 1254 * iavf_configure - set up transmit and receive data structures 1255 * @adapter: board private structure 1256 **/ 1257 static void iavf_configure(struct iavf_adapter *adapter) 1258 { 1259 struct net_device *netdev = adapter->netdev; 1260 int i; 1261 1262 iavf_set_rx_mode(netdev); 1263 1264 iavf_configure_tx(adapter); 1265 iavf_configure_rx(adapter); 1266 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1267 1268 for (i = 0; i < adapter->num_active_queues; i++) { 1269 struct iavf_ring *ring = &adapter->rx_rings[i]; 1270 1271 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1272 } 1273 } 1274 1275 /** 1276 * iavf_up_complete - Finish the last steps of bringing up a connection 1277 * @adapter: board private structure 1278 * 1279 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1280 **/ 1281 static void iavf_up_complete(struct iavf_adapter *adapter) 1282 { 1283 iavf_change_state(adapter, __IAVF_RUNNING); 1284 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1285 1286 iavf_napi_enable_all(adapter); 1287 1288 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1289 if (CLIENT_ENABLED(adapter)) 1290 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1291 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1292 } 1293 1294 /** 1295 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1296 * yet and mark other to be removed. 1297 * @adapter: board private structure 1298 **/ 1299 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1300 { 1301 struct iavf_vlan_filter *vlf, *vlftmp; 1302 struct iavf_mac_filter *f, *ftmp; 1303 1304 spin_lock_bh(&adapter->mac_vlan_list_lock); 1305 /* clear the sync flag on all filters */ 1306 __dev_uc_unsync(adapter->netdev, NULL); 1307 __dev_mc_unsync(adapter->netdev, NULL); 1308 1309 /* remove all MAC filters */ 1310 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1311 list) { 1312 if (f->add) { 1313 list_del(&f->list); 1314 kfree(f); 1315 } else { 1316 f->remove = true; 1317 } 1318 } 1319 1320 /* disable all VLAN filters */ 1321 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1322 list) 1323 vlf->state = IAVF_VLAN_DISABLE; 1324 1325 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1326 } 1327 1328 /** 1329 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1330 * mark other to be removed. 1331 * @adapter: board private structure 1332 **/ 1333 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1334 { 1335 struct iavf_cloud_filter *cf, *cftmp; 1336 1337 /* remove all cloud filters */ 1338 spin_lock_bh(&adapter->cloud_filter_list_lock); 1339 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1340 list) { 1341 if (cf->add) { 1342 list_del(&cf->list); 1343 kfree(cf); 1344 adapter->num_cloud_filters--; 1345 } else { 1346 cf->del = true; 1347 } 1348 } 1349 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1350 } 1351 1352 /** 1353 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1354 * other to be removed. 1355 * @adapter: board private structure 1356 **/ 1357 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1358 { 1359 struct iavf_fdir_fltr *fdir, *fdirtmp; 1360 1361 /* remove all Flow Director filters */ 1362 spin_lock_bh(&adapter->fdir_fltr_lock); 1363 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1364 list) { 1365 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1366 list_del(&fdir->list); 1367 kfree(fdir); 1368 adapter->fdir_active_fltr--; 1369 } else { 1370 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1371 } 1372 } 1373 spin_unlock_bh(&adapter->fdir_fltr_lock); 1374 } 1375 1376 /** 1377 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1378 * other to be removed. 1379 * @adapter: board private structure 1380 **/ 1381 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1382 { 1383 struct iavf_adv_rss *rss, *rsstmp; 1384 1385 /* remove all advance RSS configuration */ 1386 spin_lock_bh(&adapter->adv_rss_lock); 1387 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1388 list) { 1389 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1390 list_del(&rss->list); 1391 kfree(rss); 1392 } else { 1393 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1394 } 1395 } 1396 spin_unlock_bh(&adapter->adv_rss_lock); 1397 } 1398 1399 /** 1400 * iavf_down - Shutdown the connection processing 1401 * @adapter: board private structure 1402 * 1403 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1404 **/ 1405 void iavf_down(struct iavf_adapter *adapter) 1406 { 1407 struct net_device *netdev = adapter->netdev; 1408 1409 if (adapter->state <= __IAVF_DOWN_PENDING) 1410 return; 1411 1412 netif_carrier_off(netdev); 1413 netif_tx_disable(netdev); 1414 adapter->link_up = false; 1415 iavf_napi_disable_all(adapter); 1416 iavf_irq_disable(adapter); 1417 1418 iavf_clear_mac_vlan_filters(adapter); 1419 iavf_clear_cloud_filters(adapter); 1420 iavf_clear_fdir_filters(adapter); 1421 iavf_clear_adv_rss_conf(adapter); 1422 1423 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1424 !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) { 1425 /* cancel any current operation */ 1426 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1427 /* Schedule operations to close down the HW. Don't wait 1428 * here for this to complete. The watchdog is still running 1429 * and it will take care of this. 1430 */ 1431 if (!list_empty(&adapter->mac_filter_list)) 1432 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1433 if (!list_empty(&adapter->vlan_filter_list)) 1434 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1435 if (!list_empty(&adapter->cloud_filter_list)) 1436 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1437 if (!list_empty(&adapter->fdir_list_head)) 1438 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1439 if (!list_empty(&adapter->adv_rss_list_head)) 1440 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1441 } 1442 1443 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1444 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1445 } 1446 1447 /** 1448 * iavf_acquire_msix_vectors - Setup the MSIX capability 1449 * @adapter: board private structure 1450 * @vectors: number of vectors to request 1451 * 1452 * Work with the OS to set up the MSIX vectors needed. 1453 * 1454 * Returns 0 on success, negative on failure 1455 **/ 1456 static int 1457 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1458 { 1459 int err, vector_threshold; 1460 1461 /* We'll want at least 3 (vector_threshold): 1462 * 0) Other (Admin Queue and link, mostly) 1463 * 1) TxQ[0] Cleanup 1464 * 2) RxQ[0] Cleanup 1465 */ 1466 vector_threshold = MIN_MSIX_COUNT; 1467 1468 /* The more we get, the more we will assign to Tx/Rx Cleanup 1469 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1470 * Right now, we simply care about how many we'll get; we'll 1471 * set them up later while requesting irq's. 1472 */ 1473 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1474 vector_threshold, vectors); 1475 if (err < 0) { 1476 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1477 kfree(adapter->msix_entries); 1478 adapter->msix_entries = NULL; 1479 return err; 1480 } 1481 1482 /* Adjust for only the vectors we'll use, which is minimum 1483 * of max_msix_q_vectors + NONQ_VECS, or the number of 1484 * vectors we were allocated. 1485 */ 1486 adapter->num_msix_vectors = err; 1487 return 0; 1488 } 1489 1490 /** 1491 * iavf_free_queues - Free memory for all rings 1492 * @adapter: board private structure to initialize 1493 * 1494 * Free all of the memory associated with queue pairs. 1495 **/ 1496 static void iavf_free_queues(struct iavf_adapter *adapter) 1497 { 1498 if (!adapter->vsi_res) 1499 return; 1500 adapter->num_active_queues = 0; 1501 kfree(adapter->tx_rings); 1502 adapter->tx_rings = NULL; 1503 kfree(adapter->rx_rings); 1504 adapter->rx_rings = NULL; 1505 } 1506 1507 /** 1508 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1509 * @adapter: board private structure 1510 * 1511 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1512 * stripped in certain descriptor fields. Instead of checking the offload 1513 * capability bits in the hot path, cache the location the ring specific 1514 * flags. 1515 */ 1516 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1517 { 1518 int i; 1519 1520 for (i = 0; i < adapter->num_active_queues; i++) { 1521 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1522 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1523 1524 /* prevent multiple L2TAG bits being set after VFR */ 1525 tx_ring->flags &= 1526 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1527 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1528 rx_ring->flags &= 1529 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1530 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1531 1532 if (VLAN_ALLOWED(adapter)) { 1533 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 } else if (VLAN_V2_ALLOWED(adapter)) { 1536 struct virtchnl_vlan_supported_caps *stripping_support; 1537 struct virtchnl_vlan_supported_caps *insertion_support; 1538 1539 stripping_support = 1540 &adapter->vlan_v2_caps.offloads.stripping_support; 1541 insertion_support = 1542 &adapter->vlan_v2_caps.offloads.insertion_support; 1543 1544 if (stripping_support->outer) { 1545 if (stripping_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1547 rx_ring->flags |= 1548 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1549 else if (stripping_support->outer & 1550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1551 rx_ring->flags |= 1552 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1553 } else if (stripping_support->inner) { 1554 if (stripping_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1556 rx_ring->flags |= 1557 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1558 else if (stripping_support->inner & 1559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1560 rx_ring->flags |= 1561 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1562 } 1563 1564 if (insertion_support->outer) { 1565 if (insertion_support->outer & 1566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1567 tx_ring->flags |= 1568 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1569 else if (insertion_support->outer & 1570 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1571 tx_ring->flags |= 1572 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1573 } else if (insertion_support->inner) { 1574 if (insertion_support->inner & 1575 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1576 tx_ring->flags |= 1577 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1578 else if (insertion_support->inner & 1579 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1580 tx_ring->flags |= 1581 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1582 } 1583 } 1584 } 1585 } 1586 1587 /** 1588 * iavf_alloc_queues - Allocate memory for all rings 1589 * @adapter: board private structure to initialize 1590 * 1591 * We allocate one ring per queue at run-time since we don't know the 1592 * number of queues at compile-time. The polling_netdev array is 1593 * intended for Multiqueue, but should work fine with a single queue. 1594 **/ 1595 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1596 { 1597 int i, num_active_queues; 1598 1599 /* If we're in reset reallocating queues we don't actually know yet for 1600 * certain the PF gave us the number of queues we asked for but we'll 1601 * assume it did. Once basic reset is finished we'll confirm once we 1602 * start negotiating config with PF. 1603 */ 1604 if (adapter->num_req_queues) 1605 num_active_queues = adapter->num_req_queues; 1606 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1607 adapter->num_tc) 1608 num_active_queues = adapter->ch_config.total_qps; 1609 else 1610 num_active_queues = min_t(int, 1611 adapter->vsi_res->num_queue_pairs, 1612 (int)(num_online_cpus())); 1613 1614 1615 adapter->tx_rings = kcalloc(num_active_queues, 1616 sizeof(struct iavf_ring), GFP_KERNEL); 1617 if (!adapter->tx_rings) 1618 goto err_out; 1619 adapter->rx_rings = kcalloc(num_active_queues, 1620 sizeof(struct iavf_ring), GFP_KERNEL); 1621 if (!adapter->rx_rings) 1622 goto err_out; 1623 1624 for (i = 0; i < num_active_queues; i++) { 1625 struct iavf_ring *tx_ring; 1626 struct iavf_ring *rx_ring; 1627 1628 tx_ring = &adapter->tx_rings[i]; 1629 1630 tx_ring->queue_index = i; 1631 tx_ring->netdev = adapter->netdev; 1632 tx_ring->dev = &adapter->pdev->dev; 1633 tx_ring->count = adapter->tx_desc_count; 1634 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1635 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1636 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1637 1638 rx_ring = &adapter->rx_rings[i]; 1639 rx_ring->queue_index = i; 1640 rx_ring->netdev = adapter->netdev; 1641 rx_ring->dev = &adapter->pdev->dev; 1642 rx_ring->count = adapter->rx_desc_count; 1643 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1644 } 1645 1646 adapter->num_active_queues = num_active_queues; 1647 1648 iavf_set_queue_vlan_tag_loc(adapter); 1649 1650 return 0; 1651 1652 err_out: 1653 iavf_free_queues(adapter); 1654 return -ENOMEM; 1655 } 1656 1657 /** 1658 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1659 * @adapter: board private structure to initialize 1660 * 1661 * Attempt to configure the interrupts using the best available 1662 * capabilities of the hardware and the kernel. 1663 **/ 1664 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1665 { 1666 int vector, v_budget; 1667 int pairs = 0; 1668 int err = 0; 1669 1670 if (!adapter->vsi_res) { 1671 err = -EIO; 1672 goto out; 1673 } 1674 pairs = adapter->num_active_queues; 1675 1676 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1677 * us much good if we have more vectors than CPUs. However, we already 1678 * limit the total number of queues by the number of CPUs so we do not 1679 * need any further limiting here. 1680 */ 1681 v_budget = min_t(int, pairs + NONQ_VECS, 1682 (int)adapter->vf_res->max_vectors); 1683 1684 adapter->msix_entries = kcalloc(v_budget, 1685 sizeof(struct msix_entry), GFP_KERNEL); 1686 if (!adapter->msix_entries) { 1687 err = -ENOMEM; 1688 goto out; 1689 } 1690 1691 for (vector = 0; vector < v_budget; vector++) 1692 adapter->msix_entries[vector].entry = vector; 1693 1694 err = iavf_acquire_msix_vectors(adapter, v_budget); 1695 if (!err) 1696 iavf_schedule_finish_config(adapter); 1697 1698 out: 1699 return err; 1700 } 1701 1702 /** 1703 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1704 * @adapter: board private structure 1705 * 1706 * Return 0 on success, negative on failure 1707 **/ 1708 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1709 { 1710 struct iavf_aqc_get_set_rss_key_data *rss_key = 1711 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1712 struct iavf_hw *hw = &adapter->hw; 1713 enum iavf_status status; 1714 1715 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1716 /* bail because we already have a command pending */ 1717 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1718 adapter->current_op); 1719 return -EBUSY; 1720 } 1721 1722 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1723 if (status) { 1724 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1725 iavf_stat_str(hw, status), 1726 iavf_aq_str(hw, hw->aq.asq_last_status)); 1727 return iavf_status_to_errno(status); 1728 1729 } 1730 1731 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1732 adapter->rss_lut, adapter->rss_lut_size); 1733 if (status) { 1734 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1735 iavf_stat_str(hw, status), 1736 iavf_aq_str(hw, hw->aq.asq_last_status)); 1737 return iavf_status_to_errno(status); 1738 } 1739 1740 return 0; 1741 1742 } 1743 1744 /** 1745 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1746 * @adapter: board private structure 1747 * 1748 * Returns 0 on success, negative