1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 if (proto == cpu_to_be16(ETH_P_8021Q)) 910 set_bit(vid, adapter->vsi.active_cvlans); 911 else 912 set_bit(vid, adapter->vsi.active_svlans); 913 914 return 0; 915 } 916 917 /** 918 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 919 * @netdev: network device struct 920 * @proto: unused protocol data 921 * @vid: VLAN tag 922 **/ 923 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 924 __always_unused __be16 proto, u16 vid) 925 { 926 struct iavf_adapter *adapter = netdev_priv(netdev); 927 928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 929 if (proto == cpu_to_be16(ETH_P_8021Q)) 930 clear_bit(vid, adapter->vsi.active_cvlans); 931 else 932 clear_bit(vid, adapter->vsi.active_svlans); 933 934 return 0; 935 } 936 937 /** 938 * iavf_find_filter - Search filter list for specific mac filter 939 * @adapter: board private structure 940 * @macaddr: the MAC address 941 * 942 * Returns ptr to the filter object or NULL. Must be called while holding the 943 * mac_vlan_list_lock. 944 **/ 945 static struct 946 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 947 const u8 *macaddr) 948 { 949 struct iavf_mac_filter *f; 950 951 if (!macaddr) 952 return NULL; 953 954 list_for_each_entry(f, &adapter->mac_filter_list, list) { 955 if (ether_addr_equal(macaddr, f->macaddr)) 956 return f; 957 } 958 return NULL; 959 } 960 961 /** 962 * iavf_add_filter - Add a mac filter to the filter list 963 * @adapter: board private structure 964 * @macaddr: the MAC address 965 * 966 * Returns ptr to the filter object or NULL when no memory available. 967 **/ 968 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 969 const u8 *macaddr) 970 { 971 struct iavf_mac_filter *f; 972 973 if (!macaddr) 974 return NULL; 975 976 f = iavf_find_filter(adapter, macaddr); 977 if (!f) { 978 f = kzalloc(sizeof(*f), GFP_ATOMIC); 979 if (!f) 980 return f; 981 982 ether_addr_copy(f->macaddr, macaddr); 983 984 list_add_tail(&f->list, &adapter->mac_filter_list); 985 f->add = true; 986 f->is_new_mac = true; 987 f->is_primary = false; 988 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 989 } else { 990 f->remove = false; 991 } 992 993 return f; 994 } 995 996 /** 997 * iavf_set_mac - NDO callback to set port mac address 998 * @netdev: network interface device structure 999 * @p: pointer to an address structure 1000 * 1001 * Returns 0 on success, negative on failure 1002 **/ 1003 static int iavf_set_mac(struct net_device *netdev, void *p) 1004 { 1005 struct iavf_adapter *adapter = netdev_priv(netdev); 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 struct sockaddr *addr = p; 1009 1010 if (!is_valid_ether_addr(addr->sa_data)) 1011 return -EADDRNOTAVAIL; 1012 1013 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1014 return 0; 1015 1016 spin_lock_bh(&adapter->mac_vlan_list_lock); 1017 1018 f = iavf_find_filter(adapter, hw->mac.addr); 1019 if (f) { 1020 f->remove = true; 1021 f->is_primary = true; 1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1023 } 1024 1025 f = iavf_add_filter(adapter, addr->sa_data); 1026 if (f) { 1027 f->is_primary = true; 1028 ether_addr_copy(hw->mac.addr, addr->sa_data); 1029 } 1030 1031 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1032 1033 /* schedule the watchdog task to immediately process the request */ 1034 if (f) 1035 queue_work(iavf_wq, &adapter->watchdog_task.work); 1036 1037 return (f == NULL) ? -ENOMEM : 0; 1038 } 1039 1040 /** 1041 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1042 * @netdev: the netdevice 1043 * @addr: address to add 1044 * 1045 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1046 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1047 */ 1048 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1049 { 1050 struct iavf_adapter *adapter = netdev_priv(netdev); 1051 1052 if (iavf_add_filter(adapter, addr)) 1053 return 0; 1054 else 1055 return -ENOMEM; 1056 } 1057 1058 /** 1059 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1060 * @netdev: the netdevice 1061 * @addr: address to add 1062 * 1063 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1064 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1065 */ 1066 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1067 { 1068 struct iavf_adapter *adapter = netdev_priv(netdev); 1069 struct iavf_mac_filter *f; 1070 1071 /* Under some circumstances, we might receive a request to delete 1072 * our own device address from our uc list. Because we store the 1073 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1074 * such requests and not delete our device address from this list. 1075 */ 1076 if (ether_addr_equal(addr, netdev->dev_addr)) 1077 return 0; 1078 1079 f = iavf_find_filter(adapter, addr); 1080 if (f) { 1081 f->remove = true; 1082 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1083 } 1084 return 0; 1085 } 1086 1087 /** 1088 * iavf_set_rx_mode - NDO callback to set the netdev filters 1089 * @netdev: network interface device structure 1090 **/ 1091 static void iavf_set_rx_mode(struct net_device *netdev) 1092 { 1093 struct iavf_adapter *adapter = netdev_priv(netdev); 1094 1095 spin_lock_bh(&adapter->mac_vlan_list_lock); 1096 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1097 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1098 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1099 1100 if (netdev->flags & IFF_PROMISC && 1101 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1102 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1103 else if (!(netdev->flags & IFF_PROMISC) && 1104 adapter->flags & IAVF_FLAG_PROMISC_ON) 1105 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1106 1107 if (netdev->flags & IFF_ALLMULTI && 1108 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1109 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1110 else if (!(netdev->flags & IFF_ALLMULTI) && 1111 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1112 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1113 } 1114 1115 /** 1116 * iavf_napi_enable_all - enable NAPI on all queue vectors 1117 * @adapter: board private structure 1118 **/ 1119 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1120 { 1121 int q_idx; 1122 struct iavf_q_vector *q_vector; 1123 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1124 1125 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1126 struct napi_struct *napi; 1127 1128 q_vector = &adapter->q_vectors[q_idx]; 1129 napi = &q_vector->napi; 1130 napi_enable(napi); 1131 } 1132 } 1133 1134 /** 1135 * iavf_napi_disable_all - disable NAPI on all queue vectors 1136 * @adapter: board private structure 1137 **/ 1138 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1139 { 1140 int q_idx; 1141 struct iavf_q_vector *q_vector; 1142 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1143 1144 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1145 q_vector = &adapter->q_vectors[q_idx]; 1146 napi_disable(&q_vector->napi); 1147 } 1148 } 1149 1150 /** 1151 * iavf_configure - set up transmit and receive data structures 1152 * @adapter: board private structure 1153 **/ 1154 static void iavf_configure(struct iavf_adapter *adapter) 1155 { 1156 struct net_device *netdev = adapter->netdev; 1157 int i; 1158 1159 iavf_set_rx_mode(netdev); 1160 1161 iavf_configure_tx(adapter); 1162 iavf_configure_rx(adapter); 1163 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1164 1165 for (i = 0; i < adapter->num_active_queues; i++) { 1166 struct iavf_ring *ring = &adapter->rx_rings[i]; 1167 1168 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1169 } 1170 } 1171 1172 /** 1173 * iavf_up_complete - Finish the last steps of bringing up a connection 1174 * @adapter: board private structure 1175 * 1176 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1177 **/ 1178 static void iavf_up_complete(struct iavf_adapter *adapter) 1179 { 1180 iavf_change_state(adapter, __IAVF_RUNNING); 1181 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1182 1183 iavf_napi_enable_all(adapter); 1184 1185 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1186 if (CLIENT_ENABLED(adapter)) 1187 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1188 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1189 } 1190 1191 /** 1192 * iavf_down - Shutdown the connection processing 1193 * @adapter: board private structure 1194 * 1195 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1196 **/ 1197 void iavf_down(struct iavf_adapter *adapter) 1198 { 1199 struct net_device *netdev = adapter->netdev; 1200 struct iavf_vlan_filter *vlf; 1201 struct iavf_cloud_filter *cf; 1202 struct iavf_fdir_fltr *fdir; 1203 struct iavf_mac_filter *f; 1204 struct iavf_adv_rss *rss; 1205 1206 if (adapter->state <= __IAVF_DOWN_PENDING) 1207 return; 1208 1209 netif_carrier_off(netdev); 1210 netif_tx_disable(netdev); 1211 adapter->link_up = false; 1212 iavf_napi_disable_all(adapter); 1213 iavf_irq_disable(adapter); 1214 1215 spin_lock_bh(&adapter->mac_vlan_list_lock); 1216 1217 /* clear the sync flag on all filters */ 1218 __dev_uc_unsync(adapter->netdev, NULL); 1219 __dev_mc_unsync(adapter->netdev, NULL); 1220 1221 /* remove all MAC filters */ 1222 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1223 f->remove = true; 1224 } 1225 1226 /* remove all VLAN filters */ 1227 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1228 vlf->remove = true; 1229 } 1230 1231 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1232 1233 /* remove all cloud filters */ 1234 spin_lock_bh(&adapter->cloud_filter_list_lock); 1235 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1236 cf->del = true; 1237 } 1238 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1239 1240 /* remove all Flow Director filters */ 1241 spin_lock_bh(&adapter->fdir_fltr_lock); 1242 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1243 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1244 } 1245 spin_unlock_bh(&adapter->fdir_fltr_lock); 1246 1247 /* remove all advance RSS configuration */ 1248 spin_lock_bh(&adapter->adv_rss_lock); 1249 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1250 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1251 spin_unlock_bh(&adapter->adv_rss_lock); 1252 1253 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1254 /* cancel any current operation */ 1255 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1256 /* Schedule operations to close down the HW. Don't wait 1257 * here for this to complete. The watchdog is still running 1258 * and it will take care of this. 1259 */ 1260 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1261 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1262 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1263 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1264 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1265 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1266 } 1267 1268 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1269 } 1270 1271 /** 1272 * iavf_acquire_msix_vectors - Setup the MSIX capability 1273 * @adapter: board private structure 1274 * @vectors: number of vectors to request 1275 * 1276 * Work with the OS to set up the MSIX vectors needed. 1277 * 1278 * Returns 0 on success, negative on failure 1279 **/ 1280 static int 1281 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1282 { 1283 int err, vector_threshold; 1284 1285 /* We'll want at least 3 (vector_threshold): 1286 * 0) Other (Admin Queue and link, mostly) 1287 * 1) TxQ[0] Cleanup 1288 * 2) RxQ[0] Cleanup 1289 */ 1290 vector_threshold = MIN_MSIX_COUNT; 1291 1292 /* The more we get, the more we will assign to Tx/Rx Cleanup 1293 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1294 * Right now, we simply care about how many we'll get; we'll 1295 * set them up later while requesting irq's. 1296 */ 1297 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1298 vector_threshold, vectors); 1299 if (err < 0) { 1300 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1301 kfree(adapter->msix_entries); 1302 adapter->msix_entries = NULL; 1303 return err; 1304 } 1305 1306 /* Adjust for only the vectors we'll use, which is minimum 1307 * of max_msix_q_vectors + NONQ_VECS, or the number of 1308 * vectors we were allocated. 1309 */ 1310 adapter->num_msix_vectors = err; 1311 return 0; 1312 } 1313 1314 /** 1315 * iavf_free_queues - Free memory for all rings 1316 * @adapter: board private structure to initialize 1317 * 1318 * Free all of the memory associated with queue pairs. 1319 **/ 1320 static void iavf_free_queues(struct iavf_adapter *adapter) 1321 { 1322 if (!adapter->vsi_res) 1323 return; 1324 adapter->num_active_queues = 0; 1325 kfree(adapter->tx_rings); 1326 adapter->tx_rings = NULL; 1327 kfree(adapter->rx_rings); 1328 adapter->rx_rings = NULL; 1329 } 1330 1331 /** 1332 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1333 * @adapter: board private structure 1334 * 1335 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1336 * stripped in certain descriptor fields. Instead of checking the offload 1337 * capability bits in the hot path, cache the location the ring specific 1338 * flags. 1339 */ 1340 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1341 { 1342 int i; 1343 1344 for (i = 0; i < adapter->num_active_queues; i++) { 1345 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1346 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1347 1348 /* prevent multiple L2TAG bits being set after VFR */ 1349 tx_ring->flags &= 1350 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1351 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1352 rx_ring->flags &= 1353 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1354 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1355 1356 if (VLAN_ALLOWED(adapter)) { 1357 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1358 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1359 } else if (VLAN_V2_ALLOWED(adapter)) { 1360 struct virtchnl_vlan_supported_caps *stripping_support; 1361 struct virtchnl_vlan_supported_caps *insertion_support; 1362 1363 stripping_support = 1364 &adapter->vlan_v2_caps.offloads.stripping_support; 1365 insertion_support = 1366 &adapter->vlan_v2_caps.offloads.insertion_support; 1367 1368 if (stripping_support->outer) { 1369 if (stripping_support->outer & 1370 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1371 rx_ring->flags |= 1372 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1373 else if (stripping_support->outer & 1374 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1375 rx_ring->flags |= 1376 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1377 } else if (stripping_support->inner) { 1378 if (stripping_support->inner & 1379 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1380 rx_ring->flags |= 1381 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1382 else if (stripping_support->inner & 1383 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1384 rx_ring->flags |= 1385 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1386 } 1387 1388 if (insertion_support->outer) { 1389 if (insertion_support->outer & 1390 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1391 tx_ring->flags |= 1392 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1393 else if (insertion_support->outer & 1394 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1395 tx_ring->flags |= 1396 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1397 } else if (insertion_support->inner) { 1398 if (insertion_support->inner & 1399 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1400 tx_ring->flags |= 1401 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1402 else if (insertion_support->inner & 1403 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1404 tx_ring->flags |= 1405 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1406 } 1407 } 1408 } 1409 } 1410 1411 /** 1412 * iavf_alloc_queues - Allocate memory for all rings 1413 * @adapter: board private structure to initialize 1414 * 1415 * We allocate one ring per queue at run-time since we don't know the 1416 * number of queues at compile-time. The polling_netdev array is 1417 * intended for Multiqueue, but should work fine with a single queue. 