1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 /** 913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 914 * @netdev: network device struct 915 * @proto: unused protocol data 916 * @vid: VLAN tag 917 **/ 918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 919 __always_unused __be16 proto, u16 vid) 920 { 921 struct iavf_adapter *adapter = netdev_priv(netdev); 922 923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 924 if (proto == cpu_to_be16(ETH_P_8021Q)) 925 clear_bit(vid, adapter->vsi.active_cvlans); 926 else 927 clear_bit(vid, adapter->vsi.active_svlans); 928 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1012 f->is_primary = false; 1013 } 1014 1015 f = iavf_find_filter(adapter, hw->mac.addr); 1016 if (f) { 1017 f->remove = true; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1019 } 1020 1021 f = iavf_add_filter(adapter, new_mac); 1022 1023 if (f) { 1024 /* Always send the request to add if changing primary MAC 1025 * even if filter is already present on the list 1026 */ 1027 f->is_primary = true; 1028 f->add = true; 1029 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1030 ether_addr_copy(hw->mac.addr, new_mac); 1031 } 1032 1033 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1034 1035 /* schedule the watchdog task to immediately process the request */ 1036 if (f) { 1037 queue_work(iavf_wq, &adapter->watchdog_task.work); 1038 return 0; 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 /** 1044 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1045 * @netdev: network interface device structure 1046 * @macaddr: MAC address to set 1047 * 1048 * Returns true on success, false on failure 1049 */ 1050 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1051 const u8 *macaddr) 1052 { 1053 struct iavf_adapter *adapter = netdev_priv(netdev); 1054 struct iavf_mac_filter *f; 1055 bool ret = false; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 f = iavf_find_filter(adapter, macaddr); 1060 1061 if (!f || (!f->add && f->add_handled)) 1062 ret = true; 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * iavf_set_mac - NDO callback to set port MAC address 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 */ 1076 static int iavf_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct iavf_adapter *adapter = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 int ret; 1081 1082 if (!is_valid_ether_addr(addr->sa_data)) 1083 return -EADDRNOTAVAIL; 1084 1085 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1086 1087 if (ret) 1088 return ret; 1089 1090 /* If this is an initial set MAC during VF spawn do not wait */ 1091 if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) { 1092 adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET; 1093 return 0; 1094 } 1095 1096 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1097 iavf_is_mac_set_handled(netdev, addr->sa_data), 1098 msecs_to_jiffies(2500)); 1099 1100 /* If ret < 0 then it means wait was interrupted. 1101 * If ret == 0 then it means we got a timeout. 1102 * else it means we got response for set MAC from PF, 1103 * check if netdev MAC was updated to requested MAC, 1104 * if yes then set MAC succeeded otherwise it failed return -EACCES 1105 */ 1106 if (ret < 0) 1107 return ret; 1108 1109 if (!ret) 1110 return -EAGAIN; 1111 1112 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1113 return -EACCES; 1114 1115 return 0; 1116 } 1117 1118 /** 1119 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1120 * @netdev: the netdevice 1121 * @addr: address to add 1122 * 1123 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1124 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1125 */ 1126 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1127 { 1128 struct iavf_adapter *adapter = netdev_priv(netdev); 1129 1130 if (iavf_add_filter(adapter, addr)) 1131 return 0; 1132 else 1133 return -ENOMEM; 1134 } 1135 1136 /** 1137 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1138 * @netdev: the netdevice 1139 * @addr: address to add 1140 * 1141 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1142 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1143 */ 1144 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1145 { 1146 struct iavf_adapter *adapter = netdev_priv(netdev); 1147 struct iavf_mac_filter *f; 1148 1149 /* Under some circumstances, we might receive a request to delete 1150 * our own device address from our uc list. Because we store the 1151 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1152 * such requests and not delete our device address from this list. 1153 */ 1154 if (ether_addr_equal(addr, netdev->dev_addr)) 1155 return 0; 1156 1157 f = iavf_find_filter(adapter, addr); 1158 if (f) { 1159 f->remove = true; 1160 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1161 } 1162 return 0; 1163 } 1164 1165 /** 1166 * iavf_set_rx_mode - NDO callback to set the netdev filters 1167 * @netdev: network interface device structure 1168 **/ 1169 static void iavf_set_rx_mode(struct net_device *netdev) 1170 { 1171 struct iavf_adapter *adapter = netdev_priv(netdev); 1172 1173 spin_lock_bh(&adapter->mac_vlan_list_lock); 1174 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1175 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1176 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1177 1178 if (netdev->flags & IFF_PROMISC && 1179 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1180 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1181 else if (!(netdev->flags & IFF_PROMISC) && 1182 adapter->flags & IAVF_FLAG_PROMISC_ON) 1183 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1184 1185 if (netdev->flags & IFF_ALLMULTI && 1186 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1187 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1188 else if (!(netdev->flags & IFF_ALLMULTI) && 1189 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1190 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1191 } 1192 1193 /** 1194 * iavf_napi_enable_all - enable NAPI on all queue vectors 1195 * @adapter: board private structure 1196 **/ 1197 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1198 { 1199 int q_idx; 1200 struct iavf_q_vector *q_vector; 1201 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1202 1203 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1204 struct napi_struct *napi; 1205 1206 q_vector = &adapter->q_vectors[q_idx]; 1207 napi = &q_vector->napi; 1208 napi_enable(napi); 1209 } 1210 } 1211 1212 /** 1213 * iavf_napi_disable_all - disable NAPI on all queue vectors 1214 * @adapter: board private structure 1215 **/ 1216 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1217 { 1218 int q_idx; 1219 struct iavf_q_vector *q_vector; 1220 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1221 1222 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1223 q_vector = &adapter->q_vectors[q_idx]; 1224 napi_disable(&q_vector->napi); 1225 } 1226 } 1227 1228 /** 1229 * iavf_configure - set up transmit and receive data structures 1230 * @adapter: board private structure 1231 **/ 1232 static void iavf_configure(struct iavf_adapter *adapter) 1233 { 1234 struct net_device *netdev = adapter->netdev; 1235 int i; 1236 1237 iavf_set_rx_mode(netdev); 1238 1239 iavf_configure_tx(adapter); 1240 iavf_configure_rx(adapter); 1241 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1242 1243 for (i = 0; i < adapter->num_active_queues; i++) { 1244 struct iavf_ring *ring = &adapter->rx_rings[i]; 1245 1246 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1247 } 1248 } 1249 1250 /** 1251 * iavf_up_complete - Finish the last steps of bringing up a connection 1252 * @adapter: board private structure 1253 * 1254 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1255 **/ 1256 static void iavf_up_complete(struct iavf_adapter *adapter) 1257 { 1258 iavf_change_state(adapter, __IAVF_RUNNING); 1259 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1260 1261 iavf_napi_enable_all(adapter); 1262 1263 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1264 if (CLIENT_ENABLED(adapter)) 1265 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1266 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1267 } 1268 1269 /** 1270 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1271 * yet and mark other to be removed. 1272 * @adapter: board private structure 1273 **/ 1274 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1275 { 1276 struct iavf_vlan_filter *vlf, *vlftmp; 1277 struct iavf_mac_filter *f, *ftmp; 1278 1279 spin_lock_bh(&adapter->mac_vlan_list_lock); 1280 /* clear the sync flag on all filters */ 1281 __dev_uc_unsync(adapter->netdev, NULL); 1282 __dev_mc_unsync(adapter->netdev, NULL); 1283 1284 /* remove all MAC filters */ 1285 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1286 list) { 1287 if (f->add) { 1288 list_del(&f->list); 1289 kfree(f); 1290 } else { 1291 f->remove = true; 1292 } 1293 } 1294 1295 /* remove all VLAN filters */ 1296 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1297 list) { 1298 if (vlf->add) { 1299 list_del(&vlf->list); 1300 kfree(vlf); 1301 } else { 1302 vlf->remove = true; 1303 } 1304 } 1305 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1306 } 1307 1308 /** 1309 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1310 * mark other to be removed. 1311 * @adapter: board private structure 1312 **/ 1313 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1314 { 1315 struct iavf_cloud_filter *cf, *cftmp; 1316 1317 /* remove all cloud filters */ 1318 spin_lock_bh(&adapter->cloud_filter_list_lock); 1319 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1320 list) { 1321 if (cf->add) { 1322 list_del(&cf->list); 1323 kfree(cf); 1324 adapter->num_cloud_filters--; 1325 } else { 1326 cf->del = true; 1327 } 1328 } 1329 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1330 } 1331 1332 /** 1333 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1334 * other to be removed. 1335 * @adapter: board private structure 1336 **/ 1337 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1338 { 1339 struct iavf_fdir_fltr *fdir, *fdirtmp; 1340 1341 /* remove all Flow Director filters */ 1342 spin_lock_bh(&adapter->fdir_fltr_lock); 1343 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1344 list) { 1345 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1346 list_del(&fdir->list); 1347 kfree(fdir); 1348 adapter->fdir_active_fltr--; 1349 } else { 1350 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1351 } 1352 } 1353 spin_unlock_bh(&adapter->fdir_fltr_lock); 1354 } 1355 1356 /** 1357 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1358 * other to be removed. 1359 * @adapter: board private structure 1360 **/ 1361 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1362 { 1363 struct iavf_adv_rss *rss, *rsstmp; 1364 1365 /* remove all advance RSS configuration */ 1366 spin_lock_bh(&adapter->adv_rss_lock); 1367 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1368 list) { 1369 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1370 list_del(&rss->list); 1371 kfree(rss); 1372 } else { 1373 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1374 } 1375 } 1376 spin_unlock_bh(&adapter->adv_rss_lock); 1377 } 1378 1379 /** 1380 * iavf_down - Shutdown the connection processing 1381 * @adapter: board private structure 1382 * 1383 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1384 **/ 1385 void iavf_down(struct iavf_adapter *adapter) 1386 { 1387 struct net_device *netdev = adapter->netdev; 1388 1389 if (adapter->state <= __IAVF_DOWN_PENDING) 1390 return; 1391 1392 netif_carrier_off(netdev); 1393 netif_tx_disable(netdev); 1394 adapter->link_up = false; 1395 iavf_napi_disable_all(adapter); 1396 iavf_irq_disable(adapter); 1397 1398 iavf_clear_mac_vlan_filters(adapter); 1399 iavf_clear_cloud_filters(adapter); 1400 iavf_clear_fdir_filters(adapter); 1401 iavf_clear_adv_rss_conf(adapter); 1402 1403 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1404 /* cancel any current operation */ 1405 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1406 /* Schedule operations to close down the HW. Don't wait 1407 * here for this to complete. The watchdog is still running 1408 * and it will take care of this. 1409 */ 1410 if (!list_empty(&adapter->mac_filter_list)) 1411 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1412 if (!list_empty(&adapter->vlan_filter_list)) 1413 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1414 if (!list_empty(&adapter->cloud_filter_list)) 1415 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1416 if (!list_empty(&adapter->fdir_list_head)) 1417 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1418 if (!list_empty(&adapter->adv_rss_list_head)) 1419 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1420 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1421 } 1422 1423 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1424 } 1425 1426 /** 1427 * iavf_acquire_msix_vectors - Setup the MSIX capability 1428 * @adapter: board private structure 1429 * @vectors: number of vectors to request 1430 * 1431 * Work with the OS to set up the MSIX vectors needed. 1432 * 1433 * Returns 0 on success, negative on failure 1434 **/ 1435 static int 1436 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1437 { 1438 int err, vector_threshold; 1439 1440 /* We'll want at least 3 (vector_threshold): 1441 * 0) Other (Admin Queue and link, mostly) 1442 * 1) TxQ[0] Cleanup 1443 * 2) RxQ[0] Cleanup 1444 */ 1445 vector_threshold = MIN_MSIX_COUNT; 1446 1447 /* The more we get, the more we will assign to Tx/Rx Cleanup 1448 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1449 * Right now, we simply care about how many we'll get; we'll 1450 * set them up later while requesting irq's. 1451 */ 1452 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1453 vector_threshold, vectors); 1454 if (err < 0) { 1455 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1456 kfree(adapter->msix_entries); 1457 adapter->msix_entries = NULL; 1458 return err; 1459 } 1460 1461 /* Adjust for only the vectors we'll use, which is minimum 1462 * of max_msix_q_vectors + NONQ_VECS, or the number of 1463 * vectors we were allocated. 1464 */ 1465 adapter->num_msix_vectors = err; 1466 return 0; 1467 } 1468 1469 /** 1470 * iavf_free_queues - Free memory for all rings 1471 * @adapter: board private structure to initialize 1472 * 1473 * Free all of the memory associated with queue pairs. 1474 **/ 1475 static void iavf_free_queues(struct iavf_adapter *adapter) 1476 { 1477 if (!adapter->vsi_res) 1478 return; 1479 adapter->num_active_queues = 0; 1480 kfree(adapter->tx_rings); 1481 adapter->tx_rings = NULL; 1482 kfree(adapter->rx_rings); 1483 adapter->rx_rings = NULL; 1484 } 1485 1486 /** 1487 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1488 * @adapter: board private structure 1489 * 1490 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1491 * stripped in certain descriptor fields. Instead of checking the offload 1492 * capability bits in the hot path, cache the location the ring specific 1493 * flags. 1494 */ 1495 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1496 { 1497 int i; 1498 1499 for (i = 0; i < adapter->num_active_queues; i++) { 1500 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1501 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1502 1503 /* prevent multiple L2TAG bits being set after VFR */ 1504 tx_ring->flags &= 1505 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1506 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1507 rx_ring->flags &= 1508 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1509 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1510 1511 if (VLAN_ALLOWED(adapter)) { 1512 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1513 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1514 } else if (VLAN_V2_ALLOWED(adapter)) { 1515 struct virtchnl_vlan_supported_caps *stripping_support; 1516 struct virtchnl_vlan_supported_caps *insertion_support; 1517 1518 stripping_support = 1519 &adapter->vlan_v2_caps.offloads.stripping_support; 1520 insertion_support = 1521 &adapter->vlan_v2_caps.offloads.insertion_support; 1522 1523 if (stripping_support->outer) { 1524 if (stripping_support->outer & 1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1526 rx_ring->flags |= 1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1528 else if (stripping_support->outer & 1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1530 rx_ring->flags |= 1531 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1532 } else if (stripping_support->inner) { 1533 if (stripping_support->inner & 1534 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1535 rx_ring->flags |= 1536 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1537 else if (stripping_support->inner & 1538 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1539 rx_ring->flags |= 1540 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1541 } 1542 1543 if (insertion_support->outer) { 1544 if (insertion_support->outer & 1545 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1546 tx_ring->flags |= 1547 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1548 else if (insertion_support->outer & 1549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1550 tx_ring->flags |= 1551 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1552 } else if (insertion_support->inner) { 1553 if (insertion_support->inner & 1554 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1555 tx_ring->flags |= 1556 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1557 else if (insertion_support->inner & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1559 tx_ring->flags |= 1560 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1561 } 1562 } 1563 } 1564 } 1565 1566 /** 1567 * iavf_alloc_queues - Allocate memory for all rings 1568 * @adapter: board private structure to initialize 1569 * 1570 * We allocate one ring per queue at run-time since we don't know the 1571 * number of queues at compile-time. The polling_netdev array is 1572 * intended for Multiqueue, but should work fine with a single queue. 