xref: /openbmc/linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140 	if (!(adapter->flags &
141 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 		queue_work(iavf_wq, &adapter->reset_task);
144 	}
145 }
146 
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  * @txqueue: queue number that is timing out
151  **/
152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
153 {
154 	struct iavf_adapter *adapter = netdev_priv(netdev);
155 
156 	adapter->tx_timeout_count++;
157 	iavf_schedule_reset(adapter);
158 }
159 
160 /**
161  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
162  * @adapter: board private structure
163  **/
164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
165 {
166 	struct iavf_hw *hw = &adapter->hw;
167 
168 	if (!adapter->msix_entries)
169 		return;
170 
171 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
172 
173 	iavf_flush(hw);
174 
175 	synchronize_irq(adapter->msix_entries[0].vector);
176 }
177 
178 /**
179  * iavf_misc_irq_enable - Enable default interrupt generation settings
180  * @adapter: board private structure
181  **/
182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
183 {
184 	struct iavf_hw *hw = &adapter->hw;
185 
186 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
187 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
188 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
189 
190 	iavf_flush(hw);
191 }
192 
193 /**
194  * iavf_irq_disable - Mask off interrupt generation on the NIC
195  * @adapter: board private structure
196  **/
197 static void iavf_irq_disable(struct iavf_adapter *adapter)
198 {
199 	int i;
200 	struct iavf_hw *hw = &adapter->hw;
201 
202 	if (!adapter->msix_entries)
203 		return;
204 
205 	for (i = 1; i < adapter->num_msix_vectors; i++) {
206 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
207 		synchronize_irq(adapter->msix_entries[i].vector);
208 	}
209 	iavf_flush(hw);
210 }
211 
212 /**
213  * iavf_irq_enable_queues - Enable interrupt for specified queues
214  * @adapter: board private structure
215  * @mask: bitmap of queues to enable
216  **/
217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
218 {
219 	struct iavf_hw *hw = &adapter->hw;
220 	int i;
221 
222 	for (i = 1; i < adapter->num_msix_vectors; i++) {
223 		if (mask & BIT(i - 1)) {
224 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
225 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
226 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
227 		}
228 	}
229 }
230 
231 /**
232  * iavf_irq_enable - Enable default interrupt generation settings
233  * @adapter: board private structure
234  * @flush: boolean value whether to run rd32()
235  **/
236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
237 {
238 	struct iavf_hw *hw = &adapter->hw;
239 
240 	iavf_misc_irq_enable(adapter);
241 	iavf_irq_enable_queues(adapter, ~0);
242 
243 	if (flush)
244 		iavf_flush(hw);
245 }
246 
247 /**
248  * iavf_msix_aq - Interrupt handler for vector 0
249  * @irq: interrupt number
250  * @data: pointer to netdev
251  **/
252 static irqreturn_t iavf_msix_aq(int irq, void *data)
253 {
254 	struct net_device *netdev = data;
255 	struct iavf_adapter *adapter = netdev_priv(netdev);
256 	struct iavf_hw *hw = &adapter->hw;
257 
258 	/* handle non-queue interrupts, these reads clear the registers */
259 	rd32(hw, IAVF_VFINT_ICR01);
260 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
261 
262 	/* schedule work on the private workqueue */
263 	queue_work(iavf_wq, &adapter->adminq_task);
264 
265 	return IRQ_HANDLED;
266 }
267 
268 /**
269  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
270  * @irq: interrupt number
271  * @data: pointer to a q_vector
272  **/
273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
274 {
275 	struct iavf_q_vector *q_vector = data;
276 
277 	if (!q_vector->tx.ring && !q_vector->rx.ring)
278 		return IRQ_HANDLED;
279 
280 	napi_schedule_irqoff(&q_vector->napi);
281 
282 	return IRQ_HANDLED;
283 }
284 
285 /**
286  * iavf_map_vector_to_rxq - associate irqs with rx queues
287  * @adapter: board private structure
288  * @v_idx: interrupt number
289  * @r_idx: queue number
290  **/
291 static void
292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
293 {
294 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
295 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
296 	struct iavf_hw *hw = &adapter->hw;
297 
298 	rx_ring->q_vector = q_vector;
299 	rx_ring->next = q_vector->rx.ring;
300 	rx_ring->vsi = &adapter->vsi;
301 	q_vector->rx.ring = rx_ring;
302 	q_vector->rx.count++;
303 	q_vector->rx.next_update = jiffies + 1;
304 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
305 	q_vector->ring_mask |= BIT(r_idx);
306 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
307 	     q_vector->rx.current_itr >> 1);
308 	q_vector->rx.current_itr = q_vector->rx.target_itr;
309 }
310 
311 /**
312  * iavf_map_vector_to_txq - associate irqs with tx queues
313  * @adapter: board private structure
314  * @v_idx: interrupt number
315  * @t_idx: queue number
316  **/
317 static void
318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
319 {
320 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
321 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
322 	struct iavf_hw *hw = &adapter->hw;
323 
324 	tx_ring->q_vector = q_vector;
325 	tx_ring->next = q_vector->tx.ring;
326 	tx_ring->vsi = &adapter->vsi;
327 	q_vector->tx.ring = tx_ring;
328 	q_vector->tx.count++;
329 	q_vector->tx.next_update = jiffies + 1;
330 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
331 	q_vector->num_ringpairs++;
332 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
333 	     q_vector->tx.target_itr >> 1);
334 	q_vector->tx.current_itr = q_vector->tx.target_itr;
335 }
336 
337 /**
338  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
339  * @adapter: board private structure to initialize
340  *
341  * This function maps descriptor rings to the queue-specific vectors
342  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
343  * one vector per ring/queue, but on a constrained vector budget, we
344  * group the rings as "efficiently" as possible.  You would add new
345  * mapping configurations in here.
346  **/
347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
348 {
349 	int rings_remaining = adapter->num_active_queues;
350 	int ridx = 0, vidx = 0;
351 	int q_vectors;
352 
353 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
354 
355 	for (; ridx < rings_remaining; ridx++) {
356 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
357 		iavf_map_vector_to_txq(adapter, vidx, ridx);
358 
359 		/* In the case where we have more queues than vectors, continue
360 		 * round-robin on vectors until all queues are mapped.
361 		 */
362 		if (++vidx >= q_vectors)
363 			vidx = 0;
364 	}
365 
366 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
367 }
368 
369 /**
370  * iavf_irq_affinity_notify - Callback for affinity changes
371  * @notify: context as to what irq was changed
372  * @mask: the new affinity mask
373  *
374  * This is a callback function used by the irq_set_affinity_notifier function
375  * so that we may register to receive changes to the irq affinity masks.
376  **/
377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
378 				     const cpumask_t *mask)
379 {
380 	struct iavf_q_vector *q_vector =
381 		container_of(notify, struct iavf_q_vector, affinity_notify);
382 
383 	cpumask_copy(&q_vector->affinity_mask, mask);
384 }
385 
386 /**
387  * iavf_irq_affinity_release - Callback for affinity notifier release
388  * @ref: internal core kernel usage
389  *
390  * This is a callback function used by the irq_set_affinity_notifier function
391  * to inform the current notification subscriber that they will no longer
392  * receive notifications.
393  **/
394 static void iavf_irq_affinity_release(struct kref *ref) {}
395 
396 /**
397  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
398  * @adapter: board private structure
399  * @basename: device basename
400  *
401  * Allocates MSI-X vectors for tx and rx handling, and requests
402  * interrupts from the kernel.
403  **/
404 static int
405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
406 {
407 	unsigned int vector, q_vectors;
408 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
409 	int irq_num, err;
410 	int cpu;
411 
412 	iavf_irq_disable(adapter);
413 	/* Decrement for Other and TCP Timer vectors */
414 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
415 
416 	for (vector = 0; vector < q_vectors; vector++) {
417 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
418 
419 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
420 
421 		if (q_vector->tx.ring && q_vector->rx.ring) {
422 			snprintf(q_vector->name, sizeof(q_vector->name),
423 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
424 			tx_int_idx++;
425 		} else if (q_vector->rx.ring) {
426 			snprintf(q_vector->name, sizeof(q_vector->name),
427 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
428 		} else if (q_vector->tx.ring) {
429 			snprintf(q_vector->name, sizeof(q_vector->name),
430 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
431 		} else {
432 			/* skip this unused q_vector */
433 			continue;
434 		}
435 		err = request_irq(irq_num,
436 				  iavf_msix_clean_rings,
437 				  0,
438 				  q_vector->name,
439 				  q_vector);
440 		if (err) {
441 			dev_info(&adapter->pdev->dev,
442 				 "Request_irq failed, error: %d\n", err);
443 			goto free_queue_irqs;
444 		}
445 		/* register for affinity change notifications */
446 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
447 		q_vector->affinity_notify.release =
448 						   iavf_irq_affinity_release;
449 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
450 		/* Spread the IRQ affinity hints across online CPUs. Note that
451 		 * get_cpu_mask returns a mask with a permanent lifetime so
452 		 * it's safe to use as a hint for irq_set_affinity_hint.
453 		 */
454 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
455 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
456 	}
457 
458 	return 0;
459 
460 free_queue_irqs:
461 	while (vector) {
462 		vector--;
463 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
464 		irq_set_affinity_notifier(irq_num, NULL);
465 		irq_set_affinity_hint(irq_num, NULL);
466 		free_irq(irq_num, &adapter->q_vectors[vector]);
467 	}
468 	return err;
469 }
470 
471 /**
472  * iavf_request_misc_irq - Initialize MSI-X interrupts
473  * @adapter: board private structure
474  *
475  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
476  * vector is only for the admin queue, and stays active even when the netdev
477  * is closed.
478  **/
479 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
480 {
481 	struct net_device *netdev = adapter->netdev;
482 	int err;
483 
484 	snprintf(adapter->misc_vector_name,
485 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
486 		 dev_name(&adapter->pdev->dev));
487 	err = request_irq(adapter->msix_entries[0].vector,
488 			  &iavf_msix_aq, 0,
489 			  adapter->misc_vector_name, netdev);
490 	if (err) {
491 		dev_err(&adapter->pdev->dev,
492 			"request_irq for %s failed: %d\n",
493 			adapter->misc_vector_name, err);
494 		free_irq(adapter->msix_entries[0].vector, netdev);
495 	}
496 	return err;
497 }
498 
499 /**
500  * iavf_free_traffic_irqs - Free MSI-X interrupts
501  * @adapter: board private structure
502  *
503  * Frees all MSI-X vectors other than 0.
504  **/
505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
506 {
507 	int vector, irq_num, q_vectors;
508 
509 	if (!adapter->msix_entries)
510 		return;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (vector = 0; vector < q_vectors; vector++) {
515 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
516 		irq_set_affinity_notifier(irq_num, NULL);
517 		irq_set_affinity_hint(irq_num, NULL);
518 		free_irq(irq_num, &adapter->q_vectors[vector]);
519 	}
520 }
521 
522 /**
523  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
524  * @adapter: board private structure
525  *
526  * Frees MSI-X vector 0.
527  **/
528 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
529 {
530 	struct net_device *netdev = adapter->netdev;
531 
532 	if (!adapter->msix_entries)
533 		return;
534 
535 	free_irq(adapter->msix_entries[0].vector, netdev);
536 }
537 
538 /**
539  * iavf_configure_tx - Configure Transmit Unit after Reset
540  * @adapter: board private structure
541  *
542  * Configure the Tx unit of the MAC after a reset.
543  **/
544 static void iavf_configure_tx(struct iavf_adapter *adapter)
545 {
546 	struct iavf_hw *hw = &adapter->hw;
547 	int i;
548 
549 	for (i = 0; i < adapter->num_active_queues; i++)
550 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
551 }
552 
553 /**
554  * iavf_configure_rx - Configure Receive Unit after Reset
555  * @adapter: board private structure
556  *
557  * Configure the Rx unit of the MAC after a reset.
558  **/
559 static void iavf_configure_rx(struct iavf_adapter *adapter)
560 {
561 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
562 	struct iavf_hw *hw = &adapter->hw;
563 	int i;
564 
565 	/* Legacy Rx will always default to a 2048 buffer size. */
566 #if (PAGE_SIZE < 8192)
567 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
568 		struct net_device *netdev = adapter->netdev;
569 
570 		/* For jumbo frames on systems with 4K pages we have to use
571 		 * an order 1 page, so we might as well increase the size
572 		 * of our Rx buffer to make better use of the available space
573 		 */
574 		rx_buf_len = IAVF_RXBUFFER_3072;
575 
576 		/* We use a 1536 buffer size for configurations with
577 		 * standard Ethernet mtu.  On x86 this gives us enough room
578 		 * for shared info and 192 bytes of padding.
579 		 */
580 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
581 		    (netdev->mtu <= ETH_DATA_LEN))
582 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
583 	}
584 #endif
585 
586 	for (i = 0; i < adapter->num_active_queues; i++) {
587 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
588 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
589 
590 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
591 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
592 		else
593 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
594 	}
595 }
596 
597 /**
598  * iavf_find_vlan - Search filter list for specific vlan filter
599  * @adapter: board private structure
600  * @vlan: vlan tag
601  *
602  * Returns ptr to the filter object or NULL. Must be called while holding the
603  * mac_vlan_list_lock.
604  **/
605 static struct
606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
607 {
608 	struct iavf_vlan_filter *f;
609 
610 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
611 		if (vlan == f->vlan)
612 			return f;
613 	}
614 	return NULL;
615 }
616 
617 /**
618  * iavf_add_vlan - Add a vlan filter to the list
619  * @adapter: board private structure
620  * @vlan: VLAN tag
621  *
622  * Returns ptr to the filter object or NULL when no memory available.