1418 **/ 1419 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1420 { 1421 int i, num_active_queues; 1422 1423 /* If we're in reset reallocating queues we don't actually know yet for 1424 * certain the PF gave us the number of queues we asked for but we'll 1425 * assume it did. Once basic reset is finished we'll confirm once we 1426 * start negotiating config with PF. 1427 */ 1428 if (adapter->num_req_queues) 1429 num_active_queues = adapter->num_req_queues; 1430 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1431 adapter->num_tc) 1432 num_active_queues = adapter->ch_config.total_qps; 1433 else 1434 num_active_queues = min_t(int, 1435 adapter->vsi_res->num_queue_pairs, 1436 (int)(num_online_cpus())); 1437 1438 1439 adapter->tx_rings = kcalloc(num_active_queues, 1440 sizeof(struct iavf_ring), GFP_KERNEL); 1441 if (!adapter->tx_rings) 1442 goto err_out; 1443 adapter->rx_rings = kcalloc(num_active_queues, 1444 sizeof(struct iavf_ring), GFP_KERNEL); 1445 if (!adapter->rx_rings) 1446 goto err_out; 1447 1448 for (i = 0; i < num_active_queues; i++) { 1449 struct iavf_ring *tx_ring; 1450 struct iavf_ring *rx_ring; 1451 1452 tx_ring = &adapter->tx_rings[i]; 1453 1454 tx_ring->queue_index = i; 1455 tx_ring->netdev = adapter->netdev; 1456 tx_ring->dev = &adapter->pdev->dev; 1457 tx_ring->count = adapter->tx_desc_count; 1458 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1459 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1460 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1461 1462 rx_ring = &adapter->rx_rings[i]; 1463 rx_ring->queue_index = i; 1464 rx_ring->netdev = adapter->netdev; 1465 rx_ring->dev = &adapter->pdev->dev; 1466 rx_ring->count = adapter->rx_desc_count; 1467 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1468 } 1469 1470 adapter->num_active_queues = num_active_queues; 1471 1472 iavf_set_queue_vlan_tag_loc(adapter); 1473 1474 return 0; 1475 1476 err_out: 1477 iavf_free_queues(adapter); 1478 return -ENOMEM; 1479 } 1480 1481 /** 1482 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1483 * @adapter: board private structure to initialize 1484 * 1485 * Attempt to configure the interrupts using the best available 1486 * capabilities of the hardware and the kernel. 1487 **/ 1488 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1489 { 1490 int vector, v_budget; 1491 int pairs = 0; 1492 int err = 0; 1493 1494 if (!adapter->vsi_res) { 1495 err = -EIO; 1496 goto out; 1497 } 1498 pairs = adapter->num_active_queues; 1499 1500 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1501 * us much good if we have more vectors than CPUs. However, we already 1502 * limit the total number of queues by the number of CPUs so we do not 1503 * need any further limiting here. 1504 */ 1505 v_budget = min_t(int, pairs + NONQ_VECS, 1506 (int)adapter->vf_res->max_vectors); 1507 1508 adapter->msix_entries = kcalloc(v_budget, 1509 sizeof(struct msix_entry), GFP_KERNEL); 1510 if (!adapter->msix_entries) { 1511 err = -ENOMEM; 1512 goto out; 1513 } 1514 1515 for (vector = 0; vector < v_budget; vector++) 1516 adapter->msix_entries[vector].entry = vector; 1517 1518 err = iavf_acquire_msix_vectors(adapter, v_budget); 1519 1520 out: 1521 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1522 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1523 return err; 1524 } 1525 1526 /** 1527 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1528 * @adapter: board private structure 1529 * 1530 * Return 0 on success, negative on failure 1531 **/ 1532 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1533 { 1534 struct iavf_aqc_get_set_rss_key_data *rss_key = 1535 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1536 struct iavf_hw *hw = &adapter->hw; 1537 enum iavf_status status; 1538 1539 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1540 /* bail because we already have a command pending */ 1541 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1542 adapter->current_op); 1543 return -EBUSY; 1544 } 1545 1546 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1547 if (status) { 1548 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1549 iavf_stat_str(hw, status), 1550 iavf_aq_str(hw, hw->aq.asq_last_status)); 1551 return iavf_status_to_errno(status); 1552 1553 } 1554 1555 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1556 adapter->rss_lut, adapter->rss_lut_size); 1557 if (status) { 1558 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1559 iavf_stat_str(hw, status), 1560 iavf_aq_str(hw, hw->aq.asq_last_status)); 1561 return iavf_status_to_errno(status); 1562 } 1563 1564 return 0; 1565 1566 } 1567 1568 /** 1569 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1570 * @adapter: board private structure 1571 * 1572 * Returns 0 on success, negative on failure 1573 **/ 1574 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1575 { 1576 struct iavf_hw *hw = &adapter->hw; 1577 u32 *dw; 1578 u16 i; 1579 1580 dw = (u32 *)adapter->rss_key; 1581 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1582 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1583 1584 dw = (u32 *)adapter->rss_lut; 1585 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1586 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1587 1588 iavf_flush(hw); 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * iavf_config_rss - Configure RSS keys and lut 1595 * @adapter: board private structure 1596 * 1597 * Returns 0 on success, negative on failure 1598 **/ 1599 int iavf_config_rss(struct iavf_adapter *adapter) 1600 { 1601 1602 if (RSS_PF(adapter)) { 1603 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1604 IAVF_FLAG_AQ_SET_RSS_KEY; 1605 return 0; 1606 } else if (RSS_AQ(adapter)) { 1607 return iavf_config_rss_aq(adapter); 1608 } else { 1609 return iavf_config_rss_reg(adapter); 1610 } 1611 } 1612 1613 /** 1614 * iavf_fill_rss_lut - Fill the lut with default values 1615 * @adapter: board private structure 1616 **/ 1617 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1618 { 1619 u16 i; 1620 1621 for (i = 0; i < adapter->rss_lut_size; i++) 1622 adapter->rss_lut[i] = i % adapter->num_active_queues; 1623 } 1624 1625 /** 1626 * iavf_init_rss - Prepare for RSS 1627 * @adapter: board private structure 1628 * 1629 * Return 0 on success, negative on failure 1630 **/ 1631 static int iavf_init_rss(struct iavf_adapter *adapter) 1632 { 1633 struct iavf_hw *hw = &adapter->hw; 1634 1635 if (!RSS_PF(adapter)) { 1636 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1637 if (adapter->vf_res->vf_cap_flags & 1638 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1639 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1640 else 1641 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1642 1643 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1644 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1645 } 1646 1647 iavf_fill_rss_lut(adapter); 1648 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1649 1650 return iavf_config_rss(adapter); 1651 } 1652 1653 /** 1654 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1655 * @adapter: board private structure to initialize 1656 * 1657 * We allocate one q_vector per queue interrupt. If allocation fails we 1658 * return -ENOMEM. 1659 **/ 1660 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1661 { 1662 int q_idx = 0, num_q_vectors; 1663 struct iavf_q_vector *q_vector; 1664 1665 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1666 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1667 GFP_KERNEL); 1668 if (!adapter->q_vectors) 1669 return -ENOMEM; 1670 1671 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1672 q_vector = &adapter->q_vectors[q_idx]; 1673 q_vector->adapter = adapter; 1674 q_vector->vsi = &adapter->vsi; 1675 q_vector->v_idx = q_idx; 1676 q_vector->reg_idx = q_idx; 1677 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1678 netif_napi_add(adapter->netdev, &q_vector->napi, 1679 iavf_napi_poll, NAPI_POLL_WEIGHT); 1680 } 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1687 * @adapter: board private structure to initialize 1688 * 1689 * This function frees the memory allocated to the q_vectors. In addition if 1690 * NAPI is enabled it will delete any references to the NAPI struct prior 1691 * to freeing the q_vector. 1692 **/ 1693 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1694 { 1695 int q_idx, num_q_vectors; 1696 int napi_vectors; 1697 1698 if (!adapter->q_vectors) 1699 return; 1700 1701 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1702 napi_vectors = adapter->num_active_queues; 1703 1704 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1705 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1706 1707 if (q_idx < napi_vectors) 1708 netif_napi_del(&q_vector->napi); 1709 } 1710 kfree(adapter->q_vectors); 1711 adapter->q_vectors = NULL; 1712 } 1713 1714 /** 1715 * iavf_reset_interrupt_capability - Reset MSIX setup 1716 * @adapter: board private structure 1717 * 1718 **/ 1719 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1720 { 1721 if (!adapter->msix_entries) 1722 return; 1723 1724 pci_disable_msix(adapter->pdev); 1725 kfree(adapter->msix_entries); 1726 adapter->msix_entries = NULL; 1727 } 1728 1729 /** 1730 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1731 * @adapter: board private structure to initialize 1732 * 1733 **/ 1734 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1735 { 1736 int err; 1737 1738 err = iavf_alloc_queues(adapter); 1739 if (err) { 1740 dev_err(&adapter->pdev->dev, 1741 "Unable to allocate memory for queues\n"); 1742 goto err_alloc_queues; 1743 } 1744 1745 rtnl_lock(); 1746 err = iavf_set_interrupt_capability(adapter); 1747 rtnl_unlock(); 1748 if (err) { 1749 dev_err(&adapter->pdev->dev, 1750 "Unable to setup interrupt capabilities\n"); 1751 goto err_set_interrupt; 1752 } 1753 1754 err = iavf_alloc_q_vectors(adapter); 1755 if (err) { 1756 dev_err(&adapter->pdev->dev, 1757 "Unable to allocate memory for queue vectors\n"); 1758 goto err_alloc_q_vectors; 1759 } 1760 1761 /* If we've made it so far while ADq flag being ON, then we haven't 1762 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1763 * resources have been allocated in the reset path. 1764 * Now we can truly claim that ADq is enabled. 1765 */ 1766 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1767 adapter->num_tc) 1768 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1769 adapter->num_tc); 1770 1771 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1772 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1773 adapter->num_active_queues); 1774 1775 return 0; 1776 err_alloc_q_vectors: 1777 iavf_reset_interrupt_capability(adapter); 1778 err_set_interrupt: 1779 iavf_free_queues(adapter); 1780 err_alloc_queues: 1781 return err; 1782 } 1783 1784 /** 1785 * iavf_free_rss - Free memory used by RSS structs 1786 * @adapter: board private structure 1787 **/ 1788 static void iavf_free_rss(struct iavf_adapter *adapter) 1789 { 1790 kfree(adapter->rss_key); 1791 adapter->rss_key = NULL; 1792 1793 kfree(adapter->rss_lut); 1794 adapter->rss_lut = NULL; 1795 } 1796 1797 /** 1798 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1799 * @adapter: board private structure 1800 * 1801 * Returns 0 on success, negative on failure 1802 **/ 1803 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1804 { 1805 struct net_device *netdev = adapter->netdev; 1806 int err; 1807 1808 if (netif_running(netdev)) 1809 iavf_free_traffic_irqs(adapter); 1810 iavf_free_misc_irq(adapter); 1811 iavf_reset_interrupt_capability(adapter); 1812 iavf_free_q_vectors(adapter); 1813 iavf_free_queues(adapter); 1814 1815 err = iavf_init_interrupt_scheme(adapter); 1816 if (err) 1817 goto err; 1818 1819 netif_tx_stop_all_queues(netdev); 1820 1821 err = iavf_request_misc_irq(adapter); 1822 if (err) 1823 goto err; 1824 1825 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1826 1827 iavf_map_rings_to_vectors(adapter); 1828 err: 1829 return err; 1830 } 1831 1832 /** 1833 * iavf_process_aq_command - process aq_required flags 1834 * and sends aq command 1835 * @adapter: pointer to iavf adapter structure 1836 * 1837 * Returns 0 on success 1838 * Returns error code if no command was sent 1839 * or error code if the command failed. 1840 **/ 1841 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1842 { 1843 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1844 return iavf_send_vf_config_msg(adapter); 1845 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1846 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1847 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1848 iavf_disable_queues(adapter); 1849 return 0; 1850 } 1851 1852 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1853 iavf_map_queues(adapter); 1854 return 0; 1855 } 1856 1857 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1858 iavf_add_ether_addrs(adapter); 1859 return 0; 1860 } 1861 1862 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1863 iavf_add_vlans(adapter); 1864 return 0; 1865 } 1866 1867 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1868 iavf_del_ether_addrs(adapter); 1869 return 0; 1870 } 1871 1872 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1873 iavf_del_vlans(adapter); 1874 return 0; 1875 } 1876 1877 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1878 iavf_enable_vlan_stripping(adapter); 1879 return 0; 1880 } 1881 1882 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1883 iavf_disable_vlan_stripping(adapter); 1884 return 0; 1885 } 1886 1887 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1888 iavf_configure_queues(adapter); 1889 return 0; 1890 } 1891 1892 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1893 iavf_enable_queues(adapter); 1894 return 0; 1895 } 1896 1897 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1898 /* This message goes straight to the firmware, not the 1899 * PF, so we don't have to set current_op as we will 1900 * not get a response through the ARQ. 1901 */ 1902 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1903 return 0; 1904 } 1905 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1906 iavf_get_hena(adapter); 1907 return 0; 1908 } 1909 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1910 iavf_set_hena(adapter); 1911 return 0; 1912 } 1913 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1914 iavf_set_rss_key(adapter); 1915 return 0; 1916 } 1917 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1918 iavf_set_rss_lut(adapter); 1919 return 0; 1920 } 1921 1922 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1923 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1924 FLAG_VF_MULTICAST_PROMISC); 1925 return 0; 1926 } 1927 1928 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1929 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1930 return 0; 1931 } 1932 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 1933 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1934 iavf_set_promiscuous(adapter, 0); 1935 return 0; 1936 } 1937 1938 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1939 iavf_enable_channels(adapter); 1940 return 0; 1941 } 1942 1943 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1944 iavf_disable_channels(adapter); 1945 return 0; 1946 } 1947 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1948 iavf_add_cloud_filter(adapter); 1949 return 0; 1950 } 1951 1952 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1953 iavf_del_cloud_filter(adapter); 1954 return 0; 1955 } 1956 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1957 iavf_del_cloud_filter(adapter); 1958 return 0; 1959 } 1960 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1961 iavf_add_cloud_filter(adapter); 1962 return 0; 1963 } 1964 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1965 iavf_add_fdir_filter(adapter); 1966 return IAVF_SUCCESS; 1967 } 1968 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1969 iavf_del_fdir_filter(adapter); 1970 return IAVF_SUCCESS; 1971 } 1972 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1973 iavf_add_adv_rss_cfg(adapter); 1974 return 0; 1975 } 1976 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1977 iavf_del_adv_rss_cfg(adapter); 1978 return 0; 1979 } 1980 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 1981 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1982 return 0; 1983 } 1984 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 1985 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1986 return 0; 1987 } 1988 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 1989 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1990 return 0; 1991 } 1992 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 1993 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1994 return 0; 1995 } 1996 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 1997 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 1998 return 0; 1999 } 2000 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2001 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2002 return 0; 2003 } 2004 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2005 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2006 return 0; 2007 } 2008 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2009 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2010 return 0; 2011 } 2012 2013 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2014 iavf_request_stats(adapter); 2015 return 0; 2016 } 2017 2018 return -EAGAIN; 2019 } 2020 2021 /** 2022 * iavf_set_vlan_offload_features - set VLAN offload configuration 2023 * @adapter: board private structure 2024 * @prev_features: previous features used for comparison 2025 * @features: updated features used for configuration 2026 * 2027 * Set the aq_required bit(s) based on the requested features passed in to 2028 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2029 * the watchdog if any changes are requested to expedite the request via 2030 * virtchnl. 