1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_is_reset_in_progress - Check if a reset is in progress 171 * @adapter: board private structure 172 */ 173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 174 { 175 if (adapter->state == __IAVF_RESETTING || 176 adapter->flags & (IAVF_FLAG_RESET_PENDING | 177 IAVF_FLAG_RESET_NEEDED)) 178 return true; 179 180 return false; 181 } 182 183 /** 184 * iavf_wait_for_reset - Wait for reset to finish. 185 * @adapter: board private structure 186 * 187 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 188 */ 189 int iavf_wait_for_reset(struct iavf_adapter *adapter) 190 { 191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 192 !iavf_is_reset_in_progress(adapter), 193 msecs_to_jiffies(5000)); 194 195 /* If ret < 0 then it means wait was interrupted. 196 * If ret == 0 then it means we got a timeout while waiting 197 * for reset to finish. 198 * If ret > 0 it means reset has finished. 199 */ 200 if (ret > 0) 201 return 0; 202 else if (ret < 0) 203 return -EINTR; 204 else 205 return -EBUSY; 206 } 207 208 /** 209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 210 * @hw: pointer to the HW structure 211 * @mem: ptr to mem struct to fill out 212 * @size: size of memory requested 213 * @alignment: what to align the allocation to 214 **/ 215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 216 struct iavf_dma_mem *mem, 217 u64 size, u32 alignment) 218 { 219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 220 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = ALIGN(size, alignment); 225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 226 (dma_addr_t *)&mem->pa, GFP_KERNEL); 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_dma_mem - wrapper for DMA memory freeing 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 239 { 240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 241 242 if (!mem || !mem->va) 243 return IAVF_ERR_PARAM; 244 dma_free_coherent(&adapter->pdev->dev, mem->size, 245 mem->va, (dma_addr_t)mem->pa); 246 return 0; 247 } 248 249 /** 250 * iavf_allocate_virt_mem - virt memory alloc wrapper 251 * @hw: pointer to the HW structure 252 * @mem: ptr to mem struct to fill out 253 * @size: size of memory requested 254 **/ 255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 256 struct iavf_virt_mem *mem, u32 size) 257 { 258 if (!mem) 259 return IAVF_ERR_PARAM; 260 261 mem->size = size; 262 mem->va = kzalloc(size, GFP_KERNEL); 263 264 if (mem->va) 265 return 0; 266 else 267 return IAVF_ERR_NO_MEMORY; 268 } 269 270 /** 271 * iavf_free_virt_mem - virt memory free wrapper 272 * @hw: pointer to the HW structure 273 * @mem: ptr to mem struct to free 274 **/ 275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 276 { 277 kfree(mem->va); 278 } 279 280 /** 281 * iavf_schedule_reset - Set the flags and schedule a reset event 282 * @adapter: board private structure 283 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 284 **/ 285 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 286 { 287 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 288 !(adapter->flags & 289 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 290 adapter->flags |= flags; 291 queue_work(adapter->wq, &adapter->reset_task); 292 } 293 } 294 295 /** 296 * iavf_schedule_aq_request - Set the flags and schedule aq request 297 * @adapter: board private structure 298 * @flags: requested aq flags 299 **/ 300 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 301 { 302 adapter->aq_required |= flags; 303 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 304 } 305 306 /** 307 * iavf_tx_timeout - Respond to a Tx Hang 308 * @netdev: network interface device structure 309 * @txqueue: queue number that is timing out 310 **/ 311 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 312 { 313 struct iavf_adapter *adapter = netdev_priv(netdev); 314 315 adapter->tx_timeout_count++; 316 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 317 } 318 319 /** 320 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 321 * @adapter: board private structure 322 **/ 323 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 324 { 325 struct iavf_hw *hw = &adapter->hw; 326 327 if (!adapter->msix_entries) 328 return; 329 330 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 331 332 iavf_flush(hw); 333 334 synchronize_irq(adapter->msix_entries[0].vector); 335 } 336 337 /** 338 * iavf_misc_irq_enable - Enable default interrupt generation settings 339 * @adapter: board private structure 340 **/ 341 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 342 { 343 struct iavf_hw *hw = &adapter->hw; 344 345 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 346 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 347 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 348 349 iavf_flush(hw); 350 } 351 352 /** 353 * iavf_irq_disable - Mask off interrupt generation on the NIC 354 * @adapter: board private structure 355 **/ 356 static void iavf_irq_disable(struct iavf_adapter *adapter) 357 { 358 int i; 359 struct iavf_hw *hw = &adapter->hw; 360 361 if (!adapter->msix_entries) 362 return; 363 364 for (i = 1; i < adapter->num_msix_vectors; i++) { 365 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 366 synchronize_irq(adapter->msix_entries[i].vector); 367 } 368 iavf_flush(hw); 369 } 370 371 /** 372 * iavf_irq_enable_queues - Enable interrupt for all queues 373 * @adapter: board private structure 374 **/ 375 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 376 { 377 struct iavf_hw *hw = &adapter->hw; 378 int i; 379 380 for (i = 1; i < adapter->num_msix_vectors; i++) { 381 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 382 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 383 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 384 } 385 } 386 387 /** 388 * iavf_irq_enable - Enable default interrupt generation settings 389 * @adapter: board private structure 390 * @flush: boolean value whether to run rd32() 391 **/ 392 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 393 { 394 struct iavf_hw *hw = &adapter->hw; 395 396 iavf_misc_irq_enable(adapter); 397 iavf_irq_enable_queues(adapter); 398 399 if (flush) 400 iavf_flush(hw); 401 } 402 403 /** 404 * iavf_msix_aq - Interrupt handler for vector 0 405 * @irq: interrupt number 406 * @data: pointer to netdev 407 **/ 408 static irqreturn_t iavf_msix_aq(int irq, void *data) 409 { 410 struct net_device *netdev = data; 411 struct iavf_adapter *adapter = netdev_priv(netdev); 412 struct iavf_hw *hw = &adapter->hw; 413 414 /* handle non-queue interrupts, these reads clear the registers */ 415 rd32(hw, IAVF_VFINT_ICR01); 416 rd32(hw, IAVF_VFINT_ICR0_ENA1); 417 418 if (adapter->state != __IAVF_REMOVE) 419 /* schedule work on the private workqueue */ 420 queue_work(adapter->wq, &adapter->adminq_task); 421 422 return IRQ_HANDLED; 423 } 424 425 /** 426 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 427 * @irq: interrupt number 428 * @data: pointer to a q_vector 429 **/ 430 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 431 { 432 struct iavf_q_vector *q_vector = data; 433 434 if (!q_vector->tx.ring && !q_vector->rx.ring) 435 return IRQ_HANDLED; 436 437 napi_schedule_irqoff(&q_vector->napi); 438 439 return IRQ_HANDLED; 440 } 441 442 /** 443 * iavf_map_vector_to_rxq - associate irqs with rx queues 444 * @adapter: board private structure 445 * @v_idx: interrupt number 446 * @r_idx: queue number 447 **/ 448 static void 449 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 450 { 451 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 452 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 453 struct iavf_hw *hw = &adapter->hw; 454 455 rx_ring->q_vector = q_vector; 456 rx_ring->next = q_vector->rx.ring; 457 rx_ring->vsi = &adapter->vsi; 458 q_vector->rx.ring = rx_ring; 459 q_vector->rx.count++; 460 q_vector->rx.next_update = jiffies + 1; 461 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 462 q_vector->ring_mask |= BIT(r_idx); 463 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 464 q_vector->rx.current_itr >> 1); 465 q_vector->rx.current_itr = q_vector->rx.target_itr; 466 } 467 468 /** 469 * iavf_map_vector_to_txq - associate irqs with tx queues 470 * @adapter: board private structure 471 * @v_idx: interrupt number 472 * @t_idx: queue number 473 **/ 474 static void 475 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 476 { 477 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 478 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 479 struct iavf_hw *hw = &adapter->hw; 480 481 tx_ring->q_vector = q_vector; 482 tx_ring->next = q_vector->tx.ring; 483 tx_ring->vsi = &adapter->vsi; 484 q_vector->tx.ring = tx_ring; 485 q_vector->tx.count++; 486 q_vector->tx.next_update = jiffies + 1; 487 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 488 q_vector->num_ringpairs++; 489 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 490 q_vector->tx.target_itr >> 1); 491 q_vector->tx.current_itr = q_vector->tx.target_itr; 492 } 493 494 /** 495 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 496 * @adapter: board private structure to initialize 497 * 498 * This function maps descriptor rings to the queue-specific vectors 499 * we were allotted through the MSI-X enabling code. Ideally, we'd have 500 * one vector per ring/queue, but on a constrained vector budget, we 501 * group the rings as "efficiently" as possible. You would add new 502 * mapping configurations in here. 503 **/ 504 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 505 { 506 int rings_remaining = adapter->num_active_queues; 507 int ridx = 0, vidx = 0; 508 int q_vectors; 509 510 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 511 512 for (; ridx < rings_remaining; ridx++) { 513 iavf_map_vector_to_rxq(adapter, vidx, ridx); 514 iavf_map_vector_to_txq(adapter, vidx, ridx); 515 516 /* In the case where we have more queues than vectors, continue 517 * round-robin on vectors until all queues are mapped. 518 */ 519 if (++vidx >= q_vectors) 520 vidx = 0; 521 } 522 523 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 524 } 525 526 /** 527 * iavf_irq_affinity_notify - Callback for affinity changes 528 * @notify: context as to what irq was changed 529 * @mask: the new affinity mask 530 * 531 * This is a callback function used by the irq_set_affinity_notifier function 532 * so that we may register to receive changes to the irq affinity masks. 533 **/ 534 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 535 const cpumask_t *mask) 536 { 537 struct iavf_q_vector *q_vector = 538 container_of(notify, struct iavf_q_vector, affinity_notify); 539 540 cpumask_copy(&q_vector->affinity_mask, mask); 541 } 542 543 /** 544 * iavf_irq_affinity_release - Callback for affinity notifier release 545 * @ref: internal core kernel usage 546 * 547 * This is a callback function used by the irq_set_affinity_notifier function 548 * to inform the current notification subscriber that they will no longer 549 * receive notifications. 550 **/ 551 static void iavf_irq_affinity_release(struct kref *ref) {} 552 553 /** 554 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 555 * @adapter: board private structure 556 * @basename: device basename 557 * 558 * Allocates MSI-X vectors for tx and rx handling, and requests 559 * interrupts from the kernel. 560 **/ 561 static int 562 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 563 { 564 unsigned int vector, q_vectors; 565 unsigned int rx_int_idx = 0, tx_int_idx = 0; 566 int irq_num, err; 567 int cpu; 568 569 iavf_irq_disable(adapter); 570 /* Decrement for Other and TCP Timer vectors */ 571 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 572 573 for (vector = 0; vector < q_vectors; vector++) { 574 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 575 576 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 577 578 if (q_vector->tx.ring && q_vector->rx.ring) { 579 snprintf(q_vector->name, sizeof(q_vector->name), 580 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 581 tx_int_idx++; 582 } else if (q_vector->rx.ring) { 583 snprintf(q_vector->name, sizeof(q_vector->name), 584 "iavf-%s-rx-%u", basename, rx_int_idx++); 585 } else if (q_vector->tx.ring) { 586 snprintf(q_vector->name, sizeof(q_vector->name), 587 "iavf-%s-tx-%u", basename, tx_int_idx++); 588 } else { 589 /* skip this unused q_vector */ 590 continue; 591 } 592 err = request_irq(irq_num, 593 iavf_msix_clean_rings, 594 0, 595 q_vector->name, 596 q_vector); 597 if (err) { 598 dev_info(&adapter->pdev->dev, 599 "Request_irq failed, error: %d\n", err); 600 goto free_queue_irqs; 601 } 602 /* register for affinity change notifications */ 603 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 604 q_vector->affinity_notify.release = 605 iavf_irq_affinity_release; 606 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 607 /* Spread the IRQ affinity hints across online CPUs. Note that 608 * get_cpu_mask returns a mask with a permanent lifetime so 609 * it's safe to use as a hint for irq_update_affinity_hint. 610 */ 611 cpu = cpumask_local_spread(q_vector->v_idx, -1); 612 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 613 } 614 615 return 0; 616 617 free_queue_irqs: 618 while (vector) { 619 vector--; 620 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 621 irq_set_affinity_notifier(irq_num, NULL); 622 irq_update_affinity_hint(irq_num, NULL); 623 free_irq(irq_num, &adapter->q_vectors[vector]); 624 } 625 return err; 626 } 627 628 /** 629 * iavf_request_misc_irq - Initialize MSI-X interrupts 630 * @adapter: board private structure 631 * 632 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 633 * vector is only for the admin queue, and stays active even when the netdev 634 * is closed. 635 **/ 636 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 637 { 638 struct net_device *netdev = adapter->netdev; 639 int err; 640 641 snprintf(adapter->misc_vector_name, 642 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 643 dev_name(&adapter->pdev->dev)); 644 err = request_irq(adapter->msix_entries[0].vector, 645 &iavf_msix_aq, 0, 646 adapter->misc_vector_name, netdev); 647 if (err) { 648 dev_err(&adapter->pdev->dev, 649 "request_irq for %s failed: %d\n", 650 adapter->misc_vector_name, err); 651 free_irq(adapter->msix_entries[0].vector, netdev); 652 } 653 return err; 654 } 655 656 /** 657 * iavf_free_traffic_irqs - Free MSI-X interrupts 658 * @adapter: board private structure 659 * 660 * Frees all MSI-X vectors other than 0. 661 **/ 662 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 663 { 664 int vector, irq_num, q_vectors; 665 666 if (!adapter->msix_entries) 667 return; 668 669 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 670 671 for (vector = 0; vector < q_vectors; vector++) { 672 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 673 irq_set_affinity_notifier(irq_num, NULL); 674 irq_update_affinity_hint(irq_num, NULL); 675 free_irq(irq_num, &adapter->q_vectors[vector]); 676 } 677 } 678 679 /** 680 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 681 * @adapter: board private structure 682 * 683 * Frees MSI-X vector 0. 684 **/ 685 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 686 { 687 struct net_device *netdev = adapter->netdev; 688 689 if (!adapter->msix_entries) 690 return; 691 692 free_irq(adapter->msix_entries[0].vector, netdev); 693 } 694 695 /** 696 * iavf_configure_tx - Configure Transmit Unit after Reset 697 * @adapter: board private structure 698 * 699 * Configure the Tx unit of the MAC after a reset. 700 **/ 701 static void iavf_configure_tx(struct iavf_adapter *adapter) 702 { 703 struct iavf_hw *hw = &adapter->hw; 704 int i; 705 706 for (i = 0; i < adapter->num_active_queues; i++) 707 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 708 } 709 710 /** 711 * iavf_configure_rx - Configure Receive Unit after Reset 712 * @adapter: board private structure 713 * 714 * Configure the Rx unit of the MAC after a reset. 715 **/ 716 static void iavf_configure_rx(struct iavf_adapter *adapter) 717 { 718 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 719 struct iavf_hw *hw = &adapter->hw; 720 int i; 721 722 /* Legacy Rx will always default to a 2048 buffer size. */ 723 #if (PAGE_SIZE < 8192) 724 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 725 struct net_device *netdev = adapter->netdev; 726 727 /* For jumbo frames on systems with 4K pages we have to use 728 * an order 1 page, so we might as well increase the size 729 * of our Rx buffer to make better use of the available space 730 */ 731 rx_buf_len = IAVF_RXBUFFER_3072; 732 733 /* We use a 1536 buffer size for configurations with 734 * standard Ethernet mtu. On x86 this gives us enough room 735 * for shared info and 192 bytes of padding. 736 */ 737 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 738 (netdev->mtu <= ETH_DATA_LEN)) 739 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 740 } 741 #endif 742 743 for (i = 0; i < adapter->num_active_queues; i++) { 744 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 745 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 746 747 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 748 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 749 else 750 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 751 } 752 } 753 754 /** 755 * iavf_find_vlan - Search filter list for specific vlan filter 756 * @adapter: board private structure 757 * @vlan: vlan tag 758 * 759 * Returns ptr to the filter object or NULL. Must be called while holding the 760 * mac_vlan_list_lock. 761 **/ 762 static struct 763 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 764 struct iavf_vlan vlan) 765 { 766 struct iavf_vlan_filter *f; 767 768 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 769 if (f->vlan.vid == vlan.vid && 770 f->vlan.tpid == vlan.tpid) 771 return f; 772 } 773 774 return NULL; 775 } 776 777 /** 778 * iavf_add_vlan - Add a vlan filter to the list 779 * @adapter: board private structure 780 * @vlan: VLAN tag 781 * 782 * Returns ptr to the filter object or NULL when no memory available. 