1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_lock_timeout - try to lock mutex but give up after timeout
136  * @lock: mutex that should be locked
137  * @msecs: timeout in msecs
138  *
139  * Returns 0 on success, negative on failure
140  **/
141 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
142 {
143 	unsigned int wait, delay = 10;
144 
145 	for (wait = 0; wait < msecs; wait += delay) {
146 		if (mutex_trylock(lock))
147 			return 0;
148 
149 		msleep(delay);
150 	}
151 
152 	return -1;
153 }
154 
155 /**
156  * iavf_schedule_reset - Set the flags and schedule a reset event
157  * @adapter: board private structure
158  **/
159 void iavf_schedule_reset(struct iavf_adapter *adapter)
160 {
161 	if (!(adapter->flags &
162 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
163 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
164 		queue_work(iavf_wq, &adapter->reset_task);
165 	}
166 }
167 
168 /**
169  * iavf_tx_timeout - Respond to a Tx Hang
170  * @netdev: network interface device structure
171  * @txqueue: queue number that is timing out
172  **/
173 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
174 {
175 	struct iavf_adapter *adapter = netdev_priv(netdev);
176 
177 	adapter->tx_timeout_count++;
178 	iavf_schedule_reset(adapter);
179 }
180 
181 /**
182  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
183  * @adapter: board private structure
184  **/
185 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
186 {
187 	struct iavf_hw *hw = &adapter->hw;
188 
189 	if (!adapter->msix_entries)
190 		return;
191 
192 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
193 
194 	iavf_flush(hw);
195 
196 	synchronize_irq(adapter->msix_entries[0].vector);
197 }
198 
199 /**
200  * iavf_misc_irq_enable - Enable default interrupt generation settings
201  * @adapter: board private structure
202  **/
203 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
204 {
205 	struct iavf_hw *hw = &adapter->hw;
206 
207 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
208 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
209 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
210 
211 	iavf_flush(hw);
212 }
213 
214 /**
215  * iavf_irq_disable - Mask off interrupt generation on the NIC
216  * @adapter: board private structure
217  **/
218 static void iavf_irq_disable(struct iavf_adapter *adapter)
219 {
220 	int i;
221 	struct iavf_hw *hw = &adapter->hw;
222 
223 	if (!adapter->msix_entries)
224 		return;
225 
226 	for (i = 1; i < adapter->num_msix_vectors; i++) {
227 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
228 		synchronize_irq(adapter->msix_entries[i].vector);
229 	}
230 	iavf_flush(hw);
231 }
232 
233 /**
234  * iavf_irq_enable_queues - Enable interrupt for specified queues
235  * @adapter: board private structure
236  * @mask: bitmap of queues to enable
237  **/
238 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
239 {
240 	struct iavf_hw *hw = &adapter->hw;
241 	int i;
242 
243 	for (i = 1; i < adapter->num_msix_vectors; i++) {
244 		if (mask & BIT(i - 1)) {
245 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
246 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
247 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
248 		}
249 	}
250 }
251 
252 /**
253  * iavf_irq_enable - Enable default interrupt generation settings
254  * @adapter: board private structure
255  * @flush: boolean value whether to run rd32()
256  **/
257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
258 {
259 	struct iavf_hw *hw = &adapter->hw;
260 
261 	iavf_misc_irq_enable(adapter);
262 	iavf_irq_enable_queues(adapter, ~0);
263 
264 	if (flush)
265 		iavf_flush(hw);
266 }
267 
268 /**
269  * iavf_msix_aq - Interrupt handler for vector 0
270  * @irq: interrupt number
271  * @data: pointer to netdev
272  **/
273 static irqreturn_t iavf_msix_aq(int irq, void *data)
274 {
275 	struct net_device *netdev = data;
276 	struct iavf_adapter *adapter = netdev_priv(netdev);
277 	struct iavf_hw *hw = &adapter->hw;
278 
279 	/* handle non-queue interrupts, these reads clear the registers */
280 	rd32(hw, IAVF_VFINT_ICR01);
281 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
282 
283 	/* schedule work on the private workqueue */
284 	queue_work(iavf_wq, &adapter->adminq_task);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 /**
290  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
291  * @irq: interrupt number
292  * @data: pointer to a q_vector
293  **/
294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
295 {
296 	struct iavf_q_vector *q_vector = data;
297 
298 	if (!q_vector->tx.ring && !q_vector->rx.ring)
299 		return IRQ_HANDLED;
300 
301 	napi_schedule_irqoff(&q_vector->napi);
302 
303 	return IRQ_HANDLED;
304 }
305 
306 /**
307  * iavf_map_vector_to_rxq - associate irqs with rx queues
308  * @adapter: board private structure
309  * @v_idx: interrupt number
310  * @r_idx: queue number
311  **/
312 static void
313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
314 {
315 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
316 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
317 	struct iavf_hw *hw = &adapter->hw;
318 
319 	rx_ring->q_vector = q_vector;
320 	rx_ring->next = q_vector->rx.ring;
321 	rx_ring->vsi = &adapter->vsi;
322 	q_vector->rx.ring = rx_ring;
323 	q_vector->rx.count++;
324 	q_vector->rx.next_update = jiffies + 1;
325 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
326 	q_vector->ring_mask |= BIT(r_idx);
327 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
328 	     q_vector->rx.current_itr >> 1);
329 	q_vector->rx.current_itr = q_vector->rx.target_itr;
330 }
331 
332 /**
333  * iavf_map_vector_to_txq - associate irqs with tx queues
334  * @adapter: board private structure
335  * @v_idx: interrupt number
336  * @t_idx: queue number
337  **/
338 static void
339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
340 {
341 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
342 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
343 	struct iavf_hw *hw = &adapter->hw;
344 
345 	tx_ring->q_vector = q_vector;
346 	tx_ring->next = q_vector->tx.ring;
347 	tx_ring->vsi = &adapter->vsi;
348 	q_vector->tx.ring = tx_ring;
349 	q_vector->tx.count++;
350 	q_vector->tx.next_update = jiffies + 1;
351 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
352 	q_vector->num_ringpairs++;
353 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
354 	     q_vector->tx.target_itr >> 1);
355 	q_vector->tx.current_itr = q_vector->tx.target_itr;
356 }
357 
358 /**
359  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
360  * @adapter: board private structure to initialize
361  *
362  * This function maps descriptor rings to the queue-specific vectors
363  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
364  * one vector per ring/queue, but on a constrained vector budget, we
365  * group the rings as "efficiently" as possible.  You would add new
366  * mapping configurations in here.
367  **/
368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
369 {
370 	int rings_remaining = adapter->num_active_queues;
371 	int ridx = 0, vidx = 0;
372 	int q_vectors;
373 
374 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
375 
376 	for (; ridx < rings_remaining; ridx++) {
377 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
378 		iavf_map_vector_to_txq(adapter, vidx, ridx);
379 
380 		/* In the case where we have more queues than vectors, continue
381 		 * round-robin on vectors until all queues are mapped.
382 		 */
383 		if (++vidx >= q_vectors)
384 			vidx = 0;
385 	}
386 
387 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
388 }
389 
390 /**
391  * iavf_irq_affinity_notify - Callback for affinity changes
392  * @notify: context as to what irq was changed
393  * @mask: the new affinity mask
394  *
395  * This is a callback function used by the irq_set_affinity_notifier function
396  * so that we may register to receive changes to the irq affinity masks.
397  **/
398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
399 				     const cpumask_t *mask)
400 {
401 	struct iavf_q_vector *q_vector =
402 		container_of(notify, struct iavf_q_vector, affinity_notify);
403 
404 	cpumask_copy(&q_vector->affinity_mask, mask);
405 }
406 
407 /**
408  * iavf_irq_affinity_release - Callback for affinity notifier release
409  * @ref: internal core kernel usage
410  *
411  * This is a callback function used by the irq_set_affinity_notifier function
412  * to inform the current notification subscriber that they will no longer
413  * receive notifications.
414  **/
415 static void iavf_irq_affinity_release(struct kref *ref) {}
416 
417 /**
418  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
419  * @adapter: board private structure
420  * @basename: device basename
421  *
422  * Allocates MSI-X vectors for tx and rx handling, and requests
423  * interrupts from the kernel.
424  **/
425 static int
426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
427 {
428 	unsigned int vector, q_vectors;
429 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
430 	int irq_num, err;
431 	int cpu;
432 
433 	iavf_irq_disable(adapter);
434 	/* Decrement for Other and TCP Timer vectors */
435 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
436 
437 	for (vector = 0; vector < q_vectors; vector++) {
438 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
439 
440 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
441 
442 		if (q_vector->tx.ring && q_vector->rx.ring) {
443 			snprintf(q_vector->name, sizeof(q_vector->name),
444 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
445 			tx_int_idx++;
446 		} else if (q_vector->rx.ring) {
447 			snprintf(q_vector->name, sizeof(q_vector->name),
448 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
449 		} else if (q_vector->tx.ring) {
450 			snprintf(q_vector->name, sizeof(q_vector->name),
451 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
452 		} else {
453 			/* skip this unused q_vector */
454 			continue;
455 		}
456 		err = request_irq(irq_num,
457 				  iavf_msix_clean_rings,
458 				  0,
459 				  q_vector->name,
460 				  q_vector);
461 		if (err) {
462 			dev_info(&adapter->pdev->dev,
463 				 "Request_irq failed, error: %d\n", err);
464 			goto free_queue_irqs;
465 		}
466 		/* register for affinity change notifications */
467 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
468 		q_vector->affinity_notify.release =
469 						   iavf_irq_affinity_release;
470 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
471 		/* Spread the IRQ affinity hints across online CPUs. Note that
472 		 * get_cpu_mask returns a mask with a permanent lifetime so
473 		 * it's safe to use as a hint for irq_set_affinity_hint.
474 		 */
475 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
476 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
477 	}
478 
479 	return 0;
480 
481 free_queue_irqs:
482 	while (vector) {
483 		vector--;
484 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
485 		irq_set_affinity_notifier(irq_num, NULL);
486 		irq_set_affinity_hint(irq_num, NULL);
487 		free_irq(irq_num, &adapter->q_vectors[vector]);
488 	}
489 	return err;
490 }
491 
492 /**
493  * iavf_request_misc_irq - Initialize MSI-X interrupts
494  * @adapter: board private structure
495  *
496  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
497  * vector is only for the admin queue, and stays active even when the netdev
498  * is closed.
499  **/
500 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
501 {
502 	struct net_device *netdev = adapter->netdev;
503 	int err;
504 
505 	snprintf(adapter->misc_vector_name,
506 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
507 		 dev_name(&adapter->pdev->dev));
508 	err = request_irq(adapter->msix_entries[0].vector,
509 			  &iavf_msix_aq, 0,
510 			  adapter->misc_vector_name, netdev);
511 	if (err) {
512 		dev_err(&adapter->pdev->dev,
513 			"request_irq for %s failed: %d\n",
514 			adapter->misc_vector_name, err);
515 		free_irq(adapter->msix_entries[0].vector, netdev);
516 	}
517 	return err;
518 }
519 
520 /**
521  * iavf_free_traffic_irqs - Free MSI-X interrupts
522  * @adapter: board private structure
523  *
524  * Frees all MSI-X vectors other than 0.
525  **/
526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
527 {
528 	int vector, irq_num, q_vectors;
529 
530 	if (!adapter->msix_entries)
531 		return;
532 
533 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
534 
535 	for (vector = 0; vector < q_vectors; vector++) {
536 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
537 		irq_set_affinity_notifier(irq_num, NULL);
538 		irq_set_affinity_hint(irq_num, NULL);
539 		free_irq(irq_num, &adapter->q_vectors[vector]);
540 	}
541 }
542 
543 /**
544  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
545  * @adapter: board private structure
546  *
547  * Frees MSI-X vector 0.
548  **/
549 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
550 {
551 	struct net_device *netdev = adapter->netdev;
552 
553 	if (!adapter->msix_entries)
554 		return;
555 
556 	free_irq(adapter->msix_entries[0].vector, netdev);
557 }
558 
559 /**
560  * iavf_configure_tx - Configure Transmit Unit after Reset
561  * @adapter: board private structure
562  *
563  * Configure the Tx unit of the MAC after a reset.
564  **/
565 static void iavf_configure_tx(struct iavf_adapter *adapter)
566 {
567 	struct iavf_hw *hw = &adapter->hw;
568 	int i;
569 
570 	for (i = 0; i < adapter->num_active_queues; i++)
571 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
572 }
573 
574 /**
575  * iavf_configure_rx - Configure Receive Unit after Reset
576  * @adapter: board private structure
577  *
578  * Configure the Rx unit of the MAC after a reset.
579  **/
580 static void iavf_configure_rx(struct iavf_adapter *adapter)
581 {
582 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
583 	struct iavf_hw *hw = &adapter->hw;
584 	int i;
585 
586 	/* Legacy Rx will always default to a 2048 buffer size. */
587 #if (PAGE_SIZE < 8192)
588 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
589 		struct net_device *netdev = adapter->netdev;
590 
591 		/* For jumbo frames on systems with 4K pages we have to use
592 		 * an order 1 page, so we might as well increase the size
593 		 * of our Rx buffer to make better use of the available space
594 		 */
595 		rx_buf_len = IAVF_RXBUFFER_3072;
596 
597 		/* We use a 1536 buffer size for configurations with
598 		 * standard Ethernet mtu.  On x86 this gives us enough room
599 		 * for shared info and 192 bytes of padding.
600 		 */
601 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
602 		    (netdev->mtu <= ETH_DATA_LEN))
603 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
604 	}
605 #endif
606 
607 	for (i = 0; i < adapter->num_active_queues; i++) {
608 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
609 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
610 
611 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
612 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
613 		else
614 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
615 	}
616 }
617 
618 /**
619  * iavf_find_vlan - Search filter list for specific vlan filter
620  * @adapter: board private structure
621  * @vlan: vlan tag
622  *
623  * Returns ptr to the filter object or NULL. Must be called while holding the
624  * mac_vlan_list_lock.
625  **/
626 static struct
627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
628 {
629 	struct iavf_vlan_filter *f;
630 
631 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
632 		if (vlan == f->vlan)
633 			return f;
634 	}
635 	return NULL;
636 }
637 
638 /**
639  * iavf_add_vlan - Add a vlan filter to the list
640  * @adapter: board private structure
641  * @vlan: VLAN tag
642  *
643  * Returns ptr to the filter object or NULL when no memory available.
