1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 /** 913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 914 * @netdev: network device struct 915 * @proto: unused protocol data 916 * @vid: VLAN tag 917 **/ 918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 919 __always_unused __be16 proto, u16 vid) 920 { 921 struct iavf_adapter *adapter = netdev_priv(netdev); 922 923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 924 if (proto == cpu_to_be16(ETH_P_8021Q)) 925 clear_bit(vid, adapter->vsi.active_cvlans); 926 else 927 clear_bit(vid, adapter->vsi.active_svlans); 928 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1012 f->is_primary = false; 1013 } 1014 1015 f = iavf_find_filter(adapter, hw->mac.addr); 1016 if (f) { 1017 f->remove = true; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1019 } 1020 1021 f = iavf_add_filter(adapter, new_mac); 1022 1023 if (f) { 1024 /* Always send the request to add if changing primary MAC 1025 * even if filter is already present on the list 1026 */ 1027 f->is_primary = true; 1028 f->add = true; 1029 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1030 ether_addr_copy(hw->mac.addr, new_mac); 1031 } 1032 1033 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1034 1035 /* schedule the watchdog task to immediately process the request */ 1036 if (f) { 1037 queue_work(iavf_wq, &adapter->watchdog_task.work); 1038 return 0; 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 /** 1044 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1045 * @netdev: network interface device structure 1046 * @macaddr: MAC address to set 1047 * 1048 * Returns true on success, false on failure 1049 */ 1050 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1051 const u8 *macaddr) 1052 { 1053 struct iavf_adapter *adapter = netdev_priv(netdev); 1054 struct iavf_mac_filter *f; 1055 bool ret = false; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 f = iavf_find_filter(adapter, macaddr); 1060 1061 if (!f || (!f->add && f->add_handled)) 1062 ret = true; 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * iavf_set_mac - NDO callback to set port MAC address 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 */ 1076 static int iavf_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct iavf_adapter *adapter = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 bool handle_mac = iavf_is_mac_set_handled(netdev, addr->sa_data); 1081 int ret; 1082 1083 if (!is_valid_ether_addr(addr->sa_data)) 1084 return -EADDRNOTAVAIL; 1085 1086 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1087 1088 if (ret) 1089 return ret; 1090 1091 /* If this is an initial set MAC during VF spawn do not wait */ 1092 if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) { 1093 adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET; 1094 return 0; 1095 } 1096 1097 if (handle_mac) 1098 goto done; 1099 1100 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, false, msecs_to_jiffies(2500)); 1101 1102 /* If ret < 0 then it means wait was interrupted. 1103 * If ret == 0 then it means we got a timeout. 1104 * else it means we got response for set MAC from PF, 1105 * check if netdev MAC was updated to requested MAC, 1106 * if yes then set MAC succeeded otherwise it failed return -EACCES 1107 */ 1108 if (ret < 0) 1109 return ret; 1110 1111 if (!ret) 1112 return -EAGAIN; 1113 1114 done: 1115 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1116 return -EACCES; 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1123 * @netdev: the netdevice 1124 * @addr: address to add 1125 * 1126 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1127 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1128 */ 1129 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1130 { 1131 struct iavf_adapter *adapter = netdev_priv(netdev); 1132 1133 if (iavf_add_filter(adapter, addr)) 1134 return 0; 1135 else 1136 return -ENOMEM; 1137 } 1138 1139 /** 1140 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1141 * @netdev: the netdevice 1142 * @addr: address to add 1143 * 1144 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1145 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1146 */ 1147 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1148 { 1149 struct iavf_adapter *adapter = netdev_priv(netdev); 1150 struct iavf_mac_filter *f; 1151 1152 /* Under some circumstances, we might receive a request to delete 1153 * our own device address from our uc list. Because we store the 1154 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1155 * such requests and not delete our device address from this list. 1156 */ 1157 if (ether_addr_equal(addr, netdev->dev_addr)) 