1573 **/ 1574 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1575 { 1576 int i, num_active_queues; 1577 1578 /* If we're in reset reallocating queues we don't actually know yet for 1579 * certain the PF gave us the number of queues we asked for but we'll 1580 * assume it did. Once basic reset is finished we'll confirm once we 1581 * start negotiating config with PF. 1582 */ 1583 if (adapter->num_req_queues) 1584 num_active_queues = adapter->num_req_queues; 1585 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1586 adapter->num_tc) 1587 num_active_queues = adapter->ch_config.total_qps; 1588 else 1589 num_active_queues = min_t(int, 1590 adapter->vsi_res->num_queue_pairs, 1591 (int)(num_online_cpus())); 1592 1593 1594 adapter->tx_rings = kcalloc(num_active_queues, 1595 sizeof(struct iavf_ring), GFP_KERNEL); 1596 if (!adapter->tx_rings) 1597 goto err_out; 1598 adapter->rx_rings = kcalloc(num_active_queues, 1599 sizeof(struct iavf_ring), GFP_KERNEL); 1600 if (!adapter->rx_rings) 1601 goto err_out; 1602 1603 for (i = 0; i < num_active_queues; i++) { 1604 struct iavf_ring *tx_ring; 1605 struct iavf_ring *rx_ring; 1606 1607 tx_ring = &adapter->tx_rings[i]; 1608 1609 tx_ring->queue_index = i; 1610 tx_ring->netdev = adapter->netdev; 1611 tx_ring->dev = &adapter->pdev->dev; 1612 tx_ring->count = adapter->tx_desc_count; 1613 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1614 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1615 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1616 1617 rx_ring = &adapter->rx_rings[i]; 1618 rx_ring->queue_index = i; 1619 rx_ring->netdev = adapter->netdev; 1620 rx_ring->dev = &adapter->pdev->dev; 1621 rx_ring->count = adapter->rx_desc_count; 1622 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1623 } 1624 1625 adapter->num_active_queues = num_active_queues; 1626 1627 iavf_set_queue_vlan_tag_loc(adapter); 1628 1629 return 0; 1630 1631 err_out: 1632 iavf_free_queues(adapter); 1633 return -ENOMEM; 1634 } 1635 1636 /** 1637 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1638 * @adapter: board private structure to initialize 1639 * 1640 * Attempt to configure the interrupts using the best available 1641 * capabilities of the hardware and the kernel. 1642 **/ 1643 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1644 { 1645 int vector, v_budget; 1646 int pairs = 0; 1647 int err = 0; 1648 1649 if (!adapter->vsi_res) { 1650 err = -EIO; 1651 goto out; 1652 } 1653 pairs = adapter->num_active_queues; 1654 1655 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1656 * us much good if we have more vectors than CPUs. However, we already 1657 * limit the total number of queues by the number of CPUs so we do not 1658 * need any further limiting here. 1659 */ 1660 v_budget = min_t(int, pairs + NONQ_VECS, 1661 (int)adapter->vf_res->max_vectors); 1662 1663 adapter->msix_entries = kcalloc(v_budget, 1664 sizeof(struct msix_entry), GFP_KERNEL); 1665 if (!adapter->msix_entries) { 1666 err = -ENOMEM; 1667 goto out; 1668 } 1669 1670 for (vector = 0; vector < v_budget; vector++) 1671 adapter->msix_entries[vector].entry = vector; 1672 1673 err = iavf_acquire_msix_vectors(adapter, v_budget); 1674 1675 out: 1676 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1677 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1678 return err; 1679 } 1680 1681 /** 1682 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1683 * @adapter: board private structure 1684 * 1685 * Return 0 on success, negative on failure 1686 **/ 1687 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1688 { 1689 struct iavf_aqc_get_set_rss_key_data *rss_key = 1690 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1691 struct iavf_hw *hw = &adapter->hw; 1692 enum iavf_status status; 1693 1694 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1695 /* bail because we already have a command pending */ 1696 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1697 adapter->current_op); 1698 return -EBUSY; 1699 } 1700 1701 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1702 if (status) { 1703 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1704 iavf_stat_str(hw, status), 1705 iavf_aq_str(hw, hw->aq.asq_last_status)); 1706 return iavf_status_to_errno(status); 1707 1708 } 1709 1710 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1711 adapter->rss_lut, adapter->rss_lut_size); 1712 if (status) { 1713 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1714 iavf_stat_str(hw, status), 1715 iavf_aq_str(hw, hw->aq.asq_last_status)); 1716 return iavf_status_to_errno(status); 1717 } 1718 1719 return 0; 1720 1721 } 1722 1723 /** 1724 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1725 * @adapter: board private structure 1726 * 1727 * Returns 0 on success, negative on failure 1728 **/ 1729 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1730 { 1731 struct iavf_hw *hw = &adapter->hw; 1732 u32 *dw; 1733 u16 i; 1734 1735 dw = (u32 *)adapter->rss_key; 1736 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1737 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1738 1739 dw = (u32 *)adapter->rss_lut; 1740 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1741 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1742 1743 iavf_flush(hw); 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * iavf_config_rss - Configure RSS keys and lut 1750 * @adapter: board private structure 1751 * 1752 * Returns 0 on success, negative on failure 1753 **/ 1754 int iavf_config_rss(struct iavf_adapter *adapter) 1755 { 1756 1757 if (RSS_PF(adapter)) { 1758 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1759 IAVF_FLAG_AQ_SET_RSS_KEY; 1760 return 0; 1761 } else if (RSS_AQ(adapter)) { 1762 return iavf_config_rss_aq(adapter); 1763 } else { 1764 return iavf_config_rss_reg(adapter); 1765 } 1766 } 1767 1768 /** 1769 * iavf_fill_rss_lut - Fill the lut with default values 1770 * @adapter: board private structure 1771 **/ 1772 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1773 { 1774 u16 i; 1775 1776 for (i = 0; i < adapter->rss_lut_size; i++) 1777 adapter->rss_lut[i] = i % adapter->num_active_queues; 1778 } 1779 1780 /** 1781 * iavf_init_rss - Prepare for RSS 1782 * @adapter: board private structure 1783 * 1784 * Return 0 on success, negative on failure 1785 **/ 1786 static int iavf_init_rss(struct iavf_adapter *adapter) 1787 { 1788 struct iavf_hw *hw = &adapter->hw; 1789 1790 if (!RSS_PF(adapter)) { 1791 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1792 if (adapter->vf_res->vf_cap_flags & 1793 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1794 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1795 else 1796 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1797 1798 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1799 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1800 } 1801 1802 iavf_fill_rss_lut(adapter); 1803 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1804 1805 return iavf_config_rss(adapter); 1806 } 1807 1808 /** 1809 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1810 * @adapter: board private structure to initialize 1811 * 1812 * We allocate one q_vector per queue interrupt. If allocation fails we 1813 * return -ENOMEM. 1814 **/ 1815 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1816 { 1817 int q_idx = 0, num_q_vectors; 1818 struct iavf_q_vector *q_vector; 1819 1820 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1821 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1822 GFP_KERNEL); 1823 if (!adapter->q_vectors) 1824 return -ENOMEM; 1825 1826 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1827 q_vector = &adapter->q_vectors[q_idx]; 1828 q_vector->adapter = adapter; 1829 q_vector->vsi = &adapter->vsi; 1830 q_vector->v_idx = q_idx; 1831 q_vector->reg_idx = q_idx; 1832 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1833 netif_napi_add(adapter->netdev, &q_vector->napi, 1834 iavf_napi_poll); 1835 } 1836 1837 return 0; 1838 } 1839 1840 /** 1841 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1842 * @adapter: board private structure to initialize 1843 * 1844 * This function frees the memory allocated to the q_vectors. In addition if 1845 * NAPI is enabled it will delete any references to the NAPI struct prior 1846 * to freeing the q_vector. 1847 **/ 1848 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1849 { 1850 int q_idx, num_q_vectors; 1851 int napi_vectors; 1852 1853 if (!adapter->q_vectors) 1854 return; 1855 1856 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1857 napi_vectors = adapter->num_active_queues; 1858 1859 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1860 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1861 1862 if (q_idx < napi_vectors) 1863 netif_napi_del(&q_vector->napi); 1864 } 1865 kfree(adapter->q_vectors); 1866 adapter->q_vectors = NULL; 1867 } 1868 1869 /** 1870 * iavf_reset_interrupt_capability - Reset MSIX setup 1871 * @adapter: board private structure 1872 * 1873 **/ 1874 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1875 { 1876 if (!adapter->msix_entries) 1877 return; 1878 1879 pci_disable_msix(adapter->pdev); 1880 kfree(adapter->msix_entries); 1881 adapter->msix_entries = NULL; 1882 } 1883 1884 /** 1885 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1886 * @adapter: board private structure to initialize 1887 * 1888 **/ 1889 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1890 { 1891 int err; 1892 1893 err = iavf_alloc_queues(adapter); 1894 if (err) { 1895 dev_err(&adapter->pdev->dev, 1896 "Unable to allocate memory for queues\n"); 1897 goto err_alloc_queues; 1898 } 1899 1900 rtnl_lock(); 1901 err = iavf_set_interrupt_capability(adapter); 1902 rtnl_unlock(); 1903 if (err) { 1904 dev_err(&adapter->pdev->dev, 1905 "Unable to setup interrupt capabilities\n"); 1906 goto err_set_interrupt; 1907 } 1908 1909 err = iavf_alloc_q_vectors(adapter); 1910 if (err) { 1911 dev_err(&adapter->pdev->dev, 1912 "Unable to allocate memory for queue vectors\n"); 1913 goto err_alloc_q_vectors; 1914 } 1915 1916 /* If we've made it so far while ADq flag being ON, then we haven't 1917 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1918 * resources have been allocated in the reset path. 1919 * Now we can truly claim that ADq is enabled. 1920 */ 1921 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1922 adapter->num_tc) 1923 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1924 adapter->num_tc); 1925 1926 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1927 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1928 adapter->num_active_queues); 1929 1930 return 0; 1931 err_alloc_q_vectors: 1932 iavf_reset_interrupt_capability(adapter); 1933 err_set_interrupt: 1934 iavf_free_queues(adapter); 1935 err_alloc_queues: 1936 return err; 1937 } 1938 1939 /** 1940 * iavf_free_rss - Free memory used by RSS structs 1941 * @adapter: board private structure 1942 **/ 1943 static void iavf_free_rss(struct iavf_adapter *adapter) 1944 { 1945 kfree(adapter->rss_key); 1946 adapter->rss_key = NULL; 1947 1948 kfree(adapter->rss_lut); 1949 adapter->rss_lut = NULL; 1950 } 1951 1952 /** 1953 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1954 * @adapter: board private structure 1955 * 1956 * Returns 0 on success, negative on failure 1957 **/ 1958 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1959 { 1960 struct net_device *netdev = adapter->netdev; 1961 int err; 1962 1963 if (netif_running(netdev)) 1964 iavf_free_traffic_irqs(adapter); 1965 iavf_free_misc_irq(adapter); 1966 iavf_reset_interrupt_capability(adapter); 1967 iavf_free_q_vectors(adapter); 1968 iavf_free_queues(adapter); 1969 1970 err = iavf_init_interrupt_scheme(adapter); 1971 if (err) 1972 goto err; 1973 1974 netif_tx_stop_all_queues(netdev); 1975 1976 err = iavf_request_misc_irq(adapter); 1977 if (err) 1978 goto err; 1979 1980 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1981 1982 iavf_map_rings_to_vectors(adapter); 1983 err: 1984 return err; 1985 } 1986 1987 /** 1988 * iavf_process_aq_command - process aq_required flags 1989 * and sends aq command 1990 * @adapter: pointer to iavf adapter structure 1991 * 1992 * Returns 0 on success 1993 * Returns error code if no command was sent 1994 * or error code if the command failed. 1995 **/ 1996 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1997 { 1998 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1999 return iavf_send_vf_config_msg(adapter); 2000 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2001 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2002 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2003 iavf_disable_queues(adapter); 2004 return 0; 2005 } 2006 2007 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2008 iavf_map_queues(adapter); 2009 return 0; 2010 } 2011 2012 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2013 iavf_add_ether_addrs(adapter); 2014 return 0; 2015 } 2016 2017 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2018 iavf_add_vlans(adapter); 2019 return 0; 2020 } 2021 2022 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2023 iavf_del_ether_addrs(adapter); 2024 return 0; 2025 } 2026 2027 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2028 iavf_del_vlans(adapter); 2029 return 0; 2030 } 2031 2032 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2033 iavf_enable_vlan_stripping(adapter); 2034 return 0; 2035 } 2036 2037 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2038 iavf_disable_vlan_stripping(adapter); 2039 return 0; 2040 } 2041 2042 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2043 iavf_configure_queues(adapter); 2044 return 0; 2045 } 2046 2047 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2048 iavf_enable_queues(adapter); 2049 return 0; 2050 } 2051 2052 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2053 /* This message goes straight to the firmware, not the 2054 * PF, so we don't have to set current_op as we will 2055 * not get a response through the ARQ. 2056 */ 2057 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2058 return 0; 2059 } 2060 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2061 iavf_get_hena(adapter); 2062 return 0; 2063 } 2064 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2065 iavf_set_hena(adapter); 2066 return 0; 2067 } 2068 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2069 iavf_set_rss_key(adapter); 2070 return 0; 2071 } 2072 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2073 iavf_set_rss_lut(adapter); 2074 return 0; 2075 } 2076 2077 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2078 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2079 FLAG_VF_MULTICAST_PROMISC); 2080 return 0; 2081 } 2082 2083 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2084 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2085 return 0; 2086 } 2087 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2088 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2089 iavf_set_promiscuous(adapter, 0); 2090 return 0; 2091 } 2092 2093 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2094 iavf_enable_channels(adapter); 2095 return 0; 2096 } 2097 2098 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2099 