644  **/
645 static struct
646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
647 {
648 	struct iavf_vlan_filter *f = NULL;
649 
650 	spin_lock_bh(&adapter->mac_vlan_list_lock);
651 
652 	f = iavf_find_vlan(adapter, vlan);
653 	if (!f) {
654 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
655 		if (!f)
656 			goto clearout;
657 
658 		f->vlan = vlan;
659 
660 		list_add_tail(&f->list, &adapter->vlan_filter_list);
661 		f->add = true;
662 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
663 	}
664 
665 clearout:
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 	return f;
668 }
669 
670 /**
671  * iavf_del_vlan - Remove a vlan filter from the list
672  * @adapter: board private structure
673  * @vlan: VLAN tag
674  **/
675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
676 {
677 	struct iavf_vlan_filter *f;
678 
679 	spin_lock_bh(&adapter->mac_vlan_list_lock);
680 
681 	f = iavf_find_vlan(adapter, vlan);
682 	if (f) {
683 		f->remove = true;
684 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
685 	}
686 
687 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
688 }
689 
690 /**
691  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
692  * @netdev: network device struct
693  * @proto: unused protocol data
694  * @vid: VLAN tag
695  **/
696 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
697 				__always_unused __be16 proto, u16 vid)
698 {
699 	struct iavf_adapter *adapter = netdev_priv(netdev);
700 
701 	if (!VLAN_ALLOWED(adapter))
702 		return -EIO;
703 	if (iavf_add_vlan(adapter, vid) == NULL)
704 		return -ENOMEM;
705 	return 0;
706 }
707 
708 /**
709  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
710  * @netdev: network device struct
711  * @proto: unused protocol data
712  * @vid: VLAN tag
713  **/
714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
715 				 __always_unused __be16 proto, u16 vid)
716 {
717 	struct iavf_adapter *adapter = netdev_priv(netdev);
718 
719 	if (VLAN_ALLOWED(adapter)) {
720 		iavf_del_vlan(adapter, vid);
721 		return 0;
722 	}
723 	return -EIO;
724 }
725 
726 /**
727  * iavf_find_filter - Search filter list for specific mac filter
728  * @adapter: board private structure
729  * @macaddr: the MAC address
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
736 				  const u8 *macaddr)
737 {
738 	struct iavf_mac_filter *f;
739 
740 	if (!macaddr)
741 		return NULL;
742 
743 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
744 		if (ether_addr_equal(macaddr, f->macaddr))
745 			return f;
746 	}
747 	return NULL;
748 }
749 
750 /**
751  * iavf_add_filter - Add a mac filter to the filter list
752  * @adapter: board private structure
753  * @macaddr: the MAC address
754  *
755  * Returns ptr to the filter object or NULL when no memory available.
756  **/
757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
758 					const u8 *macaddr)
759 {
760 	struct iavf_mac_filter *f;
761 
762 	if (!macaddr)
763 		return NULL;
764 
765 	f = iavf_find_filter(adapter, macaddr);
766 	if (!f) {
767 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 		if (!f)
769 			return f;
770 
771 		ether_addr_copy(f->macaddr, macaddr);
772 
773 		list_add_tail(&f->list, &adapter->mac_filter_list);
774 		f->add = true;
775 		f->is_new_mac = true;
776 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
777 	} else {
778 		f->remove = false;
779 	}
780 
781 	return f;
782 }
783 
784 /**
785  * iavf_set_mac - NDO callback to set port mac address
786  * @netdev: network interface device structure
787  * @p: pointer to an address structure
788  *
789  * Returns 0 on success, negative on failure
790  **/
791 static int iavf_set_mac(struct net_device *netdev, void *p)
792 {
793 	struct iavf_adapter *adapter = netdev_priv(netdev);
794 	struct iavf_hw *hw = &adapter->hw;
795 	struct iavf_mac_filter *f;
796 	struct sockaddr *addr = p;
797 
798 	if (!is_valid_ether_addr(addr->sa_data))
799 		return -EADDRNOTAVAIL;
800 
801 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
802 		return 0;
803 
804 	spin_lock_bh(&adapter->mac_vlan_list_lock);
805 
806 	f = iavf_find_filter(adapter, hw->mac.addr);
807 	if (f) {
808 		f->remove = true;
809 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
810 	}
811 
812 	f = iavf_add_filter(adapter, addr->sa_data);
813 
814 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
815 
816 	if (f) {
817 		ether_addr_copy(hw->mac.addr, addr->sa_data);
818 	}
819 
820 	return (f == NULL) ? -ENOMEM : 0;
821 }
822 
823 /**
824  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
825  * @netdev: the netdevice
826  * @addr: address to add
827  *
828  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
829  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
830  */
831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
832 {
833 	struct iavf_adapter *adapter = netdev_priv(netdev);
834 
835 	if (iavf_add_filter(adapter, addr))
836 		return 0;
837 	else
838 		return -ENOMEM;
839 }
840 
841 /**
842  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
843  * @netdev: the netdevice
844  * @addr: address to add
845  *
846  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
847  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
848  */
849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
850 {
851 	struct iavf_adapter *adapter = netdev_priv(netdev);
852 	struct iavf_mac_filter *f;
853 
854 	/* Under some circumstances, we might receive a request to delete
855 	 * our own device address from our uc list. Because we store the
856 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
857 	 * such requests and not delete our device address from this list.
858 	 */
859 	if (ether_addr_equal(addr, netdev->dev_addr))
860 		return 0;
861 
862 	f = iavf_find_filter(adapter, addr);
863 	if (f) {
864 		f->remove = true;
865 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
866 	}
867 	return 0;
868 }
869 
870 /**
871  * iavf_set_rx_mode - NDO callback to set the netdev filters
872  * @netdev: network interface device structure
873  **/
874 static void iavf_set_rx_mode(struct net_device *netdev)
875 {
876 	struct iavf_adapter *adapter = netdev_priv(netdev);
877 
878 	spin_lock_bh(&adapter->mac_vlan_list_lock);
879 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
880 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
881 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
882 
883 	if (netdev->flags & IFF_PROMISC &&
884 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
885 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
886 	else if (!(netdev->flags & IFF_PROMISC) &&
887 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
888 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
889 
890 	if (netdev->flags & IFF_ALLMULTI &&
891 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
892 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
893 	else if (!(netdev->flags & IFF_ALLMULTI) &&
894 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
895 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
896 }
897 
898 /**
899  * iavf_napi_enable_all - enable NAPI on all queue vectors
900  * @adapter: board private structure
901  **/
902 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
903 {
904 	int q_idx;
905 	struct iavf_q_vector *q_vector;
906 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
907 
908 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
909 		struct napi_struct *napi;
910 
911 		q_vector = &adapter->q_vectors[q_idx];
912 		napi = &q_vector->napi;
913 		napi_enable(napi);
914 	}
915 }
916 
917 /**
918  * iavf_napi_disable_all - disable NAPI on all queue vectors
919  * @adapter: board private structure
920  **/
921 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
922 {
923 	int q_idx;
924 	struct iavf_q_vector *q_vector;
925 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
926 
927 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
928 		q_vector = &adapter->q_vectors[q_idx];
929 		napi_disable(&q_vector->napi);
930 	}
931 }
932 
933 /**
934  * iavf_configure - set up transmit and receive data structures
935  * @adapter: board private structure
936  **/
937 static void iavf_configure(struct iavf_adapter *adapter)
938 {
939 	struct net_device *netdev = adapter->netdev;
940 	int i;
941 
942 	iavf_set_rx_mode(netdev);
943 
944 	iavf_configure_tx(adapter);
945 	iavf_configure_rx(adapter);
946 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
947 
948 	for (i = 0; i < adapter->num_active_queues; i++) {
949 		struct iavf_ring *ring = &adapter->rx_rings[i];
950 
951 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
952 	}
953 }
954 
955 /**
956  * iavf_up_complete - Finish the last steps of bringing up a connection
957  * @adapter: board private structure
958  *
959  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
960  **/
961 static void iavf_up_complete(struct iavf_adapter *adapter)
962 {
963 	adapter->state = __IAVF_RUNNING;
964 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
965 
966 	iavf_napi_enable_all(adapter);
967 
968 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
969 	if (CLIENT_ENABLED(adapter))
970 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
971 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
972 }
973 
974 /**
975  * iavf_down - Shutdown the connection processing
976  * @adapter: board private structure
977  *
978  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
979  **/
980 void iavf_down(struct iavf_adapter *adapter)
981 {
982 	struct net_device *netdev = adapter->netdev;
983 	struct iavf_vlan_filter *vlf;
984 	struct iavf_cloud_filter *cf;
985 	struct iavf_fdir_fltr *fdir;
986 	struct iavf_mac_filter *f;
987 	struct iavf_adv_rss *rss;
988 
989 	if (adapter->state <= __IAVF_DOWN_PENDING)
990 		return;
991 
992 	netif_carrier_off(netdev);
993 	netif_tx_disable(netdev);
994 	adapter->link_up = false;
995 	iavf_napi_disable_all(adapter);
996 	iavf_irq_disable(adapter);
997 
998 	spin_lock_bh(&adapter->mac_vlan_list_lock);
999 
1000 	/* clear the sync flag on all filters */
1001 	__dev_uc_unsync(adapter->netdev, NULL);
1002 	__dev_mc_unsync(adapter->netdev, NULL);
1003 
1004 	/* remove all MAC filters */
1005 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1006 		f->remove = true;
1007 	}
1008 
1009 	/* remove all VLAN filters */
1010 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1011 		vlf->remove = true;
1012 	}
1013 
1014 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 
1016 	/* remove all cloud filters */
1017 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1018 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1019 		cf->del = true;
1020 	}
1021 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1022 
1023 	/* remove all Flow Director filters */
1024 	spin_lock_bh(&adapter->fdir_fltr_lock);
1025 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1026 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1027 	}
1028 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1029 
1030 	/* remove all advance RSS configuration */
1031 	spin_lock_bh(&adapter->adv_rss_lock);
1032 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1033 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1034 	spin_unlock_bh(&adapter->adv_rss_lock);
1035 
1036 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1037 	    adapter->state != __IAVF_RESETTING) {
1038 		/* cancel any current operation */
1039 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1040 		/* Schedule operations to close down the HW. Don't wait
1041 		 * here for this to complete. The watchdog is still running
1042 		 * and it will take care of this.
1043 		 */
1044 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1045 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1046 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1047 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1048 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1049 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1050 	}
1051 
1052 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1053 }
1054 
1055 /**
1056  * iavf_acquire_msix_vectors - Setup the MSIX capability
1057  * @adapter: board private structure
1058  * @vectors: number of vectors to request
1059  *
1060  * Work with the OS to set up the MSIX vectors needed.
1061  *
1062  * Returns 0 on success, negative on failure
1063  **/
1064 static int
1065 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1066 {
1067 	int err, vector_threshold;
1068 
1069 	/* We'll want at least 3 (vector_threshold):
1070 	 * 0) Other (Admin Queue and link, mostly)
1071 	 * 1) TxQ[0] Cleanup
1072 	 * 2) RxQ[0] Cleanup
1073 	 */
1074 	vector_threshold = MIN_MSIX_COUNT;
1075 
1076 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1077 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1078 	 * Right now, we simply care about how many we'll get; we'll
1079 	 * set them up later while requesting irq's.
1080 	 */
1081 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1082 				    vector_threshold, vectors);
1083 	if (err < 0) {
1084 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1085 		kfree(adapter->msix_entries);
1086 		adapter->msix_entries = NULL;
1087 		return err;
1088 	}
1089 
1090 	/* Adjust for only the vectors we'll use, which is minimum
1091 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1092 	 * vectors we were allocated.
1093 	 */
1094 	adapter->num_msix_vectors = err;
1095 	return 0;
1096 }
1097 
1098 /**
1099  * iavf_free_queues - Free memory for all rings
1100  * @adapter: board private structure to initialize
1101  *
1102  * Free all of the memory associated with queue pairs.
1103  **/
1104 static void iavf_free_queues(struct iavf_adapter *adapter)
1105 {
1106 	if (!adapter->vsi_res)
1107 		return;
1108 	adapter->num_active_queues = 0;
1109 	kfree(adapter->tx_rings);
1110 	adapter->tx_rings = NULL;
1111 	kfree(adapter->rx_rings);
1112 	adapter->rx_rings = NULL;
1113 }
1114 
1115 /**
1116  * iavf_alloc_queues - Allocate memory for all rings
1117  * @adapter: board private structure to initialize
1118  *
1119  * We allocate one ring per queue at run-time since we don't know the
1120  * number of queues at compile-time.  The polling_netdev array is
1121  * intended for Multiqueue, but should work fine with a single queue.
1122  **/
1123 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1124 {
1125 	int i, num_active_queues;
1126 
1127 	/* If we're in reset reallocating queues we don't actually know yet for
1128 	 * certain the PF gave us the number of queues we asked for but we'll
1129 	 * assume it did.  Once basic reset is finished we'll confirm once we
1130 	 * start negotiating config with PF.
1131 	 */
1132 	if (adapter->num_req_queues)
1133 		num_active_queues = adapter->num_req_queues;
1134 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1135 		 adapter->num_tc)
1136 		num_active_queues = adapter->ch_config.total_qps;
1137 	else
1138 		num_active_queues = min_t(int,
1139 					  adapter->vsi_res->num_queue_pairs,
1140 					  (int)(num_online_cpus()));
1141 
1142 
1143 	adapter->tx_rings = kcalloc(num_active_queues,
1144 				    sizeof(struct iavf_ring), GFP_KERNEL);
1145 	if (!adapter->tx_rings)
1146 		goto err_out;
1147 	adapter->rx_rings = kcalloc(num_active_queues,
1148 				    sizeof(struct iavf_ring), GFP_KERNEL);
1149 	if (!adapter->rx_rings)
1150 		goto err_out;
1151 
1152 	for (i = 0; i < num_active_queues; i++) {
1153 		struct iavf_ring *tx_ring;
1154 		struct iavf_ring *rx_ring;
1155 
1156 		tx_ring = &adapter->tx_rings[i];
1157 
1158 		tx_ring->queue_index = i;
1159 		tx_ring->netdev = adapter->netdev;
1160 		tx_ring->dev = &adapter->pdev->dev;
1161 		tx_ring->count = adapter->tx_desc_count;
1162 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1163 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1164 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1165 
1166 		rx_ring = &adapter->rx_rings[i];
1167 		rx_ring->queue_index = i;
1168 		rx_ring->netdev = adapter->netdev;
1169 		rx_ring->dev = &adapter->pdev->dev;
1170 		rx_ring->count = adapter->rx_desc_count;
1171 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1172 	}
1173 
1174 	adapter->num_active_queues = num_active_queues;
1175 
1176 	return 0;
1177 
1178 err_out:
1179 	iavf_free_queues(adapter);
1180 	return -ENOMEM;
1181 }
1182 
1183 /**
1184  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1185  * @adapter: board private structure to initialize
1186  *
1187  * Attempt to configure the interrupts using the best available
1188  * capabilities of the hardware and the kernel.
