xref: /openbmc/linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 	switch (status) {
57 	case IAVF_SUCCESS:
58 		return 0;
59 	case IAVF_ERR_PARAM:
60 	case IAVF_ERR_MAC_TYPE:
61 	case IAVF_ERR_INVALID_MAC_ADDR:
62 	case IAVF_ERR_INVALID_LINK_SETTINGS:
63 	case IAVF_ERR_INVALID_PD_ID:
64 	case IAVF_ERR_INVALID_QP_ID:
65 	case IAVF_ERR_INVALID_CQ_ID:
66 	case IAVF_ERR_INVALID_CEQ_ID:
67 	case IAVF_ERR_INVALID_AEQ_ID:
68 	case IAVF_ERR_INVALID_SIZE:
69 	case IAVF_ERR_INVALID_ARP_INDEX:
70 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 	case IAVF_ERR_INVALID_FRAG_COUNT:
73 	case IAVF_ERR_INVALID_ALIGNMENT:
74 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 	case IAVF_ERR_INVALID_VF_ID:
77 	case IAVF_ERR_INVALID_HMCFN_ID:
78 	case IAVF_ERR_INVALID_PBLE_INDEX:
79 	case IAVF_ERR_INVALID_SD_INDEX:
80 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 	case IAVF_ERR_INVALID_SD_TYPE:
82 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 		return -EINVAL;
86 	case IAVF_ERR_NVM:
87 	case IAVF_ERR_NVM_CHECKSUM:
88 	case IAVF_ERR_PHY:
89 	case IAVF_ERR_CONFIG:
90 	case IAVF_ERR_UNKNOWN_PHY:
91 	case IAVF_ERR_LINK_SETUP:
92 	case IAVF_ERR_ADAPTER_STOPPED:
93 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 	case IAVF_ERR_RESET_FAILED:
96 	case IAVF_ERR_BAD_PTR:
97 	case IAVF_ERR_SWFW_SYNC:
98 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 	case IAVF_ERR_QUEUE_EMPTY:
100 	case IAVF_ERR_FLUSHED_QUEUE:
101 	case IAVF_ERR_OPCODE_MISMATCH:
102 	case IAVF_ERR_CQP_COMPL_ERROR:
103 	case IAVF_ERR_BACKING_PAGE_ERROR:
104 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 	case IAVF_ERR_MEMCPY_FAILED:
106 	case IAVF_ERR_SRQ_ENABLED:
107 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 	case IAVF_ERR_ADMIN_QUEUE_FULL:
109 	case IAVF_ERR_BAD_IWARP_CQE:
110 	case IAVF_ERR_NVM_BLANK_MODE:
111 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 	case IAVF_ERR_DIAG_TEST_FAILED:
113 	case IAVF_ERR_FIRMWARE_API_VERSION:
114 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 		return -EIO;
116 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 		return -ENODEV;
118 	case IAVF_ERR_NO_AVAILABLE_VSI:
119 	case IAVF_ERR_RING_FULL:
120 		return -ENOSPC;
121 	case IAVF_ERR_NO_MEMORY:
122 		return -ENOMEM;
123 	case IAVF_ERR_TIMEOUT:
124 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 		return -ETIMEDOUT;
126 	case IAVF_ERR_NOT_IMPLEMENTED:
127 	case IAVF_NOT_SUPPORTED:
128 		return -EOPNOTSUPP;
129 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 		return -EALREADY;
131 	case IAVF_ERR_NOT_READY:
132 		return -EBUSY;
133 	case IAVF_ERR_BUF_TOO_SHORT:
134 		return -EMSGSIZE;
135 	}
136 
137 	return -EIO;
138 }
139 
140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 	switch (v_status) {
143 	case VIRTCHNL_STATUS_SUCCESS:
144 		return 0;
145 	case VIRTCHNL_STATUS_ERR_PARAM:
146 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 		return -EINVAL;
148 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 		return -ENOMEM;
150 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 		return -EIO;
154 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 		return -EOPNOTSUPP;
156 	}
157 
158 	return -EIO;
159 }
160 
161 /**
162  * iavf_pdev_to_adapter - go from pci_dev to adapter
163  * @pdev: pci_dev pointer
164  */
165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 	return netdev_priv(pci_get_drvdata(pdev));
168 }
169 
170 /**
171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172  * @hw:   pointer to the HW structure
173  * @mem:  ptr to mem struct to fill out
174  * @size: size of memory requested
175  * @alignment: what to align the allocation to
176  **/
177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 					 struct iavf_dma_mem *mem,
179 					 u64 size, u32 alignment)
180 {
181 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182 
183 	if (!mem)
184 		return IAVF_ERR_PARAM;
185 
186 	mem->size = ALIGN(size, alignment);
187 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 	if (mem->va)
190 		return 0;
191 	else
192 		return IAVF_ERR_NO_MEMORY;
193 }
194 
195 /**
196  * iavf_free_dma_mem_d - OS specific memory free for shared code
197  * @hw:   pointer to the HW structure
198  * @mem:  ptr to mem struct to free
199  **/
200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 				     struct iavf_dma_mem *mem)
202 {
203 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204 
205 	if (!mem || !mem->va)
206 		return IAVF_ERR_PARAM;
207 	dma_free_coherent(&adapter->pdev->dev, mem->size,
208 			  mem->va, (dma_addr_t)mem->pa);
209 	return 0;
210 }
211 
212 /**
213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214  * @hw:   pointer to the HW structure
215  * @mem:  ptr to mem struct to fill out
216  * @size: size of memory requested
217  **/
218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 					  struct iavf_virt_mem *mem, u32 size)
220 {
221 	if (!mem)
222 		return IAVF_ERR_PARAM;
223 
224 	mem->size = size;
225 	mem->va = kzalloc(size, GFP_KERNEL);
226 
227 	if (mem->va)
228 		return 0;
229 	else
230 		return IAVF_ERR_NO_MEMORY;
231 }
232 
233 /**
234  * iavf_free_virt_mem_d - OS specific memory free for shared code
235  * @hw:   pointer to the HW structure
236  * @mem:  ptr to mem struct to free
237  **/
238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 				      struct iavf_virt_mem *mem)
240 {
241 	if (!mem)
242 		return IAVF_ERR_PARAM;
243 
244 	/* it's ok to kfree a NULL pointer */
245 	kfree(mem->va);
246 
247 	return 0;
248 }
249 
250 /**
251  * iavf_lock_timeout - try to lock mutex but give up after timeout
252  * @lock: mutex that should be locked
253  * @msecs: timeout in msecs
254  *
255  * Returns 0 on success, negative on failure
256  **/
257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 	unsigned int wait, delay = 10;
260 
261 	for (wait = 0; wait < msecs; wait += delay) {
262 		if (mutex_trylock(lock))
263 			return 0;
264 
265 		msleep(delay);
266 	}
267 
268 	return -1;
269 }
270 
271 /**
272  * iavf_schedule_reset - Set the flags and schedule a reset event
273  * @adapter: board private structure
274  **/
275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 	if (!(adapter->flags &
278 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 		queue_work(iavf_wq, &adapter->reset_task);
281 	}
282 }
283 
284 /**
285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
286  * @adapter: board private structure
287  *
288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289  * request and refresh ethtool stats
290  **/
291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296 
297 /**
298  * iavf_tx_timeout - Respond to a Tx Hang
299  * @netdev: network interface device structure
300  * @txqueue: queue number that is timing out
301  **/
302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 	struct iavf_adapter *adapter = netdev_priv(netdev);
305 
306 	adapter->tx_timeout_count++;
307 	iavf_schedule_reset(adapter);
308 }
309 
310 /**
311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312  * @adapter: board private structure
313  **/
314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 	struct iavf_hw *hw = &adapter->hw;
317 
318 	if (!adapter->msix_entries)
319 		return;
320 
321 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322 
323 	iavf_flush(hw);
324 
325 	synchronize_irq(adapter->msix_entries[0].vector);
326 }
327 
328 /**
329  * iavf_misc_irq_enable - Enable default interrupt generation settings
330  * @adapter: board private structure
331  **/
332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 	struct iavf_hw *hw = &adapter->hw;
335 
336 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339 
340 	iavf_flush(hw);
341 }
342 
343 /**
344  * iavf_irq_disable - Mask off interrupt generation on the NIC
345  * @adapter: board private structure
346  **/
347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 	int i;
350 	struct iavf_hw *hw = &adapter->hw;
351 
352 	if (!adapter->msix_entries)
353 		return;
354 
355 	for (i = 1; i < adapter->num_msix_vectors; i++) {
356 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 		synchronize_irq(adapter->msix_entries[i].vector);
358 	}
359 	iavf_flush(hw);
360 }
361 
362 /**
363  * iavf_irq_enable_queues - Enable interrupt for specified queues
364  * @adapter: board private structure
365  * @mask: bitmap of queues to enable
366  **/
367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 	struct iavf_hw *hw = &adapter->hw;
370 	int i;
371 
372 	for (i = 1; i < adapter->num_msix_vectors; i++) {
373 		if (mask & BIT(i - 1)) {
374 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 		}
378 	}
379 }
380 
381 /**
382  * iavf_irq_enable - Enable default interrupt generation settings
383  * @adapter: board private structure
384  * @flush: boolean value whether to run rd32()
385  **/
386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 	struct iavf_hw *hw = &adapter->hw;
389 
390 	iavf_misc_irq_enable(adapter);
391 	iavf_irq_enable_queues(adapter, ~0);
392 
393 	if (flush)
394 		iavf_flush(hw);
395 }
396 
397 /**
398  * iavf_msix_aq - Interrupt handler for vector 0
399  * @irq: interrupt number
400  * @data: pointer to netdev
401  **/
402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 	struct net_device *netdev = data;
405 	struct iavf_adapter *adapter = netdev_priv(netdev);
406 	struct iavf_hw *hw = &adapter->hw;
407 
408 	/* handle non-queue interrupts, these reads clear the registers */
409 	rd32(hw, IAVF_VFINT_ICR01);
410 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
411 
412 	if (adapter->state != __IAVF_REMOVE)
413 		/* schedule work on the private workqueue */
414 		queue_work(iavf_wq, &adapter->adminq_task);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /**
420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421  * @irq: interrupt number
422  * @data: pointer to a q_vector
423  **/
424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 	struct iavf_q_vector *q_vector = data;
427 
428 	if (!q_vector->tx.ring && !q_vector->rx.ring)
429 		return IRQ_HANDLED;
430 
431 	napi_schedule_irqoff(&q_vector->napi);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * iavf_map_vector_to_rxq - associate irqs with rx queues
438  * @adapter: board private structure
439  * @v_idx: interrupt number
440  * @r_idx: queue number
441  **/
442 static void
443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 	struct iavf_hw *hw = &adapter->hw;
448 
449 	rx_ring->q_vector = q_vector;
450 	rx_ring->next = q_vector->rx.ring;
451 	rx_ring->vsi = &adapter->vsi;
452 	q_vector->rx.ring = rx_ring;
453 	q_vector->rx.count++;
454 	q_vector->rx.next_update = jiffies + 1;
455 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 	q_vector->ring_mask |= BIT(r_idx);
457 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 	     q_vector->rx.current_itr >> 1);
459 	q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461 
462 /**
463  * iavf_map_vector_to_txq - associate irqs with tx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @t_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	tx_ring->q_vector = q_vector;
476 	tx_ring->next = q_vector->tx.ring;
477 	tx_ring->vsi = &adapter->vsi;
478 	q_vector->tx.ring = tx_ring;
479 	q_vector->tx.count++;
480 	q_vector->tx.next_update = jiffies + 1;
481 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 	q_vector->num_ringpairs++;
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 	     q_vector->tx.target_itr >> 1);
485 	q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487 
488 /**
489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490  * @adapter: board private structure to initialize
491  *
492  * This function maps descriptor rings to the queue-specific vectors
493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
494  * one vector per ring/queue, but on a constrained vector budget, we
495  * group the rings as "efficiently" as possible.  You would add new
496  * mapping configurations in here.
497  **/
498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 	int rings_remaining = adapter->num_active_queues;
501 	int ridx = 0, vidx = 0;
502 	int q_vectors;
503 
504 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505 
506 	for (; ridx < rings_remaining; ridx++) {
507 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 		iavf_map_vector_to_txq(adapter, vidx, ridx);
509 
510 		/* In the case where we have more queues than vectors, continue
511 		 * round-robin on vectors until all queues are mapped.
512 		 */
513 		if (++vidx >= q_vectors)
514 			vidx = 0;
515 	}
516 
517 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519 
520 /**
521  * iavf_irq_affinity_notify - Callback for affinity changes
522  * @notify: context as to what irq was changed
523  * @mask: the new affinity mask
524  *
525  * This is a callback function used by the irq_set_affinity_notifier function
526  * so that we may register to receive changes to the irq affinity masks.
527  **/
528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 				     const cpumask_t *mask)
530 {
531 	struct iavf_q_vector *q_vector =
532 		container_of(notify, struct iavf_q_vector, affinity_notify);
533 
534 	cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536 
537 /**
538  * iavf_irq_affinity_release - Callback for affinity notifier release
539  * @ref: internal core kernel usage
540  *
541  * This is a callback function used by the irq_set_affinity_notifier function
542  * to inform the current notification subscriber that they will no longer
543  * receive notifications.
544  **/
545 static void iavf_irq_affinity_release(struct kref *ref) {}
546 
547 /**
548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549  * @adapter: board private structure
550  * @basename: device basename
551  *
552  * Allocates MSI-X vectors for tx and rx handling, and requests
553  * interrupts from the kernel.
554  **/
555 static int
556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 	unsigned int vector, q_vectors;
559 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 	int irq_num, err;
561 	int cpu;
562 
563 	iavf_irq_disable(adapter);
564 	/* Decrement for Other and TCP Timer vectors */
565 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566 
567 	for (vector = 0; vector < q_vectors; vector++) {
568 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569 
570 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571 
572 		if (q_vector->tx.ring && q_vector->rx.ring) {
573 			snprintf(q_vector->name, sizeof(q_vector->name),
574 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 			tx_int_idx++;
576 		} else if (q_vector->rx.ring) {
577 			snprintf(q_vector->name, sizeof(q_vector->name),
578 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 		} else if (q_vector->tx.ring) {
580 			snprintf(q_vector->name, sizeof(q_vector->name),
581 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 		} else {
583 			/* skip this unused q_vector */
584 			continue;
585 		}
586 		err = request_irq(irq_num,
587 				  iavf_msix_clean_rings,
588 				  0,
589 				  q_vector->name,
590 				  q_vector);
591 		if (err) {
592 			dev_info(&adapter->pdev->dev,
593 				 "Request_irq failed, error: %d\n", err);
594 			goto free_queue_irqs;
595 		}
596 		/* register for affinity change notifications */
597 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 		q_vector->affinity_notify.release =
599 						   iavf_irq_affinity_release;
600 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 		/* Spread the IRQ affinity hints across online CPUs. Note that
602 		 * get_cpu_mask returns a mask with a permanent lifetime so
603 		 * it's safe to use as a hint for irq_update_affinity_hint.
604 		 */
605 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 	}
608 
609 	return 0;
610 
611 free_queue_irqs:
612 	while (vector) {
613 		vector--;
614 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 		irq_set_affinity_notifier(irq_num, NULL);
616 		irq_update_affinity_hint(irq_num, NULL);
617 		free_irq(irq_num, &adapter->q_vectors[vector]);
618 	}
619 	return err;
620 }
621 
622 /**
623  * iavf_request_misc_irq - Initialize MSI-X interrupts
624  * @adapter: board private structure
625  *
626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627  * vector is only for the admin queue, and stays active even when the netdev
628  * is closed.
629  **/
630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 	struct net_device *netdev = adapter->netdev;
633 	int err;
634 
635 	snprintf(adapter->misc_vector_name,
636 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 		 dev_name(&adapter->pdev->dev));
638 	err = request_irq(adapter->msix_entries[0].vector,
639 			  &iavf_msix_aq, 0,
640 			  adapter->misc_vector_name, netdev);
641 	if (err) {
642 		dev_err(&adapter->pdev->dev,
643 			"request_irq for %s failed: %d\n",
644 			adapter->misc_vector_name, err);
645 		free_irq(adapter->msix_entries[0].vector, netdev);
646 	}
647 	return err;
648 }
649 
650 /**
651  * iavf_free_traffic_irqs - Free MSI-X interrupts
652  * @adapter: board private structure
653  *
654  * Frees all MSI-X vectors other than 0.
655  **/
656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 	int vector, irq_num, q_vectors;
659 
660 	if (!adapter->msix_entries)
661 		return;
662 
663 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664 
665 	for (vector = 0; vector < q_vectors; vector++) {
666 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 		irq_set_affinity_notifier(irq_num, NULL);
668 		irq_update_affinity_hint(irq_num, NULL);
669 		free_irq(irq_num, &adapter->q_vectors[vector]);
670 	}
671 }
672 
673 /**
674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675  * @adapter: board private structure
676  *
677  * Frees MSI-X vector 0.
678  **/
679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 	struct net_device *netdev = adapter->netdev;
682 
683 	if (!adapter->msix_entries)
684 		return;
685 
686 	free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688 
689 /**
690  * iavf_configure_tx - Configure Transmit Unit after Reset
691  * @adapter: board private structure
692  *
693  * Configure the Tx unit of the MAC after a reset.
694  **/
695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 	struct iavf_hw *hw = &adapter->hw;
698 	int i;
699 
700 	for (i = 0; i < adapter->num_active_queues; i++)
701 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703 
704 /**
705  * iavf_configure_rx - Configure Receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  **/
710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 	struct iavf_hw *hw = &adapter->hw;
714 	int i;
715 
716 	/* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 		struct net_device *netdev = adapter->netdev;
720 
721 		/* For jumbo frames on systems with 4K pages we have to use
722 		 * an order 1 page, so we might as well increase the size
723 		 * of our Rx buffer to make better use of the available space
724 		 */
725 		rx_buf_len = IAVF_RXBUFFER_3072;
726 
727 		/* We use a 1536 buffer size for configurations with
728 		 * standard Ethernet mtu.  On x86 this gives us enough room
729 		 * for shared info and 192 bytes of padding.
