1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 53 int iavf_status_to_errno(enum iavf_status status) 54 { 55 switch (status) { 56 case IAVF_SUCCESS: 57 return 0; 58 case IAVF_ERR_PARAM: 59 case IAVF_ERR_MAC_TYPE: 60 case IAVF_ERR_INVALID_MAC_ADDR: 61 case IAVF_ERR_INVALID_LINK_SETTINGS: 62 case IAVF_ERR_INVALID_PD_ID: 63 case IAVF_ERR_INVALID_QP_ID: 64 case IAVF_ERR_INVALID_CQ_ID: 65 case IAVF_ERR_INVALID_CEQ_ID: 66 case IAVF_ERR_INVALID_AEQ_ID: 67 case IAVF_ERR_INVALID_SIZE: 68 case IAVF_ERR_INVALID_ARP_INDEX: 69 case IAVF_ERR_INVALID_FPM_FUNC_ID: 70 case IAVF_ERR_QP_INVALID_MSG_SIZE: 71 case IAVF_ERR_INVALID_FRAG_COUNT: 72 case IAVF_ERR_INVALID_ALIGNMENT: 73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 74 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 75 case IAVF_ERR_INVALID_VF_ID: 76 case IAVF_ERR_INVALID_HMCFN_ID: 77 case IAVF_ERR_INVALID_PBLE_INDEX: 78 case IAVF_ERR_INVALID_SD_INDEX: 79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 80 case IAVF_ERR_INVALID_SD_TYPE: 81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 84 return -EINVAL; 85 case IAVF_ERR_NVM: 86 case IAVF_ERR_NVM_CHECKSUM: 87 case IAVF_ERR_PHY: 88 case IAVF_ERR_CONFIG: 89 case IAVF_ERR_UNKNOWN_PHY: 90 case IAVF_ERR_LINK_SETUP: 91 case IAVF_ERR_ADAPTER_STOPPED: 92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 93 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 94 case IAVF_ERR_RESET_FAILED: 95 case IAVF_ERR_BAD_PTR: 96 case IAVF_ERR_SWFW_SYNC: 97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 98 case IAVF_ERR_QUEUE_EMPTY: 99 case IAVF_ERR_FLUSHED_QUEUE: 100 case IAVF_ERR_OPCODE_MISMATCH: 101 case IAVF_ERR_CQP_COMPL_ERROR: 102 case IAVF_ERR_BACKING_PAGE_ERROR: 103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 104 case IAVF_ERR_MEMCPY_FAILED: 105 case IAVF_ERR_SRQ_ENABLED: 106 case IAVF_ERR_ADMIN_QUEUE_ERROR: 107 case IAVF_ERR_ADMIN_QUEUE_FULL: 108 case IAVF_ERR_BAD_RDMA_CQE: 109 case IAVF_ERR_NVM_BLANK_MODE: 110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 111 case IAVF_ERR_DIAG_TEST_FAILED: 112 case IAVF_ERR_FIRMWARE_API_VERSION: 113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 114 return -EIO; 115 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 116 return -ENODEV; 117 case IAVF_ERR_NO_AVAILABLE_VSI: 118 case IAVF_ERR_RING_FULL: 119 return -ENOSPC; 120 case IAVF_ERR_NO_MEMORY: 121 return -ENOMEM; 122 case IAVF_ERR_TIMEOUT: 123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 124 return -ETIMEDOUT; 125 case IAVF_ERR_NOT_IMPLEMENTED: 126 case IAVF_NOT_SUPPORTED: 127 return -EOPNOTSUPP; 128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 129 return -EALREADY; 130 case IAVF_ERR_NOT_READY: 131 return -EBUSY; 132 case IAVF_ERR_BUF_TOO_SHORT: 133 return -EMSGSIZE; 134 } 135 136 return -EIO; 137 } 138 139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 140 { 141 switch (v_status) { 142 case VIRTCHNL_STATUS_SUCCESS: 143 return 0; 144 case VIRTCHNL_STATUS_ERR_PARAM: 145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 146 return -EINVAL; 147 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 148 return -ENOMEM; 149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 152 return -EIO; 153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 154 return -EOPNOTSUPP; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * iavf_pdev_to_adapter - go from pci_dev to adapter 162 * @pdev: pci_dev pointer 163 */ 164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 165 { 166 return netdev_priv(pci_get_drvdata(pdev)); 167 } 168 169 /** 170 * iavf_is_reset_in_progress - Check if a reset is in progress 171 * @adapter: board private structure 172 */ 173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 174 { 175 if (adapter->state == __IAVF_RESETTING || 176 adapter->flags & (IAVF_FLAG_RESET_PENDING | 177 IAVF_FLAG_RESET_NEEDED)) 178 return true; 179 180 return false; 181 } 182 183 /** 184 * iavf_wait_for_reset - Wait for reset to finish. 185 * @adapter: board private structure 186 * 187 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 188 */ 189 int iavf_wait_for_reset(struct iavf_adapter *adapter) 190 { 191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 192 !iavf_is_reset_in_progress(adapter), 193 msecs_to_jiffies(5000)); 194 195 /* If ret < 0 then it means wait was interrupted. 196 * If ret == 0 then it means we got a timeout while waiting 197 * for reset to finish. 198 * If ret > 0 it means reset has finished. 199 */ 200 if (ret > 0) 201 return 0; 202 else if (ret < 0) 203 return -EINTR; 204 else 205 return -EBUSY; 206 } 207 208 /** 209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 210 * @hw: pointer to the HW structure 211 * @mem: ptr to mem struct to fill out 212 * @size: size of memory requested 213 * @alignment: what to align the allocation to 214 **/ 215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 216 struct iavf_dma_mem *mem, 217 u64 size, u32 alignment) 218 { 219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 220 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = ALIGN(size, alignment); 225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 226 (dma_addr_t *)&mem->pa, GFP_KERNEL); 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_dma_mem - wrapper for DMA memory freeing 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 239 { 240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 241 242 if (!mem || !mem->va) 243 return IAVF_ERR_PARAM; 244 dma_free_coherent(&adapter->pdev->dev, mem->size, 245 mem->va, (dma_addr_t)mem->pa); 246 return 0; 247 } 248 249 /** 250 * iavf_allocate_virt_mem - virt memory alloc wrapper 251 * @hw: pointer to the HW structure 252 * @mem: ptr to mem struct to fill out 253 * @size: size of memory requested 254 **/ 255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 256 struct iavf_virt_mem *mem, u32 size) 257 { 258 if (!mem) 259 return IAVF_ERR_PARAM; 260 261 mem->size = size; 262 mem->va = kzalloc(size, GFP_KERNEL); 263 264 if (mem->va) 265 return 0; 266 else 267 return IAVF_ERR_NO_MEMORY; 268 } 269 270 /** 271 * iavf_free_virt_mem - virt memory free wrapper 272 * @hw: pointer to the HW structure 273 * @mem: ptr to mem struct to free 274 **/ 275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 276 { 277 kfree(mem->va); 278 } 279 280 /** 281 * iavf_lock_timeout - try to lock mutex but give up after timeout 282 * @lock: mutex that should be locked 283 * @msecs: timeout in msecs 284 * 285 * Returns 0 on success, negative on failure 286 **/ 287 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 288 { 289 unsigned int wait, delay = 10; 290 291 for (wait = 0; wait < msecs; wait += delay) { 292 if (mutex_trylock(lock)) 293 return 0; 294 295 msleep(delay); 296 } 297 298 return -1; 299 } 300 301 /** 302 * iavf_schedule_reset - Set the flags and schedule a reset event 303 * @adapter: board private structure 304 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 305 **/ 306 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 307 { 308 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 309 !(adapter->flags & 310 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 311 adapter->flags |= flags; 312 queue_work(adapter->wq, &adapter->reset_task); 313 } 314 } 315 316 /** 317 * iavf_schedule_aq_request - Set the flags and schedule aq request 318 * @adapter: board private structure 319 * @flags: requested aq flags 320 **/ 321 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 322 { 323 adapter->aq_required |= flags; 324 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 325 } 326 327 /** 328 * iavf_tx_timeout - Respond to a Tx Hang 329 * @netdev: network interface device structure 330 * @txqueue: queue number that is timing out 331 **/ 332 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 333 { 334 struct iavf_adapter *adapter = netdev_priv(netdev); 335 336 adapter->tx_timeout_count++; 337 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 338 } 339 340 /** 341 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 342 * @adapter: board private structure 343 **/ 344 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 345 { 346 struct iavf_hw *hw = &adapter->hw; 347 348 if (!adapter->msix_entries) 349 return; 350 351 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 352 353 iavf_flush(hw); 354 355 synchronize_irq(adapter->msix_entries[0].vector); 356 } 357 358 /** 359 * iavf_misc_irq_enable - Enable default interrupt generation settings 360 * @adapter: board private structure 361 **/ 362 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 363 { 364 struct iavf_hw *hw = &adapter->hw; 365 366 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 367 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 368 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 369 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_disable - Mask off interrupt generation on the NIC 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_disable(struct iavf_adapter *adapter) 378 { 379 int i; 380 struct iavf_hw *hw = &adapter->hw; 381 382 if (!adapter->msix_entries) 383 return; 384 385 for (i = 1; i < adapter->num_msix_vectors; i++) { 386 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 387 synchronize_irq(adapter->msix_entries[i].vector); 388 } 389 iavf_flush(hw); 390 } 391 392 /** 393 * iavf_irq_enable_queues - Enable interrupt for all queues 394 * @adapter: board private structure 395 **/ 396 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 397 { 398 struct iavf_hw *hw = &adapter->hw; 399 int i; 400 401 for (i = 1; i < adapter->num_msix_vectors; i++) { 402 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 403 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 404 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 405 } 406 } 407 408 /** 409 * iavf_irq_enable - Enable default interrupt generation settings 410 * @adapter: board private structure 411 * @flush: boolean value whether to run rd32() 412 **/ 413 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 414 { 415 struct iavf_hw *hw = &adapter->hw; 416 417 iavf_misc_irq_enable(adapter); 418 iavf_irq_enable_queues(adapter); 419 420 if (flush) 421 iavf_flush(hw); 422 } 423 424 /** 425 * iavf_msix_aq - Interrupt handler for vector 0 426 * @irq: interrupt number 427 * @data: pointer to netdev 428 **/ 429 static irqreturn_t iavf_msix_aq(int irq, void *data) 430 { 431 struct net_device *netdev = data; 432 struct iavf_adapter *adapter = netdev_priv(netdev); 433 struct iavf_hw *hw = &adapter->hw; 434 435 /* handle non-queue interrupts, these reads clear the registers */ 436 rd32(hw, IAVF_VFINT_ICR01); 437 rd32(hw, IAVF_VFINT_ICR0_ENA1); 438 439 if (adapter->state != __IAVF_REMOVE) 440 /* schedule work on the private workqueue */ 441 queue_work(adapter->wq, &adapter->adminq_task); 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 448 * @irq: interrupt number 449 * @data: pointer to a q_vector 450 **/ 451 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 452 { 453 struct iavf_q_vector *q_vector = data; 454 455 if (!q_vector->tx.ring && !q_vector->rx.ring) 456 return IRQ_HANDLED; 457 458 napi_schedule_irqoff(&q_vector->napi); 459 460 return IRQ_HANDLED; 461 } 462 463 /** 464 * iavf_map_vector_to_rxq - associate irqs with rx queues 465 * @adapter: board private structure 466 * @v_idx: interrupt number 467 * @r_idx: queue number 468 **/ 469 static void 470 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 471 { 472 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 473 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 474 struct iavf_hw *hw = &adapter->hw; 475 476 rx_ring->q_vector = q_vector; 477 rx_ring->next = q_vector->rx.ring; 478 rx_ring->vsi = &adapter->vsi; 479 q_vector->rx.ring = rx_ring; 480 q_vector->rx.count++; 481 q_vector->rx.next_update = jiffies + 1; 482 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 483 q_vector->ring_mask |= BIT(r_idx); 484 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 485 q_vector->rx.current_itr >> 1); 486 q_vector->rx.current_itr = q_vector->rx.target_itr; 487 } 488 489 /** 490 * iavf_map_vector_to_txq - associate irqs with tx queues 491 * @adapter: board private structure 492 * @v_idx: interrupt number 493 * @t_idx: queue number 494 **/ 495 static void 496 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 497 { 498 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 499 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 500 struct iavf_hw *hw = &adapter->hw; 501 502 tx_ring->q_vector = q_vector; 503 tx_ring->next = q_vector->tx.ring; 504 tx_ring->vsi = &adapter->vsi; 505 q_vector->tx.ring = tx_ring; 506 q_vector->tx.count++; 507 q_vector->tx.next_update = jiffies + 1; 508 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 509 q_vector->num_ringpairs++; 510 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 511 q_vector->tx.target_itr >> 1); 512 q_vector->tx.current_itr = q_vector->tx.target_itr; 513 } 514 515 /** 516 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 517 * @adapter: board private structure to initialize 518 * 519 * This function maps descriptor rings to the queue-specific vectors 520 * we were allotted through the MSI-X enabling code. Ideally, we'd have 521 * one vector per ring/queue, but on a constrained vector budget, we 522 * group the rings as "efficiently" as possible. You would add new 523 * mapping configurations in here. 524 **/ 525 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 526 { 527 int rings_remaining = adapter->num_active_queues; 528 int ridx = 0, vidx = 0; 529 int q_vectors; 530 531 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 532 533 for (; ridx < rings_remaining; ridx++) { 534 iavf_map_vector_to_rxq(adapter, vidx, ridx); 535 iavf_map_vector_to_txq(adapter, vidx, ridx); 536 537 /* In the case where we have more queues than vectors, continue 538 * round-robin on vectors until all queues are mapped. 539 */ 540 if (++vidx >= q_vectors) 541 vidx = 0; 542 } 543 544 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 545 } 546 547 /** 548 * iavf_irq_affinity_notify - Callback for affinity changes 549 * @notify: context as to what irq was changed 550 * @mask: the new affinity mask 551 * 552 * This is a callback function used by the irq_set_affinity_notifier function 553 * so that we may register to receive changes to the irq affinity masks. 554 **/ 555 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 556 const cpumask_t *mask) 557 { 558 struct iavf_q_vector *q_vector = 559 container_of(notify, struct iavf_q_vector, affinity_notify); 560 561 cpumask_copy(&q_vector->affinity_mask, mask); 562 } 563 564 /** 565 * iavf_irq_affinity_release - Callback for affinity notifier release 566 * @ref: internal core kernel usage 567 * 568 * This is a callback function used by the irq_set_affinity_notifier function 569 * to inform the current notification subscriber that they will no longer 570 * receive notifications. 571 **/ 572 static void iavf_irq_affinity_release(struct kref *ref) {} 573 574 /** 575 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 576 * @adapter: board private structure 577 * @basename: device basename 578 * 579 * Allocates MSI-X vectors for tx and rx handling, and requests 580 * interrupts from the kernel. 581 **/ 582 static int 583 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 584 { 585 unsigned int vector, q_vectors; 586 unsigned int rx_int_idx = 0, tx_int_idx = 0; 587 int irq_num, err; 588 int cpu; 589 590 iavf_irq_disable(adapter); 591 /* Decrement for Other and TCP Timer vectors */ 592 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 593 594 for (vector = 0; vector < q_vectors; vector++) { 595 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 596 597 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 598 599 if (q_vector->tx.ring && q_vector->rx.ring) { 600 snprintf(q_vector->name, sizeof(q_vector->name), 601 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 602 tx_int_idx++; 603 } else if (q_vector->rx.ring) { 604 snprintf(q_vector->name, sizeof(q_vector->name), 605 "iavf-%s-rx-%u", basename, rx_int_idx++); 606 } else if (q_vector->tx.ring) { 607 snprintf(q_vector->name, sizeof(q_vector->name), 608 "iavf-%s-tx-%u", basename, tx_int_idx++); 609 } else { 610 /* skip this unused q_vector */ 611 continue; 612 } 613 err = request_irq(irq_num, 614 iavf_msix_clean_rings, 615 0, 616 q_vector->name, 617 q_vector); 618 if (err) { 619 dev_info(&adapter->pdev->dev, 620 "Request_irq failed, error: %d\n", err); 621 goto free_queue_irqs; 622 } 623 /* register for affinity change notifications */ 624 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 625 q_vector->affinity_notify.release = 626 iavf_irq_affinity_release; 627 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 628 /* Spread the IRQ affinity hints across online CPUs. Note that 629 * get_cpu_mask returns a mask with a permanent lifetime so 630 * it's safe to use as a hint for irq_update_affinity_hint. 631 */ 632 cpu = cpumask_local_spread(q_vector->v_idx, -1); 633 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 634 } 635 636 return 0; 637 638 free_queue_irqs: 639 while (vector) { 640 vector--; 641 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 642 irq_set_affinity_notifier(irq_num, NULL); 643 irq_update_affinity_hint(irq_num, NULL); 644 free_irq(irq_num, &adapter->q_vectors[vector]); 645 } 646 return err; 647 } 648 649 /** 650 * iavf_request_misc_irq - Initialize MSI-X interrupts 651 * @adapter: board private structure 652 * 653 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 654 * vector is only for the admin queue, and stays active even when the netdev 655 * is closed. 656 **/ 657 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 658 { 659 struct net_device *netdev = adapter->netdev; 660 int err; 661 662 snprintf(adapter->misc_vector_name, 663 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 664 dev_name(&adapter->pdev->dev)); 665 err = request_irq(adapter->msix_entries[0].vector, 666 &iavf_msix_aq, 0, 667 adapter->misc_vector_name, netdev); 668 if (err) { 669 dev_err(&adapter->pdev->dev, 670 "request_irq for %s failed: %d\n", 671 adapter->misc_vector_name, err); 672 free_irq(adapter->msix_entries[0].vector, netdev); 673 } 674 return err; 675 } 676 677 /** 678 * iavf_free_traffic_irqs - Free MSI-X interrupts 679 * @adapter: board private structure 680 * 681 * Frees all MSI-X vectors other than 0. 682 **/ 683 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 684 { 685 int vector, irq_num, q_vectors; 686 687 if (!adapter->msix_entries) 688 return; 689 690 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 691 692 for (vector = 0; vector < q_vectors; vector++) { 693 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 694 irq_set_affinity_notifier(irq_num, NULL); 695 irq_update_affinity_hint(irq_num, NULL); 696 free_irq(irq_num, &adapter->q_vectors[vector]); 697 } 698 } 699 700 /** 701 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 702 * @adapter: board private structure 703 * 704 * Frees MSI-X vector 0. 705 **/ 706 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 710 if (!adapter->msix_entries) 711 return; 712 713 free_irq(adapter->msix_entries[0].vector, netdev); 714 } 715 716 /** 717 * iavf_configure_tx - Configure Transmit Unit after Reset 718 * @adapter: board private structure 719 * 720 * Configure the Tx unit of the MAC after a reset. 721 **/ 722 static void iavf_configure_tx(struct iavf_adapter *adapter) 723 { 724 struct iavf_hw *hw = &adapter->hw; 725 int i; 726 727 for (i = 0; i < adapter->num_active_queues; i++) 728 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 729 } 730 731 /** 732 * iavf_configure_rx - Configure Receive Unit after Reset 733 * @adapter: board private structure 734 * 735 * Configure the Rx unit of the MAC after a reset. 