1189  **/
1190 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1191 {
1192 	int vector, v_budget;
1193 	int pairs = 0;
1194 	int err = 0;
1195 
1196 	if (!adapter->vsi_res) {
1197 		err = -EIO;
1198 		goto out;
1199 	}
1200 	pairs = adapter->num_active_queues;
1201 
1202 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1203 	 * us much good if we have more vectors than CPUs. However, we already
1204 	 * limit the total number of queues by the number of CPUs so we do not
1205 	 * need any further limiting here.
1206 	 */
1207 	v_budget = min_t(int, pairs + NONQ_VECS,
1208 			 (int)adapter->vf_res->max_vectors);
1209 
1210 	adapter->msix_entries = kcalloc(v_budget,
1211 					sizeof(struct msix_entry), GFP_KERNEL);
1212 	if (!adapter->msix_entries) {
1213 		err = -ENOMEM;
1214 		goto out;
1215 	}
1216 
1217 	for (vector = 0; vector < v_budget; vector++)
1218 		adapter->msix_entries[vector].entry = vector;
1219 
1220 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1221 
1222 out:
1223 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1224 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1225 	return err;
1226 }
1227 
1228 /**
1229  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1230  * @adapter: board private structure
1231  *
1232  * Return 0 on success, negative on failure
1233  **/
1234 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1235 {
1236 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1237 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1238 	struct iavf_hw *hw = &adapter->hw;
1239 	int ret = 0;
1240 
1241 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1242 		/* bail because we already have a command pending */
1243 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1244 			adapter->current_op);
1245 		return -EBUSY;
1246 	}
1247 
1248 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1249 	if (ret) {
1250 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1251 			iavf_stat_str(hw, ret),
1252 			iavf_aq_str(hw, hw->aq.asq_last_status));
1253 		return ret;
1254 
1255 	}
1256 
1257 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1258 				  adapter->rss_lut, adapter->rss_lut_size);
1259 	if (ret) {
1260 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1261 			iavf_stat_str(hw, ret),
1262 			iavf_aq_str(hw, hw->aq.asq_last_status));
1263 	}
1264 
1265 	return ret;
1266 
1267 }
1268 
1269 /**
1270  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1271  * @adapter: board private structure
1272  *
1273  * Returns 0 on success, negative on failure
1274  **/
1275 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1276 {
1277 	struct iavf_hw *hw = &adapter->hw;
1278 	u32 *dw;
1279 	u16 i;
1280 
1281 	dw = (u32 *)adapter->rss_key;
1282 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1283 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1284 
1285 	dw = (u32 *)adapter->rss_lut;
1286 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1287 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1288 
1289 	iavf_flush(hw);
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * iavf_config_rss - Configure RSS keys and lut
1296  * @adapter: board private structure
1297  *
1298  * Returns 0 on success, negative on failure
1299  **/
1300 int iavf_config_rss(struct iavf_adapter *adapter)
1301 {
1302 
1303 	if (RSS_PF(adapter)) {
1304 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1305 					IAVF_FLAG_AQ_SET_RSS_KEY;
1306 		return 0;
1307 	} else if (RSS_AQ(adapter)) {
1308 		return iavf_config_rss_aq(adapter);
1309 	} else {
1310 		return iavf_config_rss_reg(adapter);
1311 	}
1312 }
1313 
1314 /**
1315  * iavf_fill_rss_lut - Fill the lut with default values
1316  * @adapter: board private structure
1317  **/
1318 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1319 {
1320 	u16 i;
1321 
1322 	for (i = 0; i < adapter->rss_lut_size; i++)
1323 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1324 }
1325 
1326 /**
1327  * iavf_init_rss - Prepare for RSS
1328  * @adapter: board private structure
1329  *
1330  * Return 0 on success, negative on failure
1331  **/
1332 static int iavf_init_rss(struct iavf_adapter *adapter)
1333 {
1334 	struct iavf_hw *hw = &adapter->hw;
1335 	int ret;
1336 
1337 	if (!RSS_PF(adapter)) {
1338 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1339 		if (adapter->vf_res->vf_cap_flags &
1340 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1341 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1342 		else
1343 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1344 
1345 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1346 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1347 	}
1348 
1349 	iavf_fill_rss_lut(adapter);
1350 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1351 	ret = iavf_config_rss(adapter);
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1358  * @adapter: board private structure to initialize
1359  *
1360  * We allocate one q_vector per queue interrupt.  If allocation fails we
1361  * return -ENOMEM.
1362  **/
1363 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1364 {
1365 	int q_idx = 0, num_q_vectors;
1366 	struct iavf_q_vector *q_vector;
1367 
1368 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1369 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1370 				     GFP_KERNEL);
1371 	if (!adapter->q_vectors)
1372 		return -ENOMEM;
1373 
1374 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1375 		q_vector = &adapter->q_vectors[q_idx];
1376 		q_vector->adapter = adapter;
1377 		q_vector->vsi = &adapter->vsi;
1378 		q_vector->v_idx = q_idx;
1379 		q_vector->reg_idx = q_idx;
1380 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1381 		netif_napi_add(adapter->netdev, &q_vector->napi,
1382 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 /**
1389  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1390  * @adapter: board private structure to initialize
1391  *
1392  * This function frees the memory allocated to the q_vectors.  In addition if
1393  * NAPI is enabled it will delete any references to the NAPI struct prior
1394  * to freeing the q_vector.
1395  **/
1396 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1397 {
1398 	int q_idx, num_q_vectors;
1399 	int napi_vectors;
1400 
1401 	if (!adapter->q_vectors)
1402 		return;
1403 
1404 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1405 	napi_vectors = adapter->num_active_queues;
1406 
1407 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1408 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1409 
1410 		if (q_idx < napi_vectors)
1411 			netif_napi_del(&q_vector->napi);
1412 	}
1413 	kfree(adapter->q_vectors);
1414 	adapter->q_vectors = NULL;
1415 }
1416 
1417 /**
1418  * iavf_reset_interrupt_capability - Reset MSIX setup
1419  * @adapter: board private structure
1420  *
1421  **/
1422 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1423 {
1424 	if (!adapter->msix_entries)
1425 		return;
1426 
1427 	pci_disable_msix(adapter->pdev);
1428 	kfree(adapter->msix_entries);
1429 	adapter->msix_entries = NULL;
1430 }
1431 
1432 /**
1433  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1434  * @adapter: board private structure to initialize
1435  *
1436  **/
1437 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1438 {
1439 	int err;
1440 
1441 	err = iavf_alloc_queues(adapter);
1442 	if (err) {
1443 		dev_err(&adapter->pdev->dev,
1444 			"Unable to allocate memory for queues\n");
1445 		goto err_alloc_queues;
1446 	}
1447 
1448 	rtnl_lock();
1449 	err = iavf_set_interrupt_capability(adapter);
1450 	rtnl_unlock();
1451 	if (err) {
1452 		dev_err(&adapter->pdev->dev,
1453 			"Unable to setup interrupt capabilities\n");
1454 		goto err_set_interrupt;
1455 	}
1456 
1457 	err = iavf_alloc_q_vectors(adapter);
1458 	if (err) {
1459 		dev_err(&adapter->pdev->dev,
1460 			"Unable to allocate memory for queue vectors\n");
1461 		goto err_alloc_q_vectors;
1462 	}
1463 
1464 	/* If we've made it so far while ADq flag being ON, then we haven't
1465 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1466 	 * resources have been allocated in the reset path.
1467 	 * Now we can truly claim that ADq is enabled.
1468 	 */
1469 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1470 	    adapter->num_tc)
1471 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1472 			 adapter->num_tc);
1473 
1474 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1475 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1476 		 adapter->num_active_queues);
1477 
1478 	return 0;
1479 err_alloc_q_vectors:
1480 	iavf_reset_interrupt_capability(adapter);
1481 err_set_interrupt:
1482 	iavf_free_queues(adapter);
1483 err_alloc_queues:
1484 	return err;
1485 }
1486 
1487 /**
1488  * iavf_free_rss - Free memory used by RSS structs
1489  * @adapter: board private structure
1490  **/
1491 static void iavf_free_rss(struct iavf_adapter *adapter)
1492 {
1493 	kfree(adapter->rss_key);
1494 	adapter->rss_key = NULL;
1495 
1496 	kfree(adapter->rss_lut);
1497 	adapter->rss_lut = NULL;
1498 }
1499 
1500 /**
1501  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1502  * @adapter: board private structure
1503  *
1504  * Returns 0 on success, negative on failure
1505  **/
1506 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1507 {
1508 	struct net_device *netdev = adapter->netdev;
1509 	int err;
1510 
1511 	if (netif_running(netdev))
1512 		iavf_free_traffic_irqs(adapter);
1513 	iavf_free_misc_irq(adapter);
1514 	iavf_reset_interrupt_capability(adapter);
1515 	iavf_free_q_vectors(adapter);
1516 	iavf_free_queues(adapter);
1517 
1518 	err =  iavf_init_interrupt_scheme(adapter);
1519 	if (err)
1520 		goto err;
1521 
1522 	netif_tx_stop_all_queues(netdev);
1523 
1524 	err = iavf_request_misc_irq(adapter);
1525 	if (err)
1526 		goto err;
1527 
1528 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1529 
1530 	iavf_map_rings_to_vectors(adapter);
1531 err:
1532 	return err;
1533 }
1534 
1535 /**
1536  * iavf_process_aq_command - process aq_required flags
1537  * and sends aq command
1538  * @adapter: pointer to iavf adapter structure
1539  *
1540  * Returns 0 on success
1541  * Returns error code if no command was sent
1542  * or error code if the command failed.
1543  **/
1544 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1545 {
1546 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1547 		return iavf_send_vf_config_msg(adapter);
1548 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1549 		iavf_disable_queues(adapter);
1550 		return 0;
1551 	}
1552 
1553 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1554 		iavf_map_queues(adapter);
1555 		return 0;
1556 	}
1557 
1558 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1559 		iavf_add_ether_addrs(adapter);
1560 		return 0;
1561 	}
1562 
1563 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1564 		iavf_add_vlans(adapter);
1565 		return 0;
1566 	}
1567 
1568 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1569 		iavf_del_ether_addrs(adapter);
1570 		return 0;
1571 	}
1572 
1573 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1574 		iavf_del_vlans(adapter);
1575 		return 0;
1576 	}
1577 
1578 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1579 		iavf_enable_vlan_stripping(adapter);
1580 		return 0;
1581 	}
1582 
1583 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1584 		iavf_disable_vlan_stripping(adapter);
1585 		return 0;
1586 	}
1587 
1588 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1589 		iavf_configure_queues(adapter);
1590 		return 0;
1591 	}
1592 
1593 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1594 		iavf_enable_queues(adapter);
1595 		return 0;
1596 	}
1597 
1598 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1599 		/* This message goes straight to the firmware, not the
1600 		 * PF, so we don't have to set current_op as we will
1601 		 * not get a response through the ARQ.
1602 		 */
1603 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1604 		return 0;
1605 	}
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1607 		iavf_get_hena(adapter);
1608 		return 0;
1609 	}
1610 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1611 		iavf_set_hena(adapter);
1612 		return 0;
1613 	}
1614 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1615 		iavf_set_rss_key(adapter);
1616 		return 0;
1617 	}
1618 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1619 		iavf_set_rss_lut(adapter);
1620 		return 0;
1621 	}
1622 
1623 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1624 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1625 				       FLAG_VF_MULTICAST_PROMISC);
1626 		return 0;
1627 	}
1628 
1629 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1630 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1631 		return 0;
1632 	}
1633 
1634 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1635 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1636 		iavf_set_promiscuous(adapter, 0);
1637 		return 0;
1638 	}
1639 
1640 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1641 		iavf_enable_channels(adapter);
1642 		return 0;
1643 	}
1644 
1645 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1646 		iavf_disable_channels(adapter);
1647 		return 0;
1648 	}
1649 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1650 		iavf_add_cloud_filter(adapter);
1651 		return 0;
1652 	}
1653 
1654 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1655 		iavf_del_cloud_filter(adapter);
1656 		return 0;
1657 	}
1658 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1659 		iavf_del_cloud_filter(adapter);
1660 		return 0;
1661 	}
1662 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1663 		iavf_add_cloud_filter(adapter);
1664 		return 0;
1665 	}
1666 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1667 		iavf_add_fdir_filter(adapter);
1668 		return IAVF_SUCCESS;
1669 	}
1670 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1671 		iavf_del_fdir_filter(adapter);
1672 		return IAVF_SUCCESS;
1673 	}
1674 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1675 		iavf_add_adv_rss_cfg(adapter);
1676 		return 0;
1677 	}
1678 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1679 		iavf_del_adv_rss_cfg(adapter);
1680 		return 0;
1681 	}
1682 	return -EAGAIN;
1683 }
1684 
1685 /**
1686  * iavf_startup - first step of driver startup
1687  * @adapter: board private structure
1688  *
1689  * Function process __IAVF_STARTUP driver state.