on failure 1749 **/ 1750 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1751 { 1752 struct iavf_hw *hw = &adapter->hw; 1753 u32 *dw; 1754 u16 i; 1755 1756 dw = (u32 *)adapter->rss_key; 1757 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1758 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1759 1760 dw = (u32 *)adapter->rss_lut; 1761 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1762 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1763 1764 iavf_flush(hw); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * iavf_config_rss - Configure RSS keys and lut 1771 * @adapter: board private structure 1772 * 1773 * Returns 0 on success, negative on failure 1774 **/ 1775 int iavf_config_rss(struct iavf_adapter *adapter) 1776 { 1777 1778 if (RSS_PF(adapter)) { 1779 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1780 IAVF_FLAG_AQ_SET_RSS_KEY; 1781 return 0; 1782 } else if (RSS_AQ(adapter)) { 1783 return iavf_config_rss_aq(adapter); 1784 } else { 1785 return iavf_config_rss_reg(adapter); 1786 } 1787 } 1788 1789 /** 1790 * iavf_fill_rss_lut - Fill the lut with default values 1791 * @adapter: board private structure 1792 **/ 1793 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1794 { 1795 u16 i; 1796 1797 for (i = 0; i < adapter->rss_lut_size; i++) 1798 adapter->rss_lut[i] = i % adapter->num_active_queues; 1799 } 1800 1801 /** 1802 * iavf_init_rss - Prepare for RSS 1803 * @adapter: board private structure 1804 * 1805 * Return 0 on success, negative on failure 1806 **/ 1807 static int iavf_init_rss(struct iavf_adapter *adapter) 1808 { 1809 struct iavf_hw *hw = &adapter->hw; 1810 1811 if (!RSS_PF(adapter)) { 1812 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1813 if (adapter->vf_res->vf_cap_flags & 1814 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1815 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1816 else 1817 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1818 1819 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1820 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1821 } 1822 1823 iavf_fill_rss_lut(adapter); 1824 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1825 1826 return iavf_config_rss(adapter); 1827 } 1828 1829 /** 1830 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1831 * @adapter: board private structure to initialize 1832 * 1833 * We allocate one q_vector per queue interrupt. If allocation fails we 1834 * return -ENOMEM. 1835 **/ 1836 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1837 { 1838 int q_idx = 0, num_q_vectors; 1839 struct iavf_q_vector *q_vector; 1840 1841 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1842 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1843 GFP_KERNEL); 1844 if (!adapter->q_vectors) 1845 return -ENOMEM; 1846 1847 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1848 q_vector = &adapter->q_vectors[q_idx]; 1849 q_vector->adapter = adapter; 1850 q_vector->vsi = &adapter->vsi; 1851 q_vector->v_idx = q_idx; 1852 q_vector->reg_idx = q_idx; 1853 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1854 netif_napi_add(adapter->netdev, &q_vector->napi, 1855 iavf_napi_poll); 1856 } 1857 1858 return 0; 1859 } 1860 1861 /** 1862 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1863 * @adapter: board private structure to initialize 1864 * 1865 * This function frees the memory allocated to the q_vectors. In addition if 1866 * NAPI is enabled it will delete any references to the NAPI struct prior 1867 * to freeing the q_vector. 1868 **/ 1869 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1870 { 1871 int q_idx, num_q_vectors; 1872 1873 if (!adapter->q_vectors) 1874 return; 1875 1876 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1877 1878 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1879 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1880 1881 netif_napi_del(&q_vector->napi); 1882 } 1883 kfree(adapter->q_vectors); 1884 adapter->q_vectors = NULL; 1885 } 1886 1887 /** 1888 * iavf_reset_interrupt_capability - Reset MSIX setup 1889 * @adapter: board private structure 1890 * 1891 **/ 1892 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1893 { 1894 if (!adapter->msix_entries) 1895 return; 1896 1897 pci_disable_msix(adapter->pdev); 1898 kfree(adapter->msix_entries); 1899 adapter->msix_entries = NULL; 1900 } 1901 1902 /** 1903 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1904 * @adapter: board private structure to initialize 1905 * 1906 **/ 1907 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1908 { 1909 int err; 1910 1911 err = iavf_alloc_queues(adapter); 1912 if (err) { 1913 dev_err(&adapter->pdev->dev, 1914 "Unable to allocate memory for queues\n"); 1915 goto err_alloc_queues; 1916 } 1917 1918 err = iavf_set_interrupt_capability(adapter); 1919 if (err) { 1920 dev_err(&adapter->pdev->dev, 1921 "Unable to setup interrupt capabilities\n"); 1922 goto err_set_interrupt; 1923 } 1924 1925 err = iavf_alloc_q_vectors(adapter); 1926 if (err) { 1927 dev_err(&adapter->pdev->dev, 1928 "Unable to allocate memory for queue vectors\n"); 1929 goto err_alloc_q_vectors; 1930 } 1931 1932 /* If we've made it so far while ADq flag being ON, then we haven't 1933 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1934 * resources have been allocated in the reset path. 1935 * Now we can truly claim that ADq is enabled. 1936 */ 1937 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1938 adapter->num_tc) 1939 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1940 adapter->num_tc); 1941 1942 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1943 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1944 adapter->num_active_queues); 1945 1946 return 0; 1947 err_alloc_q_vectors: 1948 iavf_reset_interrupt_capability(adapter); 1949 err_set_interrupt: 1950 iavf_free_queues(adapter); 1951 err_alloc_queues: 1952 return err; 1953 } 1954 1955 /** 1956 * iavf_free_rss - Free memory used by RSS structs 1957 * @adapter: board private structure 1958 **/ 1959 static void iavf_free_rss(struct iavf_adapter *adapter) 1960 { 1961 kfree(adapter->rss_key); 1962 adapter->rss_key = NULL; 1963 1964 kfree(adapter->rss_lut); 1965 adapter->rss_lut = NULL; 1966 } 1967 1968 /** 1969 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1970 * @adapter: board private structure 1971 * @running: true if adapter->state == __IAVF_RUNNING 1972 * 1973 * Returns 0 on success, negative on failure 1974 **/ 1975 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 int err; 1979 1980 if (running) 1981 iavf_free_traffic_irqs(adapter); 1982 iavf_free_misc_irq(adapter); 1983 iavf_reset_interrupt_capability(adapter); 1984 iavf_free_q_vectors(adapter); 1985 iavf_free_queues(adapter); 1986 1987 err = iavf_init_interrupt_scheme(adapter); 1988 if (err) 1989 goto err; 1990 1991 netif_tx_stop_all_queues(netdev); 1992 1993 err = iavf_request_misc_irq(adapter); 1994 if (err) 1995 goto err; 1996 1997 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1998 1999 iavf_map_rings_to_vectors(adapter); 2000 err: 2001 return err; 2002 } 2003 2004 /** 2005 * iavf_finish_config - do all netdev work that needs RTNL 2006 * @work: our work_struct 2007 * 2008 * Do work that needs both RTNL and crit_lock. 2009 **/ 2010 static void iavf_finish_config(struct work_struct *work) 2011 { 2012 struct iavf_adapter *adapter; 2013 int pairs, err; 2014 2015 adapter = container_of(work, struct iavf_adapter, finish_config); 2016 2017 /* Always take RTNL first to prevent circular lock dependency */ 2018 rtnl_lock(); 2019 mutex_lock(&adapter->crit_lock); 2020 2021 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2022 adapter->netdev_registered && 2023 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2024 netdev_update_features(adapter->netdev); 2025 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2026 } 2027 2028 switch (adapter->state) { 2029 case __IAVF_DOWN: 2030 if (!adapter->netdev_registered) { 2031 err = register_netdevice(adapter->netdev); 2032 if (err) { 2033 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2034 err); 2035 2036 /* go back and try again.*/ 2037 iavf_free_rss(adapter); 2038 iavf_free_misc_irq(adapter); 2039 iavf_reset_interrupt_capability(adapter); 2040 iavf_change_state(adapter, 2041 __IAVF_INIT_CONFIG_ADAPTER); 2042 goto out; 2043 } 2044 adapter->netdev_registered = true; 2045 } 2046 2047 /* Set the real number of queues when reset occurs while 2048 * state == __IAVF_DOWN 2049 */ 2050 fallthrough; 2051 case __IAVF_RUNNING: 2052 pairs = adapter->num_active_queues; 2053 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2054 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2055 break; 2056 2057 default: 2058 break; 2059 } 2060 2061 out: 2062 mutex_unlock(&adapter->crit_lock); 2063 rtnl_unlock(); 2064 } 2065 2066 /** 2067 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2068 * @adapter: board private structure 2069 **/ 2070 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2071 { 2072 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2073 queue_work(adapter->wq, &adapter->finish_config); 2074 } 2075 2076 /** 2077 * iavf_process_aq_command - process aq_required flags 2078 * and sends aq command 2079 * @adapter: pointer to iavf adapter structure 2080 * 2081 * Returns 0 on success 2082 * Returns error code if no command was sent 2083 * or error code if the command failed. 2084 **/ 2085 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2086 { 2087 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2088 return iavf_send_vf_config_msg(adapter); 2089 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2090 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2091 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2092 iavf_disable_queues(adapter); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2097 iavf_map_queues(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2102 iavf_add_ether_addrs(adapter); 2103 return 0; 2104 } 2105 2106 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2107 iavf_add_vlans(adapter); 2108 return 0; 2109 } 2110 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2112 iavf_del_ether_addrs(adapter); 2113 return 0; 2114 } 2115 2116 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2117 iavf_del_vlans(adapter); 2118 return 0; 2119 } 2120 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2122 iavf_enable_vlan_stripping(adapter); 2123 return 0; 2124 } 2125 2126 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2127 iavf_disable_vlan_stripping(adapter); 2128 return 0; 2129 } 2130 2131 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2132 iavf_configure_queues(adapter); 2133 return 0; 2134 } 2135 2136 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2137 iavf_enable_queues(adapter); 2138 return 0; 2139 } 2140 2141 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2142 /* This message goes straight to the firmware, not the 2143 * PF, so we don't have to set current_op as we will 2144 * not get a response through the ARQ. 2145 */ 2146 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2150 iavf_get_hena(adapter); 2151 return 0; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2154 iavf_set_hena(adapter); 2155 return 0; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2158 iavf_set_rss_key(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2162 iavf_set_rss_lut(adapter); 2163 return 0; 2164 } 2165 2166 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2167 iavf_set_promiscuous(adapter); 2168 return 0; 2169 } 2170 2171 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2172 iavf_enable_channels(adapter); 2173 return 0; 2174 } 2175 2176 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2177 iavf_disable_channels(adapter); 2178 return 0; 2179 } 2180 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2181 iavf_add_cloud_filter(adapter); 2182 return 0; 2183 } 2184 2185 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2186 iavf_del_cloud_filter(adapter); 2187 return 0; 2188 } 2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2190 iavf_del_cloud_filter(adapter); 2191 return 0; 2192 } 2193 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2194 iavf_add_cloud_filter(adapter); 2195 return 0; 2196 } 2197 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2198 iavf_add_fdir_filter(adapter); 2199 return IAVF_SUCCESS; 2200 } 2201 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2202 iavf_del_fdir_filter(adapter); 2203 return IAVF_SUCCESS; 2204 } 2205 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2206 iavf_add_adv_rss_cfg(adapter); 2207 return 0; 2208 } 2209 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2210 iavf_del_adv_rss_cfg(adapter); 2211 return 0; 2212 } 2213 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2214 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2215 return 0; 2216 } 2217 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2218 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2219 return 0; 2220 } 2221 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2222 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2223 return 0; 2224 } 2225 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2226 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2227 return 0; 2228 } 2229 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2230 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2231 return 0; 2232 } 2233 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2234 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2235 return 0; 2236 } 2237 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2238 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2239 return 0; 2240 } 2241 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2242 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2243 return 0; 2244 } 2245 2246 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2247 iavf_request_stats(adapter); 2248 return 0; 2249 } 2250 2251 return -EAGAIN; 2252 } 2253 2254 /** 2255 * iavf_set_vlan_offload_features - set VLAN offload configuration 2256 * @adapter: board private structure 2257 * @prev_features: previous features used for comparison 2258 * @features: updated features used for configuration 2259 * 2260 * Set the aq_required bit(s) based on the requested features passed in to 2261 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2262 * the watchdog if any changes are requested to expedite the request via 2263 * virtchnl. 2264 **/ 2265 static void 2266 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2267 netdev_features_t prev_features, 2268 netdev_features_t features) 2269 { 2270 bool enable_stripping = true, enable_insertion = true; 2271 u16 vlan_ethertype = 0; 2272 u64 aq_required = 0; 2273 2274 /* keep cases separate because one ethertype for offloads can be 2275 * disabled at the same time as another is disabled, so check for an 2276 * enabled ethertype first, then check for disabled. Default to 2277 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2278 * stripping. 