736 **/ 737 static void iavf_configure_rx(struct iavf_adapter *adapter) 738 { 739 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 740 struct iavf_hw *hw = &adapter->hw; 741 int i; 742 743 /* Legacy Rx will always default to a 2048 buffer size. */ 744 #if (PAGE_SIZE < 8192) 745 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 746 struct net_device *netdev = adapter->netdev; 747 748 /* For jumbo frames on systems with 4K pages we have to use 749 * an order 1 page, so we might as well increase the size 750 * of our Rx buffer to make better use of the available space 751 */ 752 rx_buf_len = IAVF_RXBUFFER_3072; 753 754 /* We use a 1536 buffer size for configurations with 755 * standard Ethernet mtu. On x86 this gives us enough room 756 * for shared info and 192 bytes of padding. 757 */ 758 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 759 (netdev->mtu <= ETH_DATA_LEN)) 760 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 761 } 762 #endif 763 764 for (i = 0; i < adapter->num_active_queues; i++) { 765 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 766 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 767 768 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 769 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 770 else 771 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 772 } 773 } 774 775 /** 776 * iavf_find_vlan - Search filter list for specific vlan filter 777 * @adapter: board private structure 778 * @vlan: vlan tag 779 * 780 * Returns ptr to the filter object or NULL. Must be called while holding the 781 * mac_vlan_list_lock. 782 **/ 783 static struct 784 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 785 struct iavf_vlan vlan) 786 { 787 struct iavf_vlan_filter *f; 788 789 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 790 if (f->vlan.vid == vlan.vid && 791 f->vlan.tpid == vlan.tpid) 792 return f; 793 } 794 795 return NULL; 796 } 797 798 /** 799 * iavf_add_vlan - Add a vlan filter to the list 800 * @adapter: board private structure 801 * @vlan: VLAN tag 802 * 803 * Returns ptr to the filter object or NULL when no memory available. 804 **/ 805 static struct 806 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 807 struct iavf_vlan vlan) 808 { 809 struct iavf_vlan_filter *f = NULL; 810 811 spin_lock_bh(&adapter->mac_vlan_list_lock); 812 813 f = iavf_find_vlan(adapter, vlan); 814 if (!f) { 815 f = kzalloc(sizeof(*f), GFP_ATOMIC); 816 if (!f) 817 goto clearout; 818 819 f->vlan = vlan; 820 821 list_add_tail(&f->list, &adapter->vlan_filter_list); 822 f->state = IAVF_VLAN_ADD; 823 adapter->num_vlan_filters++; 824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 825 } 826 827 clearout: 828 spin_unlock_bh(&adapter->mac_vlan_list_lock); 829 return f; 830 } 831 832 /** 833 * iavf_del_vlan - Remove a vlan filter from the list 834 * @adapter: board private structure 835 * @vlan: VLAN tag 836 **/ 837 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 838 { 839 struct iavf_vlan_filter *f; 840 841 spin_lock_bh(&adapter->mac_vlan_list_lock); 842 843 f = iavf_find_vlan(adapter, vlan); 844 if (f) { 845 f->state = IAVF_VLAN_REMOVE; 846 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 847 } 848 849 spin_unlock_bh(&adapter->mac_vlan_list_lock); 850 } 851 852 /** 853 * iavf_restore_filters 854 * @adapter: board private structure 855 * 856 * Restore existing non MAC filters when VF netdev comes back up 857 **/ 858 static void iavf_restore_filters(struct iavf_adapter *adapter) 859 { 860 struct iavf_vlan_filter *f; 861 862 /* re-add all VLAN filters */ 863 spin_lock_bh(&adapter->mac_vlan_list_lock); 864 865 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 866 if (f->state == IAVF_VLAN_INACTIVE) 867 f->state = IAVF_VLAN_ADD; 868 } 869 870 spin_unlock_bh(&adapter->mac_vlan_list_lock); 871 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 872 } 873 874 /** 875 * iavf_get_num_vlans_added - get number of VLANs added 876 * @adapter: board private structure 877 */ 878 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 879 { 880 return adapter->num_vlan_filters; 881 } 882 883 /** 884 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 885 * @adapter: board private structure 886 * 887 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 888 * do not impose a limit as that maintains current behavior and for 889 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 890 **/ 891 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 892 { 893 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 894 * never been a limit on the VF driver side 895 */ 896 if (VLAN_ALLOWED(adapter)) 897 return VLAN_N_VID; 898 else if (VLAN_V2_ALLOWED(adapter)) 899 return adapter->vlan_v2_caps.filtering.max_filters; 900 901 return 0; 902 } 903 904 /** 905 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 906 * @adapter: board private structure 907 **/ 908 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 909 { 910 if (iavf_get_num_vlans_added(adapter) < 911 iavf_get_max_vlans_allowed(adapter)) 912 return false; 913 914 return true; 915 } 916 917 /** 918 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 919 * @netdev: network device struct 920 * @proto: unused protocol data 921 * @vid: VLAN tag 922 **/ 923 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 924 __always_unused __be16 proto, u16 vid) 925 { 926 struct iavf_adapter *adapter = netdev_priv(netdev); 927 928 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 929 if (!vid) 930 return 0; 931 932 if (!VLAN_FILTERING_ALLOWED(adapter)) 933 return -EIO; 934 935 if (iavf_max_vlans_added(adapter)) { 936 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 937 iavf_get_max_vlans_allowed(adapter)); 938 return -EIO; 939 } 940 941 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 942 return -ENOMEM; 943 944 return 0; 945 } 946 947 /** 948 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 949 * @netdev: network device struct 950 * @proto: unused protocol data 951 * @vid: VLAN tag 952 **/ 953 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 954 __always_unused __be16 proto, u16 vid) 955 { 956 struct iavf_adapter *adapter = netdev_priv(netdev); 957 958 /* We do not track VLAN 0 filter */ 959 if (!vid) 960 return 0; 961 962 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 963 return 0; 964 } 965 966 /** 967 * iavf_find_filter - Search filter list for specific mac filter 968 * @adapter: board private structure 969 * @macaddr: the MAC address 970 * 971 * Returns ptr to the filter object or NULL. Must be called while holding the 972 * mac_vlan_list_lock. 973 **/ 974 static struct 975 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 976 const u8 *macaddr) 977 { 978 struct iavf_mac_filter *f; 979 980 if (!macaddr) 981 return NULL; 982 983 list_for_each_entry(f, &adapter->mac_filter_list, list) { 984 if (ether_addr_equal(macaddr, f->macaddr)) 985 return f; 986 } 987 return NULL; 988 } 989 990 /** 991 * iavf_add_filter - Add a mac filter to the filter list 992 * @adapter: board private structure 993 * @macaddr: the MAC address 994 * 995 * Returns ptr to the filter object or NULL when no memory available. 996 **/ 997 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 998 const u8 *macaddr) 999 { 1000 struct iavf_mac_filter *f; 1001 1002 if (!macaddr) 1003 return NULL; 1004 1005 f = iavf_find_filter(adapter, macaddr); 1006 if (!f) { 1007 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1008 if (!f) 1009 return f; 1010 1011 ether_addr_copy(f->macaddr, macaddr); 1012 1013 list_add_tail(&f->list, &adapter->mac_filter_list); 1014 f->add = true; 1015 f->add_handled = false; 1016 f->is_new_mac = true; 1017 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1018 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1019 } else { 1020 f->remove = false; 1021 } 1022 1023 return f; 1024 } 1025 1026 /** 1027 * iavf_replace_primary_mac - Replace current primary address 1028 * @adapter: board private structure 1029 * @new_mac: new MAC address to be applied 1030 * 1031 * Replace current dev_addr and send request to PF for removal of previous 1032 * primary MAC address filter and addition of new primary MAC filter. 1033 * Return 0 for success, -ENOMEM for failure. 1034 * 1035 * Do not call this with mac_vlan_list_lock! 1036 **/ 1037 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1038 const u8 *new_mac) 1039 { 1040 struct iavf_hw *hw = &adapter->hw; 1041 struct iavf_mac_filter *new_f; 1042 struct iavf_mac_filter *old_f; 1043 1044 spin_lock_bh(&adapter->mac_vlan_list_lock); 1045 1046 new_f = iavf_add_filter(adapter, new_mac); 1047 if (!new_f) { 1048 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1049 return -ENOMEM; 1050 } 1051 1052 old_f = iavf_find_filter(adapter, hw->mac.addr); 1053 if (old_f) { 1054 old_f->is_primary = false; 1055 old_f->remove = true; 1056 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1057 } 1058 /* Always send the request to add if changing primary MAC, 1059 * even if filter is already present on the list 1060 */ 1061 new_f->is_primary = true; 1062 new_f->add = true; 1063 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1064 ether_addr_copy(hw->mac.addr, new_mac); 1065 1066 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1067 1068 /* schedule the watchdog task to immediately process the request */ 1069 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1070 return 0; 1071 } 1072 1073 /** 1074 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1075 * @netdev: network interface device structure 1076 * @macaddr: MAC address to set 1077 * 1078 * Returns true on success, false on failure 1079 */ 1080 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1081 const u8 *macaddr) 1082 { 1083 struct iavf_adapter *adapter = netdev_priv(netdev); 1084 struct iavf_mac_filter *f; 1085 bool ret = false; 1086 1087 spin_lock_bh(&adapter->mac_vlan_list_lock); 1088 1089 f = iavf_find_filter(adapter, macaddr); 1090 1091 if (!f || (!f->add && f->add_handled)) 1092 ret = true; 1093 1094 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1095 1096 return ret; 1097 } 1098 1099 /** 1100 * iavf_set_mac - NDO callback to set port MAC address 1101 * @netdev: network interface device structure 1102 * @p: pointer to an address structure 1103 * 1104 * Returns 0 on success, negative on failure 1105 */ 1106 static int iavf_set_mac(struct net_device *netdev, void *p) 1107 { 1108 struct iavf_adapter *adapter = netdev_priv(netdev); 1109 struct sockaddr *addr = p; 1110 int ret; 1111 1112 if (!is_valid_ether_addr(addr->sa_data)) 1113 return -EADDRNOTAVAIL; 1114 1115 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1116 1117 if (ret) 1118 return ret; 1119 1120 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1121 iavf_is_mac_set_handled(netdev, addr->sa_data), 1122 msecs_to_jiffies(2500)); 1123 1124 /* If ret < 0 then it means wait was interrupted. 1125 * If ret == 0 then it means we got a timeout. 1126 * else it means we got response for set MAC from PF, 1127 * check if netdev MAC was updated to requested MAC, 1128 * if yes then set MAC succeeded otherwise it failed return -EACCES 1129 */ 1130 if (ret < 0) 1131 return ret; 1132 1133 if (!ret) 1134 return -EAGAIN; 1135 1136 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1137 return -EACCES; 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1144 * @netdev: the netdevice 1145 * @addr: address to add 1146 * 1147 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1148 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1149 */ 1150 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1151 { 1152 struct iavf_adapter *adapter = netdev_priv(netdev); 1153 1154 if (iavf_add_filter(adapter, addr)) 1155 return 0; 1156 else 1157 return -ENOMEM; 1158 } 1159 1160 /** 1161 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1162 * @netdev: the netdevice 1163 * @addr: address to add 1164 * 1165 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1166 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1167 */ 1168 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1169 { 1170 struct iavf_adapter *adapter = netdev_priv(netdev); 1171 struct iavf_mac_filter *f; 1172 1173 /* Under some circumstances, we might receive a request to delete 1174 * our own device address from our uc list. Because we store the 1175 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1176 * such requests and not delete our device address from this list. 1177 */ 1178 if (ether_addr_equal(addr, netdev->dev_addr)) 1179 return 0; 1180 1181 f = iavf_find_filter(adapter, addr); 1182 if (f) { 1183 f->remove = true; 1184 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1185 } 1186 return 0; 1187 } 1188 1189 /** 1190 * iavf_set_rx_mode - NDO callback to set the netdev filters 1191 * @netdev: network interface device structure 1192 **/ 1193 static void iavf_set_rx_mode(struct net_device *netdev) 1194 { 1195 struct iavf_adapter *adapter = netdev_priv(netdev); 1196 1197 spin_lock_bh(&adapter->mac_vlan_list_lock); 1198 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1199 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1200 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1201 1202 if (netdev->flags & IFF_PROMISC && 1203 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1204 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1205 else if (!(netdev->flags & IFF_PROMISC) && 1206 adapter->flags & IAVF_FLAG_PROMISC_ON) 1207 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1208 1209 if (netdev->flags & IFF_ALLMULTI && 1210 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1211 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1212 else if (!(netdev->flags & IFF_ALLMULTI) && 1213 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1214 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1215 } 1216 1217 /** 1218 * iavf_napi_enable_all - enable NAPI on all queue vectors 1219 * @adapter: board private structure 1220 **/ 1221 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1222 { 1223 int q_idx; 1224 struct iavf_q_vector *q_vector; 1225 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1226 1227 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1228 struct napi_struct *napi; 1229 1230 q_vector = &adapter->q_vectors[q_idx]; 1231 napi = &q_vector->napi; 1232 napi_enable(napi); 1233 } 1234 } 1235 1236 /** 1237 * iavf_napi_disable_all - disable NAPI on all queue vectors 1238 * @adapter: board private structure 1239 **/ 1240 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1241 { 1242 int q_idx; 1243 struct iavf_q_vector *q_vector; 1244 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1245 1246 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1247 q_vector = &adapter->q_vectors[q_idx]; 1248 napi_disable(&q_vector->napi); 1249 } 1250 } 1251 1252 /** 1253 * iavf_configure - set up transmit and receive data structures 1254 * @adapter: board private structure 1255 **/ 1256 static void iavf_configure(struct iavf_adapter *adapter) 1257 { 1258 struct net_device *netdev = adapter->netdev; 1259 int i; 1260 1261 iavf_set_rx_mode(netdev); 1262 1263 iavf_configure_tx(adapter); 1264 iavf_configure_rx(adapter); 1265 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1266 1267 for (i = 0; i < adapter->num_active_queues; i++) { 1268 struct iavf_ring *ring = &adapter->rx_rings[i]; 1269 1270 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1271 } 1272 } 1273 1274 /** 1275 * iavf_up_complete - Finish the last steps of bringing up a connection 1276 * @adapter: board private structure 1277 * 1278 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1279 **/ 1280 static void iavf_up_complete(struct iavf_adapter *adapter) 1281 { 1282 iavf_change_state(adapter, __IAVF_RUNNING); 1283 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1284 1285 iavf_napi_enable_all(adapter); 1286 1287 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1288 if (CLIENT_ENABLED(adapter)) 1289 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1290 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1291 } 1292 1293 /** 1294 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1295 * yet and mark other to be removed. 1296 * @adapter: board private structure 1297 **/ 1298 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1299 { 1300 struct iavf_vlan_filter *vlf, *vlftmp; 1301 struct iavf_mac_filter *f, *ftmp; 1302 1303 spin_lock_bh(&adapter->mac_vlan_list_lock); 1304 /* clear the sync flag on all filters */ 1305 __dev_uc_unsync(adapter->netdev, NULL); 1306 __dev_mc_unsync(adapter->netdev, NULL); 1307 1308 /* remove all MAC filters */ 1309 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1310 list) { 1311 if (f->add) { 1312 list_del(&f->list); 1313 kfree(f); 1314 } else { 1315 f->remove = true; 1316 } 1317 } 1318 1319 /* disable all VLAN filters */ 1320 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1321 list) 1322 vlf->state = IAVF_VLAN_DISABLE; 1323 1324 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1325 } 1326 1327 /** 1328 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1329 * mark other to be removed. 1330 * @adapter: board private structure 1331 **/ 1332 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1333 { 1334 struct iavf_cloud_filter *cf, *cftmp; 1335 1336 /* remove all cloud filters */ 1337 spin_lock_bh(&adapter->cloud_filter_list_lock); 1338 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1339 list) { 1340 if (cf->add) { 1341 list_del(&cf->list); 1342 kfree(cf); 1343 adapter->num_cloud_filters--; 1344 } else { 1345 cf->del = true; 1346 } 1347 } 1348 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1349 } 1350 1351 /** 1352 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1353 * other to be removed. 1354 * @adapter: board private structure 1355 **/ 1356 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1357 { 1358 struct iavf_fdir_fltr *fdir, *fdirtmp; 1359 1360 /* remove all Flow Director filters */ 1361 spin_lock_bh(&adapter->fdir_fltr_lock); 1362 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1363 list) { 1364 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1365 list_del(&fdir->list); 1366 kfree(fdir); 1367 adapter->fdir_active_fltr--; 1368 } else { 1369 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1370 } 1371 } 1372 spin_unlock_bh(&adapter->fdir_fltr_lock); 1373 } 1374 1375 /** 1376 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1377 * other to be removed. 1378 * @adapter: board private structure 1379 **/ 1380 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1381 { 1382 struct iavf_adv_rss *rss, *rsstmp; 1383 1384 /* remove all advance RSS configuration */ 1385 spin_lock_bh(&adapter->adv_rss_lock); 1386 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1387 list) { 1388 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1389 list_del(&rss->list); 1390 kfree(rss); 1391 } else { 1392 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1393 } 1394 } 1395 spin_unlock_bh(&adapter->adv_rss_lock); 1396 } 1397 1398 /** 1399 * iavf_down - Shutdown the connection processing 1400 * @adapter: board private structure 1401 * 1402 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1403 **/ 1404 void iavf_down(struct iavf_adapter *adapter) 1405 { 1406 struct net_device *netdev = adapter->netdev; 1407 1408 if (adapter->state <= __IAVF_DOWN_PENDING) 1409 return; 1410 1411 netif_carrier_off(netdev); 1412 netif_tx_disable(netdev); 1413 adapter->link_up = false; 1414 iavf_napi_disable_all(adapter); 1415 iavf_irq_disable(adapter); 1416 1417 iavf_clear_mac_vlan_filters(adapter); 1418 iavf_clear_cloud_filters(adapter); 1419 iavf_clear_fdir_filters(adapter); 1420 iavf_clear_adv_rss_conf(adapter); 1421 1422 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1423 !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) { 1424 /* cancel any current operation */ 1425 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1426 /* Schedule operations to close down the HW. Don't wait 1427 * here for this to complete. The watchdog is still running 1428 * and it will take care of this. 1429 */ 1430 if (!list_empty(&adapter->mac_filter_list)) 1431 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1432 if (!list_empty(&adapter->vlan_filter_list)) 1433 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1434 if (!list_empty(&adapter->cloud_filter_list)) 1435 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1436 if (!list_empty(&adapter->fdir_list_head)) 1437 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1438 if (!list_empty(&adapter->adv_rss_list_head)) 1439 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1440 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1441 } 1442 1443 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1444 } 1445 1446 /** 1447 * iavf_acquire_msix_vectors - Setup the MSIX capability 1448 * @adapter: board private structure 1449 * @vectors: number of vectors to request 1450 * 1451 * Work with the OS to set up the MSIX vectors needed. 