iavf_disable_channels(adapter); 2100 return 0; 2101 } 2102 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2103 iavf_add_cloud_filter(adapter); 2104 return 0; 2105 } 2106 2107 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2108 iavf_del_cloud_filter(adapter); 2109 return 0; 2110 } 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2112 iavf_del_cloud_filter(adapter); 2113 return 0; 2114 } 2115 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2116 iavf_add_cloud_filter(adapter); 2117 return 0; 2118 } 2119 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2120 iavf_add_fdir_filter(adapter); 2121 return IAVF_SUCCESS; 2122 } 2123 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2124 iavf_del_fdir_filter(adapter); 2125 return IAVF_SUCCESS; 2126 } 2127 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2128 iavf_add_adv_rss_cfg(adapter); 2129 return 0; 2130 } 2131 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2132 iavf_del_adv_rss_cfg(adapter); 2133 return 0; 2134 } 2135 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2136 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2137 return 0; 2138 } 2139 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2140 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2141 return 0; 2142 } 2143 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2144 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2145 return 0; 2146 } 2147 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2148 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2149 return 0; 2150 } 2151 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2152 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2153 return 0; 2154 } 2155 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2156 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2157 return 0; 2158 } 2159 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2160 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2161 return 0; 2162 } 2163 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2164 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2165 return 0; 2166 } 2167 2168 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2169 iavf_request_stats(adapter); 2170 return 0; 2171 } 2172 2173 return -EAGAIN; 2174 } 2175 2176 /** 2177 * iavf_set_vlan_offload_features - set VLAN offload configuration 2178 * @adapter: board private structure 2179 * @prev_features: previous features used for comparison 2180 * @features: updated features used for configuration 2181 * 2182 * Set the aq_required bit(s) based on the requested features passed in to 2183 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2184 * the watchdog if any changes are requested to expedite the request via 2185 * virtchnl. 2186 **/ 2187 void 2188 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2189 netdev_features_t prev_features, 2190 netdev_features_t features) 2191 { 2192 bool enable_stripping = true, enable_insertion = true; 2193 u16 vlan_ethertype = 0; 2194 u64 aq_required = 0; 2195 2196 /* keep cases separate because one ethertype for offloads can be 2197 * disabled at the same time as another is disabled, so check for an 2198 * enabled ethertype first, then check for disabled. Default to 2199 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2200 * stripping. 2201 */ 2202 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2203 vlan_ethertype = ETH_P_8021AD; 2204 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2205 vlan_ethertype = ETH_P_8021Q; 2206 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2207 vlan_ethertype = ETH_P_8021AD; 2208 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2209 vlan_ethertype = ETH_P_8021Q; 2210 else 2211 vlan_ethertype = ETH_P_8021Q; 2212 2213 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2214 enable_stripping = false; 2215 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2216 enable_insertion = false; 2217 2218 if (VLAN_ALLOWED(adapter)) { 2219 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2220 * stripping via virtchnl. VLAN insertion can be toggled on the 2221 * netdev, but it doesn't require a virtchnl message 2222 */ 2223 if (enable_stripping) 2224 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2225 else 2226 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2227 2228 } else if (VLAN_V2_ALLOWED(adapter)) { 2229 switch (vlan_ethertype) { 2230 case ETH_P_8021Q: 2231 if (enable_stripping) 2232 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2233 else 2234 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2235 2236 if (enable_insertion) 2237 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2238 else 2239 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2240 break; 2241 case ETH_P_8021AD: 2242 if (enable_stripping) 2243 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2244 else 2245 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2246 2247 if (enable_insertion) 2248 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2249 else 2250 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2251 break; 2252 } 2253 } 2254 2255 if (aq_required) { 2256 adapter->aq_required |= aq_required; 2257 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2258 } 2259 } 2260 2261 /** 2262 * iavf_startup - first step of driver startup 2263 * @adapter: board private structure 2264 * 2265 * Function process __IAVF_STARTUP driver state. 2266 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2267 * when fails the state is changed to __IAVF_INIT_FAILED 2268 **/ 2269 static void iavf_startup(struct iavf_adapter *adapter) 2270 { 2271 struct pci_dev *pdev = adapter->pdev; 2272 struct iavf_hw *hw = &adapter->hw; 2273 enum iavf_status status; 2274 int ret; 2275 2276 WARN_ON(adapter->state != __IAVF_STARTUP); 2277 2278 /* driver loaded, probe complete */ 2279 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2280 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2281 status = iavf_set_mac_type(hw); 2282 if (status) { 2283 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2284 goto err; 2285 } 2286 2287 ret = iavf_check_reset_complete(hw); 2288 if (ret) { 2289 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2290 ret); 2291 goto err; 2292 } 2293 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2294 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2295 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2296 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2297 2298 status = iavf_init_adminq(hw); 2299 if (status) { 2300 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2301 status); 2302 goto err; 2303 } 2304 ret = iavf_send_api_ver(adapter); 2305 if (ret) { 2306 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2307 iavf_shutdown_adminq(hw); 2308 goto err; 2309 } 2310 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2311 return; 2312 err: 2313 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2314 } 2315 2316 /** 2317 * iavf_init_version_check - second step of driver startup 2318 * @adapter: board private structure 2319 * 2320 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2321 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2322 * when fails the state is changed to __IAVF_INIT_FAILED 2323 **/ 2324 static void iavf_init_version_check(struct iavf_adapter *adapter) 2325 { 2326 struct pci_dev *pdev = adapter->pdev; 2327 struct iavf_hw *hw = &adapter->hw; 2328 int err = -EAGAIN; 2329 2330 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2331 2332 if (!iavf_asq_done(hw)) { 2333 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2334 iavf_shutdown_adminq(hw); 2335 iavf_change_state(adapter, __IAVF_STARTUP); 2336 goto err; 2337 } 2338 2339 /* aq msg sent, awaiting reply */ 2340 err = iavf_verify_api_ver(adapter); 2341 if (err) { 2342 if (err == -EALREADY) 2343 err = iavf_send_api_ver(adapter); 2344 else 2345 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2346 adapter->pf_version.major, 2347 adapter->pf_version.minor, 2348 VIRTCHNL_VERSION_MAJOR, 2349 VIRTCHNL_VERSION_MINOR); 2350 goto err; 2351 } 2352 err = iavf_send_vf_config_msg(adapter); 2353 if (err) { 2354 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2355 err); 2356 goto err; 2357 } 2358 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2359 return; 2360 err: 2361 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2362 } 2363 2364 /** 2365 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2366 * @adapter: board private structure 2367 */ 2368 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2369 { 2370 int i, num_req_queues = adapter->num_req_queues; 2371 struct iavf_vsi *vsi = &adapter->vsi; 2372 2373 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2374 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2375 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2376 } 2377 if (!adapter->vsi_res) { 2378 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2379 return -ENODEV; 2380 } 2381 2382 if (num_req_queues && 2383 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2384 /* Problem. The PF gave us fewer queues than what we had 2385 * negotiated in our request. Need a reset to see if we can't 2386 * get back to a working state. 2387 */ 2388 dev_err(&adapter->pdev->dev, 2389 "Requested %d queues, but PF only gave us %d.\n", 2390 num_req_queues, 2391 adapter->vsi_res->num_queue_pairs); 2392 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2393 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2394 iavf_schedule_reset(adapter); 2395 2396 return -EAGAIN; 2397 } 2398 adapter->num_req_queues = 0; 2399 adapter->vsi.id = adapter->vsi_res->vsi_id; 2400 2401 adapter->vsi.back = adapter; 2402 adapter->vsi.base_vector = 1; 2403 vsi->netdev = adapter->netdev; 2404 vsi->qs_handle = adapter->vsi_res->qset_handle; 2405 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2406 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2407 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2408 } else { 2409 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2410 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2411 } 2412 2413 return 0; 2414 } 2415 2416 /** 2417 * iavf_init_get_resources - third step of driver startup 2418 * @adapter: board private structure 2419 * 2420 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2421 * finishes driver initialization procedure. 2422 * When success the state is changed to __IAVF_DOWN 2423 * when fails the state is changed to __IAVF_INIT_FAILED 2424 **/ 2425 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2426 { 2427 struct pci_dev *pdev = adapter->pdev; 2428 struct iavf_hw *hw = &adapter->hw; 2429 int err; 2430 2431 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2432 /* aq msg sent, awaiting reply */ 2433 if (!adapter->vf_res) { 2434 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2435 GFP_KERNEL); 2436 if (!adapter->vf_res) { 2437 err = -ENOMEM; 2438 goto err; 2439 } 2440 } 2441 err = iavf_get_vf_config(adapter); 2442 if (err == -EALREADY) { 2443 err = iavf_send_vf_config_msg(adapter); 2444 goto err; 2445 } else if (err == -EINVAL) { 2446 /* We only get -EINVAL if the device is in a very bad 2447 * state or if we've been disabled for previous bad 2448 * behavior. Either way, we're done now. 2449 */ 2450 iavf_shutdown_adminq(hw); 2451 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2452 return; 2453 } 2454 if (err) { 2455 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2456 goto err_alloc; 2457 } 2458 2459 err = iavf_parse_vf_resource_msg(adapter); 2460 if (err) { 2461 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2462 err); 2463 goto err_alloc; 2464 } 2465 /* Some features require additional messages to negotiate extended 2466 * capabilities. These are processed in sequence by the 2467 * __IAVF_INIT_EXTENDED_CAPS driver state. 2468 */ 2469 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2470 2471 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2472 return; 2473 2474 err_alloc: 2475 kfree(adapter->vf_res); 2476 adapter->vf_res = NULL; 2477 err: 2478 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2479 } 2480 2481 /** 2482 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2483 * @adapter: board private structure 2484 * 2485 * Function processes send of the extended VLAN V2 capability message to the 2486 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2487 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2488 */ 2489 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2490 { 2491 int ret; 2492 2493 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2494 2495 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2496 if (ret && ret == -EOPNOTSUPP) { 2497 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2498 * we did not send the capability exchange message and do not 2499 * expect a response. 2500 */ 2501 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2502 } 2503 2504 /* We sent the message, so move on to the next step */ 2505 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2506 } 2507 2508 /** 2509 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2510 * @adapter: board private structure 2511 * 2512 * Function processes receipt of the extended VLAN V2 capability message from 2513 * the PF. 2514 **/ 2515 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2516 { 2517 int ret; 2518 2519 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2520 2521 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2522 2523 ret = iavf_get_vf_vlan_v2_caps(adapter); 2524 if (ret) 2525 goto err; 2526 2527 /* We've processed receipt of the VLAN V2 caps message */ 2528 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2529 return; 2530 err: 2531 /* We didn't receive a reply. Make sure we try sending again when 2532 * __IAVF_INIT_FAILED attempts to recover. 2533 */ 2534 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2535 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2536 } 2537 2538 /** 2539 * iavf_init_process_extended_caps - Part of driver startup 2540 * @adapter: board private structure 2541 * 2542 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2543 * handles negotiating capabilities for features which require an additional 2544 * message. 