1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_lock_timeout - try to lock mutex but give up after timeout
136  * @lock: mutex that should be locked
137  * @msecs: timeout in msecs
138  *
139  * Returns 0 on success, negative on failure
140  **/
141 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
142 {
143 	unsigned int wait, delay = 10;
144 
145 	for (wait = 0; wait < msecs; wait += delay) {
146 		if (mutex_trylock(lock))
147 			return 0;
148 
149 		msleep(delay);
150 	}
151 
152 	return -1;
153 }
154 
155 /**
156  * iavf_schedule_reset - Set the flags and schedule a reset event
157  * @adapter: board private structure
158  **/
159 void iavf_schedule_reset(struct iavf_adapter *adapter)
160 {
161 	if (!(adapter->flags &
162 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
163 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
164 		queue_work(iavf_wq, &adapter->reset_task);
165 	}
166 }
167 
168 /**
169  * iavf_tx_timeout - Respond to a Tx Hang
170  * @netdev: network interface device structure
171  * @txqueue: queue number that is timing out
172  **/
173 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
174 {
175 	struct iavf_adapter *adapter = netdev_priv(netdev);
176 
177 	adapter->tx_timeout_count++;
178 	iavf_schedule_reset(adapter);
179 }
180 
181 /**
182  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
183  * @adapter: board private structure
184  **/
185 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
186 {
187 	struct iavf_hw *hw = &adapter->hw;
188 
189 	if (!adapter->msix_entries)
190 		return;
191 
192 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
193 
194 	iavf_flush(hw);
195 
196 	synchronize_irq(adapter->msix_entries[0].vector);
197 }
198 
199 /**
200  * iavf_misc_irq_enable - Enable default interrupt generation settings
201  * @adapter: board private structure
202  **/
203 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
204 {
205 	struct iavf_hw *hw = &adapter->hw;
206 
207 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
208 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
209 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
210 
211 	iavf_flush(hw);
212 }
213 
214 /**
215  * iavf_irq_disable - Mask off interrupt generation on the NIC
216  * @adapter: board private structure
217  **/
218 static void iavf_irq_disable(struct iavf_adapter *adapter)
219 {
220 	int i;
221 	struct iavf_hw *hw = &adapter->hw;
222 
223 	if (!adapter->msix_entries)
224 		return;
225 
226 	for (i = 1; i < adapter->num_msix_vectors; i++) {
227 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
228 		synchronize_irq(adapter->msix_entries[i].vector);
229 	}
230 	iavf_flush(hw);
231 }
232 
233 /**
234  * iavf_irq_enable_queues - Enable interrupt for specified queues
235  * @adapter: board private structure
236  * @mask: bitmap of queues to enable
237  **/
238 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
239 {
240 	struct iavf_hw *hw = &adapter->hw;
241 	int i;
242 
243 	for (i = 1; i < adapter->num_msix_vectors; i++) {
244 		if (mask & BIT(i - 1)) {
245 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
246 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
247 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
248 		}
249 	}
250 }
251 
252 /**
253  * iavf_irq_enable - Enable default interrupt generation settings
254  * @adapter: board private structure
255  * @flush: boolean value whether to run rd32()
256  **/
257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
258 {
259 	struct iavf_hw *hw = &adapter->hw;
260 
261 	iavf_misc_irq_enable(adapter);
262 	iavf_irq_enable_queues(adapter, ~0);
263 
264 	if (flush)
265 		iavf_flush(hw);
266 }
267 
268 /**
269  * iavf_msix_aq - Interrupt handler for vector 0
270  * @irq: interrupt number
271  * @data: pointer to netdev
272  **/
273 static irqreturn_t iavf_msix_aq(int irq, void *data)
274 {
275 	struct net_device *netdev = data;
276 	struct iavf_adapter *adapter = netdev_priv(netdev);
277 	struct iavf_hw *hw = &adapter->hw;
278 
279 	/* handle non-queue interrupts, these reads clear the registers */
280 	rd32(hw, IAVF_VFINT_ICR01);
281 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
282 
283 	/* schedule work on the private workqueue */
284 	queue_work(iavf_wq, &adapter->adminq_task);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 /**
290  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
291  * @irq: interrupt number
292  * @data: pointer to a q_vector
293  **/
294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
295 {
296 	struct iavf_q_vector *q_vector = data;
297 
298 	if (!q_vector->tx.ring && !q_vector->rx.ring)
299 		return IRQ_HANDLED;
300 
301 	napi_schedule_irqoff(&q_vector->napi);
302 
303 	return IRQ_HANDLED;
304 }
305 
306 /**
307  * iavf_map_vector_to_rxq - associate irqs with rx queues
308  * @adapter: board private structure
309  * @v_idx: interrupt number
310  * @r_idx: queue number
311  **/
312 static void
313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
314 {
315 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
316 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
317 	struct iavf_hw *hw = &adapter->hw;
318 
319 	rx_ring->q_vector = q_vector;
320 	rx_ring->next = q_vector->rx.ring;
321 	rx_ring->vsi = &adapter->vsi;
322 	q_vector->rx.ring = rx_ring;
323 	q_vector->rx.count++;
324 	q_vector->rx.next_update = jiffies + 1;
325 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
326 	q_vector->ring_mask |= BIT(r_idx);
327 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
328 	     q_vector->rx.current_itr >> 1);
329 	q_vector->rx.current_itr = q_vector->rx.target_itr;
330 }
331 
332 /**
333  * iavf_map_vector_to_txq - associate irqs with tx queues
334  * @adapter: board private structure
335  * @v_idx: interrupt number
336  * @t_idx: queue number
337  **/
338 static void
339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
340 {
341 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
342 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
343 	struct iavf_hw *hw = &adapter->hw;
344 
345 	tx_ring->q_vector = q_vector;
346 	tx_ring->next = q_vector->tx.ring;
347 	tx_ring->vsi = &adapter->vsi;
348 	q_vector->tx.ring = tx_ring;
349 	q_vector->tx.count++;
350 	q_vector->tx.next_update = jiffies + 1;
351 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
352 	q_vector->num_ringpairs++;
353 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
354 	     q_vector->tx.target_itr >> 1);
355 	q_vector->tx.current_itr = q_vector->tx.target_itr;
356 }
357 
358 /**
359  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
360  * @adapter: board private structure to initialize
361  *
362  * This function maps descriptor rings to the queue-specific vectors
363  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
364  * one vector per ring/queue, but on a constrained vector budget, we
365  * group the rings as "efficiently" as possible.  You would add new
366  * mapping configurations in here.
367  **/
368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
369 {
370 	int rings_remaining = adapter->num_active_queues;
371 	int ridx = 0, vidx = 0;
372 	int q_vectors;
373 
374 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
375 
376 	for (; ridx < rings_remaining; ridx++) {
377 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
378 		iavf_map_vector_to_txq(adapter, vidx, ridx);
379 
380 		/* In the case where we have more queues than vectors, continue
381 		 * round-robin on vectors until all queues are mapped.
382 		 */
383 		if (++vidx >= q_vectors)
384 			vidx = 0;
385 	}
386 
387 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
388 }
389 
390 /**
391  * iavf_irq_affinity_notify - Callback for affinity changes
392  * @notify: context as to what irq was changed
393  * @mask: the new affinity mask
394  *
395  * This is a callback function used by the irq_set_affinity_notifier function
396  * so that we may register to receive changes to the irq affinity masks.
397  **/
398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
399 				     const cpumask_t *mask)
400 {
401 	struct iavf_q_vector *q_vector =
402 		container_of(notify, struct iavf_q_vector, affinity_notify);
403 
404 	cpumask_copy(&q_vector->affinity_mask, mask);
405 }
406 
407 /**
408  * iavf_irq_affinity_release - Callback for affinity notifier release
409  * @ref: internal core kernel usage
410  *
411  * This is a callback function used by the irq_set_affinity_notifier function
412  * to inform the current notification subscriber that they will no longer
413  * receive notifications.
414  **/
415 static void iavf_irq_affinity_release(struct kref *ref) {}
416 
417 /**
418  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
419  * @adapter: board private structure
420  * @basename: device basename
421  *
422  * Allocates MSI-X vectors for tx and rx handling, and requests
423  * interrupts from the kernel.
424  **/
425 static int
426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
427 {
428 	unsigned int vector, q_vectors;
429 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
430 	int irq_num, err;
431 	int cpu;
432 
433 	iavf_irq_disable(adapter);
434 	/* Decrement for Other and TCP Timer vectors */
435 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
436 
437 	for (vector = 0; vector < q_vectors; vector++) {
438 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
439 
440 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
441 
442 		if (q_vector->tx.ring && q_vector->rx.ring) {
443 			snprintf(q_vector->name, sizeof(q_vector->name),
444 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
445 			tx_int_idx++;
446 		} else if (q_vector->rx.ring) {
447 			snprintf(q_vector->name, sizeof(q_vector->name),
448 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
449 		} else if (q_vector->tx.ring) {
450 			snprintf(q_vector->name, sizeof(q_vector->name),
451 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
452 		} else {
453 			/* skip this unused q_vector */
454 			continue;
455 		}
456 		err = request_irq(irq_num,
457 				  iavf_msix_clean_rings,
458 				  0,
459 				  q_vector->name,
460 				  q_vector);
461 		if (err) {
462 			dev_info(&adapter->pdev->dev,
463 				 "Request_irq failed, error: %d\n", err);
464 			goto free_queue_irqs;
465 		}
466 		/* register for affinity change notifications */
467 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
468 		q_vector->affinity_notify.release =
469 						   iavf_irq_affinity_release;
470 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
471 		/* Spread the IRQ affinity hints across online CPUs. Note that
472 		 * get_cpu_mask returns a mask with a permanent lifetime so
473 		 * it's safe to use as a hint for irq_set_affinity_hint.
474 		 */
475 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
476 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
477 	}
478 
479 	return 0;
480 
481 free_queue_irqs:
482 	while (vector) {
483 		vector--;
484 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
485 		irq_set_affinity_notifier(irq_num, NULL);
486 		irq_set_affinity_hint(irq_num, NULL);
487 		free_irq(irq_num, &adapter->q_vectors[vector]);
488 	}
489 	return err;
490 }
491 
492 /**
493  * iavf_request_misc_irq - Initialize MSI-X interrupts
494  * @adapter: board private structure
495  *
496  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
497  * vector is only for the admin queue, and stays active even when the netdev
498  * is closed.
499  **/
500 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
501 {
502 	struct net_device *netdev = adapter->netdev;
503 	int err;
504 
505 	snprintf(adapter->misc_vector_name,
506 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
507 		 dev_name(&adapter->pdev->dev));
508 	err = request_irq(adapter->msix_entries[0].vector,
509 			  &iavf_msix_aq, 0,
510 			  adapter->misc_vector_name, netdev);
511 	if (err) {
512 		dev_err(&adapter->pdev->dev,
513 			"request_irq for %s failed: %d\n",
514 			adapter->misc_vector_name, err);
515 		free_irq(adapter->msix_entries[0].vector, netdev);
516 	}
517 	return err;
518 }
519 
520 /**
521  * iavf_free_traffic_irqs - Free MSI-X interrupts
522  * @adapter: board private structure
523  *
524  * Frees all MSI-X vectors other than 0.
525  **/
526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
527 {
528 	int vector, irq_num, q_vectors;
529 
530 	if (!adapter->msix_entries)
531 		return;
532 
533 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
534 
535 	for (vector = 0; vector < q_vectors; vector++) {
536 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
537 		irq_set_affinity_notifier(irq_num, NULL);
538 		irq_set_affinity_hint(irq_num, NULL);
539 		free_irq(irq_num, &adapter->q_vectors[vector]);
540 	}
541 }
542 
543 /**
544  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
545  * @adapter: board private structure
546  *
547  * Frees MSI-X vector 0.
548  **/
549 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
550 {
551 	struct net_device *netdev = adapter->netdev;
552 
553 	if (!adapter->msix_entries)
554 		return;
555 
556 	free_irq(adapter->msix_entries[0].vector, netdev);
557 }
558 
559 /**
560  * iavf_configure_tx - Configure Transmit Unit after Reset
561  * @adapter: board private structure
562  *
563  * Configure the Tx unit of the MAC after a reset.
564  **/
565 static void iavf_configure_tx(struct iavf_adapter *adapter)
566 {
567 	struct iavf_hw *hw = &adapter->hw;
568 	int i;
569 
570 	for (i = 0; i < adapter->num_active_queues; i++)
571 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
572 }
573 
574 /**
575  * iavf_configure_rx - Configure Receive Unit after Reset
576  * @adapter: board private structure
577  *
578  * Configure the Rx unit of the MAC after a reset.
579  **/
580 static void iavf_configure_rx(struct iavf_adapter *adapter)
581 {
582 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
583 	struct iavf_hw *hw = &adapter->hw;
584 	int i;
585 
586 	/* Legacy Rx will always default to a 2048 buffer size. */
587 #if (PAGE_SIZE < 8192)
588 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
589 		struct net_device *netdev = adapter->netdev;
590 
591 		/* For jumbo frames on systems with 4K pages we have to use
592 		 * an order 1 page, so we might as well increase the size
593 		 * of our Rx buffer to make better use of the available space
594 		 */
595 		rx_buf_len = IAVF_RXBUFFER_3072;
596 
597 		/* We use a 1536 buffer size for configurations with
598 		 * standard Ethernet mtu.  On x86 this gives us enough room
599 		 * for shared info and 192 bytes of padding.
600 		 */
601 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
602 		    (netdev->mtu <= ETH_DATA_LEN))
603 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
604 	}
605 #endif
606 
607 	for (i = 0; i < adapter->num_active_queues; i++) {
608 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
609 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
610 
611 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
612 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
613 		else
614 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
615 	}
616 }
617 
618 /**
619  * iavf_find_vlan - Search filter list for specific vlan filter
620  * @adapter: board private structure
621  * @vlan: vlan tag
622  *
623  * Returns ptr to the filter object or NULL. Must be called while holding the
624  * mac_vlan_list_lock.
625  **/
626 static struct
627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
628 {
629 	struct iavf_vlan_filter *f;
630 
631 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
632 		if (vlan == f->vlan)
633 			return f;
634 	}
635 	return NULL;
636 }
637 
638 /**
639  * iavf_add_vlan - Add a vlan filter to the list
640  * @adapter: board private structure
641  * @vlan: VLAN tag
642  *
643  * Returns ptr to the filter object or NULL when no memory available.