1158 return 0; 1159 1160 f = iavf_find_filter(adapter, addr); 1161 if (f) { 1162 f->remove = true; 1163 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * iavf_set_rx_mode - NDO callback to set the netdev filters 1170 * @netdev: network interface device structure 1171 **/ 1172 static void iavf_set_rx_mode(struct net_device *netdev) 1173 { 1174 struct iavf_adapter *adapter = netdev_priv(netdev); 1175 1176 spin_lock_bh(&adapter->mac_vlan_list_lock); 1177 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1178 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1179 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1180 1181 if (netdev->flags & IFF_PROMISC && 1182 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1183 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1184 else if (!(netdev->flags & IFF_PROMISC) && 1185 adapter->flags & IAVF_FLAG_PROMISC_ON) 1186 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1187 1188 if (netdev->flags & IFF_ALLMULTI && 1189 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1190 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1191 else if (!(netdev->flags & IFF_ALLMULTI) && 1192 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1193 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1194 } 1195 1196 /** 1197 * iavf_napi_enable_all - enable NAPI on all queue vectors 1198 * @adapter: board private structure 1199 **/ 1200 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1201 { 1202 int q_idx; 1203 struct iavf_q_vector *q_vector; 1204 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1205 1206 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1207 struct napi_struct *napi; 1208 1209 q_vector = &adapter->q_vectors[q_idx]; 1210 napi = &q_vector->napi; 1211 napi_enable(napi); 1212 } 1213 } 1214 1215 /** 1216 * iavf_napi_disable_all - disable NAPI on all queue vectors 1217 * @adapter: board private structure 1218 **/ 1219 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1220 { 1221 int q_idx; 1222 struct iavf_q_vector *q_vector; 1223 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1224 1225 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1226 q_vector = &adapter->q_vectors[q_idx]; 1227 napi_disable(&q_vector->napi); 1228 } 1229 } 1230 1231 /** 1232 * iavf_configure - set up transmit and receive data structures 1233 * @adapter: board private structure 1234 **/ 1235 static void iavf_configure(struct iavf_adapter *adapter) 1236 { 1237 struct net_device *netdev = adapter->netdev; 1238 int i; 1239 1240 iavf_set_rx_mode(netdev); 1241 1242 iavf_configure_tx(adapter); 1243 iavf_configure_rx(adapter); 1244 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1245 1246 for (i = 0; i < adapter->num_active_queues; i++) { 1247 struct iavf_ring *ring = &adapter->rx_rings[i]; 1248 1249 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1250 } 1251 } 1252 1253 /** 1254 * iavf_up_complete - Finish the last steps of bringing up a connection 1255 * @adapter: board private structure 1256 * 1257 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1258 **/ 1259 static void iavf_up_complete(struct iavf_adapter *adapter) 1260 { 1261 iavf_change_state(adapter, __IAVF_RUNNING); 1262 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1263 1264 iavf_napi_enable_all(adapter); 1265 1266 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1267 if (CLIENT_ENABLED(adapter)) 1268 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1269 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1270 } 1271 1272 /** 1273 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1274 * yet and mark other to be removed. 1275 * @adapter: board private structure 1276 **/ 1277 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1278 { 1279 struct iavf_vlan_filter *vlf, *vlftmp; 1280 struct iavf_mac_filter *f, *ftmp; 1281 1282 spin_lock_bh(&adapter->mac_vlan_list_lock); 1283 /* clear the sync flag on all filters */ 1284 __dev_uc_unsync(adapter->netdev, NULL); 1285 __dev_mc_unsync(adapter->netdev, NULL); 1286 1287 /* remove all MAC filters */ 1288 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1289 list) { 1290 if (f->add) { 1291 list_del(&f->list); 1292 kfree(f); 1293 } else { 1294 f->remove = true; 1295 } 1296 } 1297 1298 /* remove all VLAN filters */ 1299 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1300 list) { 1301 if (vlf->add) { 1302 list_del(&vlf->list); 1303 kfree(vlf); 1304 } else { 1305 vlf->remove = true; 1306 } 1307 } 1308 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1309 } 1310 1311 /** 1312 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1313 * mark other to be removed. 