623  **/
624 static struct
625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
626 {
627 	struct iavf_vlan_filter *f = NULL;
628 
629 	spin_lock_bh(&adapter->mac_vlan_list_lock);
630 
631 	f = iavf_find_vlan(adapter, vlan);
632 	if (!f) {
633 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
634 		if (!f)
635 			goto clearout;
636 
637 		f->vlan = vlan;
638 
639 		list_add_tail(&f->list, &adapter->vlan_filter_list);
640 		f->add = true;
641 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
642 	}
643 
644 clearout:
645 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
646 	return f;
647 }
648 
649 /**
650  * iavf_del_vlan - Remove a vlan filter from the list
651  * @adapter: board private structure
652  * @vlan: VLAN tag
653  **/
654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
655 {
656 	struct iavf_vlan_filter *f;
657 
658 	spin_lock_bh(&adapter->mac_vlan_list_lock);
659 
660 	f = iavf_find_vlan(adapter, vlan);
661 	if (f) {
662 		f->remove = true;
663 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
664 	}
665 
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 }
668 
669 /**
670  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
671  * @netdev: network device struct
672  * @proto: unused protocol data
673  * @vid: VLAN tag
674  **/
675 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
676 				__always_unused __be16 proto, u16 vid)
677 {
678 	struct iavf_adapter *adapter = netdev_priv(netdev);
679 
680 	if (!VLAN_ALLOWED(adapter))
681 		return -EIO;
682 	if (iavf_add_vlan(adapter, vid) == NULL)
683 		return -ENOMEM;
684 	return 0;
685 }
686 
687 /**
688  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
689  * @netdev: network device struct
690  * @proto: unused protocol data
691  * @vid: VLAN tag
692  **/
693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
694 				 __always_unused __be16 proto, u16 vid)
695 {
696 	struct iavf_adapter *adapter = netdev_priv(netdev);
697 
698 	if (VLAN_ALLOWED(adapter)) {
699 		iavf_del_vlan(adapter, vid);
700 		return 0;
701 	}
702 	return -EIO;
703 }
704 
705 /**
706  * iavf_find_filter - Search filter list for specific mac filter
707  * @adapter: board private structure
708  * @macaddr: the MAC address
709  *
710  * Returns ptr to the filter object or NULL. Must be called while holding the
711  * mac_vlan_list_lock.
712  **/
713 static struct
714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
715 				  const u8 *macaddr)
716 {
717 	struct iavf_mac_filter *f;
718 
719 	if (!macaddr)
720 		return NULL;
721 
722 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
723 		if (ether_addr_equal(macaddr, f->macaddr))
724 			return f;
725 	}
726 	return NULL;
727 }
728 
729 /**
730  * iavf_add_filter - Add a mac filter to the filter list
731  * @adapter: board private structure
732  * @macaddr: the MAC address
733  *
734  * Returns ptr to the filter object or NULL when no memory available.
735  **/
736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
737 					const u8 *macaddr)
738 {
739 	struct iavf_mac_filter *f;
740 
741 	if (!macaddr)
742 		return NULL;
743 
744 	f = iavf_find_filter(adapter, macaddr);
745 	if (!f) {
746 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
747 		if (!f)
748 			return f;
749 
750 		ether_addr_copy(f->macaddr, macaddr);
751 
752 		list_add_tail(&f->list, &adapter->mac_filter_list);
753 		f->add = true;
754 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
755 	} else {
756 		f->remove = false;
757 	}
758 
759 	return f;
760 }
761 
762 /**
763  * iavf_set_mac - NDO callback to set port mac address
764  * @netdev: network interface device structure
765  * @p: pointer to an address structure
766  *
767  * Returns 0 on success, negative on failure
768  **/
769 static int iavf_set_mac(struct net_device *netdev, void *p)
770 {
771 	struct iavf_adapter *adapter = netdev_priv(netdev);
772 	struct iavf_hw *hw = &adapter->hw;
773 	struct iavf_mac_filter *f;
774 	struct sockaddr *addr = p;
775 
776 	if (!is_valid_ether_addr(addr->sa_data))
777 		return -EADDRNOTAVAIL;
778 
779 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
780 		return 0;
781 
782 	spin_lock_bh(&adapter->mac_vlan_list_lock);
783 
784 	f = iavf_find_filter(adapter, hw->mac.addr);
785 	if (f) {
786 		f->remove = true;
787 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
788 	}
789 
790 	f = iavf_add_filter(adapter, addr->sa_data);
791 
792 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
793 
794 	if (f) {
795 		ether_addr_copy(hw->mac.addr, addr->sa_data);
796 	}
797 
798 	return (f == NULL) ? -ENOMEM : 0;
799 }
800 
801 /**
802  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
803  * @netdev: the netdevice
804  * @addr: address to add
805  *
806  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
807  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
808  */
809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
810 {
811 	struct iavf_adapter *adapter = netdev_priv(netdev);
812 
813 	if (iavf_add_filter(adapter, addr))
814 		return 0;
815 	else
816 		return -ENOMEM;
817 }
818 
819 /**
820  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
821  * @netdev: the netdevice
822  * @addr: address to add
823  *
824  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
825  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
826  */
827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
828 {
829 	struct iavf_adapter *adapter = netdev_priv(netdev);
830 	struct iavf_mac_filter *f;
831 
832 	/* Under some circumstances, we might receive a request to delete
833 	 * our own device address from our uc list. Because we store the
834 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
835 	 * such requests and not delete our device address from this list.
836 	 */
837 	if (ether_addr_equal(addr, netdev->dev_addr))
838 		return 0;
839 
840 	f = iavf_find_filter(adapter, addr);
841 	if (f) {
842 		f->remove = true;
843 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
844 	}
845 	return 0;
846 }
847 
848 /**
849  * iavf_set_rx_mode - NDO callback to set the netdev filters
850  * @netdev: network interface device structure
851  **/
852 static void iavf_set_rx_mode(struct net_device *netdev)
853 {
854 	struct iavf_adapter *adapter = netdev_priv(netdev);
855 
856 	spin_lock_bh(&adapter->mac_vlan_list_lock);
857 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
859 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
860 
861 	if (netdev->flags & IFF_PROMISC &&
862 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
863 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
864 	else if (!(netdev->flags & IFF_PROMISC) &&
865 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
866 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
867 
868 	if (netdev->flags & IFF_ALLMULTI &&
869 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
870 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
871 	else if (!(netdev->flags & IFF_ALLMULTI) &&
872 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
873 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
874 }
875 
876 /**
877  * iavf_napi_enable_all - enable NAPI on all queue vectors
878  * @adapter: board private structure
879  **/
880 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
881 {
882 	int q_idx;
883 	struct iavf_q_vector *q_vector;
884 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
885 
886 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
887 		struct napi_struct *napi;
888 
889 		q_vector = &adapter->q_vectors[q_idx];
890 		napi = &q_vector->napi;
891 		napi_enable(napi);
892 	}
893 }
894 
895 /**
896  * iavf_napi_disable_all - disable NAPI on all queue vectors
897  * @adapter: board private structure
898  **/
899 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
900 {
901 	int q_idx;
902 	struct iavf_q_vector *q_vector;
903 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
904 
905 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
906 		q_vector = &adapter->q_vectors[q_idx];
907 		napi_disable(&q_vector->napi);
908 	}
909 }
910 
911 /**
912  * iavf_configure - set up transmit and receive data structures
913  * @adapter: board private structure
914  **/
915 static void iavf_configure(struct iavf_adapter *adapter)
916 {
917 	struct net_device *netdev = adapter->netdev;
918 	int i;
919 
920 	iavf_set_rx_mode(netdev);
921 
922 	iavf_configure_tx(adapter);
923 	iavf_configure_rx(adapter);
924 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
925 
926 	for (i = 0; i < adapter->num_active_queues; i++) {
927 		struct iavf_ring *ring = &adapter->rx_rings[i];
928 
929 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
930 	}
931 }
932 
933 /**
934  * iavf_up_complete - Finish the last steps of bringing up a connection
935  * @adapter: board private structure
936  *
937  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
938  **/
939 static void iavf_up_complete(struct iavf_adapter *adapter)
940 {
941 	adapter->state = __IAVF_RUNNING;
942 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
943 
944 	iavf_napi_enable_all(adapter);
945 
946 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
947 	if (CLIENT_ENABLED(adapter))
948 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
949 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
950 }
951 
952 /**
953  * iavf_down - Shutdown the connection processing
954  * @adapter: board private structure
955  *
956  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
957  **/
958 void iavf_down(struct iavf_adapter *adapter)
959 {
960 	struct net_device *netdev = adapter->netdev;
961 	struct iavf_vlan_filter *vlf;
962 	struct iavf_cloud_filter *cf;
963 	struct iavf_fdir_fltr *fdir;
964 	struct iavf_mac_filter *f;
965 	struct iavf_adv_rss *rss;
966 
967 	if (adapter->state <= __IAVF_DOWN_PENDING)
968 		return;
969 
970 	netif_carrier_off(netdev);
971 	netif_tx_disable(netdev);
972 	adapter->link_up = false;
973 	iavf_napi_disable_all(adapter);
974 	iavf_irq_disable(adapter);
975 
976 	spin_lock_bh(&adapter->mac_vlan_list_lock);
977 
978 	/* clear the sync flag on all filters */
979 	__dev_uc_unsync(adapter->netdev, NULL);
980 	__dev_mc_unsync(adapter->netdev, NULL);
981 
982 	/* remove all MAC filters */
983 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
984 		f->remove = true;
985 	}
986 
987 	/* remove all VLAN filters */
988 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
989 		vlf->remove = true;
990 	}
991 
992 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
993 
994 	/* remove all cloud filters */
995 	spin_lock_bh(&adapter->cloud_filter_list_lock);
996 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
997 		cf->del = true;
998 	}
999 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1000 
1001 	/* remove all Flow Director filters */
1002 	spin_lock_bh(&adapter->fdir_fltr_lock);
1003 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1004 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1005 	}
1006 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1007 
1008 	/* remove all advance RSS configuration */
1009 	spin_lock_bh(&adapter->adv_rss_lock);
1010 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1011 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1012 	spin_unlock_bh(&adapter->adv_rss_lock);
1013 
1014 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1015 	    adapter->state != __IAVF_RESETTING) {
1016 		/* cancel any current operation */
1017 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1018 		/* Schedule operations to close down the HW. Don't wait
1019 		 * here for this to complete. The watchdog is still running
1020 		 * and it will take care of this.
1021 		 */
1022 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1024 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1025 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1026 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1027 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1028 	}
1029 
1030 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1031 }
1032 
1033 /**
1034  * iavf_acquire_msix_vectors - Setup the MSIX capability
1035  * @adapter: board private structure
1036  * @vectors: number of vectors to request
1037  *
1038  * Work with the OS to set up the MSIX vectors needed.
1039  *
1040  * Returns 0 on success, negative on failure
1041  **/
1042 static int
1043 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1044 {
1045 	int err, vector_threshold;
1046 
1047 	/* We'll want at least 3 (vector_threshold):
1048 	 * 0) Other (Admin Queue and link, mostly)
1049 	 * 1) TxQ[0] Cleanup
1050 	 * 2) RxQ[0] Cleanup
1051 	 */
1052 	vector_threshold = MIN_MSIX_COUNT;
1053 
1054 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1055 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1056 	 * Right now, we simply care about how many we'll get; we'll
1057 	 * set them up later while requesting irq's.
1058 	 */
1059 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1060 				    vector_threshold, vectors);
1061 	if (err < 0) {
1062 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1063 		kfree(adapter->msix_entries);
1064 		adapter->msix_entries = NULL;
1065 		return err;
1066 	}
1067 
1068 	/* Adjust for only the vectors we'll use, which is minimum
1069 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1070 	 * vectors we were allocated.
1071 	 */
1072 	adapter->num_msix_vectors = err;
1073 	return 0;
1074 }
1075 
1076 /**
1077  * iavf_free_queues - Free memory for all rings
1078  * @adapter: board private structure to initialize
1079  *
1080  * Free all of the memory associated with queue pairs.
1081  **/
1082 static void iavf_free_queues(struct iavf_adapter *adapter)
1083 {
1084 	if (!adapter->vsi_res)
1085 		return;
1086 	adapter->num_active_queues = 0;
1087 	kfree(adapter->tx_rings);
1088 	adapter->tx_rings = NULL;
1089 	kfree(adapter->rx_rings);
1090 	adapter->rx_rings = NULL;
1091 }
1092 
1093 /**
1094  * iavf_alloc_queues - Allocate memory for all rings
1095  * @adapter: board private structure to initialize
1096  *
1097  * We allocate one ring per queue at run-time since we don't know the
1098  * number of queues at compile-time.  The polling_netdev array is
1099  * intended for Multiqueue, but should work fine with a single queue.
1100  **/
1101 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1102 {
1103 	int i, num_active_queues;
1104 
1105 	/* If we're in reset reallocating queues we don't actually know yet for
1106 	 * certain the PF gave us the number of queues we asked for but we'll
1107 	 * assume it did.  Once basic reset is finished we'll confirm once we
1108 	 * start negotiating config with PF.
1109 	 */
1110 	if (adapter->num_req_queues)
1111 		num_active_queues = adapter->num_req_queues;
1112 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1113 		 adapter->num_tc)
1114 		num_active_queues = adapter->ch_config.total_qps;
1115 	else
1116 		num_active_queues = min_t(int,
1117 					  adapter->vsi_res->num_queue_pairs,
1118 					  (int)(num_online_cpus()));
1119 
1120 
1121 	adapter->tx_rings = kcalloc(num_active_queues,
1122 				    sizeof(struct iavf_ring), GFP_KERNEL);
1123 	if (!adapter->tx_rings)
1124 		goto err_out;
1125 	adapter->rx_rings = kcalloc(num_active_queues,
1126 				    sizeof(struct iavf_ring), GFP_KERNEL);
1127 	if (!adapter->rx_rings)
1128 		goto err_out;
1129 
1130 	for (i = 0; i < num_active_queues; i++) {
1131 		struct iavf_ring *tx_ring;
1132 		struct iavf_ring *rx_ring;
1133 
1134 		tx_ring = &adapter->tx_rings[i];
1135 
1136 		tx_ring->queue_index = i;
1137 		tx_ring->netdev = adapter->netdev;
1138 		tx_ring->dev = &adapter->pdev->dev;
1139 		tx_ring->count = adapter->tx_desc_count;
1140 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1141 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1142 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1143 
1144 		rx_ring = &adapter->rx_rings[i];
1145 		rx_ring->queue_index = i;
1146 		rx_ring->netdev = adapter->netdev;
1147 		rx_ring->dev = &adapter->pdev->dev;
1148 		rx_ring->count = adapter->rx_desc_count;
1149 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1150 	}
1151 
1152 	adapter->num_active_queues = num_active_queues;
1153 
1154 	return 0;
1155 
1156 err_out:
1157 	iavf_free_queues(adapter);
1158 	return -ENOMEM;
1159 }
1160 
1161 /**
1162  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1163  * @adapter: board private structure to initialize
1164  *
1165  * Attempt to configure the interrupts using the best available
1166  * capabilities of the hardware and the kernel.