1452 * 1453 * Returns 0 on success, negative on failure 1454 **/ 1455 static int 1456 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1457 { 1458 int err, vector_threshold; 1459 1460 /* We'll want at least 3 (vector_threshold): 1461 * 0) Other (Admin Queue and link, mostly) 1462 * 1) TxQ[0] Cleanup 1463 * 2) RxQ[0] Cleanup 1464 */ 1465 vector_threshold = MIN_MSIX_COUNT; 1466 1467 /* The more we get, the more we will assign to Tx/Rx Cleanup 1468 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1469 * Right now, we simply care about how many we'll get; we'll 1470 * set them up later while requesting irq's. 1471 */ 1472 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1473 vector_threshold, vectors); 1474 if (err < 0) { 1475 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1476 kfree(adapter->msix_entries); 1477 adapter->msix_entries = NULL; 1478 return err; 1479 } 1480 1481 /* Adjust for only the vectors we'll use, which is minimum 1482 * of max_msix_q_vectors + NONQ_VECS, or the number of 1483 * vectors we were allocated. 1484 */ 1485 adapter->num_msix_vectors = err; 1486 return 0; 1487 } 1488 1489 /** 1490 * iavf_free_queues - Free memory for all rings 1491 * @adapter: board private structure to initialize 1492 * 1493 * Free all of the memory associated with queue pairs. 1494 **/ 1495 static void iavf_free_queues(struct iavf_adapter *adapter) 1496 { 1497 if (!adapter->vsi_res) 1498 return; 1499 adapter->num_active_queues = 0; 1500 kfree(adapter->tx_rings); 1501 adapter->tx_rings = NULL; 1502 kfree(adapter->rx_rings); 1503 adapter->rx_rings = NULL; 1504 } 1505 1506 /** 1507 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1508 * @adapter: board private structure 1509 * 1510 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1511 * stripped in certain descriptor fields. Instead of checking the offload 1512 * capability bits in the hot path, cache the location the ring specific 1513 * flags. 1514 */ 1515 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1516 { 1517 int i; 1518 1519 for (i = 0; i < adapter->num_active_queues; i++) { 1520 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1521 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1522 1523 /* prevent multiple L2TAG bits being set after VFR */ 1524 tx_ring->flags &= 1525 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1526 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1527 rx_ring->flags &= 1528 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1530 1531 if (VLAN_ALLOWED(adapter)) { 1532 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1533 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 } else if (VLAN_V2_ALLOWED(adapter)) { 1535 struct virtchnl_vlan_supported_caps *stripping_support; 1536 struct virtchnl_vlan_supported_caps *insertion_support; 1537 1538 stripping_support = 1539 &adapter->vlan_v2_caps.offloads.stripping_support; 1540 insertion_support = 1541 &adapter->vlan_v2_caps.offloads.insertion_support; 1542 1543 if (stripping_support->outer) { 1544 if (stripping_support->outer & 1545 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1546 rx_ring->flags |= 1547 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1548 else if (stripping_support->outer & 1549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1550 rx_ring->flags |= 1551 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1552 } else if (stripping_support->inner) { 1553 if (stripping_support->inner & 1554 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1555 rx_ring->flags |= 1556 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1557 else if (stripping_support->inner & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1559 rx_ring->flags |= 1560 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1561 } 1562 1563 if (insertion_support->outer) { 1564 if (insertion_support->outer & 1565 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1566 tx_ring->flags |= 1567 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1568 else if (insertion_support->outer & 1569 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1570 tx_ring->flags |= 1571 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1572 } else if (insertion_support->inner) { 1573 if (insertion_support->inner & 1574 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1575 tx_ring->flags |= 1576 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1577 else if (insertion_support->inner & 1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1579 tx_ring->flags |= 1580 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1581 } 1582 } 1583 } 1584 } 1585 1586 /** 1587 * iavf_alloc_queues - Allocate memory for all rings 1588 * @adapter: board private structure to initialize 1589 * 1590 * We allocate one ring per queue at run-time since we don't know the 1591 * number of queues at compile-time. The polling_netdev array is 1592 * intended for Multiqueue, but should work fine with a single queue. 1593 **/ 1594 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1595 { 1596 int i, num_active_queues; 1597 1598 /* If we're in reset reallocating queues we don't actually know yet for 1599 * certain the PF gave us the number of queues we asked for but we'll 1600 * assume it did. Once basic reset is finished we'll confirm once we 1601 * start negotiating config with PF. 1602 */ 1603 if (adapter->num_req_queues) 1604 num_active_queues = adapter->num_req_queues; 1605 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1606 adapter->num_tc) 1607 num_active_queues = adapter->ch_config.total_qps; 1608 else 1609 num_active_queues = min_t(int, 1610 adapter->vsi_res->num_queue_pairs, 1611 (int)(num_online_cpus())); 1612 1613 1614 adapter->tx_rings = kcalloc(num_active_queues, 1615 sizeof(struct iavf_ring), GFP_KERNEL); 1616 if (!adapter->tx_rings) 1617 goto err_out; 1618 adapter->rx_rings = kcalloc(num_active_queues, 1619 sizeof(struct iavf_ring), GFP_KERNEL); 1620 if (!adapter->rx_rings) 1621 goto err_out; 1622 1623 for (i = 0; i < num_active_queues; i++) { 1624 struct iavf_ring *tx_ring; 1625 struct iavf_ring *rx_ring; 1626 1627 tx_ring = &adapter->tx_rings[i]; 1628 1629 tx_ring->queue_index = i; 1630 tx_ring->netdev = adapter->netdev; 1631 tx_ring->dev = &adapter->pdev->dev; 1632 tx_ring->count = adapter->tx_desc_count; 1633 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1634 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1635 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1636 1637 rx_ring = &adapter->rx_rings[i]; 1638 rx_ring->queue_index = i; 1639 rx_ring->netdev = adapter->netdev; 1640 rx_ring->dev = &adapter->pdev->dev; 1641 rx_ring->count = adapter->rx_desc_count; 1642 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1643 } 1644 1645 adapter->num_active_queues = num_active_queues; 1646 1647 iavf_set_queue_vlan_tag_loc(adapter); 1648 1649 return 0; 1650 1651 err_out: 1652 iavf_free_queues(adapter); 1653 return -ENOMEM; 1654 } 1655 1656 /** 1657 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1658 * @adapter: board private structure to initialize 1659 * 1660 * Attempt to configure the interrupts using the best available 1661 * capabilities of the hardware and the kernel. 1662 **/ 1663 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1664 { 1665 int vector, v_budget; 1666 int pairs = 0; 1667 int err = 0; 1668 1669 if (!adapter->vsi_res) { 1670 err = -EIO; 1671 goto out; 1672 } 1673 pairs = adapter->num_active_queues; 1674 1675 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1676 * us much good if we have more vectors than CPUs. However, we already 1677 * limit the total number of queues by the number of CPUs so we do not 1678 * need any further limiting here. 1679 */ 1680 v_budget = min_t(int, pairs + NONQ_VECS, 1681 (int)adapter->vf_res->max_vectors); 1682 1683 adapter->msix_entries = kcalloc(v_budget, 1684 sizeof(struct msix_entry), GFP_KERNEL); 1685 if (!adapter->msix_entries) { 1686 err = -ENOMEM; 1687 goto out; 1688 } 1689 1690 for (vector = 0; vector < v_budget; vector++) 1691 adapter->msix_entries[vector].entry = vector; 1692 1693 err = iavf_acquire_msix_vectors(adapter, v_budget); 1694 if (!err) 1695 iavf_schedule_finish_config(adapter); 1696 1697 out: 1698 return err; 1699 } 1700 1701 /** 1702 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1703 * @adapter: board private structure 1704 * 1705 * Return 0 on success, negative on failure 1706 **/ 1707 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1708 { 1709 struct iavf_aqc_get_set_rss_key_data *rss_key = 1710 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1711 struct iavf_hw *hw = &adapter->hw; 1712 enum iavf_status status; 1713 1714 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1715 /* bail because we already have a command pending */ 1716 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1717 adapter->current_op); 1718 return -EBUSY; 1719 } 1720 1721 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1722 if (status) { 1723 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1724 iavf_stat_str(hw, status), 1725 iavf_aq_str(hw, hw->aq.asq_last_status)); 1726 return iavf_status_to_errno(status); 1727 1728 } 1729 1730 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1731 adapter->rss_lut, adapter->rss_lut_size); 1732 if (status) { 1733 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1734 iavf_stat_str(hw, status), 1735 iavf_aq_str(hw, hw->aq.asq_last_status)); 1736 return iavf_status_to_errno(status); 1737 } 1738 1739 return 0; 1740 1741 } 1742 1743 /** 1744 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1745 * @adapter: board private structure 1746 * 1747 * Returns 0 on success, negative on failure 1748 **/ 1749 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1750 { 1751 struct iavf_hw *hw = &adapter->hw; 1752 u32 *dw; 1753 u16 i; 1754 1755 dw = (u32 *)adapter->rss_key; 1756 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1757 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1758 1759 dw = (u32 *)adapter->rss_lut; 1760 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1761 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1762 1763 iavf_flush(hw); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * iavf_config_rss - Configure RSS keys and lut 1770 * @adapter: board private structure 1771 * 1772 * Returns 0 on success, negative on failure 1773 **/ 1774 int iavf_config_rss(struct iavf_adapter *adapter) 1775 { 1776 1777 if (RSS_PF(adapter)) { 1778 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1779 IAVF_FLAG_AQ_SET_RSS_KEY; 1780 return 0; 1781 } else if (RSS_AQ(adapter)) { 1782 return iavf_config_rss_aq(adapter); 1783 } else { 1784 return iavf_config_rss_reg(adapter); 1785 } 1786 } 1787 1788 /** 1789 * iavf_fill_rss_lut - Fill the lut with default values 1790 * @adapter: board private structure 1791 **/ 1792 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1793 { 1794 u16 i; 1795 1796 for (i = 0; i < adapter->rss_lut_size; i++) 1797 adapter->rss_lut[i] = i % adapter->num_active_queues; 1798 } 1799 1800 /** 1801 * iavf_init_rss - Prepare for RSS 1802 * @adapter: board private structure 1803 * 1804 * Return 0 on success, negative on failure 1805 **/ 1806 static int iavf_init_rss(struct iavf_adapter *adapter) 1807 { 1808 struct iavf_hw *hw = &adapter->hw; 1809 1810 if (!RSS_PF(adapter)) { 1811 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1812 if (adapter->vf_res->vf_cap_flags & 1813 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1814 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1815 else 1816 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1817 1818 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1819 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1820 } 1821 1822 iavf_fill_rss_lut(adapter); 1823 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1824 1825 return iavf_config_rss(adapter); 1826 } 1827 1828 /** 1829 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1830 * @adapter: board private structure to initialize 1831 * 1832 * We allocate one q_vector per queue interrupt. If allocation fails we 1833 * return -ENOMEM. 1834 **/ 1835 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1836 { 1837 int q_idx = 0, num_q_vectors; 1838 struct iavf_q_vector *q_vector; 1839 1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1841 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1842 GFP_KERNEL); 1843 if (!adapter->q_vectors) 1844 return -ENOMEM; 1845 1846 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1847 q_vector = &adapter->q_vectors[q_idx]; 1848 q_vector->adapter = adapter; 1849 q_vector->vsi = &adapter->vsi; 1850 q_vector->v_idx = q_idx; 1851 q_vector->reg_idx = q_idx; 1852 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1853 netif_napi_add(adapter->netdev, &q_vector->napi, 1854 iavf_napi_poll); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1862 * @adapter: board private structure to initialize 1863 * 1864 * This function frees the memory allocated to the q_vectors. In addition if 1865 * NAPI is enabled it will delete any references to the NAPI struct prior 1866 * to freeing the q_vector. 1867 **/ 1868 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1869 { 1870 int q_idx, num_q_vectors; 1871 1872 if (!adapter->q_vectors) 1873 return; 1874 1875 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1876 1877 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1878 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1879 1880 netif_napi_del(&q_vector->napi); 1881 } 1882 kfree(adapter->q_vectors); 1883 adapter->q_vectors = NULL; 1884 } 1885 1886 /** 1887 * iavf_reset_interrupt_capability - Reset MSIX setup 1888 * @adapter: board private structure 1889 * 1890 **/ 1891 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1892 { 1893 if (!adapter->msix_entries) 1894 return; 1895 1896 pci_disable_msix(adapter->pdev); 1897 kfree(adapter->msix_entries); 1898 adapter->msix_entries = NULL; 1899 } 1900 1901 /** 1902 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1903 * @adapter: board private structure to initialize 1904 * 1905 **/ 1906 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1907 { 1908 int err; 1909 1910 err = iavf_alloc_queues(adapter); 1911 if (err) { 1912 dev_err(&adapter->pdev->dev, 1913 "Unable to allocate memory for queues\n"); 1914 goto err_alloc_queues; 1915 } 1916 1917 err = iavf_set_interrupt_capability(adapter); 1918 if (err) { 1919 dev_err(&adapter->pdev->dev, 1920 "Unable to setup interrupt capabilities\n"); 1921 goto err_set_interrupt; 1922 } 1923 1924 err = iavf_alloc_q_vectors(adapter); 1925 if (err) { 1926 dev_err(&adapter->pdev->dev, 1927 "Unable to allocate memory for queue vectors\n"); 1928 goto err_alloc_q_vectors; 1929 } 1930 1931 /* If we've made it so far while ADq flag being ON, then we haven't 1932 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1933 * resources have been allocated in the reset path. 1934 * Now we can truly claim that ADq is enabled. 1935 */ 1936 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1937 adapter->num_tc) 1938 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1939 adapter->num_tc); 1940 1941 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1942 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1943 adapter->num_active_queues); 1944 1945 return 0; 1946 err_alloc_q_vectors: 1947 iavf_reset_interrupt_capability(adapter); 1948 err_set_interrupt: 1949 iavf_free_queues(adapter); 1950 err_alloc_queues: 1951 return err; 1952 } 1953 1954 /** 1955 * iavf_free_rss - Free memory used by RSS structs 1956 * @adapter: board private structure 1957 **/ 1958 static void iavf_free_rss(struct iavf_adapter *adapter) 1959 { 1960 kfree(adapter->rss_key); 1961 adapter->rss_key = NULL; 1962 1963 kfree(adapter->rss_lut); 1964 adapter->rss_lut = NULL; 1965 } 1966 1967 /** 1968 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1969 * @adapter: board private structure 1970 * @running: true if adapter->state == __IAVF_RUNNING 1971 * 1972 * Returns 0 on success, negative on failure 1973 **/ 1974 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1975 { 1976 struct net_device *netdev = adapter->netdev; 1977 int err; 1978 1979 if (running) 1980 iavf_free_traffic_irqs(adapter); 1981 iavf_free_misc_irq(adapter); 1982 iavf_reset_interrupt_capability(adapter); 1983 iavf_free_q_vectors(adapter); 1984 iavf_free_queues(adapter); 1985 1986 err = iavf_init_interrupt_scheme(adapter); 1987 if (err) 1988 goto err; 1989 1990 netif_tx_stop_all_queues(netdev); 1991 1992 err = iavf_request_misc_irq(adapter); 1993 if (err) 1994 goto err; 1995 1996 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1997 1998 iavf_map_rings_to_vectors(adapter); 1999 err: 2000 return err; 2001 } 2002 2003 /** 2004 * iavf_finish_config - do all netdev work that needs RTNL 2005 * @work: our work_struct 2006 * 2007 * Do work that needs both RTNL and crit_lock. 2008 **/ 2009 static void iavf_finish_config(struct work_struct *work) 2010 { 2011 struct iavf_adapter *adapter; 2012 int pairs, err; 2013 2014 adapter = container_of(work, struct iavf_adapter, finish_config); 2015 2016 /* Always take RTNL first to prevent circular lock dependency */ 2017 rtnl_lock(); 2018 mutex_lock(&adapter->crit_lock); 2019 2020 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2021 adapter->netdev_registered && 2022 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2023 netdev_update_features(adapter->netdev); 2024 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2025 } 2026 2027 switch (adapter->state) { 2028 case __IAVF_DOWN: 2029 if (!adapter->netdev_registered) { 2030 err = register_netdevice(adapter->netdev); 2031 if (err) { 2032 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2033 err); 2034 2035 /* go back and try again.*/ 2036 iavf_free_rss(adapter); 2037 iavf_free_misc_irq(adapter); 2038 iavf_reset_interrupt_capability(adapter); 2039 iavf_change_state(adapter, 2040 __IAVF_INIT_CONFIG_ADAPTER); 2041 goto out; 2042 } 2043 adapter->netdev_registered = true; 2044 } 2045 2046 /* Set the real number of queues when reset occurs while 2047 * state == __IAVF_DOWN 2048 */ 2049 fallthrough; 2050 case __IAVF_RUNNING: 2051 pairs = adapter->num_active_queues; 2052 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2053 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2054 break; 2055 2056 default: 2057 break; 2058 } 2059 2060 out: 2061 mutex_unlock(&adapter->crit_lock); 2062 rtnl_unlock(); 2063 } 2064 2065 /** 2066 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2067 * @adapter: board private structure 2068 **/ 2069 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2070 { 2071 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2072 queue_work(adapter->wq, &adapter->finish_config); 2073 } 2074 2075 /** 2076 * iavf_process_aq_command - process aq_required flags 2077 * and sends aq command 2078 * @adapter: pointer to iavf adapter structure 2079 * 2080 * Returns 0 on success 2081 * Returns error code if no command was sent 2082 * or error code if the command failed. 