2279 */ 2280 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2281 vlan_ethertype = ETH_P_8021AD; 2282 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2283 vlan_ethertype = ETH_P_8021Q; 2284 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2285 vlan_ethertype = ETH_P_8021AD; 2286 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2287 vlan_ethertype = ETH_P_8021Q; 2288 else 2289 vlan_ethertype = ETH_P_8021Q; 2290 2291 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2292 enable_stripping = false; 2293 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2294 enable_insertion = false; 2295 2296 if (VLAN_ALLOWED(adapter)) { 2297 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2298 * stripping via virtchnl. VLAN insertion can be toggled on the 2299 * netdev, but it doesn't require a virtchnl message 2300 */ 2301 if (enable_stripping) 2302 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2303 else 2304 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2305 2306 } else if (VLAN_V2_ALLOWED(adapter)) { 2307 switch (vlan_ethertype) { 2308 case ETH_P_8021Q: 2309 if (enable_stripping) 2310 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2311 else 2312 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2313 2314 if (enable_insertion) 2315 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2316 else 2317 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2318 break; 2319 case ETH_P_8021AD: 2320 if (enable_stripping) 2321 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2322 else 2323 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2324 2325 if (enable_insertion) 2326 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2327 else 2328 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2329 break; 2330 } 2331 } 2332 2333 if (aq_required) { 2334 adapter->aq_required |= aq_required; 2335 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2336 } 2337 } 2338 2339 /** 2340 * iavf_startup - first step of driver startup 2341 * @adapter: board private structure 2342 * 2343 * Function process __IAVF_STARTUP driver state. 2344 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2345 * when fails the state is changed to __IAVF_INIT_FAILED 2346 **/ 2347 static void iavf_startup(struct iavf_adapter *adapter) 2348 { 2349 struct pci_dev *pdev = adapter->pdev; 2350 struct iavf_hw *hw = &adapter->hw; 2351 enum iavf_status status; 2352 int ret; 2353 2354 WARN_ON(adapter->state != __IAVF_STARTUP); 2355 2356 /* driver loaded, probe complete */ 2357 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2358 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2359 status = iavf_set_mac_type(hw); 2360 if (status) { 2361 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2362 goto err; 2363 } 2364 2365 ret = iavf_check_reset_complete(hw); 2366 if (ret) { 2367 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2368 ret); 2369 goto err; 2370 } 2371 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2372 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2373 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2374 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2375 2376 status = iavf_init_adminq(hw); 2377 if (status) { 2378 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2379 status); 2380 goto err; 2381 } 2382 ret = iavf_send_api_ver(adapter); 2383 if (ret) { 2384 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2385 iavf_shutdown_adminq(hw); 2386 goto err; 2387 } 2388 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2389 return; 2390 err: 2391 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2392 } 2393 2394 /** 2395 * iavf_init_version_check - second step of driver startup 2396 * @adapter: board private structure 2397 * 2398 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2399 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2400 * when fails the state is changed to __IAVF_INIT_FAILED 2401 **/ 2402 static void iavf_init_version_check(struct iavf_adapter *adapter) 2403 { 2404 struct pci_dev *pdev = adapter->pdev; 2405 struct iavf_hw *hw = &adapter->hw; 2406 int err = -EAGAIN; 2407 2408 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2409 2410 if (!iavf_asq_done(hw)) { 2411 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2412 iavf_shutdown_adminq(hw); 2413 iavf_change_state(adapter, __IAVF_STARTUP); 2414 goto err; 2415 } 2416 2417 /* aq msg sent, awaiting reply */ 2418 err = iavf_verify_api_ver(adapter); 2419 if (err) { 2420 if (err == -EALREADY) 2421 err = iavf_send_api_ver(adapter); 2422 else 2423 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2424 adapter->pf_version.major, 2425 adapter->pf_version.minor, 2426 VIRTCHNL_VERSION_MAJOR, 2427 VIRTCHNL_VERSION_MINOR); 2428 goto err; 2429 } 2430 err = iavf_send_vf_config_msg(adapter); 2431 if (err) { 2432 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2433 err); 2434 goto err; 2435 } 2436 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2437 return; 2438 err: 2439 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2440 } 2441 2442 /** 2443 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2444 * @adapter: board private structure 2445 */ 2446 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2447 { 2448 int i, num_req_queues = adapter->num_req_queues; 2449 struct iavf_vsi *vsi = &adapter->vsi; 2450 2451 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2452 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2453 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2454 } 2455 if (!adapter->vsi_res) { 2456 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2457 return -ENODEV; 2458 } 2459 2460 if (num_req_queues && 2461 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2462 /* Problem. The PF gave us fewer queues than what we had 2463 * negotiated in our request. Need a reset to see if we can't 2464 * get back to a working state. 2465 */ 2466 dev_err(&adapter->pdev->dev, 2467 "Requested %d queues, but PF only gave us %d.\n", 2468 num_req_queues, 2469 adapter->vsi_res->num_queue_pairs); 2470 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2471 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2472 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2473 2474 return -EAGAIN; 2475 } 2476 adapter->num_req_queues = 0; 2477 adapter->vsi.id = adapter->vsi_res->vsi_id; 2478 2479 adapter->vsi.back = adapter; 2480 adapter->vsi.base_vector = 1; 2481 vsi->netdev = adapter->netdev; 2482 vsi->qs_handle = adapter->vsi_res->qset_handle; 2483 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2484 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2485 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2486 } else { 2487 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2488 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2489 } 2490 2491 return 0; 2492 } 2493 2494 /** 2495 * iavf_init_get_resources - third step of driver startup 2496 * @adapter: board private structure 2497 * 2498 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2499 * finishes driver initialization procedure. 2500 * When success the state is changed to __IAVF_DOWN 2501 * when fails the state is changed to __IAVF_INIT_FAILED 2502 **/ 2503 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2504 { 2505 struct pci_dev *pdev = adapter->pdev; 2506 struct iavf_hw *hw = &adapter->hw; 2507 int err; 2508 2509 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2510 /* aq msg sent, awaiting reply */ 2511 if (!adapter->vf_res) { 2512 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2513 GFP_KERNEL); 2514 if (!adapter->vf_res) { 2515 err = -ENOMEM; 2516 goto err; 2517 } 2518 } 2519 err = iavf_get_vf_config(adapter); 2520 if (err == -EALREADY) { 2521 err = iavf_send_vf_config_msg(adapter); 2522 goto err; 2523 } else if (err == -EINVAL) { 2524 /* We only get -EINVAL if the device is in a very bad 2525 * state or if we've been disabled for previous bad 2526 * behavior. Either way, we're done now. 2527 */ 2528 iavf_shutdown_adminq(hw); 2529 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2530 return; 2531 } 2532 if (err) { 2533 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2534 goto err_alloc; 2535 } 2536 2537 err = iavf_parse_vf_resource_msg(adapter); 2538 if (err) { 2539 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2540 err); 2541 goto err_alloc; 2542 } 2543 /* Some features require additional messages to negotiate extended 2544 * capabilities. These are processed in sequence by the 2545 * __IAVF_INIT_EXTENDED_CAPS driver state. 2546 */ 2547 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2548 2549 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2550 return; 2551 2552 err_alloc: 2553 kfree(adapter->vf_res); 2554 adapter->vf_res = NULL; 2555 err: 2556 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2557 } 2558 2559 /** 2560 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2561 * @adapter: board private structure 2562 * 2563 * Function processes send of the extended VLAN V2 capability message to the 2564 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2565 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2566 */ 2567 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2568 { 2569 int ret; 2570 2571 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2572 2573 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2574 if (ret && ret == -EOPNOTSUPP) { 2575 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2576 * we did not send the capability exchange message and do not 2577 * expect a response. 2578 */ 2579 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2580 } 2581 2582 /* We sent the message, so move on to the next step */ 2583 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2584 } 2585 2586 /** 2587 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2588 * @adapter: board private structure 2589 * 2590 * Function processes receipt of the extended VLAN V2 capability message from 2591 * the PF. 2592 **/ 2593 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2594 { 2595 int ret; 2596 2597 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2598 2599 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2600 2601 ret = iavf_get_vf_vlan_v2_caps(adapter); 2602 if (ret) 2603 goto err; 2604 2605 /* We've processed receipt of the VLAN V2 caps message */ 2606 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2607 return; 2608 err: 2609 /* We didn't receive a reply. Make sure we try sending again when 2610 * __IAVF_INIT_FAILED attempts to recover. 2611 */ 2612 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2613 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2614 } 2615 2616 /** 2617 * iavf_init_process_extended_caps - Part of driver startup 2618 * @adapter: board private structure 2619 * 2620 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2621 * handles negotiating capabilities for features which require an additional 2622 * message. 2623 * 2624 * Once all extended capabilities exchanges are finished, the driver will 2625 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2626 */ 2627 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2628 { 2629 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2630 2631 /* Process capability exchange for VLAN V2 */ 2632 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2633 iavf_init_send_offload_vlan_v2_caps(adapter); 2634 return; 2635 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2636 iavf_init_recv_offload_vlan_v2_caps(adapter); 2637 return; 2638 } 2639 2640 /* When we reach here, no further extended capabilities exchanges are 2641 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2642 */ 2643 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2644 } 2645 2646 /** 2647 * iavf_init_config_adapter - last part of driver startup 2648 * @adapter: board private structure 2649 * 2650 * After all the supported capabilities are negotiated, then the 2651 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2652 */ 2653 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2654 { 2655 struct net_device *netdev = adapter->netdev; 2656 struct pci_dev *pdev = adapter->pdev; 2657 int err; 2658 2659 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2660 2661 if (iavf_process_config(adapter)) 2662 goto err; 2663 2664 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2665 2666 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2667 2668 netdev->netdev_ops = &iavf_netdev_ops; 2669 iavf_set_ethtool_ops(netdev); 2670 netdev->watchdog_timeo = 5 * HZ; 2671 2672 /* MTU range: 68 - 9710 */ 2673 netdev->min_mtu = ETH_MIN_MTU; 2674 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2675 2676 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2677 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2678 adapter->hw.mac.addr); 2679 eth_hw_addr_random(netdev); 2680 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2681 } else { 2682 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2683 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2684 } 2685 2686 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2687 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2688 err = iavf_init_interrupt_scheme(adapter); 2689 if (err) 2690 goto err_sw_init; 2691 iavf_map_rings_to_vectors(adapter); 2692 if (adapter->vf_res->vf_cap_flags & 2693 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2694 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2695 2696 err = iavf_request_misc_irq(adapter); 2697 if (err) 2698 goto err_sw_init; 2699 2700 netif_carrier_off(netdev); 2701 adapter->link_up = false; 2702 netif_tx_stop_all_queues(netdev); 2703 2704 if (CLIENT_ALLOWED(adapter)) { 2705 err = iavf_lan_add_device(adapter); 2706 if (err) 2707 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2708 err); 2709 } 2710 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2711 if (netdev->features & NETIF_F_GRO) 2712 dev_info(&pdev->dev, "GRO is enabled\n"); 2713 2714 iavf_change_state(adapter, __IAVF_DOWN); 2715 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2716 2717 iavf_misc_irq_enable(adapter); 2718 wake_up(&adapter->down_waitqueue); 2719 2720 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2721 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2722 if (!adapter->rss_key || !adapter->rss_lut) { 2723 err = -ENOMEM; 2724 goto err_mem; 2725 } 2726 if (RSS_AQ(adapter)) 2727 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2728 else 2729 iavf_init_rss(adapter); 2730 2731 if (VLAN_V2_ALLOWED(adapter)) 2732 /* request initial VLAN offload settings */ 2733 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2734 2735 iavf_schedule_finish_config(adapter); 2736 return; 2737 2738 err_mem: 2739 iavf_free_rss(adapter); 2740 iavf_free_misc_irq(adapter); 2741 err_sw_init: 2742 iavf_reset_interrupt_capability(adapter); 2743 err: 2744 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2745 } 2746 2747 /** 2748 * iavf_watchdog_task - Periodic call-back task 2749 * @work: pointer to work_struct 2750 **/ 2751 static void iavf_watchdog_task(struct work_struct *work) 2752 { 2753 struct iavf_adapter *adapter = container_of(work, 2754 struct iavf_adapter, 2755 watchdog_task.work); 2756 struct iavf_hw *hw = &adapter->hw; 2757 u32 reg_val; 2758 2759 if (!mutex_trylock(&adapter->crit_lock)) { 2760 if (adapter->state == __IAVF_REMOVE) 2761 return; 2762 2763 goto restart_watchdog; 2764 } 2765 2766 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2767 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2768 2769 switch (adapter->state) { 2770 case __IAVF_STARTUP: 2771 iavf_startup(adapter); 2772 mutex_unlock(&adapter->crit_lock); 2773 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2774 msecs_to_jiffies(30)); 2775 return; 2776 case __IAVF_INIT_VERSION_CHECK: 2777 iavf_init_version_check(adapter); 2778 mutex_unlock(&adapter->crit_lock); 2779 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2780 msecs_to_jiffies(30)); 2781 return; 2782 case __IAVF_INIT_GET_RESOURCES: 2783 iavf_init_get_resources(adapter); 2784 mutex_unlock(&adapter->crit_lock); 2785 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2786 msecs_to_jiffies(1)); 2787 return; 2788 case __IAVF_INIT_EXTENDED_CAPS: 2789 iavf_init_process_extended_caps(adapter); 2790 mutex_unlock(&adapter->crit_lock); 2791 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2792 msecs_to_jiffies(1)); 2793 return; 2794 case __IAVF_INIT_CONFIG_ADAPTER: 2795 iavf_init_config_adapter(adapter); 2796 mutex_unlock(&adapter->crit_lock); 2797 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2798 msecs_to_jiffies(1)); 2799 return; 2800 case __IAVF_INIT_FAILED: 2801 if (test_bit(__IAVF_IN_REMOVE_TASK, 2802 &adapter->crit_section)) { 2803 /* Do not update the state and do not reschedule 2804 * watchdog task, iavf_remove should handle this state 2805 * as it can loop forever 2806 */ 2807 mutex_unlock(&adapter->crit_lock); 2808 return; 2809 } 2810 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2811 dev_err(&adapter->pdev->dev, 2812 "Failed to communicate with PF; waiting before retry\n"); 2813 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2814 iavf_shutdown_adminq(hw); 2815 mutex_unlock(&adapter->crit_lock); 2816 queue_delayed_work(adapter->wq, 2817 &adapter->watchdog_task, (5 * HZ)); 2818 return; 2819 } 2820 /* Try again from failed step*/ 2821 iavf_change_state(adapter, adapter->last_state); 2822 mutex_unlock(&adapter->crit_lock); 2823 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2824 return; 2825 case __IAVF_COMM_FAILED: 2826 if (test_bit(__IAVF_IN_REMOVE_TASK, 2827 &adapter->crit_section)) { 2828 /* Set state to __IAVF_INIT_FAILED and perform remove 2829 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2830 * doesn't bring the state back to __IAVF_COMM_FAILED. 