644  **/
645 static struct
646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
647 {
648 	struct iavf_vlan_filter *f = NULL;
649 
650 	spin_lock_bh(&adapter->mac_vlan_list_lock);
651 
652 	f = iavf_find_vlan(adapter, vlan);
653 	if (!f) {
654 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
655 		if (!f)
656 			goto clearout;
657 
658 		f->vlan = vlan;
659 
660 		list_add_tail(&f->list, &adapter->vlan_filter_list);
661 		f->add = true;
662 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
663 	}
664 
665 clearout:
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 	return f;
668 }
669 
670 /**
671  * iavf_del_vlan - Remove a vlan filter from the list
672  * @adapter: board private structure
673  * @vlan: VLAN tag
674  **/
675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
676 {
677 	struct iavf_vlan_filter *f;
678 
679 	spin_lock_bh(&adapter->mac_vlan_list_lock);
680 
681 	f = iavf_find_vlan(adapter, vlan);
682 	if (f) {
683 		f->remove = true;
684 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
685 	}
686 
687 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
688 }
689 
690 /**
691  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
692  * @netdev: network device struct
693  * @proto: unused protocol data
694  * @vid: VLAN tag
695  **/
696 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
697 				__always_unused __be16 proto, u16 vid)
698 {
699 	struct iavf_adapter *adapter = netdev_priv(netdev);
700 
701 	if (!VLAN_ALLOWED(adapter))
702 		return -EIO;
703 	if (iavf_add_vlan(adapter, vid) == NULL)
704 		return -ENOMEM;
705 	return 0;
706 }
707 
708 /**
709  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
710  * @netdev: network device struct
711  * @proto: unused protocol data
712  * @vid: VLAN tag
713  **/
714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
715 				 __always_unused __be16 proto, u16 vid)
716 {
717 	struct iavf_adapter *adapter = netdev_priv(netdev);
718 
719 	if (VLAN_ALLOWED(adapter)) {
720 		iavf_del_vlan(adapter, vid);
721 		return 0;
722 	}
723 	return -EIO;
724 }
725 
726 /**
727  * iavf_find_filter - Search filter list for specific mac filter
728  * @adapter: board private structure
729  * @macaddr: the MAC address
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
736 				  const u8 *macaddr)
737 {
738 	struct iavf_mac_filter *f;
739 
740 	if (!macaddr)
741 		return NULL;
742 
743 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
744 		if (ether_addr_equal(macaddr, f->macaddr))
745 			return f;
746 	}
747 	return NULL;
748 }
749 
750 /**
751  * iavf_add_filter - Add a mac filter to the filter list
752  * @adapter: board private structure
753  * @macaddr: the MAC address
754  *
755  * Returns ptr to the filter object or NULL when no memory available.
756  **/
757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
758 					const u8 *macaddr)
759 {
760 	struct iavf_mac_filter *f;
761 
762 	if (!macaddr)
763 		return NULL;
764 
765 	f = iavf_find_filter(adapter, macaddr);
766 	if (!f) {
767 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 		if (!f)
769 			return f;
770 
771 		ether_addr_copy(f->macaddr, macaddr);
772 
773 		list_add_tail(&f->list, &adapter->mac_filter_list);
774 		f->add = true;
775 		f->is_new_mac = true;
776 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
777 	} else {
778 		f->remove = false;
779 	}
780 
781 	return f;
782 }
783 
784 /**
785  * iavf_set_mac - NDO callback to set port mac address
786  * @netdev: network interface device structure
787  * @p: pointer to an address structure
788  *
789  * Returns 0 on success, negative on failure
790  **/
791 static int iavf_set_mac(struct net_device *netdev, void *p)
792 {
793 	struct iavf_adapter *adapter = netdev_priv(netdev);
794 	struct iavf_hw *hw = &adapter->hw;
795 	struct iavf_mac_filter *f;
796 	struct sockaddr *addr = p;
797 
798 	if (!is_valid_ether_addr(addr->sa_data))
799 		return -EADDRNOTAVAIL;
800 
801 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
802 		return 0;
803 
804 	spin_lock_bh(&adapter->mac_vlan_list_lock);
805 
806 	f = iavf_find_filter(adapter, hw->mac.addr);
807 	if (f) {
808 		f->remove = true;
809 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
810 	}
811 
812 	f = iavf_add_filter(adapter, addr->sa_data);
813 
814 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
815 
816 	if (f) {
817 		ether_addr_copy(hw->mac.addr, addr->sa_data);
818 	}
819 
820 	return (f == NULL) ? -ENOMEM : 0;
821 }
822 
823 /**
824  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
825  * @netdev: the netdevice
826  * @addr: address to add
827  *
828  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
829  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
830  */
831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
832 {
833 	struct iavf_adapter *adapter = netdev_priv(netdev);
834 
835 	if (iavf_add_filter(adapter, addr))
836 		return 0;
837 	else
838 		return -ENOMEM;
839 }
840 
841 /**
842  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
843  * @netdev: the netdevice
844  * @addr: address to add
845  *
846  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
847  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
848  */
849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
850 {
851 	struct iavf_adapter *adapter = netdev_priv(netdev);
852 	struct iavf_mac_filter *f;
853 
854 	/* Under some circumstances, we might receive a request to delete
855 	 * our own device address from our uc list. Because we store the
856 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
857 	 * such requests and not delete our device address from this list.
858 	 */
859 	if (ether_addr_equal(addr, netdev->dev_addr))
860 		return 0;
861 
862 	f = iavf_find_filter(adapter, addr);
863 	if (f) {
864 		f->remove = true;
865 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
866 	}
867 	return 0;
868 }
869 
870 /**
871  * iavf_set_rx_mode - NDO callback to set the netdev filters
872  * @netdev: network interface device structure
873  **/
874 static void iavf_set_rx_mode(struct net_device *netdev)
875 {
876 	struct iavf_adapter *adapter = netdev_priv(netdev);
877 
878 	spin_lock_bh(&adapter->mac_vlan_list_lock);
879 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
880 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
881 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
882 
883 	if (netdev->flags & IFF_PROMISC &&
884 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
885 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
886 	else if (!(netdev->flags & IFF_PROMISC) &&
887 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
888 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
889 
890 	if (netdev->flags & IFF_ALLMULTI &&
891 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
892 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
893 	else if (!(netdev->flags & IFF_ALLMULTI) &&
894 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
895 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
896 }
897 
898 /**
899  * iavf_napi_enable_all - enable NAPI on all queue vectors
900  * @adapter: board private structure
901  **/
902 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
903 {
904 	int q_idx;
905 	struct iavf_q_vector *q_vector;
906 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
907 
908 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
909 		struct napi_struct *napi;
910 
911 		q_vector = &adapter->q_vectors[q_idx];
912 		napi = &q_vector->napi;
913 		napi_enable(napi);
914 	}
915 }
916 
917 /**
918  * iavf_napi_disable_all - disable NAPI on all queue vectors
919  * @adapter: board private structure
920  **/
921 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
922 {
923 	int q_idx;
924 	struct iavf_q_vector *q_vector;
925 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
926 
927 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
928 		q_vector = &adapter->q_vectors[q_idx];
929 		napi_disable(&q_vector->napi);
930 	}
931 }
932 
933 /**
934  * iavf_configure - set up transmit and receive data structures
935  * @adapter: board private structure
936  **/
937 static void iavf_configure(struct iavf_adapter *adapter)
938 {
939 	struct net_device *netdev = adapter->netdev;
940 	int i;
941 
942 	iavf_set_rx_mode(netdev);
943 
944 	iavf_configure_tx(adapter);
945 	iavf_configure_rx(adapter);
946 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
947 
948 	for (i = 0; i < adapter->num_active_queues; i++) {
949 		struct iavf_ring *ring = &adapter->rx_rings[i];
950 
951 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
952 	}
953 }
954 
955 /**
956  * iavf_up_complete - Finish the last steps of bringing up a connection
957  * @adapter: board private structure
958  *
959  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
960  **/
961 static void iavf_up_complete(struct iavf_adapter *adapter)
962 {
963 	adapter->state = __IAVF_RUNNING;
964 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
965 
966 	iavf_napi_enable_all(adapter);
967 
968 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
969 	if (CLIENT_ENABLED(adapter))
970 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
971 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
972 }
973 
974 /**
975  * iavf_down - Shutdown the connection processing
976  * @adapter: board private structure
977  *
978  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
979  **/
980 void iavf_down(struct iavf_adapter *adapter)
981 {
982 	struct net_device *netdev = adapter->netdev;
983 	struct iavf_vlan_filter *vlf;
984 	struct iavf_cloud_filter *cf;
985 	struct iavf_fdir_fltr *fdir;
986 	struct iavf_mac_filter *f;
987 	struct iavf_adv_rss *rss;
988 
989 	if (adapter->state <= __IAVF_DOWN_PENDING)
990 		return;
991 
992 	netif_carrier_off(netdev);
993 	netif_tx_disable(netdev);
994 	adapter->link_up = false;
995 	iavf_napi_disable_all(adapter);
996 	iavf_irq_disable(adapter);
997 
998 	spin_lock_bh(&adapter->mac_vlan_list_lock);
999 
1000 	/* clear the sync flag on all filters */
1001 	__dev_uc_unsync(adapter->netdev, NULL);
1002 	__dev_mc_unsync(adapter->netdev, NULL);
1003 
1004 	/* remove all MAC filters */
1005 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1006 		f->remove = true;
1007 	}
1008 
1009 	/* remove all VLAN filters */
1010 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1011 		vlf->remove = true;
1012 	}
1013 
1014 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 
1016 	/* remove all cloud filters */
1017 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1018 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1019 		cf->del = true;
1020 	}
1021 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1022 
1023 	/* remove all Flow Director filters */
1024 	spin_lock_bh(&adapter->fdir_fltr_lock);
1025 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1026 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1027 	}
1028 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1029 
1030 	/* remove all advance RSS configuration */
1031 	spin_lock_bh(&adapter->adv_rss_lock);
1032 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1033 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1034 	spin_unlock_bh(&adapter->adv_rss_lock);
1035 
1036 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1037 	    adapter->state != __IAVF_RESETTING) {
1038 		/* cancel any current operation */
1039 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1040 		/* Schedule operations to close down the HW. Don't wait
1041 		 * here for this to complete. The watchdog is still running
1042 		 * and it will take care of this.
1043 		 */
1044 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1045 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1046 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1047 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1048 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1049 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1050 	}
1051 
1052 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1053 }
1054 
1055 /**
1056  * iavf_acquire_msix_vectors - Setup the MSIX capability
1057  * @adapter: board private structure
1058  * @vectors: number of vectors to request
1059  *
1060  * Work with the OS to set up the MSIX vectors needed.
1061  *
1062  * Returns 0 on success, negative on failure
1063  **/
1064 static int
1065 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1066 {
1067 	int err, vector_threshold;
1068 
1069 	/* We'll want at least 3 (vector_threshold):
1070 	 * 0) Other (Admin Queue and link, mostly)
1071 	 * 1) TxQ[0] Cleanup
1072 	 * 2) RxQ[0] Cleanup
1073 	 */
1074 	vector_threshold = MIN_MSIX_COUNT;
1075 
1076 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1077 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1078 	 * Right now, we simply care about how many we'll get; we'll
1079 	 * set them up later while requesting irq's.
1080 	 */
1081 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1082 				    vector_threshold, vectors);
1083 	if (err < 0) {
1084 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1085 		kfree(adapter->msix_entries);
1086 		adapter->msix_entries = NULL;
1087 		return err;
1088 	}
1089 
1090 	/* Adjust for only the vectors we'll use, which is minimum
1091 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1092 	 * vectors we were allocated.
1093 	 */
1094 	adapter->num_msix_vectors = err;
1095 	return 0;
1096 }
1097 
1098 /**
1099  * iavf_free_queues - Free memory for all rings
1100  * @adapter: board private structure to initialize
1101  *
1102  * Free all of the memory associated with queue pairs.
1103  **/
1104 static void iavf_free_queues(struct iavf_adapter *adapter)
1105 {
1106 	if (!adapter->vsi_res)
1107 		return;
1108 	adapter->num_active_queues = 0;
1109 	kfree(adapter->tx_rings);
1110 	adapter->tx_rings = NULL;
1111 	kfree(adapter->rx_rings);
1112 	adapter->rx_rings = NULL;
1113 }
1114 
1115 /**
1116  * iavf_alloc_queues - Allocate memory for all rings
1117  * @adapter: board private structure to initialize
1118  *
1119  * We allocate one ring per queue at run-time since we don't know the
1120  * number of queues at compile-time.  The polling_netdev array is
1121  * intended for Multiqueue, but should work fine with a single queue.
1122  **/
1123 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1124 {
1125 	int i, num_active_queues;
1126 
1127 	/* If we're in reset reallocating queues we don't actually know yet for
1128 	 * certain the PF gave us the number of queues we asked for but we'll
1129 	 * assume it did.  Once basic reset is finished we'll confirm once we
1130 	 * start negotiating config with PF.
1131 	 */
1132 	if (adapter->num_req_queues)
1133 		num_active_queues = adapter->num_req_queues;
1134 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1135 		 adapter->num_tc)
1136 		num_active_queues = adapter->ch_config.total_qps;
1137 	else
1138 		num_active_queues = min_t(int,
1139 					  adapter->vsi_res->num_queue_pairs,
1140 					  (int)(num_online_cpus()));
1141 
1142 
1143 	adapter->tx_rings = kcalloc(num_active_queues,
1144 				    sizeof(struct iavf_ring), GFP_KERNEL);
1145 	if (!adapter->tx_rings)
1146 		goto err_out;
1147 	adapter->rx_rings = kcalloc(num_active_queues,
1148 				    sizeof(struct iavf_ring), GFP_KERNEL);
1149 	if (!adapter->rx_rings)
1150 		goto err_out;
1151 
1152 	for (i = 0; i < num_active_queues; i++) {
1153 		struct iavf_ring *tx_ring;
1154 		struct iavf_ring *rx_ring;
1155 
1156 		tx_ring = &adapter->tx_rings[i];
1157 
1158 		tx_ring->queue_index = i;
1159 		tx_ring->netdev = adapter->netdev;
1160 		tx_ring->dev = &adapter->pdev->dev;
1161 		tx_ring->count = adapter->tx_desc_count;
1162 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1163 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1164 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1165 
1166 		rx_ring = &adapter->rx_rings[i];
1167 		rx_ring->queue_index = i;
1168 		rx_ring->netdev = adapter->netdev;
1169 		rx_ring->dev = &adapter->pdev->dev;
1170 		rx_ring->count = adapter->rx_desc_count;
1171 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1172 	}
1173 
1174 	adapter->num_active_queues = num_active_queues;
1175 
1176 	return 0;
1177 
1178 err_out:
1179 	iavf_free_queues(adapter);
1180 	return -ENOMEM;
1181 }
1182 
1183 /**
1184  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1185  * @adapter: board private structure to initialize
1186  *
1187  * Attempt to configure the interrupts using the best available
1188  * capabilities of the hardware and the kernel.