1167  **/
1168 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1169 {
1170 	int vector, v_budget;
1171 	int pairs = 0;
1172 	int err = 0;
1173 
1174 	if (!adapter->vsi_res) {
1175 		err = -EIO;
1176 		goto out;
1177 	}
1178 	pairs = adapter->num_active_queues;
1179 
1180 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1181 	 * us much good if we have more vectors than CPUs. However, we already
1182 	 * limit the total number of queues by the number of CPUs so we do not
1183 	 * need any further limiting here.
1184 	 */
1185 	v_budget = min_t(int, pairs + NONQ_VECS,
1186 			 (int)adapter->vf_res->max_vectors);
1187 
1188 	adapter->msix_entries = kcalloc(v_budget,
1189 					sizeof(struct msix_entry), GFP_KERNEL);
1190 	if (!adapter->msix_entries) {
1191 		err = -ENOMEM;
1192 		goto out;
1193 	}
1194 
1195 	for (vector = 0; vector < v_budget; vector++)
1196 		adapter->msix_entries[vector].entry = vector;
1197 
1198 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1199 
1200 out:
1201 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1202 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1203 	return err;
1204 }
1205 
1206 /**
1207  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1208  * @adapter: board private structure
1209  *
1210  * Return 0 on success, negative on failure
1211  **/
1212 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1213 {
1214 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1215 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1216 	struct iavf_hw *hw = &adapter->hw;
1217 	int ret = 0;
1218 
1219 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1220 		/* bail because we already have a command pending */
1221 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1222 			adapter->current_op);
1223 		return -EBUSY;
1224 	}
1225 
1226 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1227 	if (ret) {
1228 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1229 			iavf_stat_str(hw, ret),
1230 			iavf_aq_str(hw, hw->aq.asq_last_status));
1231 		return ret;
1232 
1233 	}
1234 
1235 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1236 				  adapter->rss_lut, adapter->rss_lut_size);
1237 	if (ret) {
1238 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1239 			iavf_stat_str(hw, ret),
1240 			iavf_aq_str(hw, hw->aq.asq_last_status));
1241 	}
1242 
1243 	return ret;
1244 
1245 }
1246 
1247 /**
1248  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1249  * @adapter: board private structure
1250  *
1251  * Returns 0 on success, negative on failure
1252  **/
1253 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1254 {
1255 	struct iavf_hw *hw = &adapter->hw;
1256 	u32 *dw;
1257 	u16 i;
1258 
1259 	dw = (u32 *)adapter->rss_key;
1260 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1261 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1262 
1263 	dw = (u32 *)adapter->rss_lut;
1264 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1265 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1266 
1267 	iavf_flush(hw);
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * iavf_config_rss - Configure RSS keys and lut
1274  * @adapter: board private structure
1275  *
1276  * Returns 0 on success, negative on failure
1277  **/
1278 int iavf_config_rss(struct iavf_adapter *adapter)
1279 {
1280 
1281 	if (RSS_PF(adapter)) {
1282 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1283 					IAVF_FLAG_AQ_SET_RSS_KEY;
1284 		return 0;
1285 	} else if (RSS_AQ(adapter)) {
1286 		return iavf_config_rss_aq(adapter);
1287 	} else {
1288 		return iavf_config_rss_reg(adapter);
1289 	}
1290 }
1291 
1292 /**
1293  * iavf_fill_rss_lut - Fill the lut with default values
1294  * @adapter: board private structure
1295  **/
1296 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1297 {
1298 	u16 i;
1299 
1300 	for (i = 0; i < adapter->rss_lut_size; i++)
1301 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1302 }
1303 
1304 /**
1305  * iavf_init_rss - Prepare for RSS
1306  * @adapter: board private structure
1307  *
1308  * Return 0 on success, negative on failure
1309  **/
1310 static int iavf_init_rss(struct iavf_adapter *adapter)
1311 {
1312 	struct iavf_hw *hw = &adapter->hw;
1313 	int ret;
1314 
1315 	if (!RSS_PF(adapter)) {
1316 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1317 		if (adapter->vf_res->vf_cap_flags &
1318 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1319 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1320 		else
1321 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1322 
1323 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1324 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1325 	}
1326 
1327 	iavf_fill_rss_lut(adapter);
1328 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1329 	ret = iavf_config_rss(adapter);
1330 
1331 	return ret;
1332 }
1333 
1334 /**
1335  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1336  * @adapter: board private structure to initialize
1337  *
1338  * We allocate one q_vector per queue interrupt.  If allocation fails we
1339  * return -ENOMEM.
1340  **/
1341 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1342 {
1343 	int q_idx = 0, num_q_vectors;
1344 	struct iavf_q_vector *q_vector;
1345 
1346 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1347 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1348 				     GFP_KERNEL);
1349 	if (!adapter->q_vectors)
1350 		return -ENOMEM;
1351 
1352 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1353 		q_vector = &adapter->q_vectors[q_idx];
1354 		q_vector->adapter = adapter;
1355 		q_vector->vsi = &adapter->vsi;
1356 		q_vector->v_idx = q_idx;
1357 		q_vector->reg_idx = q_idx;
1358 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1359 		netif_napi_add(adapter->netdev, &q_vector->napi,
1360 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1368  * @adapter: board private structure to initialize
1369  *
1370  * This function frees the memory allocated to the q_vectors.  In addition if
1371  * NAPI is enabled it will delete any references to the NAPI struct prior
1372  * to freeing the q_vector.
1373  **/
1374 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1375 {
1376 	int q_idx, num_q_vectors;
1377 	int napi_vectors;
1378 
1379 	if (!adapter->q_vectors)
1380 		return;
1381 
1382 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1383 	napi_vectors = adapter->num_active_queues;
1384 
1385 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1386 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1387 
1388 		if (q_idx < napi_vectors)
1389 			netif_napi_del(&q_vector->napi);
1390 	}
1391 	kfree(adapter->q_vectors);
1392 	adapter->q_vectors = NULL;
1393 }
1394 
1395 /**
1396  * iavf_reset_interrupt_capability - Reset MSIX setup
1397  * @adapter: board private structure
1398  *
1399  **/
1400 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1401 {
1402 	if (!adapter->msix_entries)
1403 		return;
1404 
1405 	pci_disable_msix(adapter->pdev);
1406 	kfree(adapter->msix_entries);
1407 	adapter->msix_entries = NULL;
1408 }
1409 
1410 /**
1411  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1412  * @adapter: board private structure to initialize
1413  *
1414  **/
1415 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1416 {
1417 	int err;
1418 
1419 	err = iavf_alloc_queues(adapter);
1420 	if (err) {
1421 		dev_err(&adapter->pdev->dev,
1422 			"Unable to allocate memory for queues\n");
1423 		goto err_alloc_queues;
1424 	}
1425 
1426 	rtnl_lock();
1427 	err = iavf_set_interrupt_capability(adapter);
1428 	rtnl_unlock();
1429 	if (err) {
1430 		dev_err(&adapter->pdev->dev,
1431 			"Unable to setup interrupt capabilities\n");
1432 		goto err_set_interrupt;
1433 	}
1434 
1435 	err = iavf_alloc_q_vectors(adapter);
1436 	if (err) {
1437 		dev_err(&adapter->pdev->dev,
1438 			"Unable to allocate memory for queue vectors\n");
1439 		goto err_alloc_q_vectors;
1440 	}
1441 
1442 	/* If we've made it so far while ADq flag being ON, then we haven't
1443 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1444 	 * resources have been allocated in the reset path.
1445 	 * Now we can truly claim that ADq is enabled.
1446 	 */
1447 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1448 	    adapter->num_tc)
1449 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1450 			 adapter->num_tc);
1451 
1452 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1453 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1454 		 adapter->num_active_queues);
1455 
1456 	return 0;
1457 err_alloc_q_vectors:
1458 	iavf_reset_interrupt_capability(adapter);
1459 err_set_interrupt:
1460 	iavf_free_queues(adapter);
1461 err_alloc_queues:
1462 	return err;
1463 }
1464 
1465 /**
1466  * iavf_free_rss - Free memory used by RSS structs
1467  * @adapter: board private structure
1468  **/
1469 static void iavf_free_rss(struct iavf_adapter *adapter)
1470 {
1471 	kfree(adapter->rss_key);
1472 	adapter->rss_key = NULL;
1473 
1474 	kfree(adapter->rss_lut);
1475 	adapter->rss_lut = NULL;
1476 }
1477 
1478 /**
1479  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1480  * @adapter: board private structure
1481  *
1482  * Returns 0 on success, negative on failure
1483  **/
1484 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1485 {
1486 	struct net_device *netdev = adapter->netdev;
1487 	int err;
1488 
1489 	if (netif_running(netdev))
1490 		iavf_free_traffic_irqs(adapter);
1491 	iavf_free_misc_irq(adapter);
1492 	iavf_reset_interrupt_capability(adapter);
1493 	iavf_free_q_vectors(adapter);
1494 	iavf_free_queues(adapter);
1495 
1496 	err =  iavf_init_interrupt_scheme(adapter);
1497 	if (err)
1498 		goto err;
1499 
1500 	netif_tx_stop_all_queues(netdev);
1501 
1502 	err = iavf_request_misc_irq(adapter);
1503 	if (err)
1504 		goto err;
1505 
1506 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1507 
1508 	iavf_map_rings_to_vectors(adapter);
1509 err:
1510 	return err;
1511 }
1512 
1513 /**
1514  * iavf_process_aq_command - process aq_required flags
1515  * and sends aq command
1516  * @adapter: pointer to iavf adapter structure
1517  *
1518  * Returns 0 on success
1519  * Returns error code if no command was sent
1520  * or error code if the command failed.
1521  **/
1522 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1523 {
1524 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1525 		return iavf_send_vf_config_msg(adapter);
1526 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1527 		iavf_disable_queues(adapter);
1528 		return 0;
1529 	}
1530 
1531 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1532 		iavf_map_queues(adapter);
1533 		return 0;
1534 	}
1535 
1536 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1537 		iavf_add_ether_addrs(adapter);
1538 		return 0;
1539 	}
1540 
1541 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1542 		iavf_add_vlans(adapter);
1543 		return 0;
1544 	}
1545 
1546 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1547 		iavf_del_ether_addrs(adapter);
1548 		return 0;
1549 	}
1550 
1551 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1552 		iavf_del_vlans(adapter);
1553 		return 0;
1554 	}
1555 
1556 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1557 		iavf_enable_vlan_stripping(adapter);
1558 		return 0;
1559 	}
1560 
1561 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1562 		iavf_disable_vlan_stripping(adapter);
1563 		return 0;
1564 	}
1565 
1566 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1567 		iavf_configure_queues(adapter);
1568 		return 0;
1569 	}
1570 
1571 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1572 		iavf_enable_queues(adapter);
1573 		return 0;
1574 	}
1575 
1576 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1577 		/* This message goes straight to the firmware, not the
1578 		 * PF, so we don't have to set current_op as we will
1579 		 * not get a response through the ARQ.
1580 		 */
1581 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1582 		return 0;
1583 	}
1584 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1585 		iavf_get_hena(adapter);
1586 		return 0;
1587 	}
1588 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1589 		iavf_set_hena(adapter);
1590 		return 0;
1591 	}
1592 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1593 		iavf_set_rss_key(adapter);
1594 		return 0;
1595 	}
1596 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1597 		iavf_set_rss_lut(adapter);
1598 		return 0;
1599 	}
1600 
1601 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1602 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1603 				       FLAG_VF_MULTICAST_PROMISC);
1604 		return 0;
1605 	}
1606 
1607 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1608 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1609 		return 0;
1610 	}
1611 
1612 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1613 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1614 		iavf_set_promiscuous(adapter, 0);
1615 		return 0;
1616 	}
1617 
1618 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1619 		iavf_enable_channels(adapter);
1620 		return 0;
1621 	}
1622 
1623 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1624 		iavf_disable_channels(adapter);
1625 		return 0;
1626 	}
1627 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628 		iavf_add_cloud_filter(adapter);
1629 		return 0;
1630 	}
1631 
1632 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1633 		iavf_del_cloud_filter(adapter);
1634 		return 0;
1635 	}
1636 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1637 		iavf_del_cloud_filter(adapter);
1638 		return 0;
1639 	}
1640 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1641 		iavf_add_cloud_filter(adapter);
1642 		return 0;
1643 	}
1644 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1645 		iavf_add_fdir_filter(adapter);
1646 		return IAVF_SUCCESS;
1647 	}
1648 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1649 		iavf_del_fdir_filter(adapter);
1650 		return IAVF_SUCCESS;
1651 	}
1652 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1653 		iavf_add_adv_rss_cfg(adapter);
1654 		return 0;
1655 	}
1656 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1657 		iavf_del_adv_rss_cfg(adapter);
1658 		return 0;
1659 	}
1660 	return -EAGAIN;
1661 }
1662 
1663 /**
1664  * iavf_startup - first step of driver startup
1665  * @adapter: board private structure
1666  *
1667  * Function process __IAVF_STARTUP driver state.