2831 */ 2832 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2833 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2834 mutex_unlock(&adapter->crit_lock); 2835 return; 2836 } 2837 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2838 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2839 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2840 reg_val == VIRTCHNL_VFR_COMPLETED) { 2841 /* A chance for redemption! */ 2842 dev_err(&adapter->pdev->dev, 2843 "Hardware came out of reset. Attempting reinit.\n"); 2844 /* When init task contacts the PF and 2845 * gets everything set up again, it'll restart the 2846 * watchdog for us. Down, boy. Sit. Stay. Woof. 2847 */ 2848 iavf_change_state(adapter, __IAVF_STARTUP); 2849 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2850 } 2851 adapter->aq_required = 0; 2852 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2853 mutex_unlock(&adapter->crit_lock); 2854 queue_delayed_work(adapter->wq, 2855 &adapter->watchdog_task, 2856 msecs_to_jiffies(10)); 2857 return; 2858 case __IAVF_RESETTING: 2859 mutex_unlock(&adapter->crit_lock); 2860 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2861 HZ * 2); 2862 return; 2863 case __IAVF_DOWN: 2864 case __IAVF_DOWN_PENDING: 2865 case __IAVF_TESTING: 2866 case __IAVF_RUNNING: 2867 if (adapter->current_op) { 2868 if (!iavf_asq_done(hw)) { 2869 dev_dbg(&adapter->pdev->dev, 2870 "Admin queue timeout\n"); 2871 iavf_send_api_ver(adapter); 2872 } 2873 } else { 2874 int ret = iavf_process_aq_command(adapter); 2875 2876 /* An error will be returned if no commands were 2877 * processed; use this opportunity to update stats 2878 * if the error isn't -ENOTSUPP 2879 */ 2880 if (ret && ret != -EOPNOTSUPP && 2881 adapter->state == __IAVF_RUNNING) 2882 iavf_request_stats(adapter); 2883 } 2884 if (adapter->state == __IAVF_RUNNING) 2885 iavf_detect_recover_hung(&adapter->vsi); 2886 break; 2887 case __IAVF_REMOVE: 2888 default: 2889 mutex_unlock(&adapter->crit_lock); 2890 return; 2891 } 2892 2893 /* check for hw reset */ 2894 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2895 if (!reg_val) { 2896 adapter->aq_required = 0; 2897 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2898 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2899 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2900 mutex_unlock(&adapter->crit_lock); 2901 queue_delayed_work(adapter->wq, 2902 &adapter->watchdog_task, HZ * 2); 2903 return; 2904 } 2905 2906 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2907 mutex_unlock(&adapter->crit_lock); 2908 restart_watchdog: 2909 if (adapter->state >= __IAVF_DOWN) 2910 queue_work(adapter->wq, &adapter->adminq_task); 2911 if (adapter->aq_required) 2912 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2913 msecs_to_jiffies(20)); 2914 else 2915 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2916 HZ * 2); 2917 } 2918 2919 /** 2920 * iavf_disable_vf - disable VF 2921 * @adapter: board private structure 2922 * 2923 * Set communication failed flag and free all resources. 2924 * NOTE: This function is expected to be called with crit_lock being held. 2925 **/ 2926 static void iavf_disable_vf(struct iavf_adapter *adapter) 2927 { 2928 struct iavf_mac_filter *f, *ftmp; 2929 struct iavf_vlan_filter *fv, *fvtmp; 2930 struct iavf_cloud_filter *cf, *cftmp; 2931 2932 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2933 2934 /* We don't use netif_running() because it may be true prior to 2935 * ndo_open() returning, so we can't assume it means all our open 2936 * tasks have finished, since we're not holding the rtnl_lock here. 2937 */ 2938 if (adapter->state == __IAVF_RUNNING) { 2939 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2940 netif_carrier_off(adapter->netdev); 2941 netif_tx_disable(adapter->netdev); 2942 adapter->link_up = false; 2943 iavf_napi_disable_all(adapter); 2944 iavf_irq_disable(adapter); 2945 iavf_free_traffic_irqs(adapter); 2946 iavf_free_all_tx_resources(adapter); 2947 iavf_free_all_rx_resources(adapter); 2948 } 2949 2950 spin_lock_bh(&adapter->mac_vlan_list_lock); 2951 2952 /* Delete all of the filters */ 2953 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2954 list_del(&f->list); 2955 kfree(f); 2956 } 2957 2958 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2959 list_del(&fv->list); 2960 kfree(fv); 2961 } 2962 adapter->num_vlan_filters = 0; 2963 2964 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2965 2966 spin_lock_bh(&adapter->cloud_filter_list_lock); 2967 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2968 list_del(&cf->list); 2969 kfree(cf); 2970 adapter->num_cloud_filters--; 2971 } 2972 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2973 2974 iavf_free_misc_irq(adapter); 2975 iavf_reset_interrupt_capability(adapter); 2976 iavf_free_q_vectors(adapter); 2977 iavf_free_queues(adapter); 2978 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2979 iavf_shutdown_adminq(&adapter->hw); 2980 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2981 iavf_change_state(adapter, __IAVF_DOWN); 2982 wake_up(&adapter->down_waitqueue); 2983 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2984 } 2985 2986 /** 2987 * iavf_reset_task - Call-back task to handle hardware reset 2988 * @work: pointer to work_struct 2989 * 2990 * During reset we need to shut down and reinitialize the admin queue 2991 * before we can use it to communicate with the PF again. We also clear 2992 * and reinit the rings because that context is lost as well. 2993 **/ 2994 static void iavf_reset_task(struct work_struct *work) 2995 { 2996 struct iavf_adapter *adapter = container_of(work, 2997 struct iavf_adapter, 2998 reset_task); 2999 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3000 struct net_device *netdev = adapter->netdev; 3001 struct iavf_hw *hw = &adapter->hw; 3002 struct iavf_mac_filter *f, *ftmp; 3003 struct iavf_cloud_filter *cf; 3004 enum iavf_status status; 3005 u32 reg_val; 3006 int i = 0, err; 3007 bool running; 3008 3009 /* When device is being removed it doesn't make sense to run the reset 3010 * task, just return in such a case. 3011 */ 3012 if (!mutex_trylock(&adapter->crit_lock)) { 3013 if (adapter->state != __IAVF_REMOVE) 3014 queue_work(adapter->wq, &adapter->reset_task); 3015 3016 return; 3017 } 3018 3019 while (!mutex_trylock(&adapter->client_lock)) 3020 usleep_range(500, 1000); 3021 if (CLIENT_ENABLED(adapter)) { 3022 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 3023 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 3024 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 3025 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 3026 cancel_delayed_work_sync(&adapter->client_task); 3027 iavf_notify_client_close(&adapter->vsi, true); 3028 } 3029 iavf_misc_irq_disable(adapter); 3030 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3031 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3032 /* Restart the AQ here. If we have been reset but didn't 3033 * detect it, or if the PF had to reinit, our AQ will be hosed. 3034 */ 3035 iavf_shutdown_adminq(hw); 3036 iavf_init_adminq(hw); 3037 iavf_request_reset(adapter); 3038 } 3039 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3040 3041 /* poll until we see the reset actually happen */ 3042 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3043 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3044 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3045 if (!reg_val) 3046 break; 3047 usleep_range(5000, 10000); 3048 } 3049 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3050 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3051 goto continue_reset; /* act like the reset happened */ 3052 } 3053 3054 /* wait until the reset is complete and the PF is responding to us */ 3055 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3056 /* sleep first to make sure a minimum wait time is met */ 3057 msleep(IAVF_RESET_WAIT_MS); 3058 3059 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3060 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3061 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3062 break; 3063 } 3064 3065 pci_set_master(adapter->pdev); 3066 pci_restore_msi_state(adapter->pdev); 3067 3068 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3069 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3070 reg_val); 3071 iavf_disable_vf(adapter); 3072 mutex_unlock(&adapter->client_lock); 3073 mutex_unlock(&adapter->crit_lock); 3074 return; /* Do not attempt to reinit. It's dead, Jim. */ 3075 } 3076 3077 continue_reset: 3078 /* We don't use netif_running() because it may be true prior to 3079 * ndo_open() returning, so we can't assume it means all our open 3080 * tasks have finished, since we're not holding the rtnl_lock here. 3081 */ 3082 running = adapter->state == __IAVF_RUNNING; 3083 3084 if (running) { 3085 netif_carrier_off(netdev); 3086 netif_tx_stop_all_queues(netdev); 3087 adapter->link_up = false; 3088 iavf_napi_disable_all(adapter); 3089 } 3090 iavf_irq_disable(adapter); 3091 3092 iavf_change_state(adapter, __IAVF_RESETTING); 3093 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3094 3095 /* free the Tx/Rx rings and descriptors, might be better to just 3096 * re-use them sometime in the future 3097 */ 3098 iavf_free_all_rx_resources(adapter); 3099 iavf_free_all_tx_resources(adapter); 3100 3101 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3102 /* kill and reinit the admin queue */ 3103 iavf_shutdown_adminq(hw); 3104 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3105 status = iavf_init_adminq(hw); 3106 if (status) { 3107 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3108 status); 3109 goto reset_err; 3110 } 3111 adapter->aq_required = 0; 3112 3113 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3114 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3115 err = iavf_reinit_interrupt_scheme(adapter, running); 3116 if (err) 3117 goto reset_err; 3118 } 3119 3120 if (RSS_AQ(adapter)) { 3121 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3122 } else { 3123 err = iavf_init_rss(adapter); 3124 if (err) 3125 goto reset_err; 3126 } 3127 3128 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3129 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3130 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3131 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3132 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3133 * been successfully sent and negotiated 3134 */ 3135 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3136 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3137 3138 spin_lock_bh(&adapter->mac_vlan_list_lock); 3139 3140 /* Delete filter for the current MAC address, it could have 3141 * been changed by the PF via administratively set MAC. 3142 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3143 */ 3144 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3145 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3146 list_del(&f->list); 3147 kfree(f); 3148 } 3149 } 3150 /* re-add all MAC filters */ 3151 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3152 f->add = true; 3153 } 3154 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3155 3156 /* check if TCs are running and re-add all cloud filters */ 3157 spin_lock_bh(&adapter->cloud_filter_list_lock); 3158 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3159 adapter->num_tc) { 3160 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3161 cf->add = true; 3162 } 3163 } 3164 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3165 3166 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3167 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3168 iavf_misc_irq_enable(adapter); 3169 3170 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3171 3172 /* We were running when the reset started, so we need to restore some 3173 * state here. 3174 */ 3175 if (running) { 3176 /* allocate transmit descriptors */ 3177 err = iavf_setup_all_tx_resources(adapter); 3178 if (err) 3179 goto reset_err; 3180 3181 /* allocate receive descriptors */ 3182 err = iavf_setup_all_rx_resources(adapter); 3183 if (err) 3184 goto reset_err; 3185 3186 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3187 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3188 err = iavf_request_traffic_irqs(adapter, netdev->name); 3189 if (err) 3190 goto reset_err; 3191 3192 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3193 } 3194 3195 iavf_configure(adapter); 3196 3197 /* iavf_up_complete() will switch device back 3198 * to __IAVF_RUNNING 3199 */ 3200 iavf_up_complete(adapter); 3201 3202 iavf_irq_enable(adapter, true); 3203 } else { 3204 iavf_change_state(adapter, __IAVF_DOWN); 3205 wake_up(&adapter->down_waitqueue); 3206 } 3207 3208 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3209 3210 wake_up(&adapter->reset_waitqueue); 3211 mutex_unlock(&adapter->client_lock); 3212 mutex_unlock(&adapter->crit_lock); 3213 3214 return; 3215 reset_err: 3216 if (running) { 3217 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3218 iavf_free_traffic_irqs(adapter); 3219 } 3220 iavf_disable_vf(adapter); 3221 3222 mutex_unlock(&adapter->client_lock); 3223 mutex_unlock(&adapter->crit_lock); 3224 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3225 } 3226 3227 /** 3228 * iavf_adminq_task - worker thread to clean the admin queue 3229 * @work: pointer to work_struct containing our data 3230 **/ 3231 static void iavf_adminq_task(struct work_struct *work) 3232 { 3233 struct iavf_adapter *adapter = 3234 container_of(work, struct iavf_adapter, adminq_task); 3235 struct iavf_hw *hw = &adapter->hw; 3236 struct iavf_arq_event_info event; 3237 enum virtchnl_ops v_op; 3238 enum iavf_status ret, v_ret; 3239 u32 val, oldval; 3240 u16 pending; 3241 3242 if (!mutex_trylock(&adapter->crit_lock)) { 3243 if (adapter->state == __IAVF_REMOVE) 3244 return; 3245 3246 queue_work(adapter->wq, &adapter->adminq_task); 3247 goto out; 3248 } 3249 3250 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3251 goto unlock; 3252 3253 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3254 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3255 if (!event.msg_buf) 3256 goto unlock; 3257 3258 do { 3259 ret = iavf_clean_arq_element(hw, &event, &pending); 3260 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3261 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3262 3263 if (ret || !v_op) 3264 break; /* No event to process or error cleaning ARQ */ 3265 3266 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3267 event.msg_len); 3268 if (pending != 0) 3269 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3270 } while (pending); 3271 3272 if (iavf_is_reset_in_progress(adapter)) 3273 goto freedom; 3274 3275 /* check for error indications */ 3276 val = rd32(hw, hw->aq.arq.len); 3277 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3278 goto freedom; 3279 oldval = val; 3280 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3281 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3282 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3283 } 3284 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3285 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3286 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3287 } 3288 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3289 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3290 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3291 } 3292 if (oldval != val) 3293 wr32(hw, hw->aq.arq.len, val); 3294 3295 val = rd32(hw, hw->aq.asq.len); 3296 oldval = val; 3297 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3298 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3299 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3300 } 3301 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3302 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3303 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3304 } 3305 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3306 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3307 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3308 } 3309 if (oldval != val) 3310 wr32(hw, hw->aq.asq.len, val); 3311 3312 freedom: 3313 kfree(event.msg_buf); 3314 unlock: 3315 mutex_unlock(&adapter->crit_lock); 3316 out: 3317 /* re-enable Admin queue interrupt cause */ 3318 iavf_misc_irq_enable(adapter); 3319 } 3320 3321 /** 3322 * iavf_client_task - worker thread to perform client work 3323 * @work: pointer to work_struct containing our data 3324 * 3325 * This task handles client interactions. Because client calls can be 3326 * reentrant, we can't handle them in the watchdog. 