1189  **/
1190 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1191 {
1192 	int vector, v_budget;
1193 	int pairs = 0;
1194 	int err = 0;
1195 
1196 	if (!adapter->vsi_res) {
1197 		err = -EIO;
1198 		goto out;
1199 	}
1200 	pairs = adapter->num_active_queues;
1201 
1202 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1203 	 * us much good if we have more vectors than CPUs. However, we already
1204 	 * limit the total number of queues by the number of CPUs so we do not
1205 	 * need any further limiting here.
1206 	 */
1207 	v_budget = min_t(int, pairs + NONQ_VECS,
1208 			 (int)adapter->vf_res->max_vectors);
1209 
1210 	adapter->msix_entries = kcalloc(v_budget,
1211 					sizeof(struct msix_entry), GFP_KERNEL);
1212 	if (!adapter->msix_entries) {
1213 		err = -ENOMEM;
1214 		goto out;
1215 	}
1216 
1217 	for (vector = 0; vector < v_budget; vector++)
1218 		adapter->msix_entries[vector].entry = vector;
1219 
1220 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1221 
1222 out:
1223 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1224 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1225 	return err;
1226 }
1227 
1228 /**
1229  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1230  * @adapter: board private structure
1231  *
1232  * Return 0 on success, negative on failure
1233  **/
1234 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1235 {
1236 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1237 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1238 	struct iavf_hw *hw = &adapter->hw;
1239 	int ret = 0;
1240 
1241 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1242 		/* bail because we already have a command pending */
1243 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1244 			adapter->current_op);
1245 		return -EBUSY;
1246 	}
1247 
1248 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1249 	if (ret) {
1250 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1251 			iavf_stat_str(hw, ret),
1252 			iavf_aq_str(hw, hw->aq.asq_last_status));
1253 		return ret;
1254 
1255 	}
1256 
1257 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1258 				  adapter->rss_lut, adapter->rss_lut_size);
1259 	if (ret) {
1260 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1261 			iavf_stat_str(hw, ret),
1262 			iavf_aq_str(hw, hw->aq.asq_last_status));
1263 	}
1264 
1265 	return ret;
1266 
1267 }
1268 
1269 /**
1270  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1271  * @adapter: board private structure
1272  *
1273  * Returns 0 on success, negative on failure
1274  **/
1275 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1276 {
1277 	struct iavf_hw *hw = &adapter->hw;
1278 	u32 *dw;
1279 	u16 i;
1280 
1281 	dw = (u32 *)adapter->rss_key;
1282 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1283 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1284 
1285 	dw = (u32 *)adapter->rss_lut;
1286 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1287 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1288 
1289 	iavf_flush(hw);
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * iavf_config_rss - Configure RSS keys and lut
1296  * @adapter: board private structure
1297  *
1298  * Returns 0 on success, negative on failure
1299  **/
1300 int iavf_config_rss(struct iavf_adapter *adapter)
1301 {
1302 
1303 	if (RSS_PF(adapter)) {
1304 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1305 					IAVF_FLAG_AQ_SET_RSS_KEY;
1306 		return 0;
1307 	} else if (RSS_AQ(adapter)) {
1308 		return iavf_config_rss_aq(adapter);
1309 	} else {
1310 		return iavf_config_rss_reg(adapter);
1311 	}
1312 }
1313 
1314 /**
1315  * iavf_fill_rss_lut - Fill the lut with default values
1316  * @adapter: board private structure
1317  **/
1318 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1319 {
1320 	u16 i;
1321 
1322 	for (i = 0; i < adapter->rss_lut_size; i++)
1323 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1324 }
1325 
1326 /**
1327  * iavf_init_rss - Prepare for RSS
1328  * @adapter: board private structure
1329  *
1330  * Return 0 on success, negative on failure
1331  **/
1332 static int iavf_init_rss(struct iavf_adapter *adapter)
1333 {
1334 	struct iavf_hw *hw = &adapter->hw;
1335 	int ret;
1336 
1337 	if (!RSS_PF(adapter)) {
1338 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1339 		if (adapter->vf_res->vf_cap_flags &
1340 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1341 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1342 		else
1343 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1344 
1345 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1346 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1347 	}
1348 
1349 	iavf_fill_rss_lut(adapter);
1350 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1351 	ret = iavf_config_rss(adapter);
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1358  * @adapter: board private structure to initialize
1359  *
1360  * We allocate one q_vector per queue interrupt.  If allocation fails we
1361  * return -ENOMEM.
1362  **/
1363 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1364 {
1365 	int q_idx = 0, num_q_vectors;
1366 	struct iavf_q_vector *q_vector;
1367 
1368 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1369 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1370 				     GFP_KERNEL);
1371 	if (!adapter->q_vectors)
1372 		return -ENOMEM;
1373 
1374 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1375 		q_vector = &adapter->q_vectors[q_idx];
1376 		q_vector->adapter = adapter;
1377 		q_vector->vsi = &adapter->vsi;
1378 		q_vector->v_idx = q_idx;
1379 		q_vector->reg_idx = q_idx;
1380 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1381 		netif_napi_add(adapter->netdev, &q_vector->napi,
1382 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 /**
1389  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1390  * @adapter: board private structure to initialize
1391  *
1392  * This function frees the memory allocated to the q_vectors.  In addition if
1393  * NAPI is enabled it will delete any references to the NAPI struct prior
1394  * to freeing the q_vector.
1395  **/
1396 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1397 {
1398 	int q_idx, num_q_vectors;
1399 	int napi_vectors;
1400 
1401 	if (!adapter->q_vectors)
1402 		return;
1403 
1404 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1405 	napi_vectors = adapter->num_active_queues;
1406 
1407 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1408 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1409 
1410 		if (q_idx < napi_vectors)
1411 			netif_napi_del(&q_vector->napi);
1412 	}
1413 	kfree(adapter->q_vectors);
1414 	adapter->q_vectors = NULL;
1415 }
1416 
1417 /**
1418  * iavf_reset_interrupt_capability - Reset MSIX setup
1419  * @adapter: board private structure
1420  *
1421  **/
1422 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1423 {
1424 	if (!adapter->msix_entries)
1425 		return;
1426 
1427 	pci_disable_msix(adapter->pdev);
1428 	kfree(adapter->msix_entries);
1429 	adapter->msix_entries = NULL;
1430 }
1431 
1432 /**
1433  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1434  * @adapter: board private structure to initialize
1435  *
1436  **/
1437 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1438 {
1439 	int err;
1440 
1441 	err = iavf_alloc_queues(adapter);
1442 	if (err) {
1443 		dev_err(&adapter->pdev->dev,
1444 			"Unable to allocate memory for queues\n");
1445 		goto err_alloc_queues;
1446 	}
1447 
1448 	rtnl_lock();
1449 	err = iavf_set_interrupt_capability(adapter);
1450 	rtnl_unlock();
1451 	if (err) {
1452 		dev_err(&adapter->pdev->dev,
1453 			"Unable to setup interrupt capabilities\n");
1454 		goto err_set_interrupt;
1455 	}
1456 
1457 	err = iavf_alloc_q_vectors(adapter);
1458 	if (err) {
1459 		dev_err(&adapter->pdev->dev,
1460 			"Unable to allocate memory for queue vectors\n");
1461 		goto err_alloc_q_vectors;
1462 	}
1463 
1464 	/* If we've made it so far while ADq flag being ON, then we haven't
1465 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1466 	 * resources have been allocated in the reset path.
1467 	 * Now we can truly claim that ADq is enabled.
1468 	 */
1469 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1470 	    adapter->num_tc)
1471 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1472 			 adapter->num_tc);
1473 
1474 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1475 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1476 		 adapter->num_active_queues);
1477 
1478 	return 0;
1479 err_alloc_q_vectors:
1480 	iavf_reset_interrupt_capability(adapter);
1481 err_set_interrupt:
1482 	iavf_free_queues(adapter);
1483 err_alloc_queues:
1484 	return err;
1485 }
1486 
1487 /**
1488  * iavf_free_rss - Free memory used by RSS structs
1489  * @adapter: board private structure
1490  **/
1491 static void iavf_free_rss(struct iavf_adapter *adapter)
1492 {
1493 	kfree(adapter->rss_key);
1494 	adapter->rss_key = NULL;
1495 
1496 	kfree(adapter->rss_lut);
1497 	adapter->rss_lut = NULL;
1498 }
1499 
1500 /**
1501  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1502  * @adapter: board private structure
1503  *
1504  * Returns 0 on success, negative on failure
1505  **/
1506 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1507 {
1508 	struct net_device *netdev = adapter->netdev;
1509 	int err;
1510 
1511 	if (netif_running(netdev))
1512 		iavf_free_traffic_irqs(adapter);
1513 	iavf_free_misc_irq(adapter);
1514 	iavf_reset_interrupt_capability(adapter);
1515 	iavf_free_q_vectors(adapter);
1516 	iavf_free_queues(adapter);
1517 
1518 	err =  iavf_init_interrupt_scheme(adapter);
1519 	if (err)
1520 		goto err;
1521 
1522 	netif_tx_stop_all_queues(netdev);
1523 
1524 	err = iavf_request_misc_irq(adapter);
1525 	if (err)
1526 		goto err;
1527 
1528 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1529 
1530 	iavf_map_rings_to_vectors(adapter);
1531 err:
1532 	return err;
1533 }
1534 
1535 /**
1536  * iavf_process_aq_command - process aq_required flags
1537  * and sends aq command
1538  * @adapter: pointer to iavf adapter structure
1539  *
1540  * Returns 0 on success
1541  * Returns error code if no command was sent
1542  * or error code if the command failed.
1543  **/
1544 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1545 {
1546 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1547 		return iavf_send_vf_config_msg(adapter);
1548 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1549 		iavf_disable_queues(adapter);
1550 		return 0;
1551 	}
1552 
1553 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1554 		iavf_map_queues(adapter);
1555 		return 0;
1556 	}
1557 
1558 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1559 		iavf_add_ether_addrs(adapter);
1560 		return 0;
1561 	}
1562 
1563 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1564 		iavf_add_vlans(adapter);
1565 		return 0;
1566 	}
1567 
1568 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1569 		iavf_del_ether_addrs(adapter);
1570 		return 0;
1571 	}
1572 
1573 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1574 		iavf_del_vlans(adapter);
1575 		return 0;
1576 	}
1577 
1578 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1579 		iavf_enable_vlan_stripping(adapter);
1580 		return 0;
1581 	}
1582 
1583 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1584 		iavf_disable_vlan_stripping(adapter);
1585 		return 0;
1586 	}
1587 
1588 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1589 		iavf_configure_queues(adapter);
1590 		return 0;
1591 	}
1592 
1593 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1594 		iavf_enable_queues(adapter);
1595 		return 0;
1596 	}
1597 
1598 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1599 		/* This message goes straight to the firmware, not the
1600 		 * PF, so we don't have to set current_op as we will
1601 		 * not get a response through the ARQ.
1602 		 */
1603 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1604 		return 0;
1605 	}
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1607 		iavf_get_hena(adapter);
1608 		return 0;
1609 	}
1610 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1611 		iavf_set_hena(adapter);
1612 		return 0;
1613 	}
1614 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1615 		iavf_set_rss_key(adapter);
1616 		return 0;
1617 	}
1618 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1619 		iavf_set_rss_lut(adapter);
1620 		return 0;
1621 	}
1622 
1623 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1624 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1625 				       FLAG_VF_MULTICAST_PROMISC);
1626 		return 0;
1627 	}
1628 
1629 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1630 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1631 		return 0;
1632 	}
1633 
1634 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1635 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1636 		iavf_set_promiscuous(adapter, 0);
1637 		return 0;
1638 	}
1639 
1640 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1641 		iavf_enable_channels(adapter);
1642 		return 0;
1643 	}
1644 
1645 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1646 		iavf_disable_channels(adapter);
1647 		return 0;
1648 	}
1649 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1650 		iavf_add_cloud_filter(adapter);
1651 		return 0;
1652 	}
1653 
1654 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1655 		iavf_del_cloud_filter(adapter);
1656 		return 0;
1657 	}
1658 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1659 		iavf_del_cloud_filter(adapter);
1660 		return 0;
1661 	}
1662 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1663 		iavf_add_cloud_filter(adapter);
1664 		return 0;
1665 	}
1666 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1667 		iavf_add_fdir_filter(adapter);
1668 		return IAVF_SUCCESS;
1669 	}
1670 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1671 		iavf_del_fdir_filter(adapter);
1672 		return IAVF_SUCCESS;
1673 	}
1674 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1675 		iavf_add_adv_rss_cfg(adapter);
1676 		return 0;
1677 	}
1678 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1679 		iavf_del_adv_rss_cfg(adapter);
1680 		return 0;
1681 	}
1682 	return -EAGAIN;
1683 }
1684 
1685 /**
1686  * iavf_startup - first step of driver startup
1687  * @adapter: board private structure
1688  *
1689  * Function process __IAVF_STARTUP driver state.