730 		 */
731 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 		    (netdev->mtu <= ETH_DATA_LEN))
733 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 	}
735 #endif
736 
737 	for (i = 0; i < adapter->num_active_queues; i++) {
738 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740 
741 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 		else
744 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 	}
746 }
747 
748 /**
749  * iavf_find_vlan - Search filter list for specific vlan filter
750  * @adapter: board private structure
751  * @vlan: vlan tag
752  *
753  * Returns ptr to the filter object or NULL. Must be called while holding the
754  * mac_vlan_list_lock.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 				 struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f;
761 
762 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 		if (f->vlan.vid == vlan.vid &&
764 		    f->vlan.tpid == vlan.tpid)
765 			return f;
766 	}
767 
768 	return NULL;
769 }
770 
771 /**
772  * iavf_add_vlan - Add a vlan filter to the list
773  * @adapter: board private structure
774  * @vlan: VLAN tag
775  *
776  * Returns ptr to the filter object or NULL when no memory available.
777  **/
778 static struct
779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 				struct iavf_vlan vlan)
781 {
782 	struct iavf_vlan_filter *f = NULL;
783 
784 	spin_lock_bh(&adapter->mac_vlan_list_lock);
785 
786 	f = iavf_find_vlan(adapter, vlan);
787 	if (!f) {
788 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 		if (!f)
790 			goto clearout;
791 
792 		f->vlan = vlan;
793 
794 		list_add_tail(&f->list, &adapter->vlan_filter_list);
795 		f->add = true;
796 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 	}
798 
799 clearout:
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 	return f;
802 }
803 
804 /**
805  * iavf_del_vlan - Remove a vlan filter from the list
806  * @adapter: board private structure
807  * @vlan: VLAN tag
808  **/
809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	spin_lock_bh(&adapter->mac_vlan_list_lock);
814 
815 	f = iavf_find_vlan(adapter, vlan);
816 	if (f) {
817 		f->remove = true;
818 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823 
824 /**
825  * iavf_restore_filters
826  * @adapter: board private structure
827  *
828  * Restore existing non MAC filters when VF netdev comes back up
829  **/
830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 	u16 vid;
833 
834 	/* re-add all VLAN filters */
835 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837 
838 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841 
842 /**
843  * iavf_get_num_vlans_added - get number of VLANs added
844  * @adapter: board private structure
845  */
846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851 
852 /**
853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854  * @adapter: board private structure
855  *
856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857  * do not impose a limit as that maintains current behavior and for
858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859  **/
860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 	 * never been a limit on the VF driver side
864 	 */
865 	if (VLAN_ALLOWED(adapter))
866 		return VLAN_N_VID;
867 	else if (VLAN_V2_ALLOWED(adapter))
868 		return adapter->vlan_v2_caps.filtering.max_filters;
869 
870 	return 0;
871 }
872 
873 /**
874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875  * @adapter: board private structure
876  **/
877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 	if (iavf_get_num_vlans_added(adapter) <
880 	    iavf_get_max_vlans_allowed(adapter))
881 		return false;
882 
883 	return true;
884 }
885 
886 /**
887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888  * @netdev: network device struct
889  * @proto: unused protocol data
890  * @vid: VLAN tag
891  **/
892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 				__always_unused __be16 proto, u16 vid)
894 {
895 	struct iavf_adapter *adapter = netdev_priv(netdev);
896 
897 	if (!VLAN_FILTERING_ALLOWED(adapter))
898 		return -EIO;
899 
900 	if (iavf_max_vlans_added(adapter)) {
901 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 			   iavf_get_max_vlans_allowed(adapter));
903 		return -EIO;
904 	}
905 
906 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 		return -ENOMEM;
908 
909 	return 0;
910 }
911 
912 /**
913  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
914  * @netdev: network device struct
915  * @proto: unused protocol data
916  * @vid: VLAN tag
917  **/
918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
919 				 __always_unused __be16 proto, u16 vid)
920 {
921 	struct iavf_adapter *adapter = netdev_priv(netdev);
922 
923 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
924 	if (proto == cpu_to_be16(ETH_P_8021Q))
925 		clear_bit(vid, adapter->vsi.active_cvlans);
926 	else
927 		clear_bit(vid, adapter->vsi.active_svlans);
928 
929 	return 0;
930 }
931 
932 /**
933  * iavf_find_filter - Search filter list for specific mac filter
934  * @adapter: board private structure
935  * @macaddr: the MAC address
936  *
937  * Returns ptr to the filter object or NULL. Must be called while holding the
938  * mac_vlan_list_lock.
939  **/
940 static struct
941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 				  const u8 *macaddr)
943 {
944 	struct iavf_mac_filter *f;
945 
946 	if (!macaddr)
947 		return NULL;
948 
949 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 		if (ether_addr_equal(macaddr, f->macaddr))
951 			return f;
952 	}
953 	return NULL;
954 }
955 
956 /**
957  * iavf_add_filter - Add a mac filter to the filter list
958  * @adapter: board private structure
959  * @macaddr: the MAC address
960  *
961  * Returns ptr to the filter object or NULL when no memory available.
962  **/
963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 					const u8 *macaddr)
965 {
966 	struct iavf_mac_filter *f;
967 
968 	if (!macaddr)
969 		return NULL;
970 
971 	f = iavf_find_filter(adapter, macaddr);
972 	if (!f) {
973 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 		if (!f)
975 			return f;
976 
977 		ether_addr_copy(f->macaddr, macaddr);
978 
979 		list_add_tail(&f->list, &adapter->mac_filter_list);
980 		f->add = true;
981 		f->add_handled = false;
982 		f->is_new_mac = true;
983 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 	} else {
986 		f->remove = false;
987 	}
988 
989 	return f;
990 }
991 
992 /**
993  * iavf_replace_primary_mac - Replace current primary address
994  * @adapter: board private structure
995  * @new_mac: new MAC address to be applied
996  *
997  * Replace current dev_addr and send request to PF for removal of previous
998  * primary MAC address filter and addition of new primary MAC filter.
999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 			     const u8 *new_mac)
1005 {
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *f;
1008 
1009 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1010 
1011 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1012 		f->is_primary = false;
1013 	}
1014 
1015 	f = iavf_find_filter(adapter, hw->mac.addr);
1016 	if (f) {
1017 		f->remove = true;
1018 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 	}
1020 
1021 	f = iavf_add_filter(adapter, new_mac);
1022 
1023 	if (f) {
1024 		/* Always send the request to add if changing primary MAC
1025 		 * even if filter is already present on the list
1026 		 */
1027 		f->is_primary = true;
1028 		f->add = true;
1029 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1030 		ether_addr_copy(hw->mac.addr, new_mac);
1031 	}
1032 
1033 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1034 
1035 	/* schedule the watchdog task to immediately process the request */
1036 	if (f) {
1037 		queue_work(iavf_wq, &adapter->watchdog_task.work);
1038 		return 0;
1039 	}
1040 	return -ENOMEM;
1041 }
1042 
1043 /**
1044  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1045  * @netdev: network interface device structure
1046  * @macaddr: MAC address to set
1047  *
1048  * Returns true on success, false on failure
1049  */
1050 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1051 				    const u8 *macaddr)
1052 {
1053 	struct iavf_adapter *adapter = netdev_priv(netdev);
1054 	struct iavf_mac_filter *f;
1055 	bool ret = false;
1056 
1057 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1058 
1059 	f = iavf_find_filter(adapter, macaddr);
1060 
1061 	if (!f || (!f->add && f->add_handled))
1062 		ret = true;
1063 
1064 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * iavf_set_mac - NDO callback to set port MAC address
1071  * @netdev: network interface device structure
1072  * @p: pointer to an address structure
1073  *
1074  * Returns 0 on success, negative on failure
1075  */
1076 static int iavf_set_mac(struct net_device *netdev, void *p)
1077 {
1078 	struct iavf_adapter *adapter = netdev_priv(netdev);
1079 	struct sockaddr *addr = p;
1080 	int ret;
1081 
1082 	if (!is_valid_ether_addr(addr->sa_data))
1083 		return -EADDRNOTAVAIL;
1084 
1085 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1086 
1087 	if (ret)
1088 		return ret;
1089 
1090 	/* If this is an initial set MAC during VF spawn do not wait */
1091 	if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) {
1092 		adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET;
1093 		return 0;
1094 	}
1095 
1096 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1097 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1098 					       msecs_to_jiffies(2500));
1099 
1100 	/* If ret < 0 then it means wait was interrupted.
1101 	 * If ret == 0 then it means we got a timeout.
1102 	 * else it means we got response for set MAC from PF,
1103 	 * check if netdev MAC was updated to requested MAC,
1104 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1105 	 */
1106 	if (ret < 0)
1107 		return ret;
1108 
1109 	if (!ret)
1110 		return -EAGAIN;
1111 
1112 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1113 		return -EACCES;
1114 
1115 	return 0;
1116 }
1117 
1118 /**
1119  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1120  * @netdev: the netdevice
1121  * @addr: address to add
1122  *
1123  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1124  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1125  */
1126 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1127 {
1128 	struct iavf_adapter *adapter = netdev_priv(netdev);
1129 
1130 	if (iavf_add_filter(adapter, addr))
1131 		return 0;
1132 	else
1133 		return -ENOMEM;
1134 }
1135 
1136 /**
1137  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1138  * @netdev: the netdevice
1139  * @addr: address to add
1140  *
1141  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1142  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1143  */
1144 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1145 {
1146 	struct iavf_adapter *adapter = netdev_priv(netdev);
1147 	struct iavf_mac_filter *f;
1148 
1149 	/* Under some circumstances, we might receive a request to delete
1150 	 * our own device address from our uc list. Because we store the
1151 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1152 	 * such requests and not delete our device address from this list.
1153 	 */
1154 	if (ether_addr_equal(addr, netdev->dev_addr))
1155 		return 0;
1156 
1157 	f = iavf_find_filter(adapter, addr);
1158 	if (f) {
1159 		f->remove = true;
1160 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /**
1166  * iavf_set_rx_mode - NDO callback to set the netdev filters
1167  * @netdev: network interface device structure
1168  **/
1169 static void iavf_set_rx_mode(struct net_device *netdev)
1170 {
1171 	struct iavf_adapter *adapter = netdev_priv(netdev);
1172 
1173 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1174 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1176 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1177 
1178 	if (netdev->flags & IFF_PROMISC &&
1179 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1180 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1181 	else if (!(netdev->flags & IFF_PROMISC) &&
1182 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1183 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1184 
1185 	if (netdev->flags & IFF_ALLMULTI &&
1186 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1187 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1188 	else if (!(netdev->flags & IFF_ALLMULTI) &&
1189 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1190 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1191 }
1192 
1193 /**
1194  * iavf_napi_enable_all - enable NAPI on all queue vectors
1195  * @adapter: board private structure
1196  **/
1197 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1198 {
1199 	int q_idx;
1200 	struct iavf_q_vector *q_vector;
1201 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1202 
1203 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1204 		struct napi_struct *napi;
1205 
1206 		q_vector = &adapter->q_vectors[q_idx];
1207 		napi = &q_vector->napi;
1208 		napi_enable(napi);
1209 	}
1210 }
1211 
1212 /**
1213  * iavf_napi_disable_all - disable NAPI on all queue vectors
1214  * @adapter: board private structure
1215  **/
1216 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1217 {
1218 	int q_idx;
1219 	struct iavf_q_vector *q_vector;
1220 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1221 
1222 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1223 		q_vector = &adapter->q_vectors[q_idx];
1224 		napi_disable(&q_vector->napi);
1225 	}
1226 }
1227 
1228 /**
1229  * iavf_configure - set up transmit and receive data structures
1230  * @adapter: board private structure
1231  **/
1232 static void iavf_configure(struct iavf_adapter *adapter)
1233 {
1234 	struct net_device *netdev = adapter->netdev;
1235 	int i;
1236 
1237 	iavf_set_rx_mode(netdev);
1238 
1239 	iavf_configure_tx(adapter);
1240 	iavf_configure_rx(adapter);
1241 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1242 
1243 	for (i = 0; i < adapter->num_active_queues; i++) {
1244 		struct iavf_ring *ring = &adapter->rx_rings[i];
1245 
1246 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1247 	}
1248 }
1249 
1250 /**
1251  * iavf_up_complete - Finish the last steps of bringing up a connection
1252  * @adapter: board private structure
1253  *
1254  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1255  **/
1256 static void iavf_up_complete(struct iavf_adapter *adapter)
1257 {
1258 	iavf_change_state(adapter, __IAVF_RUNNING);
1259 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1260 
1261 	iavf_napi_enable_all(adapter);
1262 
1263 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1264 	if (CLIENT_ENABLED(adapter))
1265 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1266 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1267 }
1268 
1269 /**
1270  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1271  * yet and mark other to be removed.
1272  * @adapter: board private structure
1273  **/
1274 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1275 {
1276 	struct iavf_vlan_filter *vlf, *vlftmp;
1277 	struct iavf_mac_filter *f, *ftmp;
1278 
1279 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1280 	/* clear the sync flag on all filters */
1281 	__dev_uc_unsync(adapter->netdev, NULL);
1282 	__dev_mc_unsync(adapter->netdev, NULL);
1283 
1284 	/* remove all MAC filters */
1285 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1286 				 list) {
1287 		if (f->add) {
1288 			list_del(&f->list);
1289 			kfree(f);
1290 		} else {
1291 			f->remove = true;
1292 		}
1293 	}
1294 
1295 	/* remove all VLAN filters */
1296 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1297 				 list) {
1298 		if (vlf->add) {
1299 			list_del(&vlf->list);
1300 			kfree(vlf);
1301 		} else {
1302 			vlf->remove = true;
1303 		}
1304 	}
1305 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1306 }
1307 
1308 /**
1309  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1310  * mark other to be removed.
1311  * @adapter: board private structure
1312  **/
1313 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1314 {
1315 	struct iavf_cloud_filter *cf, *cftmp;
1316 
1317 	/* remove all cloud filters */
1318 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1319 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1320 				 list) {
1321 		if (cf->add) {
1322 			list_del(&cf->list);
1323 			kfree(cf);
1324 			adapter->num_cloud_filters--;
1325 		} else {
1326 			cf->del = true;
1327 		}
1328 	}
1329 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1330 }
1331 
1332 /**
1333  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1334  * other to be removed.
1335  * @adapter: board private structure
1336  **/
1337 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1338 {
1339 	struct iavf_fdir_fltr *fdir, *fdirtmp;
1340 
1341 	/* remove all Flow Director filters */
1342 	spin_lock_bh(&adapter->fdir_fltr_lock);
1343 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1344 				 list) {
1345 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1346 			list_del(&fdir->list);
1347 			kfree(fdir);
1348 			adapter->fdir_active_fltr--;
1349 		} else {
1350 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1351 		}
1352 	}
1353 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1354 }
1355 
1356 /**
1357  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1358  * other to be removed.
1359  * @adapter: board private structure
1360  **/
1361 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1362 {
1363 	struct iavf_adv_rss *rss, *rsstmp;
1364 
1365 	/* remove all advance RSS configuration */
1366 	spin_lock_bh(&adapter->adv_rss_lock);
1367 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1368 				 list) {
1369 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1370 			list_del(&rss->list);
1371 			kfree(rss);
1372 		} else {
1373 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1374 		}
1375 	}
1376 	spin_unlock_bh(&adapter->adv_rss_lock);
1377 }
1378 
1379 /**
1380  * iavf_down - Shutdown the connection processing
1381  * @adapter: board private structure
1382  *
1383  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1384  **/
1385 void iavf_down(struct iavf_adapter *adapter)
1386 {
1387 	struct net_device *netdev = adapter->netdev;
1388 
1389 	if (adapter->state <= __IAVF_DOWN_PENDING)
1390 		return;
1391 
1392 	netif_carrier_off(netdev);
1393 	netif_tx_disable(netdev);
1394 	adapter->link_up = false;
1395 	iavf_napi_disable_all(adapter);
1396 	iavf_irq_disable(adapter);
1397 
1398 	iavf_clear_mac_vlan_filters(adapter);
1399 	iavf_clear_cloud_filters(adapter);
1400 	iavf_clear_fdir_filters(adapter);
1401 	iavf_clear_adv_rss_conf(adapter);
1402 
1403 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1404 		/* cancel any current operation */
1405 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1406 		/* Schedule operations to close down the HW. Don't wait
1407 		 * here for this to complete. The watchdog is still running
1408 		 * and it will take care of this.
1409 		 */
1410 		if (!list_empty(&adapter->mac_filter_list))
1411 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1412 		if (!list_empty(&adapter->vlan_filter_list))
1413 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1414 		if (!list_empty(&adapter->cloud_filter_list))
1415 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1416 		if (!list_empty(&adapter->fdir_list_head))
1417 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1418 		if (!list_empty(&adapter->adv_rss_list_head))
1419 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1420 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1421 	}
1422 
1423 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1424 }
1425 
1426 /**
1427  * iavf_acquire_msix_vectors - Setup the MSIX capability
1428  * @adapter: board private structure
1429  * @vectors: number of vectors to request
1430  *
1431  * Work with the OS to set up the MSIX vectors needed.
1432  *
1433  * Returns 0 on success, negative on failure
1434  **/
1435 static int
1436 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1437 {
1438 	int err, vector_threshold;
1439 
1440 	/* We'll want at least 3 (vector_threshold):
1441 	 * 0) Other (Admin Queue and link, mostly)
1442 	 * 1) TxQ[0] Cleanup
1443 	 * 2) RxQ[0] Cleanup
1444 	 */
1445 	vector_threshold = MIN_MSIX_COUNT;
1446 
1447 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1448 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1449 	 * Right now, we simply care about how many we'll get; we'll
1450 	 * set them up later while requesting irq's.
1451 	 */
1452 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1453 				    vector_threshold, vectors);
1454 	if (err < 0) {
1455 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1456 		kfree(adapter->msix_entries);
1457 		adapter->msix_entries = NULL;
1458 		return err;
1459 	}
1460 
1461 	/* Adjust for only the vectors we'll use, which is minimum
1462 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1463 	 * vectors we were allocated.