3327 **/ 3328 static void iavf_client_task(struct work_struct *work) 3329 { 3330 struct iavf_adapter *adapter = 3331 container_of(work, struct iavf_adapter, client_task.work); 3332 3333 /* If we can't get the client bit, just give up. We'll be rescheduled 3334 * later. 3335 */ 3336 3337 if (!mutex_trylock(&adapter->client_lock)) 3338 return; 3339 3340 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3341 iavf_client_subtask(adapter); 3342 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3343 goto out; 3344 } 3345 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3346 iavf_notify_client_l2_params(&adapter->vsi); 3347 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3348 goto out; 3349 } 3350 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3351 iavf_notify_client_close(&adapter->vsi, false); 3352 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3353 goto out; 3354 } 3355 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3356 iavf_notify_client_open(&adapter->vsi); 3357 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3358 } 3359 out: 3360 mutex_unlock(&adapter->client_lock); 3361 } 3362 3363 /** 3364 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3365 * @adapter: board private structure 3366 * 3367 * Free all transmit software resources 3368 **/ 3369 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3370 { 3371 int i; 3372 3373 if (!adapter->tx_rings) 3374 return; 3375 3376 for (i = 0; i < adapter->num_active_queues; i++) 3377 if (adapter->tx_rings[i].desc) 3378 iavf_free_tx_resources(&adapter->tx_rings[i]); 3379 } 3380 3381 /** 3382 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3383 * @adapter: board private structure 3384 * 3385 * If this function returns with an error, then it's possible one or 3386 * more of the rings is populated (while the rest are not). It is the 3387 * callers duty to clean those orphaned rings. 3388 * 3389 * Return 0 on success, negative on failure 3390 **/ 3391 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3392 { 3393 int i, err = 0; 3394 3395 for (i = 0; i < adapter->num_active_queues; i++) { 3396 adapter->tx_rings[i].count = adapter->tx_desc_count; 3397 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3398 if (!err) 3399 continue; 3400 dev_err(&adapter->pdev->dev, 3401 "Allocation for Tx Queue %u failed\n", i); 3402 break; 3403 } 3404 3405 return err; 3406 } 3407 3408 /** 3409 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3410 * @adapter: board private structure 3411 * 3412 * If this function returns with an error, then it's possible one or 3413 * more of the rings is populated (while the rest are not). It is the 3414 * callers duty to clean those orphaned rings. 3415 * 3416 * Return 0 on success, negative on failure 3417 **/ 3418 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3419 { 3420 int i, err = 0; 3421 3422 for (i = 0; i < adapter->num_active_queues; i++) { 3423 adapter->rx_rings[i].count = adapter->rx_desc_count; 3424 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3425 if (!err) 3426 continue; 3427 dev_err(&adapter->pdev->dev, 3428 "Allocation for Rx Queue %u failed\n", i); 3429 break; 3430 } 3431 return err; 3432 } 3433 3434 /** 3435 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3436 * @adapter: board private structure 3437 * 3438 * Free all receive software resources 3439 **/ 3440 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3441 { 3442 int i; 3443 3444 if (!adapter->rx_rings) 3445 return; 3446 3447 for (i = 0; i < adapter->num_active_queues; i++) 3448 if (adapter->rx_rings[i].desc) 3449 iavf_free_rx_resources(&adapter->rx_rings[i]); 3450 } 3451 3452 /** 3453 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3454 * @adapter: board private structure 3455 * @max_tx_rate: max Tx bw for a tc 3456 **/ 3457 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3458 u64 max_tx_rate) 3459 { 3460 int speed = 0, ret = 0; 3461 3462 if (ADV_LINK_SUPPORT(adapter)) { 3463 if (adapter->link_speed_mbps < U32_MAX) { 3464 speed = adapter->link_speed_mbps; 3465 goto validate_bw; 3466 } else { 3467 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3468 return -EINVAL; 3469 } 3470 } 3471 3472 switch (adapter->link_speed) { 3473 case VIRTCHNL_LINK_SPEED_40GB: 3474 speed = SPEED_40000; 3475 break; 3476 case VIRTCHNL_LINK_SPEED_25GB: 3477 speed = SPEED_25000; 3478 break; 3479 case VIRTCHNL_LINK_SPEED_20GB: 3480 speed = SPEED_20000; 3481 break; 3482 case VIRTCHNL_LINK_SPEED_10GB: 3483 speed = SPEED_10000; 3484 break; 3485 case VIRTCHNL_LINK_SPEED_5GB: 3486 speed = SPEED_5000; 3487 break; 3488 case VIRTCHNL_LINK_SPEED_2_5GB: 3489 speed = SPEED_2500; 3490 break; 3491 case VIRTCHNL_LINK_SPEED_1GB: 3492 speed = SPEED_1000; 3493 break; 3494 case VIRTCHNL_LINK_SPEED_100MB: 3495 speed = SPEED_100; 3496 break; 3497 default: 3498 break; 3499 } 3500 3501 validate_bw: 3502 if (max_tx_rate > speed) { 3503 dev_err(&adapter->pdev->dev, 3504 "Invalid tx rate specified\n"); 3505 ret = -EINVAL; 3506 } 3507 3508 return ret; 3509 } 3510 3511 /** 3512 * iavf_validate_ch_config - validate queue mapping info 3513 * @adapter: board private structure 3514 * @mqprio_qopt: queue parameters 3515 * 3516 * This function validates if the config provided by the user to 3517 * configure queue channels is valid or not. Returns 0 on a valid 3518 * config. 3519 **/ 3520 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3521 struct tc_mqprio_qopt_offload *mqprio_qopt) 3522 { 3523 u64 total_max_rate = 0; 3524 u32 tx_rate_rem = 0; 3525 int i, num_qps = 0; 3526 u64 tx_rate = 0; 3527 int ret = 0; 3528 3529 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3530 mqprio_qopt->qopt.num_tc < 1) 3531 return -EINVAL; 3532 3533 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3534 if (!mqprio_qopt->qopt.count[i] || 3535 mqprio_qopt->qopt.offset[i] != num_qps) 3536 return -EINVAL; 3537 if (mqprio_qopt->min_rate[i]) { 3538 dev_err(&adapter->pdev->dev, 3539 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3540 i); 3541 return -EINVAL; 3542 } 3543 3544 /* convert to Mbps */ 3545 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3546 IAVF_MBPS_DIVISOR); 3547 3548 if (mqprio_qopt->max_rate[i] && 3549 tx_rate < IAVF_MBPS_QUANTA) { 3550 dev_err(&adapter->pdev->dev, 3551 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3552 i, IAVF_MBPS_QUANTA); 3553 return -EINVAL; 3554 } 3555 3556 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3557 3558 if (tx_rate_rem != 0) { 3559 dev_err(&adapter->pdev->dev, 3560 "Invalid max tx rate for TC%d, not divisible by %d\n", 3561 i, IAVF_MBPS_QUANTA); 3562 return -EINVAL; 3563 } 3564 3565 total_max_rate += tx_rate; 3566 num_qps += mqprio_qopt->qopt.count[i]; 3567 } 3568 if (num_qps > adapter->num_active_queues) { 3569 dev_err(&adapter->pdev->dev, 3570 "Cannot support requested number of queues\n"); 3571 return -EINVAL; 3572 } 3573 3574 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3575 return ret; 3576 } 3577 3578 /** 3579 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3580 * @adapter: board private structure 3581 **/ 3582 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3583 { 3584 struct iavf_cloud_filter *cf, *cftmp; 3585 3586 spin_lock_bh(&adapter->cloud_filter_list_lock); 3587 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3588 list) { 3589 list_del(&cf->list); 3590 kfree(cf); 3591 adapter->num_cloud_filters--; 3592 } 3593 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3594 } 3595 3596 /** 3597 * __iavf_setup_tc - configure multiple traffic classes 3598 * @netdev: network interface device structure 3599 * @type_data: tc offload data 3600 * 3601 * This function processes the config information provided by the 3602 * user to configure traffic classes/queue channels and packages the 3603 * information to request the PF to setup traffic classes. 3604 * 3605 * Returns 0 on success. 3606 **/ 3607 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3608 { 3609 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3610 struct iavf_adapter *adapter = netdev_priv(netdev); 3611 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3612 u8 num_tc = 0, total_qps = 0; 3613 int ret = 0, netdev_tc = 0; 3614 u64 max_tx_rate; 3615 u16 mode; 3616 int i; 3617 3618 num_tc = mqprio_qopt->qopt.num_tc; 3619 mode = mqprio_qopt->mode; 3620 3621 /* delete queue_channel */ 3622 if (!mqprio_qopt->qopt.hw) { 3623 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3624 /* reset the tc configuration */ 3625 netdev_reset_tc(netdev); 3626 adapter->num_tc = 0; 3627 netif_tx_stop_all_queues(netdev); 3628 netif_tx_disable(netdev); 3629 iavf_del_all_cloud_filters(adapter); 3630 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3631 total_qps = adapter->orig_num_active_queues; 3632 goto exit; 3633 } else { 3634 return -EINVAL; 3635 } 3636 } 3637 3638 /* add queue channel */ 3639 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3640 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3641 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3642 return -EOPNOTSUPP; 3643 } 3644 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3645 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3646 return -EINVAL; 3647 } 3648 3649 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3650 if (ret) 3651 return ret; 3652 /* Return if same TC config is requested */ 3653 if (adapter->num_tc == num_tc) 3654 return 0; 3655 adapter->num_tc = num_tc; 3656 3657 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3658 if (i < num_tc) { 3659 adapter->ch_config.ch_info[i].count = 3660 mqprio_qopt->qopt.count[i]; 3661 adapter->ch_config.ch_info[i].offset = 3662 mqprio_qopt->qopt.offset[i]; 3663 total_qps += mqprio_qopt->qopt.count[i]; 3664 max_tx_rate = mqprio_qopt->max_rate[i]; 3665 /* convert to Mbps */ 3666 max_tx_rate = div_u64(max_tx_rate, 3667 IAVF_MBPS_DIVISOR); 3668 adapter->ch_config.ch_info[i].max_tx_rate = 3669 max_tx_rate; 3670 } else { 3671 adapter->ch_config.ch_info[i].count = 1; 3672 adapter->ch_config.ch_info[i].offset = 0; 3673 } 3674 } 3675 3676 /* Take snapshot of original config such as "num_active_queues" 3677 * It is used later when delete ADQ flow is exercised, so that 3678 * once delete ADQ flow completes, VF shall go back to its 3679 * original queue configuration 3680 */ 3681 3682 adapter->orig_num_active_queues = adapter->num_active_queues; 3683 3684 /* Store queue info based on TC so that VF gets configured 3685 * with correct number of queues when VF completes ADQ config 3686 * flow 3687 */ 3688 adapter->ch_config.total_qps = total_qps; 3689 3690 netif_tx_stop_all_queues(netdev); 3691 netif_tx_disable(netdev); 3692 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3693 netdev_reset_tc(netdev); 3694 /* Report the tc mapping up the stack */ 3695 netdev_set_num_tc(adapter->netdev, num_tc); 3696 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3697 u16 qcount = mqprio_qopt->qopt.count[i]; 3698 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3699 3700 if (i < num_tc) 3701 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3702 qoffset); 3703 } 3704 } 3705 exit: 3706 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3707 return 0; 3708 3709 netif_set_real_num_rx_queues(netdev, total_qps); 3710 netif_set_real_num_tx_queues(netdev, total_qps); 3711 3712 return ret; 3713 } 3714 3715 /** 3716 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3717 * @adapter: board private structure 3718 * @f: pointer to struct flow_cls_offload 3719 * @filter: pointer to cloud filter structure 3720 */ 3721 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3722 struct flow_cls_offload *f, 3723 struct iavf_cloud_filter *filter) 3724 { 3725 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3726 struct flow_dissector *dissector = rule->match.dissector; 3727 u16 n_proto_mask = 0; 3728 u16 n_proto_key = 0; 3729 u8 field_flags = 0; 3730 u16 addr_type = 0; 3731 u16 n_proto = 0; 3732 int i = 0; 3733 struct virtchnl_filter *vf = &filter->f; 3734 3735 if (dissector->used_keys & 3736 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3737 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3738 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3739 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3740 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3741 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3742 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3743 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3744 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3745 dissector->used_keys); 3746 return -EOPNOTSUPP; 3747 } 3748 3749 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3750 struct flow_match_enc_keyid match; 3751 3752 flow_rule_match_enc_keyid(rule, &match); 3753 if (match.mask->keyid != 0) 3754 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3755 } 3756 3757 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3758 struct flow_match_basic match; 3759 3760 flow_rule_match_basic(rule, &match); 3761 n_proto_key = ntohs(match.key->n_proto); 3762 n_proto_mask = ntohs(match.mask->n_proto); 3763 3764 if (n_proto_key == ETH_P_ALL) { 3765 n_proto_key = 0; 3766 n_proto_mask = 0; 3767 } 3768 n_proto = n_proto_key & n_proto_mask; 3769 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3770 return -EINVAL; 3771 if (n_proto == ETH_P_IPV6) { 3772 /* specify flow type as TCP IPv6 */ 3773 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3774 } 3775 3776 if (match.key->ip_proto != IPPROTO_TCP) { 3777 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3778 return -EINVAL; 3779 } 3780 } 3781 3782 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3783 struct flow_match_eth_addrs match; 3784 3785 flow_rule_match_eth_addrs(rule, &match); 