1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 56 * @hw: pointer to the HW structure 57 * @mem: ptr to mem struct to fill out 58 * @size: size of memory requested 59 * @alignment: what to align the allocation to 60 **/ 61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 62 struct iavf_dma_mem *mem, 63 u64 size, u32 alignment) 64 { 65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 66 67 if (!mem) 68 return IAVF_ERR_PARAM; 69 70 mem->size = ALIGN(size, alignment); 71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 72 (dma_addr_t *)&mem->pa, GFP_KERNEL); 73 if (mem->va) 74 return 0; 75 else 76 return IAVF_ERR_NO_MEMORY; 77 } 78 79 /** 80 * iavf_free_dma_mem_d - OS specific memory free for shared code 81 * @hw: pointer to the HW structure 82 * @mem: ptr to mem struct to free 83 **/ 84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 85 struct iavf_dma_mem *mem) 86 { 87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 88 89 if (!mem || !mem->va) 90 return IAVF_ERR_PARAM; 91 dma_free_coherent(&adapter->pdev->dev, mem->size, 92 mem->va, (dma_addr_t)mem->pa); 93 return 0; 94 } 95 96 /** 97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 98 * @hw: pointer to the HW structure 99 * @mem: ptr to mem struct to fill out 100 * @size: size of memory requested 101 **/ 102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 103 struct iavf_virt_mem *mem, u32 size) 104 { 105 if (!mem) 106 return IAVF_ERR_PARAM; 107 108 mem->size = size; 109 mem->va = kzalloc(size, GFP_KERNEL); 110 111 if (mem->va) 112 return 0; 113 else 114 return IAVF_ERR_NO_MEMORY; 115 } 116 117 /** 118 * iavf_free_virt_mem_d - OS specific memory free for shared code 119 * @hw: pointer to the HW structure 120 * @mem: ptr to mem struct to free 121 **/ 122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 123 struct iavf_virt_mem *mem) 124 { 125 if (!mem) 126 return IAVF_ERR_PARAM; 127 128 /* it's ok to kfree a NULL pointer */ 129 kfree(mem->va); 130 131 return 0; 132 } 133 134 /** 135 * iavf_lock_timeout - try to lock mutex but give up after timeout 136 * @lock: mutex that should be locked 137 * @msecs: timeout in msecs 138 * 139 * Returns 0 on success, negative on failure 140 **/ 141 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 142 { 143 unsigned int wait, delay = 10; 144 145 for (wait = 0; wait < msecs; wait += delay) { 146 if (mutex_trylock(lock)) 147 return 0; 148 149 msleep(delay); 150 } 151 152 return -1; 153 } 154 155 /** 156 * iavf_schedule_reset - Set the flags and schedule a reset event 157 * @adapter: board private structure 158 **/ 159 void iavf_schedule_reset(struct iavf_adapter *adapter) 160 { 161 if (!(adapter->flags & 162 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 163 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 164 queue_work(iavf_wq, &adapter->reset_task); 165 } 166 } 167 168 /** 169 * iavf_tx_timeout - Respond to a Tx Hang 170 * @netdev: network interface device structure 171 * @txqueue: queue number that is timing out 172 **/ 173 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 174 { 175 struct iavf_adapter *adapter = netdev_priv(netdev); 176 177 adapter->tx_timeout_count++; 178 iavf_schedule_reset(adapter); 179 } 180 181 /** 182 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 183 * @adapter: board private structure 184 **/ 185 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 186 { 187 struct iavf_hw *hw = &adapter->hw; 188 189 if (!adapter->msix_entries) 190 return; 191 192 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 193 194 iavf_flush(hw); 195 196 synchronize_irq(adapter->msix_entries[0].vector); 197 } 198 199 /** 200 * iavf_misc_irq_enable - Enable default interrupt generation settings 201 * @adapter: board private structure 202 **/ 203 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 204 { 205 struct iavf_hw *hw = &adapter->hw; 206 207 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 208 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 209 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 210 211 iavf_flush(hw); 212 } 213 214 /** 215 * iavf_irq_disable - Mask off interrupt generation on the NIC 216 * @adapter: board private structure 217 **/ 218 static void iavf_irq_disable(struct iavf_adapter *adapter) 219 { 220 int i; 221 struct iavf_hw *hw = &adapter->hw; 222 223 if (!adapter->msix_entries) 224 return; 225 226 for (i = 1; i < adapter->num_msix_vectors; i++) { 227 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 228 synchronize_irq(adapter->msix_entries[i].vector); 229 } 230 iavf_flush(hw); 231 } 232 233 /** 234 * iavf_irq_enable_queues - Enable interrupt for specified queues 235 * @adapter: board private structure 236 * @mask: bitmap of queues to enable 237 **/ 238 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 239 { 240 struct iavf_hw *hw = &adapter->hw; 241 int i; 242 243 for (i = 1; i < adapter->num_msix_vectors; i++) { 244 if (mask & BIT(i - 1)) { 245 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 246 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 247 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 248 } 249 } 250 } 251 252 /** 253 * iavf_irq_enable - Enable default interrupt generation settings 254 * @adapter: board private structure 255 * @flush: boolean value whether to run rd32() 256 **/ 257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 258 { 259 struct iavf_hw *hw = &adapter->hw; 260 261 iavf_misc_irq_enable(adapter); 262 iavf_irq_enable_queues(adapter, ~0); 263 264 if (flush) 265 iavf_flush(hw); 266 } 267 268 /** 269 * iavf_msix_aq - Interrupt handler for vector 0 270 * @irq: interrupt number 271 * @data: pointer to netdev 272 **/ 273 static irqreturn_t iavf_msix_aq(int irq, void *data) 274 { 275 struct net_device *netdev = data; 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 struct iavf_hw *hw = &adapter->hw; 278 279 /* handle non-queue interrupts, these reads clear the registers */ 280 rd32(hw, IAVF_VFINT_ICR01); 281 rd32(hw, IAVF_VFINT_ICR0_ENA1); 282 283 /* schedule work on the private workqueue */ 284 queue_work(iavf_wq, &adapter->adminq_task); 285 286 return IRQ_HANDLED; 287 } 288 289 /** 290 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 291 * @irq: interrupt number 292 * @data: pointer to a q_vector 293 **/ 294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 295 { 296 struct iavf_q_vector *q_vector = data; 297 298 if (!q_vector->tx.ring && !q_vector->rx.ring) 299 return IRQ_HANDLED; 300 301 napi_schedule_irqoff(&q_vector->napi); 302 303 return IRQ_HANDLED; 304 } 305 306 /** 307 * iavf_map_vector_to_rxq - associate irqs with rx queues 308 * @adapter: board private structure 309 * @v_idx: interrupt number 310 * @r_idx: queue number 311 **/ 312 static void 313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 314 { 315 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 316 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 317 struct iavf_hw *hw = &adapter->hw; 318 319 rx_ring->q_vector = q_vector; 320 rx_ring->next = q_vector->rx.ring; 321 rx_ring->vsi = &adapter->vsi; 322 q_vector->rx.ring = rx_ring; 323 q_vector->rx.count++; 324 q_vector->rx.next_update = jiffies + 1; 325 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 326 q_vector->ring_mask |= BIT(r_idx); 327 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 328 q_vector->rx.current_itr >> 1); 329 q_vector->rx.current_itr = q_vector->rx.target_itr; 330 } 331 332 /** 333 * iavf_map_vector_to_txq - associate irqs with tx queues 334 * @adapter: board private structure 335 * @v_idx: interrupt number 336 * @t_idx: queue number 337 **/ 338 static void 339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 340 { 341 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 342 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 343 struct iavf_hw *hw = &adapter->hw; 344 345 tx_ring->q_vector = q_vector; 346 tx_ring->next = q_vector->tx.ring; 347 tx_ring->vsi = &adapter->vsi; 348 q_vector->tx.ring = tx_ring; 349 q_vector->tx.count++; 350 q_vector->tx.next_update = jiffies + 1; 351 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 352 q_vector->num_ringpairs++; 353 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 354 q_vector->tx.target_itr >> 1); 355 q_vector->tx.current_itr = q_vector->tx.target_itr; 356 } 357 358 /** 359 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 360 * @adapter: board private structure to initialize 361 * 362 * This function maps descriptor rings to the queue-specific vectors 363 * we were allotted through the MSI-X enabling code. Ideally, we'd have 364 * one vector per ring/queue, but on a constrained vector budget, we 365 * group the rings as "efficiently" as possible. You would add new 366 * mapping configurations in here. 367 **/ 368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 369 { 370 int rings_remaining = adapter->num_active_queues; 371 int ridx = 0, vidx = 0; 372 int q_vectors; 373 374 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 375 376 for (; ridx < rings_remaining; ridx++) { 377 iavf_map_vector_to_rxq(adapter, vidx, ridx); 378 iavf_map_vector_to_txq(adapter, vidx, ridx); 379 380 /* In the case where we have more queues than vectors, continue 381 * round-robin on vectors until all queues are mapped. 382 */ 383 if (++vidx >= q_vectors) 384 vidx = 0; 385 } 386 387 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 388 } 389 390 /** 391 * iavf_irq_affinity_notify - Callback for affinity changes 392 * @notify: context as to what irq was changed 393 * @mask: the new affinity mask 394 * 395 * This is a callback function used by the irq_set_affinity_notifier function 396 * so that we may register to receive changes to the irq affinity masks. 397 **/ 398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 399 const cpumask_t *mask) 400 { 401 struct iavf_q_vector *q_vector = 402 container_of(notify, struct iavf_q_vector, affinity_notify); 403 404 cpumask_copy(&q_vector->affinity_mask, mask); 405 } 406 407 /** 408 * iavf_irq_affinity_release - Callback for affinity notifier release 409 * @ref: internal core kernel usage 410 * 411 * This is a callback function used by the irq_set_affinity_notifier function 412 * to inform the current notification subscriber that they will no longer 413 * receive notifications. 414 **/ 415 static void iavf_irq_affinity_release(struct kref *ref) {} 416 417 /** 418 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 419 * @adapter: board private structure 420 * @basename: device basename 421 * 422 * Allocates MSI-X vectors for tx and rx handling, and requests 423 * interrupts from the kernel. 424 **/ 425 static int 426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 427 { 428 unsigned int vector, q_vectors; 429 unsigned int rx_int_idx = 0, tx_int_idx = 0; 430 int irq_num, err; 431 int cpu; 432 433 iavf_irq_disable(adapter); 434 /* Decrement for Other and TCP Timer vectors */ 435 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 436 437 for (vector = 0; vector < q_vectors; vector++) { 438 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 439 440 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 441 442 if (q_vector->tx.ring && q_vector->rx.ring) { 443 snprintf(q_vector->name, sizeof(q_vector->name), 444 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 445 tx_int_idx++; 446 } else if (q_vector->rx.ring) { 447 snprintf(q_vector->name, sizeof(q_vector->name), 448 "iavf-%s-rx-%d", basename, rx_int_idx++); 449 } else if (q_vector->tx.ring) { 450 snprintf(q_vector->name, sizeof(q_vector->name), 451 "iavf-%s-tx-%d", basename, tx_int_idx++); 452 } else { 453 /* skip this unused q_vector */ 454 continue; 455 } 456 err = request_irq(irq_num, 457 iavf_msix_clean_rings, 458 0, 459 q_vector->name, 460 q_vector); 461 if (err) { 462 dev_info(&adapter->pdev->dev, 463 "Request_irq failed, error: %d\n", err); 464 goto free_queue_irqs; 465 } 466 /* register for affinity change notifications */ 467 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 468 q_vector->affinity_notify.release = 469 iavf_irq_affinity_release; 470 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 471 /* Spread the IRQ affinity hints across online CPUs. Note that 472 * get_cpu_mask returns a mask with a permanent lifetime so 473 * it's safe to use as a hint for irq_set_affinity_hint. 474 */ 475 cpu = cpumask_local_spread(q_vector->v_idx, -1); 476 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 477 } 478 479 return 0; 480 481 free_queue_irqs: 482 while (vector) { 483 vector--; 484 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 485 irq_set_affinity_notifier(irq_num, NULL); 486 irq_set_affinity_hint(irq_num, NULL); 487 free_irq(irq_num, &adapter->q_vectors[vector]); 488 } 489 return err; 490 } 491 492 /** 493 * iavf_request_misc_irq - Initialize MSI-X interrupts 494 * @adapter: board private structure 495 * 496 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 497 * vector is only for the admin queue, and stays active even when the netdev 498 * is closed. 499 **/ 500 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 501 { 502 struct net_device *netdev = adapter->netdev; 503 int err; 504 505 snprintf(adapter->misc_vector_name, 506 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 507 dev_name(&adapter->pdev->dev)); 508 err = request_irq(adapter->msix_entries[0].vector, 509 &iavf_msix_aq, 0, 510 adapter->misc_vector_name, netdev); 511 if (err) { 512 dev_err(&adapter->pdev->dev, 513 "request_irq for %s failed: %d\n", 514 adapter->misc_vector_name, err); 515 free_irq(adapter->msix_entries[0].vector, netdev); 516 } 517 return err; 518 } 519 520 /** 521 * iavf_free_traffic_irqs - Free MSI-X interrupts 522 * @adapter: board private structure 523 * 524 * Frees all MSI-X vectors other than 0. 525 **/ 526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 527 { 528 int vector, irq_num, q_vectors; 529 530 if (!adapter->msix_entries) 531 return; 532 533 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 534 535 for (vector = 0; vector < q_vectors; vector++) { 536 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 537 irq_set_affinity_notifier(irq_num, NULL); 538 irq_set_affinity_hint(irq_num, NULL); 539 free_irq(irq_num, &adapter->q_vectors[vector]); 540 } 541 } 542 543 /** 544 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 545 * @adapter: board private structure 546 * 547 * Frees MSI-X vector 0. 548 **/ 549 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 550 { 551 struct net_device *netdev = adapter->netdev; 552 553 if (!adapter->msix_entries) 554 return; 555 556 free_irq(adapter->msix_entries[0].vector, netdev); 557 } 558 559 /** 560 * iavf_configure_tx - Configure Transmit Unit after Reset 561 * @adapter: board private structure 562 * 563 * Configure the Tx unit of the MAC after a reset. 564 **/ 565 static void iavf_configure_tx(struct iavf_adapter *adapter) 566 { 567 struct iavf_hw *hw = &adapter->hw; 568 int i; 569 570 for (i = 0; i < adapter->num_active_queues; i++) 571 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 572 } 573 574 /** 575 * iavf_configure_rx - Configure Receive Unit after Reset 576 * @adapter: board private structure 577 * 578 * Configure the Rx unit of the MAC after a reset. 