783 **/ 784 static struct 785 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 786 struct iavf_vlan vlan) 787 { 788 struct iavf_vlan_filter *f = NULL; 789 790 spin_lock_bh(&adapter->mac_vlan_list_lock); 791 792 f = iavf_find_vlan(adapter, vlan); 793 if (!f) { 794 f = kzalloc(sizeof(*f), GFP_ATOMIC); 795 if (!f) 796 goto clearout; 797 798 f->vlan = vlan; 799 800 list_add_tail(&f->list, &adapter->vlan_filter_list); 801 f->state = IAVF_VLAN_ADD; 802 adapter->num_vlan_filters++; 803 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 804 } 805 806 clearout: 807 spin_unlock_bh(&adapter->mac_vlan_list_lock); 808 return f; 809 } 810 811 /** 812 * iavf_del_vlan - Remove a vlan filter from the list 813 * @adapter: board private structure 814 * @vlan: VLAN tag 815 **/ 816 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 817 { 818 struct iavf_vlan_filter *f; 819 820 spin_lock_bh(&adapter->mac_vlan_list_lock); 821 822 f = iavf_find_vlan(adapter, vlan); 823 if (f) { 824 f->state = IAVF_VLAN_REMOVE; 825 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 826 } 827 828 spin_unlock_bh(&adapter->mac_vlan_list_lock); 829 } 830 831 /** 832 * iavf_restore_filters 833 * @adapter: board private structure 834 * 835 * Restore existing non MAC filters when VF netdev comes back up 836 **/ 837 static void iavf_restore_filters(struct iavf_adapter *adapter) 838 { 839 struct iavf_vlan_filter *f; 840 841 /* re-add all VLAN filters */ 842 spin_lock_bh(&adapter->mac_vlan_list_lock); 843 844 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 845 if (f->state == IAVF_VLAN_INACTIVE) 846 f->state = IAVF_VLAN_ADD; 847 } 848 849 spin_unlock_bh(&adapter->mac_vlan_list_lock); 850 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 851 } 852 853 /** 854 * iavf_get_num_vlans_added - get number of VLANs added 855 * @adapter: board private structure 856 */ 857 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 858 { 859 return adapter->num_vlan_filters; 860 } 861 862 /** 863 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 864 * @adapter: board private structure 865 * 866 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 867 * do not impose a limit as that maintains current behavior and for 868 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 869 **/ 870 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 871 { 872 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 873 * never been a limit on the VF driver side 874 */ 875 if (VLAN_ALLOWED(adapter)) 876 return VLAN_N_VID; 877 else if (VLAN_V2_ALLOWED(adapter)) 878 return adapter->vlan_v2_caps.filtering.max_filters; 879 880 return 0; 881 } 882 883 /** 884 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 885 * @adapter: board private structure 886 **/ 887 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 888 { 889 if (iavf_get_num_vlans_added(adapter) < 890 iavf_get_max_vlans_allowed(adapter)) 891 return false; 892 893 return true; 894 } 895 896 /** 897 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 898 * @netdev: network device struct 899 * @proto: unused protocol data 900 * @vid: VLAN tag 901 **/ 902 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 903 __always_unused __be16 proto, u16 vid) 904 { 905 struct iavf_adapter *adapter = netdev_priv(netdev); 906 907 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 908 if (!vid) 909 return 0; 910 911 if (!VLAN_FILTERING_ALLOWED(adapter)) 912 return -EIO; 913 914 if (iavf_max_vlans_added(adapter)) { 915 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 916 iavf_get_max_vlans_allowed(adapter)); 917 return -EIO; 918 } 919 920 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 921 return -ENOMEM; 922 923 return 0; 924 } 925 926 /** 927 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 928 * @netdev: network device struct 929 * @proto: unused protocol data 930 * @vid: VLAN tag 931 **/ 932 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 933 __always_unused __be16 proto, u16 vid) 934 { 935 struct iavf_adapter *adapter = netdev_priv(netdev); 936 937 /* We do not track VLAN 0 filter */ 938 if (!vid) 939 return 0; 940 941 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 942 return 0; 943 } 944 945 /** 946 * iavf_find_filter - Search filter list for specific mac filter 947 * @adapter: board private structure 948 * @macaddr: the MAC address 949 * 950 * Returns ptr to the filter object or NULL. Must be called while holding the 951 * mac_vlan_list_lock. 952 **/ 953 static struct 954 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 955 const u8 *macaddr) 956 { 957 struct iavf_mac_filter *f; 958 959 if (!macaddr) 960 return NULL; 961 962 list_for_each_entry(f, &adapter->mac_filter_list, list) { 963 if (ether_addr_equal(macaddr, f->macaddr)) 964 return f; 965 } 966 return NULL; 967 } 968 969 /** 970 * iavf_add_filter - Add a mac filter to the filter list 971 * @adapter: board private structure 972 * @macaddr: the MAC address 973 * 974 * Returns ptr to the filter object or NULL when no memory available. 975 **/ 976 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 977 const u8 *macaddr) 978 { 979 struct iavf_mac_filter *f; 980 981 if (!macaddr) 982 return NULL; 983 984 f = iavf_find_filter(adapter, macaddr); 985 if (!f) { 986 f = kzalloc(sizeof(*f), GFP_ATOMIC); 987 if (!f) 988 return f; 989 990 ether_addr_copy(f->macaddr, macaddr); 991 992 list_add_tail(&f->list, &adapter->mac_filter_list); 993 f->add = true; 994 f->add_handled = false; 995 f->is_new_mac = true; 996 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 997 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 998 } else { 999 f->remove = false; 1000 } 1001 1002 return f; 1003 } 1004 1005 /** 1006 * iavf_replace_primary_mac - Replace current primary address 1007 * @adapter: board private structure 1008 * @new_mac: new MAC address to be applied 1009 * 1010 * Replace current dev_addr and send request to PF for removal of previous 1011 * primary MAC address filter and addition of new primary MAC filter. 1012 * Return 0 for success, -ENOMEM for failure. 1013 * 1014 * Do not call this with mac_vlan_list_lock! 1015 **/ 1016 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1017 const u8 *new_mac) 1018 { 1019 struct iavf_hw *hw = &adapter->hw; 1020 struct iavf_mac_filter *new_f; 1021 struct iavf_mac_filter *old_f; 1022 1023 spin_lock_bh(&adapter->mac_vlan_list_lock); 1024 1025 new_f = iavf_add_filter(adapter, new_mac); 1026 if (!new_f) { 1027 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1028 return -ENOMEM; 1029 } 1030 1031 old_f = iavf_find_filter(adapter, hw->mac.addr); 1032 if (old_f) { 1033 old_f->is_primary = false; 1034 old_f->remove = true; 1035 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1036 } 1037 /* Always send the request to add if changing primary MAC, 1038 * even if filter is already present on the list 1039 */ 1040 new_f->is_primary = true; 1041 new_f->add = true; 1042 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1043 ether_addr_copy(hw->mac.addr, new_mac); 1044 1045 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1046 1047 /* schedule the watchdog task to immediately process the request */ 1048 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1049 return 0; 1050 } 1051 1052 /** 1053 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1054 * @netdev: network interface device structure 1055 * @macaddr: MAC address to set 1056 * 1057 * Returns true on success, false on failure 1058 */ 1059 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1060 const u8 *macaddr) 1061 { 1062 struct iavf_adapter *adapter = netdev_priv(netdev); 1063 struct iavf_mac_filter *f; 1064 bool ret = false; 1065 1066 spin_lock_bh(&adapter->mac_vlan_list_lock); 1067 1068 f = iavf_find_filter(adapter, macaddr); 1069 1070 if (!f || (!f->add && f->add_handled)) 1071 ret = true; 1072 1073 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1074 1075 return ret; 1076 } 1077 1078 /** 1079 * iavf_set_mac - NDO callback to set port MAC address 1080 * @netdev: network interface device structure 1081 * @p: pointer to an address structure 1082 * 1083 * Returns 0 on success, negative on failure 1084 */ 1085 static int iavf_set_mac(struct net_device *netdev, void *p) 1086 { 1087 struct iavf_adapter *adapter = netdev_priv(netdev); 1088 struct sockaddr *addr = p; 1089 int ret; 1090 1091 if (!is_valid_ether_addr(addr->sa_data)) 1092 return -EADDRNOTAVAIL; 1093 1094 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1095 1096 if (ret) 1097 return ret; 1098 1099 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1100 iavf_is_mac_set_handled(netdev, addr->sa_data), 1101 msecs_to_jiffies(2500)); 1102 1103 /* If ret < 0 then it means wait was interrupted. 1104 * If ret == 0 then it means we got a timeout. 1105 * else it means we got response for set MAC from PF, 1106 * check if netdev MAC was updated to requested MAC, 1107 * if yes then set MAC succeeded otherwise it failed return -EACCES 1108 */ 1109 if (ret < 0) 1110 return ret; 1111 1112 if (!ret) 1113 return -EAGAIN; 1114 1115 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1116 return -EACCES; 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1123 * @netdev: the netdevice 1124 * @addr: address to add 1125 * 1126 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1127 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1128 */ 1129 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1130 { 1131 struct iavf_adapter *adapter = netdev_priv(netdev); 1132 1133 if (iavf_add_filter(adapter, addr)) 1134 return 0; 1135 else 1136 return -ENOMEM; 1137 } 1138 1139 /** 1140 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1141 * @netdev: the netdevice 1142 * @addr: address to add 1143 * 1144 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1145 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1146 */ 1147 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1148 { 1149 struct iavf_adapter *adapter = netdev_priv(netdev); 1150 struct iavf_mac_filter *f; 1151 1152 /* Under some circumstances, we might receive a request to delete 1153 * our own device address from our uc list. Because we store the 1154 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1155 * such requests and not delete our device address from this list. 1156 */ 1157 if (ether_addr_equal(addr, netdev->dev_addr)) 1158 return 0; 1159 1160 f = iavf_find_filter(adapter, addr); 1161 if (f) { 1162 f->remove = true; 1163 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1170 * @adapter: device specific adapter 1171 */ 1172 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1173 { 1174 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1175 (IFF_PROMISC | IFF_ALLMULTI); 1176 } 1177 1178 /** 1179 * iavf_set_rx_mode - NDO callback to set the netdev filters 1180 * @netdev: network interface device structure 1181 **/ 1182 static void iavf_set_rx_mode(struct net_device *netdev) 1183 { 1184 struct iavf_adapter *adapter = netdev_priv(netdev); 1185 1186 spin_lock_bh(&adapter->mac_vlan_list_lock); 1187 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1188 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1189 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1190 1191 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1192 if (iavf_promiscuous_mode_changed(adapter)) 1193 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1194 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1195 } 1196 1197 /** 1198 * iavf_napi_enable_all - enable NAPI on all queue vectors 1199 * @adapter: board private structure 1200 **/ 1201 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1202 { 1203 int q_idx; 1204 struct iavf_q_vector *q_vector; 1205 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1206 1207 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1208 struct napi_struct *napi; 1209 1210 q_vector = &adapter->q_vectors[q_idx]; 1211 napi = &q_vector->napi; 1212 napi_enable(napi); 1213 } 1214 } 1215 1216 /** 1217 * iavf_napi_disable_all - disable NAPI on all queue vectors 1218 * @adapter: board private structure 1219 **/ 1220 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1221 { 1222 int q_idx; 1223 struct iavf_q_vector *q_vector; 1224 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1225 1226 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1227 q_vector = &adapter->q_vectors[q_idx]; 1228 napi_disable(&q_vector->napi); 1229 } 1230 } 1231 1232 /** 1233 * iavf_configure - set up transmit and receive data structures 1234 * @adapter: board private structure 1235 **/ 1236 static void iavf_configure(struct iavf_adapter *adapter) 1237 { 1238 struct net_device *netdev = adapter->netdev; 1239 int i; 1240 1241 iavf_set_rx_mode(netdev); 1242 1243 iavf_configure_tx(adapter); 1244 iavf_configure_rx(adapter); 1245 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1246 1247 for (i = 0; i < adapter->num_active_queues; i++) { 1248 struct iavf_ring *ring = &adapter->rx_rings[i]; 1249 1250 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1251 } 1252 } 1253 1254 /** 1255 * iavf_up_complete - Finish the last steps of bringing up a connection 1256 * @adapter: board private structure 1257 * 1258 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1259 **/ 1260 static void iavf_up_complete(struct iavf_adapter *adapter) 1261 { 1262 iavf_change_state(adapter, __IAVF_RUNNING); 1263 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1264 1265 iavf_napi_enable_all(adapter); 1266 1267 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1268 if (CLIENT_ENABLED(adapter)) 1269 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1270 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1271 } 1272 1273 /** 1274 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1275 * yet and mark other to be removed. 1276 * @adapter: board private structure 1277 **/ 1278 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1279 { 1280 struct iavf_vlan_filter *vlf, *vlftmp; 1281 struct iavf_mac_filter *f, *ftmp; 1282 1283 spin_lock_bh(&adapter->mac_vlan_list_lock); 1284 /* clear the sync flag on all filters */ 1285 __dev_uc_unsync(adapter->netdev, NULL); 1286 __dev_mc_unsync(adapter->netdev, NULL); 1287 1288 /* remove all MAC filters */ 1289 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1290 list) { 1291 if (f->add) { 1292 list_del(&f->list); 1293 kfree(f); 1294 } else { 1295 f->remove = true; 1296 } 1297 } 1298 1299 /* disable all VLAN filters */ 1300 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1301 list) 1302 vlf->state = IAVF_VLAN_DISABLE; 1303 1304 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1305 } 1306 1307 /** 1308 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1309 * mark other to be removed. 1310 * @adapter: board private structure 1311 **/ 1312 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1313 { 1314 struct iavf_cloud_filter *cf, *cftmp; 1315 1316 /* remove all cloud filters */ 1317 spin_lock_bh(&adapter->cloud_filter_list_lock); 1318 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1319 list) { 1320 if (cf->add) { 1321 list_del(&cf->list); 1322 kfree(cf); 1323 adapter->num_cloud_filters--; 1324 } else { 1325 cf->del = true; 1326 } 1327 } 1328 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1329 } 1330 1331 /** 1332 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1333 * other to be removed. 1334 * @adapter: board private structure 1335 **/ 1336 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1337 { 1338 struct iavf_fdir_fltr *fdir; 1339 1340 /* remove all Flow Director filters */ 1341 spin_lock_bh(&adapter->fdir_fltr_lock); 1342 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1343 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1344 /* Cancel a request, keep filter as inactive */ 1345 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1346 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1347 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1348 /* Disable filters which are active or have a pending 1349 * request to PF to be added 1350 */ 1351 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1352 } 1353 } 1354 spin_unlock_bh(&adapter->fdir_fltr_lock); 1355 } 1356 1357 /** 1358 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1359 * other to be removed. 1360 * @adapter: board private structure 1361 **/ 1362 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1363 { 1364 struct iavf_adv_rss *rss, *rsstmp; 1365 1366 /* remove all advance RSS configuration */ 1367 spin_lock_bh(&adapter->adv_rss_lock); 1368 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1369 list) { 1370 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1371 list_del(&rss->list); 1372 kfree(rss); 1373 } else { 1374 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1375 } 1376 } 1377 spin_unlock_bh(&adapter->adv_rss_lock); 1378 } 1379 1380 /** 1381 * iavf_down - Shutdown the connection processing 1382 * @adapter: board private structure 1383 * 1384 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1385 **/ 1386 void iavf_down(struct iavf_adapter *adapter) 1387 { 1388 struct net_device *netdev = adapter->netdev; 1389 1390 if (adapter->state <= __IAVF_DOWN_PENDING) 1391 return; 1392 1393 netif_carrier_off(netdev); 1394 netif_tx_disable(netdev); 1395 adapter->link_up = false; 1396 iavf_napi_disable_all(adapter); 1397 iavf_irq_disable(adapter); 1398 1399 iavf_clear_mac_vlan_filters(adapter); 1400 iavf_clear_cloud_filters(adapter); 1401 iavf_clear_fdir_filters(adapter); 1402 iavf_clear_adv_rss_conf(adapter); 1403 1404 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1405 !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) { 1406 /* cancel any current operation */ 1407 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1408 /* Schedule operations to close down the HW. Don't wait 1409 * here for this to complete. The watchdog is still running 1410 * and it will take care of this. 1411 */ 1412 if (!list_empty(&adapter->mac_filter_list)) 1413 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1414 if (!list_empty(&adapter->vlan_filter_list)) 1415 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1416 if (!list_empty(&adapter->cloud_filter_list)) 1417 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1418 if (!list_empty(&adapter->fdir_list_head)) 1419 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1420 if (!list_empty(&adapter->adv_rss_list_head)) 1421 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1422 } 1423 1424 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1425 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1426 } 1427 1428 /** 1429 * iavf_acquire_msix_vectors - Setup the MSIX capability 1430 * @adapter: board private structure 1431 * @vectors: number of vectors to request 1432 * 1433 * Work with the OS to set up the MSIX vectors needed. 1434 * 1435 * Returns 0 on success, negative on failure 1436 **/ 1437 static int 1438 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1439 { 1440 int err, vector_threshold; 1441 1442 /* We'll want at least 3 (vector_threshold): 1443 * 0) Other (Admin Queue and link, mostly) 1444 * 1) TxQ[0] Cleanup 1445 * 2) RxQ[0] Cleanup 1446 */ 1447 vector_threshold = MIN_MSIX_COUNT; 1448 1449 /* The more we get, the more we will assign to Tx/Rx Cleanup 1450 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1451 * Right now, we simply care about how many we'll get; we'll 1452 * set them up later while requesting irq's. 1453 */ 1454 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1455 vector_threshold, vectors); 1456 if (err < 0) { 1457 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1458 kfree(adapter->msix_entries); 1459 adapter->msix_entries = NULL; 1460 return err; 1461 } 1462 1463 /* Adjust for only the vectors we'll use, which is minimum 1464 * of max_msix_q_vectors + NONQ_VECS, or the number of 1465 * vectors we were allocated. 1466 */ 1467 adapter->num_msix_vectors = err; 1468 return 0; 1469 } 1470 1471 /** 1472 * iavf_free_queues - Free memory for all rings 1473 * @adapter: board private structure to initialize 1474 * 1475 * Free all of the memory associated with queue pairs. 1476 **/ 1477 static void iavf_free_queues(struct iavf_adapter *adapter) 1478 { 1479 if (!adapter->vsi_res) 1480 return; 1481 adapter->num_active_queues = 0; 1482 kfree(adapter->tx_rings); 1483 adapter->tx_rings = NULL; 1484 kfree(adapter->rx_rings); 1485 adapter->rx_rings = NULL; 1486 } 1487 1488 /** 1489 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1490 * @adapter: board private structure 1491 * 1492 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1493 * stripped in certain descriptor fields. Instead of checking the offload 1494 * capability bits in the hot path, cache the location the ring specific 1495 * flags. 