2545 * 2546 * Once all extended capabilities exchanges are finished, the driver will 2547 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2548 */ 2549 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2550 { 2551 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2552 2553 /* Process capability exchange for VLAN V2 */ 2554 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2555 iavf_init_send_offload_vlan_v2_caps(adapter); 2556 return; 2557 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2558 iavf_init_recv_offload_vlan_v2_caps(adapter); 2559 return; 2560 } 2561 2562 /* When we reach here, no further extended capabilities exchanges are 2563 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2564 */ 2565 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2566 } 2567 2568 /** 2569 * iavf_init_config_adapter - last part of driver startup 2570 * @adapter: board private structure 2571 * 2572 * After all the supported capabilities are negotiated, then the 2573 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2574 */ 2575 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2576 { 2577 struct net_device *netdev = adapter->netdev; 2578 struct pci_dev *pdev = adapter->pdev; 2579 int err; 2580 2581 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2582 2583 if (iavf_process_config(adapter)) 2584 goto err; 2585 2586 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2587 2588 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2589 2590 netdev->netdev_ops = &iavf_netdev_ops; 2591 iavf_set_ethtool_ops(netdev); 2592 netdev->watchdog_timeo = 5 * HZ; 2593 2594 /* MTU range: 68 - 9710 */ 2595 netdev->min_mtu = ETH_MIN_MTU; 2596 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2597 2598 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2599 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2600 adapter->hw.mac.addr); 2601 eth_hw_addr_random(netdev); 2602 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2603 } else { 2604 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2605 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2606 } 2607 2608 adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET; 2609 2610 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2611 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2612 err = iavf_init_interrupt_scheme(adapter); 2613 if (err) 2614 goto err_sw_init; 2615 iavf_map_rings_to_vectors(adapter); 2616 if (adapter->vf_res->vf_cap_flags & 2617 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2618 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2619 2620 err = iavf_request_misc_irq(adapter); 2621 if (err) 2622 goto err_sw_init; 2623 2624 netif_carrier_off(netdev); 2625 adapter->link_up = false; 2626 2627 /* set the semaphore to prevent any callbacks after device registration 2628 * up to time when state of driver will be set to __IAVF_DOWN 2629 */ 2630 rtnl_lock(); 2631 if (!adapter->netdev_registered) { 2632 err = register_netdevice(netdev); 2633 if (err) { 2634 rtnl_unlock(); 2635 goto err_register; 2636 } 2637 } 2638 2639 adapter->netdev_registered = true; 2640 2641 netif_tx_stop_all_queues(netdev); 2642 if (CLIENT_ALLOWED(adapter)) { 2643 err = iavf_lan_add_device(adapter); 2644 if (err) 2645 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2646 err); 2647 } 2648 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2649 if (netdev->features & NETIF_F_GRO) 2650 dev_info(&pdev->dev, "GRO is enabled\n"); 2651 2652 iavf_change_state(adapter, __IAVF_DOWN); 2653 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2654 rtnl_unlock(); 2655 2656 iavf_misc_irq_enable(adapter); 2657 wake_up(&adapter->down_waitqueue); 2658 2659 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2660 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2661 if (!adapter->rss_key || !adapter->rss_lut) { 2662 err = -ENOMEM; 2663 goto err_mem; 2664 } 2665 if (RSS_AQ(adapter)) 2666 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2667 else 2668 iavf_init_rss(adapter); 2669 2670 if (VLAN_V2_ALLOWED(adapter)) 2671 /* request initial VLAN offload settings */ 2672 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2673 2674 return; 2675 err_mem: 2676 iavf_free_rss(adapter); 2677 err_register: 2678 iavf_free_misc_irq(adapter); 2679 err_sw_init: 2680 iavf_reset_interrupt_capability(adapter); 2681 err: 2682 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2683 } 2684 2685 /** 2686 * iavf_watchdog_task - Periodic call-back task 2687 * @work: pointer to work_struct 2688 **/ 2689 static void iavf_watchdog_task(struct work_struct *work) 2690 { 2691 struct iavf_adapter *adapter = container_of(work, 2692 struct iavf_adapter, 2693 watchdog_task.work); 2694 struct iavf_hw *hw = &adapter->hw; 2695 u32 reg_val; 2696 2697 if (!mutex_trylock(&adapter->crit_lock)) { 2698 if (adapter->state == __IAVF_REMOVE) 2699 return; 2700 2701 goto restart_watchdog; 2702 } 2703 2704 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2705 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2706 2707 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2708 adapter->aq_required = 0; 2709 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2710 mutex_unlock(&adapter->crit_lock); 2711 queue_work(iavf_wq, &adapter->reset_task); 2712 return; 2713 } 2714 2715 switch (adapter->state) { 2716 case __IAVF_STARTUP: 2717 iavf_startup(adapter); 2718 mutex_unlock(&adapter->crit_lock); 2719 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2720 msecs_to_jiffies(30)); 2721 return; 2722 case __IAVF_INIT_VERSION_CHECK: 2723 iavf_init_version_check(adapter); 2724 mutex_unlock(&adapter->crit_lock); 2725 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2726 msecs_to_jiffies(30)); 2727 return; 2728 case __IAVF_INIT_GET_RESOURCES: 2729 iavf_init_get_resources(adapter); 2730 mutex_unlock(&adapter->crit_lock); 2731 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2732 msecs_to_jiffies(1)); 2733 return; 2734 case __IAVF_INIT_EXTENDED_CAPS: 2735 iavf_init_process_extended_caps(adapter); 2736 mutex_unlock(&adapter->crit_lock); 2737 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2738 msecs_to_jiffies(1)); 2739 return; 2740 case __IAVF_INIT_CONFIG_ADAPTER: 2741 iavf_init_config_adapter(adapter); 2742 mutex_unlock(&adapter->crit_lock); 2743 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2744 msecs_to_jiffies(1)); 2745 return; 2746 case __IAVF_INIT_FAILED: 2747 if (test_bit(__IAVF_IN_REMOVE_TASK, 2748 &adapter->crit_section)) { 2749 /* Do not update the state and do not reschedule 2750 * watchdog task, iavf_remove should handle this state 2751 * as it can loop forever 2752 */ 2753 mutex_unlock(&adapter->crit_lock); 2754 return; 2755 } 2756 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2757 dev_err(&adapter->pdev->dev, 2758 "Failed to communicate with PF; waiting before retry\n"); 2759 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2760 iavf_shutdown_adminq(hw); 2761 mutex_unlock(&adapter->crit_lock); 2762 queue_delayed_work(iavf_wq, 2763 &adapter->watchdog_task, (5 * HZ)); 2764 return; 2765 } 2766 /* Try again from failed step*/ 2767 iavf_change_state(adapter, adapter->last_state); 2768 mutex_unlock(&adapter->crit_lock); 2769 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2770 return; 2771 case __IAVF_COMM_FAILED: 2772 if (test_bit(__IAVF_IN_REMOVE_TASK, 2773 &adapter->crit_section)) { 2774 /* Set state to __IAVF_INIT_FAILED and perform remove 2775 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2776 * doesn't bring the state back to __IAVF_COMM_FAILED. 2777 */ 2778 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2779 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2780 mutex_unlock(&adapter->crit_lock); 2781 return; 2782 } 2783 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2784 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2785 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2786 reg_val == VIRTCHNL_VFR_COMPLETED) { 2787 /* A chance for redemption! */ 2788 dev_err(&adapter->pdev->dev, 2789 "Hardware came out of reset. Attempting reinit.\n"); 2790 /* When init task contacts the PF and 2791 * gets everything set up again, it'll restart the 2792 * watchdog for us. Down, boy. Sit. Stay. Woof. 2793 */ 2794 iavf_change_state(adapter, __IAVF_STARTUP); 2795 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2796 } 2797 adapter->aq_required = 0; 2798 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2799 mutex_unlock(&adapter->crit_lock); 2800 queue_delayed_work(iavf_wq, 2801 &adapter->watchdog_task, 2802 msecs_to_jiffies(10)); 2803 return; 2804 case __IAVF_RESETTING: 2805 mutex_unlock(&adapter->crit_lock); 2806 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2807 return; 2808 case __IAVF_DOWN: 2809 case __IAVF_DOWN_PENDING: 2810 case __IAVF_TESTING: 2811 case __IAVF_RUNNING: 2812 if (adapter->current_op) { 2813 if (!iavf_asq_done(hw)) { 2814 dev_dbg(&adapter->pdev->dev, 2815 "Admin queue timeout\n"); 2816 iavf_send_api_ver(adapter); 2817 } 2818 } else { 2819 int ret = iavf_process_aq_command(adapter); 2820 2821 /* An error will be returned if no commands were 2822 * processed; use this opportunity to update stats 2823 * if the error isn't -ENOTSUPP 2824 */ 2825 if (ret && ret != -EOPNOTSUPP && 2826 adapter->state == __IAVF_RUNNING) 2827 iavf_request_stats(adapter); 2828 } 2829 if (adapter->state == __IAVF_RUNNING) 2830 iavf_detect_recover_hung(&adapter->vsi); 2831 break; 2832 case __IAVF_REMOVE: 2833 default: 2834 mutex_unlock(&adapter->crit_lock); 2835 return; 2836 } 2837 2838 /* check for hw reset */ 2839 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2840 if (!reg_val) { 2841 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2842 adapter->aq_required = 0; 2843 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2844 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2845 queue_work(iavf_wq, &adapter->reset_task); 2846 mutex_unlock(&adapter->crit_lock); 2847 queue_delayed_work(iavf_wq, 2848 &adapter->watchdog_task, HZ * 2); 2849 return; 2850 } 2851 2852 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2853 mutex_unlock(&adapter->crit_lock); 2854 restart_watchdog: 2855 if (adapter->state >= __IAVF_DOWN) 2856 queue_work(iavf_wq, &adapter->adminq_task); 2857 if (adapter->aq_required) 2858 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2859 msecs_to_jiffies(20)); 2860 else 2861 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2862 } 2863 2864 /** 2865 * iavf_disable_vf - disable VF 2866 * @adapter: board private structure 2867 * 2868 * Set communication failed flag and free all resources. 2869 * NOTE: This function is expected to be called with crit_lock being held. 2870 **/ 2871 static void iavf_disable_vf(struct iavf_adapter *adapter) 2872 { 2873 struct iavf_mac_filter *f, *ftmp; 2874 struct iavf_vlan_filter *fv, *fvtmp; 2875 struct iavf_cloud_filter *cf, *cftmp; 2876 2877 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2878 2879 /* We don't use netif_running() because it may be true prior to 2880 * ndo_open() returning, so we can't assume it means all our open 2881 * tasks have finished, since we're not holding the rtnl_lock here. 2882 */ 2883 if (adapter->state == __IAVF_RUNNING) { 2884 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2885 netif_carrier_off(adapter->netdev); 2886 netif_tx_disable(adapter->netdev); 2887 adapter->link_up = false; 2888 iavf_napi_disable_all(adapter); 2889 iavf_irq_disable(adapter); 2890 iavf_free_traffic_irqs(adapter); 2891 iavf_free_all_tx_resources(adapter); 2892 iavf_free_all_rx_resources(adapter); 2893 } 2894 2895 spin_lock_bh(&adapter->mac_vlan_list_lock); 2896 2897 /* Delete all of the filters */ 2898 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2899 list_del(&f->list); 2900 kfree(f); 2901 } 2902 2903 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2904 list_del(&fv->list); 2905 kfree(fv); 2906 } 2907 2908 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2909 2910 spin_lock_bh(&adapter->cloud_filter_list_lock); 2911 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2912 list_del(&cf->list); 2913 kfree(cf); 2914 adapter->num_cloud_filters--; 2915 } 2916 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2917 2918 iavf_free_misc_irq(adapter); 2919 iavf_reset_interrupt_capability(adapter); 2920 iavf_free_q_vectors(adapter); 2921 iavf_free_queues(adapter); 2922 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2923 iavf_shutdown_adminq(&adapter->hw); 2924 adapter->netdev->flags &= ~IFF_UP; 2925 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2926 iavf_change_state(adapter, __IAVF_DOWN); 2927 wake_up(&adapter->down_waitqueue); 2928 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2929 } 2930 2931 /** 2932 * iavf_reset_task - Call-back task to handle hardware reset 2933 * @work: pointer to work_struct 2934 * 2935 * During reset we need to shut down and reinitialize the admin queue 2936 * before we can use it to communicate with the PF again. We also clear 2937 * and reinit the rings because that context is lost as well. 2938 **/ 2939 static void iavf_reset_task(struct work_struct *work) 2940 { 2941 struct iavf_adapter *adapter = container_of(work, 2942 struct iavf_adapter, 2943 reset_task); 2944 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2945 struct net_device *netdev = adapter->netdev; 2946 struct iavf_hw *hw = &adapter->hw; 2947 struct iavf_mac_filter *f, *ftmp; 2948 struct iavf_cloud_filter *cf; 2949 enum iavf_status status; 2950 u32 reg_val; 2951 int i = 0, err; 2952 bool running; 2953 2954 /* Detach interface to avoid subsequent NDO callbacks */ 2955 rtnl_lock(); 2956 netif_device_detach(netdev); 2957 rtnl_unlock(); 2958 2959 /* When device is being removed it doesn't make sense to run the reset 2960 * task, just return in such a case. 2961 */ 2962 if (!mutex_trylock(&adapter->crit_lock)) { 2963 if (adapter->state != __IAVF_REMOVE) 2964 queue_work(iavf_wq, &adapter->reset_task); 2965 2966 goto reset_finish; 2967 } 2968 2969 while (!mutex_trylock(&adapter->client_lock)) 2970 usleep_range(500, 1000); 2971 if (CLIENT_ENABLED(adapter)) { 2972 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2973 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2974 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2975 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2976 cancel_delayed_work_sync(&adapter->client_task); 2977 iavf_notify_client_close(&adapter->vsi, true); 2978 } 2979 iavf_misc_irq_disable(adapter); 2980 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2981 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2982 /* Restart the AQ here. If we have been reset but didn't 2983 * detect it, or if the PF had to reinit, our AQ will be hosed. 2984 */ 2985 iavf_shutdown_adminq(hw); 2986 iavf_init_adminq(hw); 2987 iavf_request_reset(adapter); 2988 } 2989 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2990 2991 /* poll until we see the reset actually happen */ 2992 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2993 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2994 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2995 if (!reg_val) 2996 break; 2997 usleep_range(5000, 10000); 2998 } 2999 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3000 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3001 goto continue_reset; /* act like the reset happened */ 3002 } 3003 3004 /* wait until the reset is complete and the PF is responding to us */ 3005 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3006 /* sleep first to make sure a minimum wait time is met */ 3007 msleep(IAVF_RESET_WAIT_MS); 3008 3009 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3010 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3011 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3012 break; 3013 } 3014 3015 pci_set_master(adapter->pdev); 3016 pci_restore_msi_state(adapter->pdev); 3017 3018 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3019 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3020 reg_val); 3021 iavf_disable_vf(adapter); 3022 mutex_unlock(&adapter->client_lock); 3023 mutex_unlock(&adapter->crit_lock); 3024 return; /* Do not attempt to reinit. It's dead, Jim. */ 3025 } 3026 3027 continue_reset: 3028 /* We don't use netif_running() because it may be true prior to 3029 * ndo_open() returning, so we can't assume it means all our open 3030 * tasks have finished, since we're not holding the rtnl_lock here. 3031 */ 3032 running = adapter->state == __IAVF_RUNNING; 3033 3034 if (running) { 3035 netif_carrier_off(netdev); 3036 adapter->link_up = false; 3037 iavf_napi_disable_all(adapter); 3038 } 3039 iavf_irq_disable(adapter); 3040 3041 iavf_change_state(adapter, __IAVF_RESETTING); 3042 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3043 3044 /* free the Tx/Rx rings and descriptors, might be better to just 3045 * re-use them sometime in the future 3046 */ 3047 iavf_free_all_rx_resources(adapter); 3048 iavf_free_all_tx_resources(adapter); 3049 3050 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3051 /* kill and reinit the admin queue */ 3052 iavf_shutdown_adminq(hw); 3053 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3054 status = iavf_init_adminq(hw); 3055 if (status) { 3056 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3057 status); 3058 goto reset_err; 3059 } 3060 adapter->aq_required = 0; 3061 3062 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3063 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3064 err = iavf_reinit_interrupt_scheme(adapter); 3065 if (err) 3066 goto reset_err; 3067 } 3068 3069 if (RSS_AQ(adapter)) { 3070 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3071 } else { 3072 err = iavf_init_rss(adapter); 3073 if (err) 3074 goto reset_err; 3075 } 3076 3077 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3078 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3079 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3080 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3081 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3082 * been successfully sent and negotiated 3083 */ 3084 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3085 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3086 3087 spin_lock_bh(&adapter->mac_vlan_list_lock); 3088 3089 /* Delete filter for the current MAC address, it could have 3090 * been changed by the PF via administratively set MAC. 3091 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3092 */ 3093 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3094 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3095 list_del(&f->list); 3096 kfree(f); 3097 } 3098 } 3099 /* re-add all MAC filters */ 3100 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3101 f->add = true; 3102 } 3103 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3104 3105 /* check if TCs are running and re-add all cloud filters */ 3106 spin_lock_bh(&adapter->cloud_filter_list_lock); 3107 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3108 adapter->num_tc) { 3109 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3110 cf->add = true; 