579 **/ 580 static void iavf_configure_rx(struct iavf_adapter *adapter) 581 { 582 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 583 struct iavf_hw *hw = &adapter->hw; 584 int i; 585 586 /* Legacy Rx will always default to a 2048 buffer size. */ 587 #if (PAGE_SIZE < 8192) 588 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 589 struct net_device *netdev = adapter->netdev; 590 591 /* For jumbo frames on systems with 4K pages we have to use 592 * an order 1 page, so we might as well increase the size 593 * of our Rx buffer to make better use of the available space 594 */ 595 rx_buf_len = IAVF_RXBUFFER_3072; 596 597 /* We use a 1536 buffer size for configurations with 598 * standard Ethernet mtu. On x86 this gives us enough room 599 * for shared info and 192 bytes of padding. 600 */ 601 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 602 (netdev->mtu <= ETH_DATA_LEN)) 603 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 604 } 605 #endif 606 607 for (i = 0; i < adapter->num_active_queues; i++) { 608 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 609 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 610 611 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 612 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 613 else 614 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 615 } 616 } 617 618 /** 619 * iavf_find_vlan - Search filter list for specific vlan filter 620 * @adapter: board private structure 621 * @vlan: vlan tag 622 * 623 * Returns ptr to the filter object or NULL. Must be called while holding the 624 * mac_vlan_list_lock. 625 **/ 626 static struct 627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 628 { 629 struct iavf_vlan_filter *f; 630 631 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 632 if (vlan == f->vlan) 633 return f; 634 } 635 return NULL; 636 } 637 638 /** 639 * iavf_add_vlan - Add a vlan filter to the list 640 * @adapter: board private structure 641 * @vlan: VLAN tag 642 * 643 * Returns ptr to the filter object or NULL when no memory available. 644 **/ 645 static struct 646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 647 { 648 struct iavf_vlan_filter *f = NULL; 649 650 spin_lock_bh(&adapter->mac_vlan_list_lock); 651 652 f = iavf_find_vlan(adapter, vlan); 653 if (!f) { 654 f = kzalloc(sizeof(*f), GFP_ATOMIC); 655 if (!f) 656 goto clearout; 657 658 f->vlan = vlan; 659 660 list_add_tail(&f->list, &adapter->vlan_filter_list); 661 f->add = true; 662 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 663 } 664 665 clearout: 666 spin_unlock_bh(&adapter->mac_vlan_list_lock); 667 return f; 668 } 669 670 /** 671 * iavf_del_vlan - Remove a vlan filter from the list 672 * @adapter: board private structure 673 * @vlan: VLAN tag 674 **/ 675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 676 { 677 struct iavf_vlan_filter *f; 678 679 spin_lock_bh(&adapter->mac_vlan_list_lock); 680 681 f = iavf_find_vlan(adapter, vlan); 682 if (f) { 683 f->remove = true; 684 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 685 } 686 687 spin_unlock_bh(&adapter->mac_vlan_list_lock); 688 } 689 690 /** 691 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 692 * @netdev: network device struct 693 * @proto: unused protocol data 694 * @vid: VLAN tag 695 **/ 696 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 697 __always_unused __be16 proto, u16 vid) 698 { 699 struct iavf_adapter *adapter = netdev_priv(netdev); 700 701 if (!VLAN_ALLOWED(adapter)) 702 return -EIO; 703 if (iavf_add_vlan(adapter, vid) == NULL) 704 return -ENOMEM; 705 return 0; 706 } 707 708 /** 709 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 710 * @netdev: network device struct 711 * @proto: unused protocol data 712 * @vid: VLAN tag 713 **/ 714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 715 __always_unused __be16 proto, u16 vid) 716 { 717 struct iavf_adapter *adapter = netdev_priv(netdev); 718 719 if (VLAN_ALLOWED(adapter)) { 720 iavf_del_vlan(adapter, vid); 721 return 0; 722 } 723 return -EIO; 724 } 725 726 /** 727 * iavf_find_filter - Search filter list for specific mac filter 728 * @adapter: board private structure 729 * @macaddr: the MAC address 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 736 const u8 *macaddr) 737 { 738 struct iavf_mac_filter *f; 739 740 if (!macaddr) 741 return NULL; 742 743 list_for_each_entry(f, &adapter->mac_filter_list, list) { 744 if (ether_addr_equal(macaddr, f->macaddr)) 745 return f; 746 } 747 return NULL; 748 } 749 750 /** 751 * iavf_add_filter - Add a mac filter to the filter list 752 * @adapter: board private structure 753 * @macaddr: the MAC address 754 * 755 * Returns ptr to the filter object or NULL when no memory available. 756 **/ 757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 758 const u8 *macaddr) 759 { 760 struct iavf_mac_filter *f; 761 762 if (!macaddr) 763 return NULL; 764 765 f = iavf_find_filter(adapter, macaddr); 766 if (!f) { 767 f = kzalloc(sizeof(*f), GFP_ATOMIC); 768 if (!f) 769 return f; 770 771 ether_addr_copy(f->macaddr, macaddr); 772 773 list_add_tail(&f->list, &adapter->mac_filter_list); 774 f->add = true; 775 f->is_new_mac = true; 776 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 777 } else { 778 f->remove = false; 779 } 780 781 return f; 782 } 783 784 /** 785 * iavf_set_mac - NDO callback to set port mac address 786 * @netdev: network interface device structure 787 * @p: pointer to an address structure 788 * 789 * Returns 0 on success, negative on failure 790 **/ 791 static int iavf_set_mac(struct net_device *netdev, void *p) 792 { 793 struct iavf_adapter *adapter = netdev_priv(netdev); 794 struct iavf_hw *hw = &adapter->hw; 795 struct iavf_mac_filter *f; 796 struct sockaddr *addr = p; 797 798 if (!is_valid_ether_addr(addr->sa_data)) 799 return -EADDRNOTAVAIL; 800 801 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 802 return 0; 803 804 spin_lock_bh(&adapter->mac_vlan_list_lock); 805 806 f = iavf_find_filter(adapter, hw->mac.addr); 807 if (f) { 808 f->remove = true; 809 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 810 } 811 812 f = iavf_add_filter(adapter, addr->sa_data); 813 814 spin_unlock_bh(&adapter->mac_vlan_list_lock); 815 816 if (f) { 817 ether_addr_copy(hw->mac.addr, addr->sa_data); 818 } 819 820 return (f == NULL) ? -ENOMEM : 0; 821 } 822 823 /** 824 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 825 * @netdev: the netdevice 826 * @addr: address to add 827 * 828 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 829 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 830 */ 831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 832 { 833 struct iavf_adapter *adapter = netdev_priv(netdev); 834 835 if (iavf_add_filter(adapter, addr)) 836 return 0; 837 else 838 return -ENOMEM; 839 } 840 841 /** 842 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 843 * @netdev: the netdevice 844 * @addr: address to add 845 * 846 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 847 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 848 */ 849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 850 { 851 struct iavf_adapter *adapter = netdev_priv(netdev); 852 struct iavf_mac_filter *f; 853 854 /* Under some circumstances, we might receive a request to delete 855 * our own device address from our uc list. Because we store the 856 * device address in the VSI's MAC/VLAN filter list, we need to ignore 857 * such requests and not delete our device address from this list. 858 */ 859 if (ether_addr_equal(addr, netdev->dev_addr)) 860 return 0; 861 862 f = iavf_find_filter(adapter, addr); 863 if (f) { 864 f->remove = true; 865 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 866 } 867 return 0; 868 } 869 870 /** 871 * iavf_set_rx_mode - NDO callback to set the netdev filters 872 * @netdev: network interface device structure 873 **/ 874 static void iavf_set_rx_mode(struct net_device *netdev) 875 { 876 struct iavf_adapter *adapter = netdev_priv(netdev); 877 878 spin_lock_bh(&adapter->mac_vlan_list_lock); 879 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 880 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 881 spin_unlock_bh(&adapter->mac_vlan_list_lock); 882 883 if (netdev->flags & IFF_PROMISC && 884 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 885 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 886 else if (!(netdev->flags & IFF_PROMISC) && 887 adapter->flags & IAVF_FLAG_PROMISC_ON) 888 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 889 890 if (netdev->flags & IFF_ALLMULTI && 891 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 892 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 893 else if (!(netdev->flags & IFF_ALLMULTI) && 894 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 895 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 896 } 897 898 /** 899 * iavf_napi_enable_all - enable NAPI on all queue vectors 900 * @adapter: board private structure 901 **/ 902 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 903 { 904 int q_idx; 905 struct iavf_q_vector *q_vector; 906 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 907 908 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 909 struct napi_struct *napi; 910 911 q_vector = &adapter->q_vectors[q_idx]; 912 napi = &q_vector->napi; 913 napi_enable(napi); 914 } 915 } 916 917 /** 918 * iavf_napi_disable_all - disable NAPI on all queue vectors 919 * @adapter: board private structure 920 **/ 921 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 922 { 923 int q_idx; 924 struct iavf_q_vector *q_vector; 925 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 926 927 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 928 q_vector = &adapter->q_vectors[q_idx]; 929 napi_disable(&q_vector->napi); 930 } 931 } 932 933 /** 934 * iavf_configure - set up transmit and receive data structures 935 * @adapter: board private structure 936 **/ 937 static void iavf_configure(struct iavf_adapter *adapter) 938 { 939 struct net_device *netdev = adapter->netdev; 940 int i; 941 942 iavf_set_rx_mode(netdev); 943 944 iavf_configure_tx(adapter); 945 iavf_configure_rx(adapter); 946 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 947 948 for (i = 0; i < adapter->num_active_queues; i++) { 949 struct iavf_ring *ring = &adapter->rx_rings[i]; 950 951 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 952 } 953 } 954 955 /** 956 * iavf_up_complete - Finish the last steps of bringing up a connection 957 * @adapter: board private structure 958 * 959 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 960 **/ 961 static void iavf_up_complete(struct iavf_adapter *adapter) 962 { 963 adapter->state = __IAVF_RUNNING; 964 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 965 966 iavf_napi_enable_all(adapter); 967 968 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 969 if (CLIENT_ENABLED(adapter)) 970 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 971 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 972 } 973 974 /** 975 * iavf_down - Shutdown the connection processing 976 * @adapter: board private structure 977 * 978 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 979 **/ 980 void iavf_down(struct iavf_adapter *adapter) 981 { 982 struct net_device *netdev = adapter->netdev; 983 struct iavf_vlan_filter *vlf; 984 struct iavf_cloud_filter *cf; 985 struct iavf_fdir_fltr *fdir; 986 struct iavf_mac_filter *f; 987 struct iavf_adv_rss *rss; 988 989 if (adapter->state <= __IAVF_DOWN_PENDING) 990 return; 991 992 netif_carrier_off(netdev); 993 netif_tx_disable(netdev); 994 adapter->link_up = false; 995 iavf_napi_disable_all(adapter); 996 iavf_irq_disable(adapter); 997 998 spin_lock_bh(&adapter->mac_vlan_list_lock); 999 1000 /* clear the sync flag on all filters */ 1001 __dev_uc_unsync(adapter->netdev, NULL); 1002 __dev_mc_unsync(adapter->netdev, NULL); 1003 1004 /* remove all MAC filters */ 1005 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1006 f->remove = true; 1007 } 1008 1009 /* remove all VLAN filters */ 1010 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1011 vlf->remove = true; 1012 } 1013 1014 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1015 1016 /* remove all cloud filters */ 1017 spin_lock_bh(&adapter->cloud_filter_list_lock); 1018 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1019 cf->del = true; 1020 } 1021 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1022 1023 /* remove all Flow Director filters */ 1024 spin_lock_bh(&adapter->fdir_fltr_lock); 1025 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1026 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1027 } 1028 spin_unlock_bh(&adapter->fdir_fltr_lock); 1029 1030 /* remove all advance RSS configuration */ 1031 spin_lock_bh(&adapter->adv_rss_lock); 1032 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1033 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1034 spin_unlock_bh(&adapter->adv_rss_lock); 1035 1036 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1037 adapter->state != __IAVF_RESETTING) { 1038 /* cancel any current operation */ 1039 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1040 /* Schedule operations to close down the HW. Don't wait 1041 * here for this to complete. The watchdog is still running 1042 * and it will take care of this. 1043 */ 1044 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1045 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1046 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1047 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1048 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1049 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1050 } 1051 1052 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1053 } 1054 1055 /** 1056 * iavf_acquire_msix_vectors - Setup the MSIX capability 1057 * @adapter: board private structure 1058 * @vectors: number of vectors to request 1059 * 1060 * Work with the OS to set up the MSIX vectors needed. 1061 * 1062 * Returns 0 on success, negative on failure 1063 **/ 1064 static int 1065 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1066 { 1067 int err, vector_threshold; 1068 1069 /* We'll want at least 3 (vector_threshold): 1070 * 0) Other (Admin Queue and link, mostly) 1071 * 1) TxQ[0] Cleanup 1072 * 2) RxQ[0] Cleanup 1073 */ 1074 vector_threshold = MIN_MSIX_COUNT; 1075 1076 /* The more we get, the more we will assign to Tx/Rx Cleanup 1077 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1078 * Right now, we simply care about how many we'll get; we'll 1079 * set them up later while requesting irq's. 1080 */ 1081 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1082 vector_threshold, vectors); 1083 if (err < 0) { 1084 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1085 kfree(adapter->msix_entries); 1086 adapter->msix_entries = NULL; 1087 return err; 1088 } 1089 1090 /* Adjust for only the vectors we'll use, which is minimum 1091 * of max_msix_q_vectors + NONQ_VECS, or the number of 1092 * vectors we were allocated. 1093 */ 1094 adapter->num_msix_vectors = err; 1095 return 0; 1096 } 1097 1098 /** 1099 * iavf_free_queues - Free memory for all rings 1100 * @adapter: board private structure to initialize 1101 * 1102 * Free all of the memory associated with queue pairs. 