1464 	 */
1465 	adapter->num_msix_vectors = err;
1466 	return 0;
1467 }
1468 
1469 /**
1470  * iavf_free_queues - Free memory for all rings
1471  * @adapter: board private structure to initialize
1472  *
1473  * Free all of the memory associated with queue pairs.
1474  **/
1475 static void iavf_free_queues(struct iavf_adapter *adapter)
1476 {
1477 	if (!adapter->vsi_res)
1478 		return;
1479 	adapter->num_active_queues = 0;
1480 	kfree(adapter->tx_rings);
1481 	adapter->tx_rings = NULL;
1482 	kfree(adapter->rx_rings);
1483 	adapter->rx_rings = NULL;
1484 }
1485 
1486 /**
1487  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1488  * @adapter: board private structure
1489  *
1490  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1491  * stripped in certain descriptor fields. Instead of checking the offload
1492  * capability bits in the hot path, cache the location the ring specific
1493  * flags.
1494  */
1495 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1496 {
1497 	int i;
1498 
1499 	for (i = 0; i < adapter->num_active_queues; i++) {
1500 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1501 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1502 
1503 		/* prevent multiple L2TAG bits being set after VFR */
1504 		tx_ring->flags &=
1505 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1506 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1507 		rx_ring->flags &=
1508 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1509 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1510 
1511 		if (VLAN_ALLOWED(adapter)) {
1512 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1513 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 		} else if (VLAN_V2_ALLOWED(adapter)) {
1515 			struct virtchnl_vlan_supported_caps *stripping_support;
1516 			struct virtchnl_vlan_supported_caps *insertion_support;
1517 
1518 			stripping_support =
1519 				&adapter->vlan_v2_caps.offloads.stripping_support;
1520 			insertion_support =
1521 				&adapter->vlan_v2_caps.offloads.insertion_support;
1522 
1523 			if (stripping_support->outer) {
1524 				if (stripping_support->outer &
1525 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1526 					rx_ring->flags |=
1527 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1528 				else if (stripping_support->outer &
1529 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1530 					rx_ring->flags |=
1531 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1532 			} else if (stripping_support->inner) {
1533 				if (stripping_support->inner &
1534 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1535 					rx_ring->flags |=
1536 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1537 				else if (stripping_support->inner &
1538 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1539 					rx_ring->flags |=
1540 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1541 			}
1542 
1543 			if (insertion_support->outer) {
1544 				if (insertion_support->outer &
1545 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1546 					tx_ring->flags |=
1547 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1548 				else if (insertion_support->outer &
1549 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1550 					tx_ring->flags |=
1551 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1552 			} else if (insertion_support->inner) {
1553 				if (insertion_support->inner &
1554 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1555 					tx_ring->flags |=
1556 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1557 				else if (insertion_support->inner &
1558 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1559 					tx_ring->flags |=
1560 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1561 			}
1562 		}
1563 	}
1564 }
1565 
1566 /**
1567  * iavf_alloc_queues - Allocate memory for all rings
1568  * @adapter: board private structure to initialize
1569  *
1570  * We allocate one ring per queue at run-time since we don't know the
1571  * number of queues at compile-time.  The polling_netdev array is
1572  * intended for Multiqueue, but should work fine with a single queue.
1573  **/
1574 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1575 {
1576 	int i, num_active_queues;
1577 
1578 	/* If we're in reset reallocating queues we don't actually know yet for
1579 	 * certain the PF gave us the number of queues we asked for but we'll
1580 	 * assume it did.  Once basic reset is finished we'll confirm once we
1581 	 * start negotiating config with PF.
1582 	 */
1583 	if (adapter->num_req_queues)
1584 		num_active_queues = adapter->num_req_queues;
1585 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1586 		 adapter->num_tc)
1587 		num_active_queues = adapter->ch_config.total_qps;
1588 	else
1589 		num_active_queues = min_t(int,
1590 					  adapter->vsi_res->num_queue_pairs,
1591 					  (int)(num_online_cpus()));
1592 
1593 
1594 	adapter->tx_rings = kcalloc(num_active_queues,
1595 				    sizeof(struct iavf_ring), GFP_KERNEL);
1596 	if (!adapter->tx_rings)
1597 		goto err_out;
1598 	adapter->rx_rings = kcalloc(num_active_queues,
1599 				    sizeof(struct iavf_ring), GFP_KERNEL);
1600 	if (!adapter->rx_rings)
1601 		goto err_out;
1602 
1603 	for (i = 0; i < num_active_queues; i++) {
1604 		struct iavf_ring *tx_ring;
1605 		struct iavf_ring *rx_ring;
1606 
1607 		tx_ring = &adapter->tx_rings[i];
1608 
1609 		tx_ring->queue_index = i;
1610 		tx_ring->netdev = adapter->netdev;
1611 		tx_ring->dev = &adapter->pdev->dev;
1612 		tx_ring->count = adapter->tx_desc_count;
1613 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1614 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1615 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1616 
1617 		rx_ring = &adapter->rx_rings[i];
1618 		rx_ring->queue_index = i;
1619 		rx_ring->netdev = adapter->netdev;
1620 		rx_ring->dev = &adapter->pdev->dev;
1621 		rx_ring->count = adapter->rx_desc_count;
1622 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1623 	}
1624 
1625 	adapter->num_active_queues = num_active_queues;
1626 
1627 	iavf_set_queue_vlan_tag_loc(adapter);
1628 
1629 	return 0;
1630 
1631 err_out:
1632 	iavf_free_queues(adapter);
1633 	return -ENOMEM;
1634 }
1635 
1636 /**
1637  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1638  * @adapter: board private structure to initialize
1639  *
1640  * Attempt to configure the interrupts using the best available
1641  * capabilities of the hardware and the kernel.
1642  **/
1643 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1644 {
1645 	int vector, v_budget;
1646 	int pairs = 0;
1647 	int err = 0;
1648 
1649 	if (!adapter->vsi_res) {
1650 		err = -EIO;
1651 		goto out;
1652 	}
1653 	pairs = adapter->num_active_queues;
1654 
1655 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1656 	 * us much good if we have more vectors than CPUs. However, we already
1657 	 * limit the total number of queues by the number of CPUs so we do not
1658 	 * need any further limiting here.
1659 	 */
1660 	v_budget = min_t(int, pairs + NONQ_VECS,
1661 			 (int)adapter->vf_res->max_vectors);
1662 
1663 	adapter->msix_entries = kcalloc(v_budget,
1664 					sizeof(struct msix_entry), GFP_KERNEL);
1665 	if (!adapter->msix_entries) {
1666 		err = -ENOMEM;
1667 		goto out;
1668 	}
1669 
1670 	for (vector = 0; vector < v_budget; vector++)
1671 		adapter->msix_entries[vector].entry = vector;
1672 
1673 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1674 
1675 out:
1676 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1677 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1678 	return err;
1679 }
1680 
1681 /**
1682  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1683  * @adapter: board private structure
1684  *
1685  * Return 0 on success, negative on failure
1686  **/
1687 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1688 {
1689 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1690 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1691 	struct iavf_hw *hw = &adapter->hw;
1692 	enum iavf_status status;
1693 
1694 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1695 		/* bail because we already have a command pending */
1696 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1697 			adapter->current_op);
1698 		return -EBUSY;
1699 	}
1700 
1701 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1702 	if (status) {
1703 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1704 			iavf_stat_str(hw, status),
1705 			iavf_aq_str(hw, hw->aq.asq_last_status));
1706 		return iavf_status_to_errno(status);
1707 
1708 	}
1709 
1710 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1711 				     adapter->rss_lut, adapter->rss_lut_size);
1712 	if (status) {
1713 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1714 			iavf_stat_str(hw, status),
1715 			iavf_aq_str(hw, hw->aq.asq_last_status));
1716 		return iavf_status_to_errno(status);
1717 	}
1718 
1719 	return 0;
1720 
1721 }
1722 
1723 /**
1724  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1725  * @adapter: board private structure
1726  *
1727  * Returns 0 on success, negative on failure
1728  **/
1729 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1730 {
1731 	struct iavf_hw *hw = &adapter->hw;
1732 	u32 *dw;
1733 	u16 i;
1734 
1735 	dw = (u32 *)adapter->rss_key;
1736 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1737 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1738 
1739 	dw = (u32 *)adapter->rss_lut;
1740 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1741 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1742 
1743 	iavf_flush(hw);
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  * iavf_config_rss - Configure RSS keys and lut
1750  * @adapter: board private structure
1751  *
1752  * Returns 0 on success, negative on failure
1753  **/
1754 int iavf_config_rss(struct iavf_adapter *adapter)
1755 {
1756 
1757 	if (RSS_PF(adapter)) {
1758 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1759 					IAVF_FLAG_AQ_SET_RSS_KEY;
1760 		return 0;
1761 	} else if (RSS_AQ(adapter)) {
1762 		return iavf_config_rss_aq(adapter);
1763 	} else {
1764 		return iavf_config_rss_reg(adapter);
1765 	}
1766 }
1767 
1768 /**
1769  * iavf_fill_rss_lut - Fill the lut with default values
1770  * @adapter: board private structure
1771  **/
1772 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1773 {
1774 	u16 i;
1775 
1776 	for (i = 0; i < adapter->rss_lut_size; i++)
1777 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1778 }
1779 
1780 /**
1781  * iavf_init_rss - Prepare for RSS
1782  * @adapter: board private structure
1783  *
1784  * Return 0 on success, negative on failure
1785  **/
1786 static int iavf_init_rss(struct iavf_adapter *adapter)
1787 {
1788 	struct iavf_hw *hw = &adapter->hw;
1789 
1790 	if (!RSS_PF(adapter)) {
1791 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1792 		if (adapter->vf_res->vf_cap_flags &
1793 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1794 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1795 		else
1796 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1797 
1798 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1799 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1800 	}
1801 
1802 	iavf_fill_rss_lut(adapter);
1803 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1804 
1805 	return iavf_config_rss(adapter);
1806 }
1807 
1808 /**
1809  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1810  * @adapter: board private structure to initialize
1811  *
1812  * We allocate one q_vector per queue interrupt.  If allocation fails we
1813  * return -ENOMEM.
1814  **/
1815 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1816 {
1817 	int q_idx = 0, num_q_vectors;
1818 	struct iavf_q_vector *q_vector;
1819 
1820 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1821 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1822 				     GFP_KERNEL);
1823 	if (!adapter->q_vectors)
1824 		return -ENOMEM;
1825 
1826 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1827 		q_vector = &adapter->q_vectors[q_idx];
1828 		q_vector->adapter = adapter;
1829 		q_vector->vsi = &adapter->vsi;
1830 		q_vector->v_idx = q_idx;
1831 		q_vector->reg_idx = q_idx;
1832 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1833 		netif_napi_add(adapter->netdev, &q_vector->napi,
1834 			       iavf_napi_poll);
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1842  * @adapter: board private structure to initialize
1843  *
1844  * This function frees the memory allocated to the q_vectors.  In addition if
1845  * NAPI is enabled it will delete any references to the NAPI struct prior
1846  * to freeing the q_vector.
1847  **/
1848 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1849 {
1850 	int q_idx, num_q_vectors;
1851 	int napi_vectors;
1852 
1853 	if (!adapter->q_vectors)
1854 		return;
1855 
1856 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1857 	napi_vectors = adapter->num_active_queues;
1858 
1859 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1860 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1861 
1862 		if (q_idx < napi_vectors)
1863 			netif_napi_del(&q_vector->napi);
1864 	}
1865 	kfree(adapter->q_vectors);
1866 	adapter->q_vectors = NULL;
1867 }
1868 
1869 /**
1870  * iavf_reset_interrupt_capability - Reset MSIX setup
1871  * @adapter: board private structure
1872  *
1873  **/
1874 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1875 {
1876 	if (!adapter->msix_entries)
1877 		return;
1878 
1879 	pci_disable_msix(adapter->pdev);
1880 	kfree(adapter->msix_entries);
1881 	adapter->msix_entries = NULL;
1882 }
1883 
1884 /**
1885  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1886  * @adapter: board private structure to initialize
1887  *
1888  **/
1889 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1890 {
1891 	int err;
1892 
1893 	err = iavf_alloc_queues(adapter);
1894 	if (err) {
1895 		dev_err(&adapter->pdev->dev,
1896 			"Unable to allocate memory for queues\n");
1897 		goto err_alloc_queues;
1898 	}
1899 
1900 	rtnl_lock();
1901 	err = iavf_set_interrupt_capability(adapter);
1902 	rtnl_unlock();
1903 	if (err) {
1904 		dev_err(&adapter->pdev->dev,
1905 			"Unable to setup interrupt capabilities\n");
1906 		goto err_set_interrupt;
1907 	}
1908 
1909 	err = iavf_alloc_q_vectors(adapter);
1910 	if (err) {
1911 		dev_err(&adapter->pdev->dev,
1912 			"Unable to allocate memory for queue vectors\n");
1913 		goto err_alloc_q_vectors;
1914 	}
1915 
1916 	/* If we've made it so far while ADq flag being ON, then we haven't
1917 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1918 	 * resources have been allocated in the reset path.
1919 	 * Now we can truly claim that ADq is enabled.
1920 	 */
1921 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1922 	    adapter->num_tc)
1923 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1924 			 adapter->num_tc);
1925 
1926 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1927 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1928 		 adapter->num_active_queues);
1929 
1930 	return 0;
1931 err_alloc_q_vectors:
1932 	iavf_reset_interrupt_capability(adapter);
1933 err_set_interrupt:
1934 	iavf_free_queues(adapter);
1935 err_alloc_queues:
1936 	return err;
1937 }
1938 
1939 /**
1940  * iavf_free_rss - Free memory used by RSS structs
1941  * @adapter: board private structure
1942  **/
1943 static void iavf_free_rss(struct iavf_adapter *adapter)
1944 {
1945 	kfree(adapter->rss_key);
1946 	adapter->rss_key = NULL;
1947 
1948 	kfree(adapter->rss_lut);
1949 	adapter->rss_lut = NULL;
1950 }
1951 
1952 /**
1953  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1954  * @adapter: board private structure
1955  *
1956  * Returns 0 on success, negative on failure
1957  **/
1958 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1959 {
1960 	struct net_device *netdev = adapter->netdev;
1961 	int err;
1962 
1963 	if (netif_running(netdev))
1964 		iavf_free_traffic_irqs(adapter);
1965 	iavf_free_misc_irq(adapter);
1966 	iavf_reset_interrupt_capability(adapter);
1967 	iavf_free_q_vectors(adapter);
1968 	iavf_free_queues(adapter);
1969 
1970 	err =  iavf_init_interrupt_scheme(adapter);
1971 	if (err)
1972 		goto err;
1973 
1974 	netif_tx_stop_all_queues(netdev);
1975 
1976 	err = iavf_request_misc_irq(adapter);
1977 	if (err)
1978 		goto err;
1979 
1980 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1981 
1982 	iavf_map_rings_to_vectors(adapter);
1983 err:
1984 	return err;
1985 }
1986 
1987 /**
1988  * iavf_process_aq_command - process aq_required flags
1989  * and sends aq command
1990  * @adapter: pointer to iavf adapter structure
1991  *
1992  * Returns 0 on success
1993  * Returns error code if no command was sent
1994  * or error code if the command failed.
1995  **/
1996 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1997 {
1998 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1999 		return iavf_send_vf_config_msg(adapter);
2000 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2001 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2002 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2003 		iavf_disable_queues(adapter);
2004 		return 0;
2005 	}
2006 
2007 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2008 		iavf_map_queues(adapter);
2009 		return 0;
2010 	}
2011 
2012 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2013 		iavf_add_ether_addrs(adapter);
2014 		return 0;
2015 	}
2016 
2017 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2018 		iavf_add_vlans(adapter);
2019 		return 0;
2020 	}
2021 
2022 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2023 		iavf_del_ether_addrs(adapter);
2024 		return 0;
2025 	}
2026 
2027 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2028 		iavf_del_vlans(adapter);
2029 		return 0;
2030 	}
2031 
2032 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2033 		iavf_enable_vlan_stripping(adapter);
2034 		return 0;
2035 	}
2036 
2037 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2038 		iavf_disable_vlan_stripping(adapter);
2039 		return 0;
2040 	}
2041 
2042 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2043 		iavf_configure_queues(adapter);
2044 		return 0;
2045 	}
2046 
2047 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2048 		iavf_enable_queues(adapter);
2049 		return 0;
2050 	}
2051 
2052 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2053 		/* This message goes straight to the firmware, not the
2054 		 * PF, so we don't have to set current_op as we will
2055 		 * not get a response through the ARQ.
2056 		 */
2057 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2058 		return 0;
2059 	}
2060 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2061 		iavf_get_hena(adapter);
2062 		return 0;
2063 	}
2064 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2065 		iavf_set_hena(adapter);
2066 		return 0;
2067 	}
2068 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2069 		iavf_set_rss_key(adapter);
2070 		return 0;
2071 	}
2072 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2073 		iavf_set_rss_lut(adapter);
2074 		return 0;
2075 	}
2076 
2077 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2078 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2079 				       FLAG_VF_MULTICAST_PROMISC);
2080 		return 0;
2081 	}
2082 
2083 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2084 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2085 		return 0;
2086 	}
2087 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2088 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2089 		iavf_set_promiscuous(adapter, 0);
2090 		return 0;
2091 	}
2092 
2093 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2094 		iavf_enable_channels(adapter);
2095 		return 0;
2096 	}
2097 
2098 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2099 		iavf_disable_channels(adapter);
2100 		return 0;
2101 	}
2102 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2103 		iavf_add_cloud_filter(adapter);
2104 		return 0;
2105 	}
2106 
2107 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2108 		iavf_del_cloud_filter(adapter);
2109 		return 0;
2110 	}
2111 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2112 		iavf_del_cloud_filter(adapter);
2113 		return 0;
2114 	}
2115 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2116 		iavf_add_cloud_filter(adapter);
2117 		return 0;
2118 	}
2119 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2120 		iavf_add_fdir_filter(adapter);
2121 		return IAVF_SUCCESS;
2122 	}
2123 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2124 		iavf_del_fdir_filter(adapter);
2125 		return IAVF_SUCCESS;
2126 	}
2127 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2128 		iavf_add_adv_rss_cfg(adapter);
2129 		return 0;
2130 	}
2131 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2132 		iavf_del_adv_rss_cfg(adapter);
2133 		return 0;
2134 	}
2135 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2136 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2137 		return 0;
2138 	}
2139 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2140 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2141 		return 0;
2142 	}
2143 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2144 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2145 		return 0;
2146 	}
2147 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2148 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2149 		return 0;
2150 	}
2151 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2152 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2153 		return 0;
2154 	}
2155 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2156 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2157 		return 0;
2158 	}
2159 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2160 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2161 		return 0;
2162 	}
2163 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2164 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2165 		return 0;
2166 	}
2167 
2168 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2169 		iavf_request_stats(adapter);
2170 		return 0;
2171 	}
2172 
2173 	return -EAGAIN;
2174 }
2175 
2176 /**
2177  * iavf_set_vlan_offload_features - set VLAN offload configuration
2178  * @adapter: board private structure
2179  * @prev_features: previous features used for comparison
2180  * @features: updated features used for configuration
2181  *
2182  * Set the aq_required bit(s) based on the requested features passed in to
2183  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2184  * the watchdog if any changes are requested to expedite the request via
2185  * virtchnl.