1496 */ 1497 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1498 { 1499 int i; 1500 1501 for (i = 0; i < adapter->num_active_queues; i++) { 1502 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1503 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1504 1505 /* prevent multiple L2TAG bits being set after VFR */ 1506 tx_ring->flags &= 1507 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1508 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1509 rx_ring->flags &= 1510 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1512 1513 if (VLAN_ALLOWED(adapter)) { 1514 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1515 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1516 } else if (VLAN_V2_ALLOWED(adapter)) { 1517 struct virtchnl_vlan_supported_caps *stripping_support; 1518 struct virtchnl_vlan_supported_caps *insertion_support; 1519 1520 stripping_support = 1521 &adapter->vlan_v2_caps.offloads.stripping_support; 1522 insertion_support = 1523 &adapter->vlan_v2_caps.offloads.insertion_support; 1524 1525 if (stripping_support->outer) { 1526 if (stripping_support->outer & 1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1528 rx_ring->flags |= 1529 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1530 else if (stripping_support->outer & 1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1532 rx_ring->flags |= 1533 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1534 } else if (stripping_support->inner) { 1535 if (stripping_support->inner & 1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1537 rx_ring->flags |= 1538 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1539 else if (stripping_support->inner & 1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1541 rx_ring->flags |= 1542 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1543 } 1544 1545 if (insertion_support->outer) { 1546 if (insertion_support->outer & 1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1548 tx_ring->flags |= 1549 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1550 else if (insertion_support->outer & 1551 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1552 tx_ring->flags |= 1553 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1554 } else if (insertion_support->inner) { 1555 if (insertion_support->inner & 1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1557 tx_ring->flags |= 1558 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1559 else if (insertion_support->inner & 1560 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1561 tx_ring->flags |= 1562 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1563 } 1564 } 1565 } 1566 } 1567 1568 /** 1569 * iavf_alloc_queues - Allocate memory for all rings 1570 * @adapter: board private structure to initialize 1571 * 1572 * We allocate one ring per queue at run-time since we don't know the 1573 * number of queues at compile-time. The polling_netdev array is 1574 * intended for Multiqueue, but should work fine with a single queue. 1575 **/ 1576 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1577 { 1578 int i, num_active_queues; 1579 1580 /* If we're in reset reallocating queues we don't actually know yet for 1581 * certain the PF gave us the number of queues we asked for but we'll 1582 * assume it did. Once basic reset is finished we'll confirm once we 1583 * start negotiating config with PF. 1584 */ 1585 if (adapter->num_req_queues) 1586 num_active_queues = adapter->num_req_queues; 1587 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1588 adapter->num_tc) 1589 num_active_queues = adapter->ch_config.total_qps; 1590 else 1591 num_active_queues = min_t(int, 1592 adapter->vsi_res->num_queue_pairs, 1593 (int)(num_online_cpus())); 1594 1595 1596 adapter->tx_rings = kcalloc(num_active_queues, 1597 sizeof(struct iavf_ring), GFP_KERNEL); 1598 if (!adapter->tx_rings) 1599 goto err_out; 1600 adapter->rx_rings = kcalloc(num_active_queues, 1601 sizeof(struct iavf_ring), GFP_KERNEL); 1602 if (!adapter->rx_rings) 1603 goto err_out; 1604 1605 for (i = 0; i < num_active_queues; i++) { 1606 struct iavf_ring *tx_ring; 1607 struct iavf_ring *rx_ring; 1608 1609 tx_ring = &adapter->tx_rings[i]; 1610 1611 tx_ring->queue_index = i; 1612 tx_ring->netdev = adapter->netdev; 1613 tx_ring->dev = &adapter->pdev->dev; 1614 tx_ring->count = adapter->tx_desc_count; 1615 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1616 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1617 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1618 1619 rx_ring = &adapter->rx_rings[i]; 1620 rx_ring->queue_index = i; 1621 rx_ring->netdev = adapter->netdev; 1622 rx_ring->dev = &adapter->pdev->dev; 1623 rx_ring->count = adapter->rx_desc_count; 1624 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1625 } 1626 1627 adapter->num_active_queues = num_active_queues; 1628 1629 iavf_set_queue_vlan_tag_loc(adapter); 1630 1631 return 0; 1632 1633 err_out: 1634 iavf_free_queues(adapter); 1635 return -ENOMEM; 1636 } 1637 1638 /** 1639 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1640 * @adapter: board private structure to initialize 1641 * 1642 * Attempt to configure the interrupts using the best available 1643 * capabilities of the hardware and the kernel. 1644 **/ 1645 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1646 { 1647 int vector, v_budget; 1648 int pairs = 0; 1649 int err = 0; 1650 1651 if (!adapter->vsi_res) { 1652 err = -EIO; 1653 goto out; 1654 } 1655 pairs = adapter->num_active_queues; 1656 1657 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1658 * us much good if we have more vectors than CPUs. However, we already 1659 * limit the total number of queues by the number of CPUs so we do not 1660 * need any further limiting here. 1661 */ 1662 v_budget = min_t(int, pairs + NONQ_VECS, 1663 (int)adapter->vf_res->max_vectors); 1664 1665 adapter->msix_entries = kcalloc(v_budget, 1666 sizeof(struct msix_entry), GFP_KERNEL); 1667 if (!adapter->msix_entries) { 1668 err = -ENOMEM; 1669 goto out; 1670 } 1671 1672 for (vector = 0; vector < v_budget; vector++) 1673 adapter->msix_entries[vector].entry = vector; 1674 1675 err = iavf_acquire_msix_vectors(adapter, v_budget); 1676 if (!err) 1677 iavf_schedule_finish_config(adapter); 1678 1679 out: 1680 return err; 1681 } 1682 1683 /** 1684 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1685 * @adapter: board private structure 1686 * 1687 * Return 0 on success, negative on failure 1688 **/ 1689 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1690 { 1691 struct iavf_aqc_get_set_rss_key_data *rss_key = 1692 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1693 struct iavf_hw *hw = &adapter->hw; 1694 enum iavf_status status; 1695 1696 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1697 /* bail because we already have a command pending */ 1698 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1699 adapter->current_op); 1700 return -EBUSY; 1701 } 1702 1703 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1704 if (status) { 1705 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1706 iavf_stat_str(hw, status), 1707 iavf_aq_str(hw, hw->aq.asq_last_status)); 1708 return iavf_status_to_errno(status); 1709 1710 } 1711 1712 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1713 adapter->rss_lut, adapter->rss_lut_size); 1714 if (status) { 1715 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1716 iavf_stat_str(hw, status), 1717 iavf_aq_str(hw, hw->aq.asq_last_status)); 1718 return iavf_status_to_errno(status); 1719 } 1720 1721 return 0; 1722 1723 } 1724 1725 /** 1726 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1727 * @adapter: board private structure 1728 * 1729 * Returns 0 on success, negative on failure 1730 **/ 1731 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1732 { 1733 struct iavf_hw *hw = &adapter->hw; 1734 u32 *dw; 1735 u16 i; 1736 1737 dw = (u32 *)adapter->rss_key; 1738 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1739 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1740 1741 dw = (u32 *)adapter->rss_lut; 1742 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1743 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1744 1745 iavf_flush(hw); 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * iavf_config_rss - Configure RSS keys and lut 1752 * @adapter: board private structure 1753 * 1754 * Returns 0 on success, negative on failure 1755 **/ 1756 int iavf_config_rss(struct iavf_adapter *adapter) 1757 { 1758 1759 if (RSS_PF(adapter)) { 1760 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1761 IAVF_FLAG_AQ_SET_RSS_KEY; 1762 return 0; 1763 } else if (RSS_AQ(adapter)) { 1764 return iavf_config_rss_aq(adapter); 1765 } else { 1766 return iavf_config_rss_reg(adapter); 1767 } 1768 } 1769 1770 /** 1771 * iavf_fill_rss_lut - Fill the lut with default values 1772 * @adapter: board private structure 1773 **/ 1774 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1775 { 1776 u16 i; 1777 1778 for (i = 0; i < adapter->rss_lut_size; i++) 1779 adapter->rss_lut[i] = i % adapter->num_active_queues; 1780 } 1781 1782 /** 1783 * iavf_init_rss - Prepare for RSS 1784 * @adapter: board private structure 1785 * 1786 * Return 0 on success, negative on failure 1787 **/ 1788 static int iavf_init_rss(struct iavf_adapter *adapter) 1789 { 1790 struct iavf_hw *hw = &adapter->hw; 1791 1792 if (!RSS_PF(adapter)) { 1793 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1794 if (adapter->vf_res->vf_cap_flags & 1795 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1796 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1797 else 1798 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1799 1800 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1801 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1802 } 1803 1804 iavf_fill_rss_lut(adapter); 1805 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1806 1807 return iavf_config_rss(adapter); 1808 } 1809 1810 /** 1811 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1812 * @adapter: board private structure to initialize 1813 * 1814 * We allocate one q_vector per queue interrupt. If allocation fails we 1815 * return -ENOMEM. 1816 **/ 1817 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1818 { 1819 int q_idx = 0, num_q_vectors; 1820 struct iavf_q_vector *q_vector; 1821 1822 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1823 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1824 GFP_KERNEL); 1825 if (!adapter->q_vectors) 1826 return -ENOMEM; 1827 1828 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1829 q_vector = &adapter->q_vectors[q_idx]; 1830 q_vector->adapter = adapter; 1831 q_vector->vsi = &adapter->vsi; 1832 q_vector->v_idx = q_idx; 1833 q_vector->reg_idx = q_idx; 1834 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1835 netif_napi_add(adapter->netdev, &q_vector->napi, 1836 iavf_napi_poll); 1837 } 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1844 * @adapter: board private structure to initialize 1845 * 1846 * This function frees the memory allocated to the q_vectors. In addition if 1847 * NAPI is enabled it will delete any references to the NAPI struct prior 1848 * to freeing the q_vector. 1849 **/ 1850 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1851 { 1852 int q_idx, num_q_vectors; 1853 1854 if (!adapter->q_vectors) 1855 return; 1856 1857 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1858 1859 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1860 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1861 1862 netif_napi_del(&q_vector->napi); 1863 } 1864 kfree(adapter->q_vectors); 1865 adapter->q_vectors = NULL; 1866 } 1867 1868 /** 1869 * iavf_reset_interrupt_capability - Reset MSIX setup 1870 * @adapter: board private structure 1871 * 1872 **/ 1873 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1874 { 1875 if (!adapter->msix_entries) 1876 return; 1877 1878 pci_disable_msix(adapter->pdev); 1879 kfree(adapter->msix_entries); 1880 adapter->msix_entries = NULL; 1881 } 1882 1883 /** 1884 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1885 * @adapter: board private structure to initialize 1886 * 1887 **/ 1888 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1889 { 1890 int err; 1891 1892 err = iavf_alloc_queues(adapter); 1893 if (err) { 1894 dev_err(&adapter->pdev->dev, 1895 "Unable to allocate memory for queues\n"); 1896 goto err_alloc_queues; 1897 } 1898 1899 err = iavf_set_interrupt_capability(adapter); 1900 if (err) { 1901 dev_err(&adapter->pdev->dev, 1902 "Unable to setup interrupt capabilities\n"); 1903 goto err_set_interrupt; 1904 } 1905 1906 err = iavf_alloc_q_vectors(adapter); 1907 if (err) { 1908 dev_err(&adapter->pdev->dev, 1909 "Unable to allocate memory for queue vectors\n"); 1910 goto err_alloc_q_vectors; 1911 } 1912 1913 /* If we've made it so far while ADq flag being ON, then we haven't 1914 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1915 * resources have been allocated in the reset path. 1916 * Now we can truly claim that ADq is enabled. 1917 */ 1918 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1919 adapter->num_tc) 1920 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1921 adapter->num_tc); 1922 1923 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1924 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1925 adapter->num_active_queues); 1926 1927 return 0; 1928 err_alloc_q_vectors: 1929 iavf_reset_interrupt_capability(adapter); 1930 err_set_interrupt: 1931 iavf_free_queues(adapter); 1932 err_alloc_queues: 1933 return err; 1934 } 1935 1936 /** 1937 * iavf_free_rss - Free memory used by RSS structs 1938 * @adapter: board private structure 1939 **/ 1940 static void iavf_free_rss(struct iavf_adapter *adapter) 1941 { 1942 kfree(adapter->rss_key); 1943 adapter->rss_key = NULL; 1944 1945 kfree(adapter->rss_lut); 1946 adapter->rss_lut = NULL; 1947 } 1948 1949 /** 1950 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1951 * @adapter: board private structure 1952 * @running: true if adapter->state == __IAVF_RUNNING 1953 * 1954 * Returns 0 on success, negative on failure 1955 **/ 1956 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1957 { 1958 struct net_device *netdev = adapter->netdev; 1959 int err; 1960 1961 if (running) 1962 iavf_free_traffic_irqs(adapter); 1963 iavf_free_misc_irq(adapter); 1964 iavf_reset_interrupt_capability(adapter); 1965 iavf_free_q_vectors(adapter); 1966 iavf_free_queues(adapter); 1967 1968 err = iavf_init_interrupt_scheme(adapter); 1969 if (err) 1970 goto err; 1971 1972 netif_tx_stop_all_queues(netdev); 1973 1974 err = iavf_request_misc_irq(adapter); 1975 if (err) 1976 goto err; 1977 1978 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1979 1980 iavf_map_rings_to_vectors(adapter); 1981 err: 1982 return err; 1983 } 1984 1985 /** 1986 * iavf_finish_config - do all netdev work that needs RTNL 1987 * @work: our work_struct 1988 * 1989 * Do work that needs both RTNL and crit_lock. 1990 **/ 1991 static void iavf_finish_config(struct work_struct *work) 1992 { 1993 struct iavf_adapter *adapter; 1994 int pairs, err; 1995 1996 adapter = container_of(work, struct iavf_adapter, finish_config); 1997 1998 /* Always take RTNL first to prevent circular lock dependency */ 1999 rtnl_lock(); 2000 mutex_lock(&adapter->crit_lock); 2001 2002 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2003 adapter->netdev_registered && 2004 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2005 netdev_update_features(adapter->netdev); 2006 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2007 } 2008 2009 switch (adapter->state) { 2010 case __IAVF_DOWN: 2011 if (!adapter->netdev_registered) { 2012 err = register_netdevice(adapter->netdev); 2013 if (err) { 2014 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2015 err); 2016 2017 /* go back and try again.*/ 2018 iavf_free_rss(adapter); 2019 iavf_free_misc_irq(adapter); 2020 iavf_reset_interrupt_capability(adapter); 2021 iavf_change_state(adapter, 2022 __IAVF_INIT_CONFIG_ADAPTER); 2023 goto out; 2024 } 2025 adapter->netdev_registered = true; 2026 } 2027 2028 /* Set the real number of queues when reset occurs while 2029 * state == __IAVF_DOWN 2030 */ 2031 fallthrough; 2032 case __IAVF_RUNNING: 2033 pairs = adapter->num_active_queues; 2034 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2035 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2036 break; 2037 2038 default: 2039 break; 2040 } 2041 2042 out: 2043 mutex_unlock(&adapter->crit_lock); 2044 rtnl_unlock(); 2045 } 2046 2047 /** 2048 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2049 * @adapter: board private structure 2050 **/ 2051 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2052 { 2053 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2054 queue_work(adapter->wq, &adapter->finish_config); 2055 } 2056 2057 /** 2058 * iavf_process_aq_command - process aq_required flags 2059 * and sends aq command 2060 * @adapter: pointer to iavf adapter structure 2061 * 2062 * Returns 0 on success 2063 * Returns error code if no command was sent 2064 * or error code if the command failed. 2065 **/ 2066 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2067 { 2068 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2069 return iavf_send_vf_config_msg(adapter); 2070 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2071 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2072 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2073 iavf_disable_queues(adapter); 2074 return 0; 2075 } 2076 2077 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2078 iavf_map_queues(adapter); 2079 return 0; 2080 } 2081 2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2083 iavf_add_ether_addrs(adapter); 2084 return 0; 2085 } 2086 2087 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2088 iavf_add_vlans(adapter); 2089 return 0; 2090 } 2091 2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2093 iavf_del_ether_addrs(adapter); 2094 return 0; 2095 } 2096 2097 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2098 iavf_del_vlans(adapter); 2099 return 0; 2100 } 2101 2102 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2103 iavf_enable_vlan_stripping(adapter); 2104 return 0; 2105 } 2106 2107 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2108 iavf_disable_vlan_stripping(adapter); 2109 return 0; 2110 } 2111 2112 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2113 iavf_configure_queues(adapter); 2114 return 0; 2115 } 2116 2117 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2118 iavf_enable_queues(adapter); 2119 return 0; 2120 } 2121 2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2123 /* This message goes straight to the firmware, not the 2124 * PF, so we don't have to set current_op as we will 2125 * not get a response through the ARQ. 2126 */ 2127 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2128 return 0; 2129 } 2130 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2131 iavf_get_hena(adapter); 2132 return 0; 2133 } 2134 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2135 iavf_set_hena(adapter); 2136 return 0; 2137 } 2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2139 iavf_set_rss_key(adapter); 2140 return 0; 2141 } 2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2143 iavf_set_rss_lut(adapter); 2144 return 0; 2145 } 2146 2147 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2148 iavf_set_promiscuous(adapter); 2149 return 0; 2150 } 2151 2152 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2153 iavf_enable_channels(adapter); 2154 return 0; 2155 } 2156 2157 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2158 iavf_disable_channels(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2162 iavf_add_cloud_filter(adapter); 2163 return 0; 2164 } 2165 2166 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2167 iavf_del_cloud_filter(adapter); 2168 return 0; 2169 } 2170 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2171 iavf_del_cloud_filter(adapter); 2172 return 0; 2173 } 2174 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2175 iavf_add_cloud_filter(adapter); 2176 return 0; 2177 } 2178 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2179 iavf_add_fdir_filter(adapter); 2180 return IAVF_SUCCESS; 2181 } 2182 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2183 iavf_del_fdir_filter(adapter); 2184 return IAVF_SUCCESS; 2185 } 2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2187 iavf_add_adv_rss_cfg(adapter); 2188 return 0; 2189 } 2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2191 iavf_del_adv_rss_cfg(adapter); 2192 return 0; 2193 } 2194 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2195 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2196 return 0; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2199 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2203 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2207 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2211 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2215 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2219 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2220 return 0; 2221 } 2222 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2223 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2224 return 0; 2225 } 2226 2227 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2228 iavf_request_stats(adapter); 2229 return 0; 2230 } 2231 2232 return -EAGAIN; 2233 } 2234 2235 /** 2236 * iavf_set_vlan_offload_features - set VLAN offload configuration 2237 * @adapter: board private structure 2238 * @prev_features: previous features used for comparison 2239 * @features: updated features used for configuration 2240 * 2241 * Set the aq_required bit(s) based on the requested features passed in to 2242 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2243 * the watchdog if any changes are requested to expedite the request via 2244 * virtchnl. 