2083 **/ 2084 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2085 { 2086 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2087 return iavf_send_vf_config_msg(adapter); 2088 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2089 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2090 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2091 iavf_disable_queues(adapter); 2092 return 0; 2093 } 2094 2095 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2096 iavf_map_queues(adapter); 2097 return 0; 2098 } 2099 2100 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2101 iavf_add_ether_addrs(adapter); 2102 return 0; 2103 } 2104 2105 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2106 iavf_add_vlans(adapter); 2107 return 0; 2108 } 2109 2110 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2111 iavf_del_ether_addrs(adapter); 2112 return 0; 2113 } 2114 2115 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2116 iavf_del_vlans(adapter); 2117 return 0; 2118 } 2119 2120 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2121 iavf_enable_vlan_stripping(adapter); 2122 return 0; 2123 } 2124 2125 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2126 iavf_disable_vlan_stripping(adapter); 2127 return 0; 2128 } 2129 2130 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2131 iavf_configure_queues(adapter); 2132 return 0; 2133 } 2134 2135 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2136 iavf_enable_queues(adapter); 2137 return 0; 2138 } 2139 2140 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2141 /* This message goes straight to the firmware, not the 2142 * PF, so we don't have to set current_op as we will 2143 * not get a response through the ARQ. 2144 */ 2145 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2146 return 0; 2147 } 2148 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2149 iavf_get_hena(adapter); 2150 return 0; 2151 } 2152 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2153 iavf_set_hena(adapter); 2154 return 0; 2155 } 2156 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2157 iavf_set_rss_key(adapter); 2158 return 0; 2159 } 2160 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2161 iavf_set_rss_lut(adapter); 2162 return 0; 2163 } 2164 2165 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2166 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2167 FLAG_VF_MULTICAST_PROMISC); 2168 return 0; 2169 } 2170 2171 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2172 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2173 return 0; 2174 } 2175 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2176 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2177 iavf_set_promiscuous(adapter, 0); 2178 return 0; 2179 } 2180 2181 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2182 iavf_enable_channels(adapter); 2183 return 0; 2184 } 2185 2186 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2187 iavf_disable_channels(adapter); 2188 return 0; 2189 } 2190 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2191 iavf_add_cloud_filter(adapter); 2192 return 0; 2193 } 2194 2195 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2196 iavf_del_cloud_filter(adapter); 2197 return 0; 2198 } 2199 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2200 iavf_del_cloud_filter(adapter); 2201 return 0; 2202 } 2203 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2204 iavf_add_cloud_filter(adapter); 2205 return 0; 2206 } 2207 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2208 iavf_add_fdir_filter(adapter); 2209 return IAVF_SUCCESS; 2210 } 2211 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2212 iavf_del_fdir_filter(adapter); 2213 return IAVF_SUCCESS; 2214 } 2215 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2216 iavf_add_adv_rss_cfg(adapter); 2217 return 0; 2218 } 2219 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2220 iavf_del_adv_rss_cfg(adapter); 2221 return 0; 2222 } 2223 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2224 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2225 return 0; 2226 } 2227 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2228 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2229 return 0; 2230 } 2231 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2232 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2233 return 0; 2234 } 2235 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2236 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2237 return 0; 2238 } 2239 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2240 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2241 return 0; 2242 } 2243 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2244 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2245 return 0; 2246 } 2247 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2248 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2249 return 0; 2250 } 2251 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2252 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2253 return 0; 2254 } 2255 2256 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2257 iavf_request_stats(adapter); 2258 return 0; 2259 } 2260 2261 return -EAGAIN; 2262 } 2263 2264 /** 2265 * iavf_set_vlan_offload_features - set VLAN offload configuration 2266 * @adapter: board private structure 2267 * @prev_features: previous features used for comparison 2268 * @features: updated features used for configuration 2269 * 2270 * Set the aq_required bit(s) based on the requested features passed in to 2271 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2272 * the watchdog if any changes are requested to expedite the request via 2273 * virtchnl. 2274 **/ 2275 static void 2276 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2277 netdev_features_t prev_features, 2278 netdev_features_t features) 2279 { 2280 bool enable_stripping = true, enable_insertion = true; 2281 u16 vlan_ethertype = 0; 2282 u64 aq_required = 0; 2283 2284 /* keep cases separate because one ethertype for offloads can be 2285 * disabled at the same time as another is disabled, so check for an 2286 * enabled ethertype first, then check for disabled. Default to 2287 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2288 * stripping. 2289 */ 2290 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2291 vlan_ethertype = ETH_P_8021AD; 2292 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2293 vlan_ethertype = ETH_P_8021Q; 2294 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2295 vlan_ethertype = ETH_P_8021AD; 2296 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2297 vlan_ethertype = ETH_P_8021Q; 2298 else 2299 vlan_ethertype = ETH_P_8021Q; 2300 2301 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2302 enable_stripping = false; 2303 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2304 enable_insertion = false; 2305 2306 if (VLAN_ALLOWED(adapter)) { 2307 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2308 * stripping via virtchnl. VLAN insertion can be toggled on the 2309 * netdev, but it doesn't require a virtchnl message 2310 */ 2311 if (enable_stripping) 2312 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2313 else 2314 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2315 2316 } else if (VLAN_V2_ALLOWED(adapter)) { 2317 switch (vlan_ethertype) { 2318 case ETH_P_8021Q: 2319 if (enable_stripping) 2320 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2321 else 2322 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2323 2324 if (enable_insertion) 2325 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2326 else 2327 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2328 break; 2329 case ETH_P_8021AD: 2330 if (enable_stripping) 2331 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2332 else 2333 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2334 2335 if (enable_insertion) 2336 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2337 else 2338 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2339 break; 2340 } 2341 } 2342 2343 if (aq_required) { 2344 adapter->aq_required |= aq_required; 2345 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2346 } 2347 } 2348 2349 /** 2350 * iavf_startup - first step of driver startup 2351 * @adapter: board private structure 2352 * 2353 * Function process __IAVF_STARTUP driver state. 2354 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2355 * when fails the state is changed to __IAVF_INIT_FAILED 2356 **/ 2357 static void iavf_startup(struct iavf_adapter *adapter) 2358 { 2359 struct pci_dev *pdev = adapter->pdev; 2360 struct iavf_hw *hw = &adapter->hw; 2361 enum iavf_status status; 2362 int ret; 2363 2364 WARN_ON(adapter->state != __IAVF_STARTUP); 2365 2366 /* driver loaded, probe complete */ 2367 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2368 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2369 status = iavf_set_mac_type(hw); 2370 if (status) { 2371 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2372 goto err; 2373 } 2374 2375 ret = iavf_check_reset_complete(hw); 2376 if (ret) { 2377 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2378 ret); 2379 goto err; 2380 } 2381 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2382 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2383 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2384 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2385 2386 status = iavf_init_adminq(hw); 2387 if (status) { 2388 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2389 status); 2390 goto err; 2391 } 2392 ret = iavf_send_api_ver(adapter); 2393 if (ret) { 2394 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2395 iavf_shutdown_adminq(hw); 2396 goto err; 2397 } 2398 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2399 return; 2400 err: 2401 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2402 } 2403 2404 /** 2405 * iavf_init_version_check - second step of driver startup 2406 * @adapter: board private structure 2407 * 2408 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2409 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2410 * when fails the state is changed to __IAVF_INIT_FAILED 2411 **/ 2412 static void iavf_init_version_check(struct iavf_adapter *adapter) 2413 { 2414 struct pci_dev *pdev = adapter->pdev; 2415 struct iavf_hw *hw = &adapter->hw; 2416 int err = -EAGAIN; 2417 2418 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2419 2420 if (!iavf_asq_done(hw)) { 2421 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2422 iavf_shutdown_adminq(hw); 2423 iavf_change_state(adapter, __IAVF_STARTUP); 2424 goto err; 2425 } 2426 2427 /* aq msg sent, awaiting reply */ 2428 err = iavf_verify_api_ver(adapter); 2429 if (err) { 2430 if (err == -EALREADY) 2431 err = iavf_send_api_ver(adapter); 2432 else 2433 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2434 adapter->pf_version.major, 2435 adapter->pf_version.minor, 2436 VIRTCHNL_VERSION_MAJOR, 2437 VIRTCHNL_VERSION_MINOR); 2438 goto err; 2439 } 2440 err = iavf_send_vf_config_msg(adapter); 2441 if (err) { 2442 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2443 err); 2444 goto err; 2445 } 2446 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2447 return; 2448 err: 2449 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2450 } 2451 2452 /** 2453 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2454 * @adapter: board private structure 2455 */ 2456 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2457 { 2458 int i, num_req_queues = adapter->num_req_queues; 2459 struct iavf_vsi *vsi = &adapter->vsi; 2460 2461 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2462 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2463 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2464 } 2465 if (!adapter->vsi_res) { 2466 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2467 return -ENODEV; 2468 } 2469 2470 if (num_req_queues && 2471 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2472 /* Problem. The PF gave us fewer queues than what we had 2473 * negotiated in our request. Need a reset to see if we can't 2474 * get back to a working state. 2475 */ 2476 dev_err(&adapter->pdev->dev, 2477 "Requested %d queues, but PF only gave us %d.\n", 2478 num_req_queues, 2479 adapter->vsi_res->num_queue_pairs); 2480 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2481 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2482 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2483 2484 return -EAGAIN; 2485 } 2486 adapter->num_req_queues = 0; 2487 adapter->vsi.id = adapter->vsi_res->vsi_id; 2488 2489 adapter->vsi.back = adapter; 2490 adapter->vsi.base_vector = 1; 2491 vsi->netdev = adapter->netdev; 2492 vsi->qs_handle = adapter->vsi_res->qset_handle; 2493 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2494 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2495 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2496 } else { 2497 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2498 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2499 } 2500 2501 return 0; 2502 } 2503 2504 /** 2505 * iavf_init_get_resources - third step of driver startup 2506 * @adapter: board private structure 2507 * 2508 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2509 * finishes driver initialization procedure. 2510 * When success the state is changed to __IAVF_DOWN 2511 * when fails the state is changed to __IAVF_INIT_FAILED 2512 **/ 2513 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2514 { 2515 struct pci_dev *pdev = adapter->pdev; 2516 struct iavf_hw *hw = &adapter->hw; 2517 int err; 2518 2519 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2520 /* aq msg sent, awaiting reply */ 2521 if (!adapter->vf_res) { 2522 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2523 GFP_KERNEL); 2524 if (!adapter->vf_res) { 2525 err = -ENOMEM; 2526 goto err; 2527 } 2528 } 2529 err = iavf_get_vf_config(adapter); 2530 if (err == -EALREADY) { 2531 err = iavf_send_vf_config_msg(adapter); 2532 goto err; 2533 } else if (err == -EINVAL) { 2534 /* We only get -EINVAL if the device is in a very bad 2535 * state or if we've been disabled for previous bad 2536 * behavior. Either way, we're done now. 2537 */ 2538 iavf_shutdown_adminq(hw); 2539 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2540 return; 2541 } 2542 if (err) { 2543 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2544 goto err_alloc; 2545 } 2546 2547 err = iavf_parse_vf_resource_msg(adapter); 2548 if (err) { 2549 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2550 err); 2551 goto err_alloc; 2552 } 2553 /* Some features require additional messages to negotiate extended 2554 * capabilities. These are processed in sequence by the 2555 * __IAVF_INIT_EXTENDED_CAPS driver state. 2556 */ 2557 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2558 2559 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2560 return; 2561 2562 err_alloc: 2563 kfree(adapter->vf_res); 2564 adapter->vf_res = NULL; 2565 err: 2566 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2567 } 2568 2569 /** 2570 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2571 * @adapter: board private structure 2572 * 2573 * Function processes send of the extended VLAN V2 capability message to the 2574 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2575 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2576 */ 2577 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2578 { 2579 int ret; 2580 2581 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2582 2583 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2584 if (ret && ret == -EOPNOTSUPP) { 2585 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2586 * we did not send the capability exchange message and do not 2587 * expect a response. 2588 */ 2589 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2590 } 2591 2592 /* We sent the message, so move on to the next step */ 2593 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2594 } 2595 2596 /** 2597 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2598 * @adapter: board private structure 2599 * 2600 * Function processes receipt of the extended VLAN V2 capability message from 2601 * the PF. 2602 **/ 2603 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2604 { 2605 int ret; 2606 2607 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2608 2609 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2610 2611 ret = iavf_get_vf_vlan_v2_caps(adapter); 2612 if (ret) 2613 goto err; 2614 2615 /* We've processed receipt of the VLAN V2 caps message */ 2616 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2617 return; 2618 err: 2619 /* We didn't receive a reply. Make sure we try sending again when 2620 * __IAVF_INIT_FAILED attempts to recover. 2621 */ 2622 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2623 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2624 } 2625 2626 /** 2627 * iavf_init_process_extended_caps - Part of driver startup 2628 * @adapter: board private structure 2629 * 2630 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2631 * handles negotiating capabilities for features which require an additional 2632 * message. 2633 * 2634 * Once all extended capabilities exchanges are finished, the driver will 2635 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2636 */ 2637 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2638 { 2639 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2640 2641 /* Process capability exchange for VLAN V2 */ 2642 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2643 iavf_init_send_offload_vlan_v2_caps(adapter); 2644 return; 2645 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2646 iavf_init_recv_offload_vlan_v2_caps(adapter); 2647 return; 2648 } 2649 2650 /* When we reach here, no further extended capabilities exchanges are 2651 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2652 */ 2653 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2654 } 2655 2656 /** 2657 * iavf_init_config_adapter - last part of driver startup 2658 * @adapter: board private structure 2659 * 2660 * After all the supported capabilities are negotiated, then the 2661 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2662 */ 2663 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2664 { 2665 struct net_device *netdev = adapter->netdev; 2666 struct pci_dev *pdev = adapter->pdev; 2667 int err; 2668 2669 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2670 2671 if (iavf_process_config(adapter)) 2672 goto err; 2673 2674 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2675 2676 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2677 2678 netdev->netdev_ops = &iavf_netdev_ops; 2679 iavf_set_ethtool_ops(netdev); 2680 netdev->watchdog_timeo = 5 * HZ; 2681 2682 /* MTU range: 68 - 9710 */ 2683 netdev->min_mtu = ETH_MIN_MTU; 2684 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2685 2686 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2687 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2688 adapter->hw.mac.addr); 2689 eth_hw_addr_random(netdev); 2690 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2691 } else { 2692 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2693 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2694 } 2695 2696 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2697 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2698 err = iavf_init_interrupt_scheme(adapter); 2699 if (err) 2700 goto err_sw_init; 2701 iavf_map_rings_to_vectors(adapter); 2702 if (adapter->vf_res->vf_cap_flags & 2703 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2704 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2705 2706 err = iavf_request_misc_irq(adapter); 2707 if (err) 2708 goto err_sw_init; 2709 2710 netif_carrier_off(netdev); 2711 adapter->link_up = false; 2712 netif_tx_stop_all_queues(netdev); 2713 2714 if (CLIENT_ALLOWED(adapter)) { 2715 err = iavf_lan_add_device(adapter); 2716 if (err) 2717 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2718 err); 2719 } 2720 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2721 if (netdev->features & NETIF_F_GRO) 2722 dev_info(&pdev->dev, "GRO is enabled\n"); 2723 2724 iavf_change_state(adapter, __IAVF_DOWN); 2725 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2726 2727 iavf_misc_irq_enable(adapter); 2728 wake_up(&adapter->down_waitqueue); 2729 2730 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2731 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2732 if (!adapter->rss_key || !adapter->rss_lut) { 2733 err = -ENOMEM; 2734 goto err_mem; 2735 } 2736 if (RSS_AQ(adapter)) 2737 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2738 else 2739 iavf_init_rss(adapter); 2740 2741 if (VLAN_V2_ALLOWED(adapter)) 2742 /* request initial VLAN offload settings */ 2743 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2744 2745 iavf_schedule_finish_config(adapter); 