3786 3787 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3788 if (!is_zero_ether_addr(match.mask->dst)) { 3789 if (is_broadcast_ether_addr(match.mask->dst)) { 3790 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3791 } else { 3792 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3793 match.mask->dst); 3794 return -EINVAL; 3795 } 3796 } 3797 3798 if (!is_zero_ether_addr(match.mask->src)) { 3799 if (is_broadcast_ether_addr(match.mask->src)) { 3800 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3801 } else { 3802 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3803 match.mask->src); 3804 return -EINVAL; 3805 } 3806 } 3807 3808 if (!is_zero_ether_addr(match.key->dst)) 3809 if (is_valid_ether_addr(match.key->dst) || 3810 is_multicast_ether_addr(match.key->dst)) { 3811 /* set the mask if a valid dst_mac address */ 3812 for (i = 0; i < ETH_ALEN; i++) 3813 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3814 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3815 match.key->dst); 3816 } 3817 3818 if (!is_zero_ether_addr(match.key->src)) 3819 if (is_valid_ether_addr(match.key->src) || 3820 is_multicast_ether_addr(match.key->src)) { 3821 /* set the mask if a valid dst_mac address */ 3822 for (i = 0; i < ETH_ALEN; i++) 3823 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3824 ether_addr_copy(vf->data.tcp_spec.src_mac, 3825 match.key->src); 3826 } 3827 } 3828 3829 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3830 struct flow_match_vlan match; 3831 3832 flow_rule_match_vlan(rule, &match); 3833 if (match.mask->vlan_id) { 3834 if (match.mask->vlan_id == VLAN_VID_MASK) { 3835 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3836 } else { 3837 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3838 match.mask->vlan_id); 3839 return -EINVAL; 3840 } 3841 } 3842 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3843 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3844 } 3845 3846 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3847 struct flow_match_control match; 3848 3849 flow_rule_match_control(rule, &match); 3850 addr_type = match.key->addr_type; 3851 } 3852 3853 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3854 struct flow_match_ipv4_addrs match; 3855 3856 flow_rule_match_ipv4_addrs(rule, &match); 3857 if (match.mask->dst) { 3858 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3859 field_flags |= IAVF_CLOUD_FIELD_IIP; 3860 } else { 3861 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3862 be32_to_cpu(match.mask->dst)); 3863 return -EINVAL; 3864 } 3865 } 3866 3867 if (match.mask->src) { 3868 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3869 field_flags |= IAVF_CLOUD_FIELD_IIP; 3870 } else { 3871 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3872 be32_to_cpu(match.mask->src)); 3873 return -EINVAL; 3874 } 3875 } 3876 3877 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3878 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3879 return -EINVAL; 3880 } 3881 if (match.key->dst) { 3882 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3883 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3884 } 3885 if (match.key->src) { 3886 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3887 vf->data.tcp_spec.src_ip[0] = match.key->src; 3888 } 3889 } 3890 3891 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3892 struct flow_match_ipv6_addrs match; 3893 3894 flow_rule_match_ipv6_addrs(rule, &match); 3895 3896 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3897 if (ipv6_addr_any(&match.mask->dst)) { 3898 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3899 IPV6_ADDR_ANY); 3900 return -EINVAL; 3901 } 3902 3903 /* src and dest IPv6 address should not be LOOPBACK 3904 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3905 */ 3906 if (ipv6_addr_loopback(&match.key->dst) || 3907 ipv6_addr_loopback(&match.key->src)) { 3908 dev_err(&adapter->pdev->dev, 3909 "ipv6 addr should not be loopback\n"); 3910 return -EINVAL; 3911 } 3912 if (!ipv6_addr_any(&match.mask->dst) || 3913 !ipv6_addr_any(&match.mask->src)) 3914 field_flags |= IAVF_CLOUD_FIELD_IIP; 3915 3916 for (i = 0; i < 4; i++) 3917 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3918 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3919 sizeof(vf->data.tcp_spec.dst_ip)); 3920 for (i = 0; i < 4; i++) 3921 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3922 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3923 sizeof(vf->data.tcp_spec.src_ip)); 3924 } 3925 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3926 struct flow_match_ports match; 3927 3928 flow_rule_match_ports(rule, &match); 3929 if (match.mask->src) { 3930 if (match.mask->src == cpu_to_be16(0xffff)) { 3931 field_flags |= IAVF_CLOUD_FIELD_IIP; 3932 } else { 3933 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3934 be16_to_cpu(match.mask->src)); 3935 return -EINVAL; 3936 } 3937 } 3938 3939 if (match.mask->dst) { 3940 if (match.mask->dst == cpu_to_be16(0xffff)) { 3941 field_flags |= IAVF_CLOUD_FIELD_IIP; 3942 } else { 3943 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3944 be16_to_cpu(match.mask->dst)); 3945 return -EINVAL; 3946 } 3947 } 3948 if (match.key->dst) { 3949 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3950 vf->data.tcp_spec.dst_port = match.key->dst; 3951 } 3952 3953 if (match.key->src) { 3954 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3955 vf->data.tcp_spec.src_port = match.key->src; 3956 } 3957 } 3958 vf->field_flags = field_flags; 3959 3960 return 0; 3961 } 3962 3963 /** 3964 * iavf_handle_tclass - Forward to a traffic class on the device 3965 * @adapter: board private structure 3966 * @tc: traffic class index on the device 3967 * @filter: pointer to cloud filter structure 3968 */ 3969 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3970 struct iavf_cloud_filter *filter) 3971 { 3972 if (tc == 0) 3973 return 0; 3974 if (tc < adapter->num_tc) { 3975 if (!filter->f.data.tcp_spec.dst_port) { 3976 dev_err(&adapter->pdev->dev, 3977 "Specify destination port to redirect to traffic class other than TC0\n"); 3978 return -EINVAL; 3979 } 3980 } 3981 /* redirect to a traffic class on the same device */ 3982 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3983 filter->f.action_meta = tc; 3984 return 0; 3985 } 3986 3987 /** 3988 * iavf_find_cf - Find the cloud filter in the list 3989 * @adapter: Board private structure 3990 * @cookie: filter specific cookie 3991 * 3992 * Returns ptr to the filter object or NULL. Must be called while holding the 3993 * cloud_filter_list_lock. 3994 */ 3995 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3996 unsigned long *cookie) 3997 { 3998 struct iavf_cloud_filter *filter = NULL; 3999 4000 if (!cookie) 4001 return NULL; 4002 4003 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4004 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4005 return filter; 4006 } 4007 return NULL; 4008 } 4009 4010 /** 4011 * iavf_configure_clsflower - Add tc flower filters 4012 * @adapter: board private structure 4013 * @cls_flower: Pointer to struct flow_cls_offload 4014 */ 4015 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4016 struct flow_cls_offload *cls_flower) 4017 { 4018 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4019 struct iavf_cloud_filter *filter = NULL; 4020 int err = -EINVAL, count = 50; 4021 4022 if (tc < 0) { 4023 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4024 return -EINVAL; 4025 } 4026 4027 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4028 if (!filter) 4029 return -ENOMEM; 4030 4031 while (!mutex_trylock(&adapter->crit_lock)) { 4032 if (--count == 0) { 4033 kfree(filter); 4034 return err; 4035 } 4036 udelay(1); 4037 } 4038 4039 filter->cookie = cls_flower->cookie; 4040 4041 /* bail out here if filter already exists */ 4042 spin_lock_bh(&adapter->cloud_filter_list_lock); 4043 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4044 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4045 err = -EEXIST; 4046 goto spin_unlock; 4047 } 4048 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4049 4050 /* set the mask to all zeroes to begin with */ 4051 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4052 /* start out with flow type and eth type IPv4 to begin with */ 4053 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4054 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4055 if (err) 4056 goto err; 4057 4058 err = iavf_handle_tclass(adapter, tc, filter); 4059 if (err) 4060 goto err; 4061 4062 /* add filter to the list */ 4063 spin_lock_bh(&adapter->cloud_filter_list_lock); 4064 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4065 adapter->num_cloud_filters++; 4066 filter->add = true; 4067 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4068 spin_unlock: 4069 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4070 err: 4071 if (err) 4072 kfree(filter); 4073 4074 mutex_unlock(&adapter->crit_lock); 4075 return err; 4076 } 4077 4078 /** 4079 * iavf_delete_clsflower - Remove tc flower filters 4080 * @adapter: board private structure 4081 * @cls_flower: Pointer to struct flow_cls_offload 4082 */ 4083 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4084 struct flow_cls_offload *cls_flower) 4085 { 4086 struct iavf_cloud_filter *filter = NULL; 4087 int err = 0; 4088 4089 spin_lock_bh(&adapter->cloud_filter_list_lock); 4090 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4091 if (filter) { 4092 filter->del = true; 4093 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4094 } else { 4095 err = -EINVAL; 4096 } 4097 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4098 4099 return err; 4100 } 4101 4102 /** 4103 * iavf_setup_tc_cls_flower - flower classifier offloads 4104 * @adapter: board private structure 4105 * @cls_flower: pointer to flow_cls_offload struct with flow info 4106 */ 4107 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4108 struct flow_cls_offload *cls_flower) 4109 { 4110 switch (cls_flower->command) { 4111 case FLOW_CLS_REPLACE: 4112 return iavf_configure_clsflower(adapter, cls_flower); 4113 case FLOW_CLS_DESTROY: 4114 return iavf_delete_clsflower(adapter, cls_flower); 4115 case FLOW_CLS_STATS: 4116 return -EOPNOTSUPP; 4117 default: 4118 return -EOPNOTSUPP; 4119 } 4120 } 4121 4122 /** 4123 * iavf_setup_tc_block_cb - block callback for tc 4124 * @type: type of offload 4125 * @type_data: offload data 4126 * @cb_priv: 4127 * 4128 * This function is the block callback for traffic classes 4129 **/ 4130 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4131 void *cb_priv) 4132 { 4133 struct iavf_adapter *adapter = cb_priv; 4134 4135 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4136 return -EOPNOTSUPP; 4137 4138 switch (type) { 4139 case TC_SETUP_CLSFLOWER: 4140 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4141 default: 4142 return -EOPNOTSUPP; 4143 } 4144 } 4145 4146 static LIST_HEAD(iavf_block_cb_list); 4147 4148 /** 4149 * iavf_setup_tc - configure multiple traffic classes 4150 * @netdev: network interface device structure 4151 * @type: type of offload 4152 * @type_data: tc offload data 4153 * 4154 * This function is the callback to ndo_setup_tc in the 4155 * netdev_ops. 4156 * 4157 * Returns 0 on success 4158 **/ 4159 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4160 void *type_data) 4161 { 4162 struct iavf_adapter *adapter = netdev_priv(netdev); 4163 4164 switch (type) { 4165 case TC_SETUP_QDISC_MQPRIO: 4166 return __iavf_setup_tc(netdev, type_data); 4167 case TC_SETUP_BLOCK: 4168 return flow_block_cb_setup_simple(type_data, 4169 &iavf_block_cb_list, 4170 iavf_setup_tc_block_cb, 4171 adapter, adapter, true); 4172 default: 4173 return -EOPNOTSUPP; 4174 } 4175 } 4176 4177 /** 4178 * iavf_open - Called when a network interface is made active 4179 * @netdev: network interface device structure 4180 * 4181 * Returns 0 on success, negative value on failure 4182 * 4183 * The open entry point is called when a network interface is made 4184 * active by the system (IFF_UP). At this point all resources needed 4185 * for transmit and receive operations are allocated, the interrupt 4186 * handler is registered with the OS, the watchdog is started, 4187 * and the stack is notified that the interface is ready. 4188 **/ 4189 static int iavf_open(struct net_device *netdev) 4190 { 4191 struct iavf_adapter *adapter = netdev_priv(netdev); 4192 int err; 4193 4194 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4195 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4196 return -EIO; 4197 } 4198 4199 while (!mutex_trylock(&adapter->crit_lock)) { 4200 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4201 * is already taken and iavf_open is called from an upper 4202 * device's notifier reacting on NETDEV_REGISTER event. 4203 * We have to leave here to avoid dead lock. 4204 */ 4205 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4206 return -EBUSY; 4207 4208 usleep_range(500, 1000); 4209 } 4210 4211 if (adapter->state != __IAVF_DOWN) { 4212 err = -EBUSY; 4213 goto err_unlock; 4214 } 4215 4216 if (adapter->state == __IAVF_RUNNING && 4217 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4218 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4219 err = 0; 4220 goto err_unlock; 4221 } 4222 4223 /* allocate transmit descriptors */ 4224 err = iavf_setup_all_tx_resources(adapter); 4225 if (err) 4226 goto err_setup_tx; 4227 4228 /* allocate receive descriptors */ 4229 err = iavf_setup_all_rx_resources(adapter); 4230 if (err) 4231 goto err_setup_rx; 4232 4233 /* clear any pending interrupts, may auto mask */ 4234 err = iavf_request_traffic_irqs(adapter, netdev->name); 4235 if (err) 4236 goto err_req_irq; 4237 4238 spin_lock_bh(&adapter->mac_vlan_list_lock); 4239 4240 iavf_add_filter(adapter, adapter->hw.mac.addr); 4241 4242 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4243 4244 /* Restore VLAN filters that were removed with IFF_DOWN */ 4245 iavf_restore_filters(adapter); 4246 4247 iavf_configure(adapter); 4248 4249 iavf_up_complete(adapter); 4250 4251 iavf_irq_enable(adapter, true); 4252 4253 mutex_unlock(&adapter->crit_lock); 4254 4255 return 0; 4256 4257 err_req_irq: 4258 iavf_down(adapter); 4259 iavf_free_traffic_irqs(adapter); 4260 err_setup_rx: 4261 iavf_free_all_rx_resources(adapter); 4262 err_setup_tx: 4263 iavf_free_all_tx_resources(adapter); 4264 err_unlock: 4265 mutex_unlock(&adapter->crit_lock); 4266 4267 return err; 4268 } 4269 4270 /** 4271 * iavf_close - Disables a network interface 4272 * @netdev: network interface device structure 4273 * 4274 * Returns 0, this is not allowed to fail 4275 * 4276 * The close entry point is called when an interface is de-activated 4277 * by the OS. The hardware is still under the drivers control, but 4278 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4279 * are freed, along with all transmit and receive resources. 4280 **/ 4281 static int iavf_close(struct net_device *netdev) 4282 { 4283 struct iavf_adapter *adapter = netdev_priv(netdev); 4284 u64 aq_to_restore; 4285 int status; 4286 4287 mutex_lock(&adapter->crit_lock); 4288 4289 if (adapter->state <= __IAVF_DOWN_PENDING) { 4290 mutex_unlock(&adapter->crit_lock); 4291 return 0; 4292 } 4293 4294 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4295 if (CLIENT_ENABLED(adapter)) 4296 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4297 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4298 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4299 * deadlock with adminq_task() until iavf_close timeouts. We must send 4300 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4301 * disable queues possible for vf. Give only necessary flags to 4302 * iavf_down and save other to set them right before iavf_close() 4303 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4304 * iavf will be in DOWN state. 