1668  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1669  * when fails it returns -EAGAIN
1670  **/
1671 static int iavf_startup(struct iavf_adapter *adapter)
1672 {
1673 	struct pci_dev *pdev = adapter->pdev;
1674 	struct iavf_hw *hw = &adapter->hw;
1675 	int err;
1676 
1677 	WARN_ON(adapter->state != __IAVF_STARTUP);
1678 
1679 	/* driver loaded, probe complete */
1680 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1681 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1682 	err = iavf_set_mac_type(hw);
1683 	if (err) {
1684 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1685 		goto err;
1686 	}
1687 
1688 	err = iavf_check_reset_complete(hw);
1689 	if (err) {
1690 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1691 			 err);
1692 		goto err;
1693 	}
1694 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1695 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1696 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1697 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1698 
1699 	err = iavf_init_adminq(hw);
1700 	if (err) {
1701 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1702 		goto err;
1703 	}
1704 	err = iavf_send_api_ver(adapter);
1705 	if (err) {
1706 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1707 		iavf_shutdown_adminq(hw);
1708 		goto err;
1709 	}
1710 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1711 err:
1712 	return err;
1713 }
1714 
1715 /**
1716  * iavf_init_version_check - second step of driver startup
1717  * @adapter: board private structure
1718  *
1719  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1720  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1721  * when fails it returns -EAGAIN
1722  **/
1723 static int iavf_init_version_check(struct iavf_adapter *adapter)
1724 {
1725 	struct pci_dev *pdev = adapter->pdev;
1726 	struct iavf_hw *hw = &adapter->hw;
1727 	int err = -EAGAIN;
1728 
1729 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1730 
1731 	if (!iavf_asq_done(hw)) {
1732 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1733 		iavf_shutdown_adminq(hw);
1734 		adapter->state = __IAVF_STARTUP;
1735 		goto err;
1736 	}
1737 
1738 	/* aq msg sent, awaiting reply */
1739 	err = iavf_verify_api_ver(adapter);
1740 	if (err) {
1741 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1742 			err = iavf_send_api_ver(adapter);
1743 		else
1744 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1745 				adapter->pf_version.major,
1746 				adapter->pf_version.minor,
1747 				VIRTCHNL_VERSION_MAJOR,
1748 				VIRTCHNL_VERSION_MINOR);
1749 		goto err;
1750 	}
1751 	err = iavf_send_vf_config_msg(adapter);
1752 	if (err) {
1753 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1754 			err);
1755 		goto err;
1756 	}
1757 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1758 
1759 err:
1760 	return err;
1761 }
1762 
1763 /**
1764  * iavf_init_get_resources - third step of driver startup
1765  * @adapter: board private structure
1766  *
1767  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1768  * finishes driver initialization procedure.
1769  * When success the state is changed to __IAVF_DOWN
1770  * when fails it returns -EAGAIN
1771  **/
1772 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1773 {
1774 	struct net_device *netdev = adapter->netdev;
1775 	struct pci_dev *pdev = adapter->pdev;
1776 	struct iavf_hw *hw = &adapter->hw;
1777 	int err;
1778 
1779 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1780 	/* aq msg sent, awaiting reply */
1781 	if (!adapter->vf_res) {
1782 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1783 					  GFP_KERNEL);
1784 		if (!adapter->vf_res) {
1785 			err = -ENOMEM;
1786 			goto err;
1787 		}
1788 	}
1789 	err = iavf_get_vf_config(adapter);
1790 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1791 		err = iavf_send_vf_config_msg(adapter);
1792 		goto err;
1793 	} else if (err == IAVF_ERR_PARAM) {
1794 		/* We only get ERR_PARAM if the device is in a very bad
1795 		 * state or if we've been disabled for previous bad
1796 		 * behavior. Either way, we're done now.
1797 		 */
1798 		iavf_shutdown_adminq(hw);
1799 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1800 		return 0;
1801 	}
1802 	if (err) {
1803 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1804 		goto err_alloc;
1805 	}
1806 
1807 	err = iavf_process_config(adapter);
1808 	if (err)
1809 		goto err_alloc;
1810 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1811 
1812 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1813 
1814 	netdev->netdev_ops = &iavf_netdev_ops;
1815 	iavf_set_ethtool_ops(netdev);
1816 	netdev->watchdog_timeo = 5 * HZ;
1817 
1818 	/* MTU range: 68 - 9710 */
1819 	netdev->min_mtu = ETH_MIN_MTU;
1820 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1821 
1822 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1823 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1824 			 adapter->hw.mac.addr);
1825 		eth_hw_addr_random(netdev);
1826 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1827 	} else {
1828 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1829 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1830 	}
1831 
1832 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1833 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1834 	err = iavf_init_interrupt_scheme(adapter);
1835 	if (err)
1836 		goto err_sw_init;
1837 	iavf_map_rings_to_vectors(adapter);
1838 	if (adapter->vf_res->vf_cap_flags &
1839 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1840 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1841 
1842 	err = iavf_request_misc_irq(adapter);
1843 	if (err)
1844 		goto err_sw_init;
1845 
1846 	netif_carrier_off(netdev);
1847 	adapter->link_up = false;
1848 
1849 	/* set the semaphore to prevent any callbacks after device registration
1850 	 * up to time when state of driver will be set to __IAVF_DOWN
1851 	 */
1852 	rtnl_lock();
1853 	if (!adapter->netdev_registered) {
1854 		err = register_netdevice(netdev);
1855 		if (err) {
1856 			rtnl_unlock();
1857 			goto err_register;
1858 		}
1859 	}
1860 
1861 	adapter->netdev_registered = true;
1862 
1863 	netif_tx_stop_all_queues(netdev);
1864 	if (CLIENT_ALLOWED(adapter)) {
1865 		err = iavf_lan_add_device(adapter);
1866 		if (err)
1867 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1868 				 err);
1869 	}
1870 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1871 	if (netdev->features & NETIF_F_GRO)
1872 		dev_info(&pdev->dev, "GRO is enabled\n");
1873 
1874 	adapter->state = __IAVF_DOWN;
1875 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1876 	rtnl_unlock();
1877 
1878 	iavf_misc_irq_enable(adapter);
1879 	wake_up(&adapter->down_waitqueue);
1880 
1881 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1882 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1883 	if (!adapter->rss_key || !adapter->rss_lut) {
1884 		err = -ENOMEM;
1885 		goto err_mem;
1886 	}
1887 	if (RSS_AQ(adapter))
1888 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1889 	else
1890 		iavf_init_rss(adapter);
1891 
1892 	return err;
1893 err_mem:
1894 	iavf_free_rss(adapter);
1895 err_register:
1896 	iavf_free_misc_irq(adapter);
1897 err_sw_init:
1898 	iavf_reset_interrupt_capability(adapter);
1899 err_alloc:
1900 	kfree(adapter->vf_res);
1901 	adapter->vf_res = NULL;
1902 err:
1903 	return err;
1904 }
1905 
1906 /**
1907  * iavf_watchdog_task - Periodic call-back task
1908  * @work: pointer to work_struct
1909  **/
1910 static void iavf_watchdog_task(struct work_struct *work)
1911 {
1912 	struct iavf_adapter *adapter = container_of(work,
1913 						    struct iavf_adapter,
1914 						    watchdog_task.work);
1915 	struct iavf_hw *hw = &adapter->hw;
1916 	u32 reg_val;
1917 
1918 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1919 		goto restart_watchdog;
1920 
1921 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1922 		adapter->state = __IAVF_COMM_FAILED;
1923 
1924 	switch (adapter->state) {
1925 	case __IAVF_COMM_FAILED:
1926 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1927 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1928 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1929 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1930 			/* A chance for redemption! */
1931 			dev_err(&adapter->pdev->dev,
1932 				"Hardware came out of reset. Attempting reinit.\n");
1933 			adapter->state = __IAVF_STARTUP;
1934 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1935 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1936 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1937 				  &adapter->crit_section);
1938 			/* Don't reschedule the watchdog, since we've restarted
1939 			 * the init task. When init_task contacts the PF and
1940 			 * gets everything set up again, it'll restart the
1941 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1942 			 */
1943 			return;
1944 		}
1945 		adapter->aq_required = 0;
1946 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1947 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1948 			  &adapter->crit_section);
1949 		queue_delayed_work(iavf_wq,
1950 				   &adapter->watchdog_task,
1951 				   msecs_to_jiffies(10));
1952 		goto watchdog_done;
1953 	case __IAVF_RESETTING:
1954 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1955 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1956 		return;
1957 	case __IAVF_DOWN:
1958 	case __IAVF_DOWN_PENDING:
1959 	case __IAVF_TESTING:
1960 	case __IAVF_RUNNING:
1961 		if (adapter->current_op) {
1962 			if (!iavf_asq_done(hw)) {
1963 				dev_dbg(&adapter->pdev->dev,
1964 					"Admin queue timeout\n");
1965 				iavf_send_api_ver(adapter);
1966 			}
1967 		} else {
1968 			/* An error will be returned if no commands were
1969 			 * processed; use this opportunity to update stats
1970 			 */
1971 			if (iavf_process_aq_command(adapter) &&
1972 			    adapter->state == __IAVF_RUNNING)
1973 				iavf_request_stats(adapter);
1974 		}
1975 		break;
1976 	case __IAVF_REMOVE:
1977 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1978 		return;
1979 	default:
1980 		goto restart_watchdog;
1981 	}
1982 
1983 		/* check for hw reset */
1984 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1985 	if (!reg_val) {
1986 		adapter->state = __IAVF_RESETTING;
1987 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1988 		adapter->aq_required = 0;
1989 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1990 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1991 		queue_work(iavf_wq, &adapter->reset_task);
1992 		goto watchdog_done;
1993 	}
1994 
1995 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1996 watchdog_done:
1997 	if (adapter->state == __IAVF_RUNNING ||
1998 	    adapter->state == __IAVF_COMM_FAILED)
1999 		iavf_detect_recover_hung(&adapter->vsi);
2000 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2001 restart_watchdog:
2002 	if (adapter->aq_required)
2003 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2004 				   msecs_to_jiffies(20));
2005 	else
2006 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2007 	queue_work(iavf_wq, &adapter->adminq_task);
2008 }
2009 
2010 static void iavf_disable_vf(struct iavf_adapter *adapter)
2011 {
2012 	struct iavf_mac_filter *f, *ftmp;
2013 	struct iavf_vlan_filter *fv, *fvtmp;
2014 	struct iavf_cloud_filter *cf, *cftmp;
2015 
2016 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2017 
2018 	/* We don't use netif_running() because it may be true prior to
2019 	 * ndo_open() returning, so we can't assume it means all our open
2020 	 * tasks have finished, since we're not holding the rtnl_lock here.
2021 	 */
2022 	if (adapter->state == __IAVF_RUNNING) {
2023 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2024 		netif_carrier_off(adapter->netdev);
2025 		netif_tx_disable(adapter->netdev);
2026 		adapter->link_up = false;
2027 		iavf_napi_disable_all(adapter);
2028 		iavf_irq_disable(adapter);
2029 		iavf_free_traffic_irqs(adapter);
2030 		iavf_free_all_tx_resources(adapter);
2031 		iavf_free_all_rx_resources(adapter);
2032 	}
2033 
2034 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2035 
2036 	/* Delete all of the filters */
2037 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2038 		list_del(&f->list);
2039 		kfree(f);
2040 	}
2041 
2042 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2043 		list_del(&fv->list);
2044 		kfree(fv);
2045 	}
2046 
2047 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2048 
2049 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2050 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2051 		list_del(&cf->list);
2052 		kfree(cf);
2053 		adapter->num_cloud_filters--;
2054 	}
2055 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2056 
2057 	iavf_free_misc_irq(adapter);
2058 	iavf_reset_interrupt_capability(adapter);
2059 	iavf_free_queues(adapter);
2060 	iavf_free_q_vectors(adapter);
2061 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2062 	iavf_shutdown_adminq(&adapter->hw);
2063 	adapter->netdev->flags &= ~IFF_UP;
2064 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2065 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2066 	adapter->state = __IAVF_DOWN;
2067 	wake_up(&adapter->down_waitqueue);
2068 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2069 }
2070 
2071 /**
2072  * iavf_reset_task - Call-back task to handle hardware reset
2073  * @work: pointer to work_struct
2074  *
2075  * During reset we need to shut down and reinitialize the admin queue
2076  * before we can use it to communicate with the PF again. We also clear
2077  * and reinit the rings because that context is lost as well.
2078  **/
2079 static void iavf_reset_task(struct work_struct *work)
2080 {
2081 	struct iavf_adapter *adapter = container_of(work,
2082 						      struct iavf_adapter,
2083 						      reset_task);
2084 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2085 	struct net_device *netdev = adapter->netdev;
2086 	struct iavf_hw *hw = &adapter->hw;
2087 	struct iavf_mac_filter *f, *ftmp;
2088 	struct iavf_vlan_filter *vlf;
2089 	struct iavf_cloud_filter *cf;
2090 	u32 reg_val;
2091 	int i = 0, err;
2092 	bool running;
2093 
2094 	/* When device is being removed it doesn't make sense to run the reset
2095 	 * task, just return in such a case.
2096 	 */
2097 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2098 		return;
2099 
2100 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2101 				&adapter->crit_section))
2102 		usleep_range(500, 1000);
2103 	if (CLIENT_ENABLED(adapter)) {
2104 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2105 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2106 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2107 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2108 		cancel_delayed_work_sync(&adapter->client_task);
2109 		iavf_notify_client_close(&adapter->vsi, true);
2110 	}
2111 	iavf_misc_irq_disable(adapter);
2112 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2113 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2114 		/* Restart the AQ here. If we have been reset but didn't
2115 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2116 		 */
2117 		iavf_shutdown_adminq(hw);
2118 		iavf_init_adminq(hw);
2119 		iavf_request_reset(adapter);
2120 	}
2121 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2122 
2123 	/* poll until we see the reset actually happen */
2124 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2125 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2126 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2127 		if (!reg_val)
2128 			break;
2129 		usleep_range(5000, 10000);
2130 	}
2131 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2132 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2133 		goto continue_reset; /* act like the reset happened */
2134 	}
2135 
2136 	/* wait until the reset is complete and the PF is responding to us */
2137 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2138 		/* sleep first to make sure a minimum wait time is met */
2139 		msleep(IAVF_RESET_WAIT_MS);
2140 
2141 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2142 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2143 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2144 			break;
2145 	}
2146 
2147 	pci_set_master(adapter->pdev);
2148 
2149 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2150 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2151 			reg_val);
2152 		iavf_disable_vf(adapter);
2153 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2154 		return; /* Do not attempt to reinit. It's dead, Jim. */
2155 	}
2156 
2157 continue_reset:
2158 	/* We don't use netif_running() because it may be true prior to
2159 	 * ndo_open() returning, so we can't assume it means all our open
2160 	 * tasks have finished, since we're not holding the rtnl_lock here.