1690  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1691  * when fails it returns -EAGAIN
1692  **/
1693 static int iavf_startup(struct iavf_adapter *adapter)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	struct iavf_hw *hw = &adapter->hw;
1697 	int err;
1698 
1699 	WARN_ON(adapter->state != __IAVF_STARTUP);
1700 
1701 	/* driver loaded, probe complete */
1702 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1703 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1704 	err = iavf_set_mac_type(hw);
1705 	if (err) {
1706 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1707 		goto err;
1708 	}
1709 
1710 	err = iavf_check_reset_complete(hw);
1711 	if (err) {
1712 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1713 			 err);
1714 		goto err;
1715 	}
1716 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1717 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1718 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1719 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1720 
1721 	err = iavf_init_adminq(hw);
1722 	if (err) {
1723 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1724 		goto err;
1725 	}
1726 	err = iavf_send_api_ver(adapter);
1727 	if (err) {
1728 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1729 		iavf_shutdown_adminq(hw);
1730 		goto err;
1731 	}
1732 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1733 err:
1734 	return err;
1735 }
1736 
1737 /**
1738  * iavf_init_version_check - second step of driver startup
1739  * @adapter: board private structure
1740  *
1741  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1742  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1743  * when fails it returns -EAGAIN
1744  **/
1745 static int iavf_init_version_check(struct iavf_adapter *adapter)
1746 {
1747 	struct pci_dev *pdev = adapter->pdev;
1748 	struct iavf_hw *hw = &adapter->hw;
1749 	int err = -EAGAIN;
1750 
1751 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1752 
1753 	if (!iavf_asq_done(hw)) {
1754 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1755 		iavf_shutdown_adminq(hw);
1756 		adapter->state = __IAVF_STARTUP;
1757 		goto err;
1758 	}
1759 
1760 	/* aq msg sent, awaiting reply */
1761 	err = iavf_verify_api_ver(adapter);
1762 	if (err) {
1763 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1764 			err = iavf_send_api_ver(adapter);
1765 		else
1766 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1767 				adapter->pf_version.major,
1768 				adapter->pf_version.minor,
1769 				VIRTCHNL_VERSION_MAJOR,
1770 				VIRTCHNL_VERSION_MINOR);
1771 		goto err;
1772 	}
1773 	err = iavf_send_vf_config_msg(adapter);
1774 	if (err) {
1775 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1776 			err);
1777 		goto err;
1778 	}
1779 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1780 
1781 err:
1782 	return err;
1783 }
1784 
1785 /**
1786  * iavf_init_get_resources - third step of driver startup
1787  * @adapter: board private structure
1788  *
1789  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1790  * finishes driver initialization procedure.
1791  * When success the state is changed to __IAVF_DOWN
1792  * when fails it returns -EAGAIN
1793  **/
1794 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1795 {
1796 	struct net_device *netdev = adapter->netdev;
1797 	struct pci_dev *pdev = adapter->pdev;
1798 	struct iavf_hw *hw = &adapter->hw;
1799 	int err;
1800 
1801 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1802 	/* aq msg sent, awaiting reply */
1803 	if (!adapter->vf_res) {
1804 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1805 					  GFP_KERNEL);
1806 		if (!adapter->vf_res) {
1807 			err = -ENOMEM;
1808 			goto err;
1809 		}
1810 	}
1811 	err = iavf_get_vf_config(adapter);
1812 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1813 		err = iavf_send_vf_config_msg(adapter);
1814 		goto err;
1815 	} else if (err == IAVF_ERR_PARAM) {
1816 		/* We only get ERR_PARAM if the device is in a very bad
1817 		 * state or if we've been disabled for previous bad
1818 		 * behavior. Either way, we're done now.
1819 		 */
1820 		iavf_shutdown_adminq(hw);
1821 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1822 		return 0;
1823 	}
1824 	if (err) {
1825 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1826 		goto err_alloc;
1827 	}
1828 
1829 	err = iavf_process_config(adapter);
1830 	if (err)
1831 		goto err_alloc;
1832 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1833 
1834 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1835 
1836 	netdev->netdev_ops = &iavf_netdev_ops;
1837 	iavf_set_ethtool_ops(netdev);
1838 	netdev->watchdog_timeo = 5 * HZ;
1839 
1840 	/* MTU range: 68 - 9710 */
1841 	netdev->min_mtu = ETH_MIN_MTU;
1842 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1843 
1844 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1845 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1846 			 adapter->hw.mac.addr);
1847 		eth_hw_addr_random(netdev);
1848 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1849 	} else {
1850 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1851 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1852 	}
1853 
1854 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1855 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1856 	err = iavf_init_interrupt_scheme(adapter);
1857 	if (err)
1858 		goto err_sw_init;
1859 	iavf_map_rings_to_vectors(adapter);
1860 	if (adapter->vf_res->vf_cap_flags &
1861 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1862 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1863 
1864 	err = iavf_request_misc_irq(adapter);
1865 	if (err)
1866 		goto err_sw_init;
1867 
1868 	netif_carrier_off(netdev);
1869 	adapter->link_up = false;
1870 
1871 	/* set the semaphore to prevent any callbacks after device registration
1872 	 * up to time when state of driver will be set to __IAVF_DOWN
1873 	 */
1874 	rtnl_lock();
1875 	if (!adapter->netdev_registered) {
1876 		err = register_netdevice(netdev);
1877 		if (err) {
1878 			rtnl_unlock();
1879 			goto err_register;
1880 		}
1881 	}
1882 
1883 	adapter->netdev_registered = true;
1884 
1885 	netif_tx_stop_all_queues(netdev);
1886 	if (CLIENT_ALLOWED(adapter)) {
1887 		err = iavf_lan_add_device(adapter);
1888 		if (err)
1889 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1890 				 err);
1891 	}
1892 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1893 	if (netdev->features & NETIF_F_GRO)
1894 		dev_info(&pdev->dev, "GRO is enabled\n");
1895 
1896 	adapter->state = __IAVF_DOWN;
1897 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1898 	rtnl_unlock();
1899 
1900 	iavf_misc_irq_enable(adapter);
1901 	wake_up(&adapter->down_waitqueue);
1902 
1903 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1904 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1905 	if (!adapter->rss_key || !adapter->rss_lut) {
1906 		err = -ENOMEM;
1907 		goto err_mem;
1908 	}
1909 	if (RSS_AQ(adapter))
1910 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1911 	else
1912 		iavf_init_rss(adapter);
1913 
1914 	return err;
1915 err_mem:
1916 	iavf_free_rss(adapter);
1917 err_register:
1918 	iavf_free_misc_irq(adapter);
1919 err_sw_init:
1920 	iavf_reset_interrupt_capability(adapter);
1921 err_alloc:
1922 	kfree(adapter->vf_res);
1923 	adapter->vf_res = NULL;
1924 err:
1925 	return err;
1926 }
1927 
1928 /**
1929  * iavf_watchdog_task - Periodic call-back task
1930  * @work: pointer to work_struct
1931  **/
1932 static void iavf_watchdog_task(struct work_struct *work)
1933 {
1934 	struct iavf_adapter *adapter = container_of(work,
1935 						    struct iavf_adapter,
1936 						    watchdog_task.work);
1937 	struct iavf_hw *hw = &adapter->hw;
1938 	u32 reg_val;
1939 
1940 	if (!mutex_trylock(&adapter->crit_lock))
1941 		goto restart_watchdog;
1942 
1943 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1944 		adapter->state = __IAVF_COMM_FAILED;
1945 
1946 	switch (adapter->state) {
1947 	case __IAVF_COMM_FAILED:
1948 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1949 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1950 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1951 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1952 			/* A chance for redemption! */
1953 			dev_err(&adapter->pdev->dev,
1954 				"Hardware came out of reset. Attempting reinit.\n");
1955 			adapter->state = __IAVF_STARTUP;
1956 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1957 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1958 			mutex_unlock(&adapter->crit_lock);
1959 			/* Don't reschedule the watchdog, since we've restarted
1960 			 * the init task. When init_task contacts the PF and
1961 			 * gets everything set up again, it'll restart the
1962 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1963 			 */
1964 			return;
1965 		}
1966 		adapter->aq_required = 0;
1967 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1968 		queue_delayed_work(iavf_wq,
1969 				   &adapter->watchdog_task,
1970 				   msecs_to_jiffies(10));
1971 		goto watchdog_done;
1972 	case __IAVF_RESETTING:
1973 		mutex_unlock(&adapter->crit_lock);
1974 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1975 		return;
1976 	case __IAVF_DOWN:
1977 	case __IAVF_DOWN_PENDING:
1978 	case __IAVF_TESTING:
1979 	case __IAVF_RUNNING:
1980 		if (adapter->current_op) {
1981 			if (!iavf_asq_done(hw)) {
1982 				dev_dbg(&adapter->pdev->dev,
1983 					"Admin queue timeout\n");
1984 				iavf_send_api_ver(adapter);
1985 			}
1986 		} else {
1987 			/* An error will be returned if no commands were
1988 			 * processed; use this opportunity to update stats
1989 			 */
1990 			if (iavf_process_aq_command(adapter) &&
1991 			    adapter->state == __IAVF_RUNNING)
1992 				iavf_request_stats(adapter);
1993 		}
1994 		break;
1995 	case __IAVF_REMOVE:
1996 		mutex_unlock(&adapter->crit_lock);
1997 		return;
1998 	default:
1999 		goto restart_watchdog;
2000 	}
2001 
2002 		/* check for hw reset */
2003 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2004 	if (!reg_val) {
2005 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2006 		adapter->aq_required = 0;
2007 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2008 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2009 		queue_work(iavf_wq, &adapter->reset_task);
2010 		goto watchdog_done;
2011 	}
2012 
2013 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2014 watchdog_done:
2015 	if (adapter->state == __IAVF_RUNNING ||
2016 	    adapter->state == __IAVF_COMM_FAILED)
2017 		iavf_detect_recover_hung(&adapter->vsi);
2018 	mutex_unlock(&adapter->crit_lock);
2019 restart_watchdog:
2020 	if (adapter->aq_required)
2021 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2022 				   msecs_to_jiffies(20));
2023 	else
2024 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2025 	queue_work(iavf_wq, &adapter->adminq_task);
2026 }
2027 
2028 static void iavf_disable_vf(struct iavf_adapter *adapter)
2029 {
2030 	struct iavf_mac_filter *f, *ftmp;
2031 	struct iavf_vlan_filter *fv, *fvtmp;
2032 	struct iavf_cloud_filter *cf, *cftmp;
2033 
2034 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2035 
2036 	/* We don't use netif_running() because it may be true prior to
2037 	 * ndo_open() returning, so we can't assume it means all our open
2038 	 * tasks have finished, since we're not holding the rtnl_lock here.
2039 	 */
2040 	if (adapter->state == __IAVF_RUNNING) {
2041 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2042 		netif_carrier_off(adapter->netdev);
2043 		netif_tx_disable(adapter->netdev);
2044 		adapter->link_up = false;
2045 		iavf_napi_disable_all(adapter);
2046 		iavf_irq_disable(adapter);
2047 		iavf_free_traffic_irqs(adapter);
2048 		iavf_free_all_tx_resources(adapter);
2049 		iavf_free_all_rx_resources(adapter);
2050 	}
2051 
2052 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2053 
2054 	/* Delete all of the filters */
2055 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2056 		list_del(&f->list);
2057 		kfree(f);
2058 	}
2059 
2060 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2061 		list_del(&fv->list);
2062 		kfree(fv);
2063 	}
2064 
2065 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2066 
2067 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2068 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2069 		list_del(&cf->list);
2070 		kfree(cf);
2071 		adapter->num_cloud_filters--;
2072 	}
2073 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2074 
2075 	iavf_free_misc_irq(adapter);
2076 	iavf_reset_interrupt_capability(adapter);
2077 	iavf_free_queues(adapter);
2078 	iavf_free_q_vectors(adapter);
2079 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2080 	iavf_shutdown_adminq(&adapter->hw);
2081 	adapter->netdev->flags &= ~IFF_UP;
2082 	mutex_unlock(&adapter->crit_lock);
2083 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2084 	adapter->state = __IAVF_DOWN;
2085 	wake_up(&adapter->down_waitqueue);
2086 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2087 }
2088 
2089 /**
2090  * iavf_reset_task - Call-back task to handle hardware reset
2091  * @work: pointer to work_struct
2092  *
2093  * During reset we need to shut down and reinitialize the admin queue
2094  * before we can use it to communicate with the PF again. We also clear
2095  * and reinit the rings because that context is lost as well.
2096  **/
2097 static void iavf_reset_task(struct work_struct *work)
2098 {
2099 	struct iavf_adapter *adapter = container_of(work,
2100 						      struct iavf_adapter,
2101 						      reset_task);
2102 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2103 	struct net_device *netdev = adapter->netdev;
2104 	struct iavf_hw *hw = &adapter->hw;
2105 	struct iavf_mac_filter *f, *ftmp;
2106 	struct iavf_vlan_filter *vlf;
2107 	struct iavf_cloud_filter *cf;
2108 	u32 reg_val;
2109 	int i = 0, err;
2110 	bool running;
2111 
2112 	/* When device is being removed it doesn't make sense to run the reset
2113 	 * task, just return in such a case.
2114 	 */
2115 	if (mutex_is_locked(&adapter->remove_lock))
2116 		return;
2117 
2118 	if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2119 		schedule_work(&adapter->reset_task);
2120 		return;
2121 	}
2122 	while (!mutex_trylock(&adapter->client_lock))
2123 		usleep_range(500, 1000);
2124 	if (CLIENT_ENABLED(adapter)) {
2125 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2126 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2127 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2128 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2129 		cancel_delayed_work_sync(&adapter->client_task);
2130 		iavf_notify_client_close(&adapter->vsi, true);
2131 	}
2132 	iavf_misc_irq_disable(adapter);
2133 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2134 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2135 		/* Restart the AQ here. If we have been reset but didn't
2136 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2137 		 */
2138 		iavf_shutdown_adminq(hw);
2139 		iavf_init_adminq(hw);
2140 		iavf_request_reset(adapter);
2141 	}
2142 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2143 
2144 	/* poll until we see the reset actually happen */
2145 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2146 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2147 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2148 		if (!reg_val)
2149 			break;
2150 		usleep_range(5000, 10000);
2151 	}
2152 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2153 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2154 		goto continue_reset; /* act like the reset happened */
2155 	}
2156 
2157 	/* wait until the reset is complete and the PF is responding to us */
2158 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2159 		/* sleep first to make sure a minimum wait time is met */
2160 		msleep(IAVF_RESET_WAIT_MS);
2161 
2162 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2163 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2164 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2165 			break;
2166 	}
2167 
2168 	pci_set_master(adapter->pdev);
2169 
2170 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2171 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2172 			reg_val);
2173 		iavf_disable_vf(adapter);
2174 		mutex_unlock(&adapter->client_lock);
2175 		return; /* Do not attempt to reinit. It's dead, Jim. */
2176 	}
2177 
2178 continue_reset:
2179 	/* We don't use netif_running() because it may be true prior to
2180 	 * ndo_open() returning, so we can't assume it means all our open
2181 	 * tasks have finished, since we're not holding the rtnl_lock here.