1690  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1691  * when fails it returns -EAGAIN
1692  **/
1693 static int iavf_startup(struct iavf_adapter *adapter)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	struct iavf_hw *hw = &adapter->hw;
1697 	int err;
1698 
1699 	WARN_ON(adapter->state != __IAVF_STARTUP);
1700 
1701 	/* driver loaded, probe complete */
1702 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1703 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1704 	err = iavf_set_mac_type(hw);
1705 	if (err) {
1706 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1707 		goto err;
1708 	}
1709 
1710 	err = iavf_check_reset_complete(hw);
1711 	if (err) {
1712 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1713 			 err);
1714 		goto err;
1715 	}
1716 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1717 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1718 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1719 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1720 
1721 	err = iavf_init_adminq(hw);
1722 	if (err) {
1723 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1724 		goto err;
1725 	}
1726 	err = iavf_send_api_ver(adapter);
1727 	if (err) {
1728 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1729 		iavf_shutdown_adminq(hw);
1730 		goto err;
1731 	}
1732 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1733 err:
1734 	return err;
1735 }
1736 
1737 /**
1738  * iavf_init_version_check - second step of driver startup
1739  * @adapter: board private structure
1740  *
1741  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1742  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1743  * when fails it returns -EAGAIN
1744  **/
1745 static int iavf_init_version_check(struct iavf_adapter *adapter)
1746 {
1747 	struct pci_dev *pdev = adapter->pdev;
1748 	struct iavf_hw *hw = &adapter->hw;
1749 	int err = -EAGAIN;
1750 
1751 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1752 
1753 	if (!iavf_asq_done(hw)) {
1754 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1755 		iavf_shutdown_adminq(hw);
1756 		adapter->state = __IAVF_STARTUP;
1757 		goto err;
1758 	}
1759 
1760 	/* aq msg sent, awaiting reply */
1761 	err = iavf_verify_api_ver(adapter);
1762 	if (err) {
1763 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1764 			err = iavf_send_api_ver(adapter);
1765 		else
1766 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1767 				adapter->pf_version.major,
1768 				adapter->pf_version.minor,
1769 				VIRTCHNL_VERSION_MAJOR,
1770 				VIRTCHNL_VERSION_MINOR);
1771 		goto err;
1772 	}
1773 	err = iavf_send_vf_config_msg(adapter);
1774 	if (err) {
1775 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1776 			err);
1777 		goto err;
1778 	}
1779 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1780 
1781 err:
1782 	return err;
1783 }
1784 
1785 /**
1786  * iavf_init_get_resources - third step of driver startup
1787  * @adapter: board private structure
1788  *
1789  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1790  * finishes driver initialization procedure.
1791  * When success the state is changed to __IAVF_DOWN
1792  * when fails it returns -EAGAIN
1793  **/
1794 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1795 {
1796 	struct net_device *netdev = adapter->netdev;
1797 	struct pci_dev *pdev = adapter->pdev;
1798 	struct iavf_hw *hw = &adapter->hw;
1799 	int err;
1800 
1801 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1802 	/* aq msg sent, awaiting reply */
1803 	if (!adapter->vf_res) {
1804 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1805 					  GFP_KERNEL);
1806 		if (!adapter->vf_res) {
1807 			err = -ENOMEM;
1808 			goto err;
1809 		}
1810 	}
1811 	err = iavf_get_vf_config(adapter);
1812 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1813 		err = iavf_send_vf_config_msg(adapter);
1814 		goto err;
1815 	} else if (err == IAVF_ERR_PARAM) {
1816 		/* We only get ERR_PARAM if the device is in a very bad
1817 		 * state or if we've been disabled for previous bad
1818 		 * behavior. Either way, we're done now.
1819 		 */
1820 		iavf_shutdown_adminq(hw);
1821 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1822 		return 0;
1823 	}
1824 	if (err) {
1825 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1826 		goto err_alloc;
1827 	}
1828 
1829 	err = iavf_process_config(adapter);
1830 	if (err)
1831 		goto err_alloc;
1832 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1833 
1834 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1835 
1836 	netdev->netdev_ops = &iavf_netdev_ops;
1837 	iavf_set_ethtool_ops(netdev);
1838 	netdev->watchdog_timeo = 5 * HZ;
1839 
1840 	/* MTU range: 68 - 9710 */
1841 	netdev->min_mtu = ETH_MIN_MTU;
1842 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1843 
1844 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1845 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1846 			 adapter->hw.mac.addr);
1847 		eth_hw_addr_random(netdev);
1848 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1849 	} else {
1850 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1851 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1852 	}
1853 
1854 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1855 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1856 	err = iavf_init_interrupt_scheme(adapter);
1857 	if (err)
1858 		goto err_sw_init;
1859 	iavf_map_rings_to_vectors(adapter);
1860 	if (adapter->vf_res->vf_cap_flags &
1861 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1862 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1863 
1864 	err = iavf_request_misc_irq(adapter);
1865 	if (err)
1866 		goto err_sw_init;
1867 
1868 	netif_carrier_off(netdev);
1869 	adapter->link_up = false;
1870 
1871 	/* set the semaphore to prevent any callbacks after device registration
1872 	 * up to time when state of driver will be set to __IAVF_DOWN
1873 	 */
1874 	rtnl_lock();
1875 	if (!adapter->netdev_registered) {
1876 		err = register_netdevice(netdev);
1877 		if (err) {
1878 			rtnl_unlock();
1879 			goto err_register;
1880 		}
1881 	}
1882 
1883 	adapter->netdev_registered = true;
1884 
1885 	netif_tx_stop_all_queues(netdev);
1886 	if (CLIENT_ALLOWED(adapter)) {
1887 		err = iavf_lan_add_device(adapter);
1888 		if (err)
1889 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1890 				 err);
1891 	}
1892 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1893 	if (netdev->features & NETIF_F_GRO)
1894 		dev_info(&pdev->dev, "GRO is enabled\n");
1895 
1896 	adapter->state = __IAVF_DOWN;
1897 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1898 	rtnl_unlock();
1899 
1900 	iavf_misc_irq_enable(adapter);
1901 	wake_up(&adapter->down_waitqueue);
1902 
1903 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1904 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1905 	if (!adapter->rss_key || !adapter->rss_lut) {
1906 		err = -ENOMEM;
1907 		goto err_mem;
1908 	}
1909 	if (RSS_AQ(adapter))
1910 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1911 	else
1912 		iavf_init_rss(adapter);
1913 
1914 	return err;
1915 err_mem:
1916 	iavf_free_rss(adapter);
1917 err_register:
1918 	iavf_free_misc_irq(adapter);
1919 err_sw_init:
1920 	iavf_reset_interrupt_capability(adapter);
1921 err_alloc:
1922 	kfree(adapter->vf_res);
1923 	adapter->vf_res = NULL;
1924 err:
1925 	return err;
1926 }
1927 
1928 /**
1929  * iavf_watchdog_task - Periodic call-back task
1930  * @work: pointer to work_struct
1931  **/
1932 static void iavf_watchdog_task(struct work_struct *work)
1933 {
1934 	struct iavf_adapter *adapter = container_of(work,
1935 						    struct iavf_adapter,
1936 						    watchdog_task.work);
1937 	struct iavf_hw *hw = &adapter->hw;
1938 	u32 reg_val;
1939 
1940 	if (!mutex_trylock(&adapter->crit_lock))
1941 		goto restart_watchdog;
1942 
1943 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1944 		adapter->state = __IAVF_COMM_FAILED;
1945 
1946 	switch (adapter->state) {
1947 	case __IAVF_COMM_FAILED:
1948 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1949 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1950 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1951 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1952 			/* A chance for redemption! */
1953 			dev_err(&adapter->pdev->dev,
1954 				"Hardware came out of reset. Attempting reinit.\n");
1955 			adapter->state = __IAVF_STARTUP;
1956 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1957 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1958 			mutex_unlock(&adapter->crit_lock);
1959 			/* Don't reschedule the watchdog, since we've restarted
1960 			 * the init task. When init_task contacts the PF and
1961 			 * gets everything set up again, it'll restart the
1962 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1963 			 */
1964 			return;
1965 		}
1966 		adapter->aq_required = 0;
1967 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1968 		mutex_unlock(&adapter->crit_lock);
1969 		queue_delayed_work(iavf_wq,
1970 				   &adapter->watchdog_task,
1971 				   msecs_to_jiffies(10));
1972 		goto watchdog_done;
1973 	case __IAVF_RESETTING:
1974 		mutex_unlock(&adapter->crit_lock);
1975 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1976 		return;
1977 	case __IAVF_DOWN:
1978 	case __IAVF_DOWN_PENDING:
1979 	case __IAVF_TESTING:
1980 	case __IAVF_RUNNING:
1981 		if (adapter->current_op) {
1982 			if (!iavf_asq_done(hw)) {
1983 				dev_dbg(&adapter->pdev->dev,
1984 					"Admin queue timeout\n");
1985 				iavf_send_api_ver(adapter);
1986 			}
1987 		} else {
1988 			/* An error will be returned if no commands were
1989 			 * processed; use this opportunity to update stats
1990 			 */
1991 			if (iavf_process_aq_command(adapter) &&
1992 			    adapter->state == __IAVF_RUNNING)
1993 				iavf_request_stats(adapter);
1994 		}
1995 		break;
1996 	case __IAVF_REMOVE:
1997 		mutex_unlock(&adapter->crit_lock);
1998 		return;
1999 	default:
2000 		goto restart_watchdog;
2001 	}
2002 
2003 		/* check for hw reset */
2004 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2005 	if (!reg_val) {
2006 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2007 		adapter->aq_required = 0;
2008 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2009 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2010 		queue_work(iavf_wq, &adapter->reset_task);
2011 		goto watchdog_done;
2012 	}
2013 
2014 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2015 watchdog_done:
2016 	if (adapter->state == __IAVF_RUNNING ||
2017 	    adapter->state == __IAVF_COMM_FAILED)
2018 		iavf_detect_recover_hung(&adapter->vsi);
2019 	mutex_unlock(&adapter->crit_lock);
2020 restart_watchdog:
2021 	if (adapter->aq_required)
2022 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2023 				   msecs_to_jiffies(20));
2024 	else
2025 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2026 	queue_work(iavf_wq, &adapter->adminq_task);
2027 }
2028 
2029 static void iavf_disable_vf(struct iavf_adapter *adapter)
2030 {
2031 	struct iavf_mac_filter *f, *ftmp;
2032 	struct iavf_vlan_filter *fv, *fvtmp;
2033 	struct iavf_cloud_filter *cf, *cftmp;
2034 
2035 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2036 
2037 	/* We don't use netif_running() because it may be true prior to
2038 	 * ndo_open() returning, so we can't assume it means all our open
2039 	 * tasks have finished, since we're not holding the rtnl_lock here.
2040 	 */
2041 	if (adapter->state == __IAVF_RUNNING) {
2042 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2043 		netif_carrier_off(adapter->netdev);
2044 		netif_tx_disable(adapter->netdev);
2045 		adapter->link_up = false;
2046 		iavf_napi_disable_all(adapter);
2047 		iavf_irq_disable(adapter);
2048 		iavf_free_traffic_irqs(adapter);
2049 		iavf_free_all_tx_resources(adapter);
2050 		iavf_free_all_rx_resources(adapter);
2051 	}
2052 
2053 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2054 
2055 	/* Delete all of the filters */
2056 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2057 		list_del(&f->list);
2058 		kfree(f);
2059 	}
2060 
2061 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2062 		list_del(&fv->list);
2063 		kfree(fv);
2064 	}
2065 
2066 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2067 
2068 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2069 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2070 		list_del(&cf->list);
2071 		kfree(cf);
2072 		adapter->num_cloud_filters--;
2073 	}
2074 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2075 
2076 	iavf_free_misc_irq(adapter);
2077 	iavf_reset_interrupt_capability(adapter);
2078 	iavf_free_queues(adapter);
2079 	iavf_free_q_vectors(adapter);
2080 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2081 	iavf_shutdown_adminq(&adapter->hw);
2082 	adapter->netdev->flags &= ~IFF_UP;
2083 	mutex_unlock(&adapter->crit_lock);
2084 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2085 	adapter->state = __IAVF_DOWN;
2086 	wake_up(&adapter->down_waitqueue);
2087 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2088 }
2089 
2090 /**
2091  * iavf_reset_task - Call-back task to handle hardware reset
2092  * @work: pointer to work_struct
2093  *
2094  * During reset we need to shut down and reinitialize the admin queue
2095  * before we can use it to communicate with the PF again. We also clear
2096  * and reinit the rings because that context is lost as well.
2097  **/
2098 static void iavf_reset_task(struct work_struct *work)
2099 {
2100 	struct iavf_adapter *adapter = container_of(work,
2101 						      struct iavf_adapter,
2102 						      reset_task);
2103 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2104 	struct net_device *netdev = adapter->netdev;
2105 	struct iavf_hw *hw = &adapter->hw;
2106 	struct iavf_mac_filter *f, *ftmp;
2107 	struct iavf_vlan_filter *vlf;
2108 	struct iavf_cloud_filter *cf;
2109 	u32 reg_val;
2110 	int i = 0, err;
2111 	bool running;
2112 
2113 	/* When device is being removed it doesn't make sense to run the reset
2114 	 * task, just return in such a case.
2115 	 */
2116 	if (mutex_is_locked(&adapter->remove_lock))
2117 		return;
2118 
2119 	if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2120 		schedule_work(&adapter->reset_task);
2121 		return;
2122 	}
2123 	while (!mutex_trylock(&adapter->client_lock))
2124 		usleep_range(500, 1000);
2125 	if (CLIENT_ENABLED(adapter)) {
2126 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2127 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2128 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2129 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2130 		cancel_delayed_work_sync(&adapter->client_task);
2131 		iavf_notify_client_close(&adapter->vsi, true);
2132 	}
2133 	iavf_misc_irq_disable(adapter);
2134 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2135 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2136 		/* Restart the AQ here. If we have been reset but didn't
2137 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2138 		 */
2139 		iavf_shutdown_adminq(hw);
2140 		iavf_init_adminq(hw);
2141 		iavf_request_reset(adapter);
2142 	}
2143 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2144 
2145 	/* poll until we see the reset actually happen */
2146 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2147 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2148 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2149 		if (!reg_val)
2150 			break;
2151 		usleep_range(5000, 10000);
2152 	}
2153 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2154 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2155 		goto continue_reset; /* act like the reset happened */
2156 	}
2157 
2158 	/* wait until the reset is complete and the PF is responding to us */
2159 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2160 		/* sleep first to make sure a minimum wait time is met */
2161 		msleep(IAVF_RESET_WAIT_MS);
2162 
2163 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2164 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2165 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2166 			break;
2167 	}
2168 
2169 	pci_set_master(adapter->pdev);
2170 
2171 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2172 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2173 			reg_val);
2174 		iavf_disable_vf(adapter);
2175 		mutex_unlock(&adapter->client_lock);
2176 		return; /* Do not attempt to reinit. It's dead, Jim. */
2177 	}
2178 
2179 continue_reset:
2180 	/* We don't use netif_running() because it may be true prior to
2181 	 * ndo_open() returning, so we can't assume it means all our open
2182 	 * tasks have finished, since we're not holding the rtnl_lock here.