2245 **/ 2246 static void 2247 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2248 netdev_features_t prev_features, 2249 netdev_features_t features) 2250 { 2251 bool enable_stripping = true, enable_insertion = true; 2252 u16 vlan_ethertype = 0; 2253 u64 aq_required = 0; 2254 2255 /* keep cases separate because one ethertype for offloads can be 2256 * disabled at the same time as another is disabled, so check for an 2257 * enabled ethertype first, then check for disabled. Default to 2258 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2259 * stripping. 2260 */ 2261 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2262 vlan_ethertype = ETH_P_8021AD; 2263 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2264 vlan_ethertype = ETH_P_8021Q; 2265 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2266 vlan_ethertype = ETH_P_8021AD; 2267 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2268 vlan_ethertype = ETH_P_8021Q; 2269 else 2270 vlan_ethertype = ETH_P_8021Q; 2271 2272 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2273 enable_stripping = false; 2274 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2275 enable_insertion = false; 2276 2277 if (VLAN_ALLOWED(adapter)) { 2278 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2279 * stripping via virtchnl. VLAN insertion can be toggled on the 2280 * netdev, but it doesn't require a virtchnl message 2281 */ 2282 if (enable_stripping) 2283 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2284 else 2285 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2286 2287 } else if (VLAN_V2_ALLOWED(adapter)) { 2288 switch (vlan_ethertype) { 2289 case ETH_P_8021Q: 2290 if (enable_stripping) 2291 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2292 else 2293 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2294 2295 if (enable_insertion) 2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2297 else 2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2299 break; 2300 case ETH_P_8021AD: 2301 if (enable_stripping) 2302 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2303 else 2304 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2305 2306 if (enable_insertion) 2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2308 else 2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2310 break; 2311 } 2312 } 2313 2314 if (aq_required) { 2315 adapter->aq_required |= aq_required; 2316 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2317 } 2318 } 2319 2320 /** 2321 * iavf_startup - first step of driver startup 2322 * @adapter: board private structure 2323 * 2324 * Function process __IAVF_STARTUP driver state. 2325 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2326 * when fails the state is changed to __IAVF_INIT_FAILED 2327 **/ 2328 static void iavf_startup(struct iavf_adapter *adapter) 2329 { 2330 struct pci_dev *pdev = adapter->pdev; 2331 struct iavf_hw *hw = &adapter->hw; 2332 enum iavf_status status; 2333 int ret; 2334 2335 WARN_ON(adapter->state != __IAVF_STARTUP); 2336 2337 /* driver loaded, probe complete */ 2338 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2339 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2340 status = iavf_set_mac_type(hw); 2341 if (status) { 2342 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2343 goto err; 2344 } 2345 2346 ret = iavf_check_reset_complete(hw); 2347 if (ret) { 2348 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2349 ret); 2350 goto err; 2351 } 2352 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2353 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2354 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2355 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2356 2357 status = iavf_init_adminq(hw); 2358 if (status) { 2359 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2360 status); 2361 goto err; 2362 } 2363 ret = iavf_send_api_ver(adapter); 2364 if (ret) { 2365 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2366 iavf_shutdown_adminq(hw); 2367 goto err; 2368 } 2369 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2370 return; 2371 err: 2372 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2373 } 2374 2375 /** 2376 * iavf_init_version_check - second step of driver startup 2377 * @adapter: board private structure 2378 * 2379 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2380 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2381 * when fails the state is changed to __IAVF_INIT_FAILED 2382 **/ 2383 static void iavf_init_version_check(struct iavf_adapter *adapter) 2384 { 2385 struct pci_dev *pdev = adapter->pdev; 2386 struct iavf_hw *hw = &adapter->hw; 2387 int err = -EAGAIN; 2388 2389 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2390 2391 if (!iavf_asq_done(hw)) { 2392 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2393 iavf_shutdown_adminq(hw); 2394 iavf_change_state(adapter, __IAVF_STARTUP); 2395 goto err; 2396 } 2397 2398 /* aq msg sent, awaiting reply */ 2399 err = iavf_verify_api_ver(adapter); 2400 if (err) { 2401 if (err == -EALREADY) 2402 err = iavf_send_api_ver(adapter); 2403 else 2404 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2405 adapter->pf_version.major, 2406 adapter->pf_version.minor, 2407 VIRTCHNL_VERSION_MAJOR, 2408 VIRTCHNL_VERSION_MINOR); 2409 goto err; 2410 } 2411 err = iavf_send_vf_config_msg(adapter); 2412 if (err) { 2413 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2414 err); 2415 goto err; 2416 } 2417 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2418 return; 2419 err: 2420 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2421 } 2422 2423 /** 2424 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2425 * @adapter: board private structure 2426 */ 2427 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2428 { 2429 int i, num_req_queues = adapter->num_req_queues; 2430 struct iavf_vsi *vsi = &adapter->vsi; 2431 2432 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2433 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2434 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2435 } 2436 if (!adapter->vsi_res) { 2437 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2438 return -ENODEV; 2439 } 2440 2441 if (num_req_queues && 2442 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2443 /* Problem. The PF gave us fewer queues than what we had 2444 * negotiated in our request. Need a reset to see if we can't 2445 * get back to a working state. 2446 */ 2447 dev_err(&adapter->pdev->dev, 2448 "Requested %d queues, but PF only gave us %d.\n", 2449 num_req_queues, 2450 adapter->vsi_res->num_queue_pairs); 2451 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2452 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2453 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2454 2455 return -EAGAIN; 2456 } 2457 adapter->num_req_queues = 0; 2458 adapter->vsi.id = adapter->vsi_res->vsi_id; 2459 2460 adapter->vsi.back = adapter; 2461 adapter->vsi.base_vector = 1; 2462 vsi->netdev = adapter->netdev; 2463 vsi->qs_handle = adapter->vsi_res->qset_handle; 2464 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2465 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2466 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2467 } else { 2468 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2469 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2470 } 2471 2472 return 0; 2473 } 2474 2475 /** 2476 * iavf_init_get_resources - third step of driver startup 2477 * @adapter: board private structure 2478 * 2479 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2480 * finishes driver initialization procedure. 2481 * When success the state is changed to __IAVF_DOWN 2482 * when fails the state is changed to __IAVF_INIT_FAILED 2483 **/ 2484 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2485 { 2486 struct pci_dev *pdev = adapter->pdev; 2487 struct iavf_hw *hw = &adapter->hw; 2488 int err; 2489 2490 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2491 /* aq msg sent, awaiting reply */ 2492 if (!adapter->vf_res) { 2493 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2494 GFP_KERNEL); 2495 if (!adapter->vf_res) { 2496 err = -ENOMEM; 2497 goto err; 2498 } 2499 } 2500 err = iavf_get_vf_config(adapter); 2501 if (err == -EALREADY) { 2502 err = iavf_send_vf_config_msg(adapter); 2503 goto err; 2504 } else if (err == -EINVAL) { 2505 /* We only get -EINVAL if the device is in a very bad 2506 * state or if we've been disabled for previous bad 2507 * behavior. Either way, we're done now. 2508 */ 2509 iavf_shutdown_adminq(hw); 2510 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2511 return; 2512 } 2513 if (err) { 2514 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2515 goto err_alloc; 2516 } 2517 2518 err = iavf_parse_vf_resource_msg(adapter); 2519 if (err) { 2520 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2521 err); 2522 goto err_alloc; 2523 } 2524 /* Some features require additional messages to negotiate extended 2525 * capabilities. These are processed in sequence by the 2526 * __IAVF_INIT_EXTENDED_CAPS driver state. 2527 */ 2528 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2529 2530 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2531 return; 2532 2533 err_alloc: 2534 kfree(adapter->vf_res); 2535 adapter->vf_res = NULL; 2536 err: 2537 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2538 } 2539 2540 /** 2541 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2542 * @adapter: board private structure 2543 * 2544 * Function processes send of the extended VLAN V2 capability message to the 2545 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2546 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2547 */ 2548 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2549 { 2550 int ret; 2551 2552 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2553 2554 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2555 if (ret && ret == -EOPNOTSUPP) { 2556 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2557 * we did not send the capability exchange message and do not 2558 * expect a response. 2559 */ 2560 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2561 } 2562 2563 /* We sent the message, so move on to the next step */ 2564 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2565 } 2566 2567 /** 2568 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2569 * @adapter: board private structure 2570 * 2571 * Function processes receipt of the extended VLAN V2 capability message from 2572 * the PF. 2573 **/ 2574 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2575 { 2576 int ret; 2577 2578 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2579 2580 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2581 2582 ret = iavf_get_vf_vlan_v2_caps(adapter); 2583 if (ret) 2584 goto err; 2585 2586 /* We've processed receipt of the VLAN V2 caps message */ 2587 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2588 return; 2589 err: 2590 /* We didn't receive a reply. Make sure we try sending again when 2591 * __IAVF_INIT_FAILED attempts to recover. 2592 */ 2593 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2594 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2595 } 2596 2597 /** 2598 * iavf_init_process_extended_caps - Part of driver startup 2599 * @adapter: board private structure 2600 * 2601 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2602 * handles negotiating capabilities for features which require an additional 2603 * message. 2604 * 2605 * Once all extended capabilities exchanges are finished, the driver will 2606 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2607 */ 2608 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2609 { 2610 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2611 2612 /* Process capability exchange for VLAN V2 */ 2613 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2614 iavf_init_send_offload_vlan_v2_caps(adapter); 2615 return; 2616 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2617 iavf_init_recv_offload_vlan_v2_caps(adapter); 2618 return; 2619 } 2620 2621 /* When we reach here, no further extended capabilities exchanges are 2622 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2623 */ 2624 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2625 } 2626 2627 /** 2628 * iavf_init_config_adapter - last part of driver startup 2629 * @adapter: board private structure 2630 * 2631 * After all the supported capabilities are negotiated, then the 2632 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2633 */ 2634 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2635 { 2636 struct net_device *netdev = adapter->netdev; 2637 struct pci_dev *pdev = adapter->pdev; 2638 int err; 2639 2640 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2641 2642 if (iavf_process_config(adapter)) 2643 goto err; 2644 2645 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2646 2647 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2648 2649 netdev->netdev_ops = &iavf_netdev_ops; 2650 iavf_set_ethtool_ops(netdev); 2651 netdev->watchdog_timeo = 5 * HZ; 2652 2653 /* MTU range: 68 - 9710 */ 2654 netdev->min_mtu = ETH_MIN_MTU; 2655 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2656 2657 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2658 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2659 adapter->hw.mac.addr); 2660 eth_hw_addr_random(netdev); 2661 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2662 } else { 2663 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2664 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2665 } 2666 2667 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2668 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2669 err = iavf_init_interrupt_scheme(adapter); 2670 if (err) 2671 goto err_sw_init; 2672 iavf_map_rings_to_vectors(adapter); 2673 if (adapter->vf_res->vf_cap_flags & 2674 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2675 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2676 2677 err = iavf_request_misc_irq(adapter); 2678 if (err) 2679 goto err_sw_init; 2680 2681 netif_carrier_off(netdev); 2682 adapter->link_up = false; 2683 netif_tx_stop_all_queues(netdev); 2684 2685 if (CLIENT_ALLOWED(adapter)) { 2686 err = iavf_lan_add_device(adapter); 2687 if (err) 2688 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2689 err); 2690 } 2691 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2692 if (netdev->features & NETIF_F_GRO) 2693 dev_info(&pdev->dev, "GRO is enabled\n"); 2694 2695 iavf_change_state(adapter, __IAVF_DOWN); 2696 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2697 2698 iavf_misc_irq_enable(adapter); 2699 wake_up(&adapter->down_waitqueue); 2700 2701 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2702 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2703 if (!adapter->rss_key || !adapter->rss_lut) { 2704 err = -ENOMEM; 2705 goto err_mem; 2706 } 2707 if (RSS_AQ(adapter)) 2708 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2709 else 2710 iavf_init_rss(adapter); 2711 2712 if (VLAN_V2_ALLOWED(adapter)) 2713 /* request initial VLAN offload settings */ 2714 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2715 2716 iavf_schedule_finish_config(adapter); 2717 return; 2718 2719 err_mem: 2720 iavf_free_rss(adapter); 2721 iavf_free_misc_irq(adapter); 2722 err_sw_init: 2723 iavf_reset_interrupt_capability(adapter); 2724 err: 2725 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2726 } 2727 2728 /** 2729 * iavf_watchdog_task - Periodic call-back task 2730 * @work: pointer to work_struct 2731 **/ 2732 static void iavf_watchdog_task(struct work_struct *work) 2733 { 2734 struct iavf_adapter *adapter = container_of(work, 2735 struct iavf_adapter, 2736 watchdog_task.work); 2737 struct iavf_hw *hw = &adapter->hw; 2738 u32 reg_val; 2739 2740 if (!mutex_trylock(&adapter->crit_lock)) { 2741 if (adapter->state == __IAVF_REMOVE) 2742 return; 2743 2744 goto restart_watchdog; 2745 } 2746 2747 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2748 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2749 2750 switch (adapter->state) { 2751 case __IAVF_STARTUP: 2752 iavf_startup(adapter); 2753 mutex_unlock(&adapter->crit_lock); 2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2755 msecs_to_jiffies(30)); 2756 return; 2757 case __IAVF_INIT_VERSION_CHECK: 2758 iavf_init_version_check(adapter); 2759 mutex_unlock(&adapter->crit_lock); 2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2761 msecs_to_jiffies(30)); 2762 return; 2763 case __IAVF_INIT_GET_RESOURCES: 2764 iavf_init_get_resources(adapter); 2765 mutex_unlock(&adapter->crit_lock); 2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2767 msecs_to_jiffies(1)); 2768 return; 2769 case __IAVF_INIT_EXTENDED_CAPS: 2770 iavf_init_process_extended_caps(adapter); 2771 mutex_unlock(&adapter->crit_lock); 2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2773 msecs_to_jiffies(1)); 2774 return; 2775 case __IAVF_INIT_CONFIG_ADAPTER: 2776 iavf_init_config_adapter(adapter); 2777 mutex_unlock(&adapter->crit_lock); 2778 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2779 msecs_to_jiffies(1)); 2780 return; 2781 case __IAVF_INIT_FAILED: 2782 if (test_bit(__IAVF_IN_REMOVE_TASK, 2783 &adapter->crit_section)) { 2784 /* Do not update the state and do not reschedule 2785 * watchdog task, iavf_remove should handle this state 2786 * as it can loop forever 2787 */ 2788 mutex_unlock(&adapter->crit_lock); 2789 return; 2790 } 2791 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2792 dev_err(&adapter->pdev->dev, 2793 "Failed to communicate with PF; waiting before retry\n"); 2794 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2795 iavf_shutdown_adminq(hw); 2796 mutex_unlock(&adapter->crit_lock); 2797 queue_delayed_work(adapter->wq, 2798 &adapter->watchdog_task, (5 * HZ)); 2799 return; 2800 } 2801 /* Try again from failed step*/ 2802 iavf_change_state(adapter, adapter->last_state); 2803 mutex_unlock(&adapter->crit_lock); 2804 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2805 return; 2806 case __IAVF_COMM_FAILED: 2807 if (test_bit(__IAVF_IN_REMOVE_TASK, 2808 &adapter->crit_section)) { 2809 /* Set state to __IAVF_INIT_FAILED and perform remove 2810 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2811 * doesn't bring the state back to __IAVF_COMM_FAILED. 2812 */ 2813 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2814 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2815 mutex_unlock(&adapter->crit_lock); 2816 return; 2817 } 2818 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2819 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2820 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2821 reg_val == VIRTCHNL_VFR_COMPLETED) { 2822 /* A chance for redemption! */ 2823 dev_err(&adapter->pdev->dev, 2824 "Hardware came out of reset. Attempting reinit.