1314 * @adapter: board private structure 1315 **/ 1316 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1317 { 1318 struct iavf_cloud_filter *cf, *cftmp; 1319 1320 /* remove all cloud filters */ 1321 spin_lock_bh(&adapter->cloud_filter_list_lock); 1322 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1323 list) { 1324 if (cf->add) { 1325 list_del(&cf->list); 1326 kfree(cf); 1327 adapter->num_cloud_filters--; 1328 } else { 1329 cf->del = true; 1330 } 1331 } 1332 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1333 } 1334 1335 /** 1336 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1337 * other to be removed. 1338 * @adapter: board private structure 1339 **/ 1340 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1341 { 1342 struct iavf_fdir_fltr *fdir, *fdirtmp; 1343 1344 /* remove all Flow Director filters */ 1345 spin_lock_bh(&adapter->fdir_fltr_lock); 1346 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1347 list) { 1348 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1349 list_del(&fdir->list); 1350 kfree(fdir); 1351 adapter->fdir_active_fltr--; 1352 } else { 1353 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1354 } 1355 } 1356 spin_unlock_bh(&adapter->fdir_fltr_lock); 1357 } 1358 1359 /** 1360 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1361 * other to be removed. 1362 * @adapter: board private structure 1363 **/ 1364 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1365 { 1366 struct iavf_adv_rss *rss, *rsstmp; 1367 1368 /* remove all advance RSS configuration */ 1369 spin_lock_bh(&adapter->adv_rss_lock); 1370 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1371 list) { 1372 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1373 list_del(&rss->list); 1374 kfree(rss); 1375 } else { 1376 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1377 } 1378 } 1379 spin_unlock_bh(&adapter->adv_rss_lock); 1380 } 1381 1382 /** 1383 * iavf_down - Shutdown the connection processing 1384 * @adapter: board private structure 1385 * 1386 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1387 **/ 1388 void iavf_down(struct iavf_adapter *adapter) 1389 { 1390 struct net_device *netdev = adapter->netdev; 1391 1392 if (adapter->state <= __IAVF_DOWN_PENDING) 1393 return; 1394 1395 netif_carrier_off(netdev); 1396 netif_tx_disable(netdev); 1397 adapter->link_up = false; 1398 iavf_napi_disable_all(adapter); 1399 iavf_irq_disable(adapter); 1400 1401 iavf_clear_mac_vlan_filters(adapter); 1402 iavf_clear_cloud_filters(adapter); 1403 iavf_clear_fdir_filters(adapter); 1404 iavf_clear_adv_rss_conf(adapter); 1405 1406 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1407 /* cancel any current operation */ 1408 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1409 /* Schedule operations to close down the HW. Don't wait 1410 * here for this to complete. The watchdog is still running 1411 * and it will take care of this. 1412 */ 1413 if (!list_empty(&adapter->mac_filter_list)) 1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1415 if (!list_empty(&adapter->vlan_filter_list)) 1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1417 if (!list_empty(&adapter->cloud_filter_list)) 1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1419 if (!list_empty(&adapter->fdir_list_head)) 1420 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1421 if (!list_empty(&adapter->adv_rss_list_head)) 1422 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1423 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1424 } 1425 1426 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1427 } 1428 1429 /** 1430 * iavf_acquire_msix_vectors - Setup the MSIX capability 1431 * @adapter: board private structure 1432 * @vectors: number of vectors to request 1433 * 1434 * Work with the OS to set up the MSIX vectors needed. 1435 * 1436 * Returns 0 on success, negative on failure 1437 **/ 1438 static int 1439 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1440 { 1441 int err, vector_threshold; 1442 1443 /* We'll want at least 3 (vector_threshold): 1444 * 0) Other (Admin Queue and link, mostly) 1445 * 1) TxQ[0] Cleanup 1446 * 2) RxQ[0] Cleanup 1447 */ 1448 vector_threshold = MIN_MSIX_COUNT; 1449 1450 /* The more we get, the more we will assign to Tx/Rx Cleanup 1451 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1452 * Right now, we simply care about how many we'll get; we'll 1453 * set them up later while requesting irq's. 1454 */ 1455 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1456 vector_threshold, vectors); 1457 if (err < 0) { 1458 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1459 kfree(adapter->msix_entries); 1460 adapter->msix_entries = NULL; 1461 return err; 1462 } 1463 1464 /* Adjust for only the vectors we'll use, which is minimum 1465 * of max_msix_q_vectors + NONQ_VECS, or the number of 1466 * vectors we were allocated. 