2186  **/
2187 void
2188 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2189 			       netdev_features_t prev_features,
2190 			       netdev_features_t features)
2191 {
2192 	bool enable_stripping = true, enable_insertion = true;
2193 	u16 vlan_ethertype = 0;
2194 	u64 aq_required = 0;
2195 
2196 	/* keep cases separate because one ethertype for offloads can be
2197 	 * disabled at the same time as another is disabled, so check for an
2198 	 * enabled ethertype first, then check for disabled. Default to
2199 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2200 	 * stripping.
2201 	 */
2202 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2203 		vlan_ethertype = ETH_P_8021AD;
2204 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2205 		vlan_ethertype = ETH_P_8021Q;
2206 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2207 		vlan_ethertype = ETH_P_8021AD;
2208 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2209 		vlan_ethertype = ETH_P_8021Q;
2210 	else
2211 		vlan_ethertype = ETH_P_8021Q;
2212 
2213 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2214 		enable_stripping = false;
2215 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2216 		enable_insertion = false;
2217 
2218 	if (VLAN_ALLOWED(adapter)) {
2219 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2220 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2221 		 * netdev, but it doesn't require a virtchnl message
2222 		 */
2223 		if (enable_stripping)
2224 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2225 		else
2226 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2227 
2228 	} else if (VLAN_V2_ALLOWED(adapter)) {
2229 		switch (vlan_ethertype) {
2230 		case ETH_P_8021Q:
2231 			if (enable_stripping)
2232 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2233 			else
2234 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2235 
2236 			if (enable_insertion)
2237 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2238 			else
2239 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2240 			break;
2241 		case ETH_P_8021AD:
2242 			if (enable_stripping)
2243 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2244 			else
2245 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2246 
2247 			if (enable_insertion)
2248 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2249 			else
2250 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2251 			break;
2252 		}
2253 	}
2254 
2255 	if (aq_required) {
2256 		adapter->aq_required |= aq_required;
2257 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2258 	}
2259 }
2260 
2261 /**
2262  * iavf_startup - first step of driver startup
2263  * @adapter: board private structure
2264  *
2265  * Function process __IAVF_STARTUP driver state.
2266  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2267  * when fails the state is changed to __IAVF_INIT_FAILED
2268  **/
2269 static void iavf_startup(struct iavf_adapter *adapter)
2270 {
2271 	struct pci_dev *pdev = adapter->pdev;
2272 	struct iavf_hw *hw = &adapter->hw;
2273 	enum iavf_status status;
2274 	int ret;
2275 
2276 	WARN_ON(adapter->state != __IAVF_STARTUP);
2277 
2278 	/* driver loaded, probe complete */
2279 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2280 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2281 	status = iavf_set_mac_type(hw);
2282 	if (status) {
2283 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2284 		goto err;
2285 	}
2286 
2287 	ret = iavf_check_reset_complete(hw);
2288 	if (ret) {
2289 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2290 			 ret);
2291 		goto err;
2292 	}
2293 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2294 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2295 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2296 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2297 
2298 	status = iavf_init_adminq(hw);
2299 	if (status) {
2300 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2301 			status);
2302 		goto err;
2303 	}
2304 	ret = iavf_send_api_ver(adapter);
2305 	if (ret) {
2306 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2307 		iavf_shutdown_adminq(hw);
2308 		goto err;
2309 	}
2310 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2311 	return;
2312 err:
2313 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2314 }
2315 
2316 /**
2317  * iavf_init_version_check - second step of driver startup
2318  * @adapter: board private structure
2319  *
2320  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2321  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2322  * when fails the state is changed to __IAVF_INIT_FAILED
2323  **/
2324 static void iavf_init_version_check(struct iavf_adapter *adapter)
2325 {
2326 	struct pci_dev *pdev = adapter->pdev;
2327 	struct iavf_hw *hw = &adapter->hw;
2328 	int err = -EAGAIN;
2329 
2330 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2331 
2332 	if (!iavf_asq_done(hw)) {
2333 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2334 		iavf_shutdown_adminq(hw);
2335 		iavf_change_state(adapter, __IAVF_STARTUP);
2336 		goto err;
2337 	}
2338 
2339 	/* aq msg sent, awaiting reply */
2340 	err = iavf_verify_api_ver(adapter);
2341 	if (err) {
2342 		if (err == -EALREADY)
2343 			err = iavf_send_api_ver(adapter);
2344 		else
2345 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2346 				adapter->pf_version.major,
2347 				adapter->pf_version.minor,
2348 				VIRTCHNL_VERSION_MAJOR,
2349 				VIRTCHNL_VERSION_MINOR);
2350 		goto err;
2351 	}
2352 	err = iavf_send_vf_config_msg(adapter);
2353 	if (err) {
2354 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2355 			err);
2356 		goto err;
2357 	}
2358 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2359 	return;
2360 err:
2361 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2362 }
2363 
2364 /**
2365  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2366  * @adapter: board private structure
2367  */
2368 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2369 {
2370 	int i, num_req_queues = adapter->num_req_queues;
2371 	struct iavf_vsi *vsi = &adapter->vsi;
2372 
2373 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2374 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2375 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2376 	}
2377 	if (!adapter->vsi_res) {
2378 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2379 		return -ENODEV;
2380 	}
2381 
2382 	if (num_req_queues &&
2383 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2384 		/* Problem.  The PF gave us fewer queues than what we had
2385 		 * negotiated in our request.  Need a reset to see if we can't
2386 		 * get back to a working state.
2387 		 */
2388 		dev_err(&adapter->pdev->dev,
2389 			"Requested %d queues, but PF only gave us %d.\n",
2390 			num_req_queues,
2391 			adapter->vsi_res->num_queue_pairs);
2392 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2393 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2394 		iavf_schedule_reset(adapter);
2395 
2396 		return -EAGAIN;
2397 	}
2398 	adapter->num_req_queues = 0;
2399 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2400 
2401 	adapter->vsi.back = adapter;
2402 	adapter->vsi.base_vector = 1;
2403 	vsi->netdev = adapter->netdev;
2404 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2405 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2406 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2407 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2408 	} else {
2409 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2410 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 /**
2417  * iavf_init_get_resources - third step of driver startup
2418  * @adapter: board private structure
2419  *
2420  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2421  * finishes driver initialization procedure.
2422  * When success the state is changed to __IAVF_DOWN
2423  * when fails the state is changed to __IAVF_INIT_FAILED
2424  **/
2425 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2426 {
2427 	struct pci_dev *pdev = adapter->pdev;
2428 	struct iavf_hw *hw = &adapter->hw;
2429 	int err;
2430 
2431 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2432 	/* aq msg sent, awaiting reply */
2433 	if (!adapter->vf_res) {
2434 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2435 					  GFP_KERNEL);
2436 		if (!adapter->vf_res) {
2437 			err = -ENOMEM;
2438 			goto err;
2439 		}
2440 	}
2441 	err = iavf_get_vf_config(adapter);
2442 	if (err == -EALREADY) {
2443 		err = iavf_send_vf_config_msg(adapter);
2444 		goto err;
2445 	} else if (err == -EINVAL) {
2446 		/* We only get -EINVAL if the device is in a very bad
2447 		 * state or if we've been disabled for previous bad
2448 		 * behavior. Either way, we're done now.
2449 		 */
2450 		iavf_shutdown_adminq(hw);
2451 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2452 		return;
2453 	}
2454 	if (err) {
2455 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2456 		goto err_alloc;
2457 	}
2458 
2459 	err = iavf_parse_vf_resource_msg(adapter);
2460 	if (err) {
2461 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2462 			err);
2463 		goto err_alloc;
2464 	}
2465 	/* Some features require additional messages to negotiate extended
2466 	 * capabilities. These are processed in sequence by the
2467 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2468 	 */
2469 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2470 
2471 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2472 	return;
2473 
2474 err_alloc:
2475 	kfree(adapter->vf_res);
2476 	adapter->vf_res = NULL;
2477 err:
2478 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2479 }
2480 
2481 /**
2482  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2483  * @adapter: board private structure
2484  *
2485  * Function processes send of the extended VLAN V2 capability message to the
2486  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2487  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2488  */
2489 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2490 {
2491 	int ret;
2492 
2493 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2494 
2495 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2496 	if (ret && ret == -EOPNOTSUPP) {
2497 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2498 		 * we did not send the capability exchange message and do not
2499 		 * expect a response.
2500 		 */
2501 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2502 	}
2503 
2504 	/* We sent the message, so move on to the next step */
2505 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2506 }
2507 
2508 /**
2509  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2510  * @adapter: board private structure
2511  *
2512  * Function processes receipt of the extended VLAN V2 capability message from
2513  * the PF.
2514  **/
2515 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2516 {
2517 	int ret;
2518 
2519 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2520 
2521 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2522 
2523 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2524 	if (ret)
2525 		goto err;
2526 
2527 	/* We've processed receipt of the VLAN V2 caps message */
2528 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2529 	return;
2530 err:
2531 	/* We didn't receive a reply. Make sure we try sending again when
2532 	 * __IAVF_INIT_FAILED attempts to recover.
2533 	 */
2534 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2535 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536 }
2537 
2538 /**
2539  * iavf_init_process_extended_caps - Part of driver startup
2540  * @adapter: board private structure
2541  *
2542  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2543  * handles negotiating capabilities for features which require an additional
2544  * message.
2545  *
2546  * Once all extended capabilities exchanges are finished, the driver will
2547  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2548  */
2549 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2550 {
2551 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2552 
2553 	/* Process capability exchange for VLAN V2 */
2554 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2555 		iavf_init_send_offload_vlan_v2_caps(adapter);
2556 		return;
2557 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2558 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2559 		return;
2560 	}
2561 
2562 	/* When we reach here, no further extended capabilities exchanges are
2563 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2564 	 */
2565 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2566 }
2567 
2568 /**
2569  * iavf_init_config_adapter - last part of driver startup
2570  * @adapter: board private structure
2571  *
2572  * After all the supported capabilities are negotiated, then the
2573  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2574  */
2575 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2576 {
2577 	struct net_device *netdev = adapter->netdev;
2578 	struct pci_dev *pdev = adapter->pdev;
2579 	int err;
2580 
2581 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2582 
2583 	if (iavf_process_config(adapter))
2584 		goto err;
2585 
2586 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2587 
2588 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2589 
2590 	netdev->netdev_ops = &iavf_netdev_ops;
2591 	iavf_set_ethtool_ops(netdev);
2592 	netdev->watchdog_timeo = 5 * HZ;
2593 
2594 	/* MTU range: 68 - 9710 */
2595 	netdev->min_mtu = ETH_MIN_MTU;
2596 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2597 
2598 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2599 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2600 			 adapter->hw.mac.addr);
2601 		eth_hw_addr_random(netdev);
2602 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2603 	} else {
2604 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2605 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2606 	}
2607 
2608 	adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET;
2609 
2610 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2611 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2612 	err = iavf_init_interrupt_scheme(adapter);
2613 	if (err)
2614 		goto err_sw_init;
2615 	iavf_map_rings_to_vectors(adapter);
2616 	if (adapter->vf_res->vf_cap_flags &
2617 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2618 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2619 
2620 	err = iavf_request_misc_irq(adapter);
2621 	if (err)
2622 		goto err_sw_init;
2623 
2624 	netif_carrier_off(netdev);
2625 	adapter->link_up = false;
2626 
2627 	/* set the semaphore to prevent any callbacks after device registration
2628 	 * up to time when state of driver will be set to __IAVF_DOWN
2629 	 */
2630 	rtnl_lock();
2631 	if (!adapter->netdev_registered) {
2632 		err = register_netdevice(netdev);
2633 		if (err) {
2634 			rtnl_unlock();
2635 			goto err_register;
2636 		}
2637 	}
2638 
2639 	adapter->netdev_registered = true;
2640 
2641 	netif_tx_stop_all_queues(netdev);
2642 	if (CLIENT_ALLOWED(adapter)) {
2643 		err = iavf_lan_add_device(adapter);
2644 		if (err)
2645 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2646 				 err);
2647 	}
2648 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2649 	if (netdev->features & NETIF_F_GRO)
2650 		dev_info(&pdev->dev, "GRO is enabled\n");
2651 
2652 	iavf_change_state(adapter, __IAVF_DOWN);
2653 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2654 	rtnl_unlock();
2655 
2656 	iavf_misc_irq_enable(adapter);
2657 	wake_up(&adapter->down_waitqueue);
2658 
2659 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2660 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2661 	if (!adapter->rss_key || !adapter->rss_lut) {
2662 		err = -ENOMEM;
2663 		goto err_mem;
2664 	}
2665 	if (RSS_AQ(adapter))
2666 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2667 	else
2668 		iavf_init_rss(adapter);
2669 
2670 	if (VLAN_V2_ALLOWED(adapter))
2671 		/* request initial VLAN offload settings */
2672 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2673 
2674 	return;
2675 err_mem:
2676 	iavf_free_rss(adapter);
2677 err_register:
2678 	iavf_free_misc_irq(adapter);
2679 err_sw_init:
2680 	iavf_reset_interrupt_capability(adapter);
2681 err:
2682 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2683 }
2684 
2685 /**
2686  * iavf_watchdog_task - Periodic call-back task
2687  * @work: pointer to work_struct
2688  **/
2689 static void iavf_watchdog_task(struct work_struct *work)
2690 {
2691 	struct iavf_adapter *adapter = container_of(work,
2692 						    struct iavf_adapter,
2693 						    watchdog_task.work);
2694 	struct iavf_hw *hw = &adapter->hw;
2695 	u32 reg_val;
2696 
2697 	if (!mutex_trylock(&adapter->crit_lock)) {
2698 		if (adapter->state == __IAVF_REMOVE)
2699 			return;
2700 
2701 		goto restart_watchdog;
2702 	}
2703 
2704 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2705 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2706 
2707 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2708 		adapter->aq_required = 0;
2709 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2710 		mutex_unlock(&adapter->crit_lock);
2711 		queue_work(iavf_wq, &adapter->reset_task);
2712 		return;
2713 	}
2714 
2715 	switch (adapter->state) {
2716 	case __IAVF_STARTUP:
2717 		iavf_startup(adapter);
2718 		mutex_unlock(&adapter->crit_lock);
2719 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2720 				   msecs_to_jiffies(30));
2721 		return;
2722 	case __IAVF_INIT_VERSION_CHECK:
2723 		iavf_init_version_check(adapter);
2724 		mutex_unlock(&adapter->crit_lock);
2725 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2726 				   msecs_to_jiffies(30));
2727 		return;
2728 	case __IAVF_INIT_GET_RESOURCES:
2729 		iavf_init_get_resources(adapter);
2730 		mutex_unlock(&adapter->crit_lock);
2731 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2732 				   msecs_to_jiffies(1));
2733 		return;
2734 	case __IAVF_INIT_EXTENDED_CAPS:
2735 		iavf_init_process_extended_caps(adapter);
2736 		mutex_unlock(&adapter->crit_lock);
2737 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2738 				   msecs_to_jiffies(1));
2739 		return;
2740 	case __IAVF_INIT_CONFIG_ADAPTER:
2741 		iavf_init_config_adapter(adapter);
2742 		mutex_unlock(&adapter->crit_lock);
2743 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2744 				   msecs_to_jiffies(1));
2745 		return;
2746 	case __IAVF_INIT_FAILED:
2747 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2748 			     &adapter->crit_section)) {
2749 			/* Do not update the state and do not reschedule
2750 			 * watchdog task, iavf_remove should handle this state
2751 			 * as it can loop forever
2752 			 */
2753 			mutex_unlock(&adapter->crit_lock);
2754 			return;
2755 		}
2756 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2757 			dev_err(&adapter->pdev->dev,
2758 				"Failed to communicate with PF; waiting before retry\n");
2759 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2760 			iavf_shutdown_adminq(hw);
2761 			mutex_unlock(&adapter->crit_lock);
2762 			queue_delayed_work(iavf_wq,
2763 					   &adapter->watchdog_task, (5 * HZ));
2764 			return;
2765 		}
2766 		/* Try again from failed step*/
2767 		iavf_change_state(adapter, adapter->last_state);
2768 		mutex_unlock(&adapter->crit_lock);
2769 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2770 		return;
2771 	case __IAVF_COMM_FAILED:
2772 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2773 			     &adapter->crit_section)) {
2774 			/* Set state to __IAVF_INIT_FAILED and perform remove
2775 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2776 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2777 			 */
2778 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2779 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2780 			mutex_unlock(&adapter->crit_lock);
2781 			return;
2782 		}
2783 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2784 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2785 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2786 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2787 			/* A chance for redemption! */
2788 			dev_err(&adapter->pdev->dev,
2789 				"Hardware came out of reset. Attempting reinit.\n");
2790 			/* When init task contacts the PF and
2791 			 * gets everything set up again, it'll restart the
2792 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2793 			 */
2794 			iavf_change_state(adapter, __IAVF_STARTUP);
2795 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2796 		}
2797 		adapter->aq_required = 0;
2798 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2799 		mutex_unlock(&adapter->crit_lock);
2800 		queue_delayed_work(iavf_wq,
2801 				   &adapter->watchdog_task,
2802 				   msecs_to_jiffies(10));
2803 		return;
2804 	case __IAVF_RESETTING:
2805 		mutex_unlock(&adapter->crit_lock);
2806 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2807 		return;
2808 	case __IAVF_DOWN:
2809 	case __IAVF_DOWN_PENDING:
2810 	case __IAVF_TESTING:
2811 	case __IAVF_RUNNING:
2812 		if (adapter->current_op) {
2813 			if (!iavf_asq_done(hw)) {
2814 				dev_dbg(&adapter->pdev->dev,
2815 					"Admin queue timeout\n");
2816 				iavf_send_api_ver(adapter);
2817 			}
2818 		} else {
2819 			int ret = iavf_process_aq_command(adapter);
2820 
2821 			/* An error will be returned if no commands were
2822 			 * processed; use this opportunity to update stats
2823 			 * if the error isn't -ENOTSUPP
2824 			 */
2825 			if (ret && ret != -EOPNOTSUPP &&
2826 			    adapter->state == __IAVF_RUNNING)
2827 				iavf_request_stats(adapter);
2828 		}
2829 		if (adapter->state == __IAVF_RUNNING)
2830 			iavf_detect_recover_hung(&adapter->vsi);
2831 		break;
2832 	case __IAVF_REMOVE:
2833 	default:
2834 		mutex_unlock(&adapter->crit_lock);
2835 		return;
2836 	}
2837 
2838 	/* check for hw reset */
2839 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2840 	if (!reg_val) {
2841 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2842 		adapter->aq_required = 0;
2843 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2844 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2845 		queue_work(iavf_wq, &adapter->reset_task);
2846 		mutex_unlock(&adapter->crit_lock);
2847 		queue_delayed_work(iavf_wq,
2848 				   &adapter->watchdog_task, HZ * 2);
2849 		return;
2850 	}
2851 
2852 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2853 	mutex_unlock(&adapter->crit_lock);
2854 restart_watchdog:
2855 	if (adapter->state >= __IAVF_DOWN)
2856 		queue_work(iavf_wq, &adapter->adminq_task);
2857 	if (adapter->aq_required)
2858 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2859 				   msecs_to_jiffies(20));
2860 	else
2861 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2862 }
2863 
2864 /**
2865  * iavf_disable_vf - disable VF
2866  * @adapter: board private structure
2867  *
2868  * Set communication failed flag and free all resources.