2031 **/ 2032 void 2033 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2034 netdev_features_t prev_features, 2035 netdev_features_t features) 2036 { 2037 bool enable_stripping = true, enable_insertion = true; 2038 u16 vlan_ethertype = 0; 2039 u64 aq_required = 0; 2040 2041 /* keep cases separate because one ethertype for offloads can be 2042 * disabled at the same time as another is disabled, so check for an 2043 * enabled ethertype first, then check for disabled. Default to 2044 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2045 * stripping. 2046 */ 2047 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2048 vlan_ethertype = ETH_P_8021AD; 2049 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2050 vlan_ethertype = ETH_P_8021Q; 2051 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2052 vlan_ethertype = ETH_P_8021AD; 2053 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2054 vlan_ethertype = ETH_P_8021Q; 2055 else 2056 vlan_ethertype = ETH_P_8021Q; 2057 2058 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2059 enable_stripping = false; 2060 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2061 enable_insertion = false; 2062 2063 if (VLAN_ALLOWED(adapter)) { 2064 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2065 * stripping via virtchnl. VLAN insertion can be toggled on the 2066 * netdev, but it doesn't require a virtchnl message 2067 */ 2068 if (enable_stripping) 2069 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2070 else 2071 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2072 2073 } else if (VLAN_V2_ALLOWED(adapter)) { 2074 switch (vlan_ethertype) { 2075 case ETH_P_8021Q: 2076 if (enable_stripping) 2077 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2078 else 2079 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2080 2081 if (enable_insertion) 2082 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2083 else 2084 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2085 break; 2086 case ETH_P_8021AD: 2087 if (enable_stripping) 2088 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2089 else 2090 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2091 2092 if (enable_insertion) 2093 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2094 else 2095 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2096 break; 2097 } 2098 } 2099 2100 if (aq_required) { 2101 adapter->aq_required |= aq_required; 2102 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2103 } 2104 } 2105 2106 /** 2107 * iavf_startup - first step of driver startup 2108 * @adapter: board private structure 2109 * 2110 * Function process __IAVF_STARTUP driver state. 2111 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2112 * when fails the state is changed to __IAVF_INIT_FAILED 2113 **/ 2114 static void iavf_startup(struct iavf_adapter *adapter) 2115 { 2116 struct pci_dev *pdev = adapter->pdev; 2117 struct iavf_hw *hw = &adapter->hw; 2118 enum iavf_status status; 2119 int ret; 2120 2121 WARN_ON(adapter->state != __IAVF_STARTUP); 2122 2123 /* driver loaded, probe complete */ 2124 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2125 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2126 status = iavf_set_mac_type(hw); 2127 if (status) { 2128 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2129 goto err; 2130 } 2131 2132 ret = iavf_check_reset_complete(hw); 2133 if (ret) { 2134 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2135 ret); 2136 goto err; 2137 } 2138 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2139 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2140 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2141 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2142 2143 status = iavf_init_adminq(hw); 2144 if (status) { 2145 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2146 status); 2147 goto err; 2148 } 2149 ret = iavf_send_api_ver(adapter); 2150 if (ret) { 2151 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2152 iavf_shutdown_adminq(hw); 2153 goto err; 2154 } 2155 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2156 return; 2157 err: 2158 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2159 } 2160 2161 /** 2162 * iavf_init_version_check - second step of driver startup 2163 * @adapter: board private structure 2164 * 2165 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2166 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2167 * when fails the state is changed to __IAVF_INIT_FAILED 2168 **/ 2169 static void iavf_init_version_check(struct iavf_adapter *adapter) 2170 { 2171 struct pci_dev *pdev = adapter->pdev; 2172 struct iavf_hw *hw = &adapter->hw; 2173 int err = -EAGAIN; 2174 2175 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2176 2177 if (!iavf_asq_done(hw)) { 2178 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2179 iavf_shutdown_adminq(hw); 2180 iavf_change_state(adapter, __IAVF_STARTUP); 2181 goto err; 2182 } 2183 2184 /* aq msg sent, awaiting reply */ 2185 err = iavf_verify_api_ver(adapter); 2186 if (err) { 2187 if (err == -EALREADY) 2188 err = iavf_send_api_ver(adapter); 2189 else 2190 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2191 adapter->pf_version.major, 2192 adapter->pf_version.minor, 2193 VIRTCHNL_VERSION_MAJOR, 2194 VIRTCHNL_VERSION_MINOR); 2195 goto err; 2196 } 2197 err = iavf_send_vf_config_msg(adapter); 2198 if (err) { 2199 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2200 err); 2201 goto err; 2202 } 2203 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2204 return; 2205 err: 2206 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2207 } 2208 2209 /** 2210 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2211 * @adapter: board private structure 2212 */ 2213 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2214 { 2215 int i, num_req_queues = adapter->num_req_queues; 2216 struct iavf_vsi *vsi = &adapter->vsi; 2217 2218 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2219 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2220 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2221 } 2222 if (!adapter->vsi_res) { 2223 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2224 return -ENODEV; 2225 } 2226 2227 if (num_req_queues && 2228 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2229 /* Problem. The PF gave us fewer queues than what we had 2230 * negotiated in our request. Need a reset to see if we can't 2231 * get back to a working state. 2232 */ 2233 dev_err(&adapter->pdev->dev, 2234 "Requested %d queues, but PF only gave us %d.\n", 2235 num_req_queues, 2236 adapter->vsi_res->num_queue_pairs); 2237 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2238 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2239 iavf_schedule_reset(adapter); 2240 2241 return -EAGAIN; 2242 } 2243 adapter->num_req_queues = 0; 2244 adapter->vsi.id = adapter->vsi_res->vsi_id; 2245 2246 adapter->vsi.back = adapter; 2247 adapter->vsi.base_vector = 1; 2248 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 2249 vsi->netdev = adapter->netdev; 2250 vsi->qs_handle = adapter->vsi_res->qset_handle; 2251 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2252 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2253 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2254 } else { 2255 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2256 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2257 } 2258 2259 return 0; 2260 } 2261 2262 /** 2263 * iavf_init_get_resources - third step of driver startup 2264 * @adapter: board private structure 2265 * 2266 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2267 * finishes driver initialization procedure. 2268 * When success the state is changed to __IAVF_DOWN 2269 * when fails the state is changed to __IAVF_INIT_FAILED 2270 **/ 2271 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2272 { 2273 struct pci_dev *pdev = adapter->pdev; 2274 struct iavf_hw *hw = &adapter->hw; 2275 int err; 2276 2277 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2278 /* aq msg sent, awaiting reply */ 2279 if (!adapter->vf_res) { 2280 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2281 GFP_KERNEL); 2282 if (!adapter->vf_res) { 2283 err = -ENOMEM; 2284 goto err; 2285 } 2286 } 2287 err = iavf_get_vf_config(adapter); 2288 if (err == -EALREADY) { 2289 err = iavf_send_vf_config_msg(adapter); 2290 goto err_alloc; 2291 } else if (err == -EINVAL) { 2292 /* We only get -EINVAL if the device is in a very bad 2293 * state or if we've been disabled for previous bad 2294 * behavior. Either way, we're done now. 2295 */ 2296 iavf_shutdown_adminq(hw); 2297 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2298 return; 2299 } 2300 if (err) { 2301 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2302 goto err_alloc; 2303 } 2304 2305 err = iavf_parse_vf_resource_msg(adapter); 2306 if (err) { 2307 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2308 err); 2309 goto err_alloc; 2310 } 2311 /* Some features require additional messages to negotiate extended 2312 * capabilities. These are processed in sequence by the 2313 * __IAVF_INIT_EXTENDED_CAPS driver state. 2314 */ 2315 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2316 2317 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2318 return; 2319 2320 err_alloc: 2321 kfree(adapter->vf_res); 2322 adapter->vf_res = NULL; 2323 err: 2324 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2325 } 2326 2327 /** 2328 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2329 * @adapter: board private structure 2330 * 2331 * Function processes send of the extended VLAN V2 capability message to the 2332 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2333 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2334 */ 2335 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2336 { 2337 int ret; 2338 2339 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2340 2341 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2342 if (ret && ret == -EOPNOTSUPP) { 2343 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2344 * we did not send the capability exchange message and do not 2345 * expect a response. 2346 */ 2347 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2348 } 2349 2350 /* We sent the message, so move on to the next step */ 2351 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2352 } 2353 2354 /** 2355 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2356 * @adapter: board private structure 2357 * 2358 * Function processes receipt of the extended VLAN V2 capability message from 2359 * the PF. 2360 **/ 2361 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2362 { 2363 int ret; 2364 2365 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2366 2367 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2368 2369 ret = iavf_get_vf_vlan_v2_caps(adapter); 2370 if (ret) 2371 goto err; 2372 2373 /* We've processed receipt of the VLAN V2 caps message */ 2374 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2375 return; 2376 err: 2377 /* We didn't receive a reply. Make sure we try sending again when 2378 * __IAVF_INIT_FAILED attempts to recover. 2379 */ 2380 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2381 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2382 } 2383 2384 /** 2385 * iavf_init_process_extended_caps - Part of driver startup 2386 * @adapter: board private structure 2387 * 2388 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2389 * handles negotiating capabilities for features which require an additional 2390 * message. 