1467 */ 1468 adapter->num_msix_vectors = err; 1469 return 0; 1470 } 1471 1472 /** 1473 * iavf_free_queues - Free memory for all rings 1474 * @adapter: board private structure to initialize 1475 * 1476 * Free all of the memory associated with queue pairs. 1477 **/ 1478 static void iavf_free_queues(struct iavf_adapter *adapter) 1479 { 1480 if (!adapter->vsi_res) 1481 return; 1482 adapter->num_active_queues = 0; 1483 kfree(adapter->tx_rings); 1484 adapter->tx_rings = NULL; 1485 kfree(adapter->rx_rings); 1486 adapter->rx_rings = NULL; 1487 } 1488 1489 /** 1490 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1491 * @adapter: board private structure 1492 * 1493 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1494 * stripped in certain descriptor fields. Instead of checking the offload 1495 * capability bits in the hot path, cache the location the ring specific 1496 * flags. 1497 */ 1498 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1499 { 1500 int i; 1501 1502 for (i = 0; i < adapter->num_active_queues; i++) { 1503 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1504 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1505 1506 /* prevent multiple L2TAG bits being set after VFR */ 1507 tx_ring->flags &= 1508 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1509 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1510 rx_ring->flags &= 1511 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1512 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1513 1514 if (VLAN_ALLOWED(adapter)) { 1515 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1516 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1517 } else if (VLAN_V2_ALLOWED(adapter)) { 1518 struct virtchnl_vlan_supported_caps *stripping_support; 1519 struct virtchnl_vlan_supported_caps *insertion_support; 1520 1521 stripping_support = 1522 &adapter->vlan_v2_caps.offloads.stripping_support; 1523 insertion_support = 1524 &adapter->vlan_v2_caps.offloads.insertion_support; 1525 1526 if (stripping_support->outer) { 1527 if (stripping_support->outer & 1528 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1529 rx_ring->flags |= 1530 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1531 else if (stripping_support->outer & 1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1533 rx_ring->flags |= 1534 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1535 } else if (stripping_support->inner) { 1536 if (stripping_support->inner & 1537 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1538 rx_ring->flags |= 1539 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1540 else if (stripping_support->inner & 1541 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1542 rx_ring->flags |= 1543 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1544 } 1545 1546 if (insertion_support->outer) { 1547 if (insertion_support->outer & 1548 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1549 tx_ring->flags |= 1550 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1551 else if (insertion_support->outer & 1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1553 tx_ring->flags |= 1554 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1555 } else if (insertion_support->inner) { 1556 if (insertion_support->inner & 1557 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1558 tx_ring->flags |= 1559 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1560 else if (insertion_support->inner & 1561 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1562 tx_ring->flags |= 1563 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1564 } 1565 } 1566 } 1567 } 1568 1569 /** 1570 * iavf_alloc_queues - Allocate memory for all rings 1571 * @adapter: board private structure to initialize 1572 * 1573 * We allocate one ring per queue at run-time since we don't know the 1574 * number of queues at compile-time. The polling_netdev array is 1575 * intended for Multiqueue, but should work fine with a single queue. 