2182 	 */
2183 	running = ((adapter->state == __IAVF_RUNNING) ||
2184 		   (adapter->state == __IAVF_RESETTING));
2185 
2186 	if (running) {
2187 		netif_carrier_off(netdev);
2188 		netif_tx_stop_all_queues(netdev);
2189 		adapter->link_up = false;
2190 		iavf_napi_disable_all(adapter);
2191 	}
2192 	iavf_irq_disable(adapter);
2193 
2194 	adapter->state = __IAVF_RESETTING;
2195 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2196 
2197 	/* free the Tx/Rx rings and descriptors, might be better to just
2198 	 * re-use them sometime in the future
2199 	 */
2200 	iavf_free_all_rx_resources(adapter);
2201 	iavf_free_all_tx_resources(adapter);
2202 
2203 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2204 	/* kill and reinit the admin queue */
2205 	iavf_shutdown_adminq(hw);
2206 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2207 	err = iavf_init_adminq(hw);
2208 	if (err)
2209 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2210 			 err);
2211 	adapter->aq_required = 0;
2212 
2213 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2214 		err = iavf_reinit_interrupt_scheme(adapter);
2215 		if (err)
2216 			goto reset_err;
2217 	}
2218 
2219 	if (RSS_AQ(adapter)) {
2220 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2221 	} else {
2222 		err = iavf_init_rss(adapter);
2223 		if (err)
2224 			goto reset_err;
2225 	}
2226 
2227 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2228 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2229 
2230 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2231 
2232 	/* Delete filter for the current MAC address, it could have
2233 	 * been changed by the PF via administratively set MAC.
2234 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2235 	 */
2236 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2237 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2238 			list_del(&f->list);
2239 			kfree(f);
2240 		}
2241 	}
2242 	/* re-add all MAC filters */
2243 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2244 		f->add = true;
2245 	}
2246 	/* re-add all VLAN filters */
2247 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2248 		vlf->add = true;
2249 	}
2250 
2251 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2252 
2253 	/* check if TCs are running and re-add all cloud filters */
2254 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2255 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2256 	    adapter->num_tc) {
2257 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2258 			cf->add = true;
2259 		}
2260 	}
2261 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2262 
2263 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2264 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2265 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2266 	iavf_misc_irq_enable(adapter);
2267 
2268 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2269 
2270 	/* We were running when the reset started, so we need to restore some
2271 	 * state here.
2272 	 */
2273 	if (running) {
2274 		/* allocate transmit descriptors */
2275 		err = iavf_setup_all_tx_resources(adapter);
2276 		if (err)
2277 			goto reset_err;
2278 
2279 		/* allocate receive descriptors */
2280 		err = iavf_setup_all_rx_resources(adapter);
2281 		if (err)
2282 			goto reset_err;
2283 
2284 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2285 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2286 			if (err)
2287 				goto reset_err;
2288 
2289 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2290 		}
2291 
2292 		iavf_configure(adapter);
2293 
2294 		iavf_up_complete(adapter);
2295 
2296 		iavf_irq_enable(adapter, true);
2297 	} else {
2298 		adapter->state = __IAVF_DOWN;
2299 		wake_up(&adapter->down_waitqueue);
2300 	}
2301 	mutex_unlock(&adapter->client_lock);
2302 	mutex_unlock(&adapter->crit_lock);
2303 
2304 	return;
2305 reset_err:
2306 	mutex_unlock(&adapter->client_lock);
2307 	mutex_unlock(&adapter->crit_lock);
2308 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2309 	iavf_close(netdev);
2310 }
2311 
2312 /**
2313  * iavf_adminq_task - worker thread to clean the admin queue
2314  * @work: pointer to work_struct containing our data
2315  **/
2316 static void iavf_adminq_task(struct work_struct *work)
2317 {
2318 	struct iavf_adapter *adapter =
2319 		container_of(work, struct iavf_adapter, adminq_task);
2320 	struct iavf_hw *hw = &adapter->hw;
2321 	struct iavf_arq_event_info event;
2322 	enum virtchnl_ops v_op;
2323 	enum iavf_status ret, v_ret;
2324 	u32 val, oldval;
2325 	u16 pending;
2326 
2327 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2328 		goto out;
2329 
2330 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2331 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2332 	if (!event.msg_buf)
2333 		goto out;
2334 
2335 	if (iavf_lock_timeout(&adapter->crit_lock, 200))
2336 		goto freedom;
2337 	do {
2338 		ret = iavf_clean_arq_element(hw, &event, &pending);
2339 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2340 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2341 
2342 		if (ret || !v_op)
2343 			break; /* No event to process or error cleaning ARQ */
2344 
2345 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2346 					 event.msg_len);
2347 		if (pending != 0)
2348 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2349 	} while (pending);
2350 	mutex_unlock(&adapter->crit_lock);
2351 
2352 	if ((adapter->flags &
2353 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2354 	    adapter->state == __IAVF_RESETTING)
2355 		goto freedom;
2356 
2357 	/* check for error indications */
2358 	val = rd32(hw, hw->aq.arq.len);
2359 	if (val == 0xdeadbeef) /* indicates device in reset */
2360 		goto freedom;
2361 	oldval = val;
2362 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2363 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2364 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2365 	}
2366 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2367 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2368 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2369 	}
2370 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2371 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2372 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2373 	}
2374 	if (oldval != val)
2375 		wr32(hw, hw->aq.arq.len, val);
2376 
2377 	val = rd32(hw, hw->aq.asq.len);
2378 	oldval = val;
2379 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2380 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2381 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2382 	}
2383 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2384 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2385 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2386 	}
2387 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2388 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2389 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2390 	}
2391 	if (oldval != val)
2392 		wr32(hw, hw->aq.asq.len, val);
2393 
2394 freedom:
2395 	kfree(event.msg_buf);
2396 out:
2397 	/* re-enable Admin queue interrupt cause */
2398 	iavf_misc_irq_enable(adapter);
2399 }
2400 
2401 /**
2402  * iavf_client_task - worker thread to perform client work
2403  * @work: pointer to work_struct containing our data
2404  *
2405  * This task handles client interactions. Because client calls can be
2406  * reentrant, we can't handle them in the watchdog.
2407  **/
2408 static void iavf_client_task(struct work_struct *work)
2409 {
2410 	struct iavf_adapter *adapter =
2411 		container_of(work, struct iavf_adapter, client_task.work);
2412 
2413 	/* If we can't get the client bit, just give up. We'll be rescheduled
2414 	 * later.
2415 	 */
2416 
2417 	if (!mutex_trylock(&adapter->client_lock))
2418 		return;
2419 
2420 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2421 		iavf_client_subtask(adapter);
2422 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2423 		goto out;
2424 	}
2425 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2426 		iavf_notify_client_l2_params(&adapter->vsi);
2427 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2428 		goto out;
2429 	}
2430 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2431 		iavf_notify_client_close(&adapter->vsi, false);
2432 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2433 		goto out;
2434 	}
2435 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2436 		iavf_notify_client_open(&adapter->vsi);
2437 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2438 	}
2439 out:
2440 	mutex_unlock(&adapter->client_lock);
2441 }
2442 
2443 /**
2444  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2445  * @adapter: board private structure
2446  *
2447  * Free all transmit software resources
2448  **/
2449 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2450 {
2451 	int i;
2452 
2453 	if (!adapter->tx_rings)
2454 		return;
2455 
2456 	for (i = 0; i < adapter->num_active_queues; i++)
2457 		if (adapter->tx_rings[i].desc)
2458 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2459 }
2460 
2461 /**
2462  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2463  * @adapter: board private structure
2464  *
2465  * If this function returns with an error, then it's possible one or
2466  * more of the rings is populated (while the rest are not).  It is the
2467  * callers duty to clean those orphaned rings.
2468  *
2469  * Return 0 on success, negative on failure
2470  **/
2471 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2472 {
2473 	int i, err = 0;
2474 
2475 	for (i = 0; i < adapter->num_active_queues; i++) {
2476 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2477 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2478 		if (!err)
2479 			continue;
2480 		dev_err(&adapter->pdev->dev,
2481 			"Allocation for Tx Queue %u failed\n", i);
2482 		break;
2483 	}
2484 
2485 	return err;
2486 }
2487 
2488 /**
2489  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2490  * @adapter: board private structure
2491  *
2492  * If this function returns with an error, then it's possible one or
2493  * more of the rings is populated (while the rest are not).  It is the
2494  * callers duty to clean those orphaned rings.
2495  *
2496  * Return 0 on success, negative on failure
2497  **/
2498 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2499 {
2500 	int i, err = 0;
2501 
2502 	for (i = 0; i < adapter->num_active_queues; i++) {
2503 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2504 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2505 		if (!err)
2506 			continue;
2507 		dev_err(&adapter->pdev->dev,
2508 			"Allocation for Rx Queue %u failed\n", i);
2509 		break;
2510 	}
2511 	return err;
2512 }
2513 
2514 /**
2515  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2516  * @adapter: board private structure
2517  *
2518  * Free all receive software resources
2519  **/
2520 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2521 {
2522 	int i;
2523 
2524 	if (!adapter->rx_rings)
2525 		return;
2526 
2527 	for (i = 0; i < adapter->num_active_queues; i++)
2528 		if (adapter->rx_rings[i].desc)
2529 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2530 }
2531 
2532 /**
2533  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2534  * @adapter: board private structure
2535  * @max_tx_rate: max Tx bw for a tc
2536  **/
2537 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2538 				      u64 max_tx_rate)
2539 {
2540 	int speed = 0, ret = 0;
2541 
2542 	if (ADV_LINK_SUPPORT(adapter)) {
2543 		if (adapter->link_speed_mbps < U32_MAX) {
2544 			speed = adapter->link_speed_mbps;
2545 			goto validate_bw;
2546 		} else {
2547 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2548 			return -EINVAL;
2549 		}
2550 	}
2551 
2552 	switch (adapter->link_speed) {
2553 	case VIRTCHNL_LINK_SPEED_40GB:
2554 		speed = SPEED_40000;
2555 		break;
2556 	case VIRTCHNL_LINK_SPEED_25GB:
2557 		speed = SPEED_25000;
2558 		break;
2559 	case VIRTCHNL_LINK_SPEED_20GB:
2560 		speed = SPEED_20000;
2561 		break;
2562 	case VIRTCHNL_LINK_SPEED_10GB:
2563 		speed = SPEED_10000;
2564 		break;
2565 	case VIRTCHNL_LINK_SPEED_5GB:
2566 		speed = SPEED_5000;
2567 		break;
2568 	case VIRTCHNL_LINK_SPEED_2_5GB:
2569 		speed = SPEED_2500;
2570 		break;
2571 	case VIRTCHNL_LINK_SPEED_1GB:
2572 		speed = SPEED_1000;
2573 		break;
2574 	case VIRTCHNL_LINK_SPEED_100MB:
2575 		speed = SPEED_100;
2576 		break;
2577 	default:
2578 		break;
2579 	}
2580 
2581 validate_bw:
2582 	if (max_tx_rate > speed) {
2583 		dev_err(&adapter->pdev->dev,
2584 			"Invalid tx rate specified\n");
2585 		ret = -EINVAL;
2586 	}
2587 
2588 	return ret;
2589 }
2590 
2591 /**
2592  * iavf_validate_ch_config - validate queue mapping info
2593  * @adapter: board private structure
2594  * @mqprio_qopt: queue parameters
2595  *
2596  * This function validates if the config provided by the user to
2597  * configure queue channels is valid or not. Returns 0 on a valid
2598  * config.
2599  **/
2600 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2601 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2602 {
2603 	u64 total_max_rate = 0;
2604 	int i, num_qps = 0;
2605 	u64 tx_rate = 0;
2606 	int ret = 0;
2607 
2608 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2609 	    mqprio_qopt->qopt.num_tc < 1)
2610 		return -EINVAL;
2611 
2612 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2613 		if (!mqprio_qopt->qopt.count[i] ||
2614 		    mqprio_qopt->qopt.offset[i] != num_qps)
2615 			return -EINVAL;
2616 		if (mqprio_qopt->min_rate[i]) {
2617 			dev_err(&adapter->pdev->dev,
2618 				"Invalid min tx rate (greater than 0) specified\n");
2619 			return -EINVAL;
2620 		}
2621 		/*convert to Mbps */
2622 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2623 				  IAVF_MBPS_DIVISOR);
2624 		total_max_rate += tx_rate;
2625 		num_qps += mqprio_qopt->qopt.count[i];
2626 	}
2627 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2628 		return -EINVAL;
2629 
2630 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2631 	return ret;
2632 }
2633 
2634 /**
2635  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2636  * @adapter: board private structure
2637  **/
2638 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2639 {
2640 	struct iavf_cloud_filter *cf, *cftmp;
2641 
2642 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2643 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2644 				 list) {
2645 		list_del(&cf->list);
2646 		kfree(cf);
2647 		adapter->num_cloud_filters--;
2648 	}
2649 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2650 }
2651 
2652 /**
2653  * __iavf_setup_tc - configure multiple traffic classes
2654  * @netdev: network interface device structure
2655  * @type_data: tc offload data
2656  *
2657  * This function processes the config information provided by the
2658  * user to configure traffic classes/queue channels and packages the
2659  * information to request the PF to setup traffic classes.
2660  *
2661  * Returns 0 on success.