2391 * 2392 * Once all extended capabilities exchanges are finished, the driver will 2393 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2394 */ 2395 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2396 { 2397 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2398 2399 /* Process capability exchange for VLAN V2 */ 2400 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2401 iavf_init_send_offload_vlan_v2_caps(adapter); 2402 return; 2403 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2404 iavf_init_recv_offload_vlan_v2_caps(adapter); 2405 return; 2406 } 2407 2408 /* When we reach here, no further extended capabilities exchanges are 2409 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2410 */ 2411 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2412 } 2413 2414 /** 2415 * iavf_init_config_adapter - last part of driver startup 2416 * @adapter: board private structure 2417 * 2418 * After all the supported capabilities are negotiated, then the 2419 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2420 */ 2421 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2422 { 2423 struct net_device *netdev = adapter->netdev; 2424 struct pci_dev *pdev = adapter->pdev; 2425 int err; 2426 2427 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2428 2429 if (iavf_process_config(adapter)) 2430 goto err; 2431 2432 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2433 2434 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2435 2436 netdev->netdev_ops = &iavf_netdev_ops; 2437 iavf_set_ethtool_ops(netdev); 2438 netdev->watchdog_timeo = 5 * HZ; 2439 2440 /* MTU range: 68 - 9710 */ 2441 netdev->min_mtu = ETH_MIN_MTU; 2442 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2443 2444 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2445 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2446 adapter->hw.mac.addr); 2447 eth_hw_addr_random(netdev); 2448 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2449 } else { 2450 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2451 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2452 } 2453 2454 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2455 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2456 err = iavf_init_interrupt_scheme(adapter); 2457 if (err) 2458 goto err_sw_init; 2459 iavf_map_rings_to_vectors(adapter); 2460 if (adapter->vf_res->vf_cap_flags & 2461 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2462 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2463 2464 err = iavf_request_misc_irq(adapter); 2465 if (err) 2466 goto err_sw_init; 2467 2468 netif_carrier_off(netdev); 2469 adapter->link_up = false; 2470 2471 /* set the semaphore to prevent any callbacks after device registration 2472 * up to time when state of driver will be set to __IAVF_DOWN 2473 */ 2474 rtnl_lock(); 2475 if (!adapter->netdev_registered) { 2476 err = register_netdevice(netdev); 2477 if (err) { 2478 rtnl_unlock(); 2479 goto err_register; 2480 } 2481 } 2482 2483 adapter->netdev_registered = true; 2484 2485 netif_tx_stop_all_queues(netdev); 2486 if (CLIENT_ALLOWED(adapter)) { 2487 err = iavf_lan_add_device(adapter); 2488 if (err) 2489 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2490 err); 2491 } 2492 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2493 if (netdev->features & NETIF_F_GRO) 2494 dev_info(&pdev->dev, "GRO is enabled\n"); 2495 2496 iavf_change_state(adapter, __IAVF_DOWN); 2497 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2498 rtnl_unlock(); 2499 2500 iavf_misc_irq_enable(adapter); 2501 wake_up(&adapter->down_waitqueue); 2502 2503 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2504 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2505 if (!adapter->rss_key || !adapter->rss_lut) { 2506 err = -ENOMEM; 2507 goto err_mem; 2508 } 2509 if (RSS_AQ(adapter)) 2510 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2511 else 2512 iavf_init_rss(adapter); 2513 2514 if (VLAN_V2_ALLOWED(adapter)) 2515 /* request initial VLAN offload settings */ 2516 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2517 2518 return; 2519 err_mem: 2520 iavf_free_rss(adapter); 2521 err_register: 2522 iavf_free_misc_irq(adapter); 2523 err_sw_init: 2524 iavf_reset_interrupt_capability(adapter); 2525 err: 2526 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2527 } 2528 2529 /** 2530 * iavf_watchdog_task - Periodic call-back task 2531 * @work: pointer to work_struct 2532 **/ 2533 static void iavf_watchdog_task(struct work_struct *work) 2534 { 2535 struct iavf_adapter *adapter = container_of(work, 2536 struct iavf_adapter, 2537 watchdog_task.work); 2538 struct iavf_hw *hw = &adapter->hw; 2539 u32 reg_val; 2540 2541 if (!mutex_trylock(&adapter->crit_lock)) { 2542 if (adapter->state == __IAVF_REMOVE) 2543 return; 2544 2545 goto restart_watchdog; 2546 } 2547 2548 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2549 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2550 2551 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2552 adapter->aq_required = 0; 2553 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2554 mutex_unlock(&adapter->crit_lock); 2555 queue_work(iavf_wq, &adapter->reset_task); 2556 return; 2557 } 2558 2559 switch (adapter->state) { 2560 case __IAVF_STARTUP: 2561 iavf_startup(adapter); 2562 mutex_unlock(&adapter->crit_lock); 2563 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2564 msecs_to_jiffies(30)); 2565 return; 2566 case __IAVF_INIT_VERSION_CHECK: 2567 iavf_init_version_check(adapter); 2568 mutex_unlock(&adapter->crit_lock); 2569 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2570 msecs_to_jiffies(30)); 2571 return; 2572 case __IAVF_INIT_GET_RESOURCES: 2573 iavf_init_get_resources(adapter); 2574 mutex_unlock(&adapter->crit_lock); 2575 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2576 msecs_to_jiffies(1)); 2577 return; 2578 case __IAVF_INIT_EXTENDED_CAPS: 2579 iavf_init_process_extended_caps(adapter); 2580 mutex_unlock(&adapter->crit_lock); 2581 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2582 msecs_to_jiffies(1)); 2583 return; 2584 case __IAVF_INIT_CONFIG_ADAPTER: 2585 iavf_init_config_adapter(adapter); 2586 mutex_unlock(&adapter->crit_lock); 2587 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2588 msecs_to_jiffies(1)); 2589 return; 2590 case __IAVF_INIT_FAILED: 2591 if (test_bit(__IAVF_IN_REMOVE_TASK, 2592 &adapter->crit_section)) { 2593 /* Do not update the state and do not reschedule 2594 * watchdog task, iavf_remove should handle this state 2595 * as it can loop forever 2596 */ 2597 mutex_unlock(&adapter->crit_lock); 2598 return; 2599 } 2600 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2601 dev_err(&adapter->pdev->dev, 2602 "Failed to communicate with PF; waiting before retry\n"); 2603 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2604 iavf_shutdown_adminq(hw); 2605 mutex_unlock(&adapter->crit_lock); 2606 queue_delayed_work(iavf_wq, 2607 &adapter->watchdog_task, (5 * HZ)); 2608 return; 2609 } 2610 /* Try again from failed step*/ 2611 iavf_change_state(adapter, adapter->last_state); 2612 mutex_unlock(&adapter->crit_lock); 2613 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2614 return; 2615 case __IAVF_COMM_FAILED: 2616 if (test_bit(__IAVF_IN_REMOVE_TASK, 2617 &adapter->crit_section)) { 2618 /* Set state to __IAVF_INIT_FAILED and perform remove 2619 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2620 * doesn't bring the state back to __IAVF_COMM_FAILED. 2621 */ 2622 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2623 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2624 mutex_unlock(&adapter->crit_lock); 2625 return; 2626 } 2627 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2628 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2629 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2630 reg_val == VIRTCHNL_VFR_COMPLETED) { 2631 /* A chance for redemption! */ 2632 dev_err(&adapter->pdev->dev, 2633 "Hardware came out of reset. Attempting reinit.\n"); 2634 /* When init task contacts the PF and 2635 * gets everything set up again, it'll restart the 2636 * watchdog for us. Down, boy. Sit. Stay. Woof. 2637 */ 2638 iavf_change_state(adapter, __IAVF_STARTUP); 2639 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2640 } 2641 adapter->aq_required = 0; 2642 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2643 mutex_unlock(&adapter->crit_lock); 2644 queue_delayed_work(iavf_wq, 2645 &adapter->watchdog_task, 2646 msecs_to_jiffies(10)); 2647 return; 2648 case __IAVF_RESETTING: 2649 mutex_unlock(&adapter->crit_lock); 2650 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2651 return; 2652 case __IAVF_DOWN: 2653 case __IAVF_DOWN_PENDING: 2654 case __IAVF_TESTING: 2655 case __IAVF_RUNNING: 2656 if (adapter->current_op) { 2657 if (!iavf_asq_done(hw)) { 2658 dev_dbg(&adapter->pdev->dev, 2659 "Admin queue timeout\n"); 2660 iavf_send_api_ver(adapter); 2661 } 2662 } else { 2663 int ret = iavf_process_aq_command(adapter); 2664 2665 /* An error will be returned if no commands were 2666 * processed; use this opportunity to update stats 2667 * if the error isn't -ENOTSUPP 2668 */ 2669 if (ret && ret != -EOPNOTSUPP && 2670 adapter->state == __IAVF_RUNNING) 2671 iavf_request_stats(adapter); 2672 } 2673 if (adapter->state == __IAVF_RUNNING) 2674 iavf_detect_recover_hung(&adapter->vsi); 2675 break; 2676 case __IAVF_REMOVE: 2677 default: 2678 mutex_unlock(&adapter->crit_lock); 2679 return; 2680 } 2681 2682 /* check for hw reset */ 2683 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2684 if (!reg_val) { 2685 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2686 adapter->aq_required = 0; 2687 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2688 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2689 queue_work(iavf_wq, &adapter->reset_task); 2690 mutex_unlock(&adapter->crit_lock); 2691 queue_delayed_work(iavf_wq, 2692 &adapter->watchdog_task, HZ * 2); 2693 return; 2694 } 2695 2696 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2697 mutex_unlock(&adapter->crit_lock); 2698 restart_watchdog: 2699 if (adapter->state >= __IAVF_DOWN) 2700 queue_work(iavf_wq, &adapter->adminq_task); 2701 if (adapter->aq_required) 2702 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2703 msecs_to_jiffies(20)); 2704 else 2705 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2706 } 2707 2708 /** 2709 * iavf_disable_vf - disable VF 2710 * @adapter: board private structure 2711 * 2712 * Set communication failed flag and free all resources. 2713 * NOTE: This function is expected to be called with crit_lock being held. 2714 **/ 2715 static void iavf_disable_vf(struct iavf_adapter *adapter) 2716 { 2717 struct iavf_mac_filter *f, *ftmp; 2718 struct iavf_vlan_filter *fv, *fvtmp; 2719 struct iavf_cloud_filter *cf, *cftmp; 2720 2721 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2722 2723 /* We don't use netif_running() because it may be true prior to 2724 * ndo_open() returning, so we can't assume it means all our open 2725 * tasks have finished, since we're not holding the rtnl_lock here. 2726 */ 2727 if (adapter->state == __IAVF_RUNNING) { 2728 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2729 netif_carrier_off(adapter->netdev); 2730 netif_tx_disable(adapter->netdev); 2731 adapter->link_up = false; 2732 iavf_napi_disable_all(adapter); 2733 iavf_irq_disable(adapter); 2734 iavf_free_traffic_irqs(adapter); 2735 iavf_free_all_tx_resources(adapter); 2736 iavf_free_all_rx_resources(adapter); 2737 } 2738 2739 spin_lock_bh(&adapter->mac_vlan_list_lock); 2740 2741 /* Delete all of the filters */ 2742 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2743 list_del(&f->list); 2744 kfree(f); 2745 } 2746 2747 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2748 list_del(&fv->list); 2749 kfree(fv); 2750 } 2751 2752 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2753 2754 spin_lock_bh(&adapter->cloud_filter_list_lock); 2755 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2756 list_del(&cf->list); 2757 kfree(cf); 2758 adapter->num_cloud_filters--; 2759 } 2760 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2761 2762 iavf_free_misc_irq(adapter); 2763 iavf_reset_interrupt_capability(adapter); 2764 iavf_free_q_vectors(adapter); 2765 iavf_free_queues(adapter); 2766 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2767 iavf_shutdown_adminq(&adapter->hw); 2768 adapter->netdev->flags &= ~IFF_UP; 2769 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2770 iavf_change_state(adapter, __IAVF_DOWN); 2771 wake_up(&adapter->down_waitqueue); 2772 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2773 } 2774 2775 /** 2776 * iavf_reset_task - Call-back task to handle hardware reset 2777 * @work: pointer to work_struct 2778 * 2779 * During reset we need to shut down and reinitialize the admin queue 2780 * before we can use it to communicate with the PF again. We also clear 2781 * and reinit the rings because that context is lost as well. 2782 **/ 2783 static void iavf_reset_task(struct work_struct *work) 2784 { 2785 struct iavf_adapter *adapter = container_of(work, 2786 struct iavf_adapter, 2787 reset_task); 2788 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2789 struct net_device *netdev = adapter->netdev; 2790 struct iavf_hw *hw = &adapter->hw; 2791 struct iavf_mac_filter *f, *ftmp; 2792 struct iavf_cloud_filter *cf; 2793 enum iavf_status status; 2794 u32 reg_val; 2795 int i = 0, err; 2796 bool running; 2797 2798 /* When device is being removed it doesn't make sense to run the reset 2799 * task, just return in such a case. 2800 */ 2801 if (!mutex_trylock(&adapter->crit_lock)) { 2802 if (adapter->state != __IAVF_REMOVE) 2803 queue_work(iavf_wq, &adapter->reset_task); 2804 2805 return; 2806 } 2807 2808 while (!mutex_trylock(&adapter->client_lock)) 2809 usleep_range(500, 1000); 2810 if (CLIENT_ENABLED(adapter)) { 2811 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2812 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2813 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2814 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2815 cancel_delayed_work_sync(&adapter->client_task); 2816 iavf_notify_client_close(&adapter->vsi, true); 2817 } 2818 iavf_misc_irq_disable(adapter); 2819 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2820 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2821 /* Restart the AQ here. If we have been reset but didn't 2822 * detect it, or if the PF had to reinit, our AQ will be hosed. 2823 */ 2824 iavf_shutdown_adminq(hw); 2825 iavf_init_adminq(hw); 2826 iavf_request_reset(adapter); 2827 } 2828 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2829 2830 /* poll until we see the reset actually happen */ 2831 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2832 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2833 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2834 if (!reg_val) 2835 break; 2836 usleep_range(5000, 10000); 2837 } 2838 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2839 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2840 goto continue_reset; /* act like the reset happened */ 2841 } 2842 2843 /* wait until the reset is complete and the PF is responding to us */ 2844 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2845 /* sleep first to make sure a minimum wait time is met */ 2846 msleep(IAVF_RESET_WAIT_MS); 2847 2848 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2849 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2850 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2851 break; 2852 } 2853 2854 pci_set_master(adapter->pdev); 2855 pci_restore_msi_state(adapter->pdev); 2856 2857 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2858 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2859 reg_val); 2860 iavf_disable_vf(adapter); 2861 mutex_unlock(&adapter->client_lock); 2862 mutex_unlock(&adapter->crit_lock); 2863 return; /* Do not attempt to reinit. It's dead, Jim. */ 2864 } 2865 2866 continue_reset: 2867 /* We don't use netif_running() because it may be true prior to 2868 * ndo_open() returning, so we can't assume it means all our open 2869 * tasks have finished, since we're not holding the rtnl_lock here. 2870 */ 2871 running = adapter->state == __IAVF_RUNNING; 2872 2873 if (running) { 2874 netdev->flags &= ~IFF_UP; 2875 netif_carrier_off(netdev); 2876 netif_tx_stop_all_queues(netdev); 2877 adapter->link_up = false; 2878 iavf_napi_disable_all(adapter); 2879 } 2880 iavf_irq_disable(adapter); 2881 2882 iavf_change_state(adapter, __IAVF_RESETTING); 2883 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2884 2885 /* free the Tx/Rx rings and descriptors, might be better to just 2886 * re-use them sometime in the future 2887 */ 2888 iavf_free_all_rx_resources(adapter); 2889 iavf_free_all_tx_resources(adapter); 2890 2891 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2892 /* kill and reinit the admin queue */ 2893 iavf_shutdown_adminq(hw); 2894 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2895 status = iavf_init_adminq(hw); 2896 if (status) { 2897 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2898 status); 2899 goto reset_err; 2900 } 2901 adapter->aq_required = 0; 2902 2903 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2904 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2905 err = iavf_reinit_interrupt_scheme(adapter); 2906 if (err) 2907 goto reset_err; 2908 } 2909 2910 if (RSS_AQ(adapter)) { 2911 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2912 } else { 2913 err = iavf_init_rss(adapter); 2914 if (err) 2915 goto reset_err; 2916 } 2917 2918 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2919 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 2920 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 2921 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 2922 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 2923 * been successfully sent and negotiated 2924 */ 2925 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 2926 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2927 2928 spin_lock_bh(&adapter->mac_vlan_list_lock); 2929 2930 /* Delete filter for the current MAC address, it could have 2931 * been