1576 **/ 1577 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1578 { 1579 int i, num_active_queues; 1580 1581 /* If we're in reset reallocating queues we don't actually know yet for 1582 * certain the PF gave us the number of queues we asked for but we'll 1583 * assume it did. Once basic reset is finished we'll confirm once we 1584 * start negotiating config with PF. 1585 */ 1586 if (adapter->num_req_queues) 1587 num_active_queues = adapter->num_req_queues; 1588 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1589 adapter->num_tc) 1590 num_active_queues = adapter->ch_config.total_qps; 1591 else 1592 num_active_queues = min_t(int, 1593 adapter->vsi_res->num_queue_pairs, 1594 (int)(num_online_cpus())); 1595 1596 1597 adapter->tx_rings = kcalloc(num_active_queues, 1598 sizeof(struct iavf_ring), GFP_KERNEL); 1599 if (!adapter->tx_rings) 1600 goto err_out; 1601 adapter->rx_rings = kcalloc(num_active_queues, 1602 sizeof(struct iavf_ring), GFP_KERNEL); 1603 if (!adapter->rx_rings) 1604 goto err_out; 1605 1606 for (i = 0; i < num_active_queues; i++) { 1607 struct iavf_ring *tx_ring; 1608 struct iavf_ring *rx_ring; 1609 1610 tx_ring = &adapter->tx_rings[i]; 1611 1612 tx_ring->queue_index = i; 1613 tx_ring->netdev = adapter->netdev; 1614 tx_ring->dev = &adapter->pdev->dev; 1615 tx_ring->count = adapter->tx_desc_count; 1616 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1617 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1618 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1619 1620 rx_ring = &adapter->rx_rings[i]; 1621 rx_ring->queue_index = i; 1622 rx_ring->netdev = adapter->netdev; 1623 rx_ring->dev = &adapter->pdev->dev; 1624 rx_ring->count = adapter->rx_desc_count; 1625 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1626 } 1627 1628 adapter->num_active_queues = num_active_queues; 1629 1630 iavf_set_queue_vlan_tag_loc(adapter); 1631 1632 return 0; 1633 1634 err_out: 1635 iavf_free_queues(adapter); 1636 return -ENOMEM; 1637 } 1638 1639 /** 1640 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1641 * @adapter: board private structure to initialize 1642 * 1643 * Attempt to configure the interrupts using the best available 1644 * capabilities of the hardware and the kernel. 1645 **/ 1646 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1647 { 1648 int vector, v_budget; 1649 int pairs = 0; 1650 int err = 0; 1651 1652 if (!adapter->vsi_res) { 1653 err = -EIO; 1654 goto out; 1655 } 1656 pairs = adapter->num_active_queues; 1657 1658 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1659 * us much good if we have more vectors than CPUs. However, we already 1660 * limit the total number of queues by the number of CPUs so we do not 1661 * need any further limiting here. 1662 */ 1663 v_budget = min_t(int, pairs + NONQ_VECS, 1664 (int)adapter->vf_res->max_vectors); 1665 1666 adapter->msix_entries = kcalloc(v_budget, 1667 sizeof(struct msix_entry), GFP_KERNEL); 1668 if (!adapter->msix_entries) { 1669 err = -ENOMEM; 1670 goto out; 1671 } 1672 1673 for (vector = 0; vector < v_budget; vector++) 1674 adapter->msix_entries[vector].entry = vector; 1675 1676 err = iavf_acquire_msix_vectors(adapter, v_budget); 1677 1678 out: 1679 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1680 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1681 return err; 1682 } 1683 1684 /** 1685 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1686 * @adapter: board private structure 1687 * 1688 * Return 0 on success, negative on failure 1689 **/ 1690 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1691 { 1692 struct iavf_aqc_get_set_rss_key_data *rss_key = 1693 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1694 struct iavf_hw *hw = &adapter->hw; 1695 enum iavf_status status; 1696 1697 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1698 /* bail because we already have a command pending */ 1699 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1700 adapter->current_op); 1701 return -EBUSY; 1702 } 1703 1704 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1705 if (status) { 1706 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1707 iavf_stat_str(hw, status), 1708 iavf_aq_str(hw, hw->aq.asq_last_status)); 1709 return iavf_status_to_errno(status); 1710 1711 } 1712 1713 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1714 adapter->rss_lut, adapter->rss_lut_size); 1715 if (status) { 1716 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1717 iavf_stat_str(hw, status), 1718 iavf_aq_str(hw, hw->aq.asq_last_status)); 1719 return iavf_status_to_errno(status); 1720 } 1721 1722 return 0; 1723 1724 } 1725 1726 /** 1727 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1728 * @adapter: board private structure 1729 * 1730 * Returns 0 on success, negative on failure 1731 **/ 1732 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1733 { 1734 struct iavf_hw *hw = &adapter->hw; 1735 u32 *dw; 1736 u16 i; 1737 1738 dw = (u32 *)adapter->rss_key; 1739 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1740 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1741 1742 dw = (u32 *)adapter->rss_lut; 1743 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1744 