2183 	 */
2184 	running = ((adapter->state == __IAVF_RUNNING) ||
2185 		   (adapter->state == __IAVF_RESETTING));
2186 
2187 	if (running) {
2188 		netif_carrier_off(netdev);
2189 		netif_tx_stop_all_queues(netdev);
2190 		adapter->link_up = false;
2191 		iavf_napi_disable_all(adapter);
2192 	}
2193 	iavf_irq_disable(adapter);
2194 
2195 	adapter->state = __IAVF_RESETTING;
2196 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2197 
2198 	/* free the Tx/Rx rings and descriptors, might be better to just
2199 	 * re-use them sometime in the future
2200 	 */
2201 	iavf_free_all_rx_resources(adapter);
2202 	iavf_free_all_tx_resources(adapter);
2203 
2204 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2205 	/* kill and reinit the admin queue */
2206 	iavf_shutdown_adminq(hw);
2207 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2208 	err = iavf_init_adminq(hw);
2209 	if (err)
2210 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2211 			 err);
2212 	adapter->aq_required = 0;
2213 
2214 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2215 		err = iavf_reinit_interrupt_scheme(adapter);
2216 		if (err)
2217 			goto reset_err;
2218 	}
2219 
2220 	if (RSS_AQ(adapter)) {
2221 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2222 	} else {
2223 		err = iavf_init_rss(adapter);
2224 		if (err)
2225 			goto reset_err;
2226 	}
2227 
2228 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2229 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2230 
2231 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2232 
2233 	/* Delete filter for the current MAC address, it could have
2234 	 * been changed by the PF via administratively set MAC.
2235 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2236 	 */
2237 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2238 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2239 			list_del(&f->list);
2240 			kfree(f);
2241 		}
2242 	}
2243 	/* re-add all MAC filters */
2244 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2245 		f->add = true;
2246 	}
2247 	/* re-add all VLAN filters */
2248 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2249 		vlf->add = true;
2250 	}
2251 
2252 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2253 
2254 	/* check if TCs are running and re-add all cloud filters */
2255 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2256 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2257 	    adapter->num_tc) {
2258 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2259 			cf->add = true;
2260 		}
2261 	}
2262 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2263 
2264 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2265 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2266 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2267 	iavf_misc_irq_enable(adapter);
2268 
2269 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2270 
2271 	/* We were running when the reset started, so we need to restore some
2272 	 * state here.
2273 	 */
2274 	if (running) {
2275 		/* allocate transmit descriptors */
2276 		err = iavf_setup_all_tx_resources(adapter);
2277 		if (err)
2278 			goto reset_err;
2279 
2280 		/* allocate receive descriptors */
2281 		err = iavf_setup_all_rx_resources(adapter);
2282 		if (err)
2283 			goto reset_err;
2284 
2285 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2286 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2287 			if (err)
2288 				goto reset_err;
2289 
2290 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2291 		}
2292 
2293 		iavf_configure(adapter);
2294 
2295 		iavf_up_complete(adapter);
2296 
2297 		iavf_irq_enable(adapter, true);
2298 	} else {
2299 		adapter->state = __IAVF_DOWN;
2300 		wake_up(&adapter->down_waitqueue);
2301 	}
2302 	mutex_unlock(&adapter->client_lock);
2303 	mutex_unlock(&adapter->crit_lock);
2304 
2305 	return;
2306 reset_err:
2307 	mutex_unlock(&adapter->client_lock);
2308 	mutex_unlock(&adapter->crit_lock);
2309 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2310 	iavf_close(netdev);
2311 }
2312 
2313 /**
2314  * iavf_adminq_task - worker thread to clean the admin queue
2315  * @work: pointer to work_struct containing our data
2316  **/
2317 static void iavf_adminq_task(struct work_struct *work)
2318 {
2319 	struct iavf_adapter *adapter =
2320 		container_of(work, struct iavf_adapter, adminq_task);
2321 	struct iavf_hw *hw = &adapter->hw;
2322 	struct iavf_arq_event_info event;
2323 	enum virtchnl_ops v_op;
2324 	enum iavf_status ret, v_ret;
2325 	u32 val, oldval;
2326 	u16 pending;
2327 
2328 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2329 		goto out;
2330 
2331 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2332 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2333 	if (!event.msg_buf)
2334 		goto out;
2335 
2336 	if (iavf_lock_timeout(&adapter->crit_lock, 200))
2337 		goto freedom;
2338 	do {
2339 		ret = iavf_clean_arq_element(hw, &event, &pending);
2340 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2341 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2342 
2343 		if (ret || !v_op)
2344 			break; /* No event to process or error cleaning ARQ */
2345 
2346 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2347 					 event.msg_len);
2348 		if (pending != 0)
2349 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2350 	} while (pending);
2351 	mutex_unlock(&adapter->crit_lock);
2352 
2353 	if ((adapter->flags &
2354 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2355 	    adapter->state == __IAVF_RESETTING)
2356 		goto freedom;
2357 
2358 	/* check for error indications */
2359 	val = rd32(hw, hw->aq.arq.len);
2360 	if (val == 0xdeadbeef) /* indicates device in reset */
2361 		goto freedom;
2362 	oldval = val;
2363 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2364 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2365 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2366 	}
2367 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2368 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2369 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2370 	}
2371 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2372 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2373 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2374 	}
2375 	if (oldval != val)
2376 		wr32(hw, hw->aq.arq.len, val);
2377 
2378 	val = rd32(hw, hw->aq.asq.len);
2379 	oldval = val;
2380 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2381 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2382 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2383 	}
2384 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2385 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2386 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2387 	}
2388 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2389 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2390 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2391 	}
2392 	if (oldval != val)
2393 		wr32(hw, hw->aq.asq.len, val);
2394 
2395 freedom:
2396 	kfree(event.msg_buf);
2397 out:
2398 	/* re-enable Admin queue interrupt cause */
2399 	iavf_misc_irq_enable(adapter);
2400 }
2401 
2402 /**
2403  * iavf_client_task - worker thread to perform client work
2404  * @work: pointer to work_struct containing our data
2405  *
2406  * This task handles client interactions. Because client calls can be
2407  * reentrant, we can't handle them in the watchdog.
2408  **/
2409 static void iavf_client_task(struct work_struct *work)
2410 {
2411 	struct iavf_adapter *adapter =
2412 		container_of(work, struct iavf_adapter, client_task.work);
2413 
2414 	/* If we can't get the client bit, just give up. We'll be rescheduled
2415 	 * later.
2416 	 */
2417 
2418 	if (!mutex_trylock(&adapter->client_lock))
2419 		return;
2420 
2421 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2422 		iavf_client_subtask(adapter);
2423 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2424 		goto out;
2425 	}
2426 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2427 		iavf_notify_client_l2_params(&adapter->vsi);
2428 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2429 		goto out;
2430 	}
2431 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2432 		iavf_notify_client_close(&adapter->vsi, false);
2433 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2434 		goto out;
2435 	}
2436 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2437 		iavf_notify_client_open(&adapter->vsi);
2438 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2439 	}
2440 out:
2441 	mutex_unlock(&adapter->client_lock);
2442 }
2443 
2444 /**
2445  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2446  * @adapter: board private structure
2447  *
2448  * Free all transmit software resources
2449  **/
2450 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2451 {
2452 	int i;
2453 
2454 	if (!adapter->tx_rings)
2455 		return;
2456 
2457 	for (i = 0; i < adapter->num_active_queues; i++)
2458 		if (adapter->tx_rings[i].desc)
2459 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2460 }
2461 
2462 /**
2463  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2464  * @adapter: board private structure
2465  *
2466  * If this function returns with an error, then it's possible one or
2467  * more of the rings is populated (while the rest are not).  It is the
2468  * callers duty to clean those orphaned rings.
2469  *
2470  * Return 0 on success, negative on failure
2471  **/
2472 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2473 {
2474 	int i, err = 0;
2475 
2476 	for (i = 0; i < adapter->num_active_queues; i++) {
2477 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2478 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2479 		if (!err)
2480 			continue;
2481 		dev_err(&adapter->pdev->dev,
2482 			"Allocation for Tx Queue %u failed\n", i);
2483 		break;
2484 	}
2485 
2486 	return err;
2487 }
2488 
2489 /**
2490  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2491  * @adapter: board private structure
2492  *
2493  * If this function returns with an error, then it's possible one or
2494  * more of the rings is populated (while the rest are not).  It is the
2495  * callers duty to clean those orphaned rings.
2496  *
2497  * Return 0 on success, negative on failure
2498  **/
2499 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2500 {
2501 	int i, err = 0;
2502 
2503 	for (i = 0; i < adapter->num_active_queues; i++) {
2504 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2505 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2506 		if (!err)
2507 			continue;
2508 		dev_err(&adapter->pdev->dev,
2509 			"Allocation for Rx Queue %u failed\n", i);
2510 		break;
2511 	}
2512 	return err;
2513 }
2514 
2515 /**
2516  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2517  * @adapter: board private structure
2518  *
2519  * Free all receive software resources
2520  **/
2521 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2522 {
2523 	int i;
2524 
2525 	if (!adapter->rx_rings)
2526 		return;
2527 
2528 	for (i = 0; i < adapter->num_active_queues; i++)
2529 		if (adapter->rx_rings[i].desc)
2530 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2531 }
2532 
2533 /**
2534  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2535  * @adapter: board private structure
2536  * @max_tx_rate: max Tx bw for a tc
2537  **/
2538 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2539 				      u64 max_tx_rate)
2540 {
2541 	int speed = 0, ret = 0;
2542 
2543 	if (ADV_LINK_SUPPORT(adapter)) {
2544 		if (adapter->link_speed_mbps < U32_MAX) {
2545 			speed = adapter->link_speed_mbps;
2546 			goto validate_bw;
2547 		} else {
2548 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2549 			return -EINVAL;
2550 		}
2551 	}
2552 
2553 	switch (adapter->link_speed) {
2554 	case VIRTCHNL_LINK_SPEED_40GB:
2555 		speed = SPEED_40000;
2556 		break;
2557 	case VIRTCHNL_LINK_SPEED_25GB:
2558 		speed = SPEED_25000;
2559 		break;
2560 	case VIRTCHNL_LINK_SPEED_20GB:
2561 		speed = SPEED_20000;
2562 		break;
2563 	case VIRTCHNL_LINK_SPEED_10GB:
2564 		speed = SPEED_10000;
2565 		break;
2566 	case VIRTCHNL_LINK_SPEED_5GB:
2567 		speed = SPEED_5000;
2568 		break;
2569 	case VIRTCHNL_LINK_SPEED_2_5GB:
2570 		speed = SPEED_2500;
2571 		break;
2572 	case VIRTCHNL_LINK_SPEED_1GB:
2573 		speed = SPEED_1000;
2574 		break;
2575 	case VIRTCHNL_LINK_SPEED_100MB:
2576 		speed = SPEED_100;
2577 		break;
2578 	default:
2579 		break;
2580 	}
2581 
2582 validate_bw:
2583 	if (max_tx_rate > speed) {
2584 		dev_err(&adapter->pdev->dev,
2585 			"Invalid tx rate specified\n");
2586 		ret = -EINVAL;
2587 	}
2588 
2589 	return ret;
2590 }
2591 
2592 /**
2593  * iavf_validate_ch_config - validate queue mapping info
2594  * @adapter: board private structure
2595  * @mqprio_qopt: queue parameters
2596  *
2597  * This function validates if the config provided by the user to
2598  * configure queue channels is valid or not. Returns 0 on a valid
2599  * config.
2600  **/
2601 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2602 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2603 {
2604 	u64 total_max_rate = 0;
2605 	int i, num_qps = 0;
2606 	u64 tx_rate = 0;
2607 	int ret = 0;
2608 
2609 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2610 	    mqprio_qopt->qopt.num_tc < 1)
2611 		return -EINVAL;
2612 
2613 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2614 		if (!mqprio_qopt->qopt.count[i] ||
2615 		    mqprio_qopt->qopt.offset[i] != num_qps)
2616 			return -EINVAL;
2617 		if (mqprio_qopt->min_rate[i]) {
2618 			dev_err(&adapter->pdev->dev,
2619 				"Invalid min tx rate (greater than 0) specified\n");
2620 			return -EINVAL;
2621 		}
2622 		/*convert to Mbps */
2623 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2624 				  IAVF_MBPS_DIVISOR);
2625 		total_max_rate += tx_rate;
2626 		num_qps += mqprio_qopt->qopt.count[i];
2627 	}
2628 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2629 		return -EINVAL;
2630 
2631 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2632 	return ret;
2633 }
2634 
2635 /**
2636  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2637  * @adapter: board private structure
2638  **/
2639 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2640 {
2641 	struct iavf_cloud_filter *cf, *cftmp;
2642 
2643 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2644 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2645 				 list) {
2646 		list_del(&cf->list);
2647 		kfree(cf);
2648 		adapter->num_cloud_filters--;
2649 	}
2650 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2651 }
2652 
2653 /**
2654  * __iavf_setup_tc - configure multiple traffic classes
2655  * @netdev: network interface device structure
2656  * @type_data: tc offload data
2657  *
2658  * This function processes the config information provided by the
2659  * user to configure traffic classes/queue channels and packages the
2660  * information to request the PF to setup traffic classes.
2661  *
2662  * Returns 0 on success.