2161 	 */
2162 	running = ((adapter->state == __IAVF_RUNNING) ||
2163 		   (adapter->state == __IAVF_RESETTING));
2164 
2165 	if (running) {
2166 		netif_carrier_off(netdev);
2167 		netif_tx_stop_all_queues(netdev);
2168 		adapter->link_up = false;
2169 		iavf_napi_disable_all(adapter);
2170 	}
2171 	iavf_irq_disable(adapter);
2172 
2173 	adapter->state = __IAVF_RESETTING;
2174 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2175 
2176 	/* free the Tx/Rx rings and descriptors, might be better to just
2177 	 * re-use them sometime in the future
2178 	 */
2179 	iavf_free_all_rx_resources(adapter);
2180 	iavf_free_all_tx_resources(adapter);
2181 
2182 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2183 	/* kill and reinit the admin queue */
2184 	iavf_shutdown_adminq(hw);
2185 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2186 	err = iavf_init_adminq(hw);
2187 	if (err)
2188 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2189 			 err);
2190 	adapter->aq_required = 0;
2191 
2192 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2193 		err = iavf_reinit_interrupt_scheme(adapter);
2194 		if (err)
2195 			goto reset_err;
2196 	}
2197 
2198 	if (RSS_AQ(adapter)) {
2199 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2200 	} else {
2201 		err = iavf_init_rss(adapter);
2202 		if (err)
2203 			goto reset_err;
2204 	}
2205 
2206 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2207 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2208 
2209 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2210 
2211 	/* Delete filter for the current MAC address, it could have
2212 	 * been changed by the PF via administratively set MAC.
2213 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2214 	 */
2215 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2216 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2217 			list_del(&f->list);
2218 			kfree(f);
2219 		}
2220 	}
2221 	/* re-add all MAC filters */
2222 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2223 		f->add = true;
2224 	}
2225 	/* re-add all VLAN filters */
2226 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2227 		vlf->add = true;
2228 	}
2229 
2230 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2231 
2232 	/* check if TCs are running and re-add all cloud filters */
2233 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2234 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2235 	    adapter->num_tc) {
2236 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2237 			cf->add = true;
2238 		}
2239 	}
2240 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2241 
2242 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2243 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2244 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2245 	iavf_misc_irq_enable(adapter);
2246 
2247 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2248 
2249 	/* We were running when the reset started, so we need to restore some
2250 	 * state here.
2251 	 */
2252 	if (running) {
2253 		/* allocate transmit descriptors */
2254 		err = iavf_setup_all_tx_resources(adapter);
2255 		if (err)
2256 			goto reset_err;
2257 
2258 		/* allocate receive descriptors */
2259 		err = iavf_setup_all_rx_resources(adapter);
2260 		if (err)
2261 			goto reset_err;
2262 
2263 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2264 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2265 			if (err)
2266 				goto reset_err;
2267 
2268 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2269 		}
2270 
2271 		iavf_configure(adapter);
2272 
2273 		iavf_up_complete(adapter);
2274 
2275 		iavf_irq_enable(adapter, true);
2276 	} else {
2277 		adapter->state = __IAVF_DOWN;
2278 		wake_up(&adapter->down_waitqueue);
2279 	}
2280 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2281 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2282 
2283 	return;
2284 reset_err:
2285 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2286 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2287 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2288 	iavf_close(netdev);
2289 }
2290 
2291 /**
2292  * iavf_adminq_task - worker thread to clean the admin queue
2293  * @work: pointer to work_struct containing our data
2294  **/
2295 static void iavf_adminq_task(struct work_struct *work)
2296 {
2297 	struct iavf_adapter *adapter =
2298 		container_of(work, struct iavf_adapter, adminq_task);
2299 	struct iavf_hw *hw = &adapter->hw;
2300 	struct iavf_arq_event_info event;
2301 	enum virtchnl_ops v_op;
2302 	enum iavf_status ret, v_ret;
2303 	u32 val, oldval;
2304 	u16 pending;
2305 
2306 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2307 		goto out;
2308 
2309 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2310 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2311 	if (!event.msg_buf)
2312 		goto out;
2313 
2314 	do {
2315 		ret = iavf_clean_arq_element(hw, &event, &pending);
2316 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2317 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2318 
2319 		if (ret || !v_op)
2320 			break; /* No event to process or error cleaning ARQ */
2321 
2322 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2323 					 event.msg_len);
2324 		if (pending != 0)
2325 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2326 	} while (pending);
2327 
2328 	if ((adapter->flags &
2329 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2330 	    adapter->state == __IAVF_RESETTING)
2331 		goto freedom;
2332 
2333 	/* check for error indications */
2334 	val = rd32(hw, hw->aq.arq.len);
2335 	if (val == 0xdeadbeef) /* indicates device in reset */
2336 		goto freedom;
2337 	oldval = val;
2338 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2339 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2340 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2341 	}
2342 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2343 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2344 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2345 	}
2346 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2347 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2348 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2349 	}
2350 	if (oldval != val)
2351 		wr32(hw, hw->aq.arq.len, val);
2352 
2353 	val = rd32(hw, hw->aq.asq.len);
2354 	oldval = val;
2355 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2356 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2357 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2358 	}
2359 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2360 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2361 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2362 	}
2363 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2364 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2365 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2366 	}
2367 	if (oldval != val)
2368 		wr32(hw, hw->aq.asq.len, val);
2369 
2370 freedom:
2371 	kfree(event.msg_buf);
2372 out:
2373 	/* re-enable Admin queue interrupt cause */
2374 	iavf_misc_irq_enable(adapter);
2375 }
2376 
2377 /**
2378  * iavf_client_task - worker thread to perform client work
2379  * @work: pointer to work_struct containing our data
2380  *
2381  * This task handles client interactions. Because client calls can be
2382  * reentrant, we can't handle them in the watchdog.
2383  **/
2384 static void iavf_client_task(struct work_struct *work)
2385 {
2386 	struct iavf_adapter *adapter =
2387 		container_of(work, struct iavf_adapter, client_task.work);
2388 
2389 	/* If we can't get the client bit, just give up. We'll be rescheduled
2390 	 * later.
2391 	 */
2392 
2393 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2394 		return;
2395 
2396 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2397 		iavf_client_subtask(adapter);
2398 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2399 		goto out;
2400 	}
2401 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2402 		iavf_notify_client_l2_params(&adapter->vsi);
2403 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2404 		goto out;
2405 	}
2406 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2407 		iavf_notify_client_close(&adapter->vsi, false);
2408 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2409 		goto out;
2410 	}
2411 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2412 		iavf_notify_client_open(&adapter->vsi);
2413 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2414 	}
2415 out:
2416 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2417 }
2418 
2419 /**
2420  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2421  * @adapter: board private structure
2422  *
2423  * Free all transmit software resources
2424  **/
2425 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2426 {
2427 	int i;
2428 
2429 	if (!adapter->tx_rings)
2430 		return;
2431 
2432 	for (i = 0; i < adapter->num_active_queues; i++)
2433 		if (adapter->tx_rings[i].desc)
2434 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2435 }
2436 
2437 /**
2438  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2439  * @adapter: board private structure
2440  *
2441  * If this function returns with an error, then it's possible one or
2442  * more of the rings is populated (while the rest are not).  It is the
2443  * callers duty to clean those orphaned rings.
2444  *
2445  * Return 0 on success, negative on failure
2446  **/
2447 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2448 {
2449 	int i, err = 0;
2450 
2451 	for (i = 0; i < adapter->num_active_queues; i++) {
2452 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2453 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2454 		if (!err)
2455 			continue;
2456 		dev_err(&adapter->pdev->dev,
2457 			"Allocation for Tx Queue %u failed\n", i);
2458 		break;
2459 	}
2460 
2461 	return err;
2462 }
2463 
2464 /**
2465  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2466  * @adapter: board private structure
2467  *
2468  * If this function returns with an error, then it's possible one or
2469  * more of the rings is populated (while the rest are not).  It is the
2470  * callers duty to clean those orphaned rings.
2471  *
2472  * Return 0 on success, negative on failure
2473  **/
2474 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2475 {
2476 	int i, err = 0;
2477 
2478 	for (i = 0; i < adapter->num_active_queues; i++) {
2479 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2480 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2481 		if (!err)
2482 			continue;
2483 		dev_err(&adapter->pdev->dev,
2484 			"Allocation for Rx Queue %u failed\n", i);
2485 		break;
2486 	}
2487 	return err;
2488 }
2489 
2490 /**
2491  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2492  * @adapter: board private structure
2493  *
2494  * Free all receive software resources
2495  **/
2496 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2497 {
2498 	int i;
2499 
2500 	if (!adapter->rx_rings)
2501 		return;
2502 
2503 	for (i = 0; i < adapter->num_active_queues; i++)
2504 		if (adapter->rx_rings[i].desc)
2505 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2506 }
2507 
2508 /**
2509  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2510  * @adapter: board private structure
2511  * @max_tx_rate: max Tx bw for a tc
2512  **/
2513 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2514 				      u64 max_tx_rate)
2515 {
2516 	int speed = 0, ret = 0;
2517 
2518 	if (ADV_LINK_SUPPORT(adapter)) {
2519 		if (adapter->link_speed_mbps < U32_MAX) {
2520 			speed = adapter->link_speed_mbps;
2521 			goto validate_bw;
2522 		} else {
2523 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2524 			return -EINVAL;
2525 		}
2526 	}
2527 
2528 	switch (adapter->link_speed) {
2529 	case VIRTCHNL_LINK_SPEED_40GB:
2530 		speed = SPEED_40000;
2531 		break;
2532 	case VIRTCHNL_LINK_SPEED_25GB:
2533 		speed = SPEED_25000;
2534 		break;
2535 	case VIRTCHNL_LINK_SPEED_20GB:
2536 		speed = SPEED_20000;
2537 		break;
2538 	case VIRTCHNL_LINK_SPEED_10GB:
2539 		speed = SPEED_10000;
2540 		break;
2541 	case VIRTCHNL_LINK_SPEED_5GB:
2542 		speed = SPEED_5000;
2543 		break;
2544 	case VIRTCHNL_LINK_SPEED_2_5GB:
2545 		speed = SPEED_2500;
2546 		break;
2547 	case VIRTCHNL_LINK_SPEED_1GB:
2548 		speed = SPEED_1000;
2549 		break;
2550 	case VIRTCHNL_LINK_SPEED_100MB:
2551 		speed = SPEED_100;
2552 		break;
2553 	default:
2554 		break;
2555 	}
2556 
2557 validate_bw:
2558 	if (max_tx_rate > speed) {
2559 		dev_err(&adapter->pdev->dev,
2560 			"Invalid tx rate specified\n");
2561 		ret = -EINVAL;
2562 	}
2563 
2564 	return ret;
2565 }
2566 
2567 /**
2568  * iavf_validate_ch_config - validate queue mapping info
2569  * @adapter: board private structure
2570  * @mqprio_qopt: queue parameters
2571  *
2572  * This function validates if the config provided by the user to
2573  * configure queue channels is valid or not. Returns 0 on a valid
2574  * config.
2575  **/
2576 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2577 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2578 {
2579 	u64 total_max_rate = 0;
2580 	int i, num_qps = 0;
2581 	u64 tx_rate = 0;
2582 	int ret = 0;
2583 
2584 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2585 	    mqprio_qopt->qopt.num_tc < 1)
2586 		return -EINVAL;
2587 
2588 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2589 		if (!mqprio_qopt->qopt.count[i] ||
2590 		    mqprio_qopt->qopt.offset[i] != num_qps)
2591 			return -EINVAL;
2592 		if (mqprio_qopt->min_rate[i]) {
2593 			dev_err(&adapter->pdev->dev,
2594 				"Invalid min tx rate (greater than 0) specified\n");
2595 			return -EINVAL;
2596 		}
2597 		/*convert to Mbps */
2598 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2599 				  IAVF_MBPS_DIVISOR);
2600 		total_max_rate += tx_rate;
2601 		num_qps += mqprio_qopt->qopt.count[i];
2602 	}
2603 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2604 		return -EINVAL;
2605 
2606 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2607 	return ret;
2608 }
2609 
2610 /**
2611  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2612  * @adapter: board private structure
2613  **/
2614 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2615 {
2616 	struct iavf_cloud_filter *cf, *cftmp;
2617 
2618 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2619 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2620 				 list) {
2621 		list_del(&cf->list);
2622 		kfree(cf);
2623 		adapter->num_cloud_filters--;
2624 	}
2625 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2626 }
2627 
2628 /**
2629  * __iavf_setup_tc - configure multiple traffic classes
2630  * @netdev: network interface device structure
2631  * @type_data: tc offload data
2632  *
2633  * This function processes the config information provided by the
2634  * user to configure traffic classes/queue channels and packages the
2635  * information to request the PF to setup traffic classes.
2636  *
2637  * Returns 0 on success.