2746 return; 2747 2748 err_mem: 2749 iavf_free_rss(adapter); 2750 iavf_free_misc_irq(adapter); 2751 err_sw_init: 2752 iavf_reset_interrupt_capability(adapter); 2753 err: 2754 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2755 } 2756 2757 /** 2758 * iavf_watchdog_task - Periodic call-back task 2759 * @work: pointer to work_struct 2760 **/ 2761 static void iavf_watchdog_task(struct work_struct *work) 2762 { 2763 struct iavf_adapter *adapter = container_of(work, 2764 struct iavf_adapter, 2765 watchdog_task.work); 2766 struct iavf_hw *hw = &adapter->hw; 2767 u32 reg_val; 2768 2769 if (!mutex_trylock(&adapter->crit_lock)) { 2770 if (adapter->state == __IAVF_REMOVE) 2771 return; 2772 2773 goto restart_watchdog; 2774 } 2775 2776 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2777 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2778 2779 switch (adapter->state) { 2780 case __IAVF_STARTUP: 2781 iavf_startup(adapter); 2782 mutex_unlock(&adapter->crit_lock); 2783 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2784 msecs_to_jiffies(30)); 2785 return; 2786 case __IAVF_INIT_VERSION_CHECK: 2787 iavf_init_version_check(adapter); 2788 mutex_unlock(&adapter->crit_lock); 2789 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2790 msecs_to_jiffies(30)); 2791 return; 2792 case __IAVF_INIT_GET_RESOURCES: 2793 iavf_init_get_resources(adapter); 2794 mutex_unlock(&adapter->crit_lock); 2795 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2796 msecs_to_jiffies(1)); 2797 return; 2798 case __IAVF_INIT_EXTENDED_CAPS: 2799 iavf_init_process_extended_caps(adapter); 2800 mutex_unlock(&adapter->crit_lock); 2801 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2802 msecs_to_jiffies(1)); 2803 return; 2804 case __IAVF_INIT_CONFIG_ADAPTER: 2805 iavf_init_config_adapter(adapter); 2806 mutex_unlock(&adapter->crit_lock); 2807 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2808 msecs_to_jiffies(1)); 2809 return; 2810 case __IAVF_INIT_FAILED: 2811 if (test_bit(__IAVF_IN_REMOVE_TASK, 2812 &adapter->crit_section)) { 2813 /* Do not update the state and do not reschedule 2814 * watchdog task, iavf_remove should handle this state 2815 * as it can loop forever 2816 */ 2817 mutex_unlock(&adapter->crit_lock); 2818 return; 2819 } 2820 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2821 dev_err(&adapter->pdev->dev, 2822 "Failed to communicate with PF; waiting before retry\n"); 2823 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2824 iavf_shutdown_adminq(hw); 2825 mutex_unlock(&adapter->crit_lock); 2826 queue_delayed_work(adapter->wq, 2827 &adapter->watchdog_task, (5 * HZ)); 2828 return; 2829 } 2830 /* Try again from failed step*/ 2831 iavf_change_state(adapter, adapter->last_state); 2832 mutex_unlock(&adapter->crit_lock); 2833 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2834 return; 2835 case __IAVF_COMM_FAILED: 2836 if (test_bit(__IAVF_IN_REMOVE_TASK, 2837 &adapter->crit_section)) { 2838 /* Set state to __IAVF_INIT_FAILED and perform remove 2839 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2840 * doesn't bring the state back to __IAVF_COMM_FAILED. 2841 */ 2842 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2843 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2844 mutex_unlock(&adapter->crit_lock); 2845 return; 2846 } 2847 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2848 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2849 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2850 reg_val == VIRTCHNL_VFR_COMPLETED) { 2851 /* A chance for redemption! */ 2852 dev_err(&adapter->pdev->dev, 2853 "Hardware came out of reset. Attempting reinit.\n"); 2854 /* When init task contacts the PF and 2855 * gets everything set up again, it'll restart the 2856 * watchdog for us. Down, boy. Sit. Stay. Woof. 2857 */ 2858 iavf_change_state(adapter, __IAVF_STARTUP); 2859 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2860 } 2861 adapter->aq_required = 0; 2862 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2863 mutex_unlock(&adapter->crit_lock); 2864 queue_delayed_work(adapter->wq, 2865 &adapter->watchdog_task, 2866 msecs_to_jiffies(10)); 2867 return; 2868 case __IAVF_RESETTING: 2869 mutex_unlock(&adapter->crit_lock); 2870 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2871 HZ * 2); 2872 return; 2873 case __IAVF_DOWN: 2874 case __IAVF_DOWN_PENDING: 2875 case __IAVF_TESTING: 2876 case __IAVF_RUNNING: 2877 if (adapter->current_op) { 2878 if (!iavf_asq_done(hw)) { 2879 dev_dbg(&adapter->pdev->dev, 2880 "Admin queue timeout\n"); 2881 iavf_send_api_ver(adapter); 2882 } 2883 } else { 2884 int ret = iavf_process_aq_command(adapter); 2885 2886 /* An error will be returned if no commands were 2887 * processed; use this opportunity to update stats 2888 * if the error isn't -ENOTSUPP 2889 */ 2890 if (ret && ret != -EOPNOTSUPP && 2891 adapter->state == __IAVF_RUNNING) 2892 iavf_request_stats(adapter); 2893 } 2894 if (adapter->state == __IAVF_RUNNING) 2895 iavf_detect_recover_hung(&adapter->vsi); 2896 break; 2897 case __IAVF_REMOVE: 2898 default: 2899 mutex_unlock(&adapter->crit_lock); 2900 return; 2901 } 2902 2903 /* check for hw reset */ 2904 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2905 if (!reg_val) { 2906 adapter->aq_required = 0; 2907 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2908 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2909 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2910 mutex_unlock(&adapter->crit_lock); 2911 queue_delayed_work(adapter->wq, 2912 &adapter->watchdog_task, HZ * 2); 2913 return; 2914 } 2915 2916 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2917 mutex_unlock(&adapter->crit_lock); 2918 restart_watchdog: 2919 if (adapter->state >= __IAVF_DOWN) 2920 queue_work(adapter->wq, &adapter->adminq_task); 2921 if (adapter->aq_required) 2922 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2923 msecs_to_jiffies(20)); 2924 else 2925 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2926 HZ * 2); 2927 } 2928 2929 /** 2930 * iavf_disable_vf - disable VF 2931 * @adapter: board private structure 2932 * 2933 * Set communication failed flag and free all resources. 2934 * NOTE: This function is expected to be called with crit_lock being held. 2935 **/ 2936 static void iavf_disable_vf(struct iavf_adapter *adapter) 2937 { 2938 struct iavf_mac_filter *f, *ftmp; 2939 struct iavf_vlan_filter *fv, *fvtmp; 2940 struct iavf_cloud_filter *cf, *cftmp; 2941 2942 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2943 2944 /* We don't use netif_running() because it may be true prior to 2945 * ndo_open() returning, so we can't assume it means all our open 2946 * tasks have finished, since we're not holding the rtnl_lock here. 2947 */ 2948 if (adapter->state == __IAVF_RUNNING) { 2949 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2950 netif_carrier_off(adapter->netdev); 2951 netif_tx_disable(adapter->netdev); 2952 adapter->link_up = false; 2953 iavf_napi_disable_all(adapter); 2954 iavf_irq_disable(adapter); 2955 iavf_free_traffic_irqs(adapter); 2956 iavf_free_all_tx_resources(adapter); 2957 iavf_free_all_rx_resources(adapter); 2958 } 2959 2960 spin_lock_bh(&adapter->mac_vlan_list_lock); 2961 2962 /* Delete all of the filters */ 2963 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2964 list_del(&f->list); 2965 kfree(f); 2966 } 2967 2968 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2969 list_del(&fv->list); 2970 kfree(fv); 2971 } 2972 adapter->num_vlan_filters = 0; 2973 2974 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2975 2976 spin_lock_bh(&adapter->cloud_filter_list_lock); 2977 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2978 list_del(&cf->list); 2979 kfree(cf); 2980 adapter->num_cloud_filters--; 2981 } 2982 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2983 2984 iavf_free_misc_irq(adapter); 2985 iavf_reset_interrupt_capability(adapter); 2986 iavf_free_q_vectors(adapter); 2987 iavf_free_queues(adapter); 2988 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2989 iavf_shutdown_adminq(&adapter->hw); 2990 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2991 iavf_change_state(adapter, __IAVF_DOWN); 2992 wake_up(&adapter->down_waitqueue); 2993 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2994 } 2995 2996 /** 2997 * iavf_reset_task - Call-back task to handle hardware reset 2998 * @work: pointer to work_struct 2999 * 3000 * During reset we need to shut down and reinitialize the admin queue 3001 * before we can use it to communicate with the PF again. We also clear 3002 * and reinit the rings because that context is lost as well. 3003 **/ 3004 static void iavf_reset_task(struct work_struct *work) 3005 { 3006 struct iavf_adapter *adapter = container_of(work, 3007 struct iavf_adapter, 3008 reset_task); 3009 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3010 struct net_device *netdev = adapter->netdev; 3011 struct iavf_hw *hw = &adapter->hw; 3012 struct iavf_mac_filter *f, *ftmp; 3013 struct iavf_cloud_filter *cf; 3014 enum iavf_status status; 3015 u32 reg_val; 3016 int i = 0, err; 3017 bool running; 3018 3019 /* When device is being removed it doesn't make sense to run the reset 3020 * task, just return in such a case. 3021 */ 3022 if (!mutex_trylock(&adapter->crit_lock)) { 3023 if (adapter->state != __IAVF_REMOVE) 3024 queue_work(adapter->wq, &adapter->reset_task); 3025 3026 return; 3027 } 3028 3029 while (!mutex_trylock(&adapter->client_lock)) 3030 usleep_range(500, 1000); 3031 if (CLIENT_ENABLED(adapter)) { 3032 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 3033 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 3034 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 3035 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 3036 cancel_delayed_work_sync(&adapter->client_task); 3037 iavf_notify_client_close(&adapter->vsi, true); 3038 } 3039 iavf_misc_irq_disable(adapter); 3040 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3041 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3042 /* Restart the AQ here. If we have been reset but didn't 3043 * detect it, or if the PF had to reinit, our AQ will be hosed. 3044 */ 3045 iavf_shutdown_adminq(hw); 3046 iavf_init_adminq(hw); 3047 iavf_request_reset(adapter); 3048 } 3049 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3050 3051 /* poll until we see the reset actually happen */ 3052 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3053 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3054 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3055 if (!reg_val) 3056 break; 3057 usleep_range(5000, 10000); 3058 } 3059 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3060 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3061 goto continue_reset; /* act like the reset happened */ 3062 } 3063 3064 /* wait until the reset is complete and the PF is responding to us */ 3065 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3066 /* sleep first to make sure a minimum wait time is met */ 3067 msleep(IAVF_RESET_WAIT_MS); 3068 3069 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3070 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3071 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3072 break; 3073 } 3074 3075 pci_set_master(adapter->pdev); 3076 pci_restore_msi_state(adapter->pdev); 3077 3078 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3079 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3080 reg_val); 3081 iavf_disable_vf(adapter); 3082 mutex_unlock(&adapter->client_lock); 3083 mutex_unlock(&adapter->crit_lock); 3084 return; /* Do not attempt to reinit. It's dead, Jim. */ 3085 } 3086 3087 continue_reset: 3088 /* We don't use netif_running() because it may be true prior to 3089 * ndo_open() returning, so we can't assume it means all our open 3090 * tasks have finished, since we're not holding the rtnl_lock here. 3091 */ 3092 running = adapter->state == __IAVF_RUNNING; 3093 3094 if (running) { 3095 netif_carrier_off(netdev); 3096 netif_tx_stop_all_queues(netdev); 3097 adapter->link_up = false; 3098 iavf_napi_disable_all(adapter); 3099 } 3100 iavf_irq_disable(adapter); 3101 3102 iavf_change_state(adapter, __IAVF_RESETTING); 3103 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3104 3105 /* free the Tx/Rx rings and descriptors, might be better to just 3106 * re-use them sometime in the future 3107 */ 3108 iavf_free_all_rx_resources(adapter); 3109 iavf_free_all_tx_resources(adapter); 3110 3111 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3112 /* kill and reinit the admin queue */ 3113 iavf_shutdown_adminq(hw); 3114 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3115 status = iavf_init_adminq(hw); 3116 if (status) { 3117 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3118 status); 3119 goto reset_err; 3120 } 3121 adapter->aq_required = 0; 3122 3123 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3124 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3125 err = iavf_reinit_interrupt_scheme(adapter, running); 3126 if (err) 3127 goto reset_err; 3128 } 3129 3130 if (RSS_AQ(adapter)) { 3131 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3132 } else { 3133 err = iavf_init_rss(adapter); 3134 if (err) 3135 goto reset_err; 3136 } 3137 3138 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3139 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3140 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3141 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3142 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3143 * been successfully sent and negotiated 3144 */ 3145 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3146 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3147 3148 spin_lock_bh(&adapter->mac_vlan_list_lock); 3149 3150 /* Delete filter for the current MAC address, it could have 3151 * been changed by the PF via administratively set MAC. 3152 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3153 */ 3154 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3155 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3156 list_del(&f->list); 3157 kfree(f); 3158 } 3159 } 3160 /* re-add all MAC filters */ 3161 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3162 f->add = true; 3163 } 3164 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3165 3166 /* check if TCs are running and re-add all cloud filters */ 3167 spin_lock_bh(&adapter->cloud_filter_list_lock); 3168 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3169 adapter->num_tc) { 3170 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3171 cf->add = true; 3172 } 3173 } 3174 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3175 3176 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3177 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3178 iavf_misc_irq_enable(adapter); 3179 3180 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3181 3182 /* We were running when the reset started, so we need to restore some 3183 * state here. 3184 */ 3185 if (running) { 3186 /* allocate transmit descriptors */ 3187 err = iavf_setup_all_tx_resources(adapter); 3188 if (err) 3189 goto reset_err; 3190 3191 /* allocate receive descriptors */ 3192 err = iavf_setup_all_rx_resources(adapter); 3193 if (err) 3194 goto reset_err; 3195 3196 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3197 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3198 err = iavf_request_traffic_irqs(adapter, netdev->name); 3199 if (err) 3200 goto reset_err; 3201 3202 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3203 } 3204 3205 iavf_configure(adapter); 3206 3207 /* iavf_up_complete() will switch device back 3208 * to __IAVF_RUNNING 3209 */ 3210 iavf_up_complete(adapter); 3211 3212 iavf_irq_enable(adapter, true); 3213 } else { 3214 iavf_change_state(adapter, __IAVF_DOWN); 3215 wake_up(&adapter->down_waitqueue); 3216 } 3217 3218 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3219 3220 wake_up(&adapter->reset_waitqueue); 3221 mutex_unlock(&adapter->client_lock); 3222 mutex_unlock(&adapter->crit_lock); 3223 3224 return; 3225 reset_err: 3226 if (running) { 3227 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3228 iavf_free_traffic_irqs(adapter); 3229 } 3230 iavf_disable_vf(adapter); 3231 3232 mutex_unlock(&adapter->client_lock); 3233 mutex_unlock(&adapter->crit_lock); 3234 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3235 } 3236 3237 /** 3238 * iavf_adminq_task - worker thread to clean the admin queue 3239 * @work: pointer to work_struct containing our data 3240 **/ 3241 static void iavf_adminq_task(struct work_struct *work) 3242 { 3243 struct iavf_adapter *adapter = 3244 container_of(work, struct iavf_adapter, adminq_task); 3245 struct iavf_hw *hw = &adapter->hw; 3246 struct iavf_arq_event_info event; 3247 enum virtchnl_ops v_op; 3248 enum iavf_status ret, v_ret; 3249 u32 val, oldval; 3250 u16 pending; 3251 3252 if (!mutex_trylock(&adapter->crit_lock)) { 3253 if (adapter->state == __IAVF_REMOVE) 3254 return; 3255 3256 queue_work(adapter->wq, &adapter->adminq_task); 3257 goto out; 3258 } 3259 3260 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3261 goto unlock; 3262 3263 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3264 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3265 if (!event.msg_buf) 3266 goto unlock; 3267 3268 do { 3269 ret = iavf_clean_arq_element(hw, &event, &pending); 3270 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3271 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3272 3273 if (ret || !v_op) 3274 break; /* No event to process or error cleaning ARQ */ 3275 3276 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3277 event.msg_len); 3278 if (pending != 0) 3279 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3280 } while (pending); 3281 3282 if (iavf_is_reset_in_progress(adapter)) 3283 goto freedom; 3284 3285 /* check for error indications */ 3286 val = rd32(hw, hw->aq.arq.len); 3287 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3288 goto freedom; 3289 oldval = val; 3290 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3291 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3292 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3293 } 3294 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3295 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3296 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3297 } 3298 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3299 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3300 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3301 } 3302 if (oldval != val) 3303 wr32(hw, hw->aq.arq.len, val); 3304 3305 val = rd32(hw, hw->aq.asq.len); 3306 oldval = val; 3307 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3308 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3309 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3310 } 3311 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3312 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3313 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3314 } 3315 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3316 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3317 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3318 } 3319 if (oldval != val) 3320 wr32(hw, hw->aq.asq.len, val); 3321 3322 freedom: 3323 kfree(event.msg_buf); 3324 unlock: 3325 mutex_unlock(&adapter->crit_lock); 3326 out: 3327 /* re-enable Admin queue interrupt cause */ 3328 iavf_misc_irq_enable(adapter); 3329 } 3330 3331 /** 3332 * iavf_client_task - worker thread to perform client work 3333 * @work: pointer to work_struct containing our data 3334 * 3335 * This task handles client interactions. Because client calls can be 3336 * reentrant, we can't handle them in the watchdog. 3337 **/ 3338 static void iavf_client_task(struct work_struct *work) 3339 { 3340 struct iavf_adapter *adapter = 3341 container_of(work, struct iavf_adapter, client_task.work); 3342 3343 /* If we can't get the client bit, just give up. We'll be rescheduled 3344 * later. 