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1745 1746 iavf_flush(hw); 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * iavf_config_rss - Configure RSS keys and lut 1753 * @adapter: board private structure 1754 * 1755 * Returns 0 on success, negative on failure 1756 **/ 1757 int iavf_config_rss(struct iavf_adapter *adapter) 1758 { 1759 1760 if (RSS_PF(adapter)) { 1761 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1762 IAVF_FLAG_AQ_SET_RSS_KEY; 1763 return 0; 1764 } else if (RSS_AQ(adapter)) { 1765 return iavf_config_rss_aq(adapter); 1766 } else { 1767 return iavf_config_rss_reg(adapter); 1768 } 1769 } 1770 1771 /** 1772 * iavf_fill_rss_lut - Fill the lut with default values 1773 * @adapter: board private structure 1774 **/ 1775 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1776 { 1777 u16 i; 1778 1779 for (i = 0; i < adapter->rss_lut_size; i++) 1780 adapter->rss_lut[i] = i % adapter->num_active_queues; 1781 } 1782 1783 /** 1784 * iavf_init_rss - Prepare for RSS 1785 * @adapter: board private structure 1786 * 1787 * Return 0 on success, negative on failure 1788 **/ 1789 static int iavf_init_rss(struct iavf_adapter *adapter) 1790 { 1791 struct iavf_hw *hw = &adapter->hw; 1792 1793 if (!RSS_PF(adapter)) { 1794 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1795 if (adapter->vf_res->vf_cap_flags & 1796 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1797 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1798 else 1799 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1800 1801 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1802 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1803 } 1804 1805 iavf_fill_rss_lut(adapter); 1806 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1807 1808 return iavf_config_rss(adapter); 1809 } 1810 1811 /** 1812 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1813 * @adapter: board private structure to initialize 1814 * 1815 * We allocate one q_vector per queue interrupt. If allocation fails we 1816 * return -ENOMEM. 1817 **/ 1818 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1819 { 1820 int q_idx = 0, num_q_vectors; 1821 struct iavf_q_vector *q_vector; 1822 1823 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1824 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1825 GFP_KERNEL); 1826 if (!adapter->q_vectors) 1827 return -ENOMEM; 1828 1829 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1830 q_vector = &adapter->q_vectors[q_idx]; 1831 q_vector->adapter = adapter; 1832 q_vector->vsi = &adapter->vsi; 1833 q_vector->v_idx = q_idx; 1834 q_vector->reg_idx = q_idx; 1835 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1836 netif_napi_add(adapter->netdev, &q_vector->napi, 1837 iavf_napi_poll, NAPI_POLL_WEIGHT); 1838 } 1839 1840 return 0; 1841 } 1842 1843 /** 1844 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1845 * @adapter: board private structure to initialize 1846 * 1847 * This function frees the memory allocated to the q_vectors. In addition if 1848 * NAPI is enabled it will delete any references to the NAPI struct prior 1849 * to freeing the q_vector. 1850 **/ 1851 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1852 { 1853 int q_idx, num_q_vectors; 1854 int napi_vectors; 1855 1856 if (!adapter->q_vectors) 1857 return; 1858 1859 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1860 napi_vectors = adapter->num_active_queues; 1861 1862 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1863 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1864 1865 if (q_idx < napi_vectors) 1866 netif_napi_del(&q_vector->napi); 1867 } 1868 kfree(adapter->q_vectors); 1869 adapter->q_vectors = NULL; 1870 } 1871 1872 /** 1873 * iavf_reset_interrupt_capability - Reset MSIX setup 1874 * @adapter: board private structure 1875 * 1876 **/ 1877 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1878 { 1879 if (!adapter->msix_entries) 1880 return; 1881 1882 pci_disable_msix(adapter->pdev); 1883 kfree(adapter->msix_entries); 1884 adapter->msix_entries = NULL; 1885 } 1886 1887 /** 1888 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1889 * @adapter: board private structure to initialize 1890 * 1891 **/ 1892 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1893 { 1894 int err; 1895 1896 err = iavf_alloc_queues(adapter); 1897 if (err) { 1898 dev_err(&adapter->pdev->dev, 1899 "Unable to allocate memory for queues\n"); 1900 goto err_alloc_queues; 1901 } 1902 1903 rtnl_lock(); 1904 err = iavf_set_interrupt_capability(adapter); 1905 rtnl_unlock(); 1906 if (err) { 1907 dev_err(&adapter->pdev->dev, 1908 "Unable to setup interrupt capabilities\n"); 1909 goto err_set_interrupt; 1910 } 1911 1912 err = iavf_alloc_q_vectors(adapter); 1913 if (err) { 1914 dev_err(&adapter->pdev->dev, 1915 "Unable to allocate memory for queue vectors\n"); 1916 goto err_alloc_q_vectors; 1917 } 1918 1919 /* If we've made it so far while ADq flag being ON, then we haven't 1920 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1921 * resources have been allocated in the reset path. 1922 * Now we can truly claim that ADq is enabled. 