2638  **/
2639 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2640 {
2641 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2642 	struct iavf_adapter *adapter = netdev_priv(netdev);
2643 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2644 	u8 num_tc = 0, total_qps = 0;
2645 	int ret = 0, netdev_tc = 0;
2646 	u64 max_tx_rate;
2647 	u16 mode;
2648 	int i;
2649 
2650 	num_tc = mqprio_qopt->qopt.num_tc;
2651 	mode = mqprio_qopt->mode;
2652 
2653 	/* delete queue_channel */
2654 	if (!mqprio_qopt->qopt.hw) {
2655 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2656 			/* reset the tc configuration */
2657 			netdev_reset_tc(netdev);
2658 			adapter->num_tc = 0;
2659 			netif_tx_stop_all_queues(netdev);
2660 			netif_tx_disable(netdev);
2661 			iavf_del_all_cloud_filters(adapter);
2662 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2663 			goto exit;
2664 		} else {
2665 			return -EINVAL;
2666 		}
2667 	}
2668 
2669 	/* add queue channel */
2670 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2671 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2672 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2673 			return -EOPNOTSUPP;
2674 		}
2675 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2676 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2677 			return -EINVAL;
2678 		}
2679 
2680 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2681 		if (ret)
2682 			return ret;
2683 		/* Return if same TC config is requested */
2684 		if (adapter->num_tc == num_tc)
2685 			return 0;
2686 		adapter->num_tc = num_tc;
2687 
2688 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2689 			if (i < num_tc) {
2690 				adapter->ch_config.ch_info[i].count =
2691 					mqprio_qopt->qopt.count[i];
2692 				adapter->ch_config.ch_info[i].offset =
2693 					mqprio_qopt->qopt.offset[i];
2694 				total_qps += mqprio_qopt->qopt.count[i];
2695 				max_tx_rate = mqprio_qopt->max_rate[i];
2696 				/* convert to Mbps */
2697 				max_tx_rate = div_u64(max_tx_rate,
2698 						      IAVF_MBPS_DIVISOR);
2699 				adapter->ch_config.ch_info[i].max_tx_rate =
2700 					max_tx_rate;
2701 			} else {
2702 				adapter->ch_config.ch_info[i].count = 1;
2703 				adapter->ch_config.ch_info[i].offset = 0;
2704 			}
2705 		}
2706 		adapter->ch_config.total_qps = total_qps;
2707 		netif_tx_stop_all_queues(netdev);
2708 		netif_tx_disable(netdev);
2709 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2710 		netdev_reset_tc(netdev);
2711 		/* Report the tc mapping up the stack */
2712 		netdev_set_num_tc(adapter->netdev, num_tc);
2713 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2714 			u16 qcount = mqprio_qopt->qopt.count[i];
2715 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2716 
2717 			if (i < num_tc)
2718 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2719 						    qoffset);
2720 		}
2721 	}
2722 exit:
2723 	return ret;
2724 }
2725 
2726 /**
2727  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2728  * @adapter: board private structure
2729  * @f: pointer to struct flow_cls_offload
2730  * @filter: pointer to cloud filter structure
2731  */
2732 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2733 				 struct flow_cls_offload *f,
2734 				 struct iavf_cloud_filter *filter)
2735 {
2736 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2737 	struct flow_dissector *dissector = rule->match.dissector;
2738 	u16 n_proto_mask = 0;
2739 	u16 n_proto_key = 0;
2740 	u8 field_flags = 0;
2741 	u16 addr_type = 0;
2742 	u16 n_proto = 0;
2743 	int i = 0;
2744 	struct virtchnl_filter *vf = &filter->f;
2745 
2746 	if (dissector->used_keys &
2747 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2748 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2749 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2750 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2751 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2752 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2753 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2754 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2755 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2756 			dissector->used_keys);
2757 		return -EOPNOTSUPP;
2758 	}
2759 
2760 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2761 		struct flow_match_enc_keyid match;
2762 
2763 		flow_rule_match_enc_keyid(rule, &match);
2764 		if (match.mask->keyid != 0)
2765 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2766 	}
2767 
2768 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2769 		struct flow_match_basic match;
2770 
2771 		flow_rule_match_basic(rule, &match);
2772 		n_proto_key = ntohs(match.key->n_proto);
2773 		n_proto_mask = ntohs(match.mask->n_proto);
2774 
2775 		if (n_proto_key == ETH_P_ALL) {
2776 			n_proto_key = 0;
2777 			n_proto_mask = 0;
2778 		}
2779 		n_proto = n_proto_key & n_proto_mask;
2780 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2781 			return -EINVAL;
2782 		if (n_proto == ETH_P_IPV6) {
2783 			/* specify flow type as TCP IPv6 */
2784 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2785 		}
2786 
2787 		if (match.key->ip_proto != IPPROTO_TCP) {
2788 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2789 			return -EINVAL;
2790 		}
2791 	}
2792 
2793 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2794 		struct flow_match_eth_addrs match;
2795 
2796 		flow_rule_match_eth_addrs(rule, &match);
2797 
2798 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2799 		if (!is_zero_ether_addr(match.mask->dst)) {
2800 			if (is_broadcast_ether_addr(match.mask->dst)) {
2801 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2802 			} else {
2803 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2804 					match.mask->dst);
2805 				return IAVF_ERR_CONFIG;
2806 			}
2807 		}
2808 
2809 		if (!is_zero_ether_addr(match.mask->src)) {
2810 			if (is_broadcast_ether_addr(match.mask->src)) {
2811 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2812 			} else {
2813 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2814 					match.mask->src);
2815 				return IAVF_ERR_CONFIG;
2816 			}
2817 		}
2818 
2819 		if (!is_zero_ether_addr(match.key->dst))
2820 			if (is_valid_ether_addr(match.key->dst) ||
2821 			    is_multicast_ether_addr(match.key->dst)) {
2822 				/* set the mask if a valid dst_mac address */
2823 				for (i = 0; i < ETH_ALEN; i++)
2824 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2825 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2826 						match.key->dst);
2827 			}
2828 
2829 		if (!is_zero_ether_addr(match.key->src))
2830 			if (is_valid_ether_addr(match.key->src) ||
2831 			    is_multicast_ether_addr(match.key->src)) {
2832 				/* set the mask if a valid dst_mac address */
2833 				for (i = 0; i < ETH_ALEN; i++)
2834 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2835 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2836 						match.key->src);
2837 		}
2838 	}
2839 
2840 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2841 		struct flow_match_vlan match;
2842 
2843 		flow_rule_match_vlan(rule, &match);
2844 		if (match.mask->vlan_id) {
2845 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2846 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2847 			} else {
2848 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2849 					match.mask->vlan_id);
2850 				return IAVF_ERR_CONFIG;
2851 			}
2852 		}
2853 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2854 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2855 	}
2856 
2857 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2858 		struct flow_match_control match;
2859 
2860 		flow_rule_match_control(rule, &match);
2861 		addr_type = match.key->addr_type;
2862 	}
2863 
2864 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2865 		struct flow_match_ipv4_addrs match;
2866 
2867 		flow_rule_match_ipv4_addrs(rule, &match);
2868 		if (match.mask->dst) {
2869 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2870 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2871 			} else {
2872 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2873 					be32_to_cpu(match.mask->dst));
2874 				return IAVF_ERR_CONFIG;
2875 			}
2876 		}
2877 
2878 		if (match.mask->src) {
2879 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2880 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2881 			} else {
2882 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2883 					be32_to_cpu(match.mask->dst));
2884 				return IAVF_ERR_CONFIG;
2885 			}
2886 		}
2887 
2888 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2889 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2890 			return IAVF_ERR_CONFIG;
2891 		}
2892 		if (match.key->dst) {
2893 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2894 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2895 		}
2896 		if (match.key->src) {
2897 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2898 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2899 		}
2900 	}
2901 
2902 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2903 		struct flow_match_ipv6_addrs match;
2904 
2905 		flow_rule_match_ipv6_addrs(rule, &match);
2906 
2907 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2908 		if (ipv6_addr_any(&match.mask->dst)) {
2909 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2910 				IPV6_ADDR_ANY);
2911 			return IAVF_ERR_CONFIG;
2912 		}
2913 
2914 		/* src and dest IPv6 address should not be LOOPBACK
2915 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2916 		 */
2917 		if (ipv6_addr_loopback(&match.key->dst) ||
2918 		    ipv6_addr_loopback(&match.key->src)) {
2919 			dev_err(&adapter->pdev->dev,
2920 				"ipv6 addr should not be loopback\n");
2921 			return IAVF_ERR_CONFIG;
2922 		}
2923 		if (!ipv6_addr_any(&match.mask->dst) ||
2924 		    !ipv6_addr_any(&match.mask->src))
2925 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2926 
2927 		for (i = 0; i < 4; i++)
2928 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2929 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2930 		       sizeof(vf->data.tcp_spec.dst_ip));
2931 		for (i = 0; i < 4; i++)
2932 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2933 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2934 		       sizeof(vf->data.tcp_spec.src_ip));
2935 	}
2936 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2937 		struct flow_match_ports match;
2938 
2939 		flow_rule_match_ports(rule, &match);
2940 		if (match.mask->src) {
2941 			if (match.mask->src == cpu_to_be16(0xffff)) {
2942 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2943 			} else {
2944 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2945 					be16_to_cpu(match.mask->src));
2946 				return IAVF_ERR_CONFIG;
2947 			}
2948 		}
2949 
2950 		if (match.mask->dst) {
2951 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2952 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2953 			} else {
2954 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2955 					be16_to_cpu(match.mask->dst));
2956 				return IAVF_ERR_CONFIG;
2957 			}
2958 		}
2959 		if (match.key->dst) {
2960 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2961 			vf->data.tcp_spec.dst_port = match.key->dst;
2962 		}
2963 
2964 		if (match.key->src) {
2965 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2966 			vf->data.tcp_spec.src_port = match.key->src;
2967 		}
2968 	}
2969 	vf->field_flags = field_flags;
2970 
2971 	return 0;
2972 }
2973 
2974 /**
2975  * iavf_handle_tclass - Forward to a traffic class on the device
2976  * @adapter: board private structure
2977  * @tc: traffic class index on the device
2978  * @filter: pointer to cloud filter structure
2979  */
2980 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2981 			      struct iavf_cloud_filter *filter)
2982 {
2983 	if (tc == 0)
2984 		return 0;
2985 	if (tc < adapter->num_tc) {
2986 		if (!filter->f.data.tcp_spec.dst_port) {
2987 			dev_err(&adapter->pdev->dev,
2988 				"Specify destination port to redirect to traffic class other than TC0\n");
2989 			return -EINVAL;
2990 		}
2991 	}
2992 	/* redirect to a traffic class on the same device */
2993 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2994 	filter->f.action_meta = tc;
2995 	return 0;
2996 }
2997 
2998 /**
2999  * iavf_configure_clsflower - Add tc flower filters
3000  * @adapter: board private structure
3001  * @cls_flower: Pointer to struct flow_cls_offload
3002  */
3003 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3004 				    struct flow_cls_offload *cls_flower)
3005 {
3006 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3007 	struct iavf_cloud_filter *filter = NULL;
3008 	int err = -EINVAL, count = 50;
3009 
3010 	if (tc < 0) {
3011 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3012 		return -EINVAL;
3013 	}
3014 
3015 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3016 	if (!filter)
3017 		return -ENOMEM;
3018 
3019 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3020 				&adapter->crit_section)) {
3021 		if (--count == 0)
3022 			goto err;
3023 		udelay(1);
3024 	}
3025 
3026 	filter->cookie = cls_flower->cookie;
3027 
3028 	/* set the mask to all zeroes to begin with */
3029 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3030 	/* start out with flow type and eth type IPv4 to begin with */
3031 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3032 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3033 	if (err < 0)
3034 		goto err;
3035 
3036 	err = iavf_handle_tclass(adapter, tc, filter);
3037 	if (err < 0)
3038 		goto err;
3039 
3040 	/* add filter to the list */
3041 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3042 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3043 	adapter->num_cloud_filters++;
3044 	filter->add = true;
3045 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3046 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3047 err:
3048 	if (err)
3049 		kfree(filter);
3050 
3051 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3052 	return err;
3053 }
3054 
3055 /* iavf_find_cf - Find the cloud filter in the list
3056  * @adapter: Board private structure
3057  * @cookie: filter specific cookie
3058  *
3059  * Returns ptr to the filter object or NULL. Must be called while holding the
3060  * cloud_filter_list_lock.
3061  */
3062 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3063 					      unsigned long *cookie)
3064 {
3065 	struct iavf_cloud_filter *filter = NULL;
3066 
3067 	if (!cookie)
3068 		return NULL;
3069 
3070 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3071 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3072 			return filter;
3073 	}
3074 	return NULL;
3075 }
3076 
3077 /**
3078  * iavf_delete_clsflower - Remove tc flower filters
3079  * @adapter: board private structure
3080  * @cls_flower: Pointer to struct flow_cls_offload
3081  */
3082 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3083 				 struct flow_cls_offload *cls_flower)
3084 {
3085 	struct iavf_cloud_filter *filter = NULL;
3086 	int err = 0;
3087 
3088 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3089 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3090 	if (filter) {
3091 		filter->del = true;
3092 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3093 	} else {
3094 		err = -EINVAL;
3095 	}
3096 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3097 
3098 	return err;
3099 }
3100 
3101 /**
3102  * iavf_setup_tc_cls_flower - flower classifier offloads
3103  * @adapter: board private structure
3104  * @cls_flower: pointer to flow_cls_offload struct with flow info
3105  */
3106 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3107 				    struct flow_cls_offload *cls_flower)
3108 {
3109 	switch (cls_flower->command) {
3110 	case FLOW_CLS_REPLACE:
3111 		return iavf_configure_clsflower(adapter, cls_flower);
3112 	case FLOW_CLS_DESTROY:
3113 		return iavf_delete_clsflower(adapter, cls_flower);
3114 	case FLOW_CLS_STATS:
3115 		return -EOPNOTSUPP;
3116 	default:
3117 		return -EOPNOTSUPP;
3118 	}
3119 }
3120 
3121 /**
3122  * iavf_setup_tc_block_cb - block callback for tc
3123  * @type: type of offload
3124  * @type_data: offload data
3125  * @cb_priv:
3126  *
3127  * This function is the block callback for traffic classes
3128  **/
3129 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3130 				  void *cb_priv)
3131 {
3132 	struct iavf_adapter *adapter = cb_priv;
3133 
3134 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3135 		return -EOPNOTSUPP;
3136 
3137 	switch (type) {
3138 	case TC_SETUP_CLSFLOWER:
3139 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3140 	default:
3141 		return -EOPNOTSUPP;
3142 	}
3143 }
3144 
3145 static LIST_HEAD(iavf_block_cb_list);
3146 
3147 /**
3148  * iavf_setup_tc - configure multiple traffic classes
3149  * @netdev: network interface device structure
3150  * @type: type of offload
3151  * @type_data: tc offload data
3152  *
3153  * This function is the callback to ndo_setup_tc in the
3154  * netdev_ops.
3155  *
3156  * Returns 0 on success
3157  **/
3158 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3159 			 void *type_data)
3160 {
3161 	struct iavf_adapter *adapter = netdev_priv(netdev);
3162 
3163 	switch (type) {
3164 	case TC_SETUP_QDISC_MQPRIO:
3165 		return __iavf_setup_tc(netdev, type_data);
3166 	case TC_SETUP_BLOCK:
3167 		return flow_block_cb_setup_simple(type_data,
3168 						  &iavf_block_cb_list,
3169 						  iavf_setup_tc_block_cb,
3170 						  adapter, adapter, true);
3171 	default:
3172 		return -EOPNOTSUPP;
3173 	}
3174 }
3175 
3176 /**
3177  * iavf_open - Called when a network interface is made active
3178  * @netdev: network interface device structure
3179  *
3180  * Returns 0 on success, negative value on failure
3181  *
3182  * The open entry point is called when a network interface is made
3183  * active by the system (IFF_UP).  At this point all resources needed
3184  * for transmit and receive operations are allocated, the interrupt
3185  * handler is registered with the OS, the watchdog is started,
3186  * and the stack is notified that the interface is ready.