3111 } 3112 } 3113 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3114 3115 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3116 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3117 iavf_misc_irq_enable(adapter); 3118 3119 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3120 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3121 3122 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 3123 3124 /* We were running when the reset started, so we need to restore some 3125 * state here. 3126 */ 3127 if (running) { 3128 /* allocate transmit descriptors */ 3129 err = iavf_setup_all_tx_resources(adapter); 3130 if (err) 3131 goto reset_err; 3132 3133 /* allocate receive descriptors */ 3134 err = iavf_setup_all_rx_resources(adapter); 3135 if (err) 3136 goto reset_err; 3137 3138 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3139 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3140 err = iavf_request_traffic_irqs(adapter, netdev->name); 3141 if (err) 3142 goto reset_err; 3143 3144 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3145 } 3146 3147 iavf_configure(adapter); 3148 3149 /* iavf_up_complete() will switch device back 3150 * to __IAVF_RUNNING 3151 */ 3152 iavf_up_complete(adapter); 3153 3154 iavf_irq_enable(adapter, true); 3155 } else { 3156 iavf_change_state(adapter, __IAVF_DOWN); 3157 wake_up(&adapter->down_waitqueue); 3158 } 3159 3160 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3161 3162 mutex_unlock(&adapter->client_lock); 3163 mutex_unlock(&adapter->crit_lock); 3164 3165 goto reset_finish; 3166 reset_err: 3167 if (running) { 3168 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3169 iavf_free_traffic_irqs(adapter); 3170 } 3171 iavf_disable_vf(adapter); 3172 3173 mutex_unlock(&adapter->client_lock); 3174 mutex_unlock(&adapter->crit_lock); 3175 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3176 reset_finish: 3177 rtnl_lock(); 3178 netif_device_attach(netdev); 3179 rtnl_unlock(); 3180 } 3181 3182 /** 3183 * iavf_adminq_task - worker thread to clean the admin queue 3184 * @work: pointer to work_struct containing our data 3185 **/ 3186 static void iavf_adminq_task(struct work_struct *work) 3187 { 3188 struct iavf_adapter *adapter = 3189 container_of(work, struct iavf_adapter, adminq_task); 3190 struct iavf_hw *hw = &adapter->hw; 3191 struct iavf_arq_event_info event; 3192 enum virtchnl_ops v_op; 3193 enum iavf_status ret, v_ret; 3194 u32 val, oldval; 3195 u16 pending; 3196 3197 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3198 goto out; 3199 3200 if (!mutex_trylock(&adapter->crit_lock)) { 3201 if (adapter->state == __IAVF_REMOVE) 3202 return; 3203 3204 queue_work(iavf_wq, &adapter->adminq_task); 3205 goto out; 3206 } 3207 3208 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3209 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3210 if (!event.msg_buf) 3211 goto out; 3212 3213 do { 3214 ret = iavf_clean_arq_element(hw, &event, &pending); 3215 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3216 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3217 3218 if (ret || !v_op) 3219 break; /* No event to process or error cleaning ARQ */ 3220 3221 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3222 event.msg_len); 3223 if (pending != 0) 3224 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3225 } while (pending); 3226 mutex_unlock(&adapter->crit_lock); 3227 3228 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3229 if (adapter->netdev_registered || 3230 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3231 struct net_device *netdev = adapter->netdev; 3232 3233 rtnl_lock(); 3234 netdev_update_features(netdev); 3235 rtnl_unlock(); 3236 /* Request VLAN offload settings */ 3237 if (VLAN_V2_ALLOWED(adapter)) 3238 iavf_set_vlan_offload_features 3239 (adapter, 0, netdev->features); 3240 3241 iavf_set_queue_vlan_tag_loc(adapter); 3242 } 3243 3244 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3245 } 3246 if ((adapter->flags & 3247 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3248 adapter->state == __IAVF_RESETTING) 3249 goto freedom; 3250 3251 /* check for error indications */ 3252 val = rd32(hw, hw->aq.arq.len); 3253 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3254 goto freedom; 3255 oldval = val; 3256 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3257 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3258 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3259 } 3260 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3261 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3262 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3263 } 3264 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3265 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3266 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3267 } 3268 if (oldval != val) 3269 wr32(hw, hw->aq.arq.len, val); 3270 3271 val = rd32(hw, hw->aq.asq.len); 3272 oldval = val; 3273 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3274 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3275 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3276 } 3277 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3278 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3279 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3280 } 3281 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3282 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3283 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3284 } 3285 if (oldval != val) 3286 wr32(hw, hw->aq.asq.len, val); 3287 3288 freedom: 3289 kfree(event.msg_buf); 3290 out: 3291 /* re-enable Admin queue interrupt cause */ 3292 iavf_misc_irq_enable(adapter); 3293 } 3294 3295 /** 3296 * iavf_client_task - worker thread to perform client work 3297 * @work: pointer to work_struct containing our data 3298 * 3299 * This task handles client interactions. Because client calls can be 3300 * reentrant, we can't handle them in the watchdog. 3301 **/ 3302 static void iavf_client_task(struct work_struct *work) 3303 { 3304 struct iavf_adapter *adapter = 3305 container_of(work, struct iavf_adapter, client_task.work); 3306 3307 /* If we can't get the client bit, just give up. We'll be rescheduled 3308 * later. 3309 */ 3310 3311 if (!mutex_trylock(&adapter->client_lock)) 3312 return; 3313 3314 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3315 iavf_client_subtask(adapter); 3316 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3317 goto out; 3318 } 3319 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3320 iavf_notify_client_l2_params(&adapter->vsi); 3321 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3322 goto out; 3323 } 3324 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3325 iavf_notify_client_close(&adapter->vsi, false); 3326 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3327 goto out; 3328 } 3329 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3330 iavf_notify_client_open(&adapter->vsi); 3331 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3332 } 3333 out: 3334 mutex_unlock(&adapter->client_lock); 3335 } 3336 3337 /** 3338 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3339 * @adapter: board private structure 3340 * 3341 * Free all transmit software resources 3342 **/ 3343 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3344 { 3345 int i; 3346 3347 if (!adapter->tx_rings) 3348 return; 3349 3350 for (i = 0; i < adapter->num_active_queues; i++) 3351 if (adapter->tx_rings[i].desc) 3352 iavf_free_tx_resources(&adapter->tx_rings[i]); 3353 } 3354 3355 /** 3356 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3357 * @adapter: board private structure 3358 * 3359 * If this function returns with an error, then it's possible one or 3360 * more of the rings is populated (while the rest are not). It is the 3361 * callers duty to clean those orphaned rings. 3362 * 3363 * Return 0 on success, negative on failure 3364 **/ 3365 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3366 { 3367 int i, err = 0; 3368 3369 for (i = 0; i < adapter->num_active_queues; i++) { 3370 adapter->tx_rings[i].count = adapter->tx_desc_count; 3371 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3372 if (!err) 3373 continue; 3374 dev_err(&adapter->pdev->dev, 3375 "Allocation for Tx Queue %u failed\n", i); 3376 break; 3377 } 3378 3379 return err; 3380 } 3381 3382 /** 3383 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3384 * @adapter: board private structure 3385 * 3386 * If this function returns with an error, then it's possible one or 3387 * more of the rings is populated (while the rest are not). It is the 3388 * callers duty to clean those orphaned rings. 3389 * 3390 * Return 0 on success, negative on failure 3391 **/ 3392 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3393 { 3394 int i, err = 0; 3395 3396 for (i = 0; i < adapter->num_active_queues; i++) { 3397 adapter->rx_rings[i].count = adapter->rx_desc_count; 3398 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3399 if (!err) 3400 continue; 3401 dev_err(&adapter->pdev->dev, 3402 "Allocation for Rx Queue %u failed\n", i); 3403 break; 3404 } 3405 return err; 3406 } 3407 3408 /** 3409 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3410 * @adapter: board private structure 3411 * 3412 * Free all receive software resources 3413 **/ 3414 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3415 { 3416 int i; 3417 3418 if (!adapter->rx_rings) 3419 return; 3420 3421 for (i = 0; i < adapter->num_active_queues; i++) 3422 if (adapter->rx_rings[i].desc) 3423 iavf_free_rx_resources(&adapter->rx_rings[i]); 3424 } 3425 3426 /** 3427 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3428 * @adapter: board private structure 3429 * @max_tx_rate: max Tx bw for a tc 3430 **/ 3431 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3432 u64 max_tx_rate) 3433 { 3434 int speed = 0, ret = 0; 3435 3436 if (ADV_LINK_SUPPORT(adapter)) { 3437 if (adapter->link_speed_mbps < U32_MAX) { 3438 speed = adapter->link_speed_mbps; 3439 goto validate_bw; 3440 } else { 3441 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3442 return -EINVAL; 3443 } 3444 } 3445 3446 switch (adapter->link_speed) { 3447 case VIRTCHNL_LINK_SPEED_40GB: 3448 speed = SPEED_40000; 3449 break; 3450 case VIRTCHNL_LINK_SPEED_25GB: 3451 speed = SPEED_25000; 3452 break; 3453 case VIRTCHNL_LINK_SPEED_20GB: 3454 speed = SPEED_20000; 3455 break; 3456 case VIRTCHNL_LINK_SPEED_10GB: 3457 speed = SPEED_10000; 3458 break; 3459 case VIRTCHNL_LINK_SPEED_5GB: 3460 speed = SPEED_5000; 3461 break; 3462 case VIRTCHNL_LINK_SPEED_2_5GB: 3463 speed = SPEED_2500; 3464 break; 3465 case VIRTCHNL_LINK_SPEED_1GB: 3466 speed = SPEED_1000; 3467 break; 3468 case VIRTCHNL_LINK_SPEED_100MB: 3469 speed = SPEED_100; 3470 break; 3471 default: 3472 break; 3473 } 3474 3475 validate_bw: 3476 if (max_tx_rate > speed) { 3477 dev_err(&adapter->pdev->dev, 3478 "Invalid tx rate specified\n"); 3479 ret = -EINVAL; 3480 } 3481 3482 return ret; 3483 } 3484 3485 /** 3486 * iavf_validate_ch_config - validate queue mapping info 3487 * @adapter: board private structure 3488 * @mqprio_qopt: queue parameters 3489 * 3490 * This function validates if the config provided by the user to 3491 * configure queue channels is valid or not. Returns 0 on a valid 3492 * config. 3493 **/ 3494 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3495 struct tc_mqprio_qopt_offload *mqprio_qopt) 3496 { 3497 u64 total_max_rate = 0; 3498 u32 tx_rate_rem = 0; 3499 int i, num_qps = 0; 3500 u64 tx_rate = 0; 3501 int ret = 0; 3502 3503 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3504 mqprio_qopt->qopt.num_tc < 1) 3505 return -EINVAL; 3506 3507 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3508 if (!mqprio_qopt->qopt.count[i] || 3509 mqprio_qopt->qopt.offset[i] != num_qps) 3510 return -EINVAL; 3511 if (mqprio_qopt->min_rate[i]) { 3512 dev_err(&adapter->pdev->dev, 3513 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3514 i); 3515 return -EINVAL; 3516 } 3517 3518 /* convert to Mbps */ 3519 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3520 IAVF_MBPS_DIVISOR); 3521 3522 if (mqprio_qopt->max_rate[i] && 3523 tx_rate < IAVF_MBPS_QUANTA) { 3524 dev_err(&adapter->pdev->dev, 3525 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3526 i, IAVF_MBPS_QUANTA); 3527 return -EINVAL; 3528 } 3529 3530 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3531 3532 if (tx_rate_rem != 0) { 3533 dev_err(&adapter->pdev->dev, 3534 "Invalid max tx rate for TC%d, not divisible by %d\n", 3535 i, IAVF_MBPS_QUANTA); 3536 return -EINVAL; 3537 } 3538 3539 total_max_rate += tx_rate; 3540 num_qps += mqprio_qopt->qopt.count[i]; 3541 } 3542 if (num_qps > adapter->num_active_queues) { 3543 dev_err(&adapter->pdev->dev, 3544 "Cannot support requested number of queues\n"); 3545 return -EINVAL; 3546 } 3547 3548 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3549 return ret; 3550 } 3551 3552 /** 3553 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3554 * @adapter: board private structure 3555 **/ 3556 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3557 { 3558 struct iavf_cloud_filter *cf, *cftmp; 3559 3560 spin_lock_bh(&adapter->cloud_filter_list_lock); 3561 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3562 list) { 3563 list_del(&cf->list); 3564 kfree(cf); 3565 adapter->num_cloud_filters--; 3566 } 3567 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3568 } 3569 3570 /** 3571 * __iavf_setup_tc - configure multiple traffic classes 3572 * @netdev: network interface device structure 3573 * @type_data: tc offload data 3574 * 3575 * This function processes the config information provided by the 3576 * user to configure traffic classes/queue channels and packages the 3577 * information to request the PF to setup traffic classes. 3578 * 3579 * Returns 0 on success. 3580 **/ 3581 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3582 { 3583 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3584 struct iavf_adapter *adapter = netdev_priv(netdev); 3585 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3586 u8 num_tc = 0, total_qps = 0; 3587 int ret = 0, netdev_tc = 0; 3588 u64 max_tx_rate; 3589 u16 mode; 3590 int i; 3591 3592 num_tc = mqprio_qopt->qopt.num_tc; 3593 mode = mqprio_qopt->mode; 3594 3595 /* delete queue_channel */ 3596 if (!mqprio_qopt->qopt.hw) { 3597 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3598 /* reset the tc configuration */ 3599 netdev_reset_tc(netdev); 3600 adapter->num_tc = 0; 3601 netif_tx_stop_all_queues(netdev); 3602 netif_tx_disable(netdev); 3603 iavf_del_all_cloud_filters(adapter); 3604 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3605 total_qps = adapter->orig_num_active_queues; 3606 goto exit; 3607 } else { 3608 return -EINVAL; 3609 } 3610 } 3611 3612 /* add queue channel */ 3613 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3614 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3615 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3616 return -EOPNOTSUPP; 3617 } 3618 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3619 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3620 return -EINVAL; 3621 } 3622 3623 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3624 if (ret) 3625 return ret; 3626 /* Return if same TC config is requested */ 3627 if (adapter->num_tc == num_tc) 3628 return 0; 3629 adapter->num_tc = num_tc; 3630 3631 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3632 if (i < num_tc) { 3633 adapter->ch_config.ch_info[i].count = 3634 mqprio_qopt->qopt.count[i]; 3635 adapter->ch_config.ch_info[i].offset = 3636 mqprio_qopt->qopt.offset[i]; 3637 total_qps += mqprio_qopt->qopt.count[i]; 3638 max_tx_rate = mqprio_qopt->max_rate[i]; 3639 /* convert to Mbps */ 3640 max_tx_rate = div_u64(max_tx_rate, 3641 IAVF_MBPS_DIVISOR); 3642 adapter->ch_config.ch_info[i].max_tx_rate = 3643 max_tx_rate; 3644 } else { 3645 adapter->ch_config.ch_info[i].count = 1; 3646 adapter->ch_config.ch_info[i].offset = 0; 3647 } 3648 } 3649 3650 /* Take snapshot of original config such as "num_active_queues" 3651 * It is used later when delete ADQ flow is exercised, so that 3652 * once delete ADQ flow completes, VF shall go back to its 3653 * original queue configuration 3654 */ 3655 3656 adapter->orig_num_active_queues = adapter->num_active_queues; 3657 3658 /* Store queue info based on TC so that VF gets configured 3659 * with correct number of queues when VF completes ADQ config 3660 * flow 3661 */ 3662 adapter->ch_config.total_qps = total_qps; 3663 3664 netif_tx_stop_all_queues(netdev); 3665 netif_tx_disable(netdev); 3666 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3667 