1103 **/ 1104 static void iavf_free_queues(struct iavf_adapter *adapter) 1105 { 1106 if (!adapter->vsi_res) 1107 return; 1108 adapter->num_active_queues = 0; 1109 kfree(adapter->tx_rings); 1110 adapter->tx_rings = NULL; 1111 kfree(adapter->rx_rings); 1112 adapter->rx_rings = NULL; 1113 } 1114 1115 /** 1116 * iavf_alloc_queues - Allocate memory for all rings 1117 * @adapter: board private structure to initialize 1118 * 1119 * We allocate one ring per queue at run-time since we don't know the 1120 * number of queues at compile-time. The polling_netdev array is 1121 * intended for Multiqueue, but should work fine with a single queue. 1122 **/ 1123 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1124 { 1125 int i, num_active_queues; 1126 1127 /* If we're in reset reallocating queues we don't actually know yet for 1128 * certain the PF gave us the number of queues we asked for but we'll 1129 * assume it did. Once basic reset is finished we'll confirm once we 1130 * start negotiating config with PF. 1131 */ 1132 if (adapter->num_req_queues) 1133 num_active_queues = adapter->num_req_queues; 1134 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1135 adapter->num_tc) 1136 num_active_queues = adapter->ch_config.total_qps; 1137 else 1138 num_active_queues = min_t(int, 1139 adapter->vsi_res->num_queue_pairs, 1140 (int)(num_online_cpus())); 1141 1142 1143 adapter->tx_rings = kcalloc(num_active_queues, 1144 sizeof(struct iavf_ring), GFP_KERNEL); 1145 if (!adapter->tx_rings) 1146 goto err_out; 1147 adapter->rx_rings = kcalloc(num_active_queues, 1148 sizeof(struct iavf_ring), GFP_KERNEL); 1149 if (!adapter->rx_rings) 1150 goto err_out; 1151 1152 for (i = 0; i < num_active_queues; i++) { 1153 struct iavf_ring *tx_ring; 1154 struct iavf_ring *rx_ring; 1155 1156 tx_ring = &adapter->tx_rings[i]; 1157 1158 tx_ring->queue_index = i; 1159 tx_ring->netdev = adapter->netdev; 1160 tx_ring->dev = &adapter->pdev->dev; 1161 tx_ring->count = adapter->tx_desc_count; 1162 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1163 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1164 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1165 1166 rx_ring = &adapter->rx_rings[i]; 1167 rx_ring->queue_index = i; 1168 rx_ring->netdev = adapter->netdev; 1169 rx_ring->dev = &adapter->pdev->dev; 1170 rx_ring->count = adapter->rx_desc_count; 1171 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1172 } 1173 1174 adapter->num_active_queues = num_active_queues; 1175 1176 return 0; 1177 1178 err_out: 1179 iavf_free_queues(adapter); 1180 return -ENOMEM; 1181 } 1182 1183 /** 1184 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1185 * @adapter: board private structure to initialize 1186 * 1187 * Attempt to configure the interrupts using the best available 1188 * capabilities of the hardware and the kernel. 1189 **/ 1190 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1191 { 1192 int vector, v_budget; 1193 int pairs = 0; 1194 int err = 0; 1195 1196 if (!adapter->vsi_res) { 1197 err = -EIO; 1198 goto out; 1199 } 1200 pairs = adapter->num_active_queues; 1201 1202 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1203 * us much good if we have more vectors than CPUs. However, we already 1204 * limit the total number of queues by the number of CPUs so we do not 1205 * need any further limiting here. 1206 */ 1207 v_budget = min_t(int, pairs + NONQ_VECS, 1208 (int)adapter->vf_res->max_vectors); 1209 1210 adapter->msix_entries = kcalloc(v_budget, 1211 sizeof(struct msix_entry), GFP_KERNEL); 1212 if (!adapter->msix_entries) { 1213 err = -ENOMEM; 1214 goto out; 1215 } 1216 1217 for (vector = 0; vector < v_budget; vector++) 1218 adapter->msix_entries[vector].entry = vector; 1219 1220 err = iavf_acquire_msix_vectors(adapter, v_budget); 1221 1222 out: 1223 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1224 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1225 return err; 1226 } 1227 1228 /** 1229 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1230 * @adapter: board private structure 1231 * 1232 * Return 0 on success, negative on failure 1233 **/ 1234 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1235 { 1236 struct iavf_aqc_get_set_rss_key_data *rss_key = 1237 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1238 struct iavf_hw *hw = &adapter->hw; 1239 int ret = 0; 1240 1241 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1242 /* bail because we already have a command pending */ 1243 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1244 adapter->current_op); 1245 return -EBUSY; 1246 } 1247 1248 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1249 if (ret) { 1250 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1251 iavf_stat_str(hw, ret), 1252 iavf_aq_str(hw, hw->aq.asq_last_status)); 1253 return ret; 1254 1255 } 1256 1257 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1258 adapter->rss_lut, adapter->rss_lut_size); 1259 if (ret) { 1260 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1261 iavf_stat_str(hw, ret), 1262 iavf_aq_str(hw, hw->aq.asq_last_status)); 1263 } 1264 1265 return ret; 1266 1267 } 1268 1269 /** 1270 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1271 * @adapter: board private structure 1272 * 1273 * Returns 0 on success, negative on failure 1274 **/ 1275 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1276 { 1277 struct iavf_hw *hw = &adapter->hw; 1278 u32 *dw; 1279 u16 i; 1280 1281 dw = (u32 *)adapter->rss_key; 1282 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1283 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1284 1285 dw = (u32 *)adapter->rss_lut; 1286 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1287 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1288 1289 iavf_flush(hw); 1290 1291 return 0; 1292 } 1293 1294 /** 1295 * iavf_config_rss - Configure RSS keys and lut 1296 * @adapter: board private structure 1297 * 1298 * Returns 0 on success, negative on failure 1299 **/ 1300 int iavf_config_rss(struct iavf_adapter *adapter) 1301 { 1302 1303 if (RSS_PF(adapter)) { 1304 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1305 IAVF_FLAG_AQ_SET_RSS_KEY; 1306 return 0; 1307 } else if (RSS_AQ(adapter)) { 1308 return iavf_config_rss_aq(adapter); 1309 } else { 1310 return iavf_config_rss_reg(adapter); 1311 } 1312 } 1313 1314 /** 1315 * iavf_fill_rss_lut - Fill the lut with default values 1316 * @adapter: board private structure 1317 **/ 1318 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1319 { 1320 u16 i; 1321 1322 for (i = 0; i < adapter->rss_lut_size; i++) 1323 adapter->rss_lut[i] = i % adapter->num_active_queues; 1324 } 1325 1326 /** 1327 * iavf_init_rss - Prepare for RSS 1328 * @adapter: board private structure 1329 * 1330 * Return 0 on success, negative on failure 1331 **/ 1332 static int iavf_init_rss(struct iavf_adapter *adapter) 1333 { 1334 struct iavf_hw *hw = &adapter->hw; 1335 int ret; 1336 1337 if (!RSS_PF(adapter)) { 1338 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1339 if (adapter->vf_res->vf_cap_flags & 1340 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1341 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1342 else 1343 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1344 1345 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1346 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1347 } 1348 1349 iavf_fill_rss_lut(adapter); 1350 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1351 ret = iavf_config_rss(adapter); 1352 1353 return ret; 1354 } 1355 1356 /** 1357 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1358 * @adapter: board private structure to initialize 1359 * 1360 * We allocate one q_vector per queue interrupt. If allocation fails we 1361 * return -ENOMEM. 1362 **/ 1363 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1364 { 1365 int q_idx = 0, num_q_vectors; 1366 struct iavf_q_vector *q_vector; 1367 1368 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1369 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1370 GFP_KERNEL); 1371 if (!adapter->q_vectors) 1372 return -ENOMEM; 1373 1374 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1375 q_vector = &adapter->q_vectors[q_idx]; 1376 q_vector->adapter = adapter; 1377 q_vector->vsi = &adapter->vsi; 1378 q_vector->v_idx = q_idx; 1379 q_vector->reg_idx = q_idx; 1380 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1381 netif_napi_add(adapter->netdev, &q_vector->napi, 1382 iavf_napi_poll, NAPI_POLL_WEIGHT); 1383 } 1384 1385 return 0; 1386 } 1387 1388 /** 1389 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1390 * @adapter: board private structure to initialize 1391 * 1392 * This function frees the memory allocated to the q_vectors. In addition if 1393 * NAPI is enabled it will delete any references to the NAPI struct prior 1394 * to freeing the q_vector. 1395 **/ 1396 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1397 { 1398 int q_idx, num_q_vectors; 1399 int napi_vectors; 1400 1401 if (!adapter->q_vectors) 1402 return; 1403 1404 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1405 napi_vectors = adapter->num_active_queues; 1406 1407 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1408 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1409 1410 if (q_idx < napi_vectors) 1411 netif_napi_del(&q_vector->napi); 1412 } 1413 kfree(adapter->q_vectors); 1414 adapter->q_vectors = NULL; 1415 } 1416 1417 /** 1418 * iavf_reset_interrupt_capability - Reset MSIX setup 1419 * @adapter: board private structure 1420 * 1421 **/ 1422 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1423 { 1424 if (!adapter->msix_entries) 1425 return; 1426 1427 pci_disable_msix(adapter->pdev); 1428 kfree(adapter->msix_entries); 1429 adapter->msix_entries = NULL; 1430 } 1431 1432 /** 1433 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1434 * @adapter: board private structure to initialize 1435 * 1436 **/ 1437 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1438 { 1439 int err; 1440 1441 err = iavf_alloc_queues(adapter); 1442 if (err) { 1443 dev_err(&adapter->pdev->dev, 1444 "Unable to allocate memory for queues\n"); 1445 goto err_alloc_queues; 1446 } 1447 1448 rtnl_lock(); 1449 err = iavf_set_interrupt_capability(adapter); 1450 rtnl_unlock(); 1451 if (err) { 1452 dev_err(&adapter->pdev->dev, 1453 "Unable to setup interrupt capabilities\n"); 1454 goto err_set_interrupt; 1455 } 1456 1457 err = iavf_alloc_q_vectors(adapter); 1458 if (err) { 1459 dev_err(&adapter->pdev->dev, 1460 "Unable to allocate memory for queue vectors\n"); 1461 goto err_alloc_q_vectors; 1462 } 1463 1464 /* If we've made it so far while ADq flag being ON, then we haven't 1465 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1466 * resources have been allocated in the reset path. 1467 * Now we can truly claim that ADq is enabled. 1468 */ 1469 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1470 adapter->num_tc) 1471 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1472 adapter->num_tc); 1473 1474 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1475 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1476 adapter->num_active_queues); 1477 1478 return 0; 1479 err_alloc_q_vectors: 1480 iavf_reset_interrupt_capability(adapter); 1481 err_set_interrupt: 1482 iavf_free_queues(adapter); 1483 err_alloc_queues: 1484 return err; 1485 } 1486 1487 /** 1488 * iavf_free_rss - Free memory used by RSS structs 1489 * @adapter: board private structure 1490 **/ 1491 static void iavf_free_rss(struct iavf_adapter *adapter) 1492 { 1493 kfree(adapter->rss_key); 1494 adapter->rss_key = NULL; 1495 1496 kfree(adapter->rss_lut); 1497 adapter->rss_lut = NULL; 1498 } 1499 1500 /** 1501 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1502 * @adapter: board private structure 1503 * 1504 * Returns 0 on success, negative on failure 1505 **/ 1506 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1507 { 1508 struct net_device *netdev = adapter->netdev; 1509 int err; 1510 1511 if (netif_running(netdev)) 1512 iavf_free_traffic_irqs(adapter); 1513 iavf_free_misc_irq(adapter); 1514 iavf_reset_interrupt_capability(adapter); 1515 iavf_free_q_vectors(adapter); 1516 iavf_free_queues(adapter); 1517 1518 err = iavf_init_interrupt_scheme(adapter); 1519 if (err) 1520 goto err; 1521 1522 netif_tx_stop_all_queues(netdev); 1523 1524 err = iavf_request_misc_irq(adapter); 1525 if (err) 1526 goto err; 1527 1528 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1529 1530 iavf_map_rings_to_vectors(adapter); 1531 err: 1532 return err; 1533 } 1534 1535 /** 1536 * iavf_process_aq_command - process aq_required flags 1537 * and sends aq command 1538 * @adapter: pointer to iavf adapter structure 1539 * 1540 * Returns 0 on success 1541 * Returns error code if no command was sent 1542 * or error code if the command failed. 1543 **/ 1544 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1545 { 1546 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1547 return iavf_send_vf_config_msg(adapter); 1548 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1549 iavf_disable_queues(adapter); 1550 return 0; 1551 } 1552 1553 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1554 iavf_map_queues(adapter); 1555 return 0; 1556 } 1557 1558 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1559 iavf_add_ether_addrs(adapter); 1560 return 0; 1561 } 1562 1563 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1564 iavf_add_vlans(adapter); 1565 return 0; 1566 } 1567 1568 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1569 iavf_del_ether_addrs(adapter); 1570 return 0; 1571 } 1572 1573 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1574 iavf_del_vlans(adapter); 1575 return 0; 1576 } 1577 1578 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1579 iavf_enable_vlan_stripping(adapter); 1580 return 0; 1581 } 1582 1583 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1584 iavf_disable_vlan_stripping(adapter); 1585 return 0; 1586 } 1587 1588 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1589 iavf_configure_queues(adapter); 1590 return 0; 1591 } 1592 1593 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1594 iavf_enable_queues(adapter); 1595 return 0; 1596 } 1597 1598 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1599 /* This message goes straight to the firmware, not the 1600 * PF, so we don't have to set current_op as we will 1601 * not get a response through the ARQ. 1602 */ 1603 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1604 return 0; 1605 } 1606 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1607 iavf_get_hena(adapter); 1608 return 0; 1609 } 1610 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1611 iavf_set_hena(adapter); 1612 return 0; 1613 } 1614 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1615 iavf_set_rss_key(adapter); 1616 return 0; 1617 } 1618 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1619 iavf_set_rss_lut(adapter); 1620 return 0; 1621 } 1622 1623 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1624 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1625 FLAG_VF_MULTICAST_PROMISC); 1626 return 0; 1627 } 1628 1629 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1630 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1631 return 0; 1632 } 1633 1634 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1635 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1636 iavf_set_promiscuous(adapter, 0); 1637 return 0; 1638 } 1639 1640 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1641 iavf_enable_channels(adapter); 1642 return 0; 1643 } 1644 1645 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1646 iavf_disable_channels(adapter); 1647 return 0; 1648 } 1649 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1650 iavf_add_cloud_filter(adapter); 1651 return 0; 1652 } 1653 1654 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1655 iavf_del_cloud_filter(adapter); 1656 return 0; 1657 } 1658 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1659 iavf_del_cloud_filter(adapter); 1660 return 0; 1661 } 1662 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1663 iavf_add_cloud_filter(adapter); 1664 return 0; 1665 } 1666 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1667 iavf_add_fdir_filter(adapter); 1668 return IAVF_SUCCESS; 1669 } 1670 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1671 iavf_del_fdir_filter(adapter); 1672 return IAVF_SUCCESS; 1673 } 1674 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1675 iavf_add_adv_rss_cfg(adapter); 1676 return 0; 1677 } 1678 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1679 iavf_del_adv_rss_cfg(adapter); 1680 return 0; 1681 } 1682 return -EAGAIN; 1683 } 1684 1685 /** 1686 * iavf_startup - first step of driver startup 1687 * @adapter: board private structure 1688 * 1689 * Function process __IAVF_STARTUP driver state. 