changed by the PF via administratively set MAC. 2932 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2933 */ 2934 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2935 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2936 list_del(&f->list); 2937 kfree(f); 2938 } 2939 } 2940 /* re-add all MAC filters */ 2941 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2942 f->add = true; 2943 } 2944 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2945 2946 /* check if TCs are running and re-add all cloud filters */ 2947 spin_lock_bh(&adapter->cloud_filter_list_lock); 2948 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2949 adapter->num_tc) { 2950 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2951 cf->add = true; 2952 } 2953 } 2954 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2955 2956 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2957 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2958 iavf_misc_irq_enable(adapter); 2959 2960 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2961 2962 /* We were running when the reset started, so we need to restore some 2963 * state here. 2964 */ 2965 if (running) { 2966 /* allocate transmit descriptors */ 2967 err = iavf_setup_all_tx_resources(adapter); 2968 if (err) 2969 goto reset_err; 2970 2971 /* allocate receive descriptors */ 2972 err = iavf_setup_all_rx_resources(adapter); 2973 if (err) 2974 goto reset_err; 2975 2976 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2977 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2978 err = iavf_request_traffic_irqs(adapter, netdev->name); 2979 if (err) 2980 goto reset_err; 2981 2982 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 2983 } 2984 2985 iavf_configure(adapter); 2986 2987 /* iavf_up_complete() will switch device back 2988 * to __IAVF_RUNNING 2989 */ 2990 iavf_up_complete(adapter); 2991 netdev->flags |= IFF_UP; 2992 iavf_irq_enable(adapter, true); 2993 } else { 2994 iavf_change_state(adapter, __IAVF_DOWN); 2995 wake_up(&adapter->down_waitqueue); 2996 } 2997 2998 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2999 3000 mutex_unlock(&adapter->client_lock); 3001 mutex_unlock(&adapter->crit_lock); 3002 3003 return; 3004 reset_err: 3005 mutex_unlock(&adapter->client_lock); 3006 mutex_unlock(&adapter->crit_lock); 3007 if (running) { 3008 iavf_change_state(adapter, __IAVF_RUNNING); 3009 netdev->flags |= IFF_UP; 3010 } 3011 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3012 iavf_close(netdev); 3013 } 3014 3015 /** 3016 * iavf_adminq_task - worker thread to clean the admin queue 3017 * @work: pointer to work_struct containing our data 3018 **/ 3019 static void iavf_adminq_task(struct work_struct *work) 3020 { 3021 struct iavf_adapter *adapter = 3022 container_of(work, struct iavf_adapter, adminq_task); 3023 struct iavf_hw *hw = &adapter->hw; 3024 struct iavf_arq_event_info event; 3025 enum virtchnl_ops v_op; 3026 enum iavf_status ret, v_ret; 3027 u32 val, oldval; 3028 u16 pending; 3029 3030 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3031 goto out; 3032 3033 if (!mutex_trylock(&adapter->crit_lock)) { 3034 if (adapter->state == __IAVF_REMOVE) 3035 return; 3036 3037 queue_work(iavf_wq, &adapter->adminq_task); 3038 goto out; 3039 } 3040 3041 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3042 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3043 if (!event.msg_buf) 3044 goto out; 3045 3046 do { 3047 ret = iavf_clean_arq_element(hw, &event, &pending); 3048 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3049 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3050 3051 if (ret || !v_op) 3052 break; /* No event to process or error cleaning ARQ */ 3053 3054 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3055 event.msg_len); 3056 if (pending != 0) 3057 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3058 } while (pending); 3059 mutex_unlock(&adapter->crit_lock); 3060 3061 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3062 if (adapter->netdev_registered || 3063 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3064 struct net_device *netdev = adapter->netdev; 3065 3066 rtnl_lock(); 3067 netdev_update_features(netdev); 3068 rtnl_unlock(); 3069 /* Request VLAN offload settings */ 3070 if (VLAN_V2_ALLOWED(adapter)) 3071 iavf_set_vlan_offload_features 3072 (adapter, 0, netdev->features); 3073 3074 iavf_set_queue_vlan_tag_loc(adapter); 3075 } 3076 3077 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3078 } 3079 if ((adapter->flags & 3080 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3081 adapter->state == __IAVF_RESETTING) 3082 goto freedom; 3083 3084 /* check for error indications */ 3085 val = rd32(hw, hw->aq.arq.len); 3086 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3087 goto freedom; 3088 oldval = val; 3089 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3090 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3091 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3092 } 3093 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3094 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3095 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3096 } 3097 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3098 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3099 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3100 } 3101 if (oldval != val) 3102 wr32(hw, hw->aq.arq.len, val); 3103 3104 val = rd32(hw, hw->aq.asq.len); 3105 oldval = val; 3106 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3107 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3108 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3109 } 3110 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3111 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3112 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3113 } 3114 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3115 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3116 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3117 } 3118 if (oldval != val) 3119 wr32(hw, hw->aq.asq.len, val); 3120 3121 freedom: 3122 kfree(event.msg_buf); 3123 out: 3124 /* re-enable Admin queue interrupt cause */ 3125 iavf_misc_irq_enable(adapter); 3126 } 3127 3128 /** 3129 * iavf_client_task - worker thread to perform client work 3130 * @work: pointer to work_struct containing our data 3131 * 3132 * This task handles client interactions. Because client calls can be 3133 * reentrant, we can't handle them in the watchdog. 3134 **/ 3135 static void iavf_client_task(struct work_struct *work) 3136 { 3137 struct iavf_adapter *adapter = 3138 container_of(work, struct iavf_adapter, client_task.work); 3139 3140 /* If we can't get the client bit, just give up. We'll be rescheduled 3141 * later. 3142 */ 3143 3144 if (!mutex_trylock(&adapter->client_lock)) 3145 return; 3146 3147 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3148 iavf_client_subtask(adapter); 3149 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3150 goto out; 3151 } 3152 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3153 iavf_notify_client_l2_params(&adapter->vsi); 3154 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3155 goto out; 3156 } 3157 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3158 iavf_notify_client_close(&adapter->vsi, false); 3159 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3160 goto out; 3161 } 3162 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3163 iavf_notify_client_open(&adapter->vsi); 3164 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3165 } 3166 out: 3167 mutex_unlock(&adapter->client_lock); 3168 } 3169 3170 /** 3171 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3172 * @adapter: board private structure 3173 * 3174 * Free all transmit software resources 3175 **/ 3176 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3177 { 3178 int i; 3179 3180 if (!adapter->tx_rings) 3181 return; 3182 3183 for (i = 0; i < adapter->num_active_queues; i++) 3184 if (adapter->tx_rings[i].desc) 3185 iavf_free_tx_resources(&adapter->tx_rings[i]); 3186 } 3187 3188 /** 3189 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3190 * @adapter: board private structure 3191 * 3192 * If this function returns with an error, then it's possible one or 3193 * more of the rings is populated (while the rest are not). It is the 3194 * callers duty to clean those orphaned rings. 3195 * 3196 * Return 0 on success, negative on failure 3197 **/ 3198 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3199 { 3200 int i, err = 0; 3201 3202 for (i = 0; i < adapter->num_active_queues; i++) { 3203 adapter->tx_rings[i].count = adapter->tx_desc_count; 3204 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3205 if (!err) 3206 continue; 3207 dev_err(&adapter->pdev->dev, 3208 "Allocation for Tx Queue %u failed\n", i); 3209 break; 3210 } 3211 3212 return err; 3213 } 3214 3215 /** 3216 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3217 * @adapter: board private structure 3218 * 3219 * If this function returns with an error, then it's possible one or 3220 * more of the rings is populated (while the rest are not). It is the 3221 * callers duty to clean those orphaned rings. 3222 * 3223 * Return 0 on success, negative on failure 3224 **/ 3225 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3226 { 3227 int i, err = 0; 3228 3229 for (i = 0; i < adapter->num_active_queues; i++) { 3230 adapter->rx_rings[i].count = adapter->rx_desc_count; 3231 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3232 if (!err) 3233 continue; 3234 dev_err(&adapter->pdev->dev, 3235 "Allocation for Rx Queue %u failed\n", i); 3236 break; 3237 } 3238 return err; 3239 } 3240 3241 /** 3242 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3243 * @adapter: board private structure 3244 * 3245 * Free all receive software resources 3246 **/ 3247 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3248 { 3249 int i; 3250 3251 if (!adapter->rx_rings) 3252 return; 3253 3254 for (i = 0; i < adapter->num_active_queues; i++) 3255 if (adapter->rx_rings[i].desc) 3256 iavf_free_rx_resources(&adapter->rx_rings[i]); 3257 } 3258 3259 /** 3260 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3261 * @adapter: board private structure 3262 * @max_tx_rate: max Tx bw for a tc 3263 **/ 3264 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3265 u64 max_tx_rate) 3266 { 3267 int speed = 0, ret = 0; 3268 3269 if (ADV_LINK_SUPPORT(adapter)) { 3270 if (adapter->link_speed_mbps < U32_MAX) { 3271 speed = adapter->link_speed_mbps; 3272 goto validate_bw; 3273 } else { 3274 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3275 return -EINVAL; 3276 } 3277 } 3278 3279 switch (adapter->link_speed) { 3280 case VIRTCHNL_LINK_SPEED_40GB: 3281 speed = SPEED_40000; 3282 break; 3283 case VIRTCHNL_LINK_SPEED_25GB: 3284 speed = SPEED_25000; 3285 break; 3286 case VIRTCHNL_LINK_SPEED_20GB: 3287 speed = SPEED_20000; 3288 break; 3289 case VIRTCHNL_LINK_SPEED_10GB: 3290 speed = SPEED_10000; 3291 break; 3292 case VIRTCHNL_LINK_SPEED_5GB: 3293 speed = SPEED_5000; 3294 break; 3295 case VIRTCHNL_LINK_SPEED_2_5GB: 3296 speed = SPEED_2500; 3297 break; 3298 case VIRTCHNL_LINK_SPEED_1GB: 3299 speed = SPEED_1000; 3300 break; 3301 case VIRTCHNL_LINK_SPEED_100MB: 3302 speed = SPEED_100; 3303 break; 3304 default: 3305 break; 3306 } 3307 3308 validate_bw: 3309 if (max_tx_rate > speed) { 3310 dev_err(&adapter->pdev->dev, 3311 "Invalid tx rate specified\n"); 3312 ret = -EINVAL; 3313 } 3314 3315 return ret; 3316 } 3317 3318 /** 3319 * iavf_validate_ch_config - validate queue mapping info 3320 * @adapter: board private structure 3321 * @mqprio_qopt: queue parameters 3322 * 3323 * This function validates if the config provided by the user to 3324 * configure queue channels is valid or not. Returns 0 on a valid 3325 * config. 3326 **/ 3327 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3328 struct tc_mqprio_qopt_offload *mqprio_qopt) 3329 { 3330 u64 total_max_rate = 0; 3331 int i, num_qps = 0; 3332 u64 tx_rate = 0; 3333 int ret = 0; 3334 3335 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3336 mqprio_qopt->qopt.num_tc < 1) 3337 return -EINVAL; 3338 3339 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3340 if (!mqprio_qopt->qopt.count[i] || 3341 mqprio_qopt->qopt.offset[i] != num_qps) 3342 return -EINVAL; 3343 if (mqprio_qopt->min_rate[i]) { 3344 dev_err(&adapter->pdev->dev, 3345 "Invalid min tx rate (greater than 0) specified\n"); 3346 return -EINVAL; 3347 } 3348 /*convert to Mbps */ 3349 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3350 IAVF_MBPS_DIVISOR); 3351 total_max_rate += tx_rate; 3352 num_qps += mqprio_qopt->qopt.count[i]; 3353 } 3354 if (num_qps > adapter->num_active_queues) { 3355 dev_err(&adapter->pdev->dev, 3356 "Cannot support requested number of queues\n"); 3357 return -EINVAL; 3358 } 3359 3360 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3361 return ret; 3362 } 3363 3364 /** 3365 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3366 * @adapter: board private structure 3367 **/ 3368 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3369 { 3370 struct iavf_cloud_filter *cf, *cftmp; 3371 3372 spin_lock_bh(&adapter->cloud_filter_list_lock); 3373 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3374 list) { 3375 list_del(&cf->list); 3376 kfree(cf); 3377 adapter->num_cloud_filters--; 3378 } 3379 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3380 } 3381 3382 /** 3383 * __iavf_setup_tc - configure multiple traffic classes 3384 * @netdev: network interface device structure 3385 * @type_data: tc offload data 3386 * 3387 * This function processes the config information provided by the 3388 * user to configure traffic classes/queue channels and packages the 3389 * information to request the PF to setup traffic classes. 3390 * 3391 * Returns 0 on success. 