netdev_reset_tc(netdev); 3668 /* Report the tc mapping up the stack */ 3669 netdev_set_num_tc(adapter->netdev, num_tc); 3670 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3671 u16 qcount = mqprio_qopt->qopt.count[i]; 3672 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3673 3674 if (i < num_tc) 3675 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3676 qoffset); 3677 } 3678 } 3679 exit: 3680 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3681 return 0; 3682 3683 netif_set_real_num_rx_queues(netdev, total_qps); 3684 netif_set_real_num_tx_queues(netdev, total_qps); 3685 3686 return ret; 3687 } 3688 3689 /** 3690 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3691 * @adapter: board private structure 3692 * @f: pointer to struct flow_cls_offload 3693 * @filter: pointer to cloud filter structure 3694 */ 3695 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3696 struct flow_cls_offload *f, 3697 struct iavf_cloud_filter *filter) 3698 { 3699 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3700 struct flow_dissector *dissector = rule->match.dissector; 3701 u16 n_proto_mask = 0; 3702 u16 n_proto_key = 0; 3703 u8 field_flags = 0; 3704 u16 addr_type = 0; 3705 u16 n_proto = 0; 3706 int i = 0; 3707 struct virtchnl_filter *vf = &filter->f; 3708 3709 if (dissector->used_keys & 3710 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3711 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3712 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3713 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3714 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3715 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3716 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3717 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3718 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3719 dissector->used_keys); 3720 return -EOPNOTSUPP; 3721 } 3722 3723 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3724 struct flow_match_enc_keyid match; 3725 3726 flow_rule_match_enc_keyid(rule, &match); 3727 if (match.mask->keyid != 0) 3728 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3729 } 3730 3731 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3732 struct flow_match_basic match; 3733 3734 flow_rule_match_basic(rule, &match); 3735 n_proto_key = ntohs(match.key->n_proto); 3736 n_proto_mask = ntohs(match.mask->n_proto); 3737 3738 if (n_proto_key == ETH_P_ALL) { 3739 n_proto_key = 0; 3740 n_proto_mask = 0; 3741 } 3742 n_proto = n_proto_key & n_proto_mask; 3743 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3744 return -EINVAL; 3745 if (n_proto == ETH_P_IPV6) { 3746 /* specify flow type as TCP IPv6 */ 3747 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3748 } 3749 3750 if (match.key->ip_proto != IPPROTO_TCP) { 3751 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3752 return -EINVAL; 3753 } 3754 } 3755 3756 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3757 struct flow_match_eth_addrs match; 3758 3759 flow_rule_match_eth_addrs(rule, &match); 3760 3761 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3762 if (!is_zero_ether_addr(match.mask->dst)) { 3763 if (is_broadcast_ether_addr(match.mask->dst)) { 3764 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3765 } else { 3766 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3767 match.mask->dst); 3768 return -EINVAL; 3769 } 3770 } 3771 3772 if (!is_zero_ether_addr(match.mask->src)) { 3773 if (is_broadcast_ether_addr(match.mask->src)) { 3774 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3775 } else { 3776 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3777 match.mask->src); 3778 return -EINVAL; 3779 } 3780 } 3781 3782 if (!is_zero_ether_addr(match.key->dst)) 3783 if (is_valid_ether_addr(match.key->dst) || 3784 is_multicast_ether_addr(match.key->dst)) { 3785 /* set the mask if a valid dst_mac address */ 3786 for (i = 0; i < ETH_ALEN; i++) 3787 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3788 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3789 match.key->dst); 3790 } 3791 3792 if (!is_zero_ether_addr(match.key->src)) 3793 if (is_valid_ether_addr(match.key->src) || 3794 is_multicast_ether_addr(match.key->src)) { 3795 /* set the mask if a valid dst_mac address */ 3796 for (i = 0; i < ETH_ALEN; i++) 3797 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3798 ether_addr_copy(vf->data.tcp_spec.src_mac, 3799 match.key->src); 3800 } 3801 } 3802 3803 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3804 struct flow_match_vlan match; 3805 3806 flow_rule_match_vlan(rule, &match); 3807 if (match.mask->vlan_id) { 3808 if (match.mask->vlan_id == VLAN_VID_MASK) { 3809 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3810 } else { 3811 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3812 match.mask->vlan_id); 3813 return -EINVAL; 3814 } 3815 } 3816 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3817 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3818 } 3819 3820 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3821 struct flow_match_control match; 3822 3823 flow_rule_match_control(rule, &match); 3824 addr_type = match.key->addr_type; 3825 } 3826 3827 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3828 struct flow_match_ipv4_addrs match; 3829 3830 flow_rule_match_ipv4_addrs(rule, &match); 3831 if (match.mask->dst) { 3832 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3833 field_flags |= IAVF_CLOUD_FIELD_IIP; 3834 } else { 3835 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3836 be32_to_cpu(match.mask->dst)); 3837 return -EINVAL; 3838 } 3839 } 3840 3841 if (match.mask->src) { 3842 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3843 field_flags |= IAVF_CLOUD_FIELD_IIP; 3844 } else { 3845 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3846 be32_to_cpu(match.mask->dst)); 3847 return -EINVAL; 3848 } 3849 } 3850 3851 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3852 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3853 return -EINVAL; 3854 } 3855 if (match.key->dst) { 3856 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3857 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3858 } 3859 if (match.key->src) { 3860 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3861 vf->data.tcp_spec.src_ip[0] = match.key->src; 3862 } 3863 } 3864 3865 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3866 struct flow_match_ipv6_addrs match; 3867 3868 flow_rule_match_ipv6_addrs(rule, &match); 3869 3870 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3871 if (ipv6_addr_any(&match.mask->dst)) { 3872 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3873 IPV6_ADDR_ANY); 3874 return -EINVAL; 3875 } 3876 3877 /* src and dest IPv6 address should not be LOOPBACK 3878 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3879 */ 3880 if (ipv6_addr_loopback(&match.key->dst) || 3881 ipv6_addr_loopback(&match.key->src)) { 3882 dev_err(&adapter->pdev->dev, 3883 "ipv6 addr should not be loopback\n"); 3884 return -EINVAL; 3885 } 3886 if (!ipv6_addr_any(&match.mask->dst) || 3887 !ipv6_addr_any(&match.mask->src)) 3888 field_flags |= IAVF_CLOUD_FIELD_IIP; 3889 3890 for (i = 0; i < 4; i++) 3891 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3892 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3893 sizeof(vf->data.tcp_spec.dst_ip)); 3894 for (i = 0; i < 4; i++) 3895 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3896 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3897 sizeof(vf->data.tcp_spec.src_ip)); 3898 } 3899 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3900 struct flow_match_ports match; 3901 3902 flow_rule_match_ports(rule, &match); 3903 if (match.mask->src) { 3904 if (match.mask->src == cpu_to_be16(0xffff)) { 3905 field_flags |= IAVF_CLOUD_FIELD_IIP; 3906 } else { 3907 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3908 be16_to_cpu(match.mask->src)); 3909 return -EINVAL; 3910 } 3911 } 3912 3913 if (match.mask->dst) { 3914 if (match.mask->dst == cpu_to_be16(0xffff)) { 3915 field_flags |= IAVF_CLOUD_FIELD_IIP; 3916 } else { 3917 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3918 be16_to_cpu(match.mask->dst)); 3919 return -EINVAL; 3920 } 3921 } 3922 if (match.key->dst) { 3923 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3924 vf->data.tcp_spec.dst_port = match.key->dst; 3925 } 3926 3927 if (match.key->src) { 3928 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3929 vf->data.tcp_spec.src_port = match.key->src; 3930 } 3931 } 3932 vf->field_flags = field_flags; 3933 3934 return 0; 3935 } 3936 3937 /** 3938 * iavf_handle_tclass - Forward to a traffic class on the device 3939 * @adapter: board private structure 3940 * @tc: traffic class index on the device 3941 * @filter: pointer to cloud filter structure 3942 */ 3943 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3944 struct iavf_cloud_filter *filter) 3945 { 3946 if (tc == 0) 3947 return 0; 3948 if (tc < adapter->num_tc) { 3949 if (!filter->f.data.tcp_spec.dst_port) { 3950 dev_err(&adapter->pdev->dev, 3951 "Specify destination port to redirect to traffic class other than TC0\n"); 3952 return -EINVAL; 3953 } 3954 } 3955 /* redirect to a traffic class on the same device */ 3956 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3957 filter->f.action_meta = tc; 3958 return 0; 3959 } 3960 3961 /** 3962 * iavf_find_cf - Find the cloud filter in the list 3963 * @adapter: Board private structure 3964 * @cookie: filter specific cookie 3965 * 3966 * Returns ptr to the filter object or NULL. Must be called while holding the 3967 * cloud_filter_list_lock. 3968 */ 3969 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3970 unsigned long *cookie) 3971 { 3972 struct iavf_cloud_filter *filter = NULL; 3973 3974 if (!cookie) 3975 return NULL; 3976 3977 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3978 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3979 return filter; 3980 } 3981 return NULL; 3982 } 3983 3984 /** 3985 * iavf_configure_clsflower - Add tc flower filters 3986 * @adapter: board private structure 3987 * @cls_flower: Pointer to struct flow_cls_offload 3988 */ 3989 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3990 struct flow_cls_offload *cls_flower) 3991 { 3992 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3993 struct iavf_cloud_filter *filter = NULL; 3994 int err = -EINVAL, count = 50; 3995 3996 if (tc < 0) { 3997 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3998 return -EINVAL; 3999 } 4000 4001 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4002 if (!filter) 4003 return -ENOMEM; 4004 4005 while (!mutex_trylock(&adapter->crit_lock)) { 4006 if (--count == 0) { 4007 kfree(filter); 4008 return err; 4009 } 4010 udelay(1); 4011 } 4012 4013 filter->cookie = cls_flower->cookie; 4014 4015 /* bail out here if filter already exists */ 4016 spin_lock_bh(&adapter->cloud_filter_list_lock); 4017 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4018 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4019 err = -EEXIST; 4020 goto spin_unlock; 4021 } 4022 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4023 4024 /* set the mask to all zeroes to begin with */ 4025 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4026 /* start out with flow type and eth type IPv4 to begin with */ 4027 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4028 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4029 if (err) 4030 goto err; 4031 4032 err = iavf_handle_tclass(adapter, tc, filter); 4033 if (err) 4034 goto err; 4035 4036 /* add filter to the list */ 4037 spin_lock_bh(&adapter->cloud_filter_list_lock); 4038 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4039 adapter->num_cloud_filters++; 4040 filter->add = true; 4041 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4042 spin_unlock: 4043 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4044 err: 4045 if (err) 4046 kfree(filter); 4047 4048 mutex_unlock(&adapter->crit_lock); 4049 return err; 4050 } 4051 4052 /** 4053 * iavf_delete_clsflower - Remove tc flower filters 4054 * @adapter: board private structure 4055 * @cls_flower: Pointer to struct flow_cls_offload 4056 */ 4057 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4058 struct flow_cls_offload *cls_flower) 4059 { 4060 struct iavf_cloud_filter *filter = NULL; 4061 int err = 0; 4062 4063 spin_lock_bh(&adapter->cloud_filter_list_lock); 4064 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4065 if (filter) { 4066 filter->del = true; 4067 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4068 } else { 4069 err = -EINVAL; 4070 } 4071 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4072 4073 return err; 4074 } 4075 4076 /** 4077 * iavf_setup_tc_cls_flower - flower classifier offloads 4078 * @adapter: board private structure 4079 * @cls_flower: pointer to flow_cls_offload struct with flow info 4080 */ 4081 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4082 struct flow_cls_offload *cls_flower) 4083 { 4084 switch (cls_flower->command) { 4085 case FLOW_CLS_REPLACE: 4086 return iavf_configure_clsflower(adapter, cls_flower); 4087 case FLOW_CLS_DESTROY: 4088 return iavf_delete_clsflower(adapter, cls_flower); 4089 case FLOW_CLS_STATS: 4090 return -EOPNOTSUPP; 4091 default: 4092 return -EOPNOTSUPP; 4093 } 4094 } 4095 4096 /** 4097 * iavf_setup_tc_block_cb - block callback for tc 4098 * @type: type of offload 4099 * @type_data: offload data 4100 * @cb_priv: 4101 * 4102 * This function is the block callback for traffic classes 4103 **/ 4104 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4105 void *cb_priv) 4106 { 4107 struct iavf_adapter *adapter = cb_priv; 4108 4109 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4110 return -EOPNOTSUPP; 4111 4112 switch (type) { 4113 case TC_SETUP_CLSFLOWER: 4114 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4115 default: 4116 return -EOPNOTSUPP; 4117 } 4118 } 4119 4120 static LIST_HEAD(iavf_block_cb_list); 4121 4122 /** 4123 * iavf_setup_tc - configure multiple traffic classes 4124 * @netdev: network interface device structure 4125 * @type: type of offload 4126 * @type_data: tc offload data 4127 * 4128 * This function is the callback to ndo_setup_tc in the 4129 * netdev_ops. 4130 * 4131 * Returns 0 on success 4132 **/ 4133 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4134 void *type_data) 4135 { 4136 struct iavf_adapter *adapter = netdev_priv(netdev); 4137 4138 switch (type) { 4139 case TC_SETUP_QDISC_MQPRIO: 4140 return __iavf_setup_tc(netdev, type_data); 4141 case TC_SETUP_BLOCK: 4142 return flow_block_cb_setup_simple(type_data, 4143 &iavf_block_cb_list, 4144 iavf_setup_tc_block_cb, 4145 adapter, adapter, true); 4146 default: 4147 return -EOPNOTSUPP; 4148 } 4149 } 4150 4151 /** 4152 * iavf_open - Called when a network interface is made active 4153 * @netdev: network interface device structure 4154 * 4155 * Returns 0 on success, negative value on failure 4156 * 4157 * The open entry point is called when a network interface is made 4158 * active by the system (IFF_UP). At this point all resources needed 4159 * for transmit and receive operations are allocated, the interrupt 4160 * handler is registered with the OS, the watchdog is started, 4161 * and the stack is notified that the interface is ready. 4162 **/ 4163 static int iavf_open(struct net_device *netdev) 4164 { 4165 struct iavf_adapter *adapter = netdev_priv(netdev); 4166 int err; 4167 4168 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4169 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4170 return -EIO; 4171 } 4172 4173 while (!mutex_trylock(&adapter->crit_lock)) { 4174 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4175 * is already taken and iavf_open is called from an upper 4176 * device's notifier reacting on NETDEV_REGISTER event. 