1690 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1691 * when fails it returns -EAGAIN 1692 **/ 1693 static int iavf_startup(struct iavf_adapter *adapter) 1694 { 1695 struct pci_dev *pdev = adapter->pdev; 1696 struct iavf_hw *hw = &adapter->hw; 1697 int err; 1698 1699 WARN_ON(adapter->state != __IAVF_STARTUP); 1700 1701 /* driver loaded, probe complete */ 1702 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1703 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1704 err = iavf_set_mac_type(hw); 1705 if (err) { 1706 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1707 goto err; 1708 } 1709 1710 err = iavf_check_reset_complete(hw); 1711 if (err) { 1712 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1713 err); 1714 goto err; 1715 } 1716 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1717 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1718 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1719 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1720 1721 err = iavf_init_adminq(hw); 1722 if (err) { 1723 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1724 goto err; 1725 } 1726 err = iavf_send_api_ver(adapter); 1727 if (err) { 1728 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1729 iavf_shutdown_adminq(hw); 1730 goto err; 1731 } 1732 adapter->state = __IAVF_INIT_VERSION_CHECK; 1733 err: 1734 return err; 1735 } 1736 1737 /** 1738 * iavf_init_version_check - second step of driver startup 1739 * @adapter: board private structure 1740 * 1741 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1742 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1743 * when fails it returns -EAGAIN 1744 **/ 1745 static int iavf_init_version_check(struct iavf_adapter *adapter) 1746 { 1747 struct pci_dev *pdev = adapter->pdev; 1748 struct iavf_hw *hw = &adapter->hw; 1749 int err = -EAGAIN; 1750 1751 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1752 1753 if (!iavf_asq_done(hw)) { 1754 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1755 iavf_shutdown_adminq(hw); 1756 adapter->state = __IAVF_STARTUP; 1757 goto err; 1758 } 1759 1760 /* aq msg sent, awaiting reply */ 1761 err = iavf_verify_api_ver(adapter); 1762 if (err) { 1763 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1764 err = iavf_send_api_ver(adapter); 1765 else 1766 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1767 adapter->pf_version.major, 1768 adapter->pf_version.minor, 1769 VIRTCHNL_VERSION_MAJOR, 1770 VIRTCHNL_VERSION_MINOR); 1771 goto err; 1772 } 1773 err = iavf_send_vf_config_msg(adapter); 1774 if (err) { 1775 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1776 err); 1777 goto err; 1778 } 1779 adapter->state = __IAVF_INIT_GET_RESOURCES; 1780 1781 err: 1782 return err; 1783 } 1784 1785 /** 1786 * iavf_init_get_resources - third step of driver startup 1787 * @adapter: board private structure 1788 * 1789 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1790 * finishes driver initialization procedure. 1791 * When success the state is changed to __IAVF_DOWN 1792 * when fails it returns -EAGAIN 1793 **/ 1794 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1795 { 1796 struct net_device *netdev = adapter->netdev; 1797 struct pci_dev *pdev = adapter->pdev; 1798 struct iavf_hw *hw = &adapter->hw; 1799 int err; 1800 1801 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1802 /* aq msg sent, awaiting reply */ 1803 if (!adapter->vf_res) { 1804 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 1805 GFP_KERNEL); 1806 if (!adapter->vf_res) { 1807 err = -ENOMEM; 1808 goto err; 1809 } 1810 } 1811 err = iavf_get_vf_config(adapter); 1812 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1813 err = iavf_send_vf_config_msg(adapter); 1814 goto err; 1815 } else if (err == IAVF_ERR_PARAM) { 1816 /* We only get ERR_PARAM if the device is in a very bad 1817 * state or if we've been disabled for previous bad 1818 * behavior. Either way, we're done now. 1819 */ 1820 iavf_shutdown_adminq(hw); 1821 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1822 return 0; 1823 } 1824 if (err) { 1825 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1826 goto err_alloc; 1827 } 1828 1829 err = iavf_process_config(adapter); 1830 if (err) 1831 goto err_alloc; 1832 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1833 1834 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1835 1836 netdev->netdev_ops = &iavf_netdev_ops; 1837 iavf_set_ethtool_ops(netdev); 1838 netdev->watchdog_timeo = 5 * HZ; 1839 1840 /* MTU range: 68 - 9710 */ 1841 netdev->min_mtu = ETH_MIN_MTU; 1842 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1843 1844 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1845 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1846 adapter->hw.mac.addr); 1847 eth_hw_addr_random(netdev); 1848 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1849 } else { 1850 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1851 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1852 } 1853 1854 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1855 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1856 err = iavf_init_interrupt_scheme(adapter); 1857 if (err) 1858 goto err_sw_init; 1859 iavf_map_rings_to_vectors(adapter); 1860 if (adapter->vf_res->vf_cap_flags & 1861 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1862 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1863 1864 err = iavf_request_misc_irq(adapter); 1865 if (err) 1866 goto err_sw_init; 1867 1868 netif_carrier_off(netdev); 1869 adapter->link_up = false; 1870 1871 /* set the semaphore to prevent any callbacks after device registration 1872 * up to time when state of driver will be set to __IAVF_DOWN 1873 */ 1874 rtnl_lock(); 1875 if (!adapter->netdev_registered) { 1876 err = register_netdevice(netdev); 1877 if (err) { 1878 rtnl_unlock(); 1879 goto err_register; 1880 } 1881 } 1882 1883 adapter->netdev_registered = true; 1884 1885 netif_tx_stop_all_queues(netdev); 1886 if (CLIENT_ALLOWED(adapter)) { 1887 err = iavf_lan_add_device(adapter); 1888 if (err) 1889 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1890 err); 1891 } 1892 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1893 if (netdev->features & NETIF_F_GRO) 1894 dev_info(&pdev->dev, "GRO is enabled\n"); 1895 1896 adapter->state = __IAVF_DOWN; 1897 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1898 rtnl_unlock(); 1899 1900 iavf_misc_irq_enable(adapter); 1901 wake_up(&adapter->down_waitqueue); 1902 1903 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1904 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1905 if (!adapter->rss_key || !adapter->rss_lut) { 1906 err = -ENOMEM; 1907 goto err_mem; 1908 } 1909 if (RSS_AQ(adapter)) 1910 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1911 else 1912 iavf_init_rss(adapter); 1913 1914 return err; 1915 err_mem: 1916 iavf_free_rss(adapter); 1917 err_register: 1918 iavf_free_misc_irq(adapter); 1919 err_sw_init: 1920 iavf_reset_interrupt_capability(adapter); 1921 err_alloc: 1922 kfree(adapter->vf_res); 1923 adapter->vf_res = NULL; 1924 err: 1925 return err; 1926 } 1927 1928 /** 1929 * iavf_watchdog_task - Periodic call-back task 1930 * @work: pointer to work_struct 1931 **/ 1932 static void iavf_watchdog_task(struct work_struct *work) 1933 { 1934 struct iavf_adapter *adapter = container_of(work, 1935 struct iavf_adapter, 1936 watchdog_task.work); 1937 struct iavf_hw *hw = &adapter->hw; 1938 u32 reg_val; 1939 1940 if (!mutex_trylock(&adapter->crit_lock)) 1941 goto restart_watchdog; 1942 1943 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1944 adapter->state = __IAVF_COMM_FAILED; 1945 1946 switch (adapter->state) { 1947 case __IAVF_COMM_FAILED: 1948 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1949 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1950 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1951 reg_val == VIRTCHNL_VFR_COMPLETED) { 1952 /* A chance for redemption! */ 1953 dev_err(&adapter->pdev->dev, 1954 "Hardware came out of reset. Attempting reinit.\n"); 1955 adapter->state = __IAVF_STARTUP; 1956 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1957 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1958 mutex_unlock(&adapter->crit_lock); 1959 /* Don't reschedule the watchdog, since we've restarted 1960 * the init task. When init_task contacts the PF and 1961 * gets everything set up again, it'll restart the 1962 * watchdog for us. Down, boy. Sit. Stay. Woof. 1963 */ 1964 return; 1965 } 1966 adapter->aq_required = 0; 1967 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1968 queue_delayed_work(iavf_wq, 1969 &adapter->watchdog_task, 1970 msecs_to_jiffies(10)); 1971 goto watchdog_done; 1972 case __IAVF_RESETTING: 1973 mutex_unlock(&adapter->crit_lock); 1974 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1975 return; 1976 case __IAVF_DOWN: 1977 case __IAVF_DOWN_PENDING: 1978 case __IAVF_TESTING: 1979 case __IAVF_RUNNING: 1980 if (adapter->current_op) { 1981 if (!iavf_asq_done(hw)) { 1982 dev_dbg(&adapter->pdev->dev, 1983 "Admin queue timeout\n"); 1984 iavf_send_api_ver(adapter); 1985 } 1986 } else { 1987 /* An error will be returned if no commands were 1988 * processed; use this opportunity to update stats 1989 */ 1990 if (iavf_process_aq_command(adapter) && 1991 adapter->state == __IAVF_RUNNING) 1992 iavf_request_stats(adapter); 1993 } 1994 break; 1995 case __IAVF_REMOVE: 1996 mutex_unlock(&adapter->crit_lock); 1997 return; 1998 default: 1999 goto restart_watchdog; 2000 } 2001 2002 /* check for hw reset */ 2003 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2004 if (!reg_val) { 2005 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2006 adapter->aq_required = 0; 2007 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2008 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2009 queue_work(iavf_wq, &adapter->reset_task); 2010 goto watchdog_done; 2011 } 2012 2013 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2014 watchdog_done: 2015 if (adapter->state == __IAVF_RUNNING || 2016 adapter->state == __IAVF_COMM_FAILED) 2017 iavf_detect_recover_hung(&adapter->vsi); 2018 mutex_unlock(&adapter->crit_lock); 2019 restart_watchdog: 2020 if (adapter->aq_required) 2021 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2022 msecs_to_jiffies(20)); 2023 else 2024 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2025 queue_work(iavf_wq, &adapter->adminq_task); 2026 } 2027 2028 static void iavf_disable_vf(struct iavf_adapter *adapter) 2029 { 2030 struct iavf_mac_filter *f, *ftmp; 2031 struct iavf_vlan_filter *fv, *fvtmp; 2032 struct iavf_cloud_filter *cf, *cftmp; 2033 2034 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2035 2036 /* We don't use netif_running() because it may be true prior to 2037 * ndo_open() returning, so we can't assume it means all our open 2038 * tasks have finished, since we're not holding the rtnl_lock here. 2039 */ 2040 if (adapter->state == __IAVF_RUNNING) { 2041 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2042 netif_carrier_off(adapter->netdev); 2043 netif_tx_disable(adapter->netdev); 2044 adapter->link_up = false; 2045 iavf_napi_disable_all(adapter); 2046 iavf_irq_disable(adapter); 2047 iavf_free_traffic_irqs(adapter); 2048 iavf_free_all_tx_resources(adapter); 2049 iavf_free_all_rx_resources(adapter); 2050 } 2051 2052 spin_lock_bh(&adapter->mac_vlan_list_lock); 2053 2054 /* Delete all of the filters */ 2055 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2056 list_del(&f->list); 2057 kfree(f); 2058 } 2059 2060 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2061 list_del(&fv->list); 2062 kfree(fv); 2063 } 2064 2065 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2066 2067 spin_lock_bh(&adapter->cloud_filter_list_lock); 2068 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2069 list_del(&cf->list); 2070 kfree(cf); 2071 adapter->num_cloud_filters--; 2072 } 2073 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2074 2075 iavf_free_misc_irq(adapter); 2076 iavf_reset_interrupt_capability(adapter); 2077 iavf_free_queues(adapter); 2078 iavf_free_q_vectors(adapter); 2079 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2080 iavf_shutdown_adminq(&adapter->hw); 2081 adapter->netdev->flags &= ~IFF_UP; 2082 mutex_unlock(&adapter->crit_lock); 2083 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2084 adapter->state = __IAVF_DOWN; 2085 wake_up(&adapter->down_waitqueue); 2086 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2087 } 2088 2089 /** 2090 * iavf_reset_task - Call-back task to handle hardware reset 2091 * @work: pointer to work_struct 2092 * 2093 * During reset we need to shut down and reinitialize the admin queue 2094 * before we can use it to communicate with the PF again. We also clear 2095 * and reinit the rings because that context is lost as well. 2096 **/ 2097 static void iavf_reset_task(struct work_struct *work) 2098 { 2099 struct iavf_adapter *adapter = container_of(work, 2100 struct iavf_adapter, 2101 reset_task); 2102 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2103 struct net_device *netdev = adapter->netdev; 2104 struct iavf_hw *hw = &adapter->hw; 2105 struct iavf_mac_filter *f, *ftmp; 2106 struct iavf_vlan_filter *vlf; 2107 struct iavf_cloud_filter *cf; 2108 u32 reg_val; 2109 int i = 0, err; 2110 bool running; 2111 2112 /* When device is being removed it doesn't make sense to run the reset 2113 * task, just return in such a case. 2114 */ 2115 if (mutex_is_locked(&adapter->remove_lock)) 2116 return; 2117 2118 if (iavf_lock_timeout(&adapter->crit_lock, 200)) { 2119 schedule_work(&adapter->reset_task); 2120 return; 2121 } 2122 while (!mutex_trylock(&adapter->client_lock)) 2123 usleep_range(500, 1000); 2124 if (CLIENT_ENABLED(adapter)) { 2125 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2126 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2127 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2128 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2129 cancel_delayed_work_sync(&adapter->client_task); 2130 iavf_notify_client_close(&adapter->vsi, true); 2131 } 2132 iavf_misc_irq_disable(adapter); 2133 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2134 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2135 /* Restart the AQ here. If we have been reset but didn't 2136 * detect it, or if the PF had to reinit, our AQ will be hosed. 