4305 */ 4306 aq_to_restore = adapter->aq_required; 4307 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4308 4309 /* Remove flags which we do not want to send after close or we want to 4310 * send before disable queues. 4311 */ 4312 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4313 IAVF_FLAG_AQ_ENABLE_QUEUES | 4314 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4315 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4316 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4317 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4318 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4319 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4320 4321 iavf_down(adapter); 4322 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4323 iavf_free_traffic_irqs(adapter); 4324 4325 mutex_unlock(&adapter->crit_lock); 4326 4327 /* We explicitly don't free resources here because the hardware is 4328 * still active and can DMA into memory. Resources are cleared in 4329 * iavf_virtchnl_completion() after we get confirmation from the PF 4330 * driver that the rings have been stopped. 4331 * 4332 * Also, we wait for state to transition to __IAVF_DOWN before 4333 * returning. State change occurs in iavf_virtchnl_completion() after 4334 * VF resources are released (which occurs after PF driver processes and 4335 * responds to admin queue commands). 4336 */ 4337 4338 status = wait_event_timeout(adapter->down_waitqueue, 4339 adapter->state == __IAVF_DOWN, 4340 msecs_to_jiffies(500)); 4341 if (!status) 4342 netdev_warn(netdev, "Device resources not yet released\n"); 4343 4344 mutex_lock(&adapter->crit_lock); 4345 adapter->aq_required |= aq_to_restore; 4346 mutex_unlock(&adapter->crit_lock); 4347 return 0; 4348 } 4349 4350 /** 4351 * iavf_change_mtu - Change the Maximum Transfer Unit 4352 * @netdev: network interface device structure 4353 * @new_mtu: new value for maximum frame size 4354 * 4355 * Returns 0 on success, negative on failure 4356 **/ 4357 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4358 { 4359 struct iavf_adapter *adapter = netdev_priv(netdev); 4360 int ret = 0; 4361 4362 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4363 netdev->mtu, new_mtu); 4364 netdev->mtu = new_mtu; 4365 if (CLIENT_ENABLED(adapter)) { 4366 iavf_notify_client_l2_params(&adapter->vsi); 4367 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4368 } 4369 4370 if (netif_running(netdev)) { 4371 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4372 ret = iavf_wait_for_reset(adapter); 4373 if (ret < 0) 4374 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4375 else if (ret) 4376 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4377 } 4378 4379 return ret; 4380 } 4381 4382 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4383 NETIF_F_HW_VLAN_CTAG_TX | \ 4384 NETIF_F_HW_VLAN_STAG_RX | \ 4385 NETIF_F_HW_VLAN_STAG_TX) 4386 4387 /** 4388 * iavf_set_features - set the netdev feature flags 4389 * @netdev: ptr to the netdev being adjusted 4390 * @features: the feature set that the stack is suggesting 4391 * Note: expects to be called while under rtnl_lock() 4392 **/ 4393 static int iavf_set_features(struct net_device *netdev, 4394 netdev_features_t features) 4395 { 4396 struct iavf_adapter *adapter = netdev_priv(netdev); 4397 4398 /* trigger update on any VLAN feature change */ 4399 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4400 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4401 iavf_set_vlan_offload_features(adapter, netdev->features, 4402 features); 4403 4404 return 0; 4405 } 4406 4407 /** 4408 * iavf_features_check - Validate encapsulated packet conforms to limits 4409 * @skb: skb buff 4410 * @dev: This physical port's netdev 4411 * @features: Offload features that the stack believes apply 4412 **/ 4413 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4414 struct net_device *dev, 4415 netdev_features_t features) 4416 { 4417 size_t len; 4418 4419 /* No point in doing any of this if neither checksum nor GSO are 4420 * being requested for this frame. We can rule out both by just 4421 * checking for CHECKSUM_PARTIAL 4422 */ 4423 if (skb->ip_summed != CHECKSUM_PARTIAL) 4424 return features; 4425 4426 /* We cannot support GSO if the MSS is going to be less than 4427 * 64 bytes. If it is then we need to drop support for GSO. 4428 */ 4429 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4430 features &= ~NETIF_F_GSO_MASK; 4431 4432 /* MACLEN can support at most 63 words */ 4433 len = skb_network_header(skb) - skb->data; 4434 if (len & ~(63 * 2)) 4435 goto out_err; 4436 4437 /* IPLEN and EIPLEN can support at most 127 dwords */ 4438 len = skb_transport_header(skb) - skb_network_header(skb); 4439 if (len & ~(127 * 4)) 4440 goto out_err; 4441 4442 if (skb->encapsulation) { 4443 /* L4TUNLEN can support 127 words */ 4444 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4445 if (len & ~(127 * 2)) 4446 goto out_err; 4447 4448 /* IPLEN can support at most 127 dwords */ 4449 len = skb_inner_transport_header(skb) - 4450 skb_inner_network_header(skb); 4451 if (len & ~(127 * 4)) 4452 goto out_err; 4453 } 4454 4455 /* No need to validate L4LEN as TCP is the only protocol with a 4456 * flexible value and we support all possible values supported 4457 * by TCP, which is at most 15 dwords 4458 */ 4459 4460 return features; 4461 out_err: 4462 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4463 } 4464 4465 /** 4466 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4467 * @adapter: board private structure 4468 * 4469 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4470 * were negotiated determine the VLAN features that can be toggled on and off. 4471 **/ 4472 static netdev_features_t 4473 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4474 { 4475 netdev_features_t hw_features = 0; 4476 4477 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4478 return hw_features; 4479 4480 /* Enable VLAN features if supported */ 4481 if (VLAN_ALLOWED(adapter)) { 4482 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4483 NETIF_F_HW_VLAN_CTAG_RX); 4484 } else if (VLAN_V2_ALLOWED(adapter)) { 4485 struct virtchnl_vlan_caps *vlan_v2_caps = 4486 &adapter->vlan_v2_caps; 4487 struct virtchnl_vlan_supported_caps *stripping_support = 4488 &vlan_v2_caps->offloads.stripping_support; 4489 struct virtchnl_vlan_supported_caps *insertion_support = 4490 &vlan_v2_caps->offloads.insertion_support; 4491 4492 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4493 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4494 if (stripping_support->outer & 4495 VIRTCHNL_VLAN_ETHERTYPE_8100) 4496 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4497 if (stripping_support->outer & 4498 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4499 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4500 } else if (stripping_support->inner != 4501 VIRTCHNL_VLAN_UNSUPPORTED && 4502 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4503 if (stripping_support->inner & 4504 VIRTCHNL_VLAN_ETHERTYPE_8100) 4505 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4506 } 4507 4508 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4509 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4510 if (insertion_support->outer & 4511 VIRTCHNL_VLAN_ETHERTYPE_8100) 4512 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4513 if (insertion_support->outer & 4514 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4515 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4516 } else if (insertion_support->inner && 4517 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4518 if (insertion_support->inner & 4519 VIRTCHNL_VLAN_ETHERTYPE_8100) 4520 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4521 } 4522 } 4523 4524 return hw_features; 4525 } 4526 4527 /** 4528 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4529 * @adapter: board private structure 4530 * 4531 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4532 * were negotiated determine the VLAN features that are enabled by default. 4533 **/ 4534 static netdev_features_t 4535 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4536 { 4537 netdev_features_t features = 0; 4538 4539 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4540 return features; 4541 4542 if (VLAN_ALLOWED(adapter)) { 4543 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4544 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4545 } else if (VLAN_V2_ALLOWED(adapter)) { 4546 struct virtchnl_vlan_caps *vlan_v2_caps = 4547 &adapter->vlan_v2_caps; 4548 struct virtchnl_vlan_supported_caps *filtering_support = 4549 &vlan_v2_caps->filtering.filtering_support; 4550 struct virtchnl_vlan_supported_caps *stripping_support = 4551 &vlan_v2_caps->offloads.stripping_support; 4552 struct virtchnl_vlan_supported_caps *insertion_support = 4553 &vlan_v2_caps->offloads.insertion_support; 4554 u32 ethertype_init; 4555 4556 /* give priority to outer stripping and don't support both outer 4557 * and inner stripping 4558 */ 4559 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4560 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4561 if (stripping_support->outer & 4562 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4563 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4564 features |= NETIF_F_HW_VLAN_CTAG_RX; 4565 else if (stripping_support->outer & 4566 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4567 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4568 features |= NETIF_F_HW_VLAN_STAG_RX; 4569 } else if (stripping_support->inner != 4570 VIRTCHNL_VLAN_UNSUPPORTED) { 4571 if (stripping_support->inner & 4572 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4573 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4574 features |= NETIF_F_HW_VLAN_CTAG_RX; 4575 } 4576 4577 /* give priority to outer insertion and don't support both outer 4578 * and inner insertion 4579 */ 4580 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4581 if (insertion_support->outer & 4582 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4584 features |= NETIF_F_HW_VLAN_CTAG_TX; 4585 else if (insertion_support->outer & 4586 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4587 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4588 features |= NETIF_F_HW_VLAN_STAG_TX; 4589 } else if (insertion_support->inner != 4590 VIRTCHNL_VLAN_UNSUPPORTED) { 4591 if (insertion_support->inner & 4592 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4593 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4594 features |= NETIF_F_HW_VLAN_CTAG_TX; 4595 } 4596 4597 /* give priority to outer filtering and don't bother if both 4598 * outer and inner filtering are enabled 4599 */ 4600 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4601 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4602 if (filtering_support->outer & 4603 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4604 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4605 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4606 if (filtering_support->outer & 4607 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4608 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4609 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4610 } else if (filtering_support->inner != 4611 VIRTCHNL_VLAN_UNSUPPORTED) { 4612 if (filtering_support->inner & 4613 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4614 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4615 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4616 if (filtering_support->inner & 4617 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4618 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4619 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4620 } 4621 } 4622 4623 return features; 4624 } 4625 4626 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4627 (!(((requested) & (feature_bit)) && \ 4628 !((allowed) & (feature_bit)))) 4629 4630 /** 4631 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4632 * @adapter: board private structure 4633 * @requested_features: stack requested NETDEV features 4634 **/ 4635 static netdev_features_t 4636 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4637 netdev_features_t requested_features) 4638 { 4639 netdev_features_t allowed_features; 4640 4641 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4642 iavf_get_netdev_vlan_features(adapter); 4643 4644 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4645 allowed_features, 4646 NETIF_F_HW_VLAN_CTAG_TX)) 4647 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4648 4649 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4650 allowed_features, 4651 NETIF_F_HW_VLAN_CTAG_RX)) 4652 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4653 4654 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4655 allowed_features, 4656 NETIF_F_HW_VLAN_STAG_TX)) 4657 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4658 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4659 allowed_features, 4660 NETIF_F_HW_VLAN_STAG_RX)) 4661 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4662 4663 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4664 allowed_features, 4665 NETIF_F_HW_VLAN_CTAG_FILTER)) 4666 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4667 4668 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4669 allowed_features, 4670 NETIF_F_HW_VLAN_STAG_FILTER)) 4671 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4672 4673 if ((requested_features & 4674 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4675 (requested_features & 4676 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4677 adapter->vlan_v2_caps.offloads.ethertype_match == 4678 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4679 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4680 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4681 NETIF_F_HW_VLAN_STAG_TX); 4682 } 4683 4684 return requested_features; 4685 } 4686 4687 /** 4688 * iavf_fix_features - fix up the netdev feature bits 4689 * @netdev: our net device 4690 * @features: desired feature bits 4691 * 4692 * Returns fixed-up features bits 4693 **/ 4694 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4695 netdev_features_t features) 4696 { 4697 struct iavf_adapter *adapter = netdev_priv(netdev); 4698 4699 return iavf_fix_netdev_vlan_features(adapter, features); 4700 } 4701 4702 static const struct net_device_ops iavf_netdev_ops = { 4703 .ndo_open = iavf_open, 4704 .ndo_stop = iavf_close, 4705 .ndo_start_xmit = iavf_xmit_frame, 4706 .ndo_set_rx_mode = iavf_set_rx_mode, 4707 .ndo_validate_addr = eth_validate_addr, 4708 .ndo_set_mac_address = iavf_set_mac, 4709 .ndo_change_mtu = iavf_change_mtu, 4710 .ndo_tx_timeout = iavf_tx_timeout, 4711 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4712 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4713 .ndo_features_check = iavf_features_check, 4714 .ndo_fix_features = iavf_fix_features, 4715 .ndo_set_features = iavf_set_features, 4716 .ndo_setup_tc = iavf_setup_tc, 4717 }; 4718 4719 /** 4720 * iavf_check_reset_complete - check that VF reset is complete 4721 * @hw: pointer to hw struct 4722 * 4723 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4724 **/ 4725 static int iavf_check_reset_complete(struct iavf_hw *hw) 4726 { 4727 u32 rstat; 4728 int i; 4729 4730 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4731 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4732 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4733 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4734 (rstat == VIRTCHNL_VFR_COMPLETED)) 4735 return 0; 4736 usleep_range(10, 20); 4737 } 4738 return -EBUSY; 4739 } 4740 4741 /** 4742 * iavf_process_config - Process the config information we got from the PF 4743 * @adapter: board private structure 4744 * 4745 * Verify that we have a valid config struct, and set up our netdev features 4746 * and our VSI struct. 