\n"); 2825 /* When init task contacts the PF and 2826 * gets everything set up again, it'll restart the 2827 * watchdog for us. Down, boy. Sit. Stay. Woof. 2828 */ 2829 iavf_change_state(adapter, __IAVF_STARTUP); 2830 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2831 } 2832 adapter->aq_required = 0; 2833 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2834 mutex_unlock(&adapter->crit_lock); 2835 queue_delayed_work(adapter->wq, 2836 &adapter->watchdog_task, 2837 msecs_to_jiffies(10)); 2838 return; 2839 case __IAVF_RESETTING: 2840 mutex_unlock(&adapter->crit_lock); 2841 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2842 HZ * 2); 2843 return; 2844 case __IAVF_DOWN: 2845 case __IAVF_DOWN_PENDING: 2846 case __IAVF_TESTING: 2847 case __IAVF_RUNNING: 2848 if (adapter->current_op) { 2849 if (!iavf_asq_done(hw)) { 2850 dev_dbg(&adapter->pdev->dev, 2851 "Admin queue timeout\n"); 2852 iavf_send_api_ver(adapter); 2853 } 2854 } else { 2855 int ret = iavf_process_aq_command(adapter); 2856 2857 /* An error will be returned if no commands were 2858 * processed; use this opportunity to update stats 2859 * if the error isn't -ENOTSUPP 2860 */ 2861 if (ret && ret != -EOPNOTSUPP && 2862 adapter->state == __IAVF_RUNNING) 2863 iavf_request_stats(adapter); 2864 } 2865 if (adapter->state == __IAVF_RUNNING) 2866 iavf_detect_recover_hung(&adapter->vsi); 2867 break; 2868 case __IAVF_REMOVE: 2869 default: 2870 mutex_unlock(&adapter->crit_lock); 2871 return; 2872 } 2873 2874 /* check for hw reset */ 2875 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2876 if (!reg_val) { 2877 adapter->aq_required = 0; 2878 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2879 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2880 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2881 mutex_unlock(&adapter->crit_lock); 2882 queue_delayed_work(adapter->wq, 2883 &adapter->watchdog_task, HZ * 2); 2884 return; 2885 } 2886 2887 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2888 mutex_unlock(&adapter->crit_lock); 2889 restart_watchdog: 2890 if (adapter->state >= __IAVF_DOWN) 2891 queue_work(adapter->wq, &adapter->adminq_task); 2892 if (adapter->aq_required) 2893 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2894 msecs_to_jiffies(20)); 2895 else 2896 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2897 HZ * 2); 2898 } 2899 2900 /** 2901 * iavf_disable_vf - disable VF 2902 * @adapter: board private structure 2903 * 2904 * Set communication failed flag and free all resources. 2905 * NOTE: This function is expected to be called with crit_lock being held. 2906 **/ 2907 static void iavf_disable_vf(struct iavf_adapter *adapter) 2908 { 2909 struct iavf_mac_filter *f, *ftmp; 2910 struct iavf_vlan_filter *fv, *fvtmp; 2911 struct iavf_cloud_filter *cf, *cftmp; 2912 2913 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2914 2915 /* We don't use netif_running() because it may be true prior to 2916 * ndo_open() returning, so we can't assume it means all our open 2917 * tasks have finished, since we're not holding the rtnl_lock here. 2918 */ 2919 if (adapter->state == __IAVF_RUNNING) { 2920 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2921 netif_carrier_off(adapter->netdev); 2922 netif_tx_disable(adapter->netdev); 2923 adapter->link_up = false; 2924 iavf_napi_disable_all(adapter); 2925 iavf_irq_disable(adapter); 2926 iavf_free_traffic_irqs(adapter); 2927 iavf_free_all_tx_resources(adapter); 2928 iavf_free_all_rx_resources(adapter); 2929 } 2930 2931 spin_lock_bh(&adapter->mac_vlan_list_lock); 2932 2933 /* Delete all of the filters */ 2934 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2935 list_del(&f->list); 2936 kfree(f); 2937 } 2938 2939 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2940 list_del(&fv->list); 2941 kfree(fv); 2942 } 2943 adapter->num_vlan_filters = 0; 2944 2945 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2946 2947 spin_lock_bh(&adapter->cloud_filter_list_lock); 2948 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2949 list_del(&cf->list); 2950 kfree(cf); 2951 adapter->num_cloud_filters--; 2952 } 2953 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2954 2955 iavf_free_misc_irq(adapter); 2956 iavf_reset_interrupt_capability(adapter); 2957 iavf_free_q_vectors(adapter); 2958 iavf_free_queues(adapter); 2959 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2960 iavf_shutdown_adminq(&adapter->hw); 2961 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2962 iavf_change_state(adapter, __IAVF_DOWN); 2963 wake_up(&adapter->down_waitqueue); 2964 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2965 } 2966 2967 /** 2968 * iavf_reset_task - Call-back task to handle hardware reset 2969 * @work: pointer to work_struct 2970 * 2971 * During reset we need to shut down and reinitialize the admin queue 2972 * before we can use it to communicate with the PF again. We also clear 2973 * and reinit the rings because that context is lost as well. 2974 **/ 2975 static void iavf_reset_task(struct work_struct *work) 2976 { 2977 struct iavf_adapter *adapter = container_of(work, 2978 struct iavf_adapter, 2979 reset_task); 2980 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2981 struct net_device *netdev = adapter->netdev; 2982 struct iavf_hw *hw = &adapter->hw; 2983 struct iavf_mac_filter *f, *ftmp; 2984 struct iavf_cloud_filter *cf; 2985 enum iavf_status status; 2986 u32 reg_val; 2987 int i = 0, err; 2988 bool running; 2989 2990 /* When device is being removed it doesn't make sense to run the reset 2991 * task, just return in such a case. 2992 */ 2993 if (!mutex_trylock(&adapter->crit_lock)) { 2994 if (adapter->state != __IAVF_REMOVE) 2995 queue_work(adapter->wq, &adapter->reset_task); 2996 2997 return; 2998 } 2999 3000 while (!mutex_trylock(&adapter->client_lock)) 3001 usleep_range(500, 1000); 3002 if (CLIENT_ENABLED(adapter)) { 3003 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 3004 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 3005 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 3006 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 3007 cancel_delayed_work_sync(&adapter->client_task); 3008 iavf_notify_client_close(&adapter->vsi, true); 3009 } 3010 iavf_misc_irq_disable(adapter); 3011 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3012 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3013 /* Restart the AQ here. If we have been reset but didn't 3014 * detect it, or if the PF had to reinit, our AQ will be hosed. 3015 */ 3016 iavf_shutdown_adminq(hw); 3017 iavf_init_adminq(hw); 3018 iavf_request_reset(adapter); 3019 } 3020 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3021 3022 /* poll until we see the reset actually happen */ 3023 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3024 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3025 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3026 if (!reg_val) 3027 break; 3028 usleep_range(5000, 10000); 3029 } 3030 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3031 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3032 goto continue_reset; /* act like the reset happened */ 3033 } 3034 3035 /* wait until the reset is complete and the PF is responding to us */ 3036 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3037 /* sleep first to make sure a minimum wait time is met */ 3038 msleep(IAVF_RESET_WAIT_MS); 3039 3040 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3041 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3042 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3043 break; 3044 } 3045 3046 pci_set_master(adapter->pdev); 3047 pci_restore_msi_state(adapter->pdev); 3048 3049 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3050 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3051 reg_val); 3052 iavf_disable_vf(adapter); 3053 mutex_unlock(&adapter->client_lock); 3054 mutex_unlock(&adapter->crit_lock); 3055 return; /* Do not attempt to reinit. It's dead, Jim. */ 3056 } 3057 3058 continue_reset: 3059 /* We don't use netif_running() because it may be true prior to 3060 * ndo_open() returning, so we can't assume it means all our open 3061 * tasks have finished, since we're not holding the rtnl_lock here. 3062 */ 3063 running = adapter->state == __IAVF_RUNNING; 3064 3065 if (running) { 3066 netif_carrier_off(netdev); 3067 netif_tx_stop_all_queues(netdev); 3068 adapter->link_up = false; 3069 iavf_napi_disable_all(adapter); 3070 } 3071 iavf_irq_disable(adapter); 3072 3073 iavf_change_state(adapter, __IAVF_RESETTING); 3074 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3075 3076 /* free the Tx/Rx rings and descriptors, might be better to just 3077 * re-use them sometime in the future 3078 */ 3079 iavf_free_all_rx_resources(adapter); 3080 iavf_free_all_tx_resources(adapter); 3081 3082 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3083 /* kill and reinit the admin queue */ 3084 iavf_shutdown_adminq(hw); 3085 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3086 status = iavf_init_adminq(hw); 3087 if (status) { 3088 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3089 status); 3090 goto reset_err; 3091 } 3092 adapter->aq_required = 0; 3093 3094 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3095 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3096 err = iavf_reinit_interrupt_scheme(adapter, running); 3097 if (err) 3098 goto reset_err; 3099 } 3100 3101 if (RSS_AQ(adapter)) { 3102 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3103 } else { 3104 err = iavf_init_rss(adapter); 3105 if (err) 3106 goto reset_err; 3107 } 3108 3109 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3110 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3111 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3112 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3113 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3114 * been successfully sent and negotiated 3115 */ 3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3117 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3118 3119 spin_lock_bh(&adapter->mac_vlan_list_lock); 3120 3121 /* Delete filter for the current MAC address, it could have 3122 * been changed by the PF via administratively set MAC. 3123 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3124 */ 3125 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3126 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3127 list_del(&f->list); 3128 kfree(f); 3129 } 3130 } 3131 /* re-add all MAC filters */ 3132 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3133 f->add = true; 3134 } 3135 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3136 3137 /* check if TCs are running and re-add all cloud filters */ 3138 spin_lock_bh(&adapter->cloud_filter_list_lock); 3139 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3140 adapter->num_tc) { 3141 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3142 cf->add = true; 3143 } 3144 } 3145 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3146 3147 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3148 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3149 iavf_misc_irq_enable(adapter); 3150 3151 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3152 3153 /* We were running when the reset started, so we need to restore some 3154 * state here. 3155 */ 3156 if (running) { 3157 /* allocate transmit descriptors */ 3158 err = iavf_setup_all_tx_resources(adapter); 3159 if (err) 3160 goto reset_err; 3161 3162 /* allocate receive descriptors */ 3163 err = iavf_setup_all_rx_resources(adapter); 3164 if (err) 3165 goto reset_err; 3166 3167 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3168 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3169 err = iavf_request_traffic_irqs(adapter, netdev->name); 3170 if (err) 3171 goto reset_err; 3172 3173 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3174 } 3175 3176 iavf_configure(adapter); 3177 3178 /* iavf_up_complete() will switch device back 3179 * to __IAVF_RUNNING 3180 */ 3181 iavf_up_complete(adapter); 3182 3183 iavf_irq_enable(adapter, true); 3184 } else { 3185 iavf_change_state(adapter, __IAVF_DOWN); 3186 wake_up(&adapter->down_waitqueue); 3187 } 3188 3189 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3190 3191 wake_up(&adapter->reset_waitqueue); 3192 mutex_unlock(&adapter->client_lock); 3193 mutex_unlock(&adapter->crit_lock); 3194 3195 return; 3196 reset_err: 3197 if (running) { 3198 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3199 iavf_free_traffic_irqs(adapter); 3200 } 3201 iavf_disable_vf(adapter); 3202 3203 mutex_unlock(&adapter->client_lock); 3204 mutex_unlock(&adapter->crit_lock); 3205 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3206 } 3207 3208 /** 3209 * iavf_adminq_task - worker thread to clean the admin queue 3210 * @work: pointer to work_struct containing our data 3211 **/ 3212 static void iavf_adminq_task(struct work_struct *work) 3213 { 3214 struct iavf_adapter *adapter = 3215 container_of(work, struct iavf_adapter, adminq_task); 3216 struct iavf_hw *hw = &adapter->hw; 3217 struct iavf_arq_event_info event; 3218 enum virtchnl_ops v_op; 3219 enum iavf_status ret, v_ret; 3220 u32 val, oldval; 3221 u16 pending; 3222 3223 if (!mutex_trylock(&adapter->crit_lock)) { 3224 if (adapter->state == __IAVF_REMOVE) 3225 return; 3226 3227 queue_work(adapter->wq, &adapter->adminq_task); 3228 goto out; 3229 } 3230 3231 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3232 goto unlock; 3233 3234 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3235 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3236 if (!event.msg_buf) 3237 goto unlock; 3238 3239 do { 3240 ret = iavf_clean_arq_element(hw, &event, &pending); 3241 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3242 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3243 3244 if (ret || !v_op) 3245 break; /* No event to process or error cleaning ARQ */ 3246 3247 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3248 event.msg_len); 3249 if (pending != 0) 3250 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3251 } while (pending); 3252 3253 if (iavf_is_reset_in_progress(adapter)) 3254 goto freedom; 3255 3256 /* check for error indications */ 3257 val = rd32(hw, hw->aq.arq.len); 3258 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3259 goto freedom; 3260 oldval = val; 3261 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3262 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3263 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3264 } 3265 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3266 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3267 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3268 } 3269 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3270 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3271 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3272 } 3273 if (oldval != val) 3274 wr32(hw, hw->aq.arq.len, val); 3275 3276 val = rd32(hw, hw->aq.asq.len); 3277 oldval = val; 3278 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3279 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3280 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3281 } 3282 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3283 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3284 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3285 } 3286 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3287 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3288 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3289 } 3290 if (oldval != val) 3291 wr32(hw, hw->aq.asq.len, val); 3292 3293 freedom: 3294 kfree(event.msg_buf); 3295 unlock: 3296 mutex_unlock(&adapter->crit_lock); 3297 out: 3298 /* re-enable Admin queue interrupt cause */ 3299 iavf_misc_irq_enable(adapter); 3300 } 3301 3302 /** 3303 * iavf_client_task - worker thread to perform client work 3304 * @work: pointer to work_struct containing our data 3305 * 3306 * This task handles client interactions. Because client calls can be 3307 * reentrant, we can't handle them in the watchdog. 3308 **/ 3309 static void iavf_client_task(struct work_struct *work) 3310 { 3311 struct iavf_adapter *adapter = 3312 container_of(work, struct iavf_adapter, client_task.work); 3313 3314 /* If we can't get the client bit, just give up. We'll be rescheduled 3315 * later. 3316 */ 3317 3318 if (!mutex_trylock(&adapter->client_lock)) 3319 return; 3320 3321 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3322 iavf_client_subtask(adapter); 3323 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3324 goto out; 3325 } 3326 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3327 iavf_notify_client_l2_params(&adapter->vsi); 3328 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3329 goto out; 3330 } 3331 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3332 iavf_notify_client_close(&adapter->vsi, false); 3333 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3334 goto out; 3335 } 3336 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3337 iavf_notify_client_open(&adapter->vsi); 3338 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3339 } 3340 out: 3341 mutex_unlock(&adapter->client_lock); 3342 } 3343 3344 /** 3345 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3346 * @adapter: board private structure 3347 * 3348 * Free all transmit software resources 3349 **/ 3350 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3351 { 3352 int i; 3353 3354 if (!adapter->tx_rings) 3355 return; 3356 3357 for (i = 0; i < adapter->num_active_queues; i++) 3358 if (adapter->tx_rings[i].desc) 3359 iavf_free_tx_resources(&adapter->tx_rings[i]); 3360 } 3361 3362 /** 3363 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3364 * @adapter: board private structure 3365 * 3366 * If this function returns with an error, then it's possible one or 3367 * more of the rings is populated (while the rest are not). It is the 3368 * callers duty to clean those orphaned rings. 3369 * 3370 * Return 0 on success, negative on failure 3371 **/ 3372 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3373 { 3374 int i, err = 0; 3375 3376 for (i = 0; i < adapter->num_active_queues; i++) { 3377 adapter->tx_rings[i].count = adapter->tx_desc_count; 3378 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3379 if (!err) 3380 continue; 3381 dev_err(&adapter->pdev->dev, 3382 "Allocation for Tx Queue %u failed\n", i); 3383 break; 3384 } 3385 3386 return err; 3387 } 3388 3389 /** 3390 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3391 * @adapter: board private structure 3392 * 3393 * If this function returns with an error, then it's possible one or 3394 * more of the rings is populated (while the rest are not). It is the 3395 * callers duty to clean those orphaned rings. 3396 * 3397 * Return 0 on success, negative on failure 3398 **/ 3399 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3400 { 3401 int i, err = 0; 3402 3403 for (i = 0; i < adapter->num_active_queues; i++) { 3404 adapter->rx_rings[i].count = adapter->rx_desc_count; 3405 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3406 if (!err) 3407 continue; 3408 dev_err(&adapter->pdev->dev, 3409 "Allocation for Rx Queue %u failed\n", i); 3410 break; 3411 } 3412 return err; 3413 } 3414 3415 /** 3416 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3417 * @adapter: board private structure 3418 * 3419 * Free all receive software resources 3420 **/ 3421 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3422 { 3423 int i; 3424 3425 if (!adapter->rx_rings) 3426 return; 3427 3428 for (i = 0; i < adapter->num_active_queues; i++) 3429 if (adapter->rx_rings[i].desc) 3430 iavf_free_rx_resources(&adapter->rx_rings[i]); 3431 } 3432 3433 /** 3434 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3435 * @adapter: board private structure 3436 * @max_tx_rate: max Tx bw for a tc 3437 **/ 3438 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3439 u64 max_tx_rate) 3440 { 3441 int speed = 0, ret = 0; 3442 3443 if (ADV_LINK_SUPPORT(adapter)) { 3444 if (adapter->link_speed_mbps < U32_MAX) { 3445 speed = adapter->link_speed_mbps; 3446 goto validate_bw; 3447 } else { 3448 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3449 return -EINVAL; 3450 } 3451 } 3452 3453 switch (adapter->link_speed) { 3454 case VIRTCHNL_LINK_SPEED_40GB: 3455 speed = SPEED_40000; 3456 break; 3457 case VIRTCHNL_LINK_SPEED_25GB: 3458 speed = SPEED_25000; 3459 break; 3460 case VIRTCHNL_LINK_SPEED_20GB: 3461 speed = SPEED_20000; 3462 break; 3463 case VIRTCHNL_LINK_SPEED_10GB: 3464 speed = SPEED_10000; 3465 break; 3466 case VIRTCHNL_LINK_SPEED_5GB: 3467 speed = SPEED_5000; 3468 break; 3469 case VIRTCHNL_LINK_SPEED_2_5GB: 3470 speed = SPEED_2500; 3471 break; 3472 case VIRTCHNL_LINK_SPEED_1GB: 3473 speed = SPEED_1000; 3474 break; 3475 case VIRTCHNL_LINK_SPEED_100MB: 3476 speed = SPEED_100; 3477 break; 3478 default: 3479 break; 3480 } 3481 3482 validate_bw: 3483 if (max_tx_rate > speed) { 3484 dev_err(&adapter->pdev->dev, 3485 "Invalid tx rate specified\n"); 3486 ret = -EINVAL; 3487 } 3488 3489 return ret; 3490 } 3491 3492 /** 3493 * iavf_validate_ch_config - validate queue mapping info 3494 * @adapter: board private structure 3495 * @mqprio_qopt: queue parameters 3496 * 3497 * This function validates if the config provided by the user to 3498 * configure queue channels is valid or not. Returns 0 on a valid 3499 * config. 