2137 */ 2138 iavf_shutdown_adminq(hw); 2139 iavf_init_adminq(hw); 2140 iavf_request_reset(adapter); 2141 } 2142 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2143 2144 /* poll until we see the reset actually happen */ 2145 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2146 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2147 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2148 if (!reg_val) 2149 break; 2150 usleep_range(5000, 10000); 2151 } 2152 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2153 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2154 goto continue_reset; /* act like the reset happened */ 2155 } 2156 2157 /* wait until the reset is complete and the PF is responding to us */ 2158 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2159 /* sleep first to make sure a minimum wait time is met */ 2160 msleep(IAVF_RESET_WAIT_MS); 2161 2162 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2163 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2164 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2165 break; 2166 } 2167 2168 pci_set_master(adapter->pdev); 2169 2170 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2171 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2172 reg_val); 2173 iavf_disable_vf(adapter); 2174 mutex_unlock(&adapter->client_lock); 2175 return; /* Do not attempt to reinit. It's dead, Jim. */ 2176 } 2177 2178 continue_reset: 2179 /* We don't use netif_running() because it may be true prior to 2180 * ndo_open() returning, so we can't assume it means all our open 2181 * tasks have finished, since we're not holding the rtnl_lock here. 2182 */ 2183 running = ((adapter->state == __IAVF_RUNNING) || 2184 (adapter->state == __IAVF_RESETTING)); 2185 2186 if (running) { 2187 netif_carrier_off(netdev); 2188 netif_tx_stop_all_queues(netdev); 2189 adapter->link_up = false; 2190 iavf_napi_disable_all(adapter); 2191 } 2192 iavf_irq_disable(adapter); 2193 2194 adapter->state = __IAVF_RESETTING; 2195 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2196 2197 /* free the Tx/Rx rings and descriptors, might be better to just 2198 * re-use them sometime in the future 2199 */ 2200 iavf_free_all_rx_resources(adapter); 2201 iavf_free_all_tx_resources(adapter); 2202 2203 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2204 /* kill and reinit the admin queue */ 2205 iavf_shutdown_adminq(hw); 2206 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2207 err = iavf_init_adminq(hw); 2208 if (err) 2209 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2210 err); 2211 adapter->aq_required = 0; 2212 2213 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2214 err = iavf_reinit_interrupt_scheme(adapter); 2215 if (err) 2216 goto reset_err; 2217 } 2218 2219 if (RSS_AQ(adapter)) { 2220 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2221 } else { 2222 err = iavf_init_rss(adapter); 2223 if (err) 2224 goto reset_err; 2225 } 2226 2227 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2228 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2229 2230 spin_lock_bh(&adapter->mac_vlan_list_lock); 2231 2232 /* Delete filter for the current MAC address, it could have 2233 * been changed by the PF via administratively set MAC. 2234 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2235 */ 2236 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2237 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2238 list_del(&f->list); 2239 kfree(f); 2240 } 2241 } 2242 /* re-add all MAC filters */ 2243 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2244 f->add = true; 2245 } 2246 /* re-add all VLAN filters */ 2247 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2248 vlf->add = true; 2249 } 2250 2251 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2252 2253 /* check if TCs are running and re-add all cloud filters */ 2254 spin_lock_bh(&adapter->cloud_filter_list_lock); 2255 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2256 adapter->num_tc) { 2257 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2258 cf->add = true; 2259 } 2260 } 2261 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2262 2263 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2264 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2265 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2266 iavf_misc_irq_enable(adapter); 2267 2268 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2269 2270 /* We were running when the reset started, so we need to restore some 2271 * state here. 2272 */ 2273 if (running) { 2274 /* allocate transmit descriptors */ 2275 err = iavf_setup_all_tx_resources(adapter); 2276 if (err) 2277 goto reset_err; 2278 2279 /* allocate receive descriptors */ 2280 err = iavf_setup_all_rx_resources(adapter); 2281 if (err) 2282 goto reset_err; 2283 2284 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2285 err = iavf_request_traffic_irqs(adapter, netdev->name); 2286 if (err) 2287 goto reset_err; 2288 2289 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2290 } 2291 2292 iavf_configure(adapter); 2293 2294 iavf_up_complete(adapter); 2295 2296 iavf_irq_enable(adapter, true); 2297 } else { 2298 adapter->state = __IAVF_DOWN; 2299 wake_up(&adapter->down_waitqueue); 2300 } 2301 mutex_unlock(&adapter->client_lock); 2302 mutex_unlock(&adapter->crit_lock); 2303 2304 return; 2305 reset_err: 2306 mutex_unlock(&adapter->client_lock); 2307 mutex_unlock(&adapter->crit_lock); 2308 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2309 iavf_close(netdev); 2310 } 2311 2312 /** 2313 * iavf_adminq_task - worker thread to clean the admin queue 2314 * @work: pointer to work_struct containing our data 2315 **/ 2316 static void iavf_adminq_task(struct work_struct *work) 2317 { 2318 struct iavf_adapter *adapter = 2319 container_of(work, struct iavf_adapter, adminq_task); 2320 struct iavf_hw *hw = &adapter->hw; 2321 struct iavf_arq_event_info event; 2322 enum virtchnl_ops v_op; 2323 enum iavf_status ret, v_ret; 2324 u32 val, oldval; 2325 u16 pending; 2326 2327 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2328 goto out; 2329 2330 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2331 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2332 if (!event.msg_buf) 2333 goto out; 2334 2335 if (iavf_lock_timeout(&adapter->crit_lock, 200)) 2336 goto freedom; 2337 do { 2338 ret = iavf_clean_arq_element(hw, &event, &pending); 2339 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2340 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2341 2342 if (ret || !v_op) 2343 break; /* No event to process or error cleaning ARQ */ 2344 2345 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2346 event.msg_len); 2347 if (pending != 0) 2348 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2349 } while (pending); 2350 mutex_unlock(&adapter->crit_lock); 2351 2352 if ((adapter->flags & 2353 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2354 adapter->state == __IAVF_RESETTING) 2355 goto freedom; 2356 2357 /* check for error indications */ 2358 val = rd32(hw, hw->aq.arq.len); 2359 if (val == 0xdeadbeef) /* indicates device in reset */ 2360 goto freedom; 2361 oldval = val; 2362 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2363 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2364 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2365 } 2366 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2367 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2368 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2369 } 2370 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2371 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2372 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2373 } 2374 if (oldval != val) 2375 wr32(hw, hw->aq.arq.len, val); 2376 2377 val = rd32(hw, hw->aq.asq.len); 2378 oldval = val; 2379 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2380 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2381 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2382 } 2383 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2384 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2385 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2386 } 2387 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2388 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2389 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2390 } 2391 if (oldval != val) 2392 wr32(hw, hw->aq.asq.len, val); 2393 2394 freedom: 2395 kfree(event.msg_buf); 2396 out: 2397 /* re-enable Admin queue interrupt cause */ 2398 iavf_misc_irq_enable(adapter); 2399 } 2400 2401 /** 2402 * iavf_client_task - worker thread to perform client work 2403 * @work: pointer to work_struct containing our data 2404 * 2405 * This task handles client interactions. Because client calls can be 2406 * reentrant, we can't handle them in the watchdog. 2407 **/ 2408 static void iavf_client_task(struct work_struct *work) 2409 { 2410 struct iavf_adapter *adapter = 2411 container_of(work, struct iavf_adapter, client_task.work); 2412 2413 /* If we can't get the client bit, just give up. We'll be rescheduled 2414 * later. 2415 */ 2416 2417 if (!mutex_trylock(&adapter->client_lock)) 2418 return; 2419 2420 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2421 iavf_client_subtask(adapter); 2422 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2423 goto out; 2424 } 2425 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2426 iavf_notify_client_l2_params(&adapter->vsi); 2427 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2428 goto out; 2429 } 2430 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2431 iavf_notify_client_close(&adapter->vsi, false); 2432 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2433 goto out; 2434 } 2435 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2436 iavf_notify_client_open(&adapter->vsi); 2437 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2438 } 2439 out: 2440 mutex_unlock(&adapter->client_lock); 2441 } 2442 2443 /** 2444 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2445 * @adapter: board private structure 2446 * 2447 * Free all transmit software resources 2448 **/ 2449 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2450 { 2451 int i; 2452 2453 if (!adapter->tx_rings) 2454 return; 2455 2456 for (i = 0; i < adapter->num_active_queues; i++) 2457 if (adapter->tx_rings[i].desc) 2458 iavf_free_tx_resources(&adapter->tx_rings[i]); 2459 } 2460 2461 /** 2462 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2463 * @adapter: board private structure 2464 * 2465 * If this function returns with an error, then it's possible one or 2466 * more of the rings is populated (while the rest are not). It is the 2467 * callers duty to clean those orphaned rings. 2468 * 2469 * Return 0 on success, negative on failure 2470 **/ 2471 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2472 { 2473 int i, err = 0; 2474 2475 for (i = 0; i < adapter->num_active_queues; i++) { 2476 adapter->tx_rings[i].count = adapter->tx_desc_count; 2477 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2478 if (!err) 2479 continue; 2480 dev_err(&adapter->pdev->dev, 2481 "Allocation for Tx Queue %u failed\n", i); 2482 break; 2483 } 2484 2485 return err; 2486 } 2487 2488 /** 2489 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2490 * @adapter: board private structure 2491 * 2492 * If this function returns with an error, then it's possible one or 2493 * more of the rings is populated (while the rest are not). It is the 2494 * callers duty to clean those orphaned rings. 2495 * 2496 * Return 0 on success, negative on failure 2497 **/ 2498 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2499 { 2500 int i, err = 0; 2501 2502 for (i = 0; i < adapter->num_active_queues; i++) { 2503 adapter->rx_rings[i].count = adapter->rx_desc_count; 2504 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2505 if (!err) 2506 continue; 2507 dev_err(&adapter->pdev->dev, 2508 "Allocation for Rx Queue %u failed\n", i); 2509 break; 2510 } 2511 return err; 2512 } 2513 2514 /** 2515 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2516 * @adapter: board private structure 2517 * 2518 * Free all receive software resources 2519 **/ 2520 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2521 { 2522 int i; 2523 2524 if (!adapter->rx_rings) 2525 return; 2526 2527 for (i = 0; i < adapter->num_active_queues; i++) 2528 if (adapter->rx_rings[i].desc) 2529 iavf_free_rx_resources(&adapter->rx_rings[i]); 2530 } 2531 2532 /** 2533 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2534 * @adapter: board private structure 2535 * @max_tx_rate: max Tx bw for a tc 2536 **/ 2537 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2538 u64 max_tx_rate) 2539 { 2540 int speed = 0, ret = 0; 2541 2542 if (ADV_LINK_SUPPORT(adapter)) { 2543 if (adapter->link_speed_mbps < U32_MAX) { 2544 speed = adapter->link_speed_mbps; 2545 goto validate_bw; 2546 } else { 2547 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 2548 return -EINVAL; 2549 } 2550 } 2551 2552 switch (adapter->link_speed) { 2553 case VIRTCHNL_LINK_SPEED_40GB: 2554 speed = SPEED_40000; 2555 break; 2556 case VIRTCHNL_LINK_SPEED_25GB: 2557 speed = SPEED_25000; 2558 break; 2559 case VIRTCHNL_LINK_SPEED_20GB: 2560 speed = SPEED_20000; 2561 break; 2562 case VIRTCHNL_LINK_SPEED_10GB: 2563 speed = SPEED_10000; 2564 break; 2565 case VIRTCHNL_LINK_SPEED_5GB: 2566 speed = SPEED_5000; 2567 break; 2568 case VIRTCHNL_LINK_SPEED_2_5GB: 2569 speed = SPEED_2500; 2570 break; 2571 case VIRTCHNL_LINK_SPEED_1GB: 2572 speed = SPEED_1000; 2573 break; 2574 case VIRTCHNL_LINK_SPEED_100MB: 2575 speed = SPEED_100; 2576 break; 2577 default: 2578 break; 2579 } 2580 2581 validate_bw: 2582 if (max_tx_rate > speed) { 2583 dev_err(&adapter->pdev->dev, 2584 "Invalid tx rate specified\n"); 2585 ret = -EINVAL; 2586 } 2587 2588 return ret; 2589 } 2590 2591 /** 2592 * iavf_validate_ch_config - validate queue mapping info 2593 * @adapter: board private structure 2594 * @mqprio_qopt: queue parameters 2595 * 2596 * This function validates if the config provided by the user to 2597 * configure queue channels is valid or not. Returns 0 on a valid 2598 * config. 