2662  **/
2663 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2664 {
2665 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2666 	struct iavf_adapter *adapter = netdev_priv(netdev);
2667 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2668 	u8 num_tc = 0, total_qps = 0;
2669 	int ret = 0, netdev_tc = 0;
2670 	u64 max_tx_rate;
2671 	u16 mode;
2672 	int i;
2673 
2674 	num_tc = mqprio_qopt->qopt.num_tc;
2675 	mode = mqprio_qopt->mode;
2676 
2677 	/* delete queue_channel */
2678 	if (!mqprio_qopt->qopt.hw) {
2679 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2680 			/* reset the tc configuration */
2681 			netdev_reset_tc(netdev);
2682 			adapter->num_tc = 0;
2683 			netif_tx_stop_all_queues(netdev);
2684 			netif_tx_disable(netdev);
2685 			iavf_del_all_cloud_filters(adapter);
2686 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2687 			goto exit;
2688 		} else {
2689 			return -EINVAL;
2690 		}
2691 	}
2692 
2693 	/* add queue channel */
2694 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2695 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2696 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2697 			return -EOPNOTSUPP;
2698 		}
2699 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2700 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2701 			return -EINVAL;
2702 		}
2703 
2704 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2705 		if (ret)
2706 			return ret;
2707 		/* Return if same TC config is requested */
2708 		if (adapter->num_tc == num_tc)
2709 			return 0;
2710 		adapter->num_tc = num_tc;
2711 
2712 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2713 			if (i < num_tc) {
2714 				adapter->ch_config.ch_info[i].count =
2715 					mqprio_qopt->qopt.count[i];
2716 				adapter->ch_config.ch_info[i].offset =
2717 					mqprio_qopt->qopt.offset[i];
2718 				total_qps += mqprio_qopt->qopt.count[i];
2719 				max_tx_rate = mqprio_qopt->max_rate[i];
2720 				/* convert to Mbps */
2721 				max_tx_rate = div_u64(max_tx_rate,
2722 						      IAVF_MBPS_DIVISOR);
2723 				adapter->ch_config.ch_info[i].max_tx_rate =
2724 					max_tx_rate;
2725 			} else {
2726 				adapter->ch_config.ch_info[i].count = 1;
2727 				adapter->ch_config.ch_info[i].offset = 0;
2728 			}
2729 		}
2730 		adapter->ch_config.total_qps = total_qps;
2731 		netif_tx_stop_all_queues(netdev);
2732 		netif_tx_disable(netdev);
2733 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2734 		netdev_reset_tc(netdev);
2735 		/* Report the tc mapping up the stack */
2736 		netdev_set_num_tc(adapter->netdev, num_tc);
2737 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2738 			u16 qcount = mqprio_qopt->qopt.count[i];
2739 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2740 
2741 			if (i < num_tc)
2742 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2743 						    qoffset);
2744 		}
2745 	}
2746 exit:
2747 	return ret;
2748 }
2749 
2750 /**
2751  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2752  * @adapter: board private structure
2753  * @f: pointer to struct flow_cls_offload
2754  * @filter: pointer to cloud filter structure
2755  */
2756 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2757 				 struct flow_cls_offload *f,
2758 				 struct iavf_cloud_filter *filter)
2759 {
2760 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2761 	struct flow_dissector *dissector = rule->match.dissector;
2762 	u16 n_proto_mask = 0;
2763 	u16 n_proto_key = 0;
2764 	u8 field_flags = 0;
2765 	u16 addr_type = 0;
2766 	u16 n_proto = 0;
2767 	int i = 0;
2768 	struct virtchnl_filter *vf = &filter->f;
2769 
2770 	if (dissector->used_keys &
2771 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2772 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2773 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2774 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2775 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2776 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2777 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2778 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2779 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2780 			dissector->used_keys);
2781 		return -EOPNOTSUPP;
2782 	}
2783 
2784 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2785 		struct flow_match_enc_keyid match;
2786 
2787 		flow_rule_match_enc_keyid(rule, &match);
2788 		if (match.mask->keyid != 0)
2789 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2790 	}
2791 
2792 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2793 		struct flow_match_basic match;
2794 
2795 		flow_rule_match_basic(rule, &match);
2796 		n_proto_key = ntohs(match.key->n_proto);
2797 		n_proto_mask = ntohs(match.mask->n_proto);
2798 
2799 		if (n_proto_key == ETH_P_ALL) {
2800 			n_proto_key = 0;
2801 			n_proto_mask = 0;
2802 		}
2803 		n_proto = n_proto_key & n_proto_mask;
2804 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2805 			return -EINVAL;
2806 		if (n_proto == ETH_P_IPV6) {
2807 			/* specify flow type as TCP IPv6 */
2808 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2809 		}
2810 
2811 		if (match.key->ip_proto != IPPROTO_TCP) {
2812 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2813 			return -EINVAL;
2814 		}
2815 	}
2816 
2817 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2818 		struct flow_match_eth_addrs match;
2819 
2820 		flow_rule_match_eth_addrs(rule, &match);
2821 
2822 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2823 		if (!is_zero_ether_addr(match.mask->dst)) {
2824 			if (is_broadcast_ether_addr(match.mask->dst)) {
2825 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2826 			} else {
2827 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2828 					match.mask->dst);
2829 				return IAVF_ERR_CONFIG;
2830 			}
2831 		}
2832 
2833 		if (!is_zero_ether_addr(match.mask->src)) {
2834 			if (is_broadcast_ether_addr(match.mask->src)) {
2835 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2836 			} else {
2837 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2838 					match.mask->src);
2839 				return IAVF_ERR_CONFIG;
2840 			}
2841 		}
2842 
2843 		if (!is_zero_ether_addr(match.key->dst))
2844 			if (is_valid_ether_addr(match.key->dst) ||
2845 			    is_multicast_ether_addr(match.key->dst)) {
2846 				/* set the mask if a valid dst_mac address */
2847 				for (i = 0; i < ETH_ALEN; i++)
2848 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2849 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2850 						match.key->dst);
2851 			}
2852 
2853 		if (!is_zero_ether_addr(match.key->src))
2854 			if (is_valid_ether_addr(match.key->src) ||
2855 			    is_multicast_ether_addr(match.key->src)) {
2856 				/* set the mask if a valid dst_mac address */
2857 				for (i = 0; i < ETH_ALEN; i++)
2858 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2859 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2860 						match.key->src);
2861 		}
2862 	}
2863 
2864 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2865 		struct flow_match_vlan match;
2866 
2867 		flow_rule_match_vlan(rule, &match);
2868 		if (match.mask->vlan_id) {
2869 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2870 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2871 			} else {
2872 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2873 					match.mask->vlan_id);
2874 				return IAVF_ERR_CONFIG;
2875 			}
2876 		}
2877 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2878 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2879 	}
2880 
2881 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2882 		struct flow_match_control match;
2883 
2884 		flow_rule_match_control(rule, &match);
2885 		addr_type = match.key->addr_type;
2886 	}
2887 
2888 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2889 		struct flow_match_ipv4_addrs match;
2890 
2891 		flow_rule_match_ipv4_addrs(rule, &match);
2892 		if (match.mask->dst) {
2893 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2894 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2895 			} else {
2896 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2897 					be32_to_cpu(match.mask->dst));
2898 				return IAVF_ERR_CONFIG;
2899 			}
2900 		}
2901 
2902 		if (match.mask->src) {
2903 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2904 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2905 			} else {
2906 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2907 					be32_to_cpu(match.mask->dst));
2908 				return IAVF_ERR_CONFIG;
2909 			}
2910 		}
2911 
2912 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2913 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2914 			return IAVF_ERR_CONFIG;
2915 		}
2916 		if (match.key->dst) {
2917 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2918 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2919 		}
2920 		if (match.key->src) {
2921 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2922 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2923 		}
2924 	}
2925 
2926 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2927 		struct flow_match_ipv6_addrs match;
2928 
2929 		flow_rule_match_ipv6_addrs(rule, &match);
2930 
2931 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2932 		if (ipv6_addr_any(&match.mask->dst)) {
2933 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2934 				IPV6_ADDR_ANY);
2935 			return IAVF_ERR_CONFIG;
2936 		}
2937 
2938 		/* src and dest IPv6 address should not be LOOPBACK
2939 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2940 		 */
2941 		if (ipv6_addr_loopback(&match.key->dst) ||
2942 		    ipv6_addr_loopback(&match.key->src)) {
2943 			dev_err(&adapter->pdev->dev,
2944 				"ipv6 addr should not be loopback\n");
2945 			return IAVF_ERR_CONFIG;
2946 		}
2947 		if (!ipv6_addr_any(&match.mask->dst) ||
2948 		    !ipv6_addr_any(&match.mask->src))
2949 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2950 
2951 		for (i = 0; i < 4; i++)
2952 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2953 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2954 		       sizeof(vf->data.tcp_spec.dst_ip));
2955 		for (i = 0; i < 4; i++)
2956 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2957 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2958 		       sizeof(vf->data.tcp_spec.src_ip));
2959 	}
2960 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2961 		struct flow_match_ports match;
2962 
2963 		flow_rule_match_ports(rule, &match);
2964 		if (match.mask->src) {
2965 			if (match.mask->src == cpu_to_be16(0xffff)) {
2966 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2967 			} else {
2968 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2969 					be16_to_cpu(match.mask->src));
2970 				return IAVF_ERR_CONFIG;
2971 			}
2972 		}
2973 
2974 		if (match.mask->dst) {
2975 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2976 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2977 			} else {
2978 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2979 					be16_to_cpu(match.mask->dst));
2980 				return IAVF_ERR_CONFIG;
2981 			}
2982 		}
2983 		if (match.key->dst) {
2984 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2985 			vf->data.tcp_spec.dst_port = match.key->dst;
2986 		}
2987 
2988 		if (match.key->src) {
2989 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2990 			vf->data.tcp_spec.src_port = match.key->src;
2991 		}
2992 	}
2993 	vf->field_flags = field_flags;
2994 
2995 	return 0;
2996 }
2997 
2998 /**
2999  * iavf_handle_tclass - Forward to a traffic class on the device
3000  * @adapter: board private structure
3001  * @tc: traffic class index on the device
3002  * @filter: pointer to cloud filter structure
3003  */
3004 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3005 			      struct iavf_cloud_filter *filter)
3006 {
3007 	if (tc == 0)
3008 		return 0;
3009 	if (tc < adapter->num_tc) {
3010 		if (!filter->f.data.tcp_spec.dst_port) {
3011 			dev_err(&adapter->pdev->dev,
3012 				"Specify destination port to redirect to traffic class other than TC0\n");
3013 			return -EINVAL;
3014 		}
3015 	}
3016 	/* redirect to a traffic class on the same device */
3017 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3018 	filter->f.action_meta = tc;
3019 	return 0;
3020 }
3021 
3022 /**
3023  * iavf_configure_clsflower - Add tc flower filters
3024  * @adapter: board private structure
3025  * @cls_flower: Pointer to struct flow_cls_offload
3026  */
3027 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3028 				    struct flow_cls_offload *cls_flower)
3029 {
3030 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3031 	struct iavf_cloud_filter *filter = NULL;
3032 	int err = -EINVAL, count = 50;
3033 
3034 	if (tc < 0) {
3035 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3036 		return -EINVAL;
3037 	}
3038 
3039 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3040 	if (!filter)
3041 		return -ENOMEM;
3042 
3043 	while (!mutex_trylock(&adapter->crit_lock)) {
3044 		if (--count == 0)
3045 			goto err;
3046 		udelay(1);
3047 	}
3048 
3049 	filter->cookie = cls_flower->cookie;
3050 
3051 	/* set the mask to all zeroes to begin with */
3052 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3053 	/* start out with flow type and eth type IPv4 to begin with */
3054 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3055 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3056 	if (err < 0)
3057 		goto err;
3058 
3059 	err = iavf_handle_tclass(adapter, tc, filter);
3060 	if (err < 0)
3061 		goto err;
3062 
3063 	/* add filter to the list */
3064 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3065 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3066 	adapter->num_cloud_filters++;
3067 	filter->add = true;
3068 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3069 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3070 err:
3071 	if (err)
3072 		kfree(filter);
3073 
3074 	mutex_unlock(&adapter->crit_lock);
3075 	return err;
3076 }
3077 
3078 /* iavf_find_cf - Find the cloud filter in the list
3079  * @adapter: Board private structure
3080  * @cookie: filter specific cookie
3081  *
3082  * Returns ptr to the filter object or NULL. Must be called while holding the
3083  * cloud_filter_list_lock.
3084  */
3085 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3086 					      unsigned long *cookie)
3087 {
3088 	struct iavf_cloud_filter *filter = NULL;
3089 
3090 	if (!cookie)
3091 		return NULL;
3092 
3093 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3094 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3095 			return filter;
3096 	}
3097 	return NULL;
3098 }
3099 
3100 /**
3101  * iavf_delete_clsflower - Remove tc flower filters
3102  * @adapter: board private structure
3103  * @cls_flower: Pointer to struct flow_cls_offload
3104  */
3105 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3106 				 struct flow_cls_offload *cls_flower)
3107 {
3108 	struct iavf_cloud_filter *filter = NULL;
3109 	int err = 0;
3110 
3111 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3112 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3113 	if (filter) {
3114 		filter->del = true;
3115 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3116 	} else {
3117 		err = -EINVAL;
3118 	}
3119 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3120 
3121 	return err;
3122 }
3123 
3124 /**
3125  * iavf_setup_tc_cls_flower - flower classifier offloads
3126  * @adapter: board private structure
3127  * @cls_flower: pointer to flow_cls_offload struct with flow info
3128  */
3129 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3130 				    struct flow_cls_offload *cls_flower)
3131 {
3132 	switch (cls_flower->command) {
3133 	case FLOW_CLS_REPLACE:
3134 		return iavf_configure_clsflower(adapter, cls_flower);
3135 	case FLOW_CLS_DESTROY:
3136 		return iavf_delete_clsflower(adapter, cls_flower);
3137 	case FLOW_CLS_STATS:
3138 		return -EOPNOTSUPP;
3139 	default:
3140 		return -EOPNOTSUPP;
3141 	}
3142 }
3143 
3144 /**
3145  * iavf_setup_tc_block_cb - block callback for tc
3146  * @type: type of offload
3147  * @type_data: offload data
3148  * @cb_priv:
3149  *
3150  * This function is the block callback for traffic classes
3151  **/
3152 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3153 				  void *cb_priv)
3154 {
3155 	struct iavf_adapter *adapter = cb_priv;
3156 
3157 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3158 		return -EOPNOTSUPP;
3159 
3160 	switch (type) {
3161 	case TC_SETUP_CLSFLOWER:
3162 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3163 	default:
3164 		return -EOPNOTSUPP;
3165 	}
3166 }
3167 
3168 static LIST_HEAD(iavf_block_cb_list);
3169 
3170 /**
3171  * iavf_setup_tc - configure multiple traffic classes
3172  * @netdev: network interface device structure
3173  * @type: type of offload
3174  * @type_data: tc offload data
3175  *
3176  * This function is the callback to ndo_setup_tc in the
3177  * netdev_ops.
3178  *
3179  * Returns 0 on success
3180  **/
3181 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3182 			 void *type_data)
3183 {
3184 	struct iavf_adapter *adapter = netdev_priv(netdev);
3185 
3186 	switch (type) {
3187 	case TC_SETUP_QDISC_MQPRIO:
3188 		return __iavf_setup_tc(netdev, type_data);
3189 	case TC_SETUP_BLOCK:
3190 		return flow_block_cb_setup_simple(type_data,
3191 						  &iavf_block_cb_list,
3192 						  iavf_setup_tc_block_cb,
3193 						  adapter, adapter, true);
3194 	default:
3195 		return -EOPNOTSUPP;
3196 	}
3197 }
3198 
3199 /**
3200  * iavf_open - Called when a network interface is made active
3201  * @netdev: network interface device structure
3202  *
3203  * Returns 0 on success, negative value on failure
3204  *
3205  * The open entry point is called when a network interface is made
3206  * active by the system (IFF_UP).  At this point all resources needed
3207  * for transmit and receive operations are allocated, the interrupt
3208  * handler is registered with the OS, the watchdog is started,
3209  * and the stack is notified that the interface is ready.