3345 */ 3346 3347 if (!mutex_trylock(&adapter->client_lock)) 3348 return; 3349 3350 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3351 iavf_client_subtask(adapter); 3352 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3353 goto out; 3354 } 3355 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3356 iavf_notify_client_l2_params(&adapter->vsi); 3357 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3358 goto out; 3359 } 3360 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3361 iavf_notify_client_close(&adapter->vsi, false); 3362 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3363 goto out; 3364 } 3365 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3366 iavf_notify_client_open(&adapter->vsi); 3367 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3368 } 3369 out: 3370 mutex_unlock(&adapter->client_lock); 3371 } 3372 3373 /** 3374 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3375 * @adapter: board private structure 3376 * 3377 * Free all transmit software resources 3378 **/ 3379 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3380 { 3381 int i; 3382 3383 if (!adapter->tx_rings) 3384 return; 3385 3386 for (i = 0; i < adapter->num_active_queues; i++) 3387 if (adapter->tx_rings[i].desc) 3388 iavf_free_tx_resources(&adapter->tx_rings[i]); 3389 } 3390 3391 /** 3392 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3393 * @adapter: board private structure 3394 * 3395 * If this function returns with an error, then it's possible one or 3396 * more of the rings is populated (while the rest are not). It is the 3397 * callers duty to clean those orphaned rings. 3398 * 3399 * Return 0 on success, negative on failure 3400 **/ 3401 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3402 { 3403 int i, err = 0; 3404 3405 for (i = 0; i < adapter->num_active_queues; i++) { 3406 adapter->tx_rings[i].count = adapter->tx_desc_count; 3407 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3408 if (!err) 3409 continue; 3410 dev_err(&adapter->pdev->dev, 3411 "Allocation for Tx Queue %u failed\n", i); 3412 break; 3413 } 3414 3415 return err; 3416 } 3417 3418 /** 3419 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3420 * @adapter: board private structure 3421 * 3422 * If this function returns with an error, then it's possible one or 3423 * more of the rings is populated (while the rest are not). It is the 3424 * callers duty to clean those orphaned rings. 3425 * 3426 * Return 0 on success, negative on failure 3427 **/ 3428 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3429 { 3430 int i, err = 0; 3431 3432 for (i = 0; i < adapter->num_active_queues; i++) { 3433 adapter->rx_rings[i].count = adapter->rx_desc_count; 3434 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3435 if (!err) 3436 continue; 3437 dev_err(&adapter->pdev->dev, 3438 "Allocation for Rx Queue %u failed\n", i); 3439 break; 3440 } 3441 return err; 3442 } 3443 3444 /** 3445 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3446 * @adapter: board private structure 3447 * 3448 * Free all receive software resources 3449 **/ 3450 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3451 { 3452 int i; 3453 3454 if (!adapter->rx_rings) 3455 return; 3456 3457 for (i = 0; i < adapter->num_active_queues; i++) 3458 if (adapter->rx_rings[i].desc) 3459 iavf_free_rx_resources(&adapter->rx_rings[i]); 3460 } 3461 3462 /** 3463 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3464 * @adapter: board private structure 3465 * @max_tx_rate: max Tx bw for a tc 3466 **/ 3467 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3468 u64 max_tx_rate) 3469 { 3470 int speed = 0, ret = 0; 3471 3472 if (ADV_LINK_SUPPORT(adapter)) { 3473 if (adapter->link_speed_mbps < U32_MAX) { 3474 speed = adapter->link_speed_mbps; 3475 goto validate_bw; 3476 } else { 3477 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3478 return -EINVAL; 3479 } 3480 } 3481 3482 switch (adapter->link_speed) { 3483 case VIRTCHNL_LINK_SPEED_40GB: 3484 speed = SPEED_40000; 3485 break; 3486 case VIRTCHNL_LINK_SPEED_25GB: 3487 speed = SPEED_25000; 3488 break; 3489 case VIRTCHNL_LINK_SPEED_20GB: 3490 speed = SPEED_20000; 3491 break; 3492 case VIRTCHNL_LINK_SPEED_10GB: 3493 speed = SPEED_10000; 3494 break; 3495 case VIRTCHNL_LINK_SPEED_5GB: 3496 speed = SPEED_5000; 3497 break; 3498 case VIRTCHNL_LINK_SPEED_2_5GB: 3499 speed = SPEED_2500; 3500 break; 3501 case VIRTCHNL_LINK_SPEED_1GB: 3502 speed = SPEED_1000; 3503 break; 3504 case VIRTCHNL_LINK_SPEED_100MB: 3505 speed = SPEED_100; 3506 break; 3507 default: 3508 break; 3509 } 3510 3511 validate_bw: 3512 if (max_tx_rate > speed) { 3513 dev_err(&adapter->pdev->dev, 3514 "Invalid tx rate specified\n"); 3515 ret = -EINVAL; 3516 } 3517 3518 return ret; 3519 } 3520 3521 /** 3522 * iavf_validate_ch_config - validate queue mapping info 3523 * @adapter: board private structure 3524 * @mqprio_qopt: queue parameters 3525 * 3526 * This function validates if the config provided by the user to 3527 * configure queue channels is valid or not. Returns 0 on a valid 3528 * config. 3529 **/ 3530 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3531 struct tc_mqprio_qopt_offload *mqprio_qopt) 3532 { 3533 u64 total_max_rate = 0; 3534 u32 tx_rate_rem = 0; 3535 int i, num_qps = 0; 3536 u64 tx_rate = 0; 3537 int ret = 0; 3538 3539 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3540 mqprio_qopt->qopt.num_tc < 1) 3541 return -EINVAL; 3542 3543 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3544 if (!mqprio_qopt->qopt.count[i] || 3545 mqprio_qopt->qopt.offset[i] != num_qps) 3546 return -EINVAL; 3547 if (mqprio_qopt->min_rate[i]) { 3548 dev_err(&adapter->pdev->dev, 3549 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3550 i); 3551 return -EINVAL; 3552 } 3553 3554 /* convert to Mbps */ 3555 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3556 IAVF_MBPS_DIVISOR); 3557 3558 if (mqprio_qopt->max_rate[i] && 3559 tx_rate < IAVF_MBPS_QUANTA) { 3560 dev_err(&adapter->pdev->dev, 3561 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3562 i, IAVF_MBPS_QUANTA); 3563 return -EINVAL; 3564 } 3565 3566 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3567 3568 if (tx_rate_rem != 0) { 3569 dev_err(&adapter->pdev->dev, 3570 "Invalid max tx rate for TC%d, not divisible by %d\n", 3571 i, IAVF_MBPS_QUANTA); 3572 return -EINVAL; 3573 } 3574 3575 total_max_rate += tx_rate; 3576 num_qps += mqprio_qopt->qopt.count[i]; 3577 } 3578 if (num_qps > adapter->num_active_queues) { 3579 dev_err(&adapter->pdev->dev, 3580 "Cannot support requested number of queues\n"); 3581 return -EINVAL; 3582 } 3583 3584 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3585 return ret; 3586 } 3587 3588 /** 3589 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3590 * @adapter: board private structure 3591 **/ 3592 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3593 { 3594 struct iavf_cloud_filter *cf, *cftmp; 3595 3596 spin_lock_bh(&adapter->cloud_filter_list_lock); 3597 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3598 list) { 3599 list_del(&cf->list); 3600 kfree(cf); 3601 adapter->num_cloud_filters--; 3602 } 3603 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3604 } 3605 3606 /** 3607 * __iavf_setup_tc - configure multiple traffic classes 3608 * @netdev: network interface device structure 3609 * @type_data: tc offload data 3610 * 3611 * This function processes the config information provided by the 3612 * user to configure traffic classes/queue channels and packages the 3613 * information to request the PF to setup traffic classes. 3614 * 3615 * Returns 0 on success. 3616 **/ 3617 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3618 { 3619 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3620 struct iavf_adapter *adapter = netdev_priv(netdev); 3621 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3622 u8 num_tc = 0, total_qps = 0; 3623 int ret = 0, netdev_tc = 0; 3624 u64 max_tx_rate; 3625 u16 mode; 3626 int i; 3627 3628 num_tc = mqprio_qopt->qopt.num_tc; 3629 mode = mqprio_qopt->mode; 3630 3631 /* delete queue_channel */ 3632 if (!mqprio_qopt->qopt.hw) { 3633 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3634 /* reset the tc configuration */ 3635 netdev_reset_tc(netdev); 3636 adapter->num_tc = 0; 3637 netif_tx_stop_all_queues(netdev); 3638 netif_tx_disable(netdev); 3639 iavf_del_all_cloud_filters(adapter); 3640 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3641 total_qps = adapter->orig_num_active_queues; 3642 goto exit; 3643 } else { 3644 return -EINVAL; 3645 } 3646 } 3647 3648 /* add queue channel */ 3649 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3650 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3651 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3652 return -EOPNOTSUPP; 3653 } 3654 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3655 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3656 return -EINVAL; 3657 } 3658 3659 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3660 if (ret) 3661 return ret; 3662 /* Return if same TC config is requested */ 3663 if (adapter->num_tc == num_tc) 3664 return 0; 3665 adapter->num_tc = num_tc; 3666 3667 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3668 if (i < num_tc) { 3669 adapter->ch_config.ch_info[i].count = 3670 mqprio_qopt->qopt.count[i]; 3671 adapter->ch_config.ch_info[i].offset = 3672 mqprio_qopt->qopt.offset[i]; 3673 total_qps += mqprio_qopt->qopt.count[i]; 3674 max_tx_rate = mqprio_qopt->max_rate[i]; 3675 /* convert to Mbps */ 3676 max_tx_rate = div_u64(max_tx_rate, 3677 IAVF_MBPS_DIVISOR); 3678 adapter->ch_config.ch_info[i].max_tx_rate = 3679 max_tx_rate; 3680 } else { 3681 adapter->ch_config.ch_info[i].count = 1; 3682 adapter->ch_config.ch_info[i].offset = 0; 3683 } 3684 } 3685 3686 /* Take snapshot of original config such as "num_active_queues" 3687 * It is used later when delete ADQ flow is exercised, so that 3688 * once delete ADQ flow completes, VF shall go back to its 3689 * original queue configuration 3690 */ 3691 3692 adapter->orig_num_active_queues = adapter->num_active_queues; 3693 3694 /* Store queue info based on TC so that VF gets configured 3695 * with correct number of queues when VF completes ADQ config 3696 * flow 3697 */ 3698 adapter->ch_config.total_qps = total_qps; 3699 3700 netif_tx_stop_all_queues(netdev); 3701 netif_tx_disable(netdev); 3702 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3703 netdev_reset_tc(netdev); 3704 /* Report the tc mapping up the stack */ 3705 netdev_set_num_tc(adapter->netdev, num_tc); 3706 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3707 u16 qcount = mqprio_qopt->qopt.count[i]; 3708 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3709 3710 if (i < num_tc) 3711 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3712 qoffset); 3713 } 3714 } 3715 exit: 3716 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3717 return 0; 3718 3719 netif_set_real_num_rx_queues(netdev, total_qps); 3720 netif_set_real_num_tx_queues(netdev, total_qps); 3721 3722 return ret; 3723 } 3724 3725 /** 3726 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3727 * @adapter: board private structure 3728 * @f: pointer to struct flow_cls_offload 3729 * @filter: pointer to cloud filter structure 3730 */ 3731 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3732 struct flow_cls_offload *f, 3733 struct iavf_cloud_filter *filter) 3734 { 3735 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3736 struct flow_dissector *dissector = rule->match.dissector; 3737 u16 n_proto_mask = 0; 3738 u16 n_proto_key = 0; 3739 u8 field_flags = 0; 3740 u16 addr_type = 0; 3741 u16 n_proto = 0; 3742 int i = 0; 3743 struct virtchnl_filter *vf = &filter->f; 3744 3745 if (dissector->used_keys & 3746 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3747 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3748 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3749 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3750 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3751 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3752 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3753 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3754 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3755 dissector->used_keys); 3756 return -EOPNOTSUPP; 3757 } 3758 3759 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3760 struct flow_match_enc_keyid match; 3761 3762 flow_rule_match_enc_keyid(rule, &match); 3763 if (match.mask->keyid != 0) 3764 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3765 } 3766 3767 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3768 struct flow_match_basic match; 3769 3770 flow_rule_match_basic(rule, &match); 3771 n_proto_key = ntohs(match.key->n_proto); 3772 n_proto_mask = ntohs(match.mask->n_proto); 3773 3774 if (n_proto_key == ETH_P_ALL) { 3775 n_proto_key = 0; 3776 n_proto_mask = 0; 3777 } 3778 n_proto = n_proto_key & n_proto_mask; 3779 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3780 return -EINVAL; 3781 if (n_proto == ETH_P_IPV6) { 3782 /* specify flow type as TCP IPv6 */ 3783 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3784 } 3785 3786 if (match.key->ip_proto != IPPROTO_TCP) { 3787 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3788 return -EINVAL; 3789 } 3790 } 3791 3792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3793 struct flow_match_eth_addrs match; 3794 3795 flow_rule_match_eth_addrs(rule, &match); 3796 3797 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3798 if (!is_zero_ether_addr(match.mask->dst)) { 3799 if (is_broadcast_ether_addr(match.mask->dst)) { 3800 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3801 } else { 3802 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3803 match.mask->dst); 3804 return -EINVAL; 3805 } 3806 } 3807 3808 if (!is_zero_ether_addr(match.mask->src)) { 3809 if (is_broadcast_ether_addr(match.mask->src)) { 3810 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3811 } else { 3812 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3813 match.mask->src); 3814 return -EINVAL; 3815 } 3816 } 3817 3818 if (!is_zero_ether_addr(match.key->dst)) 3819 if (is_valid_ether_addr(match.key->dst) || 3820 is_multicast_ether_addr(match.key->dst)) { 3821 /* set the mask if a valid dst_mac address */ 3822 for (i = 0; i < ETH_ALEN; i++) 3823 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3824 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3825 match.key->dst); 3826 } 3827 3828 if (!is_zero_ether_addr(match.key->src)) 3829 if (is_valid_ether_addr(match.key->src) || 3830 is_multicast_ether_addr(match.key->src)) { 3831 /* set the mask if a valid dst_mac address */ 3832 for (i = 0; i < ETH_ALEN; i++) 3833 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3834 ether_addr_copy(vf->data.tcp_spec.src_mac, 3835 match.key->src); 3836 } 3837 } 3838 3839 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3840 struct flow_match_vlan match; 3841 3842 flow_rule_match_vlan(rule, &match); 3843 if (match.mask->vlan_id) { 3844 if (match.mask->vlan_id == VLAN_VID_MASK) { 3845 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3846 } else { 3847 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3848 match.mask->vlan_id); 3849 return -EINVAL; 3850 } 3851 } 3852 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3853 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3854 } 3855 3856 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3857 struct flow_match_control match; 3858 3859 flow_rule_match_control(rule, &match); 3860 addr_type = match.key->addr_type; 3861 } 3862 3863 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3864 struct flow_match_ipv4_addrs match; 3865 3866 flow_rule_match_ipv4_addrs(rule, &match); 3867 if (match.mask->dst) { 3868 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3869 field_flags |= IAVF_CLOUD_FIELD_IIP; 3870 } else { 3871 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3872 be32_to_cpu(match.mask->dst)); 3873 return -EINVAL; 3874 } 3875 } 3876 3877 if (match.mask->src) { 3878 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3879 field_flags |= IAVF_CLOUD_FIELD_IIP; 3880 } else { 3881 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3882 be32_to_cpu(match.mask->src)); 3883 return -EINVAL; 3884 } 3885 } 3886 3887 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3888 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3889 return -EINVAL; 3890 } 3891 if (match.key->dst) { 3892 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3893 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3894 } 3895 if (match.key->src) { 3896 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3897 vf->data.tcp_spec.src_ip[0] = match.key->src; 3898 } 3899 } 3900 3901 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3902 struct flow_match_ipv6_addrs match; 3903 3904 flow_rule_match_ipv6_addrs(rule, &match); 3905 3906 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3907 if (ipv6_addr_any(&match.mask->dst)) { 3908 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3909 IPV6_ADDR_ANY); 3910 return -EINVAL; 3911 } 3912 3913 /* src and dest IPv6 address should not be LOOPBACK 3914 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3915 */ 3916 if (ipv6_addr_loopback(&match.key->dst) || 3917 ipv6_addr_loopback(&match.key->src)) { 3918 dev_err(&adapter->pdev->dev, 3919 "ipv6 addr should not be loopback\n"); 3920 return -EINVAL; 3921 } 3922 if (!ipv6_addr_any(&match.mask->dst) || 3923 !ipv6_addr_any(&match.mask->src)) 3924 field_flags |= IAVF_CLOUD_FIELD_IIP; 3925 3926 for (i = 0; i < 4; i++) 3927 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3928 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3929 sizeof(vf->data.tcp_spec.dst_ip)); 3930 for (i = 0; i < 4; i++) 3931 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3932 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3933 sizeof(vf->data.tcp_spec.src_ip)); 3934 } 3935 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3936 struct flow_match_ports match; 3937 3938 flow_rule_match_ports(rule, &match); 3939 if (match.mask->src) { 3940 if (match.mask->src == cpu_to_be16(0xffff)) { 3941 field_flags |= IAVF_CLOUD_FIELD_IIP; 3942 } else { 3943 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3944 be16_to_cpu(match.mask->src)); 3945 return -EINVAL; 3946 } 3947 } 3948 3949 if (match.mask->dst) { 3950 if (match.mask->dst == cpu_to_be16(0xffff)) { 3951 field_flags |= IAVF_CLOUD_FIELD_IIP; 3952 } else { 3953 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3954 be16_to_cpu(match.mask->dst)); 3955 return -EINVAL; 3956 } 3957 } 3958 if (match.key->dst) { 3959 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3960 vf->data.tcp_spec.dst_port = match.key->dst; 3961 } 3962 3963 if (match.key->src) { 3964 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3965 vf->data.tcp_spec.src_port = match.key->src; 3966 } 3967 } 3968 vf->field_flags = field_flags; 3969 3970 return 0; 3971 } 3972 3973 /** 3974 * iavf_handle_tclass - Forward to a traffic class on the device 3975 * @adapter: board private structure 3976 * @tc: traffic class index on the device 3977 * @filter: pointer to cloud filter structure 3978 */ 3979 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3980 struct iavf_cloud_filter *filter) 3981 { 3982 if (tc == 0) 3983 return 0; 3984 if (tc < adapter->num_tc) { 3985 if (!filter->f.data.tcp_spec.dst_port) { 3986 dev_err(&adapter->pdev->dev, 3987 "Specify destination port to redirect to traffic class other than TC0\n"); 3988 return -EINVAL; 3989 } 3990 } 3991 /* redirect to a traffic class on the same device */ 3992 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3993 filter->f.action_meta = tc; 3994 return 0; 3995 } 3996 3997 /** 3998 * iavf_find_cf - Find the cloud filter in the list 3999 * @adapter: Board private structure 4000 * @cookie: filter specific cookie 4001 * 4002 * Returns ptr to the filter object or NULL. Must be called while holding the 4003 * cloud_filter_list_lock. 4004 */ 4005 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4006 unsigned long *cookie) 4007 { 4008 struct iavf_cloud_filter *filter = NULL; 4009 4010 if (!cookie) 4011 return NULL; 4012 4013 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4014 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4015 