2599 **/ 2600 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2601 struct tc_mqprio_qopt_offload *mqprio_qopt) 2602 { 2603 u64 total_max_rate = 0; 2604 int i, num_qps = 0; 2605 u64 tx_rate = 0; 2606 int ret = 0; 2607 2608 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2609 mqprio_qopt->qopt.num_tc < 1) 2610 return -EINVAL; 2611 2612 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2613 if (!mqprio_qopt->qopt.count[i] || 2614 mqprio_qopt->qopt.offset[i] != num_qps) 2615 return -EINVAL; 2616 if (mqprio_qopt->min_rate[i]) { 2617 dev_err(&adapter->pdev->dev, 2618 "Invalid min tx rate (greater than 0) specified\n"); 2619 return -EINVAL; 2620 } 2621 /*convert to Mbps */ 2622 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2623 IAVF_MBPS_DIVISOR); 2624 total_max_rate += tx_rate; 2625 num_qps += mqprio_qopt->qopt.count[i]; 2626 } 2627 if (num_qps > IAVF_MAX_REQ_QUEUES) 2628 return -EINVAL; 2629 2630 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2631 return ret; 2632 } 2633 2634 /** 2635 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 2636 * @adapter: board private structure 2637 **/ 2638 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2639 { 2640 struct iavf_cloud_filter *cf, *cftmp; 2641 2642 spin_lock_bh(&adapter->cloud_filter_list_lock); 2643 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2644 list) { 2645 list_del(&cf->list); 2646 kfree(cf); 2647 adapter->num_cloud_filters--; 2648 } 2649 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2650 } 2651 2652 /** 2653 * __iavf_setup_tc - configure multiple traffic classes 2654 * @netdev: network interface device structure 2655 * @type_data: tc offload data 2656 * 2657 * This function processes the config information provided by the 2658 * user to configure traffic classes/queue channels and packages the 2659 * information to request the PF to setup traffic classes. 2660 * 2661 * Returns 0 on success. 2662 **/ 2663 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2664 { 2665 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2666 struct iavf_adapter *adapter = netdev_priv(netdev); 2667 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2668 u8 num_tc = 0, total_qps = 0; 2669 int ret = 0, netdev_tc = 0; 2670 u64 max_tx_rate; 2671 u16 mode; 2672 int i; 2673 2674 num_tc = mqprio_qopt->qopt.num_tc; 2675 mode = mqprio_qopt->mode; 2676 2677 /* delete queue_channel */ 2678 if (!mqprio_qopt->qopt.hw) { 2679 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2680 /* reset the tc configuration */ 2681 netdev_reset_tc(netdev); 2682 adapter->num_tc = 0; 2683 netif_tx_stop_all_queues(netdev); 2684 netif_tx_disable(netdev); 2685 iavf_del_all_cloud_filters(adapter); 2686 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2687 goto exit; 2688 } else { 2689 return -EINVAL; 2690 } 2691 } 2692 2693 /* add queue channel */ 2694 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2695 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2696 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2697 return -EOPNOTSUPP; 2698 } 2699 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2700 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2701 return -EINVAL; 2702 } 2703 2704 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2705 if (ret) 2706 return ret; 2707 /* Return if same TC config is requested */ 2708 if (adapter->num_tc == num_tc) 2709 return 0; 2710 adapter->num_tc = num_tc; 2711 2712 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2713 if (i < num_tc) { 2714 adapter->ch_config.ch_info[i].count = 2715 mqprio_qopt->qopt.count[i]; 2716 adapter->ch_config.ch_info[i].offset = 2717 mqprio_qopt->qopt.offset[i]; 2718 total_qps += mqprio_qopt->qopt.count[i]; 2719 max_tx_rate = mqprio_qopt->max_rate[i]; 2720 /* convert to Mbps */ 2721 max_tx_rate = div_u64(max_tx_rate, 2722 IAVF_MBPS_DIVISOR); 2723 adapter->ch_config.ch_info[i].max_tx_rate = 2724 max_tx_rate; 2725 } else { 2726 adapter->ch_config.ch_info[i].count = 1; 2727 adapter->ch_config.ch_info[i].offset = 0; 2728 } 2729 } 2730 adapter->ch_config.total_qps = total_qps; 2731 netif_tx_stop_all_queues(netdev); 2732 netif_tx_disable(netdev); 2733 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2734 netdev_reset_tc(netdev); 2735 /* Report the tc mapping up the stack */ 2736 netdev_set_num_tc(adapter->netdev, num_tc); 2737 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2738 u16 qcount = mqprio_qopt->qopt.count[i]; 2739 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2740 2741 if (i < num_tc) 2742 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2743 qoffset); 2744 } 2745 } 2746 exit: 2747 return ret; 2748 } 2749 2750 /** 2751 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2752 * @adapter: board private structure 2753 * @f: pointer to struct flow_cls_offload 2754 * @filter: pointer to cloud filter structure 2755 */ 2756 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2757 struct flow_cls_offload *f, 2758 struct iavf_cloud_filter *filter) 2759 { 2760 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2761 struct flow_dissector *dissector = rule->match.dissector; 2762 u16 n_proto_mask = 0; 2763 u16 n_proto_key = 0; 2764 u8 field_flags = 0; 2765 u16 addr_type = 0; 2766 u16 n_proto = 0; 2767 int i = 0; 2768 struct virtchnl_filter *vf = &filter->f; 2769 2770 if (dissector->used_keys & 2771 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2772 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2773 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2774 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2775 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2776 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2777 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2778 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2779 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2780 dissector->used_keys); 2781 return -EOPNOTSUPP; 2782 } 2783 2784 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2785 struct flow_match_enc_keyid match; 2786 2787 flow_rule_match_enc_keyid(rule, &match); 2788 if (match.mask->keyid != 0) 2789 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2790 } 2791 2792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2793 struct flow_match_basic match; 2794 2795 flow_rule_match_basic(rule, &match); 2796 n_proto_key = ntohs(match.key->n_proto); 2797 n_proto_mask = ntohs(match.mask->n_proto); 2798 2799 if (n_proto_key == ETH_P_ALL) { 2800 n_proto_key = 0; 2801 n_proto_mask = 0; 2802 } 2803 n_proto = n_proto_key & n_proto_mask; 2804 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2805 return -EINVAL; 2806 if (n_proto == ETH_P_IPV6) { 2807 /* specify flow type as TCP IPv6 */ 2808 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2809 } 2810 2811 if (match.key->ip_proto != IPPROTO_TCP) { 2812 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2813 return -EINVAL; 2814 } 2815 } 2816 2817 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2818 struct flow_match_eth_addrs match; 2819 2820 flow_rule_match_eth_addrs(rule, &match); 2821 2822 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2823 if (!is_zero_ether_addr(match.mask->dst)) { 2824 if (is_broadcast_ether_addr(match.mask->dst)) { 2825 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2826 } else { 2827 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2828 match.mask->dst); 2829 return IAVF_ERR_CONFIG; 2830 } 2831 } 2832 2833 if (!is_zero_ether_addr(match.mask->src)) { 2834 if (is_broadcast_ether_addr(match.mask->src)) { 2835 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2836 } else { 2837 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2838 match.mask->src); 2839 return IAVF_ERR_CONFIG; 2840 } 2841 } 2842 2843 if (!is_zero_ether_addr(match.key->dst)) 2844 if (is_valid_ether_addr(match.key->dst) || 2845 is_multicast_ether_addr(match.key->dst)) { 2846 /* set the mask if a valid dst_mac address */ 2847 for (i = 0; i < ETH_ALEN; i++) 2848 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2849 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2850 match.key->dst); 2851 } 2852 2853 if (!is_zero_ether_addr(match.key->src)) 2854 if (is_valid_ether_addr(match.key->src) || 2855 is_multicast_ether_addr(match.key->src)) { 2856 /* set the mask if a valid dst_mac address */ 2857 for (i = 0; i < ETH_ALEN; i++) 2858 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2859 ether_addr_copy(vf->data.tcp_spec.src_mac, 2860 match.key->src); 2861 } 2862 } 2863 2864 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2865 struct flow_match_vlan match; 2866 2867 flow_rule_match_vlan(rule, &match); 2868 if (match.mask->vlan_id) { 2869 if (match.mask->vlan_id == VLAN_VID_MASK) { 2870 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2871 } else { 2872 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2873 match.mask->vlan_id); 2874 return IAVF_ERR_CONFIG; 2875 } 2876 } 2877 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2878 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2879 } 2880 2881 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2882 struct flow_match_control match; 2883 2884 flow_rule_match_control(rule, &match); 2885 addr_type = match.key->addr_type; 2886 } 2887 2888 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2889 struct flow_match_ipv4_addrs match; 2890 2891 flow_rule_match_ipv4_addrs(rule, &match); 2892 if (match.mask->dst) { 2893 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2894 field_flags |= IAVF_CLOUD_FIELD_IIP; 2895 } else { 2896 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2897 be32_to_cpu(match.mask->dst)); 2898 return IAVF_ERR_CONFIG; 2899 } 2900 } 2901 2902 if (match.mask->src) { 2903 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2904 field_flags |= IAVF_CLOUD_FIELD_IIP; 2905 } else { 2906 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2907 be32_to_cpu(match.mask->dst)); 2908 return IAVF_ERR_CONFIG; 2909 } 2910 } 2911 2912 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2913 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2914 return IAVF_ERR_CONFIG; 2915 } 2916 if (match.key->dst) { 2917 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2918 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2919 } 2920 if (match.key->src) { 2921 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2922 vf->data.tcp_spec.src_ip[0] = match.key->src; 2923 } 2924 } 2925 2926 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2927 struct flow_match_ipv6_addrs match; 2928 2929 flow_rule_match_ipv6_addrs(rule, &match); 2930 2931 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2932 if (ipv6_addr_any(&match.mask->dst)) { 2933 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2934 IPV6_ADDR_ANY); 2935 return IAVF_ERR_CONFIG; 2936 } 2937 2938 /* src and dest IPv6 address should not be LOOPBACK 2939 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2940 */ 2941 if (ipv6_addr_loopback(&match.key->dst) || 2942 ipv6_addr_loopback(&match.key->src)) { 2943 dev_err(&adapter->pdev->dev, 2944 "ipv6 addr should not be loopback\n"); 2945 return IAVF_ERR_CONFIG; 2946 } 2947 if (!ipv6_addr_any(&match.mask->dst) || 2948 !ipv6_addr_any(&match.mask->src)) 2949 field_flags |= IAVF_CLOUD_FIELD_IIP; 2950 2951 for (i = 0; i < 4; i++) 2952 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2953 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2954 sizeof(vf->data.tcp_spec.dst_ip)); 2955 for (i = 0; i < 4; i++) 2956 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2957 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2958 sizeof(vf->data.tcp_spec.src_ip)); 2959 } 2960 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2961 struct flow_match_ports match; 2962 2963 flow_rule_match_ports(rule, &match); 2964 if (match.mask->src) { 2965 if (match.mask->src == cpu_to_be16(0xffff)) { 2966 field_flags |= IAVF_CLOUD_FIELD_IIP; 2967 } else { 2968 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2969 be16_to_cpu(match.mask->src)); 2970 return IAVF_ERR_CONFIG; 2971 } 2972 } 2973 2974 if (match.mask->dst) { 2975 if (match.mask->dst == cpu_to_be16(0xffff)) { 2976 field_flags |= IAVF_CLOUD_FIELD_IIP; 2977 } else { 2978 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2979 be16_to_cpu(match.mask->dst)); 2980 return IAVF_ERR_CONFIG; 2981 } 2982 } 2983 if (match.key->dst) { 2984 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2985 vf->data.tcp_spec.dst_port = match.key->dst; 2986 } 2987 2988 if (match.key->src) { 2989 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2990 vf->data.tcp_spec.src_port = match.key->src; 2991 } 2992 } 2993 vf->field_flags = field_flags; 2994 2995 return 0; 2996 } 2997 2998 /** 2999 * iavf_handle_tclass - Forward to a traffic class on the device 3000 * @adapter: board private structure 3001 * @tc: traffic class index on the device 3002 * @filter: pointer to cloud filter structure 3003 */ 3004 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3005 struct iavf_cloud_filter *filter) 3006 { 3007 if (tc == 0) 3008 return 0; 3009 if (tc < adapter->num_tc) { 3010 if (!filter->f.data.tcp_spec.dst_port) { 3011 dev_err(&adapter->pdev->dev, 3012 "Specify destination port to redirect to traffic class other than TC0\n"); 3013 return -EINVAL; 3014 } 3015 } 3016 /* redirect to a traffic class on the same device */ 3017 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3018 filter->f.action_meta = tc; 3019 return 0; 3020 } 3021 3022 /** 3023 * iavf_configure_clsflower - Add tc flower filters 3024 * @adapter: board private structure 3025 * @cls_flower: Pointer to struct flow_cls_offload 3026 */ 3027 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3028 struct flow_cls_offload *cls_flower) 3029 { 3030 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3031 struct iavf_cloud_filter *filter = NULL; 3032 int err = -EINVAL, count = 50; 3033 3034 if (tc < 0) { 3035 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3036 return -EINVAL; 3037 } 3038 3039 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3040 if (!filter) 3041 return -ENOMEM; 3042 3043 while (!mutex_trylock(&adapter->crit_lock)) { 3044 if (--count == 0) 3045 goto err; 3046 udelay(1); 3047 } 3048 3049 filter->cookie = cls_flower->cookie; 3050 3051 /* set the mask to all zeroes to begin with */ 3052 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3053 /* start out with flow type and eth type IPv4 to begin with */ 3054 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3055 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3056 if (err < 0) 3057 goto err; 3058 3059 err = iavf_handle_tclass(adapter, tc, filter); 3060 if (err < 0) 3061 goto err; 3062 3063 /* add filter to the list */ 3064 spin_lock_bh(&adapter->cloud_filter_list_lock); 3065 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3066 adapter->num_cloud_filters++; 3067 filter->add = true; 3068 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3069 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3070 err: 3071 if (err) 3072 kfree(filter); 3073 3074 mutex_unlock(&adapter->crit_lock); 3075 return err; 3076 } 3077 3078 /* iavf_find_cf - Find the cloud filter in the list 3079 * @adapter: Board private structure 3080 * @cookie: filter specific cookie 3081 * 3082 * Returns ptr to the filter object or NULL. Must be called while holding the 3083 * cloud_filter_list_lock. 3084 */ 3085 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3086 unsigned long *cookie) 3087 { 3088 struct iavf_cloud_filter *filter = NULL; 3089 3090 if (!cookie) 3091 return NULL; 3092 3093 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3094 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3095 return filter; 3096 } 3097 return NULL; 3098 } 3099 3100 /** 3101 * iavf_delete_clsflower - Remove tc flower filters 3102 * @adapter: board private structure 3103 * @cls_flower: Pointer to struct flow_cls_offload 3104 */ 3105 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3106 struct flow_cls_offload *cls_flower) 3107 { 3108 struct iavf_cloud_filter *filter = NULL; 3109 int err = 0; 3110 3111 spin_lock_bh(&adapter->cloud_filter_list_lock); 3112 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3113 if (filter) { 3114 filter->del = true; 3115 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3116 } else { 3117 err = -EINVAL; 3118 } 3119 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3120 3121 return err; 3122 } 3123 3124 /** 3125 * iavf_setup_tc_cls_flower - flower classifier offloads 3126 * @adapter: board private structure 3127 * @cls_flower: pointer to flow_cls_offload struct with flow info 3128 */ 3129 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3130 struct flow_cls_offload *cls_flower) 3131 { 3132 switch (cls_flower->command) { 3133 case FLOW_CLS_REPLACE: 3134 return iavf_configure_clsflower(adapter, cls_flower); 3135 case FLOW_CLS_DESTROY: 3136 return iavf_delete_clsflower(adapter, cls_flower); 3137 case FLOW_CLS_STATS: 3138 return -EOPNOTSUPP; 3139 default: 3140 return -EOPNOTSUPP; 3141 } 3142 } 3143 3144 /** 3145 * iavf_setup_tc_block_cb - block callback for tc 3146 * @type: type of offload 3147 * @type_data: offload data 3148 * @cb_priv: 3149 * 3150 * This function is the block callback for traffic classes 3151 **/ 3152 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3153 void *cb_priv) 3154 { 3155 struct iavf_adapter *adapter = cb_priv; 3156 3157 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3158 return -EOPNOTSUPP; 3159 3160 switch (type) { 3161 case TC_SETUP_CLSFLOWER: 3162 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3163 default: 3164 return -EOPNOTSUPP; 3165 } 3166 } 3167 3168 static LIST_HEAD(iavf_block_cb_list); 3169 3170 /** 3171 * iavf_setup_tc - configure multiple traffic classes 3172 * @netdev: network interface device structure 3173 * @type: type of offload 3174 * @type_data: tc offload data 3175 * 3176 * This function is the callback to ndo_setup_tc in the 3177 * netdev_ops. 3178 * 3179 * Returns 0 on success 3180 **/ 3181 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3182 void *type_data) 3183 { 3184 struct iavf_adapter *adapter = netdev_priv(netdev); 3185 3186 switch (type) { 3187 case TC_SETUP_QDISC_MQPRIO: 3188 return __iavf_setup_tc(netdev, type_data); 3189 case TC_SETUP_BLOCK: 3190 return flow_block_cb_setup_simple(type_data, 3191 &iavf_block_cb_list, 3192 iavf_setup_tc_block_cb, 3193 adapter, adapter, true); 3194 default: 3195 return -EOPNOTSUPP; 3196 } 3197 } 3198 3199 /** 3200 * iavf_open - Called when a network interface is made active 3201 * @netdev: network interface device structure 3202 * 3203 * Returns 0 on success, negative value on failure 3204 * 3205 * The open entry point is called when a network interface is made 3206 * active by the system (IFF_UP). At this point all resources needed 3207 * for transmit and receive operations are allocated, the interrupt 3208 * handler is registered with the OS, the watchdog is started, 3209 * and the stack is notified that the interface is ready. 3210 **/ 3211 static int iavf_open(struct net_device *netdev) 3212 { 3213 struct iavf_adapter *adapter = netdev_priv(netdev); 3214 int err; 3215 3216 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3217 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3218 return -EIO; 3219 } 3220 3221 while (!mutex_trylock(&adapter->crit_lock)) 3222 usleep_range(500, 1000); 3223 3224 if (adapter->state != __IAVF_DOWN) { 3225 err = -EBUSY; 3226 goto err_unlock; 3227 } 3228 3229 /* allocate transmit descriptors */ 3230 err = iavf_setup_all_tx_resources(adapter); 3231 if (err) 3232 goto err_setup_tx; 3233 3234 /* allocate receive descriptors */ 3235 err = iavf_setup_all_rx_resources(adapter); 3236 if (err) 3237 goto err_setup_rx; 3238 3239 /* clear any pending interrupts, may auto mask */ 3240 err = iavf_request_traffic_irqs(adapter, netdev->name); 3241 if (err) 3242 goto err_req_irq; 3243 3244 spin_lock_bh(&adapter->mac_vlan_list_lock); 3245 3246 iavf_add_filter(adapter, adapter->hw.mac.addr); 3247 3248 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3249 3250 iavf_configure(adapter); 3251 3252 iavf_up_complete(adapter); 3253 3254 iavf_irq_enable(adapter, true); 3255 3256 mutex_unlock(&adapter->crit_lock); 3257 3258 return 0; 3259 3260 err_req_irq: 3261 iavf_down(adapter); 3262 iavf_free_traffic_irqs(adapter); 3263 err_setup_rx: 3264 iavf_free_all_rx_resources(adapter); 3265 err_setup_tx: 3266 iavf_free_all_tx_resources(adapter); 3267 err_unlock: 3268 mutex_unlock(&adapter->crit_lock); 3269 3270 return err; 3271 } 3272 3273 /** 3274 * iavf_close - Disables a network interface 3275 * @netdev: network interface device structure 3276 * 3277 * Returns 0, this is not allowed to fail 3278 * 3279 * The close entry point is called when an interface is de-activated 3280 * by the OS. The hardware is still under the drivers control, but 3281 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3282 * are freed, along with all transmit and receive resources. 3283 **/ 3284 static int iavf_close(struct net_device *netdev) 3285 { 3286 struct iavf_adapter *adapter = netdev_priv(netdev); 3287 int status; 3288 3289 if (adapter->state <= __IAVF_DOWN_PENDING) 3290 return 0; 3291 3292 while (!mutex_trylock(&adapter->crit_lock)) 3293 usleep_range(500, 1000); 3294 3295 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3296 if (CLIENT_ENABLED(adapter)) 3297 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3298 3299 iavf_down(adapter); 3300 adapter->state = __IAVF_DOWN_PENDING; 3301 iavf_free_traffic_irqs(adapter); 3302 3303 mutex_unlock(&adapter->crit_lock); 3304 3305 /* We explicitly don't free resources here because the hardware is 3306 * still active and can DMA into memory. Resources are cleared in 3307 * iavf_virtchnl_completion() after we get confirmation from the PF 3308 * driver that the rings have been stopped. 3309 * 3310 * Also, we wait for state to transition to __IAVF_DOWN before 3311 * returning. State change occurs in iavf_virtchnl_completion() after 3312 * VF resources are released (which occurs after PF driver processes and 3313 * responds to admin queue commands). 3314 */ 3315 3316 status = wait_event_timeout(adapter->down_waitqueue, 3317 adapter->state == __IAVF_DOWN, 3318 msecs_to_jiffies(500)); 3319 if (!status) 3320 netdev_warn(netdev, "Device resources not yet released\n"); 3321 return 0; 3322 } 3323 3324 /** 3325 * iavf_change_mtu - Change the Maximum Transfer Unit 3326 * @netdev: network interface device structure 3327 * @new_mtu: new value for maximum frame size 3328 * 3329 * Returns 0 on success, negative on failure 3330 **/ 3331 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3332 { 3333 struct iavf_adapter *adapter = netdev_priv(netdev); 3334 3335 netdev->mtu = new_mtu; 3336 if (CLIENT_ENABLED(adapter)) { 3337 iavf_notify_client_l2_params(&adapter->vsi); 3338 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3339 } 3340 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3341 queue_work(iavf_wq, &adapter->reset_task); 3342 3343 return 0; 3344 } 3345 3346 /** 3347 * iavf_set_features - set the netdev feature flags 3348 * @netdev: ptr to the netdev being adjusted 3349 * @features: the feature set that the stack is suggesting 3350 * Note: expects to be called while under rtnl_lock() 3351 **/ 3352 static int iavf_set_features(struct net_device *netdev, 3353 netdev_features_t features) 3354 { 3355 struct iavf_adapter *adapter = netdev_priv(netdev); 3356 3357 /* Don't allow changing VLAN_RX flag when adapter is not capable 3358 * of VLAN offload 3359 */ 3360 if (!VLAN_ALLOWED(adapter)) { 3361 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3362 return -EINVAL; 3363 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3364 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3365 adapter->aq_required |= 3366 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3367 else 3368 adapter->aq_required |= 3369 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3370 } 3371 3372 return 0; 3373 } 3374 3375 /** 3376 * iavf_features_check - Validate encapsulated packet conforms to limits 3377 * @skb: skb buff 3378 * @dev: This physical port's netdev 3379 * @features: Offload features that the stack believes apply 3380 **/ 3381 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3382 struct net_device *dev, 3383 netdev_features_t features) 3384 { 3385 size_t len; 3386 3387 /* No point in doing any of this if neither checksum nor GSO are 3388 * being requested for this frame. We can rule out both by just 3389 * checking for CHECKSUM_PARTIAL 3390 */ 3391 if (skb->ip_summed != CHECKSUM_PARTIAL) 3392 return features; 3393 3394 /* We cannot support GSO if the MSS is going to be less than 3395 * 64 bytes. If it is then we need to drop support for GSO. 3396 */ 3397 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3398 features &= ~NETIF_F_GSO_MASK; 3399 3400 /* MACLEN can support at most 63 words */ 3401 len = skb_network_header(skb) - skb->data; 3402 if (len & ~(63 * 2)) 3403 goto out_err; 3404 3405 /* IPLEN and EIPLEN can support at most 127 dwords */ 3406 len = skb_transport_header(skb) - skb_network_header(skb); 3407 if (len & ~(127 * 4)) 3408 goto out_err; 3409 3410 if (skb->encapsulation) { 3411 /* L4TUNLEN can support 127 words */ 3412 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3413 if (len & ~(127 * 2)) 3414 goto out_err; 3415 3416 /* IPLEN can support at most 127 dwords */ 3417 len = skb_inner_transport_header(skb) - 3418 skb_inner_network_header(skb); 3419 if (len & ~(127 * 4)) 3420 goto out_err; 3421 } 3422 3423 /* No need to validate L4LEN as TCP is the only protocol with a 3424 * a flexible value and we support all possible values supported 3425 * by TCP, which is at most 15 dwords 3426 */ 3427 3428 return features; 3429 out_err: 3430 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3431 } 3432 3433 /** 3434 * iavf_fix_features - fix up the netdev feature bits 3435 * @netdev: our net device 3436 * @features: desired feature bits 3437 * 3438 * Returns fixed-up features bits 3439 **/ 3440 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3441 netdev_features_t features) 3442 { 3443 struct iavf_adapter *adapter = netdev_priv(netdev); 3444 3445 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3446 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3447 NETIF_F_HW_VLAN_CTAG_RX | 3448 NETIF_F_HW_VLAN_CTAG_FILTER); 3449 3450 return features; 3451 } 3452 3453 static const struct net_device_ops iavf_netdev_ops = { 3454 .ndo_open = iavf_open, 3455 .ndo_stop = iavf_close, 3456 .ndo_start_xmit = iavf_xmit_frame, 3457 .ndo_set_rx_mode = iavf_set_rx_mode, 3458 .ndo_validate_addr = eth_validate_addr, 3459 .ndo_set_mac_address = iavf_set_mac, 3460 .ndo_change_mtu = iavf_change_mtu, 3461 .ndo_tx_timeout = iavf_tx_timeout, 3462 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3463 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3464 .ndo_features_check = iavf_features_check, 3465 .ndo_fix_features = iavf_fix_features, 3466 .ndo_set_features = iavf_set_features, 3467 .ndo_setup_tc = iavf_setup_tc, 3468 }; 3469 3470 /** 3471 * iavf_check_reset_complete - check that VF reset is complete 3472 * @hw: pointer to hw struct 3473 * 3474 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3475 **/ 3476 static int iavf_check_reset_complete(struct iavf_hw *hw) 3477 { 3478 u32 rstat; 3479 int i; 3480 3481 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3482 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3483 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3484 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3485 (rstat == VIRTCHNL_VFR_COMPLETED)) 3486 return 0; 3487 usleep_range(10, 20); 3488 } 3489 return -EBUSY; 3490 } 3491 3492 /** 3493 * iavf_process_config - Process the config information we got from the PF 3494 * @adapter: board private structure 3495 * 3496 * Verify that we have a valid config struct, and set up our netdev features 3497 * and our VSI struct. 3498 **/ 3499 int iavf_process_config(struct iavf_adapter *adapter) 3500 { 3501 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3502 int i, num_req_queues = adapter->num_req_queues; 3503 struct net_device *netdev = adapter->netdev; 3504 struct iavf_vsi *vsi = &adapter->vsi; 3505 netdev_features_t hw_enc_features; 3506 netdev_features_t hw_features; 3507 3508 /* got VF config message back from PF, now we can parse it */ 3509 for (i = 0; i < vfres->num_vsis; i++) { 3510 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3511 adapter->vsi_res = &vfres->vsi_res[i]; 3512 } 3513 if (!adapter->vsi_res) { 3514 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3515 return -ENODEV; 3516 } 3517 3518 if (num_req_queues && 3519 num_req_queues > adapter->vsi_res->num_queue_pairs) { 3520 /* Problem. The PF gave us fewer queues than what we had 3521 * negotiated in our request. Need a reset to see if we can't 3522 * get back to a working state. 3523 */ 3524 dev_err(&adapter->pdev->dev, 3525 "Requested %d queues, but PF only gave us %d.\n", 3526 num_req_queues, 3527 adapter->vsi_res->num_queue_pairs); 3528 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3529 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3530 iavf_schedule_reset(adapter); 3531 return -ENODEV; 3532 } 3533 adapter->num_req_queues = 0; 3534 3535 hw_enc_features = NETIF_F_SG | 3536 NETIF_F_IP_CSUM | 3537 NETIF_F_IPV6_CSUM | 3538 NETIF_F_HIGHDMA | 3539 NETIF_F_SOFT_FEATURES | 3540 NETIF_F_TSO | 3541 NETIF_F_TSO_ECN | 3542 NETIF_F_TSO6 | 3543 NETIF_F_SCTP_CRC | 3544 NETIF_F_RXHASH | 3545 NETIF_F_RXCSUM | 3546 0; 3547 3548 /* advertise to stack only if offloads for encapsulated packets is 3549 * supported 3550 */ 3551 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3552 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3553 NETIF_F_GSO_GRE | 3554 NETIF_F_GSO_GRE_CSUM | 3555 NETIF_F_GSO_IPXIP4 | 3556 NETIF_F_GSO_IPXIP6 | 3557 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3558 NETIF_F_GSO_PARTIAL | 3559 0; 3560 3561 if (!(vfres->vf_cap_flags & 3562 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3563 netdev->gso_partial_features |= 3564 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3565 3566 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3567 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3568 netdev->hw_enc_features |= hw_enc_features; 3569 } 3570 /* record features VLANs can make use of */ 3571 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3572 3573 /* Write features and hw_features separately to avoid polluting 3574 * with, or dropping, features that are set when we registered. 3575 */ 3576 hw_features = hw_enc_features; 3577 3578 /* Enable VLAN features if supported */ 3579 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3580 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3581 NETIF_F_HW_VLAN_CTAG_RX); 3582 /* Enable cloud filter if ADQ is supported */ 3583 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3584 hw_features |= NETIF_F_HW_TC; 3585 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 3586 hw_features |= NETIF_F_GSO_UDP_L4; 3587 3588 netdev->hw_features |= hw_features; 3589 3590 netdev->features |= hw_features; 3591 3592 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3593 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3594 3595 netdev->priv_flags |= IFF_UNICAST_FLT; 3596 3597 /* Do not turn on offloads when they are requested to be turned off. 3598 * TSO needs minimum 576 bytes to work correctly. 