4177 * We have to leave here to avoid dead lock. 4178 */ 4179 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4180 return -EBUSY; 4181 4182 usleep_range(500, 1000); 4183 } 4184 4185 if (adapter->state != __IAVF_DOWN) { 4186 err = -EBUSY; 4187 goto err_unlock; 4188 } 4189 4190 if (adapter->state == __IAVF_RUNNING && 4191 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4192 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4193 err = 0; 4194 goto err_unlock; 4195 } 4196 4197 /* allocate transmit descriptors */ 4198 err = iavf_setup_all_tx_resources(adapter); 4199 if (err) 4200 goto err_setup_tx; 4201 4202 /* allocate receive descriptors */ 4203 err = iavf_setup_all_rx_resources(adapter); 4204 if (err) 4205 goto err_setup_rx; 4206 4207 /* clear any pending interrupts, may auto mask */ 4208 err = iavf_request_traffic_irqs(adapter, netdev->name); 4209 if (err) 4210 goto err_req_irq; 4211 4212 spin_lock_bh(&adapter->mac_vlan_list_lock); 4213 4214 iavf_add_filter(adapter, adapter->hw.mac.addr); 4215 4216 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4217 4218 /* Restore VLAN filters that were removed with IFF_DOWN */ 4219 iavf_restore_filters(adapter); 4220 4221 iavf_configure(adapter); 4222 4223 iavf_up_complete(adapter); 4224 4225 iavf_irq_enable(adapter, true); 4226 4227 mutex_unlock(&adapter->crit_lock); 4228 4229 return 0; 4230 4231 err_req_irq: 4232 iavf_down(adapter); 4233 iavf_free_traffic_irqs(adapter); 4234 err_setup_rx: 4235 iavf_free_all_rx_resources(adapter); 4236 err_setup_tx: 4237 iavf_free_all_tx_resources(adapter); 4238 err_unlock: 4239 mutex_unlock(&adapter->crit_lock); 4240 4241 return err; 4242 } 4243 4244 /** 4245 * iavf_close - Disables a network interface 4246 * @netdev: network interface device structure 4247 * 4248 * Returns 0, this is not allowed to fail 4249 * 4250 * The close entry point is called when an interface is de-activated 4251 * by the OS. The hardware is still under the drivers control, but 4252 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4253 * are freed, along with all transmit and receive resources. 4254 **/ 4255 static int iavf_close(struct net_device *netdev) 4256 { 4257 struct iavf_adapter *adapter = netdev_priv(netdev); 4258 u64 aq_to_restore; 4259 int status; 4260 4261 mutex_lock(&adapter->crit_lock); 4262 4263 if (adapter->state <= __IAVF_DOWN_PENDING) { 4264 mutex_unlock(&adapter->crit_lock); 4265 return 0; 4266 } 4267 4268 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4269 if (CLIENT_ENABLED(adapter)) 4270 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4271 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4272 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4273 * deadlock with adminq_task() until iavf_close timeouts. We must send 4274 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4275 * disable queues possible for vf. Give only necessary flags to 4276 * iavf_down and save other to set them right before iavf_close() 4277 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4278 * iavf will be in DOWN state. 4279 */ 4280 aq_to_restore = adapter->aq_required; 4281 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4282 4283 /* Remove flags which we do not want to send after close or we want to 4284 * send before disable queues. 4285 */ 4286 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4287 IAVF_FLAG_AQ_ENABLE_QUEUES | 4288 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4289 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4290 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4291 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4292 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4293 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4294 4295 iavf_down(adapter); 4296 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4297 iavf_free_traffic_irqs(adapter); 4298 4299 mutex_unlock(&adapter->crit_lock); 4300 4301 /* We explicitly don't free resources here because the hardware is 4302 * still active and can DMA into memory. Resources are cleared in 4303 * iavf_virtchnl_completion() after we get confirmation from the PF 4304 * driver that the rings have been stopped. 4305 * 4306 * Also, we wait for state to transition to __IAVF_DOWN before 4307 * returning. State change occurs in iavf_virtchnl_completion() after 4308 * VF resources are released (which occurs after PF driver processes and 4309 * responds to admin queue commands). 4310 */ 4311 4312 status = wait_event_timeout(adapter->down_waitqueue, 4313 adapter->state == __IAVF_DOWN, 4314 msecs_to_jiffies(500)); 4315 if (!status) 4316 netdev_warn(netdev, "Device resources not yet released\n"); 4317 4318 mutex_lock(&adapter->crit_lock); 4319 adapter->aq_required |= aq_to_restore; 4320 mutex_unlock(&adapter->crit_lock); 4321 return 0; 4322 } 4323 4324 /** 4325 * iavf_change_mtu - Change the Maximum Transfer Unit 4326 * @netdev: network interface device structure 4327 * @new_mtu: new value for maximum frame size 4328 * 4329 * Returns 0 on success, negative on failure 4330 **/ 4331 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4332 { 4333 struct iavf_adapter *adapter = netdev_priv(netdev); 4334 4335 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4336 netdev->mtu, new_mtu); 4337 netdev->mtu = new_mtu; 4338 if (CLIENT_ENABLED(adapter)) { 4339 iavf_notify_client_l2_params(&adapter->vsi); 4340 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4341 } 4342 4343 if (netif_running(netdev)) { 4344 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4345 queue_work(iavf_wq, &adapter->reset_task); 4346 } 4347 4348 return 0; 4349 } 4350 4351 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4352 NETIF_F_HW_VLAN_CTAG_TX | \ 4353 NETIF_F_HW_VLAN_STAG_RX | \ 4354 NETIF_F_HW_VLAN_STAG_TX) 4355 4356 /** 4357 * iavf_set_features - set the netdev feature flags 4358 * @netdev: ptr to the netdev being adjusted 4359 * @features: the feature set that the stack is suggesting 4360 * Note: expects to be called while under rtnl_lock() 4361 **/ 4362 static int iavf_set_features(struct net_device *netdev, 4363 netdev_features_t features) 4364 { 4365 struct iavf_adapter *adapter = netdev_priv(netdev); 4366 4367 /* trigger update on any VLAN feature change */ 4368 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4369 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4370 iavf_set_vlan_offload_features(adapter, netdev->features, 4371 features); 4372 4373 return 0; 4374 } 4375 4376 /** 4377 * iavf_features_check - Validate encapsulated packet conforms to limits 4378 * @skb: skb buff 4379 * @dev: This physical port's netdev 4380 * @features: Offload features that the stack believes apply 4381 **/ 4382 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4383 struct net_device *dev, 4384 netdev_features_t features) 4385 { 4386 size_t len; 4387 4388 /* No point in doing any of this if neither checksum nor GSO are 4389 * being requested for this frame. We can rule out both by just 4390 * checking for CHECKSUM_PARTIAL 4391 */ 4392 if (skb->ip_summed != CHECKSUM_PARTIAL) 4393 return features; 4394 4395 /* We cannot support GSO if the MSS is going to be less than 4396 * 64 bytes. If it is then we need to drop support for GSO. 4397 */ 4398 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4399 features &= ~NETIF_F_GSO_MASK; 4400 4401 /* MACLEN can support at most 63 words */ 4402 len = skb_network_header(skb) - skb->data; 4403 if (len & ~(63 * 2)) 4404 goto out_err; 4405 4406 /* IPLEN and EIPLEN can support at most 127 dwords */ 4407 len = skb_transport_header(skb) - skb_network_header(skb); 4408 if (len & ~(127 * 4)) 4409 goto out_err; 4410 4411 if (skb->encapsulation) { 4412 /* L4TUNLEN can support 127 words */ 4413 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4414 if (len & ~(127 * 2)) 4415 goto out_err; 4416 4417 /* IPLEN can support at most 127 dwords */ 4418 len = skb_inner_transport_header(skb) - 4419 skb_inner_network_header(skb); 4420 if (len & ~(127 * 4)) 4421 goto out_err; 4422 } 4423 4424 /* No need to validate L4LEN as TCP is the only protocol with a 4425 * flexible value and we support all possible values supported 4426 * by TCP, which is at most 15 dwords 4427 */ 4428 4429 return features; 4430 out_err: 4431 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4432 } 4433 4434 /** 4435 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4436 * @adapter: board private structure 4437 * 4438 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4439 * were negotiated determine the VLAN features that can be toggled on and off. 4440 **/ 4441 static netdev_features_t 4442 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4443 { 4444 netdev_features_t hw_features = 0; 4445 4446 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4447 return hw_features; 4448 4449 /* Enable VLAN features if supported */ 4450 if (VLAN_ALLOWED(adapter)) { 4451 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4452 NETIF_F_HW_VLAN_CTAG_RX); 4453 } else if (VLAN_V2_ALLOWED(adapter)) { 4454 struct virtchnl_vlan_caps *vlan_v2_caps = 4455 &adapter->vlan_v2_caps; 4456 struct virtchnl_vlan_supported_caps *stripping_support = 4457 &vlan_v2_caps->offloads.stripping_support; 4458 struct virtchnl_vlan_supported_caps *insertion_support = 4459 &vlan_v2_caps->offloads.insertion_support; 4460 4461 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4462 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4463 if (stripping_support->outer & 4464 VIRTCHNL_VLAN_ETHERTYPE_8100) 4465 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4466 if (stripping_support->outer & 4467 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4468 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4469 } else if (stripping_support->inner != 4470 VIRTCHNL_VLAN_UNSUPPORTED && 4471 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4472 if (stripping_support->inner & 4473 VIRTCHNL_VLAN_ETHERTYPE_8100) 4474 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4475 } 4476 4477 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4478 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4479 if (insertion_support->outer & 4480 VIRTCHNL_VLAN_ETHERTYPE_8100) 4481 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4482 if (insertion_support->outer & 4483 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4484 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4485 } else if (insertion_support->inner && 4486 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4487 if (insertion_support->inner & 4488 VIRTCHNL_VLAN_ETHERTYPE_8100) 4489 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4490 } 4491 } 4492 4493 return hw_features; 4494 } 4495 4496 /** 4497 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4498 * @adapter: board private structure 4499 * 4500 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4501 * were negotiated determine the VLAN features that are enabled by default. 4502 **/ 4503 static netdev_features_t 4504 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4505 { 4506 netdev_features_t features = 0; 4507 4508 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4509 return features; 4510 4511 if (VLAN_ALLOWED(adapter)) { 4512 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4513 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4514 } else if (VLAN_V2_ALLOWED(adapter)) { 4515 struct virtchnl_vlan_caps *vlan_v2_caps = 4516 &adapter->vlan_v2_caps; 4517 struct virtchnl_vlan_supported_caps *filtering_support = 4518 &vlan_v2_caps->filtering.filtering_support; 4519 struct virtchnl_vlan_supported_caps *stripping_support = 4520 &vlan_v2_caps->offloads.stripping_support; 4521 struct virtchnl_vlan_supported_caps *insertion_support = 4522 &vlan_v2_caps->offloads.insertion_support; 4523 u32 ethertype_init; 4524 4525 /* give priority to outer stripping and don't support both outer 4526 * and inner stripping 4527 */ 4528 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4529 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4530 if (stripping_support->outer & 4531 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4532 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4533 features |= NETIF_F_HW_VLAN_CTAG_RX; 4534 else if (stripping_support->outer & 4535 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4536 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4537 features |= NETIF_F_HW_VLAN_STAG_RX; 4538 } else if (stripping_support->inner != 4539 VIRTCHNL_VLAN_UNSUPPORTED) { 4540 if (stripping_support->inner & 4541 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4542 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4543 features |= NETIF_F_HW_VLAN_CTAG_RX; 4544 } 4545 4546 /* give priority to outer insertion and don't support both outer 4547 * and inner insertion 4548 */ 4549 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4550 if (insertion_support->outer & 4551 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4552 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4553 features |= NETIF_F_HW_VLAN_CTAG_TX; 4554 else if (insertion_support->outer & 4555 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4556 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4557 features |= NETIF_F_HW_VLAN_STAG_TX; 4558 } else if (insertion_support->inner != 4559 VIRTCHNL_VLAN_UNSUPPORTED) { 4560 if (insertion_support->inner & 4561 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4562 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4563 features |= NETIF_F_HW_VLAN_CTAG_TX; 4564 } 4565 4566 /* give priority to outer filtering and don't bother if both 4567 * outer and inner filtering are enabled 4568 */ 4569 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4570 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4571 if (filtering_support->outer & 4572 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4573 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4574 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4575 if (filtering_support->outer & 4576 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4577 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4578 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4579 } else if (filtering_support->inner != 4580 VIRTCHNL_VLAN_UNSUPPORTED) { 4581 if (filtering_support->inner & 4582 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4584 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4585 if (filtering_support->inner & 4586 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4587 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4588 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4589 } 4590 } 4591 4592 return features; 4593 } 4594 4595 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4596 (!(((requested) & (feature_bit)) && \ 4597 !((allowed) & (feature_bit)))) 4598 4599 /** 4600 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4601 * @adapter: board private structure 4602 * @requested_features: stack requested NETDEV features 4603 **/ 4604 static netdev_features_t 4605 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4606 netdev_features_t requested_features) 4607 { 4608 netdev_features_t allowed_features; 4609 4610 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4611 iavf_get_netdev_vlan_features(adapter); 4612 4613 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4614 allowed_features, 4615 NETIF_F_HW_VLAN_CTAG_TX)) 4616 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4617 4618 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4619 allowed_features, 4620 NETIF_F_HW_VLAN_CTAG_RX)) 4621 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4622 4623 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4624 allowed_features, 4625 NETIF_F_HW_VLAN_STAG_TX)) 4626 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4627 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4628 allowed_features, 4629 NETIF_F_HW_VLAN_STAG_RX)) 4630 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4631 4632 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4633 allowed_features, 4634 NETIF_F_HW_VLAN_CTAG_FILTER)) 4635 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4636 4637 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4638 allowed_features, 4639 NETIF_F_HW_VLAN_STAG_FILTER)) 4640 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4641 4642 if ((requested_features & 4643 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4644 (requested_features & 4645 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4646 adapter->vlan_v2_caps.offloads.ethertype_match == 4647 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4648 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4649 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4650 NETIF_F_HW_VLAN_STAG_TX); 4651 } 4652 4653 return requested_features; 4654 } 4655 4656 /** 4657 * iavf_fix_features - fix up the netdev feature bits 4658 * @netdev: our net device 4659 * @features: desired feature bits 4660 * 4661 * Returns fixed-up features bits 4662 **/ 4663 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4664 netdev_features_t features) 4665 { 4666 struct iavf_adapter *adapter = netdev_priv(netdev); 4667 4668 return iavf_fix_netdev_vlan_features(adapter, features); 4669 } 4670 4671 static const struct net_device_ops iavf_netdev_ops = { 4672 .ndo_open = iavf_open, 4673 .ndo_stop = iavf_close, 4674 .ndo_start_xmit = iavf_xmit_frame, 4675 .ndo_set_rx_mode = iavf_set_rx_mode, 4676 .ndo_validate_addr = eth_validate_addr, 4677 .ndo_set_mac_address = iavf_set_mac, 4678 .ndo_change_mtu = iavf_change_mtu, 4679 .ndo_tx_timeout = iavf_tx_timeout, 4680 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4681 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4682 .ndo_features_check = iavf_features_check, 4683 .ndo_fix_features = iavf_fix_features, 4684 .ndo_set_features = iavf_set_features, 4685 .ndo_setup_tc = iavf_setup_tc, 4686 }; 4687 4688 /** 4689 * iavf_check_reset_complete - check that VF reset is complete 4690 * @hw: pointer to hw struct 4691 * 4692 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4693 **/ 4694 static int iavf_check_reset_complete(struct iavf_hw *hw) 4695 { 4696 u32 rstat; 4697 int i; 4698 4699 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4700 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4701 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4702 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4703 (rstat == VIRTCHNL_VFR_COMPLETED)) 4704 return 0; 4705 usleep_range(10, 20); 4706 } 4707 return -EBUSY; 4708 } 4709 4710 /** 4711 * iavf_process_config - Process the config information we got from the PF 4712 * @adapter: board private structure 4713 * 4714 * Verify that we have a valid config struct, and set up our netdev features 4715 * and our VSI struct. 