return filter; 4016 } 4017 return NULL; 4018 } 4019 4020 /** 4021 * iavf_configure_clsflower - Add tc flower filters 4022 * @adapter: board private structure 4023 * @cls_flower: Pointer to struct flow_cls_offload 4024 */ 4025 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4026 struct flow_cls_offload *cls_flower) 4027 { 4028 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4029 struct iavf_cloud_filter *filter = NULL; 4030 int err = -EINVAL, count = 50; 4031 4032 if (tc < 0) { 4033 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4034 return -EINVAL; 4035 } 4036 4037 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4038 if (!filter) 4039 return -ENOMEM; 4040 4041 while (!mutex_trylock(&adapter->crit_lock)) { 4042 if (--count == 0) { 4043 kfree(filter); 4044 return err; 4045 } 4046 udelay(1); 4047 } 4048 4049 filter->cookie = cls_flower->cookie; 4050 4051 /* bail out here if filter already exists */ 4052 spin_lock_bh(&adapter->cloud_filter_list_lock); 4053 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4054 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4055 err = -EEXIST; 4056 goto spin_unlock; 4057 } 4058 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4059 4060 /* set the mask to all zeroes to begin with */ 4061 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4062 /* start out with flow type and eth type IPv4 to begin with */ 4063 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4064 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4065 if (err) 4066 goto err; 4067 4068 err = iavf_handle_tclass(adapter, tc, filter); 4069 if (err) 4070 goto err; 4071 4072 /* add filter to the list */ 4073 spin_lock_bh(&adapter->cloud_filter_list_lock); 4074 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4075 adapter->num_cloud_filters++; 4076 filter->add = true; 4077 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4078 spin_unlock: 4079 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4080 err: 4081 if (err) 4082 kfree(filter); 4083 4084 mutex_unlock(&adapter->crit_lock); 4085 return err; 4086 } 4087 4088 /** 4089 * iavf_delete_clsflower - Remove tc flower filters 4090 * @adapter: board private structure 4091 * @cls_flower: Pointer to struct flow_cls_offload 4092 */ 4093 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4094 struct flow_cls_offload *cls_flower) 4095 { 4096 struct iavf_cloud_filter *filter = NULL; 4097 int err = 0; 4098 4099 spin_lock_bh(&adapter->cloud_filter_list_lock); 4100 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4101 if (filter) { 4102 filter->del = true; 4103 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4104 } else { 4105 err = -EINVAL; 4106 } 4107 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4108 4109 return err; 4110 } 4111 4112 /** 4113 * iavf_setup_tc_cls_flower - flower classifier offloads 4114 * @adapter: board private structure 4115 * @cls_flower: pointer to flow_cls_offload struct with flow info 4116 */ 4117 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4118 struct flow_cls_offload *cls_flower) 4119 { 4120 switch (cls_flower->command) { 4121 case FLOW_CLS_REPLACE: 4122 return iavf_configure_clsflower(adapter, cls_flower); 4123 case FLOW_CLS_DESTROY: 4124 return iavf_delete_clsflower(adapter, cls_flower); 4125 case FLOW_CLS_STATS: 4126 return -EOPNOTSUPP; 4127 default: 4128 return -EOPNOTSUPP; 4129 } 4130 } 4131 4132 /** 4133 * iavf_setup_tc_block_cb - block callback for tc 4134 * @type: type of offload 4135 * @type_data: offload data 4136 * @cb_priv: 4137 * 4138 * This function is the block callback for traffic classes 4139 **/ 4140 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4141 void *cb_priv) 4142 { 4143 struct iavf_adapter *adapter = cb_priv; 4144 4145 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4146 return -EOPNOTSUPP; 4147 4148 switch (type) { 4149 case TC_SETUP_CLSFLOWER: 4150 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4151 default: 4152 return -EOPNOTSUPP; 4153 } 4154 } 4155 4156 static LIST_HEAD(iavf_block_cb_list); 4157 4158 /** 4159 * iavf_setup_tc - configure multiple traffic classes 4160 * @netdev: network interface device structure 4161 * @type: type of offload 4162 * @type_data: tc offload data 4163 * 4164 * This function is the callback to ndo_setup_tc in the 4165 * netdev_ops. 4166 * 4167 * Returns 0 on success 4168 **/ 4169 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4170 void *type_data) 4171 { 4172 struct iavf_adapter *adapter = netdev_priv(netdev); 4173 4174 switch (type) { 4175 case TC_SETUP_QDISC_MQPRIO: 4176 return __iavf_setup_tc(netdev, type_data); 4177 case TC_SETUP_BLOCK: 4178 return flow_block_cb_setup_simple(type_data, 4179 &iavf_block_cb_list, 4180 iavf_setup_tc_block_cb, 4181 adapter, adapter, true); 4182 default: 4183 return -EOPNOTSUPP; 4184 } 4185 } 4186 4187 /** 4188 * iavf_open - Called when a network interface is made active 4189 * @netdev: network interface device structure 4190 * 4191 * Returns 0 on success, negative value on failure 4192 * 4193 * The open entry point is called when a network interface is made 4194 * active by the system (IFF_UP). At this point all resources needed 4195 * for transmit and receive operations are allocated, the interrupt 4196 * handler is registered with the OS, the watchdog is started, 4197 * and the stack is notified that the interface is ready. 4198 **/ 4199 static int iavf_open(struct net_device *netdev) 4200 { 4201 struct iavf_adapter *adapter = netdev_priv(netdev); 4202 int err; 4203 4204 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4205 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4206 return -EIO; 4207 } 4208 4209 while (!mutex_trylock(&adapter->crit_lock)) { 4210 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4211 * is already taken and iavf_open is called from an upper 4212 * device's notifier reacting on NETDEV_REGISTER event. 4213 * We have to leave here to avoid dead lock. 4214 */ 4215 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4216 return -EBUSY; 4217 4218 usleep_range(500, 1000); 4219 } 4220 4221 if (adapter->state != __IAVF_DOWN) { 4222 err = -EBUSY; 4223 goto err_unlock; 4224 } 4225 4226 if (adapter->state == __IAVF_RUNNING && 4227 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4228 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4229 err = 0; 4230 goto err_unlock; 4231 } 4232 4233 /* allocate transmit descriptors */ 4234 err = iavf_setup_all_tx_resources(adapter); 4235 if (err) 4236 goto err_setup_tx; 4237 4238 /* allocate receive descriptors */ 4239 err = iavf_setup_all_rx_resources(adapter); 4240 if (err) 4241 goto err_setup_rx; 4242 4243 /* clear any pending interrupts, may auto mask */ 4244 err = iavf_request_traffic_irqs(adapter, netdev->name); 4245 if (err) 4246 goto err_req_irq; 4247 4248 spin_lock_bh(&adapter->mac_vlan_list_lock); 4249 4250 iavf_add_filter(adapter, adapter->hw.mac.addr); 4251 4252 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4253 4254 /* Restore VLAN filters that were removed with IFF_DOWN */ 4255 iavf_restore_filters(adapter); 4256 4257 iavf_configure(adapter); 4258 4259 iavf_up_complete(adapter); 4260 4261 iavf_irq_enable(adapter, true); 4262 4263 mutex_unlock(&adapter->crit_lock); 4264 4265 return 0; 4266 4267 err_req_irq: 4268 iavf_down(adapter); 4269 iavf_free_traffic_irqs(adapter); 4270 err_setup_rx: 4271 iavf_free_all_rx_resources(adapter); 4272 err_setup_tx: 4273 iavf_free_all_tx_resources(adapter); 4274 err_unlock: 4275 mutex_unlock(&adapter->crit_lock); 4276 4277 return err; 4278 } 4279 4280 /** 4281 * iavf_close - Disables a network interface 4282 * @netdev: network interface device structure 4283 * 4284 * Returns 0, this is not allowed to fail 4285 * 4286 * The close entry point is called when an interface is de-activated 4287 * by the OS. The hardware is still under the drivers control, but 4288 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4289 * are freed, along with all transmit and receive resources. 4290 **/ 4291 static int iavf_close(struct net_device *netdev) 4292 { 4293 struct iavf_adapter *adapter = netdev_priv(netdev); 4294 u64 aq_to_restore; 4295 int status; 4296 4297 mutex_lock(&adapter->crit_lock); 4298 4299 if (adapter->state <= __IAVF_DOWN_PENDING) { 4300 mutex_unlock(&adapter->crit_lock); 4301 return 0; 4302 } 4303 4304 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4305 if (CLIENT_ENABLED(adapter)) 4306 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4307 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4308 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4309 * deadlock with adminq_task() until iavf_close timeouts. We must send 4310 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4311 * disable queues possible for vf. Give only necessary flags to 4312 * iavf_down and save other to set them right before iavf_close() 4313 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4314 * iavf will be in DOWN state. 4315 */ 4316 aq_to_restore = adapter->aq_required; 4317 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4318 4319 /* Remove flags which we do not want to send after close or we want to 4320 * send before disable queues. 4321 */ 4322 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4323 IAVF_FLAG_AQ_ENABLE_QUEUES | 4324 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4325 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4326 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4327 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4328 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4329 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4330 4331 iavf_down(adapter); 4332 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4333 iavf_free_traffic_irqs(adapter); 4334 4335 mutex_unlock(&adapter->crit_lock); 4336 4337 /* We explicitly don't free resources here because the hardware is 4338 * still active and can DMA into memory. Resources are cleared in 4339 * iavf_virtchnl_completion() after we get confirmation from the PF 4340 * driver that the rings have been stopped. 4341 * 4342 * Also, we wait for state to transition to __IAVF_DOWN before 4343 * returning. State change occurs in iavf_virtchnl_completion() after 4344 * VF resources are released (which occurs after PF driver processes and 4345 * responds to admin queue commands). 4346 */ 4347 4348 status = wait_event_timeout(adapter->down_waitqueue, 4349 adapter->state == __IAVF_DOWN, 4350 msecs_to_jiffies(500)); 4351 if (!status) 4352 netdev_warn(netdev, "Device resources not yet released\n"); 4353 4354 mutex_lock(&adapter->crit_lock); 4355 adapter->aq_required |= aq_to_restore; 4356 mutex_unlock(&adapter->crit_lock); 4357 return 0; 4358 } 4359 4360 /** 4361 * iavf_change_mtu - Change the Maximum Transfer Unit 4362 * @netdev: network interface device structure 4363 * @new_mtu: new value for maximum frame size 4364 * 4365 * Returns 0 on success, negative on failure 4366 **/ 4367 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4368 { 4369 struct iavf_adapter *adapter = netdev_priv(netdev); 4370 int ret = 0; 4371 4372 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4373 netdev->mtu, new_mtu); 4374 netdev->mtu = new_mtu; 4375 if (CLIENT_ENABLED(adapter)) { 4376 iavf_notify_client_l2_params(&adapter->vsi); 4377 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4378 } 4379 4380 if (netif_running(netdev)) { 4381 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4382 ret = iavf_wait_for_reset(adapter); 4383 if (ret < 0) 4384 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4385 else if (ret) 4386 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4387 } 4388 4389 return ret; 4390 } 4391 4392 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4393 NETIF_F_HW_VLAN_CTAG_TX | \ 4394 NETIF_F_HW_VLAN_STAG_RX | \ 4395 NETIF_F_HW_VLAN_STAG_TX) 4396 4397 /** 4398 * iavf_set_features - set the netdev feature flags 4399 * @netdev: ptr to the netdev being adjusted 4400 * @features: the feature set that the stack is suggesting 4401 * Note: expects to be called while under rtnl_lock() 4402 **/ 4403 static int iavf_set_features(struct net_device *netdev, 4404 netdev_features_t features) 4405 { 4406 struct iavf_adapter *adapter = netdev_priv(netdev); 4407 4408 /* trigger update on any VLAN feature change */ 4409 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4410 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4411 iavf_set_vlan_offload_features(adapter, netdev->features, 4412 features); 4413 4414 return 0; 4415 } 4416 4417 /** 4418 * iavf_features_check - Validate encapsulated packet conforms to limits 4419 * @skb: skb buff 4420 * @dev: This physical port's netdev 4421 * @features: Offload features that the stack believes apply 4422 **/ 4423 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4424 struct net_device *dev, 4425 netdev_features_t features) 4426 { 4427 size_t len; 4428 4429 /* No point in doing any of this if neither checksum nor GSO are 4430 * being requested for this frame. We can rule out both by just 4431 * checking for CHECKSUM_PARTIAL 4432 */ 4433 if (skb->ip_summed != CHECKSUM_PARTIAL) 4434 return features; 4435 4436 /* We cannot support GSO if the MSS is going to be less than 4437 * 64 bytes. If it is then we need to drop support for GSO. 4438 */ 4439 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4440 features &= ~NETIF_F_GSO_MASK; 4441 4442 /* MACLEN can support at most 63 words */ 4443 len = skb_network_header(skb) - skb->data; 4444 if (len & ~(63 * 2)) 4445 goto out_err; 4446 4447 /* IPLEN and EIPLEN can support at most 127 dwords */ 4448 len = skb_transport_header(skb) - skb_network_header(skb); 4449 if (len & ~(127 * 4)) 4450 goto out_err; 4451 4452 if (skb->encapsulation) { 4453 /* L4TUNLEN can support 127 words */ 4454 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4455 if (len & ~(127 * 2)) 4456 goto out_err; 4457 4458 /* IPLEN can support at most 127 dwords */ 4459 len = skb_inner_transport_header(skb) - 4460 skb_inner_network_header(skb); 4461 if (len & ~(127 * 4)) 4462 goto out_err; 4463 } 4464 4465 /* No need to validate L4LEN as TCP is the only protocol with a 4466 * flexible value and we support all possible values supported 4467 * by TCP, which is at most 15 dwords 4468 */ 4469 4470 return features; 4471 out_err: 4472 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4473 } 4474 4475 /** 4476 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4477 * @adapter: board private structure 4478 * 4479 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4480 * were negotiated determine the VLAN features that can be toggled on and off. 4481 **/ 4482 static netdev_features_t 4483 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4484 { 4485 netdev_features_t hw_features = 0; 4486 4487 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4488 return hw_features; 4489 4490 /* Enable VLAN features if supported */ 4491 if (VLAN_ALLOWED(adapter)) { 4492 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4493 NETIF_F_HW_VLAN_CTAG_RX); 4494 } else if (VLAN_V2_ALLOWED(adapter)) { 4495 struct virtchnl_vlan_caps *vlan_v2_caps = 4496 &adapter->vlan_v2_caps; 4497 struct virtchnl_vlan_supported_caps *stripping_support = 4498 &vlan_v2_caps->offloads.stripping_support; 4499 struct virtchnl_vlan_supported_caps *insertion_support = 4500 &vlan_v2_caps->offloads.insertion_support; 4501 4502 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4503 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4504 if (stripping_support->outer & 4505 VIRTCHNL_VLAN_ETHERTYPE_8100) 4506 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4507 if (stripping_support->outer & 4508 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4509 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4510 } else if (stripping_support->inner != 4511 VIRTCHNL_VLAN_UNSUPPORTED && 4512 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4513 if (stripping_support->inner & 4514 VIRTCHNL_VLAN_ETHERTYPE_8100) 4515 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4516 } 4517 4518 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4519 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4520 if (insertion_support->outer & 4521 VIRTCHNL_VLAN_ETHERTYPE_8100) 4522 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4523 if (insertion_support->outer & 4524 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4525 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4526 } else if (insertion_support->inner && 4527 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4528 if (insertion_support->inner & 4529 VIRTCHNL_VLAN_ETHERTYPE_8100) 4530 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4531 } 4532 } 4533 4534 return hw_features; 4535 } 4536 4537 /** 4538 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4539 * @adapter: board private structure 4540 * 4541 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4542 * were negotiated determine the VLAN features that are enabled by default. 4543 **/ 4544 static netdev_features_t 4545 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4546 { 4547 netdev_features_t features = 0; 4548 4549 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4550 return features; 4551 4552 if (VLAN_ALLOWED(adapter)) { 4553 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4554 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4555 } else if (VLAN_V2_ALLOWED(adapter)) { 4556 struct virtchnl_vlan_caps *vlan_v2_caps = 4557 &adapter->vlan_v2_caps; 4558 struct virtchnl_vlan_supported_caps *filtering_support = 4559 &vlan_v2_caps->filtering.filtering_support; 4560 struct virtchnl_vlan_supported_caps *stripping_support = 4561 &vlan_v2_caps->offloads.stripping_support; 4562 struct virtchnl_vlan_supported_caps *insertion_support = 4563 &vlan_v2_caps->offloads.insertion_support; 4564 u32 ethertype_init; 4565 4566 /* give priority to outer stripping and don't support both outer 4567 * and inner stripping 4568 */ 4569 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4570 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4571 if (stripping_support->outer & 4572 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4573 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4574 features |= NETIF_F_HW_VLAN_CTAG_RX; 4575 else if (stripping_support->outer & 4576 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4577 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4578 features |= NETIF_F_HW_VLAN_STAG_RX; 4579 } else if (stripping_support->inner != 4580 VIRTCHNL_VLAN_UNSUPPORTED) { 4581 if (stripping_support->inner & 4582 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4584 features |= NETIF_F_HW_VLAN_CTAG_RX; 4585 } 4586 4587 /* give priority to outer insertion and don't support both outer 4588 * and inner insertion 4589 */ 4590 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4591 if (insertion_support->outer & 4592 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4593 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4594 features |= NETIF_F_HW_VLAN_CTAG_TX; 4595 else if (insertion_support->outer & 4596 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4597 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4598 features |= NETIF_F_HW_VLAN_STAG_TX; 4599 } else if (insertion_support->inner != 4600 VIRTCHNL_VLAN_UNSUPPORTED) { 4601 if (insertion_support->inner & 4602 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4603 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4604 features |= NETIF_F_HW_VLAN_CTAG_TX; 4605 } 4606 4607 /* give priority to outer filtering and don't bother if both 4608 * outer and inner filtering are enabled 4609 */ 4610 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4611 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4612 if (filtering_support->outer & 4613 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4614 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4615 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4616 if (filtering_support->outer & 4617 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4618 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4619 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4620 } else if (filtering_support->inner != 4621 VIRTCHNL_VLAN_UNSUPPORTED) { 4622 if (filtering_support->inner & 4623 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4624 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4625 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4626 if (filtering_support->inner & 4627 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4628 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4629 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4630 } 4631 } 4632 4633 return features; 4634 } 4635 4636 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4637 (!