2869  * NOTE: This function is expected to be called with crit_lock being held.
2870  **/
2871 static void iavf_disable_vf(struct iavf_adapter *adapter)
2872 {
2873 	struct iavf_mac_filter *f, *ftmp;
2874 	struct iavf_vlan_filter *fv, *fvtmp;
2875 	struct iavf_cloud_filter *cf, *cftmp;
2876 
2877 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2878 
2879 	/* We don't use netif_running() because it may be true prior to
2880 	 * ndo_open() returning, so we can't assume it means all our open
2881 	 * tasks have finished, since we're not holding the rtnl_lock here.
2882 	 */
2883 	if (adapter->state == __IAVF_RUNNING) {
2884 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2885 		netif_carrier_off(adapter->netdev);
2886 		netif_tx_disable(adapter->netdev);
2887 		adapter->link_up = false;
2888 		iavf_napi_disable_all(adapter);
2889 		iavf_irq_disable(adapter);
2890 		iavf_free_traffic_irqs(adapter);
2891 		iavf_free_all_tx_resources(adapter);
2892 		iavf_free_all_rx_resources(adapter);
2893 	}
2894 
2895 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2896 
2897 	/* Delete all of the filters */
2898 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2899 		list_del(&f->list);
2900 		kfree(f);
2901 	}
2902 
2903 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2904 		list_del(&fv->list);
2905 		kfree(fv);
2906 	}
2907 
2908 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2909 
2910 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2911 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2912 		list_del(&cf->list);
2913 		kfree(cf);
2914 		adapter->num_cloud_filters--;
2915 	}
2916 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2917 
2918 	iavf_free_misc_irq(adapter);
2919 	iavf_reset_interrupt_capability(adapter);
2920 	iavf_free_q_vectors(adapter);
2921 	iavf_free_queues(adapter);
2922 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2923 	iavf_shutdown_adminq(&adapter->hw);
2924 	adapter->netdev->flags &= ~IFF_UP;
2925 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2926 	iavf_change_state(adapter, __IAVF_DOWN);
2927 	wake_up(&adapter->down_waitqueue);
2928 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2929 }
2930 
2931 /**
2932  * iavf_reset_task - Call-back task to handle hardware reset
2933  * @work: pointer to work_struct
2934  *
2935  * During reset we need to shut down and reinitialize the admin queue
2936  * before we can use it to communicate with the PF again. We also clear
2937  * and reinit the rings because that context is lost as well.
2938  **/
2939 static void iavf_reset_task(struct work_struct *work)
2940 {
2941 	struct iavf_adapter *adapter = container_of(work,
2942 						      struct iavf_adapter,
2943 						      reset_task);
2944 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2945 	struct net_device *netdev = adapter->netdev;
2946 	struct iavf_hw *hw = &adapter->hw;
2947 	struct iavf_mac_filter *f, *ftmp;
2948 	struct iavf_cloud_filter *cf;
2949 	enum iavf_status status;
2950 	u32 reg_val;
2951 	int i = 0, err;
2952 	bool running;
2953 
2954 	/* Detach interface to avoid subsequent NDO callbacks */
2955 	rtnl_lock();
2956 	netif_device_detach(netdev);
2957 	rtnl_unlock();
2958 
2959 	/* When device is being removed it doesn't make sense to run the reset
2960 	 * task, just return in such a case.
2961 	 */
2962 	if (!mutex_trylock(&adapter->crit_lock)) {
2963 		if (adapter->state != __IAVF_REMOVE)
2964 			queue_work(iavf_wq, &adapter->reset_task);
2965 
2966 		goto reset_finish;
2967 	}
2968 
2969 	while (!mutex_trylock(&adapter->client_lock))
2970 		usleep_range(500, 1000);
2971 	if (CLIENT_ENABLED(adapter)) {
2972 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2973 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2974 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2975 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2976 		cancel_delayed_work_sync(&adapter->client_task);
2977 		iavf_notify_client_close(&adapter->vsi, true);
2978 	}
2979 	iavf_misc_irq_disable(adapter);
2980 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2981 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2982 		/* Restart the AQ here. If we have been reset but didn't
2983 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2984 		 */
2985 		iavf_shutdown_adminq(hw);
2986 		iavf_init_adminq(hw);
2987 		iavf_request_reset(adapter);
2988 	}
2989 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2990 
2991 	/* poll until we see the reset actually happen */
2992 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2993 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2994 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2995 		if (!reg_val)
2996 			break;
2997 		usleep_range(5000, 10000);
2998 	}
2999 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3000 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3001 		goto continue_reset; /* act like the reset happened */
3002 	}
3003 
3004 	/* wait until the reset is complete and the PF is responding to us */
3005 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3006 		/* sleep first to make sure a minimum wait time is met */
3007 		msleep(IAVF_RESET_WAIT_MS);
3008 
3009 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3010 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3011 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3012 			break;
3013 	}
3014 
3015 	pci_set_master(adapter->pdev);
3016 	pci_restore_msi_state(adapter->pdev);
3017 
3018 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3019 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3020 			reg_val);
3021 		iavf_disable_vf(adapter);
3022 		mutex_unlock(&adapter->client_lock);
3023 		mutex_unlock(&adapter->crit_lock);
3024 		return; /* Do not attempt to reinit. It's dead, Jim. */
3025 	}
3026 
3027 continue_reset:
3028 	/* We don't use netif_running() because it may be true prior to
3029 	 * ndo_open() returning, so we can't assume it means all our open
3030 	 * tasks have finished, since we're not holding the rtnl_lock here.
3031 	 */
3032 	running = adapter->state == __IAVF_RUNNING;
3033 
3034 	if (running) {
3035 		netif_carrier_off(netdev);
3036 		adapter->link_up = false;
3037 		iavf_napi_disable_all(adapter);
3038 	}
3039 	iavf_irq_disable(adapter);
3040 
3041 	iavf_change_state(adapter, __IAVF_RESETTING);
3042 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3043 
3044 	/* free the Tx/Rx rings and descriptors, might be better to just
3045 	 * re-use them sometime in the future
3046 	 */
3047 	iavf_free_all_rx_resources(adapter);
3048 	iavf_free_all_tx_resources(adapter);
3049 
3050 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3051 	/* kill and reinit the admin queue */
3052 	iavf_shutdown_adminq(hw);
3053 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3054 	status = iavf_init_adminq(hw);
3055 	if (status) {
3056 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3057 			 status);
3058 		goto reset_err;
3059 	}
3060 	adapter->aq_required = 0;
3061 
3062 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3063 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3064 		err = iavf_reinit_interrupt_scheme(adapter);
3065 		if (err)
3066 			goto reset_err;
3067 	}
3068 
3069 	if (RSS_AQ(adapter)) {
3070 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3071 	} else {
3072 		err = iavf_init_rss(adapter);
3073 		if (err)
3074 			goto reset_err;
3075 	}
3076 
3077 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3078 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3079 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3080 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3081 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3082 	 * been successfully sent and negotiated
3083 	 */
3084 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3085 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3086 
3087 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3088 
3089 	/* Delete filter for the current MAC address, it could have
3090 	 * been changed by the PF via administratively set MAC.
3091 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3092 	 */
3093 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3094 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3095 			list_del(&f->list);
3096 			kfree(f);
3097 		}
3098 	}
3099 	/* re-add all MAC filters */
3100 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3101 		f->add = true;
3102 	}
3103 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3104 
3105 	/* check if TCs are running and re-add all cloud filters */
3106 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3107 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3108 	    adapter->num_tc) {
3109 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3110 			cf->add = true;
3111 		}
3112 	}
3113 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3114 
3115 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3116 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3117 	iavf_misc_irq_enable(adapter);
3118 
3119 	bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3120 	bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3121 
3122 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
3123 
3124 	/* We were running when the reset started, so we need to restore some
3125 	 * state here.
3126 	 */
3127 	if (running) {
3128 		/* allocate transmit descriptors */
3129 		err = iavf_setup_all_tx_resources(adapter);
3130 		if (err)
3131 			goto reset_err;
3132 
3133 		/* allocate receive descriptors */
3134 		err = iavf_setup_all_rx_resources(adapter);
3135 		if (err)
3136 			goto reset_err;
3137 
3138 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3139 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3140 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3141 			if (err)
3142 				goto reset_err;
3143 
3144 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3145 		}
3146 
3147 		iavf_configure(adapter);
3148 
3149 		/* iavf_up_complete() will switch device back
3150 		 * to __IAVF_RUNNING
3151 		 */
3152 		iavf_up_complete(adapter);
3153 
3154 		iavf_irq_enable(adapter, true);
3155 	} else {
3156 		iavf_change_state(adapter, __IAVF_DOWN);
3157 		wake_up(&adapter->down_waitqueue);
3158 	}
3159 
3160 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3161 
3162 	mutex_unlock(&adapter->client_lock);
3163 	mutex_unlock(&adapter->crit_lock);
3164 
3165 	goto reset_finish;
3166 reset_err:
3167 	if (running) {
3168 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3169 		iavf_free_traffic_irqs(adapter);
3170 	}
3171 	iavf_disable_vf(adapter);
3172 
3173 	mutex_unlock(&adapter->client_lock);
3174 	mutex_unlock(&adapter->crit_lock);
3175 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3176 reset_finish:
3177 	rtnl_lock();
3178 	netif_device_attach(netdev);
3179 	rtnl_unlock();
3180 }
3181 
3182 /**
3183  * iavf_adminq_task - worker thread to clean the admin queue
3184  * @work: pointer to work_struct containing our data
3185  **/
3186 static void iavf_adminq_task(struct work_struct *work)
3187 {
3188 	struct iavf_adapter *adapter =
3189 		container_of(work, struct iavf_adapter, adminq_task);
3190 	struct iavf_hw *hw = &adapter->hw;
3191 	struct iavf_arq_event_info event;
3192 	enum virtchnl_ops v_op;
3193 	enum iavf_status ret, v_ret;
3194 	u32 val, oldval;
3195 	u16 pending;
3196 
3197 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3198 		goto out;
3199 
3200 	if (!mutex_trylock(&adapter->crit_lock)) {
3201 		if (adapter->state == __IAVF_REMOVE)
3202 			return;
3203 
3204 		queue_work(iavf_wq, &adapter->adminq_task);
3205 		goto out;
3206 	}
3207 
3208 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3209 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3210 	if (!event.msg_buf)
3211 		goto out;
3212 
3213 	do {
3214 		ret = iavf_clean_arq_element(hw, &event, &pending);
3215 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3216 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3217 
3218 		if (ret || !v_op)
3219 			break; /* No event to process or error cleaning ARQ */
3220 
3221 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3222 					 event.msg_len);
3223 		if (pending != 0)
3224 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3225 	} while (pending);
3226 	mutex_unlock(&adapter->crit_lock);
3227 
3228 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3229 		if (adapter->netdev_registered ||
3230 		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3231 			struct net_device *netdev = adapter->netdev;
3232 
3233 			rtnl_lock();
3234 			netdev_update_features(netdev);
3235 			rtnl_unlock();
3236 			/* Request VLAN offload settings */
3237 			if (VLAN_V2_ALLOWED(adapter))
3238 				iavf_set_vlan_offload_features
3239 					(adapter, 0, netdev->features);
3240 
3241 			iavf_set_queue_vlan_tag_loc(adapter);
3242 		}
3243 
3244 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3245 	}
3246 	if ((adapter->flags &
3247 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3248 	    adapter->state == __IAVF_RESETTING)
3249 		goto freedom;
3250 
3251 	/* check for error indications */
3252 	val = rd32(hw, hw->aq.arq.len);
3253 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3254 		goto freedom;
3255 	oldval = val;
3256 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3257 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3258 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3259 	}
3260 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3261 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3262 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3263 	}
3264 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3265 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3266 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3267 	}
3268 	if (oldval != val)
3269 		wr32(hw, hw->aq.arq.len, val);
3270 
3271 	val = rd32(hw, hw->aq.asq.len);
3272 	oldval = val;
3273 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3274 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3275 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3276 	}
3277 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3278 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3279 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3280 	}
3281 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3282 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3283 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3284 	}
3285 	if (oldval != val)
3286 		wr32(hw, hw->aq.asq.len, val);
3287 
3288 freedom:
3289 	kfree(event.msg_buf);
3290 out:
3291 	/* re-enable Admin queue interrupt cause */
3292 	iavf_misc_irq_enable(adapter);
3293 }
3294 
3295 /**
3296  * iavf_client_task - worker thread to perform client work
3297  * @work: pointer to work_struct containing our data
3298  *
3299  * This task handles client interactions. Because client calls can be
3300  * reentrant, we can't handle them in the watchdog.
3301  **/
3302 static void iavf_client_task(struct work_struct *work)
3303 {
3304 	struct iavf_adapter *adapter =
3305 		container_of(work, struct iavf_adapter, client_task.work);
3306 
3307 	/* If we can't get the client bit, just give up. We'll be rescheduled
3308 	 * later.
3309 	 */
3310 
3311 	if (!mutex_trylock(&adapter->client_lock))
3312 		return;
3313 
3314 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3315 		iavf_client_subtask(adapter);
3316 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3317 		goto out;
3318 	}
3319 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3320 		iavf_notify_client_l2_params(&adapter->vsi);
3321 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3322 		goto out;
3323 	}
3324 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3325 		iavf_notify_client_close(&adapter->vsi, false);
3326 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3327 		goto out;
3328 	}
3329 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3330 		iavf_notify_client_open(&adapter->vsi);
3331 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3332 	}
3333 out:
3334 	mutex_unlock(&adapter->client_lock);
3335 }
3336 
3337 /**
3338  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3339  * @adapter: board private structure
3340  *
3341  * Free all transmit software resources
3342  **/
3343 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3344 {
3345 	int i;
3346 
3347 	if (!adapter->tx_rings)
3348 		return;
3349 
3350 	for (i = 0; i < adapter->num_active_queues; i++)
3351 		if (adapter->tx_rings[i].desc)
3352 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3353 }
3354 
3355 /**
3356  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3357  * @adapter: board private structure
3358  *
3359  * If this function returns with an error, then it's possible one or
3360  * more of the rings is populated (while the rest are not).  It is the
3361  * callers duty to clean those orphaned rings.
3362  *
3363  * Return 0 on success, negative on failure
3364  **/
3365 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3366 {
3367 	int i, err = 0;
3368 
3369 	for (i = 0; i < adapter->num_active_queues; i++) {
3370 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3371 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3372 		if (!err)
3373 			continue;
3374 		dev_err(&adapter->pdev->dev,
3375 			"Allocation for Tx Queue %u failed\n", i);
3376 		break;
3377 	}
3378 
3379 	return err;
3380 }
3381 
3382 /**
3383  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3384  * @adapter: board private structure
3385  *
3386  * If this function returns with an error, then it's possible one or
3387  * more of the rings is populated (while the rest are not).  It is the
3388  * callers duty to clean those orphaned rings.