3187  **/
3188 static int iavf_open(struct net_device *netdev)
3189 {
3190 	struct iavf_adapter *adapter = netdev_priv(netdev);
3191 	int err;
3192 
3193 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3194 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3195 		return -EIO;
3196 	}
3197 
3198 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3199 				&adapter->crit_section))
3200 		usleep_range(500, 1000);
3201 
3202 	if (adapter->state != __IAVF_DOWN) {
3203 		err = -EBUSY;
3204 		goto err_unlock;
3205 	}
3206 
3207 	/* allocate transmit descriptors */
3208 	err = iavf_setup_all_tx_resources(adapter);
3209 	if (err)
3210 		goto err_setup_tx;
3211 
3212 	/* allocate receive descriptors */
3213 	err = iavf_setup_all_rx_resources(adapter);
3214 	if (err)
3215 		goto err_setup_rx;
3216 
3217 	/* clear any pending interrupts, may auto mask */
3218 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3219 	if (err)
3220 		goto err_req_irq;
3221 
3222 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3223 
3224 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3225 
3226 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3227 
3228 	iavf_configure(adapter);
3229 
3230 	iavf_up_complete(adapter);
3231 
3232 	iavf_irq_enable(adapter, true);
3233 
3234 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3235 
3236 	return 0;
3237 
3238 err_req_irq:
3239 	iavf_down(adapter);
3240 	iavf_free_traffic_irqs(adapter);
3241 err_setup_rx:
3242 	iavf_free_all_rx_resources(adapter);
3243 err_setup_tx:
3244 	iavf_free_all_tx_resources(adapter);
3245 err_unlock:
3246 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247 
3248 	return err;
3249 }
3250 
3251 /**
3252  * iavf_close - Disables a network interface
3253  * @netdev: network interface device structure
3254  *
3255  * Returns 0, this is not allowed to fail
3256  *
3257  * The close entry point is called when an interface is de-activated
3258  * by the OS.  The hardware is still under the drivers control, but
3259  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3260  * are freed, along with all transmit and receive resources.
3261  **/
3262 static int iavf_close(struct net_device *netdev)
3263 {
3264 	struct iavf_adapter *adapter = netdev_priv(netdev);
3265 	int status;
3266 
3267 	if (adapter->state <= __IAVF_DOWN_PENDING)
3268 		return 0;
3269 
3270 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3271 				&adapter->crit_section))
3272 		usleep_range(500, 1000);
3273 
3274 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3275 	if (CLIENT_ENABLED(adapter))
3276 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3277 
3278 	iavf_down(adapter);
3279 	adapter->state = __IAVF_DOWN_PENDING;
3280 	iavf_free_traffic_irqs(adapter);
3281 
3282 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3283 
3284 	/* We explicitly don't free resources here because the hardware is
3285 	 * still active and can DMA into memory. Resources are cleared in
3286 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3287 	 * driver that the rings have been stopped.
3288 	 *
3289 	 * Also, we wait for state to transition to __IAVF_DOWN before
3290 	 * returning. State change occurs in iavf_virtchnl_completion() after
3291 	 * VF resources are released (which occurs after PF driver processes and
3292 	 * responds to admin queue commands).
3293 	 */
3294 
3295 	status = wait_event_timeout(adapter->down_waitqueue,
3296 				    adapter->state == __IAVF_DOWN,
3297 				    msecs_to_jiffies(500));
3298 	if (!status)
3299 		netdev_warn(netdev, "Device resources not yet released\n");
3300 	return 0;
3301 }
3302 
3303 /**
3304  * iavf_change_mtu - Change the Maximum Transfer Unit
3305  * @netdev: network interface device structure
3306  * @new_mtu: new value for maximum frame size
3307  *
3308  * Returns 0 on success, negative on failure
3309  **/
3310 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3311 {
3312 	struct iavf_adapter *adapter = netdev_priv(netdev);
3313 
3314 	netdev->mtu = new_mtu;
3315 	if (CLIENT_ENABLED(adapter)) {
3316 		iavf_notify_client_l2_params(&adapter->vsi);
3317 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3318 	}
3319 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3320 	queue_work(iavf_wq, &adapter->reset_task);
3321 
3322 	return 0;
3323 }
3324 
3325 /**
3326  * iavf_set_features - set the netdev feature flags
3327  * @netdev: ptr to the netdev being adjusted
3328  * @features: the feature set that the stack is suggesting
3329  * Note: expects to be called while under rtnl_lock()
3330  **/
3331 static int iavf_set_features(struct net_device *netdev,
3332 			     netdev_features_t features)
3333 {
3334 	struct iavf_adapter *adapter = netdev_priv(netdev);
3335 
3336 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3337 	 * of VLAN offload
3338 	 */
3339 	if (!VLAN_ALLOWED(adapter)) {
3340 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3341 			return -EINVAL;
3342 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3343 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3344 			adapter->aq_required |=
3345 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3346 		else
3347 			adapter->aq_required |=
3348 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 /**
3355  * iavf_features_check - Validate encapsulated packet conforms to limits
3356  * @skb: skb buff
3357  * @dev: This physical port's netdev
3358  * @features: Offload features that the stack believes apply
3359  **/
3360 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3361 					     struct net_device *dev,
3362 					     netdev_features_t features)
3363 {
3364 	size_t len;
3365 
3366 	/* No point in doing any of this if neither checksum nor GSO are
3367 	 * being requested for this frame.  We can rule out both by just
3368 	 * checking for CHECKSUM_PARTIAL
3369 	 */
3370 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3371 		return features;
3372 
3373 	/* We cannot support GSO if the MSS is going to be less than
3374 	 * 64 bytes.  If it is then we need to drop support for GSO.
3375 	 */
3376 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3377 		features &= ~NETIF_F_GSO_MASK;
3378 
3379 	/* MACLEN can support at most 63 words */
3380 	len = skb_network_header(skb) - skb->data;
3381 	if (len & ~(63 * 2))
3382 		goto out_err;
3383 
3384 	/* IPLEN and EIPLEN can support at most 127 dwords */
3385 	len = skb_transport_header(skb) - skb_network_header(skb);
3386 	if (len & ~(127 * 4))
3387 		goto out_err;
3388 
3389 	if (skb->encapsulation) {
3390 		/* L4TUNLEN can support 127 words */
3391 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3392 		if (len & ~(127 * 2))
3393 			goto out_err;
3394 
3395 		/* IPLEN can support at most 127 dwords */
3396 		len = skb_inner_transport_header(skb) -
3397 		      skb_inner_network_header(skb);
3398 		if (len & ~(127 * 4))
3399 			goto out_err;
3400 	}
3401 
3402 	/* No need to validate L4LEN as TCP is the only protocol with a
3403 	 * a flexible value and we support all possible values supported
3404 	 * by TCP, which is at most 15 dwords
3405 	 */
3406 
3407 	return features;
3408 out_err:
3409 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3410 }
3411 
3412 /**
3413  * iavf_fix_features - fix up the netdev feature bits
3414  * @netdev: our net device
3415  * @features: desired feature bits
3416  *
3417  * Returns fixed-up features bits
3418  **/
3419 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3420 					   netdev_features_t features)
3421 {
3422 	struct iavf_adapter *adapter = netdev_priv(netdev);
3423 
3424 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3425 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3426 			      NETIF_F_HW_VLAN_CTAG_RX |
3427 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3428 
3429 	return features;
3430 }
3431 
3432 static const struct net_device_ops iavf_netdev_ops = {
3433 	.ndo_open		= iavf_open,
3434 	.ndo_stop		= iavf_close,
3435 	.ndo_start_xmit		= iavf_xmit_frame,
3436 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3437 	.ndo_validate_addr	= eth_validate_addr,
3438 	.ndo_set_mac_address	= iavf_set_mac,
3439 	.ndo_change_mtu		= iavf_change_mtu,
3440 	.ndo_tx_timeout		= iavf_tx_timeout,
3441 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3442 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3443 	.ndo_features_check	= iavf_features_check,
3444 	.ndo_fix_features	= iavf_fix_features,
3445 	.ndo_set_features	= iavf_set_features,
3446 	.ndo_setup_tc		= iavf_setup_tc,
3447 };
3448 
3449 /**
3450  * iavf_check_reset_complete - check that VF reset is complete
3451  * @hw: pointer to hw struct
3452  *
3453  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3454  **/
3455 static int iavf_check_reset_complete(struct iavf_hw *hw)
3456 {
3457 	u32 rstat;
3458 	int i;
3459 
3460 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3461 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3462 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3463 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3464 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3465 			return 0;
3466 		usleep_range(10, 20);
3467 	}
3468 	return -EBUSY;
3469 }
3470 
3471 /**
3472  * iavf_process_config - Process the config information we got from the PF
3473  * @adapter: board private structure
3474  *
3475  * Verify that we have a valid config struct, and set up our netdev features
3476  * and our VSI struct.
3477  **/
3478 int iavf_process_config(struct iavf_adapter *adapter)
3479 {
3480 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3481 	int i, num_req_queues = adapter->num_req_queues;
3482 	struct net_device *netdev = adapter->netdev;
3483 	struct iavf_vsi *vsi = &adapter->vsi;
3484 	netdev_features_t hw_enc_features;
3485 	netdev_features_t hw_features;
3486 
3487 	/* got VF config message back from PF, now we can parse it */
3488 	for (i = 0; i < vfres->num_vsis; i++) {
3489 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3490 			adapter->vsi_res = &vfres->vsi_res[i];
3491 	}
3492 	if (!adapter->vsi_res) {
3493 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3494 		return -ENODEV;
3495 	}
3496 
3497 	if (num_req_queues &&
3498 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3499 		/* Problem.  The PF gave us fewer queues than what we had
3500 		 * negotiated in our request.  Need a reset to see if we can't
3501 		 * get back to a working state.
3502 		 */
3503 		dev_err(&adapter->pdev->dev,
3504 			"Requested %d queues, but PF only gave us %d.\n",
3505 			num_req_queues,
3506 			adapter->vsi_res->num_queue_pairs);
3507 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3508 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3509 		iavf_schedule_reset(adapter);
3510 		return -ENODEV;
3511 	}
3512 	adapter->num_req_queues = 0;
3513 
3514 	hw_enc_features = NETIF_F_SG			|
3515 			  NETIF_F_IP_CSUM		|
3516 			  NETIF_F_IPV6_CSUM		|
3517 			  NETIF_F_HIGHDMA		|
3518 			  NETIF_F_SOFT_FEATURES	|
3519 			  NETIF_F_TSO			|
3520 			  NETIF_F_TSO_ECN		|
3521 			  NETIF_F_TSO6			|
3522 			  NETIF_F_SCTP_CRC		|
3523 			  NETIF_F_RXHASH		|
3524 			  NETIF_F_RXCSUM		|
3525 			  0;
3526 
3527 	/* advertise to stack only if offloads for encapsulated packets is
3528 	 * supported
3529 	 */
3530 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3531 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3532 				   NETIF_F_GSO_GRE		|
3533 				   NETIF_F_GSO_GRE_CSUM		|
3534 				   NETIF_F_GSO_IPXIP4		|
3535 				   NETIF_F_GSO_IPXIP6		|
3536 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3537 				   NETIF_F_GSO_PARTIAL		|
3538 				   0;
3539 
3540 		if (!(vfres->vf_cap_flags &
3541 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3542 			netdev->gso_partial_features |=
3543 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3544 
3545 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3546 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3547 		netdev->hw_enc_features |= hw_enc_features;
3548 	}
3549 	/* record features VLANs can make use of */
3550 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3551 
3552 	/* Write features and hw_features separately to avoid polluting
3553 	 * with, or dropping, features that are set when we registered.
3554 	 */
3555 	hw_features = hw_enc_features;
3556 
3557 	/* Enable VLAN features if supported */
3558 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3559 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3560 				NETIF_F_HW_VLAN_CTAG_RX);
3561 	/* Enable cloud filter if ADQ is supported */
3562 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3563 		hw_features |= NETIF_F_HW_TC;
3564 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3565 		hw_features |= NETIF_F_GSO_UDP_L4;
3566 
3567 	netdev->hw_features |= hw_features;
3568 
3569 	netdev->features |= hw_features;
3570 
3571 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3572 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3573 
3574 	netdev->priv_flags |= IFF_UNICAST_FLT;
3575 
3576 	/* Do not turn on offloads when they are requested to be turned off.
3577 	 * TSO needs minimum 576 bytes to work correctly.
3578 	 */
3579 	if (netdev->wanted_features) {
3580 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3581 		    netdev->mtu < 576)
3582 			netdev->features &= ~NETIF_F_TSO;
3583 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3584 		    netdev->mtu < 576)
3585 			netdev->features &= ~NETIF_F_TSO6;
3586 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3587 			netdev->features &= ~NETIF_F_TSO_ECN;
3588 		if (!(netdev->wanted_features & NETIF_F_GRO))
3589 			netdev->features &= ~NETIF_F_GRO;
3590 		if (!(netdev->wanted_features & NETIF_F_GSO))
3591 			netdev->features &= ~NETIF_F_GSO;
3592 	}
3593 
3594 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3595 
3596 	adapter->vsi.back = adapter;
3597 	adapter->vsi.base_vector = 1;
3598 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3599 	vsi->netdev = adapter->netdev;
3600 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3601 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3602 		adapter->rss_key_size = vfres->rss_key_size;
3603 		adapter->rss_lut_size = vfres->rss_lut_size;
3604 	} else {
3605 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3606 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 /**
3613  * iavf_init_task - worker thread to perform delayed initialization
3614  * @work: pointer to work_struct containing our data
3615  *
3616  * This task completes the work that was begun in probe. Due to the nature
3617  * of VF-PF communications, we may need to wait tens of milliseconds to get
3618  * responses back from the PF. Rather than busy-wait in probe and bog down the
3619  * whole system, we'll do it in a task so we can sleep.