2663  **/
2664 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2665 {
2666 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2667 	struct iavf_adapter *adapter = netdev_priv(netdev);
2668 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2669 	u8 num_tc = 0, total_qps = 0;
2670 	int ret = 0, netdev_tc = 0;
2671 	u64 max_tx_rate;
2672 	u16 mode;
2673 	int i;
2674 
2675 	num_tc = mqprio_qopt->qopt.num_tc;
2676 	mode = mqprio_qopt->mode;
2677 
2678 	/* delete queue_channel */
2679 	if (!mqprio_qopt->qopt.hw) {
2680 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2681 			/* reset the tc configuration */
2682 			netdev_reset_tc(netdev);
2683 			adapter->num_tc = 0;
2684 			netif_tx_stop_all_queues(netdev);
2685 			netif_tx_disable(netdev);
2686 			iavf_del_all_cloud_filters(adapter);
2687 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2688 			goto exit;
2689 		} else {
2690 			return -EINVAL;
2691 		}
2692 	}
2693 
2694 	/* add queue channel */
2695 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2696 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2697 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2698 			return -EOPNOTSUPP;
2699 		}
2700 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2701 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2702 			return -EINVAL;
2703 		}
2704 
2705 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2706 		if (ret)
2707 			return ret;
2708 		/* Return if same TC config is requested */
2709 		if (adapter->num_tc == num_tc)
2710 			return 0;
2711 		adapter->num_tc = num_tc;
2712 
2713 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2714 			if (i < num_tc) {
2715 				adapter->ch_config.ch_info[i].count =
2716 					mqprio_qopt->qopt.count[i];
2717 				adapter->ch_config.ch_info[i].offset =
2718 					mqprio_qopt->qopt.offset[i];
2719 				total_qps += mqprio_qopt->qopt.count[i];
2720 				max_tx_rate = mqprio_qopt->max_rate[i];
2721 				/* convert to Mbps */
2722 				max_tx_rate = div_u64(max_tx_rate,
2723 						      IAVF_MBPS_DIVISOR);
2724 				adapter->ch_config.ch_info[i].max_tx_rate =
2725 					max_tx_rate;
2726 			} else {
2727 				adapter->ch_config.ch_info[i].count = 1;
2728 				adapter->ch_config.ch_info[i].offset = 0;
2729 			}
2730 		}
2731 		adapter->ch_config.total_qps = total_qps;
2732 		netif_tx_stop_all_queues(netdev);
2733 		netif_tx_disable(netdev);
2734 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2735 		netdev_reset_tc(netdev);
2736 		/* Report the tc mapping up the stack */
2737 		netdev_set_num_tc(adapter->netdev, num_tc);
2738 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2739 			u16 qcount = mqprio_qopt->qopt.count[i];
2740 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2741 
2742 			if (i < num_tc)
2743 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2744 						    qoffset);
2745 		}
2746 	}
2747 exit:
2748 	return ret;
2749 }
2750 
2751 /**
2752  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2753  * @adapter: board private structure
2754  * @f: pointer to struct flow_cls_offload
2755  * @filter: pointer to cloud filter structure
2756  */
2757 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2758 				 struct flow_cls_offload *f,
2759 				 struct iavf_cloud_filter *filter)
2760 {
2761 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2762 	struct flow_dissector *dissector = rule->match.dissector;
2763 	u16 n_proto_mask = 0;
2764 	u16 n_proto_key = 0;
2765 	u8 field_flags = 0;
2766 	u16 addr_type = 0;
2767 	u16 n_proto = 0;
2768 	int i = 0;
2769 	struct virtchnl_filter *vf = &filter->f;
2770 
2771 	if (dissector->used_keys &
2772 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2773 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2774 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2775 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2776 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2777 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2778 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2779 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2780 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2781 			dissector->used_keys);
2782 		return -EOPNOTSUPP;
2783 	}
2784 
2785 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2786 		struct flow_match_enc_keyid match;
2787 
2788 		flow_rule_match_enc_keyid(rule, &match);
2789 		if (match.mask->keyid != 0)
2790 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2791 	}
2792 
2793 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2794 		struct flow_match_basic match;
2795 
2796 		flow_rule_match_basic(rule, &match);
2797 		n_proto_key = ntohs(match.key->n_proto);
2798 		n_proto_mask = ntohs(match.mask->n_proto);
2799 
2800 		if (n_proto_key == ETH_P_ALL) {
2801 			n_proto_key = 0;
2802 			n_proto_mask = 0;
2803 		}
2804 		n_proto = n_proto_key & n_proto_mask;
2805 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2806 			return -EINVAL;
2807 		if (n_proto == ETH_P_IPV6) {
2808 			/* specify flow type as TCP IPv6 */
2809 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2810 		}
2811 
2812 		if (match.key->ip_proto != IPPROTO_TCP) {
2813 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2814 			return -EINVAL;
2815 		}
2816 	}
2817 
2818 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2819 		struct flow_match_eth_addrs match;
2820 
2821 		flow_rule_match_eth_addrs(rule, &match);
2822 
2823 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2824 		if (!is_zero_ether_addr(match.mask->dst)) {
2825 			if (is_broadcast_ether_addr(match.mask->dst)) {
2826 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2827 			} else {
2828 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2829 					match.mask->dst);
2830 				return IAVF_ERR_CONFIG;
2831 			}
2832 		}
2833 
2834 		if (!is_zero_ether_addr(match.mask->src)) {
2835 			if (is_broadcast_ether_addr(match.mask->src)) {
2836 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2837 			} else {
2838 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2839 					match.mask->src);
2840 				return IAVF_ERR_CONFIG;
2841 			}
2842 		}
2843 
2844 		if (!is_zero_ether_addr(match.key->dst))
2845 			if (is_valid_ether_addr(match.key->dst) ||
2846 			    is_multicast_ether_addr(match.key->dst)) {
2847 				/* set the mask if a valid dst_mac address */
2848 				for (i = 0; i < ETH_ALEN; i++)
2849 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2850 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2851 						match.key->dst);
2852 			}
2853 
2854 		if (!is_zero_ether_addr(match.key->src))
2855 			if (is_valid_ether_addr(match.key->src) ||
2856 			    is_multicast_ether_addr(match.key->src)) {
2857 				/* set the mask if a valid dst_mac address */
2858 				for (i = 0; i < ETH_ALEN; i++)
2859 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2860 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2861 						match.key->src);
2862 		}
2863 	}
2864 
2865 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2866 		struct flow_match_vlan match;
2867 
2868 		flow_rule_match_vlan(rule, &match);
2869 		if (match.mask->vlan_id) {
2870 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2871 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2872 			} else {
2873 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2874 					match.mask->vlan_id);
2875 				return IAVF_ERR_CONFIG;
2876 			}
2877 		}
2878 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2879 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2880 	}
2881 
2882 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2883 		struct flow_match_control match;
2884 
2885 		flow_rule_match_control(rule, &match);
2886 		addr_type = match.key->addr_type;
2887 	}
2888 
2889 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2890 		struct flow_match_ipv4_addrs match;
2891 
2892 		flow_rule_match_ipv4_addrs(rule, &match);
2893 		if (match.mask->dst) {
2894 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2895 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2896 			} else {
2897 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2898 					be32_to_cpu(match.mask->dst));
2899 				return IAVF_ERR_CONFIG;
2900 			}
2901 		}
2902 
2903 		if (match.mask->src) {
2904 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2905 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2906 			} else {
2907 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2908 					be32_to_cpu(match.mask->dst));
2909 				return IAVF_ERR_CONFIG;
2910 			}
2911 		}
2912 
2913 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2914 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2915 			return IAVF_ERR_CONFIG;
2916 		}
2917 		if (match.key->dst) {
2918 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2919 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2920 		}
2921 		if (match.key->src) {
2922 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2923 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2924 		}
2925 	}
2926 
2927 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2928 		struct flow_match_ipv6_addrs match;
2929 
2930 		flow_rule_match_ipv6_addrs(rule, &match);
2931 
2932 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2933 		if (ipv6_addr_any(&match.mask->dst)) {
2934 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2935 				IPV6_ADDR_ANY);
2936 			return IAVF_ERR_CONFIG;
2937 		}
2938 
2939 		/* src and dest IPv6 address should not be LOOPBACK
2940 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2941 		 */
2942 		if (ipv6_addr_loopback(&match.key->dst) ||
2943 		    ipv6_addr_loopback(&match.key->src)) {
2944 			dev_err(&adapter->pdev->dev,
2945 				"ipv6 addr should not be loopback\n");
2946 			return IAVF_ERR_CONFIG;
2947 		}
2948 		if (!ipv6_addr_any(&match.mask->dst) ||
2949 		    !ipv6_addr_any(&match.mask->src))
2950 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2951 
2952 		for (i = 0; i < 4; i++)
2953 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2954 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2955 		       sizeof(vf->data.tcp_spec.dst_ip));
2956 		for (i = 0; i < 4; i++)
2957 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2958 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2959 		       sizeof(vf->data.tcp_spec.src_ip));
2960 	}
2961 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2962 		struct flow_match_ports match;
2963 
2964 		flow_rule_match_ports(rule, &match);
2965 		if (match.mask->src) {
2966 			if (match.mask->src == cpu_to_be16(0xffff)) {
2967 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2968 			} else {
2969 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2970 					be16_to_cpu(match.mask->src));
2971 				return IAVF_ERR_CONFIG;
2972 			}
2973 		}
2974 
2975 		if (match.mask->dst) {
2976 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2977 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2978 			} else {
2979 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2980 					be16_to_cpu(match.mask->dst));
2981 				return IAVF_ERR_CONFIG;
2982 			}
2983 		}
2984 		if (match.key->dst) {
2985 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2986 			vf->data.tcp_spec.dst_port = match.key->dst;
2987 		}
2988 
2989 		if (match.key->src) {
2990 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2991 			vf->data.tcp_spec.src_port = match.key->src;
2992 		}
2993 	}
2994 	vf->field_flags = field_flags;
2995 
2996 	return 0;
2997 }
2998 
2999 /**
3000  * iavf_handle_tclass - Forward to a traffic class on the device
3001  * @adapter: board private structure
3002  * @tc: traffic class index on the device
3003  * @filter: pointer to cloud filter structure
3004  */
3005 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3006 			      struct iavf_cloud_filter *filter)
3007 {
3008 	if (tc == 0)
3009 		return 0;
3010 	if (tc < adapter->num_tc) {
3011 		if (!filter->f.data.tcp_spec.dst_port) {
3012 			dev_err(&adapter->pdev->dev,
3013 				"Specify destination port to redirect to traffic class other than TC0\n");
3014 			return -EINVAL;
3015 		}
3016 	}
3017 	/* redirect to a traffic class on the same device */
3018 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3019 	filter->f.action_meta = tc;
3020 	return 0;
3021 }
3022 
3023 /**
3024  * iavf_configure_clsflower - Add tc flower filters
3025  * @adapter: board private structure
3026  * @cls_flower: Pointer to struct flow_cls_offload
3027  */
3028 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3029 				    struct flow_cls_offload *cls_flower)
3030 {
3031 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3032 	struct iavf_cloud_filter *filter = NULL;
3033 	int err = -EINVAL, count = 50;
3034 
3035 	if (tc < 0) {
3036 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3037 		return -EINVAL;
3038 	}
3039 
3040 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3041 	if (!filter)
3042 		return -ENOMEM;
3043 
3044 	while (!mutex_trylock(&adapter->crit_lock)) {
3045 		if (--count == 0)
3046 			goto err;
3047 		udelay(1);
3048 	}
3049 
3050 	filter->cookie = cls_flower->cookie;
3051 
3052 	/* set the mask to all zeroes to begin with */
3053 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3054 	/* start out with flow type and eth type IPv4 to begin with */
3055 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3056 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3057 	if (err < 0)
3058 		goto err;
3059 
3060 	err = iavf_handle_tclass(adapter, tc, filter);
3061 	if (err < 0)
3062 		goto err;
3063 
3064 	/* add filter to the list */
3065 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3066 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3067 	adapter->num_cloud_filters++;
3068 	filter->add = true;
3069 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3070 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3071 err:
3072 	if (err)
3073 		kfree(filter);
3074 
3075 	mutex_unlock(&adapter->crit_lock);
3076 	return err;
3077 }
3078 
3079 /* iavf_find_cf - Find the cloud filter in the list
3080  * @adapter: Board private structure
3081  * @cookie: filter specific cookie
3082  *
3083  * Returns ptr to the filter object or NULL. Must be called while holding the
3084  * cloud_filter_list_lock.
3085  */
3086 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3087 					      unsigned long *cookie)
3088 {
3089 	struct iavf_cloud_filter *filter = NULL;
3090 
3091 	if (!cookie)
3092 		return NULL;
3093 
3094 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3095 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3096 			return filter;
3097 	}
3098 	return NULL;
3099 }
3100 
3101 /**
3102  * iavf_delete_clsflower - Remove tc flower filters
3103  * @adapter: board private structure
3104  * @cls_flower: Pointer to struct flow_cls_offload
3105  */
3106 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3107 				 struct flow_cls_offload *cls_flower)
3108 {
3109 	struct iavf_cloud_filter *filter = NULL;
3110 	int err = 0;
3111 
3112 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3113 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3114 	if (filter) {
3115 		filter->del = true;
3116 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3117 	} else {
3118 		err = -EINVAL;
3119 	}
3120 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3121 
3122 	return err;
3123 }
3124 
3125 /**
3126  * iavf_setup_tc_cls_flower - flower classifier offloads
3127  * @adapter: board private structure
3128  * @cls_flower: pointer to flow_cls_offload struct with flow info
3129  */
3130 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3131 				    struct flow_cls_offload *cls_flower)
3132 {
3133 	switch (cls_flower->command) {
3134 	case FLOW_CLS_REPLACE:
3135 		return iavf_configure_clsflower(adapter, cls_flower);
3136 	case FLOW_CLS_DESTROY:
3137 		return iavf_delete_clsflower(adapter, cls_flower);
3138 	case FLOW_CLS_STATS:
3139 		return -EOPNOTSUPP;
3140 	default:
3141 		return -EOPNOTSUPP;
3142 	}
3143 }
3144 
3145 /**
3146  * iavf_setup_tc_block_cb - block callback for tc
3147  * @type: type of offload
3148  * @type_data: offload data
3149  * @cb_priv:
3150  *
3151  * This function is the block callback for traffic classes
3152  **/
3153 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3154 				  void *cb_priv)
3155 {
3156 	struct iavf_adapter *adapter = cb_priv;
3157 
3158 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3159 		return -EOPNOTSUPP;
3160 
3161 	switch (type) {
3162 	case TC_SETUP_CLSFLOWER:
3163 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3164 	default:
3165 		return -EOPNOTSUPP;
3166 	}
3167 }
3168 
3169 static LIST_HEAD(iavf_block_cb_list);
3170 
3171 /**
3172  * iavf_setup_tc - configure multiple traffic classes
3173  * @netdev: network interface device structure
3174  * @type: type of offload
3175  * @type_data: tc offload data
3176  *
3177  * This function is the callback to ndo_setup_tc in the
3178  * netdev_ops.
3179  *
3180  * Returns 0 on success
3181  **/
3182 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3183 			 void *type_data)
3184 {
3185 	struct iavf_adapter *adapter = netdev_priv(netdev);
3186 
3187 	switch (type) {
3188 	case TC_SETUP_QDISC_MQPRIO:
3189 		return __iavf_setup_tc(netdev, type_data);
3190 	case TC_SETUP_BLOCK:
3191 		return flow_block_cb_setup_simple(type_data,
3192 						  &iavf_block_cb_list,
3193 						  iavf_setup_tc_block_cb,
3194 						  adapter, adapter, true);
3195 	default:
3196 		return -EOPNOTSUPP;
3197 	}
3198 }
3199 
3200 /**
3201  * iavf_open - Called when a network interface is made active
3202  * @netdev: network interface device structure
3203  *
3204  * Returns 0 on success, negative value on failure
3205  *
3206  * The open entry point is called when a network interface is made
3207  * active by the system (IFF_UP).  At this point all resources needed
3208  * for transmit and receive operations are allocated, the interrupt
3209  * handler is registered with the OS, the watchdog is started,
3210  * and the stack is notified that the interface is ready.