4716 **/ 4717 int iavf_process_config(struct iavf_adapter *adapter) 4718 { 4719 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4720 netdev_features_t hw_vlan_features, vlan_features; 4721 struct net_device *netdev = adapter->netdev; 4722 netdev_features_t hw_enc_features; 4723 netdev_features_t hw_features; 4724 4725 hw_enc_features = NETIF_F_SG | 4726 NETIF_F_IP_CSUM | 4727 NETIF_F_IPV6_CSUM | 4728 NETIF_F_HIGHDMA | 4729 NETIF_F_SOFT_FEATURES | 4730 NETIF_F_TSO | 4731 NETIF_F_TSO_ECN | 4732 NETIF_F_TSO6 | 4733 NETIF_F_SCTP_CRC | 4734 NETIF_F_RXHASH | 4735 NETIF_F_RXCSUM | 4736 0; 4737 4738 /* advertise to stack only if offloads for encapsulated packets is 4739 * supported 4740 */ 4741 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4742 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4743 NETIF_F_GSO_GRE | 4744 NETIF_F_GSO_GRE_CSUM | 4745 NETIF_F_GSO_IPXIP4 | 4746 NETIF_F_GSO_IPXIP6 | 4747 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4748 NETIF_F_GSO_PARTIAL | 4749 0; 4750 4751 if (!(vfres->vf_cap_flags & 4752 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4753 netdev->gso_partial_features |= 4754 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4755 4756 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4757 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4758 netdev->hw_enc_features |= hw_enc_features; 4759 } 4760 /* record features VLANs can make use of */ 4761 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4762 4763 /* Write features and hw_features separately to avoid polluting 4764 * with, or dropping, features that are set when we registered. 4765 */ 4766 hw_features = hw_enc_features; 4767 4768 /* get HW VLAN features that can be toggled */ 4769 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4770 4771 /* Enable cloud filter if ADQ is supported */ 4772 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4773 hw_features |= NETIF_F_HW_TC; 4774 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4775 hw_features |= NETIF_F_GSO_UDP_L4; 4776 4777 netdev->hw_features |= hw_features | hw_vlan_features; 4778 vlan_features = iavf_get_netdev_vlan_features(adapter); 4779 4780 netdev->features |= hw_features | vlan_features; 4781 4782 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4783 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4784 4785 netdev->priv_flags |= IFF_UNICAST_FLT; 4786 4787 /* Do not turn on offloads when they are requested to be turned off. 4788 * TSO needs minimum 576 bytes to work correctly. 4789 */ 4790 if (netdev->wanted_features) { 4791 if (!(netdev->wanted_features & NETIF_F_TSO) || 4792 netdev->mtu < 576) 4793 netdev->features &= ~NETIF_F_TSO; 4794 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4795 netdev->mtu < 576) 4796 netdev->features &= ~NETIF_F_TSO6; 4797 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4798 netdev->features &= ~NETIF_F_TSO_ECN; 4799 if (!(netdev->wanted_features & NETIF_F_GRO)) 4800 netdev->features &= ~NETIF_F_GRO; 4801 if (!(netdev->wanted_features & NETIF_F_GSO)) 4802 netdev->features &= ~NETIF_F_GSO; 4803 } 4804 4805 return 0; 4806 } 4807 4808 /** 4809 * iavf_shutdown - Shutdown the device in preparation for a reboot 4810 * @pdev: pci device structure 4811 **/ 4812 static void iavf_shutdown(struct pci_dev *pdev) 4813 { 4814 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4815 struct net_device *netdev = adapter->netdev; 4816 4817 netif_device_detach(netdev); 4818 4819 if (netif_running(netdev)) 4820 iavf_close(netdev); 4821 4822 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4823 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4824 /* Prevent the watchdog from running. */ 4825 iavf_change_state(adapter, __IAVF_REMOVE); 4826 adapter->aq_required = 0; 4827 mutex_unlock(&adapter->crit_lock); 4828 4829 #ifdef CONFIG_PM 4830 pci_save_state(pdev); 4831 4832 #endif 4833 pci_disable_device(pdev); 4834 } 4835 4836 /** 4837 * iavf_probe - Device Initialization Routine 4838 * @pdev: PCI device information struct 4839 * @ent: entry in iavf_pci_tbl 4840 * 4841 * Returns 0 on success, negative on failure 4842 * 4843 * iavf_probe initializes an adapter identified by a pci_dev structure. 4844 * The OS initialization, configuring of the adapter private structure, 4845 * and a hardware reset occur. 4846 **/ 4847 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4848 { 4849 struct net_device *netdev; 4850 struct iavf_adapter *adapter = NULL; 4851 struct iavf_hw *hw = NULL; 4852 int err; 4853 4854 err = pci_enable_device(pdev); 4855 if (err) 4856 return err; 4857 4858 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4859 if (err) { 4860 dev_err(&pdev->dev, 4861 "DMA configuration failed: 0x%x\n", err); 4862 goto err_dma; 4863 } 4864 4865 err = pci_request_regions(pdev, iavf_driver_name); 4866 if (err) { 4867 dev_err(&pdev->dev, 4868 "pci_request_regions failed 0x%x\n", err); 4869 goto err_pci_reg; 4870 } 4871 4872 pci_enable_pcie_error_reporting(pdev); 4873 4874 pci_set_master(pdev); 4875 4876 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4877 IAVF_MAX_REQ_QUEUES); 4878 if (!netdev) { 4879 err = -ENOMEM; 4880 goto err_alloc_etherdev; 4881 } 4882 4883 SET_NETDEV_DEV(netdev, &pdev->dev); 4884 4885 pci_set_drvdata(pdev, netdev); 4886 adapter = netdev_priv(netdev); 4887 4888 adapter->netdev = netdev; 4889 adapter->pdev = pdev; 4890 4891 hw = &adapter->hw; 4892 hw->back = adapter; 4893 4894 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4895 iavf_change_state(adapter, __IAVF_STARTUP); 4896 4897 /* Call save state here because it relies on the adapter struct. */ 4898 pci_save_state(pdev); 4899 4900 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4901 pci_resource_len(pdev, 0)); 4902 if (!hw->hw_addr) { 4903 err = -EIO; 4904 goto err_ioremap; 4905 } 4906 hw->vendor_id = pdev->vendor; 4907 hw->device_id = pdev->device; 4908 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4909 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4910 hw->subsystem_device_id = pdev->subsystem_device; 4911 hw->bus.device = PCI_SLOT(pdev->devfn); 4912 hw->bus.func = PCI_FUNC(pdev->devfn); 4913 hw->bus.bus_id = pdev->bus->number; 4914 4915 /* set up the locks for the AQ, do this only once in probe 4916 * and destroy them only once in remove 4917 */ 4918 mutex_init(&adapter->crit_lock); 4919 mutex_init(&adapter->client_lock); 4920 mutex_init(&hw->aq.asq_mutex); 4921 mutex_init(&hw->aq.arq_mutex); 4922 4923 spin_lock_init(&adapter->mac_vlan_list_lock); 4924 spin_lock_init(&adapter->cloud_filter_list_lock); 4925 spin_lock_init(&adapter->fdir_fltr_lock); 4926 spin_lock_init(&adapter->adv_rss_lock); 4927 4928 INIT_LIST_HEAD(&adapter->mac_filter_list); 4929 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4930 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4931 INIT_LIST_HEAD(&adapter->fdir_list_head); 4932 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4933 4934 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4935 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4936 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4937 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4938 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4939 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4940 4941 /* Setup the wait queue for indicating transition to down status */ 4942 init_waitqueue_head(&adapter->down_waitqueue); 4943 4944 /* Setup the wait queue for indicating virtchannel events */ 4945 init_waitqueue_head(&adapter->vc_waitqueue); 4946 4947 return 0; 4948 4949 err_ioremap: 4950 free_netdev(netdev); 4951 err_alloc_etherdev: 4952 pci_disable_pcie_error_reporting(pdev); 4953 pci_release_regions(pdev); 4954 err_pci_reg: 4955 err_dma: 4956 pci_disable_device(pdev); 4957 return err; 4958 } 4959 4960 /** 4961 * iavf_suspend - Power management suspend routine 4962 * @dev_d: device info pointer 4963 * 4964 * Called when the system (VM) is entering sleep/suspend. 4965 **/ 4966 static int __maybe_unused iavf_suspend(struct device *dev_d) 4967 { 4968 struct net_device *netdev = dev_get_drvdata(dev_d); 4969 struct iavf_adapter *adapter = netdev_priv(netdev); 4970 4971 netif_device_detach(netdev); 4972 4973 while (!mutex_trylock(&adapter->crit_lock)) 4974 usleep_range(500, 1000); 4975 4976 if (netif_running(netdev)) { 4977 rtnl_lock(); 4978 iavf_down(adapter); 4979 rtnl_unlock(); 4980 } 4981 iavf_free_misc_irq(adapter); 4982 iavf_reset_interrupt_capability(adapter); 4983 4984 mutex_unlock(&adapter->crit_lock); 4985 4986 return 0; 4987 } 4988 4989 /** 4990 * iavf_resume - Power management resume routine 4991 * @dev_d: device info pointer 4992 * 4993 * Called when the system (VM) is resumed from sleep/suspend. 4994 **/ 4995 static int __maybe_unused iavf_resume(struct device *dev_d) 4996 { 4997 struct pci_dev *pdev = to_pci_dev(dev_d); 4998 struct iavf_adapter *adapter; 4999 u32 err; 5000 5001 adapter = iavf_pdev_to_adapter(pdev); 5002 5003 pci_set_master(pdev); 5004 5005 rtnl_lock(); 5006 err = iavf_set_interrupt_capability(adapter); 5007 if (err) { 5008 rtnl_unlock(); 5009 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5010 return err; 5011 } 5012 err = iavf_request_misc_irq(adapter); 5013 rtnl_unlock(); 5014 if (err) { 5015 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5016 return err; 5017 } 5018 5019 queue_work(iavf_wq, &adapter->reset_task); 5020 5021 netif_device_attach(adapter->netdev); 5022 5023 return err; 5024 } 5025 5026 /** 5027 * iavf_remove - Device Removal Routine 5028 * @pdev: PCI device information struct 5029 * 5030 * iavf_remove is called by the PCI subsystem to alert the driver 5031 * that it should release a PCI device. The could be caused by a 5032 * Hot-Plug event, or because the driver is going to be removed from 5033 * memory. 5034 **/ 5035 static void iavf_remove(struct pci_dev *pdev) 5036 { 5037 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5038 struct net_device *netdev = adapter->netdev; 5039 struct iavf_fdir_fltr *fdir, *fdirtmp; 5040 struct iavf_vlan_filter *vlf, *vlftmp; 5041 struct iavf_adv_rss *rss, *rsstmp; 5042 struct iavf_mac_filter *f, *ftmp; 5043 struct iavf_cloud_filter *cf, *cftmp; 5044 struct iavf_hw *hw = &adapter->hw; 5045 int err; 5046 5047 /* When reboot/shutdown is in progress no need to do anything 5048 * as the adapter is already REMOVE state that was set during 5049 * iavf_shutdown() callback. 5050 */ 5051 if (adapter->state == __IAVF_REMOVE) 5052 return; 5053 5054 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 5055 /* Wait until port initialization is complete. 5056 * There are flows where register/unregister netdev may race. 5057 */ 5058 while (1) { 5059 mutex_lock(&adapter->crit_lock); 5060 if (adapter->state == __IAVF_RUNNING || 5061 adapter->state == __IAVF_DOWN || 5062 adapter->state == __IAVF_INIT_FAILED) { 5063 mutex_unlock(&adapter->crit_lock); 5064 break; 5065 } 5066 5067 mutex_unlock(&adapter->crit_lock); 5068 usleep_range(500, 1000); 5069 } 5070 cancel_delayed_work_sync(&adapter->watchdog_task); 5071 5072 if (adapter->netdev_registered) { 5073 rtnl_lock(); 5074 unregister_netdevice(netdev); 5075 adapter->netdev_registered = false; 5076 rtnl_unlock(); 5077 } 5078 if (CLIENT_ALLOWED(adapter)) { 5079 err = iavf_lan_del_device(adapter); 5080 if (err) 5081 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5082 err); 5083 } 5084 5085 mutex_lock(&adapter->crit_lock); 5086 dev_info(&adapter->pdev->dev, "Remove device\n"); 5087 iavf_change_state(adapter, __IAVF_REMOVE); 5088 5089 iavf_request_reset(adapter); 5090 msleep(50); 5091 /* If the FW isn't responding, kick it once, but only once. */ 5092 if (!iavf_asq_done(hw)) { 5093 iavf_request_reset(adapter); 5094 msleep(50); 5095 } 5096 5097 iavf_misc_irq_disable(adapter); 5098 /* Shut down all the garbage mashers on the detention level */ 5099 cancel_work_sync(&adapter->reset_task); 5100 cancel_delayed_work_sync(&adapter->watchdog_task); 5101 cancel_work_sync(&adapter->adminq_task); 5102 cancel_delayed_work_sync(&adapter->client_task); 5103 5104 adapter->aq_required = 0; 5105 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5106 5107 iavf_free_all_tx_resources(adapter); 5108 iavf_free_all_rx_resources(adapter); 5109 iavf_free_misc_irq(adapter); 5110 5111 iavf_reset_interrupt_capability(adapter); 5112 iavf_free_q_vectors(adapter); 5113 5114 iavf_free_rss(adapter); 5115 5116 if (hw->aq.asq.count) 5117 iavf_shutdown_adminq(hw); 5118 5119 /* destroy the locks only once, here */ 5120 mutex_destroy(&hw->aq.arq_mutex); 5121 mutex_destroy(&hw->aq.asq_mutex); 5122 mutex_destroy(&adapter->client_lock); 5123 mutex_unlock(&adapter->crit_lock); 5124 mutex_destroy(&adapter->crit_lock); 5125 5126 iounmap(hw->hw_addr); 5127 pci_release_regions(pdev); 5128 iavf_free_queues(adapter); 5129 kfree(adapter->vf_res); 5130 spin_lock_bh(&adapter->mac_vlan_list_lock); 5131 /* If we got removed before an up/down sequence, we've got a filter 5132 * hanging out there that we need to get rid of. 5133 */ 5134 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5135 list_del(&f->list); 5136 kfree(f); 5137 } 5138 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5139 list) { 5140 list_del(&vlf->list); 5141 kfree(vlf); 5142 } 5143 5144 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5145 5146 spin_lock_bh(&adapter->cloud_filter_list_lock); 5147 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5148 list_del(&cf->list); 5149 kfree(cf); 5150 } 5151 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5152 5153 spin_lock_bh(&adapter->fdir_fltr_lock); 5154 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5155 list_del(&fdir->list); 5156 kfree(fdir); 5157 } 5158 spin_unlock_bh(&adapter->fdir_fltr_lock); 5159 5160 spin_lock_bh(&adapter->adv_rss_lock); 5161 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5162 list) { 5163 list_del(&rss->list); 5164 kfree(rss); 5165 } 5166 spin_unlock_bh(&adapter->adv_rss_lock); 5167 5168 free_netdev(netdev); 5169 5170 pci_disable_pcie_error_reporting(pdev); 5171 5172 pci_disable_device(pdev); 5173 } 5174 5175 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5176 5177 static struct pci_driver iavf_driver = { 5178 .name = iavf_driver_name, 5179 .id_table = iavf_pci_tbl, 5180 .probe = iavf_probe, 5181 .remove = iavf_remove, 5182 .driver.pm = &iavf_pm_ops, 5183 .shutdown = iavf_shutdown, 5184 }; 5185 5186 /** 5187 * iavf_init_module - Driver Registration Routine 5188 * 5189 * iavf_init_module is the first routine called when the driver is 5190 * loaded. All it does is register with the PCI subsystem. 5191 **/ 5192 static int __init iavf_init_module(void) 5193 { 5194 pr_info("iavf: %s\n", iavf_driver_string); 5195 5196 pr_info("%s\n", iavf_copyright); 5197 5198 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 5199 iavf_driver_name); 5200 if (!iavf_wq) { 5201 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 5202 return -ENOMEM; 5203 } 5204 return pci_register_driver(&iavf_driver); 5205 } 5206 5207 module_init(iavf_init_module); 5208 5209 /** 5210 * iavf_exit_module - Driver Exit Cleanup Routine 5211 * 5212 * iavf_exit_module is called just before the driver is removed 5213 * from memory. 5214 **/ 5215 static void __exit iavf_exit_module(void) 5216 { 5217 pci_unregister_driver(&iavf_driver); 5218 destroy_workqueue(iavf_wq); 5219 } 5220 5221 module_exit(iavf_exit_module); 5222 5223 /* iavf_main.c */ 5224