4747 **/ 4748 int iavf_process_config(struct iavf_adapter *adapter) 4749 { 4750 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4751 netdev_features_t hw_vlan_features, vlan_features; 4752 struct net_device *netdev = adapter->netdev; 4753 netdev_features_t hw_enc_features; 4754 netdev_features_t hw_features; 4755 4756 hw_enc_features = NETIF_F_SG | 4757 NETIF_F_IP_CSUM | 4758 NETIF_F_IPV6_CSUM | 4759 NETIF_F_HIGHDMA | 4760 NETIF_F_SOFT_FEATURES | 4761 NETIF_F_TSO | 4762 NETIF_F_TSO_ECN | 4763 NETIF_F_TSO6 | 4764 NETIF_F_SCTP_CRC | 4765 NETIF_F_RXHASH | 4766 NETIF_F_RXCSUM | 4767 0; 4768 4769 /* advertise to stack only if offloads for encapsulated packets is 4770 * supported 4771 */ 4772 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4773 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4774 NETIF_F_GSO_GRE | 4775 NETIF_F_GSO_GRE_CSUM | 4776 NETIF_F_GSO_IPXIP4 | 4777 NETIF_F_GSO_IPXIP6 | 4778 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4779 NETIF_F_GSO_PARTIAL | 4780 0; 4781 4782 if (!(vfres->vf_cap_flags & 4783 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4784 netdev->gso_partial_features |= 4785 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4786 4787 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4788 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4789 netdev->hw_enc_features |= hw_enc_features; 4790 } 4791 /* record features VLANs can make use of */ 4792 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4793 4794 /* Write features and hw_features separately to avoid polluting 4795 * with, or dropping, features that are set when we registered. 4796 */ 4797 hw_features = hw_enc_features; 4798 4799 /* get HW VLAN features that can be toggled */ 4800 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4801 4802 /* Enable cloud filter if ADQ is supported */ 4803 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4804 hw_features |= NETIF_F_HW_TC; 4805 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4806 hw_features |= NETIF_F_GSO_UDP_L4; 4807 4808 netdev->hw_features |= hw_features | hw_vlan_features; 4809 vlan_features = iavf_get_netdev_vlan_features(adapter); 4810 4811 netdev->features |= hw_features | vlan_features; 4812 4813 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4814 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4815 4816 netdev->priv_flags |= IFF_UNICAST_FLT; 4817 4818 /* Do not turn on offloads when they are requested to be turned off. 4819 * TSO needs minimum 576 bytes to work correctly. 4820 */ 4821 if (netdev->wanted_features) { 4822 if (!(netdev->wanted_features & NETIF_F_TSO) || 4823 netdev->mtu < 576) 4824 netdev->features &= ~NETIF_F_TSO; 4825 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4826 netdev->mtu < 576) 4827 netdev->features &= ~NETIF_F_TSO6; 4828 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4829 netdev->features &= ~NETIF_F_TSO_ECN; 4830 if (!(netdev->wanted_features & NETIF_F_GRO)) 4831 netdev->features &= ~NETIF_F_GRO; 4832 if (!(netdev->wanted_features & NETIF_F_GSO)) 4833 netdev->features &= ~NETIF_F_GSO; 4834 } 4835 4836 return 0; 4837 } 4838 4839 /** 4840 * iavf_shutdown - Shutdown the device in preparation for a reboot 4841 * @pdev: pci device structure 4842 **/ 4843 static void iavf_shutdown(struct pci_dev *pdev) 4844 { 4845 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4846 struct net_device *netdev = adapter->netdev; 4847 4848 netif_device_detach(netdev); 4849 4850 if (netif_running(netdev)) 4851 iavf_close(netdev); 4852 4853 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4854 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4855 /* Prevent the watchdog from running. */ 4856 iavf_change_state(adapter, __IAVF_REMOVE); 4857 adapter->aq_required = 0; 4858 mutex_unlock(&adapter->crit_lock); 4859 4860 #ifdef CONFIG_PM 4861 pci_save_state(pdev); 4862 4863 #endif 4864 pci_disable_device(pdev); 4865 } 4866 4867 /** 4868 * iavf_probe - Device Initialization Routine 4869 * @pdev: PCI device information struct 4870 * @ent: entry in iavf_pci_tbl 4871 * 4872 * Returns 0 on success, negative on failure 4873 * 4874 * iavf_probe initializes an adapter identified by a pci_dev structure. 4875 * The OS initialization, configuring of the adapter private structure, 4876 * and a hardware reset occur. 4877 **/ 4878 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4879 { 4880 struct net_device *netdev; 4881 struct iavf_adapter *adapter = NULL; 4882 struct iavf_hw *hw = NULL; 4883 int err; 4884 4885 err = pci_enable_device(pdev); 4886 if (err) 4887 return err; 4888 4889 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4890 if (err) { 4891 dev_err(&pdev->dev, 4892 "DMA configuration failed: 0x%x\n", err); 4893 goto err_dma; 4894 } 4895 4896 err = pci_request_regions(pdev, iavf_driver_name); 4897 if (err) { 4898 dev_err(&pdev->dev, 4899 "pci_request_regions failed 0x%x\n", err); 4900 goto err_pci_reg; 4901 } 4902 4903 pci_set_master(pdev); 4904 4905 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4906 IAVF_MAX_REQ_QUEUES); 4907 if (!netdev) { 4908 err = -ENOMEM; 4909 goto err_alloc_etherdev; 4910 } 4911 4912 SET_NETDEV_DEV(netdev, &pdev->dev); 4913 4914 pci_set_drvdata(pdev, netdev); 4915 adapter = netdev_priv(netdev); 4916 4917 adapter->netdev = netdev; 4918 adapter->pdev = pdev; 4919 4920 hw = &adapter->hw; 4921 hw->back = adapter; 4922 4923 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4924 iavf_driver_name); 4925 if (!adapter->wq) { 4926 err = -ENOMEM; 4927 goto err_alloc_wq; 4928 } 4929 4930 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4931 iavf_change_state(adapter, __IAVF_STARTUP); 4932 4933 /* Call save state here because it relies on the adapter struct. */ 4934 pci_save_state(pdev); 4935 4936 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4937 pci_resource_len(pdev, 0)); 4938 if (!hw->hw_addr) { 4939 err = -EIO; 4940 goto err_ioremap; 4941 } 4942 hw->vendor_id = pdev->vendor; 4943 hw->device_id = pdev->device; 4944 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4945 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4946 hw->subsystem_device_id = pdev->subsystem_device; 4947 hw->bus.device = PCI_SLOT(pdev->devfn); 4948 hw->bus.func = PCI_FUNC(pdev->devfn); 4949 hw->bus.bus_id = pdev->bus->number; 4950 4951 /* set up the locks for the AQ, do this only once in probe 4952 * and destroy them only once in remove 4953 */ 4954 mutex_init(&adapter->crit_lock); 4955 mutex_init(&adapter->client_lock); 4956 mutex_init(&hw->aq.asq_mutex); 4957 mutex_init(&hw->aq.arq_mutex); 4958 4959 spin_lock_init(&adapter->mac_vlan_list_lock); 4960 spin_lock_init(&adapter->cloud_filter_list_lock); 4961 spin_lock_init(&adapter->fdir_fltr_lock); 4962 spin_lock_init(&adapter->adv_rss_lock); 4963 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4964 4965 INIT_LIST_HEAD(&adapter->mac_filter_list); 4966 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4967 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4968 INIT_LIST_HEAD(&adapter->fdir_list_head); 4969 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4970 4971 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4972 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4973 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4974 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4975 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4976 4977 /* Setup the wait queue for indicating transition to down status */ 4978 init_waitqueue_head(&adapter->down_waitqueue); 4979 4980 /* Setup the wait queue for indicating transition to running state */ 4981 init_waitqueue_head(&adapter->reset_waitqueue); 4982 4983 /* Setup the wait queue for indicating virtchannel events */ 4984 init_waitqueue_head(&adapter->vc_waitqueue); 4985 4986 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4987 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4988 /* Initialization goes on in the work. Do not add more of it below. */ 4989 return 0; 4990 4991 err_ioremap: 4992 destroy_workqueue(adapter->wq); 4993 err_alloc_wq: 4994 free_netdev(netdev); 4995 err_alloc_etherdev: 4996 pci_release_regions(pdev); 4997 err_pci_reg: 4998 err_dma: 4999 pci_disable_device(pdev); 5000 return err; 5001 } 5002 5003 /** 5004 * iavf_suspend - Power management suspend routine 5005 * @dev_d: device info pointer 5006 * 5007 * Called when the system (VM) is entering sleep/suspend. 5008 **/ 5009 static int __maybe_unused iavf_suspend(struct device *dev_d) 5010 { 5011 struct net_device *netdev = dev_get_drvdata(dev_d); 5012 struct iavf_adapter *adapter = netdev_priv(netdev); 5013 5014 netif_device_detach(netdev); 5015 5016 while (!mutex_trylock(&adapter->crit_lock)) 5017 usleep_range(500, 1000); 5018 5019 if (netif_running(netdev)) { 5020 rtnl_lock(); 5021 iavf_down(adapter); 5022 rtnl_unlock(); 5023 } 5024 iavf_free_misc_irq(adapter); 5025 iavf_reset_interrupt_capability(adapter); 5026 5027 mutex_unlock(&adapter->crit_lock); 5028 5029 return 0; 5030 } 5031 5032 /** 5033 * iavf_resume - Power management resume routine 5034 * @dev_d: device info pointer 5035 * 5036 * Called when the system (VM) is resumed from sleep/suspend. 5037 **/ 5038 static int __maybe_unused iavf_resume(struct device *dev_d) 5039 { 5040 struct pci_dev *pdev = to_pci_dev(dev_d); 5041 struct iavf_adapter *adapter; 5042 u32 err; 5043 5044 adapter = iavf_pdev_to_adapter(pdev); 5045 5046 pci_set_master(pdev); 5047 5048 rtnl_lock(); 5049 err = iavf_set_interrupt_capability(adapter); 5050 if (err) { 5051 rtnl_unlock(); 5052 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5053 return err; 5054 } 5055 err = iavf_request_misc_irq(adapter); 5056 rtnl_unlock(); 5057 if (err) { 5058 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5059 return err; 5060 } 5061 5062 queue_work(adapter->wq, &adapter->reset_task); 5063 5064 netif_device_attach(adapter->netdev); 5065 5066 return err; 5067 } 5068 5069 /** 5070 * iavf_remove - Device Removal Routine 5071 * @pdev: PCI device information struct 5072 * 5073 * iavf_remove is called by the PCI subsystem to alert the driver 5074 * that it should release a PCI device. The could be caused by a 5075 * Hot-Plug event, or because the driver is going to be removed from 5076 * memory. 5077 **/ 5078 static void iavf_remove(struct pci_dev *pdev) 5079 { 5080 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5081 struct iavf_fdir_fltr *fdir, *fdirtmp; 5082 struct iavf_vlan_filter *vlf, *vlftmp; 5083 struct iavf_cloud_filter *cf, *cftmp; 5084 struct iavf_adv_rss *rss, *rsstmp; 5085 struct iavf_mac_filter *f, *ftmp; 5086 struct net_device *netdev; 5087 struct iavf_hw *hw; 5088 int err; 5089 5090 netdev = adapter->netdev; 5091 hw = &adapter->hw; 5092 5093 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5094 return; 5095 5096 /* Wait until port initialization is complete. 5097 * There are flows where register/unregister netdev may race. 5098 */ 5099 while (1) { 5100 mutex_lock(&adapter->crit_lock); 5101 if (adapter->state == __IAVF_RUNNING || 5102 adapter->state == __IAVF_DOWN || 5103 adapter->state == __IAVF_INIT_FAILED) { 5104 mutex_unlock(&adapter->crit_lock); 5105 break; 5106 } 5107 /* Simply return if we already went through iavf_shutdown */ 5108 if (adapter->state == __IAVF_REMOVE) { 5109 mutex_unlock(&adapter->crit_lock); 5110 return; 5111 } 5112 5113 mutex_unlock(&adapter->crit_lock); 5114 usleep_range(500, 1000); 5115 } 5116 cancel_delayed_work_sync(&adapter->watchdog_task); 5117 cancel_work_sync(&adapter->finish_config); 5118 5119 rtnl_lock(); 5120 if (adapter->netdev_registered) { 5121 unregister_netdevice(netdev); 5122 adapter->netdev_registered = false; 5123 } 5124 rtnl_unlock(); 5125 5126 if (CLIENT_ALLOWED(adapter)) { 5127 err = iavf_lan_del_device(adapter); 5128 if (err) 5129 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5130 err); 5131 } 5132 5133 mutex_lock(&adapter->crit_lock); 5134 dev_info(&adapter->pdev->dev, "Removing device\n"); 5135 iavf_change_state(adapter, __IAVF_REMOVE); 5136 5137 iavf_request_reset(adapter); 5138 msleep(50); 5139 /* If the FW isn't responding, kick it once, but only once. */ 5140 if (!iavf_asq_done(hw)) { 5141 iavf_request_reset(adapter); 5142 msleep(50); 5143 } 5144 5145 iavf_misc_irq_disable(adapter); 5146 /* Shut down all the garbage mashers on the detention level */ 5147 cancel_work_sync(&adapter->reset_task); 5148 cancel_delayed_work_sync(&adapter->watchdog_task); 5149 cancel_work_sync(&adapter->adminq_task); 5150 cancel_delayed_work_sync(&adapter->client_task); 5151 5152 adapter->aq_required = 0; 5153 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5154 5155 iavf_free_all_tx_resources(adapter); 5156 iavf_free_all_rx_resources(adapter); 5157 iavf_free_misc_irq(adapter); 5158 5159 iavf_reset_interrupt_capability(adapter); 5160 iavf_free_q_vectors(adapter); 5161 5162 iavf_free_rss(adapter); 5163 5164 if (hw->aq.asq.count) 5165 iavf_shutdown_adminq(hw); 5166 5167 /* destroy the locks only once, here */ 5168 mutex_destroy(&hw->aq.arq_mutex); 5169 mutex_destroy(&hw->aq.asq_mutex); 5170 mutex_destroy(&adapter->client_lock); 5171 mutex_unlock(&adapter->crit_lock); 5172 mutex_destroy(&adapter->crit_lock); 5173 5174 iounmap(hw->hw_addr); 5175 pci_release_regions(pdev); 5176 iavf_free_queues(adapter); 5177 kfree(adapter->vf_res); 5178 spin_lock_bh(&adapter->mac_vlan_list_lock); 5179 /* If we got removed before an up/down sequence, we've got a filter 5180 * hanging out there that we need to get rid of. 5181 */ 5182 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5183 list_del(&f->list); 5184 kfree(f); 5185 } 5186 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5187 list) { 5188 list_del(&vlf->list); 5189 kfree(vlf); 5190 } 5191 5192 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5193 5194 spin_lock_bh(&adapter->cloud_filter_list_lock); 5195 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5196 list_del(&cf->list); 5197 kfree(cf); 5198 } 5199 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5200 5201 spin_lock_bh(&adapter->fdir_fltr_lock); 5202 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5203 list_del(&fdir->list); 5204 kfree(fdir); 5205 } 5206 spin_unlock_bh(&adapter->fdir_fltr_lock); 5207 5208 spin_lock_bh(&adapter->adv_rss_lock); 5209 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5210 list) { 5211 list_del(&rss->list); 5212 kfree(rss); 5213 } 5214 spin_unlock_bh(&adapter->adv_rss_lock); 5215 5216 destroy_workqueue(adapter->wq); 5217 5218 free_netdev(netdev); 5219 5220 pci_disable_device(pdev); 5221 } 5222 5223 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5224 5225 static struct pci_driver iavf_driver = { 5226 .name = iavf_driver_name, 5227 .id_table = iavf_pci_tbl, 5228 .probe = iavf_probe, 5229 .remove = iavf_remove, 5230 .driver.pm = &iavf_pm_ops, 5231 .shutdown = iavf_shutdown, 5232 }; 5233 5234 /** 5235 * iavf_init_module - Driver Registration Routine 5236 * 5237 * iavf_init_module is the first routine called when the driver is 5238 * loaded. All it does is register with the PCI subsystem. 5239 **/ 5240 static int __init iavf_init_module(void) 5241 { 5242 pr_info("iavf: %s\n", iavf_driver_string); 5243 5244 pr_info("%s\n", iavf_copyright); 5245 5246 return pci_register_driver(&iavf_driver); 5247 } 5248 5249 module_init(iavf_init_module); 5250 5251 /** 5252 * iavf_exit_module - Driver Exit Cleanup Routine 5253 * 5254 * iavf_exit_module is called just before the driver is removed 5255 * from memory. 5256 **/ 5257 static void __exit iavf_exit_module(void) 5258 { 5259 pci_unregister_driver(&iavf_driver); 5260 } 5261 5262 module_exit(iavf_exit_module); 5263 5264 /* iavf_main.c */ 5265