3211  **/
3212 static int iavf_open(struct net_device *netdev)
3213 {
3214 	struct iavf_adapter *adapter = netdev_priv(netdev);
3215 	int err;
3216 
3217 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3218 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3219 		return -EIO;
3220 	}
3221 
3222 	while (!mutex_trylock(&adapter->crit_lock))
3223 		usleep_range(500, 1000);
3224 
3225 	if (adapter->state != __IAVF_DOWN) {
3226 		err = -EBUSY;
3227 		goto err_unlock;
3228 	}
3229 
3230 	/* allocate transmit descriptors */
3231 	err = iavf_setup_all_tx_resources(adapter);
3232 	if (err)
3233 		goto err_setup_tx;
3234 
3235 	/* allocate receive descriptors */
3236 	err = iavf_setup_all_rx_resources(adapter);
3237 	if (err)
3238 		goto err_setup_rx;
3239 
3240 	/* clear any pending interrupts, may auto mask */
3241 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3242 	if (err)
3243 		goto err_req_irq;
3244 
3245 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3246 
3247 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3248 
3249 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3250 
3251 	iavf_configure(adapter);
3252 
3253 	iavf_up_complete(adapter);
3254 
3255 	iavf_irq_enable(adapter, true);
3256 
3257 	mutex_unlock(&adapter->crit_lock);
3258 
3259 	return 0;
3260 
3261 err_req_irq:
3262 	iavf_down(adapter);
3263 	iavf_free_traffic_irqs(adapter);
3264 err_setup_rx:
3265 	iavf_free_all_rx_resources(adapter);
3266 err_setup_tx:
3267 	iavf_free_all_tx_resources(adapter);
3268 err_unlock:
3269 	mutex_unlock(&adapter->crit_lock);
3270 
3271 	return err;
3272 }
3273 
3274 /**
3275  * iavf_close - Disables a network interface
3276  * @netdev: network interface device structure
3277  *
3278  * Returns 0, this is not allowed to fail
3279  *
3280  * The close entry point is called when an interface is de-activated
3281  * by the OS.  The hardware is still under the drivers control, but
3282  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3283  * are freed, along with all transmit and receive resources.
3284  **/
3285 static int iavf_close(struct net_device *netdev)
3286 {
3287 	struct iavf_adapter *adapter = netdev_priv(netdev);
3288 	int status;
3289 
3290 	if (adapter->state <= __IAVF_DOWN_PENDING)
3291 		return 0;
3292 
3293 	while (!mutex_trylock(&adapter->crit_lock))
3294 		usleep_range(500, 1000);
3295 
3296 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3297 	if (CLIENT_ENABLED(adapter))
3298 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3299 
3300 	iavf_down(adapter);
3301 	adapter->state = __IAVF_DOWN_PENDING;
3302 	iavf_free_traffic_irqs(adapter);
3303 
3304 	mutex_unlock(&adapter->crit_lock);
3305 
3306 	/* We explicitly don't free resources here because the hardware is
3307 	 * still active and can DMA into memory. Resources are cleared in
3308 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3309 	 * driver that the rings have been stopped.
3310 	 *
3311 	 * Also, we wait for state to transition to __IAVF_DOWN before
3312 	 * returning. State change occurs in iavf_virtchnl_completion() after
3313 	 * VF resources are released (which occurs after PF driver processes and
3314 	 * responds to admin queue commands).
3315 	 */
3316 
3317 	status = wait_event_timeout(adapter->down_waitqueue,
3318 				    adapter->state == __IAVF_DOWN,
3319 				    msecs_to_jiffies(500));
3320 	if (!status)
3321 		netdev_warn(netdev, "Device resources not yet released\n");
3322 	return 0;
3323 }
3324 
3325 /**
3326  * iavf_change_mtu - Change the Maximum Transfer Unit
3327  * @netdev: network interface device structure
3328  * @new_mtu: new value for maximum frame size
3329  *
3330  * Returns 0 on success, negative on failure
3331  **/
3332 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3333 {
3334 	struct iavf_adapter *adapter = netdev_priv(netdev);
3335 
3336 	netdev->mtu = new_mtu;
3337 	if (CLIENT_ENABLED(adapter)) {
3338 		iavf_notify_client_l2_params(&adapter->vsi);
3339 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3340 	}
3341 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3342 	queue_work(iavf_wq, &adapter->reset_task);
3343 
3344 	return 0;
3345 }
3346 
3347 /**
3348  * iavf_set_features - set the netdev feature flags
3349  * @netdev: ptr to the netdev being adjusted
3350  * @features: the feature set that the stack is suggesting
3351  * Note: expects to be called while under rtnl_lock()
3352  **/
3353 static int iavf_set_features(struct net_device *netdev,
3354 			     netdev_features_t features)
3355 {
3356 	struct iavf_adapter *adapter = netdev_priv(netdev);
3357 
3358 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3359 	 * of VLAN offload
3360 	 */
3361 	if (!VLAN_ALLOWED(adapter)) {
3362 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3363 			return -EINVAL;
3364 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3365 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3366 			adapter->aq_required |=
3367 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3368 		else
3369 			adapter->aq_required |=
3370 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 /**
3377  * iavf_features_check - Validate encapsulated packet conforms to limits
3378  * @skb: skb buff
3379  * @dev: This physical port's netdev
3380  * @features: Offload features that the stack believes apply
3381  **/
3382 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3383 					     struct net_device *dev,
3384 					     netdev_features_t features)
3385 {
3386 	size_t len;
3387 
3388 	/* No point in doing any of this if neither checksum nor GSO are
3389 	 * being requested for this frame.  We can rule out both by just
3390 	 * checking for CHECKSUM_PARTIAL
3391 	 */
3392 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3393 		return features;
3394 
3395 	/* We cannot support GSO if the MSS is going to be less than
3396 	 * 64 bytes.  If it is then we need to drop support for GSO.
3397 	 */
3398 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3399 		features &= ~NETIF_F_GSO_MASK;
3400 
3401 	/* MACLEN can support at most 63 words */
3402 	len = skb_network_header(skb) - skb->data;
3403 	if (len & ~(63 * 2))
3404 		goto out_err;
3405 
3406 	/* IPLEN and EIPLEN can support at most 127 dwords */
3407 	len = skb_transport_header(skb) - skb_network_header(skb);
3408 	if (len & ~(127 * 4))
3409 		goto out_err;
3410 
3411 	if (skb->encapsulation) {
3412 		/* L4TUNLEN can support 127 words */
3413 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3414 		if (len & ~(127 * 2))
3415 			goto out_err;
3416 
3417 		/* IPLEN can support at most 127 dwords */
3418 		len = skb_inner_transport_header(skb) -
3419 		      skb_inner_network_header(skb);
3420 		if (len & ~(127 * 4))
3421 			goto out_err;
3422 	}
3423 
3424 	/* No need to validate L4LEN as TCP is the only protocol with a
3425 	 * a flexible value and we support all possible values supported
3426 	 * by TCP, which is at most 15 dwords
3427 	 */
3428 
3429 	return features;
3430 out_err:
3431 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3432 }
3433 
3434 /**
3435  * iavf_fix_features - fix up the netdev feature bits
3436  * @netdev: our net device
3437  * @features: desired feature bits
3438  *
3439  * Returns fixed-up features bits
3440  **/
3441 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3442 					   netdev_features_t features)
3443 {
3444 	struct iavf_adapter *adapter = netdev_priv(netdev);
3445 
3446 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3447 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3448 			      NETIF_F_HW_VLAN_CTAG_RX |
3449 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3450 
3451 	return features;
3452 }
3453 
3454 static const struct net_device_ops iavf_netdev_ops = {
3455 	.ndo_open		= iavf_open,
3456 	.ndo_stop		= iavf_close,
3457 	.ndo_start_xmit		= iavf_xmit_frame,
3458 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3459 	.ndo_validate_addr	= eth_validate_addr,
3460 	.ndo_set_mac_address	= iavf_set_mac,
3461 	.ndo_change_mtu		= iavf_change_mtu,
3462 	.ndo_tx_timeout		= iavf_tx_timeout,
3463 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3464 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3465 	.ndo_features_check	= iavf_features_check,
3466 	.ndo_fix_features	= iavf_fix_features,
3467 	.ndo_set_features	= iavf_set_features,
3468 	.ndo_setup_tc		= iavf_setup_tc,
3469 };
3470 
3471 /**
3472  * iavf_check_reset_complete - check that VF reset is complete
3473  * @hw: pointer to hw struct
3474  *
3475  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3476  **/
3477 static int iavf_check_reset_complete(struct iavf_hw *hw)
3478 {
3479 	u32 rstat;
3480 	int i;
3481 
3482 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3483 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3484 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3485 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3486 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3487 			return 0;
3488 		usleep_range(10, 20);
3489 	}
3490 	return -EBUSY;
3491 }
3492 
3493 /**
3494  * iavf_process_config - Process the config information we got from the PF
3495  * @adapter: board private structure
3496  *
3497  * Verify that we have a valid config struct, and set up our netdev features
3498  * and our VSI struct.
3499  **/
3500 int iavf_process_config(struct iavf_adapter *adapter)
3501 {
3502 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3503 	int i, num_req_queues = adapter->num_req_queues;
3504 	struct net_device *netdev = adapter->netdev;
3505 	struct iavf_vsi *vsi = &adapter->vsi;
3506 	netdev_features_t hw_enc_features;
3507 	netdev_features_t hw_features;
3508 
3509 	/* got VF config message back from PF, now we can parse it */
3510 	for (i = 0; i < vfres->num_vsis; i++) {
3511 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3512 			adapter->vsi_res = &vfres->vsi_res[i];
3513 	}
3514 	if (!adapter->vsi_res) {
3515 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3516 		return -ENODEV;
3517 	}
3518 
3519 	if (num_req_queues &&
3520 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3521 		/* Problem.  The PF gave us fewer queues than what we had
3522 		 * negotiated in our request.  Need a reset to see if we can't
3523 		 * get back to a working state.
3524 		 */
3525 		dev_err(&adapter->pdev->dev,
3526 			"Requested %d queues, but PF only gave us %d.\n",
3527 			num_req_queues,
3528 			adapter->vsi_res->num_queue_pairs);
3529 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3530 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3531 		iavf_schedule_reset(adapter);
3532 		return -ENODEV;
3533 	}
3534 	adapter->num_req_queues = 0;
3535 
3536 	hw_enc_features = NETIF_F_SG			|
3537 			  NETIF_F_IP_CSUM		|
3538 			  NETIF_F_IPV6_CSUM		|
3539 			  NETIF_F_HIGHDMA		|
3540 			  NETIF_F_SOFT_FEATURES	|
3541 			  NETIF_F_TSO			|
3542 			  NETIF_F_TSO_ECN		|
3543 			  NETIF_F_TSO6			|
3544 			  NETIF_F_SCTP_CRC		|
3545 			  NETIF_F_RXHASH		|
3546 			  NETIF_F_RXCSUM		|
3547 			  0;
3548 
3549 	/* advertise to stack only if offloads for encapsulated packets is
3550 	 * supported
3551 	 */
3552 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3553 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3554 				   NETIF_F_GSO_GRE		|
3555 				   NETIF_F_GSO_GRE_CSUM		|
3556 				   NETIF_F_GSO_IPXIP4		|
3557 				   NETIF_F_GSO_IPXIP6		|
3558 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3559 				   NETIF_F_GSO_PARTIAL		|
3560 				   0;
3561 
3562 		if (!(vfres->vf_cap_flags &
3563 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3564 			netdev->gso_partial_features |=
3565 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3566 
3567 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3568 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3569 		netdev->hw_enc_features |= hw_enc_features;
3570 	}
3571 	/* record features VLANs can make use of */
3572 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3573 
3574 	/* Write features and hw_features separately to avoid polluting
3575 	 * with, or dropping, features that are set when we registered.
3576 	 */
3577 	hw_features = hw_enc_features;
3578 
3579 	/* Enable VLAN features if supported */
3580 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3581 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3582 				NETIF_F_HW_VLAN_CTAG_RX);
3583 	/* Enable cloud filter if ADQ is supported */
3584 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3585 		hw_features |= NETIF_F_HW_TC;
3586 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3587 		hw_features |= NETIF_F_GSO_UDP_L4;
3588 
3589 	netdev->hw_features |= hw_features;
3590 
3591 	netdev->features |= hw_features;
3592 
3593 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3594 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3595 
3596 	netdev->priv_flags |= IFF_UNICAST_FLT;
3597 
3598 	/* Do not turn on offloads when they are requested to be turned off.
3599 	 * TSO needs minimum 576 bytes to work correctly.
3600 	 */
3601 	if (netdev->wanted_features) {
3602 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3603 		    netdev->mtu < 576)
3604 			netdev->features &= ~NETIF_F_TSO;
3605 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3606 		    netdev->mtu < 576)
3607 			netdev->features &= ~NETIF_F_TSO6;
3608 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3609 			netdev->features &= ~NETIF_F_TSO_ECN;
3610 		if (!(netdev->wanted_features & NETIF_F_GRO))
3611 			netdev->features &= ~NETIF_F_GRO;
3612 		if (!(netdev->wanted_features & NETIF_F_GSO))
3613 			netdev->features &= ~NETIF_F_GSO;
3614 	}
3615 
3616 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3617 
3618 	adapter->vsi.back = adapter;
3619 	adapter->vsi.base_vector = 1;
3620 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3621 	vsi->netdev = adapter->netdev;
3622 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3623 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3624 		adapter->rss_key_size = vfres->rss_key_size;
3625 		adapter->rss_lut_size = vfres->rss_lut_size;
3626 	} else {
3627 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3628 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3629 	}
3630 
3631 	return 0;
3632 }
3633 
3634 /**
3635  * iavf_init_task - worker thread to perform delayed initialization
3636  * @work: pointer to work_struct containing our data
3637  *
3638  * This task completes the work that was begun in probe. Due to the nature
3639  * of VF-PF communications, we may need to wait tens of milliseconds to get
3640  * responses back from the PF. Rather than busy-wait in probe and bog down the
3641  * whole system, we'll do it in a task so we can sleep.
3642  * This task only runs during driver init. Once we've established
3643  * communications with the PF driver and set up our netdev, the watchdog
3644  * takes over.