3389  *
3390  * Return 0 on success, negative on failure
3391  **/
3392 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3393 {
3394 	int i, err = 0;
3395 
3396 	for (i = 0; i < adapter->num_active_queues; i++) {
3397 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3398 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3399 		if (!err)
3400 			continue;
3401 		dev_err(&adapter->pdev->dev,
3402 			"Allocation for Rx Queue %u failed\n", i);
3403 		break;
3404 	}
3405 	return err;
3406 }
3407 
3408 /**
3409  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3410  * @adapter: board private structure
3411  *
3412  * Free all receive software resources
3413  **/
3414 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3415 {
3416 	int i;
3417 
3418 	if (!adapter->rx_rings)
3419 		return;
3420 
3421 	for (i = 0; i < adapter->num_active_queues; i++)
3422 		if (adapter->rx_rings[i].desc)
3423 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3424 }
3425 
3426 /**
3427  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3428  * @adapter: board private structure
3429  * @max_tx_rate: max Tx bw for a tc
3430  **/
3431 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3432 				      u64 max_tx_rate)
3433 {
3434 	int speed = 0, ret = 0;
3435 
3436 	if (ADV_LINK_SUPPORT(adapter)) {
3437 		if (adapter->link_speed_mbps < U32_MAX) {
3438 			speed = adapter->link_speed_mbps;
3439 			goto validate_bw;
3440 		} else {
3441 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3442 			return -EINVAL;
3443 		}
3444 	}
3445 
3446 	switch (adapter->link_speed) {
3447 	case VIRTCHNL_LINK_SPEED_40GB:
3448 		speed = SPEED_40000;
3449 		break;
3450 	case VIRTCHNL_LINK_SPEED_25GB:
3451 		speed = SPEED_25000;
3452 		break;
3453 	case VIRTCHNL_LINK_SPEED_20GB:
3454 		speed = SPEED_20000;
3455 		break;
3456 	case VIRTCHNL_LINK_SPEED_10GB:
3457 		speed = SPEED_10000;
3458 		break;
3459 	case VIRTCHNL_LINK_SPEED_5GB:
3460 		speed = SPEED_5000;
3461 		break;
3462 	case VIRTCHNL_LINK_SPEED_2_5GB:
3463 		speed = SPEED_2500;
3464 		break;
3465 	case VIRTCHNL_LINK_SPEED_1GB:
3466 		speed = SPEED_1000;
3467 		break;
3468 	case VIRTCHNL_LINK_SPEED_100MB:
3469 		speed = SPEED_100;
3470 		break;
3471 	default:
3472 		break;
3473 	}
3474 
3475 validate_bw:
3476 	if (max_tx_rate > speed) {
3477 		dev_err(&adapter->pdev->dev,
3478 			"Invalid tx rate specified\n");
3479 		ret = -EINVAL;
3480 	}
3481 
3482 	return ret;
3483 }
3484 
3485 /**
3486  * iavf_validate_ch_config - validate queue mapping info
3487  * @adapter: board private structure
3488  * @mqprio_qopt: queue parameters
3489  *
3490  * This function validates if the config provided by the user to
3491  * configure queue channels is valid or not. Returns 0 on a valid
3492  * config.
3493  **/
3494 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3495 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3496 {
3497 	u64 total_max_rate = 0;
3498 	u32 tx_rate_rem = 0;
3499 	int i, num_qps = 0;
3500 	u64 tx_rate = 0;
3501 	int ret = 0;
3502 
3503 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3504 	    mqprio_qopt->qopt.num_tc < 1)
3505 		return -EINVAL;
3506 
3507 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3508 		if (!mqprio_qopt->qopt.count[i] ||
3509 		    mqprio_qopt->qopt.offset[i] != num_qps)
3510 			return -EINVAL;
3511 		if (mqprio_qopt->min_rate[i]) {
3512 			dev_err(&adapter->pdev->dev,
3513 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3514 				i);
3515 			return -EINVAL;
3516 		}
3517 
3518 		/* convert to Mbps */
3519 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3520 				  IAVF_MBPS_DIVISOR);
3521 
3522 		if (mqprio_qopt->max_rate[i] &&
3523 		    tx_rate < IAVF_MBPS_QUANTA) {
3524 			dev_err(&adapter->pdev->dev,
3525 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3526 				i, IAVF_MBPS_QUANTA);
3527 			return -EINVAL;
3528 		}
3529 
3530 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3531 
3532 		if (tx_rate_rem != 0) {
3533 			dev_err(&adapter->pdev->dev,
3534 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3535 				i, IAVF_MBPS_QUANTA);
3536 			return -EINVAL;
3537 		}
3538 
3539 		total_max_rate += tx_rate;
3540 		num_qps += mqprio_qopt->qopt.count[i];
3541 	}
3542 	if (num_qps > adapter->num_active_queues) {
3543 		dev_err(&adapter->pdev->dev,
3544 			"Cannot support requested number of queues\n");
3545 		return -EINVAL;
3546 	}
3547 
3548 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3549 	return ret;
3550 }
3551 
3552 /**
3553  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3554  * @adapter: board private structure
3555  **/
3556 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3557 {
3558 	struct iavf_cloud_filter *cf, *cftmp;
3559 
3560 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3561 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3562 				 list) {
3563 		list_del(&cf->list);
3564 		kfree(cf);
3565 		adapter->num_cloud_filters--;
3566 	}
3567 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3568 }
3569 
3570 /**
3571  * __iavf_setup_tc - configure multiple traffic classes
3572  * @netdev: network interface device structure
3573  * @type_data: tc offload data
3574  *
3575  * This function processes the config information provided by the
3576  * user to configure traffic classes/queue channels and packages the
3577  * information to request the PF to setup traffic classes.
3578  *
3579  * Returns 0 on success.
3580  **/
3581 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3582 {
3583 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3584 	struct iavf_adapter *adapter = netdev_priv(netdev);
3585 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3586 	u8 num_tc = 0, total_qps = 0;
3587 	int ret = 0, netdev_tc = 0;
3588 	u64 max_tx_rate;
3589 	u16 mode;
3590 	int i;
3591 
3592 	num_tc = mqprio_qopt->qopt.num_tc;
3593 	mode = mqprio_qopt->mode;
3594 
3595 	/* delete queue_channel */
3596 	if (!mqprio_qopt->qopt.hw) {
3597 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3598 			/* reset the tc configuration */
3599 			netdev_reset_tc(netdev);
3600 			adapter->num_tc = 0;
3601 			netif_tx_stop_all_queues(netdev);
3602 			netif_tx_disable(netdev);
3603 			iavf_del_all_cloud_filters(adapter);
3604 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3605 			total_qps = adapter->orig_num_active_queues;
3606 			goto exit;
3607 		} else {
3608 			return -EINVAL;
3609 		}
3610 	}
3611 
3612 	/* add queue channel */
3613 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3614 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3615 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3616 			return -EOPNOTSUPP;
3617 		}
3618 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3619 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3620 			return -EINVAL;
3621 		}
3622 
3623 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3624 		if (ret)
3625 			return ret;
3626 		/* Return if same TC config is requested */
3627 		if (adapter->num_tc == num_tc)
3628 			return 0;
3629 		adapter->num_tc = num_tc;
3630 
3631 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3632 			if (i < num_tc) {
3633 				adapter->ch_config.ch_info[i].count =
3634 					mqprio_qopt->qopt.count[i];
3635 				adapter->ch_config.ch_info[i].offset =
3636 					mqprio_qopt->qopt.offset[i];
3637 				total_qps += mqprio_qopt->qopt.count[i];
3638 				max_tx_rate = mqprio_qopt->max_rate[i];
3639 				/* convert to Mbps */
3640 				max_tx_rate = div_u64(max_tx_rate,
3641 						      IAVF_MBPS_DIVISOR);
3642 				adapter->ch_config.ch_info[i].max_tx_rate =
3643 					max_tx_rate;
3644 			} else {
3645 				adapter->ch_config.ch_info[i].count = 1;
3646 				adapter->ch_config.ch_info[i].offset = 0;
3647 			}
3648 		}
3649 
3650 		/* Take snapshot of original config such as "num_active_queues"
3651 		 * It is used later when delete ADQ flow is exercised, so that
3652 		 * once delete ADQ flow completes, VF shall go back to its
3653 		 * original queue configuration
3654 		 */
3655 
3656 		adapter->orig_num_active_queues = adapter->num_active_queues;
3657 
3658 		/* Store queue info based on TC so that VF gets configured
3659 		 * with correct number of queues when VF completes ADQ config
3660 		 * flow
3661 		 */
3662 		adapter->ch_config.total_qps = total_qps;
3663 
3664 		netif_tx_stop_all_queues(netdev);
3665 		netif_tx_disable(netdev);
3666 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3667 		netdev_reset_tc(netdev);
3668 		/* Report the tc mapping up the stack */
3669 		netdev_set_num_tc(adapter->netdev, num_tc);
3670 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3671 			u16 qcount = mqprio_qopt->qopt.count[i];
3672 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3673 
3674 			if (i < num_tc)
3675 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3676 						    qoffset);
3677 		}
3678 	}
3679 exit:
3680 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3681 		return 0;
3682 
3683 	netif_set_real_num_rx_queues(netdev, total_qps);
3684 	netif_set_real_num_tx_queues(netdev, total_qps);
3685 
3686 	return ret;
3687 }
3688 
3689 /**
3690  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3691  * @adapter: board private structure
3692  * @f: pointer to struct flow_cls_offload
3693  * @filter: pointer to cloud filter structure
3694  */
3695 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3696 				 struct flow_cls_offload *f,
3697 				 struct iavf_cloud_filter *filter)
3698 {
3699 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3700 	struct flow_dissector *dissector = rule->match.dissector;
3701 	u16 n_proto_mask = 0;
3702 	u16 n_proto_key = 0;
3703 	u8 field_flags = 0;
3704 	u16 addr_type = 0;
3705 	u16 n_proto = 0;
3706 	int i = 0;
3707 	struct virtchnl_filter *vf = &filter->f;
3708 
3709 	if (dissector->used_keys &
3710 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3711 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3712 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3713 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3714 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3715 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3716 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3717 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3718 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3719 			dissector->used_keys);
3720 		return -EOPNOTSUPP;
3721 	}
3722 
3723 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3724 		struct flow_match_enc_keyid match;
3725 
3726 		flow_rule_match_enc_keyid(rule, &match);
3727 		if (match.mask->keyid != 0)
3728 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3729 	}
3730 
3731 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3732 		struct flow_match_basic match;
3733 
3734 		flow_rule_match_basic(rule, &match);
3735 		n_proto_key = ntohs(match.key->n_proto);
3736 		n_proto_mask = ntohs(match.mask->n_proto);
3737 
3738 		if (n_proto_key == ETH_P_ALL) {
3739 			n_proto_key = 0;
3740 			n_proto_mask = 0;
3741 		}
3742 		n_proto = n_proto_key & n_proto_mask;
3743 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3744 			return -EINVAL;
3745 		if (n_proto == ETH_P_IPV6) {
3746 			/* specify flow type as TCP IPv6 */
3747 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3748 		}
3749 
3750 		if (match.key->ip_proto != IPPROTO_TCP) {
3751 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3752 			return -EINVAL;
3753 		}
3754 	}
3755 
3756 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3757 		struct flow_match_eth_addrs match;
3758 
3759 		flow_rule_match_eth_addrs(rule, &match);
3760 
3761 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3762 		if (!is_zero_ether_addr(match.mask->dst)) {
3763 			if (is_broadcast_ether_addr(match.mask->dst)) {
3764 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3765 			} else {
3766 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3767 					match.mask->dst);
3768 				return -EINVAL;
3769 			}
3770 		}
3771 
3772 		if (!is_zero_ether_addr(match.mask->src)) {
3773 			if (is_broadcast_ether_addr(match.mask->src)) {
3774 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3775 			} else {
3776 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3777 					match.mask->src);
3778 				return -EINVAL;
3779 			}
3780 		}
3781 
3782 		if (!is_zero_ether_addr(match.key->dst))
3783 			if (is_valid_ether_addr(match.key->dst) ||
3784 			    is_multicast_ether_addr(match.key->dst)) {
3785 				/* set the mask if a valid dst_mac address */
3786 				for (i = 0; i < ETH_ALEN; i++)
3787 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3788 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3789 						match.key->dst);
3790 			}
3791 
3792 		if (!is_zero_ether_addr(match.key->src))
3793 			if (is_valid_ether_addr(match.key->src) ||
3794 			    is_multicast_ether_addr(match.key->src)) {
3795 				/* set the mask if a valid dst_mac address */
3796 				for (i = 0; i < ETH_ALEN; i++)
3797 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3798 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3799 						match.key->src);
3800 		}
3801 	}
3802 
3803 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3804 		struct flow_match_vlan match;
3805 
3806 		flow_rule_match_vlan(rule, &match);
3807 		if (match.mask->vlan_id) {
3808 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3809 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3810 			} else {
3811 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3812 					match.mask->vlan_id);
3813 				return -EINVAL;
3814 			}
3815 		}
3816 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3817 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3818 	}
3819 
3820 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3821 		struct flow_match_control match;
3822 
3823 		flow_rule_match_control(rule, &match);
3824 		addr_type = match.key->addr_type;
3825 	}
3826 
3827 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3828 		struct flow_match_ipv4_addrs match;
3829 
3830 		flow_rule_match_ipv4_addrs(rule, &match);
3831 		if (match.mask->dst) {
3832 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3833 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3834 			} else {
3835 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3836 					be32_to_cpu(match.mask->dst));
3837 				return -EINVAL;
3838 			}
3839 		}
3840 
3841 		if (match.mask->src) {
3842 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3843 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3844 			} else {
3845 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3846 					be32_to_cpu(match.mask->dst));
3847 				return -EINVAL;
3848 			}
3849 		}
3850 
3851 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3852 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3853 			return -EINVAL;
3854 		}
3855 		if (match.key->dst) {
3856 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3857 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3858 		}
3859 		if (match.key->src) {
3860 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3861 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3862 		}
3863 	}
3864 
3865 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3866 		struct flow_match_ipv6_addrs match;
3867 
3868 		flow_rule_match_ipv6_addrs(rule, &match);
3869 
3870 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3871 		if (ipv6_addr_any(&match.mask->dst)) {
3872 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3873 				IPV6_ADDR_ANY);
3874 			return -EINVAL;
3875 		}
3876 
3877 		/* src and dest IPv6 address should not be LOOPBACK
3878 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3879 		 */
3880 		if (ipv6_addr_loopback(&match.key->dst) ||
3881 		    ipv6_addr_loopback(&match.key->src)) {
3882 			dev_err(&adapter->pdev->dev,
3883 				"ipv6 addr should not be loopback\n");
3884 			return -EINVAL;
3885 		}
3886 		if (!ipv6_addr_any(&match.mask->dst) ||
3887 		    !ipv6_addr_any(&match.mask->src))
3888 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3889 
3890 		for (i = 0; i < 4; i++)
3891 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3892 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3893 		       sizeof(vf->data.tcp_spec.dst_ip));
3894 		for (i = 0; i < 4; i++)
3895 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3896 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3897 		       sizeof(vf->data.tcp_spec.src_ip));
3898 	}
3899 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3900 		struct flow_match_ports match;
3901 
3902 		flow_rule_match_ports(rule, &match);
3903 		if (match.mask->src) {
3904 			if (match.mask->src == cpu_to_be16(0xffff)) {
3905 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3906 			} else {
3907 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3908 					be16_to_cpu(match.mask->src));
3909 				return -EINVAL;
3910 			}
3911 		}
3912 
3913 		if (match.mask->dst) {
3914 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3915 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3916 			} else {
3917 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3918 					be16_to_cpu(match.mask->dst));
3919 				return -EINVAL;
3920 			}
3921 		}
3922 		if (match.key->dst) {
3923 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3924 			vf->data.tcp_spec.dst_port = match.key->dst;
3925 		}
3926 
3927 		if (match.key->src) {
3928 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3929 			vf->data.tcp_spec.src_port = match.key->src;
3930 		}
3931 	}
3932 	vf->field_flags = field_flags;
3933 
3934 	return 0;
3935 }
3936 
3937 /**
3938  * iavf_handle_tclass - Forward to a traffic class on the device
3939  * @adapter: board private structure
3940  * @tc: traffic class index on the device
3941  * @filter: pointer to cloud filter structure
3942  */
3943 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3944 			      struct iavf_cloud_filter *filter)
3945 {
3946 	if (tc == 0)
3947 		return 0;
3948 	if (tc < adapter->num_tc) {
3949 		if (!filter->f.data.tcp_spec.dst_port) {
3950 			dev_err(&adapter->pdev->dev,
3951 				"Specify destination port to redirect to traffic class other than TC0\n");
3952 			return -EINVAL;
3953 		}
3954 	}
3955 	/* redirect to a traffic class on the same device */
3956 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3957 	filter->f.action_meta = tc;
3958 	return 0;
3959 }
3960 
3961 /**
3962  * iavf_find_cf - Find the cloud filter in the list
3963  * @adapter: Board private structure
3964  * @cookie: filter specific cookie
3965  *
3966  * Returns ptr to the filter object or NULL. Must be called while holding the
3967  * cloud_filter_list_lock.