3392 **/ 3393 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3394 { 3395 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3396 struct iavf_adapter *adapter = netdev_priv(netdev); 3397 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3398 u8 num_tc = 0, total_qps = 0; 3399 int ret = 0, netdev_tc = 0; 3400 u64 max_tx_rate; 3401 u16 mode; 3402 int i; 3403 3404 num_tc = mqprio_qopt->qopt.num_tc; 3405 mode = mqprio_qopt->mode; 3406 3407 /* delete queue_channel */ 3408 if (!mqprio_qopt->qopt.hw) { 3409 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3410 /* reset the tc configuration */ 3411 netdev_reset_tc(netdev); 3412 adapter->num_tc = 0; 3413 netif_tx_stop_all_queues(netdev); 3414 netif_tx_disable(netdev); 3415 iavf_del_all_cloud_filters(adapter); 3416 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3417 goto exit; 3418 } else { 3419 return -EINVAL; 3420 } 3421 } 3422 3423 /* add queue channel */ 3424 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3425 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3426 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3427 return -EOPNOTSUPP; 3428 } 3429 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3430 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3431 return -EINVAL; 3432 } 3433 3434 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3435 if (ret) 3436 return ret; 3437 /* Return if same TC config is requested */ 3438 if (adapter->num_tc == num_tc) 3439 return 0; 3440 adapter->num_tc = num_tc; 3441 3442 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3443 if (i < num_tc) { 3444 adapter->ch_config.ch_info[i].count = 3445 mqprio_qopt->qopt.count[i]; 3446 adapter->ch_config.ch_info[i].offset = 3447 mqprio_qopt->qopt.offset[i]; 3448 total_qps += mqprio_qopt->qopt.count[i]; 3449 max_tx_rate = mqprio_qopt->max_rate[i]; 3450 /* convert to Mbps */ 3451 max_tx_rate = div_u64(max_tx_rate, 3452 IAVF_MBPS_DIVISOR); 3453 adapter->ch_config.ch_info[i].max_tx_rate = 3454 max_tx_rate; 3455 } else { 3456 adapter->ch_config.ch_info[i].count = 1; 3457 adapter->ch_config.ch_info[i].offset = 0; 3458 } 3459 } 3460 adapter->ch_config.total_qps = total_qps; 3461 netif_tx_stop_all_queues(netdev); 3462 netif_tx_disable(netdev); 3463 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3464 netdev_reset_tc(netdev); 3465 /* Report the tc mapping up the stack */ 3466 netdev_set_num_tc(adapter->netdev, num_tc); 3467 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3468 u16 qcount = mqprio_qopt->qopt.count[i]; 3469 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3470 3471 if (i < num_tc) 3472 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3473 qoffset); 3474 } 3475 } 3476 exit: 3477 return ret; 3478 } 3479 3480 /** 3481 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3482 * @adapter: board private structure 3483 * @f: pointer to struct flow_cls_offload 3484 * @filter: pointer to cloud filter structure 3485 */ 3486 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3487 struct flow_cls_offload *f, 3488 struct iavf_cloud_filter *filter) 3489 { 3490 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3491 struct flow_dissector *dissector = rule->match.dissector; 3492 u16 n_proto_mask = 0; 3493 u16 n_proto_key = 0; 3494 u8 field_flags = 0; 3495 u16 addr_type = 0; 3496 u16 n_proto = 0; 3497 int i = 0; 3498 struct virtchnl_filter *vf = &filter->f; 3499 3500 if (dissector->used_keys & 3501 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3502 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3503 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3504 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3505 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3506 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3507 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3508 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3509 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3510 dissector->used_keys); 3511 return -EOPNOTSUPP; 3512 } 3513 3514 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3515 struct flow_match_enc_keyid match; 3516 3517 flow_rule_match_enc_keyid(rule, &match); 3518 if (match.mask->keyid != 0) 3519 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3520 } 3521 3522 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3523 struct flow_match_basic match; 3524 3525 flow_rule_match_basic(rule, &match); 3526 n_proto_key = ntohs(match.key->n_proto); 3527 n_proto_mask = ntohs(match.mask->n_proto); 3528 3529 if (n_proto_key == ETH_P_ALL) { 3530 n_proto_key = 0; 3531 n_proto_mask = 0; 3532 } 3533 n_proto = n_proto_key & n_proto_mask; 3534 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3535 return -EINVAL; 3536 if (n_proto == ETH_P_IPV6) { 3537 /* specify flow type as TCP IPv6 */ 3538 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3539 } 3540 3541 if (match.key->ip_proto != IPPROTO_TCP) { 3542 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3543 return -EINVAL; 3544 } 3545 } 3546 3547 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3548 struct flow_match_eth_addrs match; 3549 3550 flow_rule_match_eth_addrs(rule, &match); 3551 3552 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3553 if (!is_zero_ether_addr(match.mask->dst)) { 3554 if (is_broadcast_ether_addr(match.mask->dst)) { 3555 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3556 } else { 3557 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3558 match.mask->dst); 3559 return -EINVAL; 3560 } 3561 } 3562 3563 if (!is_zero_ether_addr(match.mask->src)) { 3564 if (is_broadcast_ether_addr(match.mask->src)) { 3565 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3566 } else { 3567 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3568 match.mask->src); 3569 return -EINVAL; 3570 } 3571 } 3572 3573 if (!is_zero_ether_addr(match.key->dst)) 3574 if (is_valid_ether_addr(match.key->dst) || 3575 is_multicast_ether_addr(match.key->dst)) { 3576 /* set the mask if a valid dst_mac address */ 3577 for (i = 0; i < ETH_ALEN; i++) 3578 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3579 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3580 match.key->dst); 3581 } 3582 3583 if (!is_zero_ether_addr(match.key->src)) 3584 if (is_valid_ether_addr(match.key->src) || 3585 is_multicast_ether_addr(match.key->src)) { 3586 /* set the mask if a valid dst_mac address */ 3587 for (i = 0; i < ETH_ALEN; i++) 3588 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3589 ether_addr_copy(vf->data.tcp_spec.src_mac, 3590 match.key->src); 3591 } 3592 } 3593 3594 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3595 struct flow_match_vlan match; 3596 3597 flow_rule_match_vlan(rule, &match); 3598 if (match.mask->vlan_id) { 3599 if (match.mask->vlan_id == VLAN_VID_MASK) { 3600 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3601 } else { 3602 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3603 match.mask->vlan_id); 3604 return -EINVAL; 3605 } 3606 } 3607 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3608 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3609 } 3610 3611 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3612 struct flow_match_control match; 3613 3614 flow_rule_match_control(rule, &match); 3615 addr_type = match.key->addr_type; 3616 } 3617 3618 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3619 struct flow_match_ipv4_addrs match; 3620 3621 flow_rule_match_ipv4_addrs(rule, &match); 3622 if (match.mask->dst) { 3623 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3624 field_flags |= IAVF_CLOUD_FIELD_IIP; 3625 } else { 3626 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3627 be32_to_cpu(match.mask->dst)); 3628 return -EINVAL; 3629 } 3630 } 3631 3632 if (match.mask->src) { 3633 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3634 field_flags |= IAVF_CLOUD_FIELD_IIP; 3635 } else { 3636 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3637 be32_to_cpu(match.mask->dst)); 3638 return -EINVAL; 3639 } 3640 } 3641 3642 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3643 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3644 return -EINVAL; 3645 } 3646 if (match.key->dst) { 3647 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3648 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3649 } 3650 if (match.key->src) { 3651 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3652 vf->data.tcp_spec.src_ip[0] = match.key->src; 3653 } 3654 } 3655 3656 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3657 struct flow_match_ipv6_addrs match; 3658 3659 flow_rule_match_ipv6_addrs(rule, &match); 3660 3661 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3662 if (ipv6_addr_any(&match.mask->dst)) { 3663 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3664 IPV6_ADDR_ANY); 3665 return -EINVAL; 3666 } 3667 3668 /* src and dest IPv6 address should not be LOOPBACK 3669 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3670 */ 3671 if (ipv6_addr_loopback(&match.key->dst) || 3672 ipv6_addr_loopback(&match.key->src)) { 3673 dev_err(&adapter->pdev->dev, 3674 "ipv6 addr should not be loopback\n"); 3675 return -EINVAL; 3676 } 3677 if (!ipv6_addr_any(&match.mask->dst) || 3678 !ipv6_addr_any(&match.mask->src)) 3679 field_flags |= IAVF_CLOUD_FIELD_IIP; 3680 3681 for (i = 0; i < 4; i++) 3682 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3683 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3684 sizeof(vf->data.tcp_spec.dst_ip)); 3685 for (i = 0; i < 4; i++) 3686 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3687 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3688 sizeof(vf->data.tcp_spec.src_ip)); 3689 } 3690 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3691 struct flow_match_ports match; 3692 3693 flow_rule_match_ports(rule, &match); 3694 if (match.mask->src) { 3695 if (match.mask->src == cpu_to_be16(0xffff)) { 3696 field_flags |= IAVF_CLOUD_FIELD_IIP; 3697 } else { 3698 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3699 be16_to_cpu(match.mask->src)); 3700 return -EINVAL; 3701 } 3702 } 3703 3704 if (match.mask->dst) { 3705 if (match.mask->dst == cpu_to_be16(0xffff)) { 3706 field_flags |= IAVF_CLOUD_FIELD_IIP; 3707 } else { 3708 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3709 be16_to_cpu(match.mask->dst)); 3710 return -EINVAL; 3711 } 3712 } 3713 if (match.key->dst) { 3714 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3715 vf->data.tcp_spec.dst_port = match.key->dst; 3716 } 3717 3718 if (match.key->src) { 3719 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3720 vf->data.tcp_spec.src_port = match.key->src; 3721 } 3722 } 3723 vf->field_flags = field_flags; 3724 3725 return 0; 3726 } 3727 3728 /** 3729 * iavf_handle_tclass - Forward to a traffic class on the device 3730 * @adapter: board private structure 3731 * @tc: traffic class index on the device 3732 * @filter: pointer to cloud filter structure 3733 */ 3734 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3735 struct iavf_cloud_filter *filter) 3736 { 3737 if (tc == 0) 3738 return 0; 3739 if (tc < adapter->num_tc) { 3740 if (!filter->f.data.tcp_spec.dst_port) { 3741 dev_err(&adapter->pdev->dev, 3742 "Specify destination port to redirect to traffic class other than TC0\n"); 3743 return -EINVAL; 3744 } 3745 } 3746 /* redirect to a traffic class on the same device */ 3747 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3748 filter->f.action_meta = tc; 3749 return 0; 3750 } 3751 3752 /** 3753 * iavf_configure_clsflower - Add tc flower filters 3754 * @adapter: board private structure 3755 * @cls_flower: Pointer to struct flow_cls_offload 3756 */ 3757 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3758 struct flow_cls_offload *cls_flower) 3759 { 3760 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3761 struct iavf_cloud_filter *filter = NULL; 3762 int err = -EINVAL, count = 50; 3763 3764 if (tc < 0) { 3765 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3766 return -EINVAL; 3767 } 3768 3769 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3770 if (!filter) 3771 return -ENOMEM; 3772 3773 while (!mutex_trylock(&adapter->crit_lock)) { 3774 if (--count == 0) { 3775 kfree(filter); 3776 return err; 3777 } 3778 udelay(1); 3779 } 3780 3781 filter->cookie = cls_flower->cookie; 3782 3783 /* set the mask to all zeroes to begin with */ 3784 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3785 /* start out with flow type and eth type IPv4 to begin with */ 3786 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3787 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3788 if (err) 3789 goto err; 3790 3791 err = iavf_handle_tclass(adapter, tc, filter); 3792 if (err) 3793 goto err; 3794 3795 /* add filter to the list */ 3796 spin_lock_bh(&adapter->cloud_filter_list_lock); 3797 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3798 adapter->num_cloud_filters++; 3799 filter->add = true; 3800 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3801 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3802 err: 3803 if (err) 3804 kfree(filter); 3805 3806 mutex_unlock(&adapter->crit_lock); 3807 return err; 3808 } 3809 3810 /* iavf_find_cf - Find the cloud filter in the list 3811 * @adapter: Board private structure 3812 * @cookie: filter specific cookie 3813 * 3814 * Returns ptr to the filter object or NULL. Must be called while holding the 3815 * cloud_filter_list_lock. 3816 */ 3817 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3818 unsigned long *cookie) 3819 { 3820 struct iavf_cloud_filter *filter = NULL; 3821 3822 if (!cookie) 3823 return NULL; 3824 3825 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3826 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3827 return filter; 3828 } 3829 return NULL; 3830 } 3831 3832 /** 3833 * iavf_delete_clsflower - Remove tc flower filters 3834 * @adapter: board private structure 3835 * @cls_flower: Pointer to struct flow_cls_offload 3836 */ 3837 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3838 struct flow_cls_offload *cls_flower) 3839 { 3840 struct iavf_cloud_filter *filter = NULL; 3841 int err = 0; 3842 3843 spin_lock_bh(&adapter->cloud_filter_list_lock); 3844 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3845 if (filter) { 3846 filter->del = true; 3847 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3848 } else { 3849 err = -EINVAL; 3850 } 3851 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3852 3853 return err; 3854 } 3855 3856 /** 3857 * iavf_setup_tc_cls_flower - flower classifier offloads 3858 * @adapter: board private structure 3859 * @cls_flower: pointer to flow_cls_offload struct with flow info 3860 */ 3861 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3862 struct flow_cls_offload *cls_flower) 3863 { 3864 switch (cls_flower->command) { 3865 case FLOW_CLS_REPLACE: 3866 return iavf_configure_clsflower(adapter, cls_flower); 3867 case FLOW_CLS_DESTROY: 3868 return iavf_delete_clsflower(adapter, cls_flower); 3869 case FLOW_CLS_STATS: 3870 return -EOPNOTSUPP; 3871 default: 3872 return -EOPNOTSUPP; 3873 } 3874 } 3875 3876 /** 3877 * iavf_setup_tc_block_cb - block callback for tc 3878 * @type: type of offload 3879 * @type_data: offload data 3880 * @cb_priv: 3881 * 3882 * This function is the block callback for traffic classes 3883 **/ 3884 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3885 void *cb_priv) 3886 { 3887 struct iavf_adapter *adapter = cb_priv; 3888 3889 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3890 return -EOPNOTSUPP; 3891 3892 switch (type) { 3893 case TC_SETUP_CLSFLOWER: 3894 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3895 default: 3896 return -EOPNOTSUPP; 3897 } 3898 } 3899 3900 static LIST_HEAD(iavf_block_cb_list); 3901 3902 /** 3903 * iavf_setup_tc - configure multiple traffic classes 3904 * @netdev: network interface device structure 3905 * @type: type of offload 3906 * @type_data: tc offload data 3907 * 3908 * This function is the callback to ndo_setup_tc in the 3909 * netdev_ops. 3910 * 3911 * Returns 0 on success 3912 **/ 3913 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3914 void *type_data) 3915 { 3916 struct iavf_adapter *adapter = netdev_priv(netdev); 3917 3918 switch (type) { 3919 case TC_SETUP_QDISC_MQPRIO: 3920 return __iavf_setup_tc(netdev, type_data); 3921 case TC_SETUP_BLOCK: 3922 return flow_block_cb_setup_simple(type_data, 3923 &iavf_block_cb_list, 3924 iavf_setup_tc_block_cb, 3925 adapter, adapter, true); 3926 default: 3927 return -EOPNOTSUPP; 3928 } 3929 } 3930 3931 /** 3932 * iavf_open - Called when a network interface is made active 3933 * @netdev: network interface device structure 3934 * 3935 * Returns 0 on success, negative value on failure 3936 * 3937 * The open entry point is called when a network interface is made 3938 * active by the system (IFF_UP). At this point all resources needed 3939 * for transmit and receive operations are allocated, the interrupt 3940 * handler is registered with the OS, the watchdog is started, 3941 * and the stack is notified that the interface is ready. 