3500 **/ 3501 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3502 struct tc_mqprio_qopt_offload *mqprio_qopt) 3503 { 3504 u64 total_max_rate = 0; 3505 u32 tx_rate_rem = 0; 3506 int i, num_qps = 0; 3507 u64 tx_rate = 0; 3508 int ret = 0; 3509 3510 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3511 mqprio_qopt->qopt.num_tc < 1) 3512 return -EINVAL; 3513 3514 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3515 if (!mqprio_qopt->qopt.count[i] || 3516 mqprio_qopt->qopt.offset[i] != num_qps) 3517 return -EINVAL; 3518 if (mqprio_qopt->min_rate[i]) { 3519 dev_err(&adapter->pdev->dev, 3520 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3521 i); 3522 return -EINVAL; 3523 } 3524 3525 /* convert to Mbps */ 3526 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3527 IAVF_MBPS_DIVISOR); 3528 3529 if (mqprio_qopt->max_rate[i] && 3530 tx_rate < IAVF_MBPS_QUANTA) { 3531 dev_err(&adapter->pdev->dev, 3532 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3533 i, IAVF_MBPS_QUANTA); 3534 return -EINVAL; 3535 } 3536 3537 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3538 3539 if (tx_rate_rem != 0) { 3540 dev_err(&adapter->pdev->dev, 3541 "Invalid max tx rate for TC%d, not divisible by %d\n", 3542 i, IAVF_MBPS_QUANTA); 3543 return -EINVAL; 3544 } 3545 3546 total_max_rate += tx_rate; 3547 num_qps += mqprio_qopt->qopt.count[i]; 3548 } 3549 if (num_qps > adapter->num_active_queues) { 3550 dev_err(&adapter->pdev->dev, 3551 "Cannot support requested number of queues\n"); 3552 return -EINVAL; 3553 } 3554 3555 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3556 return ret; 3557 } 3558 3559 /** 3560 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3561 * @adapter: board private structure 3562 **/ 3563 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3564 { 3565 struct iavf_cloud_filter *cf, *cftmp; 3566 3567 spin_lock_bh(&adapter->cloud_filter_list_lock); 3568 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3569 list) { 3570 list_del(&cf->list); 3571 kfree(cf); 3572 adapter->num_cloud_filters--; 3573 } 3574 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3575 } 3576 3577 /** 3578 * __iavf_setup_tc - configure multiple traffic classes 3579 * @netdev: network interface device structure 3580 * @type_data: tc offload data 3581 * 3582 * This function processes the config information provided by the 3583 * user to configure traffic classes/queue channels and packages the 3584 * information to request the PF to setup traffic classes. 3585 * 3586 * Returns 0 on success. 3587 **/ 3588 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3589 { 3590 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3591 struct iavf_adapter *adapter = netdev_priv(netdev); 3592 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3593 u8 num_tc = 0, total_qps = 0; 3594 int ret = 0, netdev_tc = 0; 3595 u64 max_tx_rate; 3596 u16 mode; 3597 int i; 3598 3599 num_tc = mqprio_qopt->qopt.num_tc; 3600 mode = mqprio_qopt->mode; 3601 3602 /* delete queue_channel */ 3603 if (!mqprio_qopt->qopt.hw) { 3604 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3605 /* reset the tc configuration */ 3606 netdev_reset_tc(netdev); 3607 adapter->num_tc = 0; 3608 netif_tx_stop_all_queues(netdev); 3609 netif_tx_disable(netdev); 3610 iavf_del_all_cloud_filters(adapter); 3611 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3612 total_qps = adapter->orig_num_active_queues; 3613 goto exit; 3614 } else { 3615 return -EINVAL; 3616 } 3617 } 3618 3619 /* add queue channel */ 3620 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3621 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3622 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3623 return -EOPNOTSUPP; 3624 } 3625 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3626 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3627 return -EINVAL; 3628 } 3629 3630 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3631 if (ret) 3632 return ret; 3633 /* Return if same TC config is requested */ 3634 if (adapter->num_tc == num_tc) 3635 return 0; 3636 adapter->num_tc = num_tc; 3637 3638 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3639 if (i < num_tc) { 3640 adapter->ch_config.ch_info[i].count = 3641 mqprio_qopt->qopt.count[i]; 3642 adapter->ch_config.ch_info[i].offset = 3643 mqprio_qopt->qopt.offset[i]; 3644 total_qps += mqprio_qopt->qopt.count[i]; 3645 max_tx_rate = mqprio_qopt->max_rate[i]; 3646 /* convert to Mbps */ 3647 max_tx_rate = div_u64(max_tx_rate, 3648 IAVF_MBPS_DIVISOR); 3649 adapter->ch_config.ch_info[i].max_tx_rate = 3650 max_tx_rate; 3651 } else { 3652 adapter->ch_config.ch_info[i].count = 1; 3653 adapter->ch_config.ch_info[i].offset = 0; 3654 } 3655 } 3656 3657 /* Take snapshot of original config such as "num_active_queues" 3658 * It is used later when delete ADQ flow is exercised, so that 3659 * once delete ADQ flow completes, VF shall go back to its 3660 * original queue configuration 3661 */ 3662 3663 adapter->orig_num_active_queues = adapter->num_active_queues; 3664 3665 /* Store queue info based on TC so that VF gets configured 3666 * with correct number of queues when VF completes ADQ config 3667 * flow 3668 */ 3669 adapter->ch_config.total_qps = total_qps; 3670 3671 netif_tx_stop_all_queues(netdev); 3672 netif_tx_disable(netdev); 3673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3674 netdev_reset_tc(netdev); 3675 /* Report the tc mapping up the stack */ 3676 netdev_set_num_tc(adapter->netdev, num_tc); 3677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3678 u16 qcount = mqprio_qopt->qopt.count[i]; 3679 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3680 3681 if (i < num_tc) 3682 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3683 qoffset); 3684 } 3685 } 3686 exit: 3687 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3688 return 0; 3689 3690 netif_set_real_num_rx_queues(netdev, total_qps); 3691 netif_set_real_num_tx_queues(netdev, total_qps); 3692 3693 return ret; 3694 } 3695 3696 /** 3697 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3698 * @adapter: board private structure 3699 * @f: pointer to struct flow_cls_offload 3700 * @filter: pointer to cloud filter structure 3701 */ 3702 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3703 struct flow_cls_offload *f, 3704 struct iavf_cloud_filter *filter) 3705 { 3706 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3707 struct flow_dissector *dissector = rule->match.dissector; 3708 u16 n_proto_mask = 0; 3709 u16 n_proto_key = 0; 3710 u8 field_flags = 0; 3711 u16 addr_type = 0; 3712 u16 n_proto = 0; 3713 int i = 0; 3714 struct virtchnl_filter *vf = &filter->f; 3715 3716 if (dissector->used_keys & 3717 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3718 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3719 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3720 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3721 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3722 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3723 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3724 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3725 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3726 dissector->used_keys); 3727 return -EOPNOTSUPP; 3728 } 3729 3730 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3731 struct flow_match_enc_keyid match; 3732 3733 flow_rule_match_enc_keyid(rule, &match); 3734 if (match.mask->keyid != 0) 3735 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3736 } 3737 3738 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3739 struct flow_match_basic match; 3740 3741 flow_rule_match_basic(rule, &match); 3742 n_proto_key = ntohs(match.key->n_proto); 3743 n_proto_mask = ntohs(match.mask->n_proto); 3744 3745 if (n_proto_key == ETH_P_ALL) { 3746 n_proto_key = 0; 3747 n_proto_mask = 0; 3748 } 3749 n_proto = n_proto_key & n_proto_mask; 3750 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3751 return -EINVAL; 3752 if (n_proto == ETH_P_IPV6) { 3753 /* specify flow type as TCP IPv6 */ 3754 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3755 } 3756 3757 if (match.key->ip_proto != IPPROTO_TCP) { 3758 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3759 return -EINVAL; 3760 } 3761 } 3762 3763 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3764 struct flow_match_eth_addrs match; 3765 3766 flow_rule_match_eth_addrs(rule, &match); 3767 3768 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3769 if (!is_zero_ether_addr(match.mask->dst)) { 3770 if (is_broadcast_ether_addr(match.mask->dst)) { 3771 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3772 } else { 3773 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3774 match.mask->dst); 3775 return -EINVAL; 3776 } 3777 } 3778 3779 if (!is_zero_ether_addr(match.mask->src)) { 3780 if (is_broadcast_ether_addr(match.mask->src)) { 3781 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3782 } else { 3783 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3784 match.mask->src); 3785 return -EINVAL; 3786 } 3787 } 3788 3789 if (!is_zero_ether_addr(match.key->dst)) 3790 if (is_valid_ether_addr(match.key->dst) || 3791 is_multicast_ether_addr(match.key->dst)) { 3792 /* set the mask if a valid dst_mac address */ 3793 for (i = 0; i < ETH_ALEN; i++) 3794 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3795 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3796 match.key->dst); 3797 } 3798 3799 if (!is_zero_ether_addr(match.key->src)) 3800 if (is_valid_ether_addr(match.key->src) || 3801 is_multicast_ether_addr(match.key->src)) { 3802 /* set the mask if a valid dst_mac address */ 3803 for (i = 0; i < ETH_ALEN; i++) 3804 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3805 ether_addr_copy(vf->data.tcp_spec.src_mac, 3806 match.key->src); 3807 } 3808 } 3809 3810 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3811 struct flow_match_vlan match; 3812 3813 flow_rule_match_vlan(rule, &match); 3814 if (match.mask->vlan_id) { 3815 if (match.mask->vlan_id == VLAN_VID_MASK) { 3816 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3817 } else { 3818 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3819 match.mask->vlan_id); 3820 return -EINVAL; 3821 } 3822 } 3823 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3824 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3825 } 3826 3827 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3828 struct flow_match_control match; 3829 3830 flow_rule_match_control(rule, &match); 3831 addr_type = match.key->addr_type; 3832 } 3833 3834 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3835 struct flow_match_ipv4_addrs match; 3836 3837 flow_rule_match_ipv4_addrs(rule, &match); 3838 if (match.mask->dst) { 3839 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3840 field_flags |= IAVF_CLOUD_FIELD_IIP; 3841 } else { 3842 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3843 be32_to_cpu(match.mask->dst)); 3844 return -EINVAL; 3845 } 3846 } 3847 3848 if (match.mask->src) { 3849 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3850 field_flags |= IAVF_CLOUD_FIELD_IIP; 3851 } else { 3852 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3853 be32_to_cpu(match.mask->src)); 3854 return -EINVAL; 3855 } 3856 } 3857 3858 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3859 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3860 return -EINVAL; 3861 } 3862 if (match.key->dst) { 3863 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3864 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3865 } 3866 if (match.key->src) { 3867 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3868 vf->data.tcp_spec.src_ip[0] = match.key->src; 3869 } 3870 } 3871 3872 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3873 struct flow_match_ipv6_addrs match; 3874 3875 flow_rule_match_ipv6_addrs(rule, &match); 3876 3877 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3878 if (ipv6_addr_any(&match.mask->dst)) { 3879 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3880 IPV6_ADDR_ANY); 3881 return -EINVAL; 3882 } 3883 3884 /* src and dest IPv6 address should not be LOOPBACK 3885 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3886 */ 3887 if (ipv6_addr_loopback(&match.key->dst) || 3888 ipv6_addr_loopback(&match.key->src)) { 3889 dev_err(&adapter->pdev->dev, 3890 "ipv6 addr should not be loopback\n"); 3891 return -EINVAL; 3892 } 3893 if (!ipv6_addr_any(&match.mask->dst) || 3894 !ipv6_addr_any(&match.mask->src)) 3895 field_flags |= IAVF_CLOUD_FIELD_IIP; 3896 3897 for (i = 0; i < 4; i++) 3898 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3899 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3900 sizeof(vf->data.tcp_spec.dst_ip)); 3901 for (i = 0; i < 4; i++) 3902 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3903 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3904 sizeof(vf->data.tcp_spec.src_ip)); 3905 } 3906 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3907 struct flow_match_ports match; 3908 3909 flow_rule_match_ports(rule, &match); 3910 if (match.mask->src) { 3911 if (match.mask->src == cpu_to_be16(0xffff)) { 3912 field_flags |= IAVF_CLOUD_FIELD_IIP; 3913 } else { 3914 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3915 be16_to_cpu(match.mask->src)); 3916 return -EINVAL; 3917 } 3918 } 3919 3920 if (match.mask->dst) { 3921 if (match.mask->dst == cpu_to_be16(0xffff)) { 3922 field_flags |= IAVF_CLOUD_FIELD_IIP; 3923 } else { 3924 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3925 be16_to_cpu(match.mask->dst)); 3926 return -EINVAL; 3927 } 3928 } 3929 if (match.key->dst) { 3930 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3931 vf->data.tcp_spec.dst_port = match.key->dst; 3932 } 3933 3934 if (match.key->src) { 3935 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3936 vf->data.tcp_spec.src_port = match.key->src; 3937 } 3938 } 3939 vf->field_flags = field_flags; 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * iavf_handle_tclass - Forward to a traffic class on the device 3946 * @adapter: board private structure 3947 * @tc: traffic class index on the device 3948 * @filter: pointer to cloud filter structure 3949 */ 3950 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3951 struct iavf_cloud_filter *filter) 3952 { 3953 if (tc == 0) 3954 return 0; 3955 if (tc < adapter->num_tc) { 3956 if (!filter->f.data.tcp_spec.dst_port) { 3957 dev_err(&adapter->pdev->dev, 3958 "Specify destination port to redirect to traffic class other than TC0\n"); 3959 return -EINVAL; 3960 } 3961 } 3962 /* redirect to a traffic class on the same device */ 3963 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3964 filter->f.action_meta = tc; 3965 return 0; 3966 } 3967 3968 /** 3969 * iavf_find_cf - Find the cloud filter in the list 3970 * @adapter: Board private structure 3971 * @cookie: filter specific cookie 3972 * 3973 * Returns ptr to the filter object or NULL. Must be called while holding the 3974 * cloud_filter_list_lock. 3975 */ 3976 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3977 unsigned long *cookie) 3978 { 3979 struct iavf_cloud_filter *filter = NULL; 3980 3981 if (!cookie) 3982 return NULL; 3983 3984 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3985 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3986 return filter; 3987 } 3988 return NULL; 3989 } 3990 3991 /** 3992 * iavf_configure_clsflower - Add tc flower filters 3993 * @adapter: board private structure 3994 * @cls_flower: Pointer to struct flow_cls_offload 3995 */ 3996 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3997 struct flow_cls_offload *cls_flower) 3998 { 3999 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4000 struct iavf_cloud_filter *filter = NULL; 4001 int err = -EINVAL, count = 50; 4002 4003 if (tc < 0) { 4004 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4005 return -EINVAL; 4006 } 4007 4008 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4009 if (!filter) 4010 return -ENOMEM; 4011 4012 while (!mutex_trylock(&adapter->crit_lock)) { 4013 if (--count == 0) { 4014 kfree(filter); 4015 return err; 4016 } 4017 udelay(1); 4018 } 4019 4020 filter->cookie = cls_flower->cookie; 4021 4022 /* bail out here if filter already exists */ 4023 spin_lock_bh(&adapter->cloud_filter_list_lock); 4024 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4025 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4026 err = -EEXIST; 4027 goto spin_unlock; 4028 } 4029 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4030 4031 /* set the mask to all zeroes to begin with */ 4032 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4033 /* start out with flow type and eth type IPv4 to begin with */ 4034 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4035 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4036 if (err) 4037 goto err; 4038 4039 err = iavf_handle_tclass(adapter, tc, filter); 4040 if (err) 4041 goto err; 4042 4043 /* add filter to the list */ 4044 spin_lock_bh(&adapter->cloud_filter_list_lock); 4045 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4046 adapter->num_cloud_filters++; 4047 filter->add = true; 4048 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4049 spin_unlock: 4050 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4051 err: 4052 if (err) 4053 kfree(filter); 4054 4055 mutex_unlock(&adapter->crit_lock); 4056 return err; 4057 } 4058 4059 /** 4060 * iavf_delete_clsflower - Remove tc flower filters 4061 * @adapter: board private structure 4062 * @cls_flower: Pointer to struct flow_cls_offload 4063 */ 4064 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4065 struct flow_cls_offload *cls_flower) 4066 { 4067 struct iavf_cloud_filter *filter = NULL; 4068 int err = 0; 4069 4070 spin_lock_bh(&adapter->cloud_filter_list_lock); 4071 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4072 if (filter) { 4073 filter->del = true; 4074 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4075 } else { 4076 err = -EINVAL; 4077 } 4078 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4079 4080 return err; 4081 } 4082 4083 /** 4084 * iavf_setup_tc_cls_flower - flower classifier offloads 4085 * @adapter: board private structure 4086 * @cls_flower: pointer to flow_cls_offload struct with flow info 4087 */ 4088 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4089 struct flow_cls_offload *cls_flower) 4090 { 4091 switch (cls_flower->command) { 4092 case FLOW_CLS_REPLACE: 4093 return iavf_configure_clsflower(adapter, cls_flower); 4094 case FLOW_CLS_DESTROY: 4095 return iavf_delete_clsflower(adapter, cls_flower); 4096 case FLOW_CLS_STATS: 4097 return -EOPNOTSUPP; 4098 default: 4099 return -EOPNOTSUPP; 4100 } 4101 } 4102 4103 /** 4104 * iavf_setup_tc_block_cb - block callback for tc 4105 * @type: type of offload 4106 * @type_data: offload data 4107 * @cb_priv: 4108 * 4109 * This function is the block callback for traffic classes 4110 **/ 4111 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4112 void *cb_priv) 4113 { 4114 struct iavf_adapter *adapter = cb_priv; 4115 4116 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4117 return -EOPNOTSUPP; 4118 4119 switch (type) { 4120 case TC_SETUP_CLSFLOWER: 4121 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4122 default: 4123 return -EOPNOTSUPP; 4124 } 4125 } 4126 4127 static LIST_HEAD(iavf_block_cb_list); 4128 4129 /** 4130 * iavf_setup_tc - configure multiple traffic classes 4131 * @netdev: network interface device structure 4132 * @type: type of offload 4133 * @type_data: tc offload data 4134 * 4135 * This function is the callback to ndo_setup_tc in the 4136 * netdev_ops. 4137 * 4138 * Returns 0 on success 4139 **/ 4140 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4141 void *type_data) 4142 { 4143 struct iavf_adapter *adapter = netdev_priv(netdev); 4144 4145 switch (type) { 4146 case TC_SETUP_QDISC_MQPRIO: 4147 return __iavf_setup_tc(netdev, type_data); 4148 case TC_SETUP_BLOCK: 4149 return flow_block_cb_setup_simple(type_data, 4150 &iavf_block_cb_list, 4151 iavf_setup_tc_block_cb, 4152 adapter, adapter, true); 4153 default: 4154 return -EOPNOTSUPP; 4155 } 4156 } 4157 4158 /** 4159 * iavf_restore_fdir_filters 4160 * @adapter: board private structure 4161 * 4162 * Restore existing FDIR filters when VF netdev comes back up. 4163 **/ 4164 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4165 { 4166 struct iavf_fdir_fltr *f; 4167 4168 spin_lock_bh(&adapter->fdir_fltr_lock); 4169 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4170 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4171 /* Cancel a request, keep filter as active */ 4172 f->state = IAVF_FDIR_FLTR_ACTIVE; 4173 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4174 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4175 /* Add filters which are inactive or have a pending 4176 * request to PF to be deleted 4177 */ 4178 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4179 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4180 } 4181 } 4182 spin_unlock_bh(&adapter->fdir_fltr_lock); 4183 } 4184 4185 /** 4186 * iavf_open - Called when a network interface is made active 4187 * @netdev: network interface device structure 4188 * 4189 * Returns 0 on success, negative value on failure 4190 * 4191 * The open entry point is called when a network interface is made 4192 * active by the system (IFF_UP). At this point all resources needed 4193 * for transmit and receive operations are allocated, the interrupt 4194 * handler is registered with the OS, the watchdog is started, 4195 * and the stack is notified that the interface is ready. 