3620  * This task only runs during driver init. Once we've established
3621  * communications with the PF driver and set up our netdev, the watchdog
3622  * takes over.
3623  **/
3624 static void iavf_init_task(struct work_struct *work)
3625 {
3626 	struct iavf_adapter *adapter = container_of(work,
3627 						    struct iavf_adapter,
3628 						    init_task.work);
3629 	struct iavf_hw *hw = &adapter->hw;
3630 
3631 	switch (adapter->state) {
3632 	case __IAVF_STARTUP:
3633 		if (iavf_startup(adapter) < 0)
3634 			goto init_failed;
3635 		break;
3636 	case __IAVF_INIT_VERSION_CHECK:
3637 		if (iavf_init_version_check(adapter) < 0)
3638 			goto init_failed;
3639 		break;
3640 	case __IAVF_INIT_GET_RESOURCES:
3641 		if (iavf_init_get_resources(adapter) < 0)
3642 			goto init_failed;
3643 		return;
3644 	default:
3645 		goto init_failed;
3646 	}
3647 
3648 	queue_delayed_work(iavf_wq, &adapter->init_task,
3649 			   msecs_to_jiffies(30));
3650 	return;
3651 init_failed:
3652 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3653 		dev_err(&adapter->pdev->dev,
3654 			"Failed to communicate with PF; waiting before retry\n");
3655 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3656 		iavf_shutdown_adminq(hw);
3657 		adapter->state = __IAVF_STARTUP;
3658 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3659 		return;
3660 	}
3661 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3662 }
3663 
3664 /**
3665  * iavf_shutdown - Shutdown the device in preparation for a reboot
3666  * @pdev: pci device structure
3667  **/
3668 static void iavf_shutdown(struct pci_dev *pdev)
3669 {
3670 	struct net_device *netdev = pci_get_drvdata(pdev);
3671 	struct iavf_adapter *adapter = netdev_priv(netdev);
3672 
3673 	netif_device_detach(netdev);
3674 
3675 	if (netif_running(netdev))
3676 		iavf_close(netdev);
3677 
3678 	/* Prevent the watchdog from running. */
3679 	adapter->state = __IAVF_REMOVE;
3680 	adapter->aq_required = 0;
3681 
3682 #ifdef CONFIG_PM
3683 	pci_save_state(pdev);
3684 
3685 #endif
3686 	pci_disable_device(pdev);
3687 }
3688 
3689 /**
3690  * iavf_probe - Device Initialization Routine
3691  * @pdev: PCI device information struct
3692  * @ent: entry in iavf_pci_tbl
3693  *
3694  * Returns 0 on success, negative on failure
3695  *
3696  * iavf_probe initializes an adapter identified by a pci_dev structure.
3697  * The OS initialization, configuring of the adapter private structure,
3698  * and a hardware reset occur.
3699  **/
3700 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3701 {
3702 	struct net_device *netdev;
3703 	struct iavf_adapter *adapter = NULL;
3704 	struct iavf_hw *hw = NULL;
3705 	int err;
3706 
3707 	err = pci_enable_device(pdev);
3708 	if (err)
3709 		return err;
3710 
3711 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3712 	if (err) {
3713 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3714 		if (err) {
3715 			dev_err(&pdev->dev,
3716 				"DMA configuration failed: 0x%x\n", err);
3717 			goto err_dma;
3718 		}
3719 	}
3720 
3721 	err = pci_request_regions(pdev, iavf_driver_name);
3722 	if (err) {
3723 		dev_err(&pdev->dev,
3724 			"pci_request_regions failed 0x%x\n", err);
3725 		goto err_pci_reg;
3726 	}
3727 
3728 	pci_enable_pcie_error_reporting(pdev);
3729 
3730 	pci_set_master(pdev);
3731 
3732 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3733 				   IAVF_MAX_REQ_QUEUES);
3734 	if (!netdev) {
3735 		err = -ENOMEM;
3736 		goto err_alloc_etherdev;
3737 	}
3738 
3739 	SET_NETDEV_DEV(netdev, &pdev->dev);
3740 
3741 	pci_set_drvdata(pdev, netdev);
3742 	adapter = netdev_priv(netdev);
3743 
3744 	adapter->netdev = netdev;
3745 	adapter->pdev = pdev;
3746 
3747 	hw = &adapter->hw;
3748 	hw->back = adapter;
3749 
3750 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3751 	adapter->state = __IAVF_STARTUP;
3752 
3753 	/* Call save state here because it relies on the adapter struct. */
3754 	pci_save_state(pdev);
3755 
3756 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3757 			      pci_resource_len(pdev, 0));
3758 	if (!hw->hw_addr) {
3759 		err = -EIO;
3760 		goto err_ioremap;
3761 	}
3762 	hw->vendor_id = pdev->vendor;
3763 	hw->device_id = pdev->device;
3764 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3765 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3766 	hw->subsystem_device_id = pdev->subsystem_device;
3767 	hw->bus.device = PCI_SLOT(pdev->devfn);
3768 	hw->bus.func = PCI_FUNC(pdev->devfn);
3769 	hw->bus.bus_id = pdev->bus->number;
3770 
3771 	/* set up the locks for the AQ, do this only once in probe
3772 	 * and destroy them only once in remove
3773 	 */
3774 	mutex_init(&hw->aq.asq_mutex);
3775 	mutex_init(&hw->aq.arq_mutex);
3776 
3777 	spin_lock_init(&adapter->mac_vlan_list_lock);
3778 	spin_lock_init(&adapter->cloud_filter_list_lock);
3779 	spin_lock_init(&adapter->fdir_fltr_lock);
3780 	spin_lock_init(&adapter->adv_rss_lock);
3781 
3782 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3783 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3784 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3785 	INIT_LIST_HEAD(&adapter->fdir_list_head);
3786 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3787 
3788 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3789 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3790 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3791 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3792 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3793 	queue_delayed_work(iavf_wq, &adapter->init_task,
3794 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3795 
3796 	/* Setup the wait queue for indicating transition to down status */
3797 	init_waitqueue_head(&adapter->down_waitqueue);
3798 
3799 	return 0;
3800 
3801 err_ioremap:
3802 	free_netdev(netdev);
3803 err_alloc_etherdev:
3804 	pci_disable_pcie_error_reporting(pdev);
3805 	pci_release_regions(pdev);
3806 err_pci_reg:
3807 err_dma:
3808 	pci_disable_device(pdev);
3809 	return err;
3810 }
3811 
3812 /**
3813  * iavf_suspend - Power management suspend routine
3814  * @dev_d: device info pointer
3815  *
3816  * Called when the system (VM) is entering sleep/suspend.
3817  **/
3818 static int __maybe_unused iavf_suspend(struct device *dev_d)
3819 {
3820 	struct net_device *netdev = dev_get_drvdata(dev_d);
3821 	struct iavf_adapter *adapter = netdev_priv(netdev);
3822 
3823 	netif_device_detach(netdev);
3824 
3825 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3826 				&adapter->crit_section))
3827 		usleep_range(500, 1000);
3828 
3829 	if (netif_running(netdev)) {
3830 		rtnl_lock();
3831 		iavf_down(adapter);
3832 		rtnl_unlock();
3833 	}
3834 	iavf_free_misc_irq(adapter);
3835 	iavf_reset_interrupt_capability(adapter);
3836 
3837 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3838 
3839 	return 0;
3840 }
3841 
3842 /**
3843  * iavf_resume - Power management resume routine
3844  * @dev_d: device info pointer
3845  *
3846  * Called when the system (VM) is resumed from sleep/suspend.
3847  **/
3848 static int __maybe_unused iavf_resume(struct device *dev_d)
3849 {
3850 	struct pci_dev *pdev = to_pci_dev(dev_d);
3851 	struct net_device *netdev = pci_get_drvdata(pdev);
3852 	struct iavf_adapter *adapter = netdev_priv(netdev);
3853 	u32 err;
3854 
3855 	pci_set_master(pdev);
3856 
3857 	rtnl_lock();
3858 	err = iavf_set_interrupt_capability(adapter);
3859 	if (err) {
3860 		rtnl_unlock();
3861 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3862 		return err;
3863 	}
3864 	err = iavf_request_misc_irq(adapter);
3865 	rtnl_unlock();
3866 	if (err) {
3867 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3868 		return err;
3869 	}
3870 
3871 	queue_work(iavf_wq, &adapter->reset_task);
3872 
3873 	netif_device_attach(netdev);
3874 
3875 	return err;
3876 }
3877 
3878 /**
3879  * iavf_remove - Device Removal Routine
3880  * @pdev: PCI device information struct
3881  *
3882  * iavf_remove is called by the PCI subsystem to alert the driver
3883  * that it should release a PCI device.  The could be caused by a
3884  * Hot-Plug event, or because the driver is going to be removed from
3885  * memory.
3886  **/
3887 static void iavf_remove(struct pci_dev *pdev)
3888 {
3889 	struct net_device *netdev = pci_get_drvdata(pdev);
3890 	struct iavf_adapter *adapter = netdev_priv(netdev);
3891 	struct iavf_fdir_fltr *fdir, *fdirtmp;
3892 	struct iavf_vlan_filter *vlf, *vlftmp;
3893 	struct iavf_adv_rss *rss, *rsstmp;
3894 	struct iavf_mac_filter *f, *ftmp;
3895 	struct iavf_cloud_filter *cf, *cftmp;
3896 	struct iavf_hw *hw = &adapter->hw;
3897 	int err;
3898 	/* Indicate we are in remove and not to run reset_task */
3899 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3900 	cancel_delayed_work_sync(&adapter->init_task);
3901 	cancel_work_sync(&adapter->reset_task);
3902 	cancel_delayed_work_sync(&adapter->client_task);
3903 	if (adapter->netdev_registered) {
3904 		unregister_netdev(netdev);
3905 		adapter->netdev_registered = false;
3906 	}
3907 	if (CLIENT_ALLOWED(adapter)) {
3908 		err = iavf_lan_del_device(adapter);
3909 		if (err)
3910 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3911 				 err);
3912 	}
3913 
3914 	/* Shut down all the garbage mashers on the detention level */
3915 	adapter->state = __IAVF_REMOVE;
3916 	adapter->aq_required = 0;
3917 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3918 	iavf_request_reset(adapter);
3919 	msleep(50);
3920 	/* If the FW isn't responding, kick it once, but only once. */
3921 	if (!iavf_asq_done(hw)) {
3922 		iavf_request_reset(adapter);
3923 		msleep(50);
3924 	}
3925 	iavf_free_all_tx_resources(adapter);
3926 	iavf_free_all_rx_resources(adapter);
3927 	iavf_misc_irq_disable(adapter);
3928 	iavf_free_misc_irq(adapter);
3929 	iavf_reset_interrupt_capability(adapter);
3930 	iavf_free_q_vectors(adapter);
3931 
3932 	cancel_delayed_work_sync(&adapter->watchdog_task);
3933 
3934 	cancel_work_sync(&adapter->adminq_task);
3935 
3936 	iavf_free_rss(adapter);
3937 
3938 	if (hw->aq.asq.count)
3939 		iavf_shutdown_adminq(hw);
3940 
3941 	/* destroy the locks only once, here */
3942 	mutex_destroy(&hw->aq.arq_mutex);
3943 	mutex_destroy(&hw->aq.asq_mutex);
3944 
3945 	iounmap(hw->hw_addr);
3946 	pci_release_regions(pdev);
3947 	iavf_free_queues(adapter);
3948 	kfree(adapter->vf_res);
3949 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3950 	/* If we got removed before an up/down sequence, we've got a filter
3951 	 * hanging out there that we need to get rid of.
3952 	 */
3953 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3954 		list_del(&f->list);
3955 		kfree(f);
3956 	}
3957 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3958 				 list) {
3959 		list_del(&vlf->list);
3960 		kfree(vlf);
3961 	}
3962 
3963 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3964 
3965 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3966 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3967 		list_del(&cf->list);
3968 		kfree(cf);
3969 	}
3970 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3971 
3972 	spin_lock_bh(&adapter->fdir_fltr_lock);
3973 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
3974 		list_del(&fdir->list);
3975 		kfree(fdir);
3976 	}
3977 	spin_unlock_bh(&adapter->fdir_fltr_lock);
3978 
3979 	spin_lock_bh(&adapter->adv_rss_lock);
3980 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
3981 				 list) {
3982 		list_del(&rss->list);
3983 		kfree(rss);
3984 	}
3985 	spin_unlock_bh(&adapter->adv_rss_lock);
3986 
3987 	free_netdev(netdev);
3988 
3989 	pci_disable_pcie_error_reporting(pdev);
3990 
3991 	pci_disable_device(pdev);
3992 }
3993 
3994 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3995 
3996 static struct pci_driver iavf_driver = {
3997 	.name      = iavf_driver_name,
3998 	.id_table  = iavf_pci_tbl,
3999 	.probe     = iavf_probe,
4000 	.remove    = iavf_remove,
4001 	.driver.pm = &iavf_pm_ops,
4002 	.shutdown  = iavf_shutdown,
4003 };
4004 
4005 /**
4006  * iavf_init_module - Driver Registration Routine
4007  *
4008  * iavf_init_module is the first routine called when the driver is
4009  * loaded. All it does is register with the PCI subsystem.
4010  **/
4011 static int __init iavf_init_module(void)
4012 {
4013 	int ret;
4014 
4015 	pr_info("iavf: %s\n", iavf_driver_string);
4016 
4017 	pr_info("%s\n", iavf_copyright);
4018 
4019 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4020 				  iavf_driver_name);
4021 	if (!iavf_wq) {
4022 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4023 		return -ENOMEM;
4024 	}
4025 	ret = pci_register_driver(&iavf_driver);
4026 	return ret;
4027 }
4028 
4029 module_init(iavf_init_module);
4030 
4031 /**
4032  * iavf_exit_module - Driver Exit Cleanup Routine
4033  *
4034  * iavf_exit_module is called just before the driver is removed
4035  * from memory.
4036  **/
4037 static void __exit iavf_exit_module(void)
4038 {
4039 	pci_unregister_driver(&iavf_driver);
4040 	destroy_workqueue(iavf_wq);
4041 }
4042 
4043 module_exit(iavf_exit_module);
4044 
4045 /* iavf_main.c */
4046