3942 **/ 3943 static int iavf_open(struct net_device *netdev) 3944 { 3945 struct iavf_adapter *adapter = netdev_priv(netdev); 3946 int err; 3947 3948 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3949 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3950 return -EIO; 3951 } 3952 3953 while (!mutex_trylock(&adapter->crit_lock)) 3954 usleep_range(500, 1000); 3955 3956 if (adapter->state != __IAVF_DOWN) { 3957 err = -EBUSY; 3958 goto err_unlock; 3959 } 3960 3961 if (adapter->state == __IAVF_RUNNING && 3962 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 3963 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 3964 err = 0; 3965 goto err_unlock; 3966 } 3967 3968 /* allocate transmit descriptors */ 3969 err = iavf_setup_all_tx_resources(adapter); 3970 if (err) 3971 goto err_setup_tx; 3972 3973 /* allocate receive descriptors */ 3974 err = iavf_setup_all_rx_resources(adapter); 3975 if (err) 3976 goto err_setup_rx; 3977 3978 /* clear any pending interrupts, may auto mask */ 3979 err = iavf_request_traffic_irqs(adapter, netdev->name); 3980 if (err) 3981 goto err_req_irq; 3982 3983 spin_lock_bh(&adapter->mac_vlan_list_lock); 3984 3985 iavf_add_filter(adapter, adapter->hw.mac.addr); 3986 3987 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3988 3989 /* Restore VLAN filters that were removed with IFF_DOWN */ 3990 iavf_restore_filters(adapter); 3991 3992 iavf_configure(adapter); 3993 3994 iavf_up_complete(adapter); 3995 3996 iavf_irq_enable(adapter, true); 3997 3998 mutex_unlock(&adapter->crit_lock); 3999 4000 return 0; 4001 4002 err_req_irq: 4003 iavf_down(adapter); 4004 iavf_free_traffic_irqs(adapter); 4005 err_setup_rx: 4006 iavf_free_all_rx_resources(adapter); 4007 err_setup_tx: 4008 iavf_free_all_tx_resources(adapter); 4009 err_unlock: 4010 mutex_unlock(&adapter->crit_lock); 4011 4012 return err; 4013 } 4014 4015 /** 4016 * iavf_close - Disables a network interface 4017 * @netdev: network interface device structure 4018 * 4019 * Returns 0, this is not allowed to fail 4020 * 4021 * The close entry point is called when an interface is de-activated 4022 * by the OS. The hardware is still under the drivers control, but 4023 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4024 * are freed, along with all transmit and receive resources. 4025 **/ 4026 static int iavf_close(struct net_device *netdev) 4027 { 4028 struct iavf_adapter *adapter = netdev_priv(netdev); 4029 int status; 4030 4031 mutex_lock(&adapter->crit_lock); 4032 4033 if (adapter->state <= __IAVF_DOWN_PENDING) { 4034 mutex_unlock(&adapter->crit_lock); 4035 return 0; 4036 } 4037 4038 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4039 if (CLIENT_ENABLED(adapter)) 4040 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4041 4042 iavf_down(adapter); 4043 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4044 iavf_free_traffic_irqs(adapter); 4045 4046 mutex_unlock(&adapter->crit_lock); 4047 4048 /* We explicitly don't free resources here because the hardware is 4049 * still active and can DMA into memory. Resources are cleared in 4050 * iavf_virtchnl_completion() after we get confirmation from the PF 4051 * driver that the rings have been stopped. 4052 * 4053 * Also, we wait for state to transition to __IAVF_DOWN before 4054 * returning. State change occurs in iavf_virtchnl_completion() after 4055 * VF resources are released (which occurs after PF driver processes and 4056 * responds to admin queue commands). 4057 */ 4058 4059 status = wait_event_timeout(adapter->down_waitqueue, 4060 adapter->state == __IAVF_DOWN, 4061 msecs_to_jiffies(500)); 4062 if (!status) 4063 netdev_warn(netdev, "Device resources not yet released\n"); 4064 return 0; 4065 } 4066 4067 /** 4068 * iavf_change_mtu - Change the Maximum Transfer Unit 4069 * @netdev: network interface device structure 4070 * @new_mtu: new value for maximum frame size 4071 * 4072 * Returns 0 on success, negative on failure 4073 **/ 4074 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4075 { 4076 struct iavf_adapter *adapter = netdev_priv(netdev); 4077 4078 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4079 netdev->mtu, new_mtu); 4080 netdev->mtu = new_mtu; 4081 if (CLIENT_ENABLED(adapter)) { 4082 iavf_notify_client_l2_params(&adapter->vsi); 4083 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4084 } 4085 4086 if (netif_running(netdev)) { 4087 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4088 queue_work(iavf_wq, &adapter->reset_task); 4089 } 4090 4091 return 0; 4092 } 4093 4094 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4095 NETIF_F_HW_VLAN_CTAG_TX | \ 4096 NETIF_F_HW_VLAN_STAG_RX | \ 4097 NETIF_F_HW_VLAN_STAG_TX) 4098 4099 /** 4100 * iavf_set_features - set the netdev feature flags 4101 * @netdev: ptr to the netdev being adjusted 4102 * @features: the feature set that the stack is suggesting 4103 * Note: expects to be called while under rtnl_lock() 4104 **/ 4105 static int iavf_set_features(struct net_device *netdev, 4106 netdev_features_t features) 4107 { 4108 struct iavf_adapter *adapter = netdev_priv(netdev); 4109 4110 /* trigger update on any VLAN feature change */ 4111 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4112 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4113 iavf_set_vlan_offload_features(adapter, netdev->features, 4114 features); 4115 4116 return 0; 4117 } 4118 4119 /** 4120 * iavf_features_check - Validate encapsulated packet conforms to limits 4121 * @skb: skb buff 4122 * @dev: This physical port's netdev 4123 * @features: Offload features that the stack believes apply 4124 **/ 4125 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4126 struct net_device *dev, 4127 netdev_features_t features) 4128 { 4129 size_t len; 4130 4131 /* No point in doing any of this if neither checksum nor GSO are 4132 * being requested for this frame. We can rule out both by just 4133 * checking for CHECKSUM_PARTIAL 4134 */ 4135 if (skb->ip_summed != CHECKSUM_PARTIAL) 4136 return features; 4137 4138 /* We cannot support GSO if the MSS is going to be less than 4139 * 64 bytes. If it is then we need to drop support for GSO. 4140 */ 4141 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4142 features &= ~NETIF_F_GSO_MASK; 4143 4144 /* MACLEN can support at most 63 words */ 4145 len = skb_network_header(skb) - skb->data; 4146 if (len & ~(63 * 2)) 4147 goto out_err; 4148 4149 /* IPLEN and EIPLEN can support at most 127 dwords */ 4150 len = skb_transport_header(skb) - skb_network_header(skb); 4151 if (len & ~(127 * 4)) 4152 goto out_err; 4153 4154 if (skb->encapsulation) { 4155 /* L4TUNLEN can support 127 words */ 4156 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4157 if (len & ~(127 * 2)) 4158 goto out_err; 4159 4160 /* IPLEN can support at most 127 dwords */ 4161 len = skb_inner_transport_header(skb) - 4162 skb_inner_network_header(skb); 4163 if (len & ~(127 * 4)) 4164 goto out_err; 4165 } 4166 4167 /* No need to validate L4LEN as TCP is the only protocol with a 4168 * a flexible value and we support all possible values supported 4169 * by TCP, which is at most 15 dwords 4170 */ 4171 4172 return features; 4173 out_err: 4174 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4175 } 4176 4177 /** 4178 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4179 * @adapter: board private structure 4180 * 4181 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4182 * were negotiated determine the VLAN features that can be toggled on and off. 4183 **/ 4184 static netdev_features_t 4185 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4186 { 4187 netdev_features_t hw_features = 0; 4188 4189 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4190 return hw_features; 4191 4192 /* Enable VLAN features if supported */ 4193 if (VLAN_ALLOWED(adapter)) { 4194 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4195 NETIF_F_HW_VLAN_CTAG_RX); 4196 } else if (VLAN_V2_ALLOWED(adapter)) { 4197 struct virtchnl_vlan_caps *vlan_v2_caps = 4198 &adapter->vlan_v2_caps; 4199 struct virtchnl_vlan_supported_caps *stripping_support = 4200 &vlan_v2_caps->offloads.stripping_support; 4201 struct virtchnl_vlan_supported_caps *insertion_support = 4202 &vlan_v2_caps->offloads.insertion_support; 4203 4204 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4205 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4206 if (stripping_support->outer & 4207 VIRTCHNL_VLAN_ETHERTYPE_8100) 4208 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4209 if (stripping_support->outer & 4210 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4211 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4212 } else if (stripping_support->inner != 4213 VIRTCHNL_VLAN_UNSUPPORTED && 4214 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4215 if (stripping_support->inner & 4216 VIRTCHNL_VLAN_ETHERTYPE_8100) 4217 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4218 } 4219 4220 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4221 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4222 if (insertion_support->outer & 4223 VIRTCHNL_VLAN_ETHERTYPE_8100) 4224 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4225 if (insertion_support->outer & 4226 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4227 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4228 } else if (insertion_support->inner && 4229 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4230 if (insertion_support->inner & 4231 VIRTCHNL_VLAN_ETHERTYPE_8100) 4232 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4233 } 4234 } 4235 4236 return hw_features; 4237 } 4238 4239 /** 4240 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4241 * @adapter: board private structure 4242 * 4243 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4244 * were negotiated determine the VLAN features that are enabled by default. 4245 **/ 4246 static netdev_features_t 4247 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4248 { 4249 netdev_features_t features = 0; 4250 4251 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4252 return features; 4253 4254 if (VLAN_ALLOWED(adapter)) { 4255 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4256 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4257 } else if (VLAN_V2_ALLOWED(adapter)) { 4258 struct virtchnl_vlan_caps *vlan_v2_caps = 4259 &adapter->vlan_v2_caps; 4260 struct virtchnl_vlan_supported_caps *filtering_support = 4261 &vlan_v2_caps->filtering.filtering_support; 4262 struct virtchnl_vlan_supported_caps *stripping_support = 4263 &vlan_v2_caps->offloads.stripping_support; 4264 struct virtchnl_vlan_supported_caps *insertion_support = 4265 &vlan_v2_caps->offloads.insertion_support; 4266 u32 ethertype_init; 4267 4268 /* give priority to outer stripping and don't support both outer 4269 * and inner stripping 4270 */ 4271 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4272 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4273 if (stripping_support->outer & 4274 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4275 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4276 features |= NETIF_F_HW_VLAN_CTAG_RX; 4277 else if (stripping_support->outer & 4278 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4279 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4280 features |= NETIF_F_HW_VLAN_STAG_RX; 4281 } else if (stripping_support->inner != 4282 VIRTCHNL_VLAN_UNSUPPORTED) { 4283 if (stripping_support->inner & 4284 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4285 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4286 features |= NETIF_F_HW_VLAN_CTAG_RX; 4287 } 4288 4289 /* give priority to outer insertion and don't support both outer 4290 * and inner insertion 4291 */ 4292 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4293 if (insertion_support->outer & 4294 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4295 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4296 features |= NETIF_F_HW_VLAN_CTAG_TX; 4297 else if (insertion_support->outer & 4298 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4299 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4300 features |= NETIF_F_HW_VLAN_STAG_TX; 4301 } else if (insertion_support->inner != 4302 VIRTCHNL_VLAN_UNSUPPORTED) { 4303 if (insertion_support->inner & 4304 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4305 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4306 features |= NETIF_F_HW_VLAN_CTAG_TX; 4307 } 4308 4309 /* give priority to outer filtering and don't bother if both 4310 * outer and inner filtering are enabled 4311 */ 4312 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4313 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4314 if (filtering_support->outer & 4315 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4316 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4317 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4318 if (filtering_support->outer & 4319 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4320 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4321 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4322 } else if (filtering_support->inner != 4323 VIRTCHNL_VLAN_UNSUPPORTED) { 4324 if (filtering_support->inner & 4325 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4326 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4327 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4328 if (filtering_support->inner & 4329 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4330 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4331 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4332 } 4333 } 4334 4335 return features; 4336 } 4337 4338 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4339 (!(((requested) & (feature_bit)) && \ 4340 !((allowed) & (feature_bit)))) 4341 4342 /** 4343 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4344 * @adapter: board private structure 4345 * @requested_features: stack requested NETDEV features 4346 **/ 4347 static netdev_features_t 4348 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4349 netdev_features_t requested_features) 4350 { 4351 netdev_features_t allowed_features; 4352 4353 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4354 iavf_get_netdev_vlan_features(adapter); 4355 4356 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4357 allowed_features, 4358 NETIF_F_HW_VLAN_CTAG_TX)) 4359 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4360 4361 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4362 allowed_features, 4363 NETIF_F_HW_VLAN_CTAG_RX)) 4364 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4365 4366 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4367 allowed_features, 4368 NETIF_F_HW_VLAN_STAG_TX)) 4369 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4370 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4371 allowed_features, 4372 NETIF_F_HW_VLAN_STAG_RX)) 4373 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4374 4375 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4376 allowed_features, 4377 NETIF_F_HW_VLAN_CTAG_FILTER)) 4378 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4379 4380 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4381 allowed_features, 4382 NETIF_F_HW_VLAN_STAG_FILTER)) 4383 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4384 4385 if ((requested_features & 4386 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4387 (requested_features & 4388 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4389 adapter->vlan_v2_caps.offloads.ethertype_match == 4390 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4391 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4392 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4393 NETIF_F_HW_VLAN_STAG_TX); 4394 } 4395 4396 return requested_features; 4397 } 4398 4399 /** 4400 * iavf_fix_features - fix up the netdev feature bits 4401 * @netdev: our net device 4402 * @features: desired feature bits 4403 * 4404 * Returns fixed-up features bits 4405 **/ 4406 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4407 netdev_features_t features) 4408 { 4409 struct iavf_adapter *adapter = netdev_priv(netdev); 4410 4411 return iavf_fix_netdev_vlan_features(adapter, features); 4412 } 4413 4414 static const struct net_device_ops iavf_netdev_ops = { 4415 .ndo_open = iavf_open, 4416 .ndo_stop = iavf_close, 4417 .ndo_start_xmit = iavf_xmit_frame, 4418 .ndo_set_rx_mode = iavf_set_rx_mode, 4419 .ndo_validate_addr = eth_validate_addr, 4420 .ndo_set_mac_address = iavf_set_mac, 4421 .ndo_change_mtu = iavf_change_mtu, 4422 .ndo_tx_timeout = iavf_tx_timeout, 4423 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4424 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4425 .ndo_features_check = iavf_features_check, 4426 .ndo_fix_features = iavf_fix_features, 4427 .ndo_set_features = iavf_set_features, 4428 .ndo_setup_tc = iavf_setup_tc, 4429 }; 4430 4431 /** 4432 * iavf_check_reset_complete - check that VF reset is complete 4433 * @hw: pointer to hw struct 4434 * 4435 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4436 **/ 4437 static int iavf_check_reset_complete(struct iavf_hw *hw) 4438 { 4439 u32 rstat; 4440 int i; 4441 4442 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4443 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4444 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4445 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4446 (rstat == VIRTCHNL_VFR_COMPLETED)) 4447 return 0; 4448 usleep_range(10, 20); 4449 } 4450 return -EBUSY; 4451 } 4452 4453 /** 4454 * iavf_process_config - Process the config information we got from the PF 4455 * @adapter: board private structure 4456 * 4457 * Verify that we have a valid config struct, and set up our netdev features 4458 * and our VSI struct. 