4196 **/ 4197 static int iavf_open(struct net_device *netdev) 4198 { 4199 struct iavf_adapter *adapter = netdev_priv(netdev); 4200 int err; 4201 4202 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4203 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4204 return -EIO; 4205 } 4206 4207 while (!mutex_trylock(&adapter->crit_lock)) { 4208 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4209 * is already taken and iavf_open is called from an upper 4210 * device's notifier reacting on NETDEV_REGISTER event. 4211 * We have to leave here to avoid dead lock. 4212 */ 4213 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4214 return -EBUSY; 4215 4216 usleep_range(500, 1000); 4217 } 4218 4219 if (adapter->state != __IAVF_DOWN) { 4220 err = -EBUSY; 4221 goto err_unlock; 4222 } 4223 4224 if (adapter->state == __IAVF_RUNNING && 4225 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4226 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4227 err = 0; 4228 goto err_unlock; 4229 } 4230 4231 /* allocate transmit descriptors */ 4232 err = iavf_setup_all_tx_resources(adapter); 4233 if (err) 4234 goto err_setup_tx; 4235 4236 /* allocate receive descriptors */ 4237 err = iavf_setup_all_rx_resources(adapter); 4238 if (err) 4239 goto err_setup_rx; 4240 4241 /* clear any pending interrupts, may auto mask */ 4242 err = iavf_request_traffic_irqs(adapter, netdev->name); 4243 if (err) 4244 goto err_req_irq; 4245 4246 spin_lock_bh(&adapter->mac_vlan_list_lock); 4247 4248 iavf_add_filter(adapter, adapter->hw.mac.addr); 4249 4250 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4251 4252 /* Restore filters that were removed with IFF_DOWN */ 4253 iavf_restore_filters(adapter); 4254 iavf_restore_fdir_filters(adapter); 4255 4256 iavf_configure(adapter); 4257 4258 iavf_up_complete(adapter); 4259 4260 iavf_irq_enable(adapter, true); 4261 4262 mutex_unlock(&adapter->crit_lock); 4263 4264 return 0; 4265 4266 err_req_irq: 4267 iavf_down(adapter); 4268 iavf_free_traffic_irqs(adapter); 4269 err_setup_rx: 4270 iavf_free_all_rx_resources(adapter); 4271 err_setup_tx: 4272 iavf_free_all_tx_resources(adapter); 4273 err_unlock: 4274 mutex_unlock(&adapter->crit_lock); 4275 4276 return err; 4277 } 4278 4279 /** 4280 * iavf_close - Disables a network interface 4281 * @netdev: network interface device structure 4282 * 4283 * Returns 0, this is not allowed to fail 4284 * 4285 * The close entry point is called when an interface is de-activated 4286 * by the OS. The hardware is still under the drivers control, but 4287 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4288 * are freed, along with all transmit and receive resources. 4289 **/ 4290 static int iavf_close(struct net_device *netdev) 4291 { 4292 struct iavf_adapter *adapter = netdev_priv(netdev); 4293 u64 aq_to_restore; 4294 int status; 4295 4296 mutex_lock(&adapter->crit_lock); 4297 4298 if (adapter->state <= __IAVF_DOWN_PENDING) { 4299 mutex_unlock(&adapter->crit_lock); 4300 return 0; 4301 } 4302 4303 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4304 if (CLIENT_ENABLED(adapter)) 4305 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4306 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4307 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4308 * deadlock with adminq_task() until iavf_close timeouts. We must send 4309 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4310 * disable queues possible for vf. Give only necessary flags to 4311 * iavf_down and save other to set them right before iavf_close() 4312 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4313 * iavf will be in DOWN state. 4314 */ 4315 aq_to_restore = adapter->aq_required; 4316 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4317 4318 /* Remove flags which we do not want to send after close or we want to 4319 * send before disable queues. 4320 */ 4321 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4322 IAVF_FLAG_AQ_ENABLE_QUEUES | 4323 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4324 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4325 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4326 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4327 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4328 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4329 4330 iavf_down(adapter); 4331 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4332 iavf_free_traffic_irqs(adapter); 4333 4334 mutex_unlock(&adapter->crit_lock); 4335 4336 /* We explicitly don't free resources here because the hardware is 4337 * still active and can DMA into memory. Resources are cleared in 4338 * iavf_virtchnl_completion() after we get confirmation from the PF 4339 * driver that the rings have been stopped. 4340 * 4341 * Also, we wait for state to transition to __IAVF_DOWN before 4342 * returning. State change occurs in iavf_virtchnl_completion() after 4343 * VF resources are released (which occurs after PF driver processes and 4344 * responds to admin queue commands). 4345 */ 4346 4347 status = wait_event_timeout(adapter->down_waitqueue, 4348 adapter->state == __IAVF_DOWN, 4349 msecs_to_jiffies(500)); 4350 if (!status) 4351 netdev_warn(netdev, "Device resources not yet released\n"); 4352 4353 mutex_lock(&adapter->crit_lock); 4354 adapter->aq_required |= aq_to_restore; 4355 mutex_unlock(&adapter->crit_lock); 4356 return 0; 4357 } 4358 4359 /** 4360 * iavf_change_mtu - Change the Maximum Transfer Unit 4361 * @netdev: network interface device structure 4362 * @new_mtu: new value for maximum frame size 4363 * 4364 * Returns 0 on success, negative on failure 4365 **/ 4366 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4367 { 4368 struct iavf_adapter *adapter = netdev_priv(netdev); 4369 int ret = 0; 4370 4371 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4372 netdev->mtu, new_mtu); 4373 netdev->mtu = new_mtu; 4374 if (CLIENT_ENABLED(adapter)) { 4375 iavf_notify_client_l2_params(&adapter->vsi); 4376 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4377 } 4378 4379 if (netif_running(netdev)) { 4380 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4381 ret = iavf_wait_for_reset(adapter); 4382 if (ret < 0) 4383 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4384 else if (ret) 4385 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4386 } 4387 4388 return ret; 4389 } 4390 4391 /** 4392 * iavf_disable_fdir - disable Flow Director and clear existing filters 4393 * @adapter: board private structure 4394 **/ 4395 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4396 { 4397 struct iavf_fdir_fltr *fdir, *fdirtmp; 4398 bool del_filters = false; 4399 4400 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4401 4402 /* remove all Flow Director filters */ 4403 spin_lock_bh(&adapter->fdir_fltr_lock); 4404 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4405 list) { 4406 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4407 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4408 /* Delete filters not registered in PF */ 4409 list_del(&fdir->list); 4410 kfree(fdir); 4411 adapter->fdir_active_fltr--; 4412 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4413 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4414 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4415 /* Filters registered in PF, schedule their deletion */ 4416 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4417 del_filters = true; 4418 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4419 /* Request to delete filter already sent to PF, change 4420 * state to DEL_PENDING to delete filter after PF's 4421 * response, not set as INACTIVE 4422 */ 4423 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4424 } 4425 } 4426 spin_unlock_bh(&adapter->fdir_fltr_lock); 4427 4428 if (del_filters) { 4429 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4430 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4431 } 4432 } 4433 4434 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4435 NETIF_F_HW_VLAN_CTAG_TX | \ 4436 NETIF_F_HW_VLAN_STAG_RX | \ 4437 NETIF_F_HW_VLAN_STAG_TX) 4438 4439 /** 4440 * iavf_set_features - set the netdev feature flags 4441 * @netdev: ptr to the netdev being adjusted 4442 * @features: the feature set that the stack is suggesting 4443 * Note: expects to be called while under rtnl_lock() 4444 **/ 4445 static int iavf_set_features(struct net_device *netdev, 4446 netdev_features_t features) 4447 { 4448 struct iavf_adapter *adapter = netdev_priv(netdev); 4449 4450 /* trigger update on any VLAN feature change */ 4451 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4452 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4453 iavf_set_vlan_offload_features(adapter, netdev->features, 4454 features); 4455 4456 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4457 if (features & NETIF_F_NTUPLE) 4458 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4459 else 4460 iavf_disable_fdir(adapter); 4461 } 4462 4463 return 0; 4464 } 4465 4466 /** 4467 * iavf_features_check - Validate encapsulated packet conforms to limits 4468 * @skb: skb buff 4469 * @dev: This physical port's netdev 4470 * @features: Offload features that the stack believes apply 4471 **/ 4472 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4473 struct net_device *dev, 4474 netdev_features_t features) 4475 { 4476 size_t len; 4477 4478 /* No point in doing any of this if neither checksum nor GSO are 4479 * being requested for this frame. We can rule out both by just 4480 * checking for CHECKSUM_PARTIAL 4481 */ 4482 if (skb->ip_summed != CHECKSUM_PARTIAL) 4483 return features; 4484 4485 /* We cannot support GSO if the MSS is going to be less than 4486 * 64 bytes. If it is then we need to drop support for GSO. 4487 */ 4488 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4489 features &= ~NETIF_F_GSO_MASK; 4490 4491 /* MACLEN can support at most 63 words */ 4492 len = skb_network_header(skb) - skb->data; 4493 if (len & ~(63 * 2)) 4494 goto out_err; 4495 4496 /* IPLEN and EIPLEN can support at most 127 dwords */ 4497 len = skb_transport_header(skb) - skb_network_header(skb); 4498 if (len & ~(127 * 4)) 4499 goto out_err; 4500 4501 if (skb->encapsulation) { 4502 /* L4TUNLEN can support 127 words */ 4503 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4504 if (len & ~(127 * 2)) 4505 goto out_err; 4506 4507 /* IPLEN can support at most 127 dwords */ 4508 len = skb_inner_transport_header(skb) - 4509 skb_inner_network_header(skb); 4510 if (len & ~(127 * 4)) 4511 goto out_err; 4512 } 4513 4514 /* No need to validate L4LEN as TCP is the only protocol with a 4515 * flexible value and we support all possible values supported 4516 * by TCP, which is at most 15 dwords 4517 */ 4518 4519 return features; 4520 out_err: 4521 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4522 } 4523 4524 /** 4525 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4526 * @adapter: board private structure 4527 * 4528 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4529 * were negotiated determine the VLAN features that can be toggled on and off. 4530 **/ 4531 static netdev_features_t 4532 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4533 { 4534 netdev_features_t hw_features = 0; 4535 4536 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4537 return hw_features; 4538 4539 /* Enable VLAN features if supported */ 4540 if (VLAN_ALLOWED(adapter)) { 4541 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4542 NETIF_F_HW_VLAN_CTAG_RX); 4543 } else if (VLAN_V2_ALLOWED(adapter)) { 4544 struct virtchnl_vlan_caps *vlan_v2_caps = 4545 &adapter->vlan_v2_caps; 4546 struct virtchnl_vlan_supported_caps *stripping_support = 4547 &vlan_v2_caps->offloads.stripping_support; 4548 struct virtchnl_vlan_supported_caps *insertion_support = 4549 &vlan_v2_caps->offloads.insertion_support; 4550 4551 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4552 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4553 if (stripping_support->outer & 4554 VIRTCHNL_VLAN_ETHERTYPE_8100) 4555 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4556 if (stripping_support->outer & 4557 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4558 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4559 } else if (stripping_support->inner != 4560 VIRTCHNL_VLAN_UNSUPPORTED && 4561 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4562 if (stripping_support->inner & 4563 VIRTCHNL_VLAN_ETHERTYPE_8100) 4564 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4565 } 4566 4567 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4568 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4569 if (insertion_support->outer & 4570 VIRTCHNL_VLAN_ETHERTYPE_8100) 4571 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4572 if (insertion_support->outer & 4573 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4574 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4575 } else if (insertion_support->inner && 4576 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4577 if (insertion_support->inner & 4578 VIRTCHNL_VLAN_ETHERTYPE_8100) 4579 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4580 } 4581 } 4582 4583 return hw_features; 4584 } 4585 4586 /** 4587 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4588 * @adapter: board private structure 4589 * 4590 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4591 * were negotiated determine the VLAN features that are enabled by default. 4592 **/ 4593 static netdev_features_t 4594 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4595 { 4596 netdev_features_t features = 0; 4597 4598 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4599 return features; 4600 4601 if (VLAN_ALLOWED(adapter)) { 4602 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4603 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4604 } else if (VLAN_V2_ALLOWED(adapter)) { 4605 struct virtchnl_vlan_caps *vlan_v2_caps = 4606 &adapter->vlan_v2_caps; 4607 struct virtchnl_vlan_supported_caps *filtering_support = 4608 &vlan_v2_caps->filtering.filtering_support; 4609 struct virtchnl_vlan_supported_caps *stripping_support = 4610 &vlan_v2_caps->offloads.stripping_support; 4611 struct virtchnl_vlan_supported_caps *insertion_support = 4612 &vlan_v2_caps->offloads.insertion_support; 4613 u32 ethertype_init; 4614 4615 /* give priority to outer stripping and don't support both outer 4616 * and inner stripping 4617 */ 4618 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4619 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4620 if (stripping_support->outer & 4621 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4622 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4623 features |= NETIF_F_HW_VLAN_CTAG_RX; 4624 else if (stripping_support->outer & 4625 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4626 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4627 features |= NETIF_F_HW_VLAN_STAG_RX; 4628 } else if (stripping_support->inner != 4629 VIRTCHNL_VLAN_UNSUPPORTED) { 4630 if (stripping_support->inner & 4631 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4632 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4633 features |= NETIF_F_HW_VLAN_CTAG_RX; 4634 } 4635 4636 /* give priority to outer insertion and don't support both outer 4637 * and inner insertion 4638 */ 4639 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4640 if (insertion_support->outer & 4641 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4642 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4643 features |= NETIF_F_HW_VLAN_CTAG_TX; 4644 else if (insertion_support->outer & 4645 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4646 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4647 features |= NETIF_F_HW_VLAN_STAG_TX; 4648 } else if (insertion_support->inner != 4649 VIRTCHNL_VLAN_UNSUPPORTED) { 4650 if (insertion_support->inner & 4651 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4652 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4653 features |= NETIF_F_HW_VLAN_CTAG_TX; 4654 } 4655 4656 /* give priority to outer filtering and don't bother if both 4657 * outer and inner filtering are enabled 4658 */ 4659 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4660 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4661 if (filtering_support->outer & 4662 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4663 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4664 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4665 if (filtering_support->outer & 4666 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4667 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4668 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4669 } else if (filtering_support->inner != 4670 VIRTCHNL_VLAN_UNSUPPORTED) { 4671 if (filtering_support->inner & 4672 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4673 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4674 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4675 if (filtering_support->inner & 4676 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4677 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4678 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4679 } 4680 } 4681 4682 return features; 4683 } 4684 4685 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4686 (!