(((requested) & (feature_bit)) && \ 4638 !((allowed) & (feature_bit)))) 4639 4640 /** 4641 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4642 * @adapter: board private structure 4643 * @requested_features: stack requested NETDEV features 4644 **/ 4645 static netdev_features_t 4646 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4647 netdev_features_t requested_features) 4648 { 4649 netdev_features_t allowed_features; 4650 4651 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4652 iavf_get_netdev_vlan_features(adapter); 4653 4654 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4655 allowed_features, 4656 NETIF_F_HW_VLAN_CTAG_TX)) 4657 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4658 4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4660 allowed_features, 4661 NETIF_F_HW_VLAN_CTAG_RX)) 4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4663 4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4665 allowed_features, 4666 NETIF_F_HW_VLAN_STAG_TX)) 4667 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4668 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4669 allowed_features, 4670 NETIF_F_HW_VLAN_STAG_RX)) 4671 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4672 4673 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4674 allowed_features, 4675 NETIF_F_HW_VLAN_CTAG_FILTER)) 4676 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4677 4678 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4679 allowed_features, 4680 NETIF_F_HW_VLAN_STAG_FILTER)) 4681 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4682 4683 if ((requested_features & 4684 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4685 (requested_features & 4686 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4687 adapter->vlan_v2_caps.offloads.ethertype_match == 4688 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4689 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4690 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4691 NETIF_F_HW_VLAN_STAG_TX); 4692 } 4693 4694 return requested_features; 4695 } 4696 4697 /** 4698 * iavf_fix_features - fix up the netdev feature bits 4699 * @netdev: our net device 4700 * @features: desired feature bits 4701 * 4702 * Returns fixed-up features bits 4703 **/ 4704 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4705 netdev_features_t features) 4706 { 4707 struct iavf_adapter *adapter = netdev_priv(netdev); 4708 4709 return iavf_fix_netdev_vlan_features(adapter, features); 4710 } 4711 4712 static const struct net_device_ops iavf_netdev_ops = { 4713 .ndo_open = iavf_open, 4714 .ndo_stop = iavf_close, 4715 .ndo_start_xmit = iavf_xmit_frame, 4716 .ndo_set_rx_mode = iavf_set_rx_mode, 4717 .ndo_validate_addr = eth_validate_addr, 4718 .ndo_set_mac_address = iavf_set_mac, 4719 .ndo_change_mtu = iavf_change_mtu, 4720 .ndo_tx_timeout = iavf_tx_timeout, 4721 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4722 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4723 .ndo_features_check = iavf_features_check, 4724 .ndo_fix_features = iavf_fix_features, 4725 .ndo_set_features = iavf_set_features, 4726 .ndo_setup_tc = iavf_setup_tc, 4727 }; 4728 4729 /** 4730 * iavf_check_reset_complete - check that VF reset is complete 4731 * @hw: pointer to hw struct 4732 * 4733 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4734 **/ 4735 static int iavf_check_reset_complete(struct iavf_hw *hw) 4736 { 4737 u32 rstat; 4738 int i; 4739 4740 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4741 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4742 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4743 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4744 (rstat == VIRTCHNL_VFR_COMPLETED)) 4745 return 0; 4746 usleep_range(10, 20); 4747 } 4748 return -EBUSY; 4749 } 4750 4751 /** 4752 * iavf_process_config - Process the config information we got from the PF 4753 * @adapter: board private structure 4754 * 4755 * Verify that we have a valid config struct, and set up our netdev features 4756 * and our VSI struct. 4757 **/ 4758 int iavf_process_config(struct iavf_adapter *adapter) 4759 { 4760 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4761 netdev_features_t hw_vlan_features, vlan_features; 4762 struct net_device *netdev = adapter->netdev; 4763 netdev_features_t hw_enc_features; 4764 netdev_features_t hw_features; 4765 4766 hw_enc_features = NETIF_F_SG | 4767 NETIF_F_IP_CSUM | 4768 NETIF_F_IPV6_CSUM | 4769 NETIF_F_HIGHDMA | 4770 NETIF_F_SOFT_FEATURES | 4771 NETIF_F_TSO | 4772 NETIF_F_TSO_ECN | 4773 NETIF_F_TSO6 | 4774 NETIF_F_SCTP_CRC | 4775 NETIF_F_RXHASH | 4776 NETIF_F_RXCSUM | 4777 0; 4778 4779 /* advertise to stack only if offloads for encapsulated packets is 4780 * supported 4781 */ 4782 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4783 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4784 NETIF_F_GSO_GRE | 4785 NETIF_F_GSO_GRE_CSUM | 4786 NETIF_F_GSO_IPXIP4 | 4787 NETIF_F_GSO_IPXIP6 | 4788 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4789 NETIF_F_GSO_PARTIAL | 4790 0; 4791 4792 if (!(vfres->vf_cap_flags & 4793 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4794 netdev->gso_partial_features |= 4795 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4796 4797 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4798 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4799 netdev->hw_enc_features |= hw_enc_features; 4800 } 4801 /* record features VLANs can make use of */ 4802 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4803 4804 /* Write features and hw_features separately to avoid polluting 4805 * with, or dropping, features that are set when we registered. 4806 */ 4807 hw_features = hw_enc_features; 4808 4809 /* get HW VLAN features that can be toggled */ 4810 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4811 4812 /* Enable cloud filter if ADQ is supported */ 4813 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4814 hw_features |= NETIF_F_HW_TC; 4815 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4816 hw_features |= NETIF_F_GSO_UDP_L4; 4817 4818 netdev->hw_features |= hw_features | hw_vlan_features; 4819 vlan_features = iavf_get_netdev_vlan_features(adapter); 4820 4821 netdev->features |= hw_features | vlan_features; 4822 4823 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4824 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4825 4826 netdev->priv_flags |= IFF_UNICAST_FLT; 4827 4828 /* Do not turn on offloads when they are requested to be turned off. 4829 * TSO needs minimum 576 bytes to work correctly. 4830 */ 4831 if (netdev->wanted_features) { 4832 if (!(netdev->wanted_features & NETIF_F_TSO) || 4833 netdev->mtu < 576) 4834 netdev->features &= ~NETIF_F_TSO; 4835 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4836 netdev->mtu < 576) 4837 netdev->features &= ~NETIF_F_TSO6; 4838 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4839 netdev->features &= ~NETIF_F_TSO_ECN; 4840 if (!(netdev->wanted_features & NETIF_F_GRO)) 4841 netdev->features &= ~NETIF_F_GRO; 4842 if (!(netdev->wanted_features & NETIF_F_GSO)) 4843 netdev->features &= ~NETIF_F_GSO; 4844 } 4845 4846 return 0; 4847 } 4848 4849 /** 4850 * iavf_shutdown - Shutdown the device in preparation for a reboot 4851 * @pdev: pci device structure 4852 **/ 4853 static void iavf_shutdown(struct pci_dev *pdev) 4854 { 4855 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4856 struct net_device *netdev = adapter->netdev; 4857 4858 netif_device_detach(netdev); 4859 4860 if (netif_running(netdev)) 4861 iavf_close(netdev); 4862 4863 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4864 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4865 /* Prevent the watchdog from running. */ 4866 iavf_change_state(adapter, __IAVF_REMOVE); 4867 adapter->aq_required = 0; 4868 mutex_unlock(&adapter->crit_lock); 4869 4870 #ifdef CONFIG_PM 4871 pci_save_state(pdev); 4872 4873 #endif 4874 pci_disable_device(pdev); 4875 } 4876 4877 /** 4878 * iavf_probe - Device Initialization Routine 4879 * @pdev: PCI device information struct 4880 * @ent: entry in iavf_pci_tbl 4881 * 4882 * Returns 0 on success, negative on failure 4883 * 4884 * iavf_probe initializes an adapter identified by a pci_dev structure. 4885 * The OS initialization, configuring of the adapter private structure, 4886 * and a hardware reset occur. 4887 **/ 4888 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4889 { 4890 struct net_device *netdev; 4891 struct iavf_adapter *adapter = NULL; 4892 struct iavf_hw *hw = NULL; 4893 int err; 4894 4895 err = pci_enable_device(pdev); 4896 if (err) 4897 return err; 4898 4899 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4900 if (err) { 4901 dev_err(&pdev->dev, 4902 "DMA configuration failed: 0x%x\n", err); 4903 goto err_dma; 4904 } 4905 4906 err = pci_request_regions(pdev, iavf_driver_name); 4907 if (err) { 4908 dev_err(&pdev->dev, 4909 "pci_request_regions failed 0x%x\n", err); 4910 goto err_pci_reg; 4911 } 4912 4913 pci_set_master(pdev); 4914 4915 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4916 IAVF_MAX_REQ_QUEUES); 4917 if (!netdev) { 4918 err = -ENOMEM; 4919 goto err_alloc_etherdev; 4920 } 4921 4922 SET_NETDEV_DEV(netdev, &pdev->dev); 4923 4924 pci_set_drvdata(pdev, netdev); 4925 adapter = netdev_priv(netdev); 4926 4927 adapter->netdev = netdev; 4928 adapter->pdev = pdev; 4929 4930 hw = &adapter->hw; 4931 hw->back = adapter; 4932 4933 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4934 iavf_driver_name); 4935 if (!adapter->wq) { 4936 err = -ENOMEM; 4937 goto err_alloc_wq; 4938 } 4939 4940 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4941 iavf_change_state(adapter, __IAVF_STARTUP); 4942 4943 /* Call save state here because it relies on the adapter struct. */ 4944 pci_save_state(pdev); 4945 4946 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4947 pci_resource_len(pdev, 0)); 4948 if (!hw->hw_addr) { 4949 err = -EIO; 4950 goto err_ioremap; 4951 } 4952 hw->vendor_id = pdev->vendor; 4953 hw->device_id = pdev->device; 4954 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4955 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4956 hw->subsystem_device_id = pdev->subsystem_device; 4957 hw->bus.device = PCI_SLOT(pdev->devfn); 4958 hw->bus.func = PCI_FUNC(pdev->devfn); 4959 hw->bus.bus_id = pdev->bus->number; 4960 4961 /* set up the locks for the AQ, do this only once in probe 4962 * and destroy them only once in remove 4963 */ 4964 mutex_init(&adapter->crit_lock); 4965 mutex_init(&adapter->client_lock); 4966 mutex_init(&hw->aq.asq_mutex); 4967 mutex_init(&hw->aq.arq_mutex); 4968 4969 spin_lock_init(&adapter->mac_vlan_list_lock); 4970 spin_lock_init(&adapter->cloud_filter_list_lock); 4971 spin_lock_init(&adapter->fdir_fltr_lock); 4972 spin_lock_init(&adapter->adv_rss_lock); 4973 4974 INIT_LIST_HEAD(&adapter->mac_filter_list); 4975 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4976 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4977 INIT_LIST_HEAD(&adapter->fdir_list_head); 4978 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4979 4980 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4981 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4982 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4983 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4984 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4985 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4986 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4987 4988 /* Setup the wait queue for indicating transition to down status */ 4989 init_waitqueue_head(&adapter->down_waitqueue); 4990 4991 /* Setup the wait queue for indicating transition to running state */ 4992 init_waitqueue_head(&adapter->reset_waitqueue); 4993 4994 /* Setup the wait queue for indicating virtchannel events */ 4995 init_waitqueue_head(&adapter->vc_waitqueue); 4996 4997 return 0; 4998 4999 err_ioremap: 5000 destroy_workqueue(adapter->wq); 5001 err_alloc_wq: 5002 free_netdev(netdev); 5003 err_alloc_etherdev: 5004 pci_release_regions(pdev); 5005 err_pci_reg: 5006 err_dma: 5007 pci_disable_device(pdev); 5008 return err; 5009 } 5010 5011 /** 5012 * iavf_suspend - Power management suspend routine 5013 * @dev_d: device info pointer 5014 * 5015 * Called when the system (VM) is entering sleep/suspend. 5016 **/ 5017 static int __maybe_unused iavf_suspend(struct device *dev_d) 5018 { 5019 struct net_device *netdev = dev_get_drvdata(dev_d); 5020 struct iavf_adapter *adapter = netdev_priv(netdev); 5021 5022 netif_device_detach(netdev); 5023 5024 while (!mutex_trylock(&adapter->crit_lock)) 5025 usleep_range(500, 1000); 5026 5027 if (netif_running(netdev)) { 5028 rtnl_lock(); 5029 iavf_down(adapter); 5030 rtnl_unlock(); 5031 } 5032 iavf_free_misc_irq(adapter); 5033 iavf_reset_interrupt_capability(adapter); 5034 5035 mutex_unlock(&adapter->crit_lock); 5036 5037 return 0; 5038 } 5039 5040 /** 5041 * iavf_resume - Power management resume routine 5042 * @dev_d: device info pointer 5043 * 5044 * Called when the system (VM) is resumed from sleep/suspend. 5045 **/ 5046 static int __maybe_unused iavf_resume(struct device *dev_d) 5047 { 5048 struct pci_dev *pdev = to_pci_dev(dev_d); 5049 struct iavf_adapter *adapter; 5050 u32 err; 5051 5052 adapter = iavf_pdev_to_adapter(pdev); 5053 5054 pci_set_master(pdev); 5055 5056 rtnl_lock(); 5057 err = iavf_set_interrupt_capability(adapter); 5058 if (err) { 5059 rtnl_unlock(); 5060 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5061 return err; 5062 } 5063 err = iavf_request_misc_irq(adapter); 5064 rtnl_unlock(); 5065 if (err) { 5066 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5067 return err; 5068 } 5069 5070 queue_work(adapter->wq, &adapter->reset_task); 5071 5072 netif_device_attach(adapter->netdev); 5073 5074 return err; 5075 } 5076 5077 /** 5078 * iavf_remove - Device Removal Routine 5079 * @pdev: PCI device information struct 5080 * 5081 * iavf_remove is called by the PCI subsystem to alert the driver 5082 * that it should release a PCI device. The could be caused by a 5083 * Hot-Plug event, or because the driver is going to be removed from 5084 * memory. 5085 **/ 5086 static void iavf_remove(struct pci_dev *pdev) 5087 { 5088 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5089 struct iavf_fdir_fltr *fdir, *fdirtmp; 5090 struct iavf_vlan_filter *vlf, *vlftmp; 5091 struct iavf_cloud_filter *cf, *cftmp; 5092 struct iavf_adv_rss *rss, *rsstmp; 5093 struct iavf_mac_filter *f, *ftmp; 5094 struct net_device *netdev; 5095 struct iavf_hw *hw; 5096 int err; 5097 5098 netdev = adapter->netdev; 5099 hw = &adapter->hw; 5100 5101 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5102 return; 5103 5104 /* Wait until port initialization is complete. 5105 * There are flows where register/unregister netdev may race. 5106 */ 5107 while (1) { 5108 mutex_lock(&adapter->crit_lock); 5109 if (adapter->state == __IAVF_RUNNING || 5110 adapter->state == __IAVF_DOWN || 5111 adapter->state == __IAVF_INIT_FAILED) { 5112 mutex_unlock(&adapter->crit_lock); 5113 break; 5114 } 5115 /* Simply return if we already went through iavf_shutdown */ 5116 if (adapter->state == __IAVF_REMOVE) { 5117 mutex_unlock(&adapter->crit_lock); 5118 return; 5119 } 5120 5121 mutex_unlock(&adapter->crit_lock); 5122 usleep_range(500, 1000); 5123 } 5124 cancel_delayed_work_sync(&adapter->watchdog_task); 5125 cancel_work_sync(&adapter->finish_config); 5126 5127 rtnl_lock(); 5128 if (adapter->netdev_registered) { 5129 unregister_netdevice(netdev); 5130 adapter->netdev_registered = false; 5131 } 5132 rtnl_unlock(); 5133 5134 if (CLIENT_ALLOWED(adapter)) { 5135 err = iavf_lan_del_device(adapter); 5136 if (err) 5137 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5138 err); 5139 } 5140 5141 mutex_lock(&adapter->crit_lock); 5142 dev_info(&adapter->pdev->dev, "Removing device\n"); 5143 iavf_change_state(adapter, __IAVF_REMOVE); 5144 5145 iavf_request_reset(adapter); 5146 msleep(50); 5147 /* If the FW isn't responding, kick it once, but only once. */ 5148 if (!iavf_asq_done(hw)) { 5149 iavf_request_reset(adapter); 5150 msleep(50); 5151 } 5152 5153 iavf_misc_irq_disable(adapter); 5154 /* Shut down all the garbage mashers on the detention level */ 5155 cancel_work_sync(&adapter->reset_task); 5156 cancel_delayed_work_sync(&adapter->watchdog_task); 5157 cancel_work_sync(&adapter->adminq_task); 5158 cancel_delayed_work_sync(&adapter->client_task); 5159 5160 adapter->aq_required = 0; 5161 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5162 5163 iavf_free_all_tx_resources(adapter); 5164 iavf_free_all_rx_resources(adapter); 5165 iavf_free_misc_irq(adapter); 5166 5167 iavf_reset_interrupt_capability(adapter); 5168 iavf_free_q_vectors(adapter); 5169 5170 iavf_free_rss(adapter); 5171 5172 if (hw->aq.asq.count) 5173 iavf_shutdown_adminq(hw); 5174 5175 /* destroy the locks only once, here */ 5176 mutex_destroy(&hw->aq.arq_mutex); 5177 mutex_destroy(&hw->aq.asq_mutex); 5178 mutex_destroy(&adapter->client_lock); 5179 mutex_unlock(&adapter->crit_lock); 5180 mutex_destroy(&adapter->crit_lock); 5181 5182 iounmap(hw->hw_addr); 5183 pci_release_regions(pdev); 5184 iavf_free_queues(adapter); 5185 kfree(adapter->vf_res); 5186 spin_lock_bh(&adapter->mac_vlan_list_lock); 5187 /* If we got removed before an up/down sequence, we've got a filter 5188 * hanging out there that we need to get rid of. 5189 */ 5190 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5191 list_del(&f->list); 5192 kfree(f); 5193 } 5194 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5195 list) { 5196 list_del(&vlf->list); 5197 kfree(vlf); 5198 } 5199 5200 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5201 5202 spin_lock_bh(&adapter->cloud_filter_list_lock); 5203 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5204 list_del(&cf->list); 5205 kfree(cf); 5206 } 5207 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5208 5209 spin_lock_bh(&adapter->fdir_fltr_lock); 5210 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5211 list_del(&fdir->list); 5212 kfree(fdir); 5213 } 5214 spin_unlock_bh(&adapter->fdir_fltr_lock); 5215 5216 spin_lock_bh(&adapter->adv_rss_lock); 5217 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5218 list) { 5219 list_del(&rss->list); 5220 kfree(rss); 5221 } 5222 spin_unlock_bh(&adapter->adv_rss_lock); 5223 5224 destroy_workqueue(adapter->wq); 5225 5226 free_netdev(netdev); 5227 5228 pci_disable_device(pdev); 5229 } 5230 5231 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5232 5233 static struct pci_driver iavf_driver = { 5234 .name = iavf_driver_name, 5235 .id_table = iavf_pci_tbl, 5236 .probe = iavf_probe, 5237 .remove = iavf_remove, 5238 .driver.pm = &iavf_pm_ops, 5239 .shutdown = iavf_shutdown, 5240 }; 5241 5242 /** 5243 * iavf_init_module - Driver Registration Routine 5244 * 5245 * iavf_init_module is the first routine called when the driver is 5246 * loaded. All it does is register with the PCI subsystem. 5247 **/ 5248 static int __init iavf_init_module(void) 5249 { 5250 pr_info("iavf: %s\n", iavf_driver_string); 5251 5252 pr_info("%s\n", iavf_copyright); 5253 5254 return pci_register_driver(&iavf_driver); 5255 } 5256 5257 module_init(iavf_init_module); 5258 5259 /** 5260 * iavf_exit_module - Driver Exit Cleanup Routine 5261 * 5262 * iavf_exit_module is called just before the driver is removed 5263 * from memory. 5264 **/ 5265 static void __exit iavf_exit_module(void) 5266 { 5267 pci_unregister_driver(&iavf_driver); 5268 } 5269 5270 module_exit(iavf_exit_module); 5271 5272 /* iavf_main.c */ 5273