4459 **/ 4460 int iavf_process_config(struct iavf_adapter *adapter) 4461 { 4462 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4463 netdev_features_t hw_vlan_features, vlan_features; 4464 struct net_device *netdev = adapter->netdev; 4465 netdev_features_t hw_enc_features; 4466 netdev_features_t hw_features; 4467 4468 hw_enc_features = NETIF_F_SG | 4469 NETIF_F_IP_CSUM | 4470 NETIF_F_IPV6_CSUM | 4471 NETIF_F_HIGHDMA | 4472 NETIF_F_SOFT_FEATURES | 4473 NETIF_F_TSO | 4474 NETIF_F_TSO_ECN | 4475 NETIF_F_TSO6 | 4476 NETIF_F_SCTP_CRC | 4477 NETIF_F_RXHASH | 4478 NETIF_F_RXCSUM | 4479 0; 4480 4481 /* advertise to stack only if offloads for encapsulated packets is 4482 * supported 4483 */ 4484 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4485 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4486 NETIF_F_GSO_GRE | 4487 NETIF_F_GSO_GRE_CSUM | 4488 NETIF_F_GSO_IPXIP4 | 4489 NETIF_F_GSO_IPXIP6 | 4490 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4491 NETIF_F_GSO_PARTIAL | 4492 0; 4493 4494 if (!(vfres->vf_cap_flags & 4495 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4496 netdev->gso_partial_features |= 4497 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4498 4499 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4500 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4501 netdev->hw_enc_features |= hw_enc_features; 4502 } 4503 /* record features VLANs can make use of */ 4504 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4505 4506 /* Write features and hw_features separately to avoid polluting 4507 * with, or dropping, features that are set when we registered. 4508 */ 4509 hw_features = hw_enc_features; 4510 4511 /* get HW VLAN features that can be toggled */ 4512 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4513 4514 /* Enable cloud filter if ADQ is supported */ 4515 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4516 hw_features |= NETIF_F_HW_TC; 4517 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4518 hw_features |= NETIF_F_GSO_UDP_L4; 4519 4520 netdev->hw_features |= hw_features | hw_vlan_features; 4521 vlan_features = iavf_get_netdev_vlan_features(adapter); 4522 4523 netdev->features |= hw_features | vlan_features; 4524 4525 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4526 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4527 4528 netdev->priv_flags |= IFF_UNICAST_FLT; 4529 4530 /* Do not turn on offloads when they are requested to be turned off. 4531 * TSO needs minimum 576 bytes to work correctly. 4532 */ 4533 if (netdev->wanted_features) { 4534 if (!(netdev->wanted_features & NETIF_F_TSO) || 4535 netdev->mtu < 576) 4536 netdev->features &= ~NETIF_F_TSO; 4537 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4538 netdev->mtu < 576) 4539 netdev->features &= ~NETIF_F_TSO6; 4540 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4541 netdev->features &= ~NETIF_F_TSO_ECN; 4542 if (!(netdev->wanted_features & NETIF_F_GRO)) 4543 netdev->features &= ~NETIF_F_GRO; 4544 if (!(netdev->wanted_features & NETIF_F_GSO)) 4545 netdev->features &= ~NETIF_F_GSO; 4546 } 4547 4548 return 0; 4549 } 4550 4551 /** 4552 * iavf_shutdown - Shutdown the device in preparation for a reboot 4553 * @pdev: pci device structure 4554 **/ 4555 static void iavf_shutdown(struct pci_dev *pdev) 4556 { 4557 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4558 struct net_device *netdev = adapter->netdev; 4559 4560 netif_device_detach(netdev); 4561 4562 if (netif_running(netdev)) 4563 iavf_close(netdev); 4564 4565 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4566 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4567 /* Prevent the watchdog from running. */ 4568 iavf_change_state(adapter, __IAVF_REMOVE); 4569 adapter->aq_required = 0; 4570 mutex_unlock(&adapter->crit_lock); 4571 4572 #ifdef CONFIG_PM 4573 pci_save_state(pdev); 4574 4575 #endif 4576 pci_disable_device(pdev); 4577 } 4578 4579 /** 4580 * iavf_probe - Device Initialization Routine 4581 * @pdev: PCI device information struct 4582 * @ent: entry in iavf_pci_tbl 4583 * 4584 * Returns 0 on success, negative on failure 4585 * 4586 * iavf_probe initializes an adapter identified by a pci_dev structure. 4587 * The OS initialization, configuring of the adapter private structure, 4588 * and a hardware reset occur. 4589 **/ 4590 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4591 { 4592 struct net_device *netdev; 4593 struct iavf_adapter *adapter = NULL; 4594 struct iavf_hw *hw = NULL; 4595 int err; 4596 4597 err = pci_enable_device(pdev); 4598 if (err) 4599 return err; 4600 4601 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4602 if (err) { 4603 dev_err(&pdev->dev, 4604 "DMA configuration failed: 0x%x\n", err); 4605 goto err_dma; 4606 } 4607 4608 err = pci_request_regions(pdev, iavf_driver_name); 4609 if (err) { 4610 dev_err(&pdev->dev, 4611 "pci_request_regions failed 0x%x\n", err); 4612 goto err_pci_reg; 4613 } 4614 4615 pci_enable_pcie_error_reporting(pdev); 4616 4617 pci_set_master(pdev); 4618 4619 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4620 IAVF_MAX_REQ_QUEUES); 4621 if (!netdev) { 4622 err = -ENOMEM; 4623 goto err_alloc_etherdev; 4624 } 4625 4626 SET_NETDEV_DEV(netdev, &pdev->dev); 4627 4628 pci_set_drvdata(pdev, netdev); 4629 adapter = netdev_priv(netdev); 4630 4631 adapter->netdev = netdev; 4632 adapter->pdev = pdev; 4633 4634 hw = &adapter->hw; 4635 hw->back = adapter; 4636 4637 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4638 iavf_change_state(adapter, __IAVF_STARTUP); 4639 4640 /* Call save state here because it relies on the adapter struct. */ 4641 pci_save_state(pdev); 4642 4643 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4644 pci_resource_len(pdev, 0)); 4645 if (!hw->hw_addr) { 4646 err = -EIO; 4647 goto err_ioremap; 4648 } 4649 hw->vendor_id = pdev->vendor; 4650 hw->device_id = pdev->device; 4651 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4652 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4653 hw->subsystem_device_id = pdev->subsystem_device; 4654 hw->bus.device = PCI_SLOT(pdev->devfn); 4655 hw->bus.func = PCI_FUNC(pdev->devfn); 4656 hw->bus.bus_id = pdev->bus->number; 4657 4658 /* set up the locks for the AQ, do this only once in probe 4659 * and destroy them only once in remove 4660 */ 4661 mutex_init(&adapter->crit_lock); 4662 mutex_init(&adapter->client_lock); 4663 mutex_init(&hw->aq.asq_mutex); 4664 mutex_init(&hw->aq.arq_mutex); 4665 4666 spin_lock_init(&adapter->mac_vlan_list_lock); 4667 spin_lock_init(&adapter->cloud_filter_list_lock); 4668 spin_lock_init(&adapter->fdir_fltr_lock); 4669 spin_lock_init(&adapter->adv_rss_lock); 4670 4671 INIT_LIST_HEAD(&adapter->mac_filter_list); 4672 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4673 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4674 INIT_LIST_HEAD(&adapter->fdir_list_head); 4675 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4676 4677 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4678 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4679 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4680 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4681 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4682 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4683 4684 /* Setup the wait queue for indicating transition to down status */ 4685 init_waitqueue_head(&adapter->down_waitqueue); 4686 4687 return 0; 4688 4689 err_ioremap: 4690 free_netdev(netdev); 4691 err_alloc_etherdev: 4692 pci_disable_pcie_error_reporting(pdev); 4693 pci_release_regions(pdev); 4694 err_pci_reg: 4695 err_dma: 4696 pci_disable_device(pdev); 4697 return err; 4698 } 4699 4700 /** 4701 * iavf_suspend - Power management suspend routine 4702 * @dev_d: device info pointer 4703 * 4704 * Called when the system (VM) is entering sleep/suspend. 4705 **/ 4706 static int __maybe_unused iavf_suspend(struct device *dev_d) 4707 { 4708 struct net_device *netdev = dev_get_drvdata(dev_d); 4709 struct iavf_adapter *adapter = netdev_priv(netdev); 4710 4711 netif_device_detach(netdev); 4712 4713 while (!mutex_trylock(&adapter->crit_lock)) 4714 usleep_range(500, 1000); 4715 4716 if (netif_running(netdev)) { 4717 rtnl_lock(); 4718 iavf_down(adapter); 4719 rtnl_unlock(); 4720 } 4721 iavf_free_misc_irq(adapter); 4722 iavf_reset_interrupt_capability(adapter); 4723 4724 mutex_unlock(&adapter->crit_lock); 4725 4726 return 0; 4727 } 4728 4729 /** 4730 * iavf_resume - Power management resume routine 4731 * @dev_d: device info pointer 4732 * 4733 * Called when the system (VM) is resumed from sleep/suspend. 4734 **/ 4735 static int __maybe_unused iavf_resume(struct device *dev_d) 4736 { 4737 struct pci_dev *pdev = to_pci_dev(dev_d); 4738 struct iavf_adapter *adapter; 4739 u32 err; 4740 4741 adapter = iavf_pdev_to_adapter(pdev); 4742 4743 pci_set_master(pdev); 4744 4745 rtnl_lock(); 4746 err = iavf_set_interrupt_capability(adapter); 4747 if (err) { 4748 rtnl_unlock(); 4749 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 4750 return err; 4751 } 4752 err = iavf_request_misc_irq(adapter); 4753 rtnl_unlock(); 4754 if (err) { 4755 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 4756 return err; 4757 } 4758 4759 queue_work(iavf_wq, &adapter->reset_task); 4760 4761 netif_device_attach(adapter->netdev); 4762 4763 return err; 4764 } 4765 4766 /** 4767 * iavf_remove - Device Removal Routine 4768 * @pdev: PCI device information struct 4769 * 4770 * iavf_remove is called by the PCI subsystem to alert the driver 4771 * that it should release a PCI device. The could be caused by a 4772 * Hot-Plug event, or because the driver is going to be removed from 4773 * memory. 4774 **/ 4775 static void iavf_remove(struct pci_dev *pdev) 4776 { 4777 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4778 struct net_device *netdev = adapter->netdev; 4779 struct iavf_fdir_fltr *fdir, *fdirtmp; 4780 struct iavf_vlan_filter *vlf, *vlftmp; 4781 struct iavf_adv_rss *rss, *rsstmp; 4782 struct iavf_mac_filter *f, *ftmp; 4783 struct iavf_cloud_filter *cf, *cftmp; 4784 struct iavf_hw *hw = &adapter->hw; 4785 int err; 4786 4787 /* When reboot/shutdown is in progress no need to do anything 4788 * as the adapter is already REMOVE state that was set during 4789 * iavf_shutdown() callback. 4790 */ 4791 if (adapter->state == __IAVF_REMOVE) 4792 return; 4793 4794 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 4795 /* Wait until port initialization is complete. 4796 * There are flows where register/unregister netdev may race. 4797 */ 4798 while (1) { 4799 mutex_lock(&adapter->crit_lock); 4800 if (adapter->state == __IAVF_RUNNING || 4801 adapter->state == __IAVF_DOWN || 4802 adapter->state == __IAVF_INIT_FAILED) { 4803 mutex_unlock(&adapter->crit_lock); 4804 break; 4805 } 4806 4807 mutex_unlock(&adapter->crit_lock); 4808 usleep_range(500, 1000); 4809 } 4810 cancel_delayed_work_sync(&adapter->watchdog_task); 4811 4812 if (adapter->netdev_registered) { 4813 rtnl_lock(); 4814 unregister_netdevice(netdev); 4815 adapter->netdev_registered = false; 4816 rtnl_unlock(); 4817 } 4818 if (CLIENT_ALLOWED(adapter)) { 4819 err = iavf_lan_del_device(adapter); 4820 if (err) 4821 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 4822 err); 4823 } 4824 4825 mutex_lock(&adapter->crit_lock); 4826 dev_info(&adapter->pdev->dev, "Remove device\n"); 4827 iavf_change_state(adapter, __IAVF_REMOVE); 4828 4829 iavf_request_reset(adapter); 4830 msleep(50); 4831 /* If the FW isn't responding, kick it once, but only once. */ 4832 if (!iavf_asq_done(hw)) { 4833 iavf_request_reset(adapter); 4834 msleep(50); 4835 } 4836 4837 iavf_misc_irq_disable(adapter); 4838 /* Shut down all the garbage mashers on the detention level */ 4839 cancel_work_sync(&adapter->reset_task); 4840 cancel_delayed_work_sync(&adapter->watchdog_task); 4841 cancel_work_sync(&adapter->adminq_task); 4842 cancel_delayed_work_sync(&adapter->client_task); 4843 4844 adapter->aq_required = 0; 4845 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 4846 4847 iavf_free_all_tx_resources(adapter); 4848 iavf_free_all_rx_resources(adapter); 4849 iavf_free_misc_irq(adapter); 4850 4851 iavf_reset_interrupt_capability(adapter); 4852 iavf_free_q_vectors(adapter); 4853 4854 iavf_free_rss(adapter); 4855 4856 if (hw->aq.asq.count) 4857 iavf_shutdown_adminq(hw); 4858 4859 /* destroy the locks only once, here */ 4860 mutex_destroy(&hw->aq.arq_mutex); 4861 mutex_destroy(&hw->aq.asq_mutex); 4862 mutex_destroy(&adapter->client_lock); 4863 mutex_unlock(&adapter->crit_lock); 4864 mutex_destroy(&adapter->crit_lock); 4865 4866 iounmap(hw->hw_addr); 4867 pci_release_regions(pdev); 4868 iavf_free_queues(adapter); 4869 kfree(adapter->vf_res); 4870 spin_lock_bh(&adapter->mac_vlan_list_lock); 4871 /* If we got removed before an up/down sequence, we've got a filter 4872 * hanging out there that we need to get rid of. 4873 */ 4874 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 4875 list_del(&f->list); 4876 kfree(f); 4877 } 4878 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 4879 list) { 4880 list_del(&vlf->list); 4881 kfree(vlf); 4882 } 4883 4884 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4885 4886 spin_lock_bh(&adapter->cloud_filter_list_lock); 4887 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 4888 list_del(&cf->list); 4889 kfree(cf); 4890 } 4891 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4892 4893 spin_lock_bh(&adapter->fdir_fltr_lock); 4894 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 4895 list_del(&fdir->list); 4896 kfree(fdir); 4897 } 4898 spin_unlock_bh(&adapter->fdir_fltr_lock); 4899 4900 spin_lock_bh(&adapter->adv_rss_lock); 4901 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 4902 list) { 4903 list_del(&rss->list); 4904 kfree(rss); 4905 } 4906 spin_unlock_bh(&adapter->adv_rss_lock); 4907 4908 free_netdev(netdev); 4909 4910 pci_disable_pcie_error_reporting(pdev); 4911 4912 pci_disable_device(pdev); 4913 } 4914 4915 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 4916 4917 static struct pci_driver iavf_driver = { 4918 .name = iavf_driver_name, 4919 .id_table = iavf_pci_tbl, 4920 .probe = iavf_probe, 4921 .remove = iavf_remove, 4922 .driver.pm = &iavf_pm_ops, 4923 .shutdown = iavf_shutdown, 4924 }; 4925 4926 /** 4927 * iavf_init_module - Driver Registration Routine 4928 * 4929 * iavf_init_module is the first routine called when the driver is 4930 * loaded. All it does is register with the PCI subsystem. 4931 **/ 4932 static int __init iavf_init_module(void) 4933 { 4934 pr_info("iavf: %s\n", iavf_driver_string); 4935 4936 pr_info("%s\n", iavf_copyright); 4937 4938 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4939 iavf_driver_name); 4940 if (!iavf_wq) { 4941 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4942 return -ENOMEM; 4943 } 4944 return pci_register_driver(&iavf_driver); 4945 } 4946 4947 module_init(iavf_init_module); 4948 4949 /** 4950 * iavf_exit_module - Driver Exit Cleanup Routine 4951 * 4952 * iavf_exit_module is called just before the driver is removed 4953 * from memory. 4954 **/ 4955 static void __exit iavf_exit_module(void) 4956 { 4957 pci_unregister_driver(&iavf_driver); 4958 destroy_workqueue(iavf_wq); 4959 } 4960 4961 module_exit(iavf_exit_module); 4962 4963 /* iavf_main.c */ 4964