3968  */
3969 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3970 					      unsigned long *cookie)
3971 {
3972 	struct iavf_cloud_filter *filter = NULL;
3973 
3974 	if (!cookie)
3975 		return NULL;
3976 
3977 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3978 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3979 			return filter;
3980 	}
3981 	return NULL;
3982 }
3983 
3984 /**
3985  * iavf_configure_clsflower - Add tc flower filters
3986  * @adapter: board private structure
3987  * @cls_flower: Pointer to struct flow_cls_offload
3988  */
3989 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3990 				    struct flow_cls_offload *cls_flower)
3991 {
3992 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3993 	struct iavf_cloud_filter *filter = NULL;
3994 	int err = -EINVAL, count = 50;
3995 
3996 	if (tc < 0) {
3997 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3998 		return -EINVAL;
3999 	}
4000 
4001 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4002 	if (!filter)
4003 		return -ENOMEM;
4004 
4005 	while (!mutex_trylock(&adapter->crit_lock)) {
4006 		if (--count == 0) {
4007 			kfree(filter);
4008 			return err;
4009 		}
4010 		udelay(1);
4011 	}
4012 
4013 	filter->cookie = cls_flower->cookie;
4014 
4015 	/* bail out here if filter already exists */
4016 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4017 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4018 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4019 		err = -EEXIST;
4020 		goto spin_unlock;
4021 	}
4022 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4023 
4024 	/* set the mask to all zeroes to begin with */
4025 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4026 	/* start out with flow type and eth type IPv4 to begin with */
4027 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4028 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4029 	if (err)
4030 		goto err;
4031 
4032 	err = iavf_handle_tclass(adapter, tc, filter);
4033 	if (err)
4034 		goto err;
4035 
4036 	/* add filter to the list */
4037 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4038 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4039 	adapter->num_cloud_filters++;
4040 	filter->add = true;
4041 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4042 spin_unlock:
4043 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4044 err:
4045 	if (err)
4046 		kfree(filter);
4047 
4048 	mutex_unlock(&adapter->crit_lock);
4049 	return err;
4050 }
4051 
4052 /**
4053  * iavf_delete_clsflower - Remove tc flower filters
4054  * @adapter: board private structure
4055  * @cls_flower: Pointer to struct flow_cls_offload
4056  */
4057 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4058 				 struct flow_cls_offload *cls_flower)
4059 {
4060 	struct iavf_cloud_filter *filter = NULL;
4061 	int err = 0;
4062 
4063 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4064 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4065 	if (filter) {
4066 		filter->del = true;
4067 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4068 	} else {
4069 		err = -EINVAL;
4070 	}
4071 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4072 
4073 	return err;
4074 }
4075 
4076 /**
4077  * iavf_setup_tc_cls_flower - flower classifier offloads
4078  * @adapter: board private structure
4079  * @cls_flower: pointer to flow_cls_offload struct with flow info
4080  */
4081 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4082 				    struct flow_cls_offload *cls_flower)
4083 {
4084 	switch (cls_flower->command) {
4085 	case FLOW_CLS_REPLACE:
4086 		return iavf_configure_clsflower(adapter, cls_flower);
4087 	case FLOW_CLS_DESTROY:
4088 		return iavf_delete_clsflower(adapter, cls_flower);
4089 	case FLOW_CLS_STATS:
4090 		return -EOPNOTSUPP;
4091 	default:
4092 		return -EOPNOTSUPP;
4093 	}
4094 }
4095 
4096 /**
4097  * iavf_setup_tc_block_cb - block callback for tc
4098  * @type: type of offload
4099  * @type_data: offload data
4100  * @cb_priv:
4101  *
4102  * This function is the block callback for traffic classes
4103  **/
4104 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4105 				  void *cb_priv)
4106 {
4107 	struct iavf_adapter *adapter = cb_priv;
4108 
4109 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4110 		return -EOPNOTSUPP;
4111 
4112 	switch (type) {
4113 	case TC_SETUP_CLSFLOWER:
4114 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4115 	default:
4116 		return -EOPNOTSUPP;
4117 	}
4118 }
4119 
4120 static LIST_HEAD(iavf_block_cb_list);
4121 
4122 /**
4123  * iavf_setup_tc - configure multiple traffic classes
4124  * @netdev: network interface device structure
4125  * @type: type of offload
4126  * @type_data: tc offload data
4127  *
4128  * This function is the callback to ndo_setup_tc in the
4129  * netdev_ops.
4130  *
4131  * Returns 0 on success
4132  **/
4133 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4134 			 void *type_data)
4135 {
4136 	struct iavf_adapter *adapter = netdev_priv(netdev);
4137 
4138 	switch (type) {
4139 	case TC_SETUP_QDISC_MQPRIO:
4140 		return __iavf_setup_tc(netdev, type_data);
4141 	case TC_SETUP_BLOCK:
4142 		return flow_block_cb_setup_simple(type_data,
4143 						  &iavf_block_cb_list,
4144 						  iavf_setup_tc_block_cb,
4145 						  adapter, adapter, true);
4146 	default:
4147 		return -EOPNOTSUPP;
4148 	}
4149 }
4150 
4151 /**
4152  * iavf_open - Called when a network interface is made active
4153  * @netdev: network interface device structure
4154  *
4155  * Returns 0 on success, negative value on failure
4156  *
4157  * The open entry point is called when a network interface is made
4158  * active by the system (IFF_UP).  At this point all resources needed
4159  * for transmit and receive operations are allocated, the interrupt
4160  * handler is registered with the OS, the watchdog is started,
4161  * and the stack is notified that the interface is ready.
4162  **/
4163 static int iavf_open(struct net_device *netdev)
4164 {
4165 	struct iavf_adapter *adapter = netdev_priv(netdev);
4166 	int err;
4167 
4168 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4169 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4170 		return -EIO;
4171 	}
4172 
4173 	while (!mutex_trylock(&adapter->crit_lock)) {
4174 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4175 		 * is already taken and iavf_open is called from an upper
4176 		 * device's notifier reacting on NETDEV_REGISTER event.
4177 		 * We have to leave here to avoid dead lock.
4178 		 */
4179 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4180 			return -EBUSY;
4181 
4182 		usleep_range(500, 1000);
4183 	}
4184 
4185 	if (adapter->state != __IAVF_DOWN) {
4186 		err = -EBUSY;
4187 		goto err_unlock;
4188 	}
4189 
4190 	if (adapter->state == __IAVF_RUNNING &&
4191 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4192 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4193 		err = 0;
4194 		goto err_unlock;
4195 	}
4196 
4197 	/* allocate transmit descriptors */
4198 	err = iavf_setup_all_tx_resources(adapter);
4199 	if (err)
4200 		goto err_setup_tx;
4201 
4202 	/* allocate receive descriptors */
4203 	err = iavf_setup_all_rx_resources(adapter);
4204 	if (err)
4205 		goto err_setup_rx;
4206 
4207 	/* clear any pending interrupts, may auto mask */
4208 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4209 	if (err)
4210 		goto err_req_irq;
4211 
4212 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4213 
4214 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4215 
4216 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4217 
4218 	/* Restore VLAN filters that were removed with IFF_DOWN */
4219 	iavf_restore_filters(adapter);
4220 
4221 	iavf_configure(adapter);
4222 
4223 	iavf_up_complete(adapter);
4224 
4225 	iavf_irq_enable(adapter, true);
4226 
4227 	mutex_unlock(&adapter->crit_lock);
4228 
4229 	return 0;
4230 
4231 err_req_irq:
4232 	iavf_down(adapter);
4233 	iavf_free_traffic_irqs(adapter);
4234 err_setup_rx:
4235 	iavf_free_all_rx_resources(adapter);
4236 err_setup_tx:
4237 	iavf_free_all_tx_resources(adapter);
4238 err_unlock:
4239 	mutex_unlock(&adapter->crit_lock);
4240 
4241 	return err;
4242 }
4243 
4244 /**
4245  * iavf_close - Disables a network interface
4246  * @netdev: network interface device structure
4247  *
4248  * Returns 0, this is not allowed to fail
4249  *
4250  * The close entry point is called when an interface is de-activated
4251  * by the OS.  The hardware is still under the drivers control, but
4252  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4253  * are freed, along with all transmit and receive resources.
4254  **/
4255 static int iavf_close(struct net_device *netdev)
4256 {
4257 	struct iavf_adapter *adapter = netdev_priv(netdev);
4258 	u64 aq_to_restore;
4259 	int status;
4260 
4261 	mutex_lock(&adapter->crit_lock);
4262 
4263 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4264 		mutex_unlock(&adapter->crit_lock);
4265 		return 0;
4266 	}
4267 
4268 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4269 	if (CLIENT_ENABLED(adapter))
4270 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4271 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4272 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4273 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4274 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4275 	 * disable queues possible for vf. Give only necessary flags to
4276 	 * iavf_down and save other to set them right before iavf_close()
4277 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4278 	 * iavf will be in DOWN state.
4279 	 */
4280 	aq_to_restore = adapter->aq_required;
4281 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4282 
4283 	/* Remove flags which we do not want to send after close or we want to
4284 	 * send before disable queues.
4285 	 */
4286 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4287 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4288 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4289 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4290 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4291 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4292 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4293 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4294 
4295 	iavf_down(adapter);
4296 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4297 	iavf_free_traffic_irqs(adapter);
4298 
4299 	mutex_unlock(&adapter->crit_lock);
4300 
4301 	/* We explicitly don't free resources here because the hardware is
4302 	 * still active and can DMA into memory. Resources are cleared in
4303 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4304 	 * driver that the rings have been stopped.
4305 	 *
4306 	 * Also, we wait for state to transition to __IAVF_DOWN before
4307 	 * returning. State change occurs in iavf_virtchnl_completion() after
4308 	 * VF resources are released (which occurs after PF driver processes and
4309 	 * responds to admin queue commands).
4310 	 */
4311 
4312 	status = wait_event_timeout(adapter->down_waitqueue,
4313 				    adapter->state == __IAVF_DOWN,
4314 				    msecs_to_jiffies(500));
4315 	if (!status)
4316 		netdev_warn(netdev, "Device resources not yet released\n");
4317 
4318 	mutex_lock(&adapter->crit_lock);
4319 	adapter->aq_required |= aq_to_restore;
4320 	mutex_unlock(&adapter->crit_lock);
4321 	return 0;
4322 }
4323 
4324 /**
4325  * iavf_change_mtu - Change the Maximum Transfer Unit
4326  * @netdev: network interface device structure
4327  * @new_mtu: new value for maximum frame size
4328  *
4329  * Returns 0 on success, negative on failure
4330  **/
4331 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4332 {
4333 	struct iavf_adapter *adapter = netdev_priv(netdev);
4334 
4335 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4336 		   netdev->mtu, new_mtu);
4337 	netdev->mtu = new_mtu;
4338 	if (CLIENT_ENABLED(adapter)) {
4339 		iavf_notify_client_l2_params(&adapter->vsi);
4340 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4341 	}
4342 
4343 	if (netif_running(netdev)) {
4344 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4345 		queue_work(iavf_wq, &adapter->reset_task);
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4352 					 NETIF_F_HW_VLAN_CTAG_TX | \
4353 					 NETIF_F_HW_VLAN_STAG_RX | \
4354 					 NETIF_F_HW_VLAN_STAG_TX)
4355 
4356 /**
4357  * iavf_set_features - set the netdev feature flags
4358  * @netdev: ptr to the netdev being adjusted
4359  * @features: the feature set that the stack is suggesting
4360  * Note: expects to be called while under rtnl_lock()
4361  **/
4362 static int iavf_set_features(struct net_device *netdev,
4363 			     netdev_features_t features)
4364 {
4365 	struct iavf_adapter *adapter = netdev_priv(netdev);
4366 
4367 	/* trigger update on any VLAN feature change */
4368 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4369 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4370 		iavf_set_vlan_offload_features(adapter, netdev->features,
4371 					       features);
4372 
4373 	return 0;
4374 }
4375 
4376 /**
4377  * iavf_features_check - Validate encapsulated packet conforms to limits
4378  * @skb: skb buff
4379  * @dev: This physical port's netdev
4380  * @features: Offload features that the stack believes apply
4381  **/
4382 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4383 					     struct net_device *dev,
4384 					     netdev_features_t features)
4385 {
4386 	size_t len;
4387 
4388 	/* No point in doing any of this if neither checksum nor GSO are
4389 	 * being requested for this frame.  We can rule out both by just
4390 	 * checking for CHECKSUM_PARTIAL
4391 	 */
4392 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4393 		return features;
4394 
4395 	/* We cannot support GSO if the MSS is going to be less than
4396 	 * 64 bytes.  If it is then we need to drop support for GSO.
4397 	 */
4398 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4399 		features &= ~NETIF_F_GSO_MASK;
4400 
4401 	/* MACLEN can support at most 63 words */
4402 	len = skb_network_header(skb) - skb->data;
4403 	if (len & ~(63 * 2))
4404 		goto out_err;
4405 
4406 	/* IPLEN and EIPLEN can support at most 127 dwords */
4407 	len = skb_transport_header(skb) - skb_network_header(skb);
4408 	if (len & ~(127 * 4))
4409 		goto out_err;
4410 
4411 	if (skb->encapsulation) {
4412 		/* L4TUNLEN can support 127 words */
4413 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4414 		if (len & ~(127 * 2))
4415 			goto out_err;
4416 
4417 		/* IPLEN can support at most 127 dwords */
4418 		len = skb_inner_transport_header(skb) -
4419 		      skb_inner_network_header(skb);
4420 		if (len & ~(127 * 4))
4421 			goto out_err;
4422 	}
4423 
4424 	/* No need to validate L4LEN as TCP is the only protocol with a
4425 	 * flexible value and we support all possible values supported
4426 	 * by TCP, which is at most 15 dwords
4427 	 */
4428 
4429 	return features;
4430 out_err:
4431 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4432 }
4433 
4434 /**
4435  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4436  * @adapter: board private structure
4437  *
4438  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4439  * were negotiated determine the VLAN features that can be toggled on and off.
4440  **/
4441 static netdev_features_t
4442 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4443 {
4444 	netdev_features_t hw_features = 0;
4445 
4446 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4447 		return hw_features;
4448 
4449 	/* Enable VLAN features if supported */
4450 	if (VLAN_ALLOWED(adapter)) {
4451 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4452 				NETIF_F_HW_VLAN_CTAG_RX);
4453 	} else if (VLAN_V2_ALLOWED(adapter)) {
4454 		struct virtchnl_vlan_caps *vlan_v2_caps =
4455 			&adapter->vlan_v2_caps;
4456 		struct virtchnl_vlan_supported_caps *stripping_support =
4457 			&vlan_v2_caps->offloads.stripping_support;
4458 		struct virtchnl_vlan_supported_caps *insertion_support =
4459 			&vlan_v2_caps->offloads.insertion_support;
4460 
4461 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4462 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4463 			if (stripping_support->outer &
4464 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4465 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4466 			if (stripping_support->outer &
4467 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4468 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4469 		} else if (stripping_support->inner !=
4470 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4471 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4472 			if (stripping_support->inner &
4473 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4474 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4475 		}
4476 
4477 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4478 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4479 			if (insertion_support->outer &
4480 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4481 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4482 			if (insertion_support->outer &
4483 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4484 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4485 		} else if (insertion_support->inner &&
4486 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4487 			if (insertion_support->inner &
4488 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4489 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4490 		}
4491 	}
4492 
4493 	return hw_features;
4494 }
4495 
4496 /**
4497  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4498  * @adapter: board private structure
4499  *
4500  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4501  * were negotiated determine the VLAN features that are enabled by default.
4502  **/
4503 static netdev_features_t
4504 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4505 {
4506 	netdev_features_t features = 0;
4507 
4508 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4509 		return features;
4510 
4511 	if (VLAN_ALLOWED(adapter)) {
4512 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4513 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4514 	} else if (VLAN_V2_ALLOWED(adapter)) {
4515 		struct virtchnl_vlan_caps *vlan_v2_caps =
4516 			&adapter->vlan_v2_caps;
4517 		struct virtchnl_vlan_supported_caps *filtering_support =
4518 			&vlan_v2_caps->filtering.filtering_support;
4519 		struct virtchnl_vlan_supported_caps *stripping_support =
4520 			&vlan_v2_caps->offloads.stripping_support;
4521 		struct virtchnl_vlan_supported_caps *insertion_support =
4522 			&vlan_v2_caps->offloads.insertion_support;
4523 		u32 ethertype_init;
4524 
4525 		/* give priority to outer stripping and don't support both outer
4526 		 * and inner stripping
4527 		 */
4528 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4529 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4530 			if (stripping_support->outer &
4531 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4532 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4533 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4534 			else if (stripping_support->outer &
4535 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4536 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4537 				features |= NETIF_F_HW_VLAN_STAG_RX;
4538 		} else if (stripping_support->inner !=
4539 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4540 			if (stripping_support->inner &
4541 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4542 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4543 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4544 		}
4545 
4546 		/* give priority to outer insertion and don't support both outer
4547 		 * and inner insertion
4548 		 */
4549 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4550 			if (insertion_support->outer &
4551 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4552 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4553 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4554 			else if (insertion_support->outer &
4555 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4556 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4557 				features |= NETIF_F_HW_VLAN_STAG_TX;
4558 		} else if (insertion_support->inner !=
4559 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4560 			if (insertion_support->inner &
4561 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4562 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4563 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4564 		}
4565 
4566 		/* give priority to outer filtering and don't bother if both
4567 		 * outer and inner filtering are enabled
4568 		 */
4569 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4570 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4571 			if (filtering_support->outer &
4572 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4573 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4574 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4575 			if (filtering_support->outer &
4576 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4577 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4578 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4579 		} else if (filtering_support->inner !=
4580 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4581 			if (filtering_support->inner &
4582 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4583 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4584 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4585 			if (filtering_support->inner &
4586 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4587 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4588 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4589 		}
4590 	}
4591 
4592 	return features;
4593 }
4594 
4595 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4596 	(!(((requested) & (feature_bit)) && \
4597 	   !((allowed) & (feature_bit))))
4598 
4599 /**
4600  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4601  * @adapter: board private structure
4602  * @requested_features: stack requested NETDEV features
4603  **/
4604 static netdev_features_t
4605 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4606 			      netdev_features_t requested_features)
4607 {
4608 	netdev_features_t allowed_features;
4609 
4610 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4611 		iavf_get_netdev_vlan_features(adapter);
4612 
4613 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4614 					      allowed_features,
4615 					      NETIF_F_HW_VLAN_CTAG_TX))
4616 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4617 
4618 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4619 					      allowed_features,
4620 					      NETIF_F_HW_VLAN_CTAG_RX))
4621 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4622 
4623 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4624 					      allowed_features,
4625 					      NETIF_F_HW_VLAN_STAG_TX))
4626 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4627 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4628 					      allowed_features,
4629 					      NETIF_F_HW_VLAN_STAG_RX))
4630 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4631 
4632 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4633 					      allowed_features,
4634 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4635 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4636 
4637 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4638 					      allowed_features,
4639 					      NETIF_F_HW_VLAN_STAG_FILTER))
4640 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4641 
4642 	if ((requested_features &
4643 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4644 	    (requested_features &
4645 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4646 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4647 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4648 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4649 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4650 					NETIF_F_HW_VLAN_STAG_TX);
4651 	}
4652 
4653 	return requested_features;
4654 }
4655 
4656 /**
4657  * iavf_fix_features - fix up the netdev feature bits
4658  * @netdev: our net device
4659  * @features: desired feature bits
4660  *
4661  * Returns fixed-up features bits
4662  **/
4663 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4664 					   netdev_features_t features)
4665 {
4666 	struct iavf_adapter *adapter = netdev_priv(netdev);
4667 
4668 	return iavf_fix_netdev_vlan_features(adapter, features);
4669 }
4670 
4671 static const struct net_device_ops iavf_netdev_ops = {
4672 	.ndo_open		= iavf_open,
4673 	.ndo_stop		= iavf_close,
4674 	.ndo_start_xmit		= iavf_xmit_frame,
4675 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4676 	.ndo_validate_addr	= eth_validate_addr,
4677 	.ndo_set_mac_address	= iavf_set_mac,
4678 	.ndo_change_mtu		= iavf_change_mtu,
4679 	.ndo_tx_timeout		= iavf_tx_timeout,
4680 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4681 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4682 	.ndo_features_check	= iavf_features_check,
4683 	.ndo_fix_features	= iavf_fix_features,
4684 	.ndo_set_features	= iavf_set_features,
4685 	.ndo_setup_tc		= iavf_setup_tc,
4686 };
4687 
4688 /**
4689  * iavf_check_reset_complete - check that VF reset is complete
4690  * @hw: pointer to hw struct
4691  *
4692  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4693  **/
4694 static int iavf_check_reset_complete(struct iavf_hw *hw)
4695 {
4696 	u32 rstat;
4697 	int i;
4698 
4699 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4700 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4701 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4702 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4703 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4704 			return 0;
4705 		usleep_range(10, 20);
4706 	}
4707 	return -EBUSY;
4708 }
4709 
4710 /**
4711  * iavf_process_config - Process the config information we got from the PF
4712  * @adapter: board private structure
4713  *
4714  * Verify that we have a valid config struct, and set up our netdev features
4715  * and our VSI struct.