(((requested) & (feature_bit)) && \ 4687 !((allowed) & (feature_bit)))) 4688 4689 /** 4690 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4691 * @adapter: board private structure 4692 * @requested_features: stack requested NETDEV features 4693 **/ 4694 static netdev_features_t 4695 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4696 netdev_features_t requested_features) 4697 { 4698 netdev_features_t allowed_features; 4699 4700 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4701 iavf_get_netdev_vlan_features(adapter); 4702 4703 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4704 allowed_features, 4705 NETIF_F_HW_VLAN_CTAG_TX)) 4706 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4707 4708 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4709 allowed_features, 4710 NETIF_F_HW_VLAN_CTAG_RX)) 4711 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4712 4713 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4714 allowed_features, 4715 NETIF_F_HW_VLAN_STAG_TX)) 4716 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4717 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4718 allowed_features, 4719 NETIF_F_HW_VLAN_STAG_RX)) 4720 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4721 4722 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4723 allowed_features, 4724 NETIF_F_HW_VLAN_CTAG_FILTER)) 4725 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4726 4727 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4728 allowed_features, 4729 NETIF_F_HW_VLAN_STAG_FILTER)) 4730 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4731 4732 if ((requested_features & 4733 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4734 (requested_features & 4735 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4736 adapter->vlan_v2_caps.offloads.ethertype_match == 4737 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4738 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4739 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4740 NETIF_F_HW_VLAN_STAG_TX); 4741 } 4742 4743 return requested_features; 4744 } 4745 4746 /** 4747 * iavf_fix_features - fix up the netdev feature bits 4748 * @netdev: our net device 4749 * @features: desired feature bits 4750 * 4751 * Returns fixed-up features bits 4752 **/ 4753 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4754 netdev_features_t features) 4755 { 4756 struct iavf_adapter *adapter = netdev_priv(netdev); 4757 4758 if (!FDIR_FLTR_SUPPORT(adapter)) 4759 features &= ~NETIF_F_NTUPLE; 4760 4761 return iavf_fix_netdev_vlan_features(adapter, features); 4762 } 4763 4764 static const struct net_device_ops iavf_netdev_ops = { 4765 .ndo_open = iavf_open, 4766 .ndo_stop = iavf_close, 4767 .ndo_start_xmit = iavf_xmit_frame, 4768 .ndo_set_rx_mode = iavf_set_rx_mode, 4769 .ndo_validate_addr = eth_validate_addr, 4770 .ndo_set_mac_address = iavf_set_mac, 4771 .ndo_change_mtu = iavf_change_mtu, 4772 .ndo_tx_timeout = iavf_tx_timeout, 4773 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4774 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4775 .ndo_features_check = iavf_features_check, 4776 .ndo_fix_features = iavf_fix_features, 4777 .ndo_set_features = iavf_set_features, 4778 .ndo_setup_tc = iavf_setup_tc, 4779 }; 4780 4781 /** 4782 * iavf_check_reset_complete - check that VF reset is complete 4783 * @hw: pointer to hw struct 4784 * 4785 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4786 **/ 4787 static int iavf_check_reset_complete(struct iavf_hw *hw) 4788 { 4789 u32 rstat; 4790 int i; 4791 4792 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4793 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4794 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4795 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4796 (rstat == VIRTCHNL_VFR_COMPLETED)) 4797 return 0; 4798 usleep_range(10, 20); 4799 } 4800 return -EBUSY; 4801 } 4802 4803 /** 4804 * iavf_process_config - Process the config information we got from the PF 4805 * @adapter: board private structure 4806 * 4807 * Verify that we have a valid config struct, and set up our netdev features 4808 * and our VSI struct. 4809 **/ 4810 int iavf_process_config(struct iavf_adapter *adapter) 4811 { 4812 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4813 netdev_features_t hw_vlan_features, vlan_features; 4814 struct net_device *netdev = adapter->netdev; 4815 netdev_features_t hw_enc_features; 4816 netdev_features_t hw_features; 4817 4818 hw_enc_features = NETIF_F_SG | 4819 NETIF_F_IP_CSUM | 4820 NETIF_F_IPV6_CSUM | 4821 NETIF_F_HIGHDMA | 4822 NETIF_F_SOFT_FEATURES | 4823 NETIF_F_TSO | 4824 NETIF_F_TSO_ECN | 4825 NETIF_F_TSO6 | 4826 NETIF_F_SCTP_CRC | 4827 NETIF_F_RXHASH | 4828 NETIF_F_RXCSUM | 4829 0; 4830 4831 /* advertise to stack only if offloads for encapsulated packets is 4832 * supported 4833 */ 4834 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4835 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4836 NETIF_F_GSO_GRE | 4837 NETIF_F_GSO_GRE_CSUM | 4838 NETIF_F_GSO_IPXIP4 | 4839 NETIF_F_GSO_IPXIP6 | 4840 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4841 NETIF_F_GSO_PARTIAL | 4842 0; 4843 4844 if (!(vfres->vf_cap_flags & 4845 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4846 netdev->gso_partial_features |= 4847 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4848 4849 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4850 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4851 netdev->hw_enc_features |= hw_enc_features; 4852 } 4853 /* record features VLANs can make use of */ 4854 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4855 4856 /* Write features and hw_features separately to avoid polluting 4857 * with, or dropping, features that are set when we registered. 4858 */ 4859 hw_features = hw_enc_features; 4860 4861 /* get HW VLAN features that can be toggled */ 4862 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4863 4864 /* Enable cloud filter if ADQ is supported */ 4865 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4866 hw_features |= NETIF_F_HW_TC; 4867 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4868 hw_features |= NETIF_F_GSO_UDP_L4; 4869 4870 netdev->hw_features |= hw_features | hw_vlan_features; 4871 vlan_features = iavf_get_netdev_vlan_features(adapter); 4872 4873 netdev->features |= hw_features | vlan_features; 4874 4875 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4876 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4877 4878 if (FDIR_FLTR_SUPPORT(adapter)) { 4879 netdev->hw_features |= NETIF_F_NTUPLE; 4880 netdev->features |= NETIF_F_NTUPLE; 4881 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4882 } 4883 4884 netdev->priv_flags |= IFF_UNICAST_FLT; 4885 4886 /* Do not turn on offloads when they are requested to be turned off. 4887 * TSO needs minimum 576 bytes to work correctly. 4888 */ 4889 if (netdev->wanted_features) { 4890 if (!(netdev->wanted_features & NETIF_F_TSO) || 4891 netdev->mtu < 576) 4892 netdev->features &= ~NETIF_F_TSO; 4893 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4894 netdev->mtu < 576) 4895 netdev->features &= ~NETIF_F_TSO6; 4896 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4897 netdev->features &= ~NETIF_F_TSO_ECN; 4898 if (!(netdev->wanted_features & NETIF_F_GRO)) 4899 netdev->features &= ~NETIF_F_GRO; 4900 if (!(netdev->wanted_features & NETIF_F_GSO)) 4901 netdev->features &= ~NETIF_F_GSO; 4902 } 4903 4904 return 0; 4905 } 4906 4907 /** 4908 * iavf_probe - Device Initialization Routine 4909 * @pdev: PCI device information struct 4910 * @ent: entry in iavf_pci_tbl 4911 * 4912 * Returns 0 on success, negative on failure 4913 * 4914 * iavf_probe initializes an adapter identified by a pci_dev structure. 4915 * The OS initialization, configuring of the adapter private structure, 4916 * and a hardware reset occur. 4917 **/ 4918 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4919 { 4920 struct net_device *netdev; 4921 struct iavf_adapter *adapter = NULL; 4922 struct iavf_hw *hw = NULL; 4923 int err; 4924 4925 err = pci_enable_device(pdev); 4926 if (err) 4927 return err; 4928 4929 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4930 if (err) { 4931 dev_err(&pdev->dev, 4932 "DMA configuration failed: 0x%x\n", err); 4933 goto err_dma; 4934 } 4935 4936 err = pci_request_regions(pdev, iavf_driver_name); 4937 if (err) { 4938 dev_err(&pdev->dev, 4939 "pci_request_regions failed 0x%x\n", err); 4940 goto err_pci_reg; 4941 } 4942 4943 pci_set_master(pdev); 4944 4945 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4946 IAVF_MAX_REQ_QUEUES); 4947 if (!netdev) { 4948 err = -ENOMEM; 4949 goto err_alloc_etherdev; 4950 } 4951 4952 SET_NETDEV_DEV(netdev, &pdev->dev); 4953 4954 pci_set_drvdata(pdev, netdev); 4955 adapter = netdev_priv(netdev); 4956 4957 adapter->netdev = netdev; 4958 adapter->pdev = pdev; 4959 4960 hw = &adapter->hw; 4961 hw->back = adapter; 4962 4963 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4964 iavf_driver_name); 4965 if (!adapter->wq) { 4966 err = -ENOMEM; 4967 goto err_alloc_wq; 4968 } 4969 4970 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4971 iavf_change_state(adapter, __IAVF_STARTUP); 4972 4973 /* Call save state here because it relies on the adapter struct. */ 4974 pci_save_state(pdev); 4975 4976 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4977 pci_resource_len(pdev, 0)); 4978 if (!hw->hw_addr) { 4979 err = -EIO; 4980 goto err_ioremap; 4981 } 4982 hw->vendor_id = pdev->vendor; 4983 hw->device_id = pdev->device; 4984 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4985 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4986 hw->subsystem_device_id = pdev->subsystem_device; 4987 hw->bus.device = PCI_SLOT(pdev->devfn); 4988 hw->bus.func = PCI_FUNC(pdev->devfn); 4989 hw->bus.bus_id = pdev->bus->number; 4990 4991 /* set up the locks for the AQ, do this only once in probe 4992 * and destroy them only once in remove 4993 */ 4994 mutex_init(&adapter->crit_lock); 4995 mutex_init(&adapter->client_lock); 4996 mutex_init(&hw->aq.asq_mutex); 4997 mutex_init(&hw->aq.arq_mutex); 4998 4999 spin_lock_init(&adapter->mac_vlan_list_lock); 5000 spin_lock_init(&adapter->cloud_filter_list_lock); 5001 spin_lock_init(&adapter->fdir_fltr_lock); 5002 spin_lock_init(&adapter->adv_rss_lock); 5003 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5004 5005 INIT_LIST_HEAD(&adapter->mac_filter_list); 5006 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5007 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5008 INIT_LIST_HEAD(&adapter->fdir_list_head); 5009 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5010 5011 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5012 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5013 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5014 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5015 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 5016 5017 /* Setup the wait queue for indicating transition to down status */ 5018 init_waitqueue_head(&adapter->down_waitqueue); 5019 5020 /* Setup the wait queue for indicating transition to running state */ 5021 init_waitqueue_head(&adapter->reset_waitqueue); 5022 5023 /* Setup the wait queue for indicating virtchannel events */ 5024 init_waitqueue_head(&adapter->vc_waitqueue); 5025 5026 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5027 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5028 /* Initialization goes on in the work. Do not add more of it below. */ 5029 return 0; 5030 5031 err_ioremap: 5032 destroy_workqueue(adapter->wq); 5033 err_alloc_wq: 5034 free_netdev(netdev); 5035 err_alloc_etherdev: 5036 pci_release_regions(pdev); 5037 err_pci_reg: 5038 err_dma: 5039 pci_disable_device(pdev); 5040 return err; 5041 } 5042 5043 /** 5044 * iavf_suspend - Power management suspend routine 5045 * @dev_d: device info pointer 5046 * 5047 * Called when the system (VM) is entering sleep/suspend. 5048 **/ 5049 static int __maybe_unused iavf_suspend(struct device *dev_d) 5050 { 5051 struct net_device *netdev = dev_get_drvdata(dev_d); 5052 struct iavf_adapter *adapter = netdev_priv(netdev); 5053 5054 netif_device_detach(netdev); 5055 5056 while (!mutex_trylock(&adapter->crit_lock)) 5057 usleep_range(500, 1000); 5058 5059 if (netif_running(netdev)) { 5060 rtnl_lock(); 5061 iavf_down(adapter); 5062 rtnl_unlock(); 5063 } 5064 iavf_free_misc_irq(adapter); 5065 iavf_reset_interrupt_capability(adapter); 5066 5067 mutex_unlock(&adapter->crit_lock); 5068 5069 return 0; 5070 } 5071 5072 /** 5073 * iavf_resume - Power management resume routine 5074 * @dev_d: device info pointer 5075 * 5076 * Called when the system (VM) is resumed from sleep/suspend. 5077 **/ 5078 static int __maybe_unused iavf_resume(struct device *dev_d) 5079 { 5080 struct pci_dev *pdev = to_pci_dev(dev_d); 5081 struct iavf_adapter *adapter; 5082 u32 err; 5083 5084 adapter = iavf_pdev_to_adapter(pdev); 5085 5086 pci_set_master(pdev); 5087 5088 rtnl_lock(); 5089 err = iavf_set_interrupt_capability(adapter); 5090 if (err) { 5091 rtnl_unlock(); 5092 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5093 return err; 5094 } 5095 err = iavf_request_misc_irq(adapter); 5096 rtnl_unlock(); 5097 if (err) { 5098 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5099 return err; 5100 } 5101 5102 queue_work(adapter->wq, &adapter->reset_task); 5103 5104 netif_device_attach(adapter->netdev); 5105 5106 return err; 5107 } 5108 5109 /** 5110 * iavf_remove - Device Removal Routine 5111 * @pdev: PCI device information struct 5112 * 5113 * iavf_remove is called by the PCI subsystem to alert the driver 5114 * that it should release a PCI device. The could be caused by a 5115 * Hot-Plug event, or because the driver is going to be removed from 5116 * memory. 5117 **/ 5118 static void iavf_remove(struct pci_dev *pdev) 5119 { 5120 struct iavf_fdir_fltr *fdir, *fdirtmp; 5121 struct iavf_vlan_filter *vlf, *vlftmp; 5122 struct iavf_cloud_filter *cf, *cftmp; 5123 struct iavf_adv_rss *rss, *rsstmp; 5124 struct iavf_mac_filter *f, *ftmp; 5125 struct iavf_adapter *adapter; 5126 struct net_device *netdev; 5127 struct iavf_hw *hw; 5128 int err; 5129 5130 /* Don't proceed with remove if netdev is already freed */ 5131 netdev = pci_get_drvdata(pdev); 5132 if (!netdev) 5133 return; 5134 5135 adapter = iavf_pdev_to_adapter(pdev); 5136 hw = &adapter->hw; 5137 5138 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5139 return; 5140 5141 /* Wait until port initialization is complete. 5142 * There are flows where register/unregister netdev may race. 5143 */ 5144 while (1) { 5145 mutex_lock(&adapter->crit_lock); 5146 if (adapter->state == __IAVF_RUNNING || 5147 adapter->state == __IAVF_DOWN || 5148 adapter->state == __IAVF_INIT_FAILED) { 5149 mutex_unlock(&adapter->crit_lock); 5150 break; 5151 } 5152 /* Simply return if we already went through iavf_shutdown */ 5153 if (adapter->state == __IAVF_REMOVE) { 5154 mutex_unlock(&adapter->crit_lock); 5155 return; 5156 } 5157 5158 mutex_unlock(&adapter->crit_lock); 5159 usleep_range(500, 1000); 5160 } 5161 cancel_delayed_work_sync(&adapter->watchdog_task); 5162 cancel_work_sync(&adapter->finish_config); 5163 5164 rtnl_lock(); 5165 if (adapter->netdev_registered) { 5166 unregister_netdevice(netdev); 5167 adapter->netdev_registered = false; 5168 } 5169 rtnl_unlock(); 5170 5171 if (CLIENT_ALLOWED(adapter)) { 5172 err = iavf_lan_del_device(adapter); 5173 if (err) 5174 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5175 err); 5176 } 5177 5178 mutex_lock(&adapter->crit_lock); 5179 dev_info(&adapter->pdev->dev, "Removing device\n"); 5180 iavf_change_state(adapter, __IAVF_REMOVE); 5181 5182 iavf_request_reset(adapter); 5183 msleep(50); 5184 /* If the FW isn't responding, kick it once, but only once. */ 5185 if (!iavf_asq_done(hw)) { 5186 iavf_request_reset(adapter); 5187 msleep(50); 5188 } 5189 5190 iavf_misc_irq_disable(adapter); 5191 /* Shut down all the garbage mashers on the detention level */ 5192 cancel_work_sync(&adapter->reset_task); 5193 cancel_delayed_work_sync(&adapter->watchdog_task); 5194 cancel_work_sync(&adapter->adminq_task); 5195 cancel_delayed_work_sync(&adapter->client_task); 5196 5197 adapter->aq_required = 0; 5198 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5199 5200 iavf_free_all_tx_resources(adapter); 5201 iavf_free_all_rx_resources(adapter); 5202 iavf_free_misc_irq(adapter); 5203 5204 iavf_reset_interrupt_capability(adapter); 5205 iavf_free_q_vectors(adapter); 5206 5207 iavf_free_rss(adapter); 5208 5209 if (hw->aq.asq.count) 5210 iavf_shutdown_adminq(hw); 5211 5212 /* destroy the locks only once, here */ 5213 mutex_destroy(&hw->aq.arq_mutex); 5214 mutex_destroy(&hw->aq.asq_mutex); 5215 mutex_destroy(&adapter->client_lock); 5216 mutex_unlock(&adapter->crit_lock); 5217 mutex_destroy(&adapter->crit_lock); 5218 5219 iounmap(hw->hw_addr); 5220 pci_release_regions(pdev); 5221 iavf_free_queues(adapter); 5222 kfree(adapter->vf_res); 5223 spin_lock_bh(&adapter->mac_vlan_list_lock); 5224 /* If we got removed before an up/down sequence, we've got a filter 5225 * hanging out there that we need to get rid of. 5226 */ 5227 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5228 list_del(&f->list); 5229 kfree(f); 5230 } 5231 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5232 list) { 5233 list_del(&vlf->list); 5234 kfree(vlf); 5235 } 5236 5237 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5238 5239 spin_lock_bh(&adapter->cloud_filter_list_lock); 5240 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5241 list_del(&cf->list); 5242 kfree(cf); 5243 } 5244 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5245 5246 spin_lock_bh(&adapter->fdir_fltr_lock); 5247 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5248 list_del(&fdir->list); 5249 kfree(fdir); 5250 } 5251 spin_unlock_bh(&adapter->fdir_fltr_lock); 5252 5253 spin_lock_bh(&adapter->adv_rss_lock); 5254 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5255 list) { 5256 list_del(&rss->list); 5257 kfree(rss); 5258 } 5259 spin_unlock_bh(&adapter->adv_rss_lock); 5260 5261 destroy_workqueue(adapter->wq); 5262 5263 pci_set_drvdata(pdev, NULL); 5264 5265 free_netdev(netdev); 5266 5267 pci_disable_device(pdev); 5268 } 5269 5270 /** 5271 * iavf_shutdown - Shutdown the device in preparation for a reboot 5272 * @pdev: pci device structure 5273 **/ 5274 static void iavf_shutdown(struct pci_dev *pdev) 5275 { 5276 iavf_remove(pdev); 5277 5278 if (system_state == SYSTEM_POWER_OFF) 5279 pci_set_power_state(pdev, PCI_D3hot); 5280 } 5281 5282 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5283 5284 static struct pci_driver iavf_driver = { 5285 .name = iavf_driver_name, 5286 .id_table = iavf_pci_tbl, 5287 .probe = iavf_probe, 5288 .remove = iavf_remove, 5289 .driver.pm = &iavf_pm_ops, 5290 .shutdown = iavf_shutdown, 5291 }; 5292 5293 /** 5294 * iavf_init_module - Driver Registration Routine 5295 * 5296 * iavf_init_module is the first routine called when the driver is 5297 * loaded. All it does is register with the PCI subsystem. 5298 **/ 5299 static int __init iavf_init_module(void) 5300 { 5301 pr_info("iavf: %s\n", iavf_driver_string); 5302 5303 pr_info("%s\n", iavf_copyright); 5304 5305 return pci_register_driver(&iavf_driver); 5306 } 5307 5308 module_init(iavf_init_module); 5309 5310 /** 5311 * iavf_exit_module - Driver Exit Cleanup Routine 5312 * 5313 * iavf_exit_module is called just before the driver is removed 5314 * from memory. 5315 **/ 5316 static void __exit iavf_exit_module(void) 5317 { 5318 pci_unregister_driver(&iavf_driver); 5319 } 5320 5321 module_exit(iavf_exit_module); 5322 5323 /* iavf_main.c */ 5324