3210  **/
3211 static int iavf_open(struct net_device *netdev)
3212 {
3213 	struct iavf_adapter *adapter = netdev_priv(netdev);
3214 	int err;
3215 
3216 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3217 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3218 		return -EIO;
3219 	}
3220 
3221 	while (!mutex_trylock(&adapter->crit_lock))
3222 		usleep_range(500, 1000);
3223 
3224 	if (adapter->state != __IAVF_DOWN) {
3225 		err = -EBUSY;
3226 		goto err_unlock;
3227 	}
3228 
3229 	/* allocate transmit descriptors */
3230 	err = iavf_setup_all_tx_resources(adapter);
3231 	if (err)
3232 		goto err_setup_tx;
3233 
3234 	/* allocate receive descriptors */
3235 	err = iavf_setup_all_rx_resources(adapter);
3236 	if (err)
3237 		goto err_setup_rx;
3238 
3239 	/* clear any pending interrupts, may auto mask */
3240 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3241 	if (err)
3242 		goto err_req_irq;
3243 
3244 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3245 
3246 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3247 
3248 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3249 
3250 	iavf_configure(adapter);
3251 
3252 	iavf_up_complete(adapter);
3253 
3254 	iavf_irq_enable(adapter, true);
3255 
3256 	mutex_unlock(&adapter->crit_lock);
3257 
3258 	return 0;
3259 
3260 err_req_irq:
3261 	iavf_down(adapter);
3262 	iavf_free_traffic_irqs(adapter);
3263 err_setup_rx:
3264 	iavf_free_all_rx_resources(adapter);
3265 err_setup_tx:
3266 	iavf_free_all_tx_resources(adapter);
3267 err_unlock:
3268 	mutex_unlock(&adapter->crit_lock);
3269 
3270 	return err;
3271 }
3272 
3273 /**
3274  * iavf_close - Disables a network interface
3275  * @netdev: network interface device structure
3276  *
3277  * Returns 0, this is not allowed to fail
3278  *
3279  * The close entry point is called when an interface is de-activated
3280  * by the OS.  The hardware is still under the drivers control, but
3281  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3282  * are freed, along with all transmit and receive resources.
3283  **/
3284 static int iavf_close(struct net_device *netdev)
3285 {
3286 	struct iavf_adapter *adapter = netdev_priv(netdev);
3287 	int status;
3288 
3289 	if (adapter->state <= __IAVF_DOWN_PENDING)
3290 		return 0;
3291 
3292 	while (!mutex_trylock(&adapter->crit_lock))
3293 		usleep_range(500, 1000);
3294 
3295 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3296 	if (CLIENT_ENABLED(adapter))
3297 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3298 
3299 	iavf_down(adapter);
3300 	adapter->state = __IAVF_DOWN_PENDING;
3301 	iavf_free_traffic_irqs(adapter);
3302 
3303 	mutex_unlock(&adapter->crit_lock);
3304 
3305 	/* We explicitly don't free resources here because the hardware is
3306 	 * still active and can DMA into memory. Resources are cleared in
3307 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3308 	 * driver that the rings have been stopped.
3309 	 *
3310 	 * Also, we wait for state to transition to __IAVF_DOWN before
3311 	 * returning. State change occurs in iavf_virtchnl_completion() after
3312 	 * VF resources are released (which occurs after PF driver processes and
3313 	 * responds to admin queue commands).
3314 	 */
3315 
3316 	status = wait_event_timeout(adapter->down_waitqueue,
3317 				    adapter->state == __IAVF_DOWN,
3318 				    msecs_to_jiffies(500));
3319 	if (!status)
3320 		netdev_warn(netdev, "Device resources not yet released\n");
3321 	return 0;
3322 }
3323 
3324 /**
3325  * iavf_change_mtu - Change the Maximum Transfer Unit
3326  * @netdev: network interface device structure
3327  * @new_mtu: new value for maximum frame size
3328  *
3329  * Returns 0 on success, negative on failure
3330  **/
3331 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3332 {
3333 	struct iavf_adapter *adapter = netdev_priv(netdev);
3334 
3335 	netdev->mtu = new_mtu;
3336 	if (CLIENT_ENABLED(adapter)) {
3337 		iavf_notify_client_l2_params(&adapter->vsi);
3338 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3339 	}
3340 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3341 	queue_work(iavf_wq, &adapter->reset_task);
3342 
3343 	return 0;
3344 }
3345 
3346 /**
3347  * iavf_set_features - set the netdev feature flags
3348  * @netdev: ptr to the netdev being adjusted
3349  * @features: the feature set that the stack is suggesting
3350  * Note: expects to be called while under rtnl_lock()
3351  **/
3352 static int iavf_set_features(struct net_device *netdev,
3353 			     netdev_features_t features)
3354 {
3355 	struct iavf_adapter *adapter = netdev_priv(netdev);
3356 
3357 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3358 	 * of VLAN offload
3359 	 */
3360 	if (!VLAN_ALLOWED(adapter)) {
3361 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3362 			return -EINVAL;
3363 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3364 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3365 			adapter->aq_required |=
3366 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3367 		else
3368 			adapter->aq_required |=
3369 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 /**
3376  * iavf_features_check - Validate encapsulated packet conforms to limits
3377  * @skb: skb buff
3378  * @dev: This physical port's netdev
3379  * @features: Offload features that the stack believes apply
3380  **/
3381 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3382 					     struct net_device *dev,
3383 					     netdev_features_t features)
3384 {
3385 	size_t len;
3386 
3387 	/* No point in doing any of this if neither checksum nor GSO are
3388 	 * being requested for this frame.  We can rule out both by just
3389 	 * checking for CHECKSUM_PARTIAL
3390 	 */
3391 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3392 		return features;
3393 
3394 	/* We cannot support GSO if the MSS is going to be less than
3395 	 * 64 bytes.  If it is then we need to drop support for GSO.
3396 	 */
3397 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3398 		features &= ~NETIF_F_GSO_MASK;
3399 
3400 	/* MACLEN can support at most 63 words */
3401 	len = skb_network_header(skb) - skb->data;
3402 	if (len & ~(63 * 2))
3403 		goto out_err;
3404 
3405 	/* IPLEN and EIPLEN can support at most 127 dwords */
3406 	len = skb_transport_header(skb) - skb_network_header(skb);
3407 	if (len & ~(127 * 4))
3408 		goto out_err;
3409 
3410 	if (skb->encapsulation) {
3411 		/* L4TUNLEN can support 127 words */
3412 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3413 		if (len & ~(127 * 2))
3414 			goto out_err;
3415 
3416 		/* IPLEN can support at most 127 dwords */
3417 		len = skb_inner_transport_header(skb) -
3418 		      skb_inner_network_header(skb);
3419 		if (len & ~(127 * 4))
3420 			goto out_err;
3421 	}
3422 
3423 	/* No need to validate L4LEN as TCP is the only protocol with a
3424 	 * a flexible value and we support all possible values supported
3425 	 * by TCP, which is at most 15 dwords
3426 	 */
3427 
3428 	return features;
3429 out_err:
3430 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3431 }
3432 
3433 /**
3434  * iavf_fix_features - fix up the netdev feature bits
3435  * @netdev: our net device
3436  * @features: desired feature bits
3437  *
3438  * Returns fixed-up features bits
3439  **/
3440 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3441 					   netdev_features_t features)
3442 {
3443 	struct iavf_adapter *adapter = netdev_priv(netdev);
3444 
3445 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3446 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3447 			      NETIF_F_HW_VLAN_CTAG_RX |
3448 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3449 
3450 	return features;
3451 }
3452 
3453 static const struct net_device_ops iavf_netdev_ops = {
3454 	.ndo_open		= iavf_open,
3455 	.ndo_stop		= iavf_close,
3456 	.ndo_start_xmit		= iavf_xmit_frame,
3457 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3458 	.ndo_validate_addr	= eth_validate_addr,
3459 	.ndo_set_mac_address	= iavf_set_mac,
3460 	.ndo_change_mtu		= iavf_change_mtu,
3461 	.ndo_tx_timeout		= iavf_tx_timeout,
3462 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3463 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3464 	.ndo_features_check	= iavf_features_check,
3465 	.ndo_fix_features	= iavf_fix_features,
3466 	.ndo_set_features	= iavf_set_features,
3467 	.ndo_setup_tc		= iavf_setup_tc,
3468 };
3469 
3470 /**
3471  * iavf_check_reset_complete - check that VF reset is complete
3472  * @hw: pointer to hw struct
3473  *
3474  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3475  **/
3476 static int iavf_check_reset_complete(struct iavf_hw *hw)
3477 {
3478 	u32 rstat;
3479 	int i;
3480 
3481 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3482 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3483 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3484 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3485 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3486 			return 0;
3487 		usleep_range(10, 20);
3488 	}
3489 	return -EBUSY;
3490 }
3491 
3492 /**
3493  * iavf_process_config - Process the config information we got from the PF
3494  * @adapter: board private structure
3495  *
3496  * Verify that we have a valid config struct, and set up our netdev features
3497  * and our VSI struct.
3498  **/
3499 int iavf_process_config(struct iavf_adapter *adapter)
3500 {
3501 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3502 	int i, num_req_queues = adapter->num_req_queues;
3503 	struct net_device *netdev = adapter->netdev;
3504 	struct iavf_vsi *vsi = &adapter->vsi;
3505 	netdev_features_t hw_enc_features;
3506 	netdev_features_t hw_features;
3507 
3508 	/* got VF config message back from PF, now we can parse it */
3509 	for (i = 0; i < vfres->num_vsis; i++) {
3510 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3511 			adapter->vsi_res = &vfres->vsi_res[i];
3512 	}
3513 	if (!adapter->vsi_res) {
3514 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3515 		return -ENODEV;
3516 	}
3517 
3518 	if (num_req_queues &&
3519 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3520 		/* Problem.  The PF gave us fewer queues than what we had
3521 		 * negotiated in our request.  Need a reset to see if we can't
3522 		 * get back to a working state.
3523 		 */
3524 		dev_err(&adapter->pdev->dev,
3525 			"Requested %d queues, but PF only gave us %d.\n",
3526 			num_req_queues,
3527 			adapter->vsi_res->num_queue_pairs);
3528 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3529 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3530 		iavf_schedule_reset(adapter);
3531 		return -ENODEV;
3532 	}
3533 	adapter->num_req_queues = 0;
3534 
3535 	hw_enc_features = NETIF_F_SG			|
3536 			  NETIF_F_IP_CSUM		|
3537 			  NETIF_F_IPV6_CSUM		|
3538 			  NETIF_F_HIGHDMA		|
3539 			  NETIF_F_SOFT_FEATURES	|
3540 			  NETIF_F_TSO			|
3541 			  NETIF_F_TSO_ECN		|
3542 			  NETIF_F_TSO6			|
3543 			  NETIF_F_SCTP_CRC		|
3544 			  NETIF_F_RXHASH		|
3545 			  NETIF_F_RXCSUM		|
3546 			  0;
3547 
3548 	/* advertise to stack only if offloads for encapsulated packets is
3549 	 * supported
3550 	 */
3551 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3552 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3553 				   NETIF_F_GSO_GRE		|
3554 				   NETIF_F_GSO_GRE_CSUM		|
3555 				   NETIF_F_GSO_IPXIP4		|
3556 				   NETIF_F_GSO_IPXIP6		|
3557 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3558 				   NETIF_F_GSO_PARTIAL		|
3559 				   0;
3560 
3561 		if (!(vfres->vf_cap_flags &
3562 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3563 			netdev->gso_partial_features |=
3564 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3565 
3566 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3567 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3568 		netdev->hw_enc_features |= hw_enc_features;
3569 	}
3570 	/* record features VLANs can make use of */
3571 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3572 
3573 	/* Write features and hw_features separately to avoid polluting
3574 	 * with, or dropping, features that are set when we registered.
3575 	 */
3576 	hw_features = hw_enc_features;
3577 
3578 	/* Enable VLAN features if supported */
3579 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3580 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3581 				NETIF_F_HW_VLAN_CTAG_RX);
3582 	/* Enable cloud filter if ADQ is supported */
3583 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3584 		hw_features |= NETIF_F_HW_TC;
3585 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3586 		hw_features |= NETIF_F_GSO_UDP_L4;
3587 
3588 	netdev->hw_features |= hw_features;
3589 
3590 	netdev->features |= hw_features;
3591 
3592 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3593 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3594 
3595 	netdev->priv_flags |= IFF_UNICAST_FLT;
3596 
3597 	/* Do not turn on offloads when they are requested to be turned off.
3598 	 * TSO needs minimum 576 bytes to work correctly.
3599 	 */
3600 	if (netdev->wanted_features) {
3601 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3602 		    netdev->mtu < 576)
3603 			netdev->features &= ~NETIF_F_TSO;
3604 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3605 		    netdev->mtu < 576)
3606 			netdev->features &= ~NETIF_F_TSO6;
3607 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3608 			netdev->features &= ~NETIF_F_TSO_ECN;
3609 		if (!(netdev->wanted_features & NETIF_F_GRO))
3610 			netdev->features &= ~NETIF_F_GRO;
3611 		if (!(netdev->wanted_features & NETIF_F_GSO))
3612 			netdev->features &= ~NETIF_F_GSO;
3613 	}
3614 
3615 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3616 
3617 	adapter->vsi.back = adapter;
3618 	adapter->vsi.base_vector = 1;
3619 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3620 	vsi->netdev = adapter->netdev;
3621 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3622 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3623 		adapter->rss_key_size = vfres->rss_key_size;
3624 		adapter->rss_lut_size = vfres->rss_lut_size;
3625 	} else {
3626 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3627 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 /**
3634  * iavf_init_task - worker thread to perform delayed initialization
3635  * @work: pointer to work_struct containing our data
3636  *
3637  * This task completes the work that was begun in probe. Due to the nature
3638  * of VF-PF communications, we may need to wait tens of milliseconds to get
3639  * responses back from the PF. Rather than busy-wait in probe and bog down the
3640  * whole system, we'll do it in a task so we can sleep.
3641  * This task only runs during driver init. Once we've established
3642  * communications with the PF driver and set up our netdev, the watchdog
3643  * takes over.