4716  **/
4717 int iavf_process_config(struct iavf_adapter *adapter)
4718 {
4719 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4720 	netdev_features_t hw_vlan_features, vlan_features;
4721 	struct net_device *netdev = adapter->netdev;
4722 	netdev_features_t hw_enc_features;
4723 	netdev_features_t hw_features;
4724 
4725 	hw_enc_features = NETIF_F_SG			|
4726 			  NETIF_F_IP_CSUM		|
4727 			  NETIF_F_IPV6_CSUM		|
4728 			  NETIF_F_HIGHDMA		|
4729 			  NETIF_F_SOFT_FEATURES	|
4730 			  NETIF_F_TSO			|
4731 			  NETIF_F_TSO_ECN		|
4732 			  NETIF_F_TSO6			|
4733 			  NETIF_F_SCTP_CRC		|
4734 			  NETIF_F_RXHASH		|
4735 			  NETIF_F_RXCSUM		|
4736 			  0;
4737 
4738 	/* advertise to stack only if offloads for encapsulated packets is
4739 	 * supported
4740 	 */
4741 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4742 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4743 				   NETIF_F_GSO_GRE		|
4744 				   NETIF_F_GSO_GRE_CSUM		|
4745 				   NETIF_F_GSO_IPXIP4		|
4746 				   NETIF_F_GSO_IPXIP6		|
4747 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4748 				   NETIF_F_GSO_PARTIAL		|
4749 				   0;
4750 
4751 		if (!(vfres->vf_cap_flags &
4752 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4753 			netdev->gso_partial_features |=
4754 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4755 
4756 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4757 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4758 		netdev->hw_enc_features |= hw_enc_features;
4759 	}
4760 	/* record features VLANs can make use of */
4761 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4762 
4763 	/* Write features and hw_features separately to avoid polluting
4764 	 * with, or dropping, features that are set when we registered.
4765 	 */
4766 	hw_features = hw_enc_features;
4767 
4768 	/* get HW VLAN features that can be toggled */
4769 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4770 
4771 	/* Enable cloud filter if ADQ is supported */
4772 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4773 		hw_features |= NETIF_F_HW_TC;
4774 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4775 		hw_features |= NETIF_F_GSO_UDP_L4;
4776 
4777 	netdev->hw_features |= hw_features | hw_vlan_features;
4778 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4779 
4780 	netdev->features |= hw_features | vlan_features;
4781 
4782 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4783 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4784 
4785 	netdev->priv_flags |= IFF_UNICAST_FLT;
4786 
4787 	/* Do not turn on offloads when they are requested to be turned off.
4788 	 * TSO needs minimum 576 bytes to work correctly.
4789 	 */
4790 	if (netdev->wanted_features) {
4791 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4792 		    netdev->mtu < 576)
4793 			netdev->features &= ~NETIF_F_TSO;
4794 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4795 		    netdev->mtu < 576)
4796 			netdev->features &= ~NETIF_F_TSO6;
4797 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4798 			netdev->features &= ~NETIF_F_TSO_ECN;
4799 		if (!(netdev->wanted_features & NETIF_F_GRO))
4800 			netdev->features &= ~NETIF_F_GRO;
4801 		if (!(netdev->wanted_features & NETIF_F_GSO))
4802 			netdev->features &= ~NETIF_F_GSO;
4803 	}
4804 
4805 	return 0;
4806 }
4807 
4808 /**
4809  * iavf_shutdown - Shutdown the device in preparation for a reboot
4810  * @pdev: pci device structure
4811  **/
4812 static void iavf_shutdown(struct pci_dev *pdev)
4813 {
4814 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4815 	struct net_device *netdev = adapter->netdev;
4816 
4817 	netif_device_detach(netdev);
4818 
4819 	if (netif_running(netdev))
4820 		iavf_close(netdev);
4821 
4822 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4823 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4824 	/* Prevent the watchdog from running. */
4825 	iavf_change_state(adapter, __IAVF_REMOVE);
4826 	adapter->aq_required = 0;
4827 	mutex_unlock(&adapter->crit_lock);
4828 
4829 #ifdef CONFIG_PM
4830 	pci_save_state(pdev);
4831 
4832 #endif
4833 	pci_disable_device(pdev);
4834 }
4835 
4836 /**
4837  * iavf_probe - Device Initialization Routine
4838  * @pdev: PCI device information struct
4839  * @ent: entry in iavf_pci_tbl
4840  *
4841  * Returns 0 on success, negative on failure
4842  *
4843  * iavf_probe initializes an adapter identified by a pci_dev structure.
4844  * The OS initialization, configuring of the adapter private structure,
4845  * and a hardware reset occur.
4846  **/
4847 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4848 {
4849 	struct net_device *netdev;
4850 	struct iavf_adapter *adapter = NULL;
4851 	struct iavf_hw *hw = NULL;
4852 	int err;
4853 
4854 	err = pci_enable_device(pdev);
4855 	if (err)
4856 		return err;
4857 
4858 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4859 	if (err) {
4860 		dev_err(&pdev->dev,
4861 			"DMA configuration failed: 0x%x\n", err);
4862 		goto err_dma;
4863 	}
4864 
4865 	err = pci_request_regions(pdev, iavf_driver_name);
4866 	if (err) {
4867 		dev_err(&pdev->dev,
4868 			"pci_request_regions failed 0x%x\n", err);
4869 		goto err_pci_reg;
4870 	}
4871 
4872 	pci_enable_pcie_error_reporting(pdev);
4873 
4874 	pci_set_master(pdev);
4875 
4876 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4877 				   IAVF_MAX_REQ_QUEUES);
4878 	if (!netdev) {
4879 		err = -ENOMEM;
4880 		goto err_alloc_etherdev;
4881 	}
4882 
4883 	SET_NETDEV_DEV(netdev, &pdev->dev);
4884 
4885 	pci_set_drvdata(pdev, netdev);
4886 	adapter = netdev_priv(netdev);
4887 
4888 	adapter->netdev = netdev;
4889 	adapter->pdev = pdev;
4890 
4891 	hw = &adapter->hw;
4892 	hw->back = adapter;
4893 
4894 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4895 	iavf_change_state(adapter, __IAVF_STARTUP);
4896 
4897 	/* Call save state here because it relies on the adapter struct. */
4898 	pci_save_state(pdev);
4899 
4900 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4901 			      pci_resource_len(pdev, 0));
4902 	if (!hw->hw_addr) {
4903 		err = -EIO;
4904 		goto err_ioremap;
4905 	}
4906 	hw->vendor_id = pdev->vendor;
4907 	hw->device_id = pdev->device;
4908 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4909 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4910 	hw->subsystem_device_id = pdev->subsystem_device;
4911 	hw->bus.device = PCI_SLOT(pdev->devfn);
4912 	hw->bus.func = PCI_FUNC(pdev->devfn);
4913 	hw->bus.bus_id = pdev->bus->number;
4914 
4915 	/* set up the locks for the AQ, do this only once in probe
4916 	 * and destroy them only once in remove
4917 	 */
4918 	mutex_init(&adapter->crit_lock);
4919 	mutex_init(&adapter->client_lock);
4920 	mutex_init(&hw->aq.asq_mutex);
4921 	mutex_init(&hw->aq.arq_mutex);
4922 
4923 	spin_lock_init(&adapter->mac_vlan_list_lock);
4924 	spin_lock_init(&adapter->cloud_filter_list_lock);
4925 	spin_lock_init(&adapter->fdir_fltr_lock);
4926 	spin_lock_init(&adapter->adv_rss_lock);
4927 
4928 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4929 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4930 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4931 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4932 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4933 
4934 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4935 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4936 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4937 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4938 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4939 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4940 
4941 	/* Setup the wait queue for indicating transition to down status */
4942 	init_waitqueue_head(&adapter->down_waitqueue);
4943 
4944 	/* Setup the wait queue for indicating virtchannel events */
4945 	init_waitqueue_head(&adapter->vc_waitqueue);
4946 
4947 	return 0;
4948 
4949 err_ioremap:
4950 	free_netdev(netdev);
4951 err_alloc_etherdev:
4952 	pci_disable_pcie_error_reporting(pdev);
4953 	pci_release_regions(pdev);
4954 err_pci_reg:
4955 err_dma:
4956 	pci_disable_device(pdev);
4957 	return err;
4958 }
4959 
4960 /**
4961  * iavf_suspend - Power management suspend routine
4962  * @dev_d: device info pointer
4963  *
4964  * Called when the system (VM) is entering sleep/suspend.
4965  **/
4966 static int __maybe_unused iavf_suspend(struct device *dev_d)
4967 {
4968 	struct net_device *netdev = dev_get_drvdata(dev_d);
4969 	struct iavf_adapter *adapter = netdev_priv(netdev);
4970 
4971 	netif_device_detach(netdev);
4972 
4973 	while (!mutex_trylock(&adapter->crit_lock))
4974 		usleep_range(500, 1000);
4975 
4976 	if (netif_running(netdev)) {
4977 		rtnl_lock();
4978 		iavf_down(adapter);
4979 		rtnl_unlock();
4980 	}
4981 	iavf_free_misc_irq(adapter);
4982 	iavf_reset_interrupt_capability(adapter);
4983 
4984 	mutex_unlock(&adapter->crit_lock);
4985 
4986 	return 0;
4987 }
4988 
4989 /**
4990  * iavf_resume - Power management resume routine
4991  * @dev_d: device info pointer
4992  *
4993  * Called when the system (VM) is resumed from sleep/suspend.
4994  **/
4995 static int __maybe_unused iavf_resume(struct device *dev_d)
4996 {
4997 	struct pci_dev *pdev = to_pci_dev(dev_d);
4998 	struct iavf_adapter *adapter;
4999 	u32 err;
5000 
5001 	adapter = iavf_pdev_to_adapter(pdev);
5002 
5003 	pci_set_master(pdev);
5004 
5005 	rtnl_lock();
5006 	err = iavf_set_interrupt_capability(adapter);
5007 	if (err) {
5008 		rtnl_unlock();
5009 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5010 		return err;
5011 	}
5012 	err = iavf_request_misc_irq(adapter);
5013 	rtnl_unlock();
5014 	if (err) {
5015 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5016 		return err;
5017 	}
5018 
5019 	queue_work(iavf_wq, &adapter->reset_task);
5020 
5021 	netif_device_attach(adapter->netdev);
5022 
5023 	return err;
5024 }
5025 
5026 /**
5027  * iavf_remove - Device Removal Routine
5028  * @pdev: PCI device information struct
5029  *
5030  * iavf_remove is called by the PCI subsystem to alert the driver
5031  * that it should release a PCI device.  The could be caused by a
5032  * Hot-Plug event, or because the driver is going to be removed from
5033  * memory.
5034  **/
5035 static void iavf_remove(struct pci_dev *pdev)
5036 {
5037 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5038 	struct net_device *netdev = adapter->netdev;
5039 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5040 	struct iavf_vlan_filter *vlf, *vlftmp;
5041 	struct iavf_adv_rss *rss, *rsstmp;
5042 	struct iavf_mac_filter *f, *ftmp;
5043 	struct iavf_cloud_filter *cf, *cftmp;
5044 	struct iavf_hw *hw = &adapter->hw;
5045 	int err;
5046 
5047 	/* When reboot/shutdown is in progress no need to do anything
5048 	 * as the adapter is already REMOVE state that was set during
5049 	 * iavf_shutdown() callback.
5050 	 */
5051 	if (adapter->state == __IAVF_REMOVE)
5052 		return;
5053 
5054 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
5055 	/* Wait until port initialization is complete.
5056 	 * There are flows where register/unregister netdev may race.
5057 	 */
5058 	while (1) {
5059 		mutex_lock(&adapter->crit_lock);
5060 		if (adapter->state == __IAVF_RUNNING ||
5061 		    adapter->state == __IAVF_DOWN ||
5062 		    adapter->state == __IAVF_INIT_FAILED) {
5063 			mutex_unlock(&adapter->crit_lock);
5064 			break;
5065 		}
5066 
5067 		mutex_unlock(&adapter->crit_lock);
5068 		usleep_range(500, 1000);
5069 	}
5070 	cancel_delayed_work_sync(&adapter->watchdog_task);
5071 
5072 	if (adapter->netdev_registered) {
5073 		rtnl_lock();
5074 		unregister_netdevice(netdev);
5075 		adapter->netdev_registered = false;
5076 		rtnl_unlock();
5077 	}
5078 	if (CLIENT_ALLOWED(adapter)) {
5079 		err = iavf_lan_del_device(adapter);
5080 		if (err)
5081 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5082 				 err);
5083 	}
5084 
5085 	mutex_lock(&adapter->crit_lock);
5086 	dev_info(&adapter->pdev->dev, "Remove device\n");
5087 	iavf_change_state(adapter, __IAVF_REMOVE);
5088 
5089 	iavf_request_reset(adapter);
5090 	msleep(50);
5091 	/* If the FW isn't responding, kick it once, but only once. */
5092 	if (!iavf_asq_done(hw)) {
5093 		iavf_request_reset(adapter);
5094 		msleep(50);
5095 	}
5096 
5097 	iavf_misc_irq_disable(adapter);
5098 	/* Shut down all the garbage mashers on the detention level */
5099 	cancel_work_sync(&adapter->reset_task);
5100 	cancel_delayed_work_sync(&adapter->watchdog_task);
5101 	cancel_work_sync(&adapter->adminq_task);
5102 	cancel_delayed_work_sync(&adapter->client_task);
5103 
5104 	adapter->aq_required = 0;
5105 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5106 
5107 	iavf_free_all_tx_resources(adapter);
5108 	iavf_free_all_rx_resources(adapter);
5109 	iavf_free_misc_irq(adapter);
5110 
5111 	iavf_reset_interrupt_capability(adapter);
5112 	iavf_free_q_vectors(adapter);
5113 
5114 	iavf_free_rss(adapter);
5115 
5116 	if (hw->aq.asq.count)
5117 		iavf_shutdown_adminq(hw);
5118 
5119 	/* destroy the locks only once, here */
5120 	mutex_destroy(&hw->aq.arq_mutex);
5121 	mutex_destroy(&hw->aq.asq_mutex);
5122 	mutex_destroy(&adapter->client_lock);
5123 	mutex_unlock(&adapter->crit_lock);
5124 	mutex_destroy(&adapter->crit_lock);
5125 
5126 	iounmap(hw->hw_addr);
5127 	pci_release_regions(pdev);
5128 	iavf_free_queues(adapter);
5129 	kfree(adapter->vf_res);
5130 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5131 	/* If we got removed before an up/down sequence, we've got a filter
5132 	 * hanging out there that we need to get rid of.
5133 	 */
5134 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5135 		list_del(&f->list);
5136 		kfree(f);
5137 	}
5138 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5139 				 list) {
5140 		list_del(&vlf->list);
5141 		kfree(vlf);
5142 	}
5143 
5144 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5145 
5146 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5147 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5148 		list_del(&cf->list);
5149 		kfree(cf);
5150 	}
5151 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5152 
5153 	spin_lock_bh(&adapter->fdir_fltr_lock);
5154 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5155 		list_del(&fdir->list);
5156 		kfree(fdir);
5157 	}
5158 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5159 
5160 	spin_lock_bh(&adapter->adv_rss_lock);
5161 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5162 				 list) {
5163 		list_del(&rss->list);
5164 		kfree(rss);
5165 	}
5166 	spin_unlock_bh(&adapter->adv_rss_lock);
5167 
5168 	free_netdev(netdev);
5169 
5170 	pci_disable_pcie_error_reporting(pdev);
5171 
5172 	pci_disable_device(pdev);
5173 }
5174 
5175 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5176 
5177 static struct pci_driver iavf_driver = {
5178 	.name      = iavf_driver_name,
5179 	.id_table  = iavf_pci_tbl,
5180 	.probe     = iavf_probe,
5181 	.remove    = iavf_remove,
5182 	.driver.pm = &iavf_pm_ops,
5183 	.shutdown  = iavf_shutdown,
5184 };
5185 
5186 /**
5187  * iavf_init_module - Driver Registration Routine
5188  *
5189  * iavf_init_module is the first routine called when the driver is
5190  * loaded. All it does is register with the PCI subsystem.
5191  **/
5192 static int __init iavf_init_module(void)
5193 {
5194 	pr_info("iavf: %s\n", iavf_driver_string);
5195 
5196 	pr_info("%s\n", iavf_copyright);
5197 
5198 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
5199 				  iavf_driver_name);
5200 	if (!iavf_wq) {
5201 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
5202 		return -ENOMEM;
5203 	}
5204 	return pci_register_driver(&iavf_driver);
5205 }
5206 
5207 module_init(iavf_init_module);
5208 
5209 /**
5210  * iavf_exit_module - Driver Exit Cleanup Routine
5211  *
5212  * iavf_exit_module is called just before the driver is removed
5213  * from memory.
5214  **/
5215 static void __exit iavf_exit_module(void)
5216 {
5217 	pci_unregister_driver(&iavf_driver);
5218 	destroy_workqueue(iavf_wq);
5219 }
5220 
5221 module_exit(iavf_exit_module);
5222 
5223 /* iavf_main.c */
5224