3645  **/
3646 static void iavf_init_task(struct work_struct *work)
3647 {
3648 	struct iavf_adapter *adapter = container_of(work,
3649 						    struct iavf_adapter,
3650 						    init_task.work);
3651 	struct iavf_hw *hw = &adapter->hw;
3652 
3653 	if (iavf_lock_timeout(&adapter->crit_lock, 5000)) {
3654 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3655 		return;
3656 	}
3657 	switch (adapter->state) {
3658 	case __IAVF_STARTUP:
3659 		if (iavf_startup(adapter) < 0)
3660 			goto init_failed;
3661 		break;
3662 	case __IAVF_INIT_VERSION_CHECK:
3663 		if (iavf_init_version_check(adapter) < 0)
3664 			goto init_failed;
3665 		break;
3666 	case __IAVF_INIT_GET_RESOURCES:
3667 		if (iavf_init_get_resources(adapter) < 0)
3668 			goto init_failed;
3669 		goto out;
3670 	default:
3671 		goto init_failed;
3672 	}
3673 
3674 	queue_delayed_work(iavf_wq, &adapter->init_task,
3675 			   msecs_to_jiffies(30));
3676 	goto out;
3677 init_failed:
3678 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3679 		dev_err(&adapter->pdev->dev,
3680 			"Failed to communicate with PF; waiting before retry\n");
3681 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3682 		iavf_shutdown_adminq(hw);
3683 		adapter->state = __IAVF_STARTUP;
3684 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3685 		goto out;
3686 	}
3687 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3688 out:
3689 	mutex_unlock(&adapter->crit_lock);
3690 }
3691 
3692 /**
3693  * iavf_shutdown - Shutdown the device in preparation for a reboot
3694  * @pdev: pci device structure
3695  **/
3696 static void iavf_shutdown(struct pci_dev *pdev)
3697 {
3698 	struct net_device *netdev = pci_get_drvdata(pdev);
3699 	struct iavf_adapter *adapter = netdev_priv(netdev);
3700 
3701 	netif_device_detach(netdev);
3702 
3703 	if (netif_running(netdev))
3704 		iavf_close(netdev);
3705 
3706 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3707 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3708 	/* Prevent the watchdog from running. */
3709 	adapter->state = __IAVF_REMOVE;
3710 	adapter->aq_required = 0;
3711 	mutex_unlock(&adapter->crit_lock);
3712 
3713 #ifdef CONFIG_PM
3714 	pci_save_state(pdev);
3715 
3716 #endif
3717 	pci_disable_device(pdev);
3718 }
3719 
3720 /**
3721  * iavf_probe - Device Initialization Routine
3722  * @pdev: PCI device information struct
3723  * @ent: entry in iavf_pci_tbl
3724  *
3725  * Returns 0 on success, negative on failure
3726  *
3727  * iavf_probe initializes an adapter identified by a pci_dev structure.
3728  * The OS initialization, configuring of the adapter private structure,
3729  * and a hardware reset occur.
3730  **/
3731 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3732 {
3733 	struct net_device *netdev;
3734 	struct iavf_adapter *adapter = NULL;
3735 	struct iavf_hw *hw = NULL;
3736 	int err;
3737 
3738 	err = pci_enable_device(pdev);
3739 	if (err)
3740 		return err;
3741 
3742 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3743 	if (err) {
3744 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3745 		if (err) {
3746 			dev_err(&pdev->dev,
3747 				"DMA configuration failed: 0x%x\n", err);
3748 			goto err_dma;
3749 		}
3750 	}
3751 
3752 	err = pci_request_regions(pdev, iavf_driver_name);
3753 	if (err) {
3754 		dev_err(&pdev->dev,
3755 			"pci_request_regions failed 0x%x\n", err);
3756 		goto err_pci_reg;
3757 	}
3758 
3759 	pci_enable_pcie_error_reporting(pdev);
3760 
3761 	pci_set_master(pdev);
3762 
3763 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3764 				   IAVF_MAX_REQ_QUEUES);
3765 	if (!netdev) {
3766 		err = -ENOMEM;
3767 		goto err_alloc_etherdev;
3768 	}
3769 
3770 	SET_NETDEV_DEV(netdev, &pdev->dev);
3771 
3772 	pci_set_drvdata(pdev, netdev);
3773 	adapter = netdev_priv(netdev);
3774 
3775 	adapter->netdev = netdev;
3776 	adapter->pdev = pdev;
3777 
3778 	hw = &adapter->hw;
3779 	hw->back = adapter;
3780 
3781 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3782 	adapter->state = __IAVF_STARTUP;
3783 
3784 	/* Call save state here because it relies on the adapter struct. */
3785 	pci_save_state(pdev);
3786 
3787 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3788 			      pci_resource_len(pdev, 0));
3789 	if (!hw->hw_addr) {
3790 		err = -EIO;
3791 		goto err_ioremap;
3792 	}
3793 	hw->vendor_id = pdev->vendor;
3794 	hw->device_id = pdev->device;
3795 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3796 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3797 	hw->subsystem_device_id = pdev->subsystem_device;
3798 	hw->bus.device = PCI_SLOT(pdev->devfn);
3799 	hw->bus.func = PCI_FUNC(pdev->devfn);
3800 	hw->bus.bus_id = pdev->bus->number;
3801 
3802 	/* set up the locks for the AQ, do this only once in probe
3803 	 * and destroy them only once in remove
3804 	 */
3805 	mutex_init(&adapter->crit_lock);
3806 	mutex_init(&adapter->client_lock);
3807 	mutex_init(&adapter->remove_lock);
3808 	mutex_init(&hw->aq.asq_mutex);
3809 	mutex_init(&hw->aq.arq_mutex);
3810 
3811 	spin_lock_init(&adapter->mac_vlan_list_lock);
3812 	spin_lock_init(&adapter->cloud_filter_list_lock);
3813 	spin_lock_init(&adapter->fdir_fltr_lock);
3814 	spin_lock_init(&adapter->adv_rss_lock);
3815 
3816 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3817 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3818 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3819 	INIT_LIST_HEAD(&adapter->fdir_list_head);
3820 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3821 
3822 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3823 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3824 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3825 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3826 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3827 	queue_delayed_work(iavf_wq, &adapter->init_task,
3828 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3829 
3830 	/* Setup the wait queue for indicating transition to down status */
3831 	init_waitqueue_head(&adapter->down_waitqueue);
3832 
3833 	return 0;
3834 
3835 err_ioremap:
3836 	free_netdev(netdev);
3837 err_alloc_etherdev:
3838 	pci_disable_pcie_error_reporting(pdev);
3839 	pci_release_regions(pdev);
3840 err_pci_reg:
3841 err_dma:
3842 	pci_disable_device(pdev);
3843 	return err;
3844 }
3845 
3846 /**
3847  * iavf_suspend - Power management suspend routine
3848  * @dev_d: device info pointer
3849  *
3850  * Called when the system (VM) is entering sleep/suspend.
3851  **/
3852 static int __maybe_unused iavf_suspend(struct device *dev_d)
3853 {
3854 	struct net_device *netdev = dev_get_drvdata(dev_d);
3855 	struct iavf_adapter *adapter = netdev_priv(netdev);
3856 
3857 	netif_device_detach(netdev);
3858 
3859 	while (!mutex_trylock(&adapter->crit_lock))
3860 		usleep_range(500, 1000);
3861 
3862 	if (netif_running(netdev)) {
3863 		rtnl_lock();
3864 		iavf_down(adapter);
3865 		rtnl_unlock();
3866 	}
3867 	iavf_free_misc_irq(adapter);
3868 	iavf_reset_interrupt_capability(adapter);
3869 
3870 	mutex_unlock(&adapter->crit_lock);
3871 
3872 	return 0;
3873 }
3874 
3875 /**
3876  * iavf_resume - Power management resume routine
3877  * @dev_d: device info pointer
3878  *
3879  * Called when the system (VM) is resumed from sleep/suspend.
3880  **/
3881 static int __maybe_unused iavf_resume(struct device *dev_d)
3882 {
3883 	struct pci_dev *pdev = to_pci_dev(dev_d);
3884 	struct net_device *netdev = pci_get_drvdata(pdev);
3885 	struct iavf_adapter *adapter = netdev_priv(netdev);
3886 	u32 err;
3887 
3888 	pci_set_master(pdev);
3889 
3890 	rtnl_lock();
3891 	err = iavf_set_interrupt_capability(adapter);
3892 	if (err) {
3893 		rtnl_unlock();
3894 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3895 		return err;
3896 	}
3897 	err = iavf_request_misc_irq(adapter);
3898 	rtnl_unlock();
3899 	if (err) {
3900 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3901 		return err;
3902 	}
3903 
3904 	queue_work(iavf_wq, &adapter->reset_task);
3905 
3906 	netif_device_attach(netdev);
3907 
3908 	return err;
3909 }
3910 
3911 /**
3912  * iavf_remove - Device Removal Routine
3913  * @pdev: PCI device information struct
3914  *
3915  * iavf_remove is called by the PCI subsystem to alert the driver
3916  * that it should release a PCI device.  The could be caused by a
3917  * Hot-Plug event, or because the driver is going to be removed from
3918  * memory.
3919  **/
3920 static void iavf_remove(struct pci_dev *pdev)
3921 {
3922 	struct net_device *netdev = pci_get_drvdata(pdev);
3923 	struct iavf_adapter *adapter = netdev_priv(netdev);
3924 	struct iavf_fdir_fltr *fdir, *fdirtmp;
3925 	struct iavf_vlan_filter *vlf, *vlftmp;
3926 	struct iavf_adv_rss *rss, *rsstmp;
3927 	struct iavf_mac_filter *f, *ftmp;
3928 	struct iavf_cloud_filter *cf, *cftmp;
3929 	struct iavf_hw *hw = &adapter->hw;
3930 	int err;
3931 	/* Indicate we are in remove and not to run reset_task */
3932 	mutex_lock(&adapter->remove_lock);
3933 	cancel_delayed_work_sync(&adapter->init_task);
3934 	cancel_work_sync(&adapter->reset_task);
3935 	cancel_delayed_work_sync(&adapter->client_task);
3936 	if (adapter->netdev_registered) {
3937 		unregister_netdev(netdev);
3938 		adapter->netdev_registered = false;
3939 	}
3940 	if (CLIENT_ALLOWED(adapter)) {
3941 		err = iavf_lan_del_device(adapter);
3942 		if (err)
3943 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3944 				 err);
3945 	}
3946 
3947 	iavf_request_reset(adapter);
3948 	msleep(50);
3949 	/* If the FW isn't responding, kick it once, but only once. */
3950 	if (!iavf_asq_done(hw)) {
3951 		iavf_request_reset(adapter);
3952 		msleep(50);
3953 	}
3954 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3955 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3956 
3957 	/* Shut down all the garbage mashers on the detention level */
3958 	adapter->state = __IAVF_REMOVE;
3959 	adapter->aq_required = 0;
3960 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3961 	iavf_free_all_tx_resources(adapter);
3962 	iavf_free_all_rx_resources(adapter);
3963 	iavf_misc_irq_disable(adapter);
3964 	iavf_free_misc_irq(adapter);
3965 	iavf_reset_interrupt_capability(adapter);
3966 	iavf_free_q_vectors(adapter);
3967 
3968 	cancel_delayed_work_sync(&adapter->watchdog_task);
3969 
3970 	cancel_work_sync(&adapter->adminq_task);
3971 
3972 	iavf_free_rss(adapter);
3973 
3974 	if (hw->aq.asq.count)
3975 		iavf_shutdown_adminq(hw);
3976 
3977 	/* destroy the locks only once, here */
3978 	mutex_destroy(&hw->aq.arq_mutex);
3979 	mutex_destroy(&hw->aq.asq_mutex);
3980 	mutex_destroy(&adapter->client_lock);
3981 	mutex_unlock(&adapter->crit_lock);
3982 	mutex_destroy(&adapter->crit_lock);
3983 	mutex_unlock(&adapter->remove_lock);
3984 	mutex_destroy(&adapter->remove_lock);
3985 
3986 	iounmap(hw->hw_addr);
3987 	pci_release_regions(pdev);
3988 	iavf_free_queues(adapter);
3989 	kfree(adapter->vf_res);
3990 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3991 	/* If we got removed before an up/down sequence, we've got a filter
3992 	 * hanging out there that we need to get rid of.
3993 	 */
3994 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3995 		list_del(&f->list);
3996 		kfree(f);
3997 	}
3998 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3999 				 list) {
4000 		list_del(&vlf->list);
4001 		kfree(vlf);
4002 	}
4003 
4004 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4005 
4006 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4007 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4008 		list_del(&cf->list);
4009 		kfree(cf);
4010 	}
4011 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4012 
4013 	spin_lock_bh(&adapter->fdir_fltr_lock);
4014 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4015 		list_del(&fdir->list);
4016 		kfree(fdir);
4017 	}
4018 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4019 
4020 	spin_lock_bh(&adapter->adv_rss_lock);
4021 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4022 				 list) {
4023 		list_del(&rss->list);
4024 		kfree(rss);
4025 	}
4026 	spin_unlock_bh(&adapter->adv_rss_lock);
4027 
4028 	free_netdev(netdev);
4029 
4030 	pci_disable_pcie_error_reporting(pdev);
4031 
4032 	pci_disable_device(pdev);
4033 }
4034 
4035 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4036 
4037 static struct pci_driver iavf_driver = {
4038 	.name      = iavf_driver_name,
4039 	.id_table  = iavf_pci_tbl,
4040 	.probe     = iavf_probe,
4041 	.remove    = iavf_remove,
4042 	.driver.pm = &iavf_pm_ops,
4043 	.shutdown  = iavf_shutdown,
4044 };
4045 
4046 /**
4047  * iavf_init_module - Driver Registration Routine
4048  *
4049  * iavf_init_module is the first routine called when the driver is
4050  * loaded. All it does is register with the PCI subsystem.
4051  **/
4052 static int __init iavf_init_module(void)
4053 {
4054 	int ret;
4055 
4056 	pr_info("iavf: %s\n", iavf_driver_string);
4057 
4058 	pr_info("%s\n", iavf_copyright);
4059 
4060 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4061 				  iavf_driver_name);
4062 	if (!iavf_wq) {
4063 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4064 		return -ENOMEM;
4065 	}
4066 	ret = pci_register_driver(&iavf_driver);
4067 	return ret;
4068 }
4069 
4070 module_init(iavf_init_module);
4071 
4072 /**
4073  * iavf_exit_module - Driver Exit Cleanup Routine
4074  *
4075  * iavf_exit_module is called just before the driver is removed
4076  * from memory.
4077  **/
4078 static void __exit iavf_exit_module(void)
4079 {
4080 	pci_unregister_driver(&iavf_driver);
4081 	destroy_workqueue(iavf_wq);
4082 }
4083 
4084 module_exit(iavf_exit_module);
4085 
4086 /* iavf_main.c */
4087