3644  **/
3645 static void iavf_init_task(struct work_struct *work)
3646 {
3647 	struct iavf_adapter *adapter = container_of(work,
3648 						    struct iavf_adapter,
3649 						    init_task.work);
3650 	struct iavf_hw *hw = &adapter->hw;
3651 
3652 	if (iavf_lock_timeout(&adapter->crit_lock, 5000)) {
3653 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3654 		return;
3655 	}
3656 	switch (adapter->state) {
3657 	case __IAVF_STARTUP:
3658 		if (iavf_startup(adapter) < 0)
3659 			goto init_failed;
3660 		break;
3661 	case __IAVF_INIT_VERSION_CHECK:
3662 		if (iavf_init_version_check(adapter) < 0)
3663 			goto init_failed;
3664 		break;
3665 	case __IAVF_INIT_GET_RESOURCES:
3666 		if (iavf_init_get_resources(adapter) < 0)
3667 			goto init_failed;
3668 		goto out;
3669 	default:
3670 		goto init_failed;
3671 	}
3672 
3673 	queue_delayed_work(iavf_wq, &adapter->init_task,
3674 			   msecs_to_jiffies(30));
3675 	goto out;
3676 init_failed:
3677 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3678 		dev_err(&adapter->pdev->dev,
3679 			"Failed to communicate with PF; waiting before retry\n");
3680 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3681 		iavf_shutdown_adminq(hw);
3682 		adapter->state = __IAVF_STARTUP;
3683 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3684 		goto out;
3685 	}
3686 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3687 out:
3688 	mutex_unlock(&adapter->crit_lock);
3689 }
3690 
3691 /**
3692  * iavf_shutdown - Shutdown the device in preparation for a reboot
3693  * @pdev: pci device structure
3694  **/
3695 static void iavf_shutdown(struct pci_dev *pdev)
3696 {
3697 	struct net_device *netdev = pci_get_drvdata(pdev);
3698 	struct iavf_adapter *adapter = netdev_priv(netdev);
3699 
3700 	netif_device_detach(netdev);
3701 
3702 	if (netif_running(netdev))
3703 		iavf_close(netdev);
3704 
3705 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3706 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3707 	/* Prevent the watchdog from running. */
3708 	adapter->state = __IAVF_REMOVE;
3709 	adapter->aq_required = 0;
3710 	mutex_unlock(&adapter->crit_lock);
3711 
3712 #ifdef CONFIG_PM
3713 	pci_save_state(pdev);
3714 
3715 #endif
3716 	pci_disable_device(pdev);
3717 }
3718 
3719 /**
3720  * iavf_probe - Device Initialization Routine
3721  * @pdev: PCI device information struct
3722  * @ent: entry in iavf_pci_tbl
3723  *
3724  * Returns 0 on success, negative on failure
3725  *
3726  * iavf_probe initializes an adapter identified by a pci_dev structure.
3727  * The OS initialization, configuring of the adapter private structure,
3728  * and a hardware reset occur.
3729  **/
3730 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3731 {
3732 	struct net_device *netdev;
3733 	struct iavf_adapter *adapter = NULL;
3734 	struct iavf_hw *hw = NULL;
3735 	int err;
3736 
3737 	err = pci_enable_device(pdev);
3738 	if (err)
3739 		return err;
3740 
3741 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3742 	if (err) {
3743 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3744 		if (err) {
3745 			dev_err(&pdev->dev,
3746 				"DMA configuration failed: 0x%x\n", err);
3747 			goto err_dma;
3748 		}
3749 	}
3750 
3751 	err = pci_request_regions(pdev, iavf_driver_name);
3752 	if (err) {
3753 		dev_err(&pdev->dev,
3754 			"pci_request_regions failed 0x%x\n", err);
3755 		goto err_pci_reg;
3756 	}
3757 
3758 	pci_enable_pcie_error_reporting(pdev);
3759 
3760 	pci_set_master(pdev);
3761 
3762 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3763 				   IAVF_MAX_REQ_QUEUES);
3764 	if (!netdev) {
3765 		err = -ENOMEM;
3766 		goto err_alloc_etherdev;
3767 	}
3768 
3769 	SET_NETDEV_DEV(netdev, &pdev->dev);
3770 
3771 	pci_set_drvdata(pdev, netdev);
3772 	adapter = netdev_priv(netdev);
3773 
3774 	adapter->netdev = netdev;
3775 	adapter->pdev = pdev;
3776 
3777 	hw = &adapter->hw;
3778 	hw->back = adapter;
3779 
3780 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3781 	adapter->state = __IAVF_STARTUP;
3782 
3783 	/* Call save state here because it relies on the adapter struct. */
3784 	pci_save_state(pdev);
3785 
3786 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3787 			      pci_resource_len(pdev, 0));
3788 	if (!hw->hw_addr) {
3789 		err = -EIO;
3790 		goto err_ioremap;
3791 	}
3792 	hw->vendor_id = pdev->vendor;
3793 	hw->device_id = pdev->device;
3794 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3795 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3796 	hw->subsystem_device_id = pdev->subsystem_device;
3797 	hw->bus.device = PCI_SLOT(pdev->devfn);
3798 	hw->bus.func = PCI_FUNC(pdev->devfn);
3799 	hw->bus.bus_id = pdev->bus->number;
3800 
3801 	/* set up the locks for the AQ, do this only once in probe
3802 	 * and destroy them only once in remove
3803 	 */
3804 	mutex_init(&adapter->crit_lock);
3805 	mutex_init(&adapter->client_lock);
3806 	mutex_init(&adapter->remove_lock);
3807 	mutex_init(&hw->aq.asq_mutex);
3808 	mutex_init(&hw->aq.arq_mutex);
3809 
3810 	spin_lock_init(&adapter->mac_vlan_list_lock);
3811 	spin_lock_init(&adapter->cloud_filter_list_lock);
3812 	spin_lock_init(&adapter->fdir_fltr_lock);
3813 	spin_lock_init(&adapter->adv_rss_lock);
3814 
3815 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3816 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3817 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3818 	INIT_LIST_HEAD(&adapter->fdir_list_head);
3819 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3820 
3821 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3822 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3823 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3824 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3825 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3826 	queue_delayed_work(iavf_wq, &adapter->init_task,
3827 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3828 
3829 	/* Setup the wait queue for indicating transition to down status */
3830 	init_waitqueue_head(&adapter->down_waitqueue);
3831 
3832 	return 0;
3833 
3834 err_ioremap:
3835 	free_netdev(netdev);
3836 err_alloc_etherdev:
3837 	pci_disable_pcie_error_reporting(pdev);
3838 	pci_release_regions(pdev);
3839 err_pci_reg:
3840 err_dma:
3841 	pci_disable_device(pdev);
3842 	return err;
3843 }
3844 
3845 /**
3846  * iavf_suspend - Power management suspend routine
3847  * @dev_d: device info pointer
3848  *
3849  * Called when the system (VM) is entering sleep/suspend.
3850  **/
3851 static int __maybe_unused iavf_suspend(struct device *dev_d)
3852 {
3853 	struct net_device *netdev = dev_get_drvdata(dev_d);
3854 	struct iavf_adapter *adapter = netdev_priv(netdev);
3855 
3856 	netif_device_detach(netdev);
3857 
3858 	while (!mutex_trylock(&adapter->crit_lock))
3859 		usleep_range(500, 1000);
3860 
3861 	if (netif_running(netdev)) {
3862 		rtnl_lock();
3863 		iavf_down(adapter);
3864 		rtnl_unlock();
3865 	}
3866 	iavf_free_misc_irq(adapter);
3867 	iavf_reset_interrupt_capability(adapter);
3868 
3869 	mutex_unlock(&adapter->crit_lock);
3870 
3871 	return 0;
3872 }
3873 
3874 /**
3875  * iavf_resume - Power management resume routine
3876  * @dev_d: device info pointer
3877  *
3878  * Called when the system (VM) is resumed from sleep/suspend.
3879  **/
3880 static int __maybe_unused iavf_resume(struct device *dev_d)
3881 {
3882 	struct pci_dev *pdev = to_pci_dev(dev_d);
3883 	struct net_device *netdev = pci_get_drvdata(pdev);
3884 	struct iavf_adapter *adapter = netdev_priv(netdev);
3885 	u32 err;
3886 
3887 	pci_set_master(pdev);
3888 
3889 	rtnl_lock();
3890 	err = iavf_set_interrupt_capability(adapter);
3891 	if (err) {
3892 		rtnl_unlock();
3893 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3894 		return err;
3895 	}
3896 	err = iavf_request_misc_irq(adapter);
3897 	rtnl_unlock();
3898 	if (err) {
3899 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3900 		return err;
3901 	}
3902 
3903 	queue_work(iavf_wq, &adapter->reset_task);
3904 
3905 	netif_device_attach(netdev);
3906 
3907 	return err;
3908 }
3909 
3910 /**
3911  * iavf_remove - Device Removal Routine
3912  * @pdev: PCI device information struct
3913  *
3914  * iavf_remove is called by the PCI subsystem to alert the driver
3915  * that it should release a PCI device.  The could be caused by a
3916  * Hot-Plug event, or because the driver is going to be removed from
3917  * memory.
3918  **/
3919 static void iavf_remove(struct pci_dev *pdev)
3920 {
3921 	struct net_device *netdev = pci_get_drvdata(pdev);
3922 	struct iavf_adapter *adapter = netdev_priv(netdev);
3923 	struct iavf_fdir_fltr *fdir, *fdirtmp;
3924 	struct iavf_vlan_filter *vlf, *vlftmp;
3925 	struct iavf_adv_rss *rss, *rsstmp;
3926 	struct iavf_mac_filter *f, *ftmp;
3927 	struct iavf_cloud_filter *cf, *cftmp;
3928 	struct iavf_hw *hw = &adapter->hw;
3929 	int err;
3930 	/* Indicate we are in remove and not to run reset_task */
3931 	mutex_lock(&adapter->remove_lock);
3932 	cancel_delayed_work_sync(&adapter->init_task);
3933 	cancel_work_sync(&adapter->reset_task);
3934 	cancel_delayed_work_sync(&adapter->client_task);
3935 	if (adapter->netdev_registered) {
3936 		unregister_netdev(netdev);
3937 		adapter->netdev_registered = false;
3938 	}
3939 	if (CLIENT_ALLOWED(adapter)) {
3940 		err = iavf_lan_del_device(adapter);
3941 		if (err)
3942 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3943 				 err);
3944 	}
3945 
3946 	iavf_request_reset(adapter);
3947 	msleep(50);
3948 	/* If the FW isn't responding, kick it once, but only once. */
3949 	if (!iavf_asq_done(hw)) {
3950 		iavf_request_reset(adapter);
3951 		msleep(50);
3952 	}
3953 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3954 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3955 
3956 	/* Shut down all the garbage mashers on the detention level */
3957 	adapter->state = __IAVF_REMOVE;
3958 	adapter->aq_required = 0;
3959 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3960 	iavf_free_all_tx_resources(adapter);
3961 	iavf_free_all_rx_resources(adapter);
3962 	iavf_misc_irq_disable(adapter);
3963 	iavf_free_misc_irq(adapter);
3964 	iavf_reset_interrupt_capability(adapter);
3965 	iavf_free_q_vectors(adapter);
3966 
3967 	cancel_delayed_work_sync(&adapter->watchdog_task);
3968 
3969 	cancel_work_sync(&adapter->adminq_task);
3970 
3971 	iavf_free_rss(adapter);
3972 
3973 	if (hw->aq.asq.count)
3974 		iavf_shutdown_adminq(hw);
3975 
3976 	/* destroy the locks only once, here */
3977 	mutex_destroy(&hw->aq.arq_mutex);
3978 	mutex_destroy(&hw->aq.asq_mutex);
3979 	mutex_destroy(&adapter->client_lock);
3980 	mutex_unlock(&adapter->crit_lock);
3981 	mutex_destroy(&adapter->crit_lock);
3982 	mutex_unlock(&adapter->remove_lock);
3983 	mutex_destroy(&adapter->remove_lock);
3984 
3985 	iounmap(hw->hw_addr);
3986 	pci_release_regions(pdev);
3987 	iavf_free_queues(adapter);
3988 	kfree(adapter->vf_res);
3989 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3990 	/* If we got removed before an up/down sequence, we've got a filter
3991 	 * hanging out there that we need to get rid of.
3992 	 */
3993 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3994 		list_del(&f->list);
3995 		kfree(f);
3996 	}
3997 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3998 				 list) {
3999 		list_del(&vlf->list);
4000 		kfree(vlf);
4001 	}
4002 
4003 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4004 
4005 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4006 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4007 		list_del(&cf->list);
4008 		kfree(cf);
4009 	}
4010 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4011 
4012 	spin_lock_bh(&adapter->fdir_fltr_lock);
4013 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4014 		list_del(&fdir->list);
4015 		kfree(fdir);
4016 	}
4017 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4018 
4019 	spin_lock_bh(&adapter->adv_rss_lock);
4020 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4021 				 list) {
4022 		list_del(&rss->list);
4023 		kfree(rss);
4024 	}
4025 	spin_unlock_bh(&adapter->adv_rss_lock);
4026 
4027 	free_netdev(netdev);
4028 
4029 	pci_disable_pcie_error_reporting(pdev);
4030 
4031 	pci_disable_device(pdev);
4032 }
4033 
4034 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4035 
4036 static struct pci_driver iavf_driver = {
4037 	.name      = iavf_driver_name,
4038 	.id_table  = iavf_pci_tbl,
4039 	.probe     = iavf_probe,
4040 	.remove    = iavf_remove,
4041 	.driver.pm = &iavf_pm_ops,
4042 	.shutdown  = iavf_shutdown,
4043 };
4044 
4045 /**
4046  * iavf_init_module - Driver Registration Routine
4047  *
4048  * iavf_init_module is the first routine called when the driver is
4049  * loaded. All it does is register with the PCI subsystem.
4050  **/
4051 static int __init iavf_init_module(void)
4052 {
4053 	int ret;
4054 
4055 	pr_info("iavf: %s\n", iavf_driver_string);
4056 
4057 	pr_info("%s\n", iavf_copyright);
4058 
4059 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4060 				  iavf_driver_name);
4061 	if (!iavf_wq) {
4062 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4063 		return -ENOMEM;
4064 	}
4065 	ret = pci_register_driver(&iavf_driver);
4066 	return ret;
4067 }
4068 
4069 module_init(iavf_init_module);
4070 
4071 /**
4072  * iavf_exit_module - Driver Exit Cleanup Routine
4073  *
4074  * iavf_exit_module is called just before the driver is removed
4075  * from memory.
4076  **/
4077 static void __exit iavf_exit_module(void)
4078 {
4079 	pci_unregister_driver(&iavf_driver);
4080 	destroy_workqueue(iavf_wq);
4081 }
4082 
4083 module_exit(iavf_exit_module);
4084 
4085 /* iavf_main.c */
4086