3599 */ 3600 if (netdev->wanted_features) { 3601 if (!(netdev->wanted_features & NETIF_F_TSO) || 3602 netdev->mtu < 576) 3603 netdev->features &= ~NETIF_F_TSO; 3604 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3605 netdev->mtu < 576) 3606 netdev->features &= ~NETIF_F_TSO6; 3607 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3608 netdev->features &= ~NETIF_F_TSO_ECN; 3609 if (!(netdev->wanted_features & NETIF_F_GRO)) 3610 netdev->features &= ~NETIF_F_GRO; 3611 if (!(netdev->wanted_features & NETIF_F_GSO)) 3612 netdev->features &= ~NETIF_F_GSO; 3613 } 3614 3615 adapter->vsi.id = adapter->vsi_res->vsi_id; 3616 3617 adapter->vsi.back = adapter; 3618 adapter->vsi.base_vector = 1; 3619 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3620 vsi->netdev = adapter->netdev; 3621 vsi->qs_handle = adapter->vsi_res->qset_handle; 3622 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3623 adapter->rss_key_size = vfres->rss_key_size; 3624 adapter->rss_lut_size = vfres->rss_lut_size; 3625 } else { 3626 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3627 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3628 } 3629 3630 return 0; 3631 } 3632 3633 /** 3634 * iavf_init_task - worker thread to perform delayed initialization 3635 * @work: pointer to work_struct containing our data 3636 * 3637 * This task completes the work that was begun in probe. Due to the nature 3638 * of VF-PF communications, we may need to wait tens of milliseconds to get 3639 * responses back from the PF. Rather than busy-wait in probe and bog down the 3640 * whole system, we'll do it in a task so we can sleep. 3641 * This task only runs during driver init. Once we've established 3642 * communications with the PF driver and set up our netdev, the watchdog 3643 * takes over. 3644 **/ 3645 static void iavf_init_task(struct work_struct *work) 3646 { 3647 struct iavf_adapter *adapter = container_of(work, 3648 struct iavf_adapter, 3649 init_task.work); 3650 struct iavf_hw *hw = &adapter->hw; 3651 3652 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) { 3653 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3654 return; 3655 } 3656 switch (adapter->state) { 3657 case __IAVF_STARTUP: 3658 if (iavf_startup(adapter) < 0) 3659 goto init_failed; 3660 break; 3661 case __IAVF_INIT_VERSION_CHECK: 3662 if (iavf_init_version_check(adapter) < 0) 3663 goto init_failed; 3664 break; 3665 case __IAVF_INIT_GET_RESOURCES: 3666 if (iavf_init_get_resources(adapter) < 0) 3667 goto init_failed; 3668 goto out; 3669 default: 3670 goto init_failed; 3671 } 3672 3673 queue_delayed_work(iavf_wq, &adapter->init_task, 3674 msecs_to_jiffies(30)); 3675 goto out; 3676 init_failed: 3677 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3678 dev_err(&adapter->pdev->dev, 3679 "Failed to communicate with PF; waiting before retry\n"); 3680 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3681 iavf_shutdown_adminq(hw); 3682 adapter->state = __IAVF_STARTUP; 3683 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3684 goto out; 3685 } 3686 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3687 out: 3688 mutex_unlock(&adapter->crit_lock); 3689 } 3690 3691 /** 3692 * iavf_shutdown - Shutdown the device in preparation for a reboot 3693 * @pdev: pci device structure 3694 **/ 3695 static void iavf_shutdown(struct pci_dev *pdev) 3696 { 3697 struct net_device *netdev = pci_get_drvdata(pdev); 3698 struct iavf_adapter *adapter = netdev_priv(netdev); 3699 3700 netif_device_detach(netdev); 3701 3702 if (netif_running(netdev)) 3703 iavf_close(netdev); 3704 3705 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 3706 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3707 /* Prevent the watchdog from running. */ 3708 adapter->state = __IAVF_REMOVE; 3709 adapter->aq_required = 0; 3710 mutex_unlock(&adapter->crit_lock); 3711 3712 #ifdef CONFIG_PM 3713 pci_save_state(pdev); 3714 3715 #endif 3716 pci_disable_device(pdev); 3717 } 3718 3719 /** 3720 * iavf_probe - Device Initialization Routine 3721 * @pdev: PCI device information struct 3722 * @ent: entry in iavf_pci_tbl 3723 * 3724 * Returns 0 on success, negative on failure 3725 * 3726 * iavf_probe initializes an adapter identified by a pci_dev structure. 3727 * The OS initialization, configuring of the adapter private structure, 3728 * and a hardware reset occur. 3729 **/ 3730 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3731 { 3732 struct net_device *netdev; 3733 struct iavf_adapter *adapter = NULL; 3734 struct iavf_hw *hw = NULL; 3735 int err; 3736 3737 err = pci_enable_device(pdev); 3738 if (err) 3739 return err; 3740 3741 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3742 if (err) { 3743 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3744 if (err) { 3745 dev_err(&pdev->dev, 3746 "DMA configuration failed: 0x%x\n", err); 3747 goto err_dma; 3748 } 3749 } 3750 3751 err = pci_request_regions(pdev, iavf_driver_name); 3752 if (err) { 3753 dev_err(&pdev->dev, 3754 "pci_request_regions failed 0x%x\n", err); 3755 goto err_pci_reg; 3756 } 3757 3758 pci_enable_pcie_error_reporting(pdev); 3759 3760 pci_set_master(pdev); 3761 3762 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3763 IAVF_MAX_REQ_QUEUES); 3764 if (!netdev) { 3765 err = -ENOMEM; 3766 goto err_alloc_etherdev; 3767 } 3768 3769 SET_NETDEV_DEV(netdev, &pdev->dev); 3770 3771 pci_set_drvdata(pdev, netdev); 3772 adapter = netdev_priv(netdev); 3773 3774 adapter->netdev = netdev; 3775 adapter->pdev = pdev; 3776 3777 hw = &adapter->hw; 3778 hw->back = adapter; 3779 3780 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3781 adapter->state = __IAVF_STARTUP; 3782 3783 /* Call save state here because it relies on the adapter struct. */ 3784 pci_save_state(pdev); 3785 3786 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3787 pci_resource_len(pdev, 0)); 3788 if (!hw->hw_addr) { 3789 err = -EIO; 3790 goto err_ioremap; 3791 } 3792 hw->vendor_id = pdev->vendor; 3793 hw->device_id = pdev->device; 3794 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3795 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3796 hw->subsystem_device_id = pdev->subsystem_device; 3797 hw->bus.device = PCI_SLOT(pdev->devfn); 3798 hw->bus.func = PCI_FUNC(pdev->devfn); 3799 hw->bus.bus_id = pdev->bus->number; 3800 3801 /* set up the locks for the AQ, do this only once in probe 3802 * and destroy them only once in remove 3803 */ 3804 mutex_init(&adapter->crit_lock); 3805 mutex_init(&adapter->client_lock); 3806 mutex_init(&adapter->remove_lock); 3807 mutex_init(&hw->aq.asq_mutex); 3808 mutex_init(&hw->aq.arq_mutex); 3809 3810 spin_lock_init(&adapter->mac_vlan_list_lock); 3811 spin_lock_init(&adapter->cloud_filter_list_lock); 3812 spin_lock_init(&adapter->fdir_fltr_lock); 3813 spin_lock_init(&adapter->adv_rss_lock); 3814 3815 INIT_LIST_HEAD(&adapter->mac_filter_list); 3816 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3817 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3818 INIT_LIST_HEAD(&adapter->fdir_list_head); 3819 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 3820 3821 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3822 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3823 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3824 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3825 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3826 queue_delayed_work(iavf_wq, &adapter->init_task, 3827 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3828 3829 /* Setup the wait queue for indicating transition to down status */ 3830 init_waitqueue_head(&adapter->down_waitqueue); 3831 3832 return 0; 3833 3834 err_ioremap: 3835 free_netdev(netdev); 3836 err_alloc_etherdev: 3837 pci_disable_pcie_error_reporting(pdev); 3838 pci_release_regions(pdev); 3839 err_pci_reg: 3840 err_dma: 3841 pci_disable_device(pdev); 3842 return err; 3843 } 3844 3845 /** 3846 * iavf_suspend - Power management suspend routine 3847 * @dev_d: device info pointer 3848 * 3849 * Called when the system (VM) is entering sleep/suspend. 3850 **/ 3851 static int __maybe_unused iavf_suspend(struct device *dev_d) 3852 { 3853 struct net_device *netdev = dev_get_drvdata(dev_d); 3854 struct iavf_adapter *adapter = netdev_priv(netdev); 3855 3856 netif_device_detach(netdev); 3857 3858 while (!mutex_trylock(&adapter->crit_lock)) 3859 usleep_range(500, 1000); 3860 3861 if (netif_running(netdev)) { 3862 rtnl_lock(); 3863 iavf_down(adapter); 3864 rtnl_unlock(); 3865 } 3866 iavf_free_misc_irq(adapter); 3867 iavf_reset_interrupt_capability(adapter); 3868 3869 mutex_unlock(&adapter->crit_lock); 3870 3871 return 0; 3872 } 3873 3874 /** 3875 * iavf_resume - Power management resume routine 3876 * @dev_d: device info pointer 3877 * 3878 * Called when the system (VM) is resumed from sleep/suspend. 3879 **/ 3880 static int __maybe_unused iavf_resume(struct device *dev_d) 3881 { 3882 struct pci_dev *pdev = to_pci_dev(dev_d); 3883 struct net_device *netdev = pci_get_drvdata(pdev); 3884 struct iavf_adapter *adapter = netdev_priv(netdev); 3885 u32 err; 3886 3887 pci_set_master(pdev); 3888 3889 rtnl_lock(); 3890 err = iavf_set_interrupt_capability(adapter); 3891 if (err) { 3892 rtnl_unlock(); 3893 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3894 return err; 3895 } 3896 err = iavf_request_misc_irq(adapter); 3897 rtnl_unlock(); 3898 if (err) { 3899 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3900 return err; 3901 } 3902 3903 queue_work(iavf_wq, &adapter->reset_task); 3904 3905 netif_device_attach(netdev); 3906 3907 return err; 3908 } 3909 3910 /** 3911 * iavf_remove - Device Removal Routine 3912 * @pdev: PCI device information struct 3913 * 3914 * iavf_remove is called by the PCI subsystem to alert the driver 3915 * that it should release a PCI device. The could be caused by a 3916 * Hot-Plug event, or because the driver is going to be removed from 3917 * memory. 3918 **/ 3919 static void iavf_remove(struct pci_dev *pdev) 3920 { 3921 struct net_device *netdev = pci_get_drvdata(pdev); 3922 struct iavf_adapter *adapter = netdev_priv(netdev); 3923 struct iavf_fdir_fltr *fdir, *fdirtmp; 3924 struct iavf_vlan_filter *vlf, *vlftmp; 3925 struct iavf_adv_rss *rss, *rsstmp; 3926 struct iavf_mac_filter *f, *ftmp; 3927 struct iavf_cloud_filter *cf, *cftmp; 3928 struct iavf_hw *hw = &adapter->hw; 3929 int err; 3930 /* Indicate we are in remove and not to run reset_task */ 3931 mutex_lock(&adapter->remove_lock); 3932 cancel_delayed_work_sync(&adapter->init_task); 3933 cancel_work_sync(&adapter->reset_task); 3934 cancel_delayed_work_sync(&adapter->client_task); 3935 if (adapter->netdev_registered) { 3936 unregister_netdev(netdev); 3937 adapter->netdev_registered = false; 3938 } 3939 if (CLIENT_ALLOWED(adapter)) { 3940 err = iavf_lan_del_device(adapter); 3941 if (err) 3942 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3943 err); 3944 } 3945 3946 iavf_request_reset(adapter); 3947 msleep(50); 3948 /* If the FW isn't responding, kick it once, but only once. */ 3949 if (!iavf_asq_done(hw)) { 3950 iavf_request_reset(adapter); 3951 msleep(50); 3952 } 3953 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 3954 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3955 3956 /* Shut down all the garbage mashers on the detention level */ 3957 adapter->state = __IAVF_REMOVE; 3958 adapter->aq_required = 0; 3959 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3960 iavf_free_all_tx_resources(adapter); 3961 iavf_free_all_rx_resources(adapter); 3962 iavf_misc_irq_disable(adapter); 3963 iavf_free_misc_irq(adapter); 3964 iavf_reset_interrupt_capability(adapter); 3965 iavf_free_q_vectors(adapter); 3966 3967 cancel_delayed_work_sync(&adapter->watchdog_task); 3968 3969 cancel_work_sync(&adapter->adminq_task); 3970 3971 iavf_free_rss(adapter); 3972 3973 if (hw->aq.asq.count) 3974 iavf_shutdown_adminq(hw); 3975 3976 /* destroy the locks only once, here */ 3977 mutex_destroy(&hw->aq.arq_mutex); 3978 mutex_destroy(&hw->aq.asq_mutex); 3979 mutex_destroy(&adapter->client_lock); 3980 mutex_unlock(&adapter->crit_lock); 3981 mutex_destroy(&adapter->crit_lock); 3982 mutex_unlock(&adapter->remove_lock); 3983 mutex_destroy(&adapter->remove_lock); 3984 3985 iounmap(hw->hw_addr); 3986 pci_release_regions(pdev); 3987 iavf_free_queues(adapter); 3988 kfree(adapter->vf_res); 3989 spin_lock_bh(&adapter->mac_vlan_list_lock); 3990 /* If we got removed before an up/down sequence, we've got a filter 3991 * hanging out there that we need to get rid of. 3992 */ 3993 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3994 list_del(&f->list); 3995 kfree(f); 3996 } 3997 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3998 list) { 3999 list_del(&vlf->list); 4000 kfree(vlf); 4001 } 4002 4003 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4004 4005 spin_lock_bh(&adapter->cloud_filter_list_lock); 4006 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 4007 list_del(&cf->list); 4008 kfree(cf); 4009 } 4010 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4011 4012 spin_lock_bh(&adapter->fdir_fltr_lock); 4013 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 4014 list_del(&fdir->list); 4015 kfree(fdir); 4016 } 4017 spin_unlock_bh(&adapter->fdir_fltr_lock); 4018 4019 spin_lock_bh(&adapter->adv_rss_lock); 4020 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 4021 list) { 4022 list_del(&rss->list); 4023 kfree(rss); 4024 } 4025 spin_unlock_bh(&adapter->adv_rss_lock); 4026 4027 free_netdev(netdev); 4028 4029 pci_disable_pcie_error_reporting(pdev); 4030 4031 pci_disable_device(pdev); 4032 } 4033 4034 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 4035 4036 static struct pci_driver iavf_driver = { 4037 .name = iavf_driver_name, 4038 .id_table = iavf_pci_tbl, 4039 .probe = iavf_probe, 4040 .remove = iavf_remove, 4041 .driver.pm = &iavf_pm_ops, 4042 .shutdown = iavf_shutdown, 4043 }; 4044 4045 /** 4046 * iavf_init_module - Driver Registration Routine 4047 * 4048 * iavf_init_module is the first routine called when the driver is 4049 * loaded. All it does is register with the PCI subsystem. 4050 **/ 4051 static int __init iavf_init_module(void) 4052 { 4053 int ret; 4054 4055 pr_info("iavf: %s\n", iavf_driver_string); 4056 4057 pr_info("%s\n", iavf_copyright); 4058 4059 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4060 iavf_driver_name); 4061 if (!iavf_wq) { 4062 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4063 return -ENOMEM; 4064 } 4065 ret = pci_register_driver(&iavf_driver); 4066 return ret; 4067 } 4068 4069 module_init(iavf_init_module); 4070 4071 /** 4072 * iavf_exit_module - Driver Exit Cleanup Routine 4073 * 4074 * iavf_exit_module is called just before the driver is removed 4075 * from memory. 4076 **/ 4077 static void __exit iavf_exit_module(void) 4078 { 4079 pci_unregister_driver(&iavf_driver); 4080 destroy_workqueue(iavf_wq); 4081 } 4082 4083 module_exit(iavf_exit_module); 4084 4085 /* iavf_main.c */ 4086