1923 */ 1924 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1925 adapter->num_tc) 1926 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1927 adapter->num_tc); 1928 1929 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1930 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1931 adapter->num_active_queues); 1932 1933 return 0; 1934 err_alloc_q_vectors: 1935 iavf_reset_interrupt_capability(adapter); 1936 err_set_interrupt: 1937 iavf_free_queues(adapter); 1938 err_alloc_queues: 1939 return err; 1940 } 1941 1942 /** 1943 * iavf_free_rss - Free memory used by RSS structs 1944 * @adapter: board private structure 1945 **/ 1946 static void iavf_free_rss(struct iavf_adapter *adapter) 1947 { 1948 kfree(adapter->rss_key); 1949 adapter->rss_key = NULL; 1950 1951 kfree(adapter->rss_lut); 1952 adapter->rss_lut = NULL; 1953 } 1954 1955 /** 1956 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1957 * @adapter: board private structure 1958 * 1959 * Returns 0 on success, negative on failure 1960 **/ 1961 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1962 { 1963 struct net_device *netdev = adapter->netdev; 1964 int err; 1965 1966 if (netif_running(netdev)) 1967 iavf_free_traffic_irqs(adapter); 1968 iavf_free_misc_irq(adapter); 1969 iavf_reset_interrupt_capability(adapter); 1970 iavf_free_q_vectors(adapter); 1971 iavf_free_queues(adapter); 1972 1973 err = iavf_init_interrupt_scheme(adapter); 1974 if (err) 1975 goto err; 1976 1977 netif_tx_stop_all_queues(netdev); 1978 1979 err = iavf_request_misc_irq(adapter); 1980 if (err) 1981 goto err; 1982 1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1984 1985 iavf_map_rings_to_vectors(adapter); 1986 err: 1987 return err; 1988 } 1989 1990 /** 1991 * iavf_process_aq_command - process aq_required flags 1992 * and sends aq command 1993 * @adapter: pointer to iavf adapter structure 1994 * 1995 * Returns 0 on success 1996 * Returns error code if no command was sent 1997 * or error code if the command failed. 1998 **/ 1999 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2000 { 2001 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2002 return iavf_send_vf_config_msg(adapter); 2003 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2004 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2005 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2006 iavf_disable_queues(adapter); 2007 return 0; 2008 } 2009 2010 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2011 iavf_map_queues(adapter); 2012 return 0; 2013 } 2014 2015 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2016 iavf_add_ether_addrs(adapter); 2017 return 0; 2018 } 2019 2020 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2021 iavf_add_vlans(adapter); 2022 return 0; 2023 } 2024 2025 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2026 iavf_del_ether_addrs(adapter); 2027 return 0; 2028 } 2029 2030 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2031 iavf_del_vlans(adapter); 2032 return 0; 2033 } 2034 2035 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2036 iavf_enable_vlan_stripping(adapter); 2037 return 0; 2038 } 2039 2040 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2041 iavf_disable_vlan_stripping(adapter); 2042 return 0; 2043 } 2044 2045 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2046 iavf_configure_queues(adapter); 2047 return 0; 2048 } 2049 2050 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2051 iavf_enable_queues(adapter); 2052 return 0; 2053 } 2054 2055 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2056 /* This message goes straight to the firmware, not the 2057 * PF, so we don't have to set current_op as we will 2058 * not get a response through the ARQ. 2059 */ 2060 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2061 return 0; 2062 } 2063 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2064 iavf_get_hena(adapter); 2065 return 0; 2066 } 2067 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2068 iavf_set_hena(adapter); 2069 return 0; 2070 } 2071 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2072 iavf_set_rss_key(adapter); 2073 return 0; 2074 } 2075 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2076 iavf_set_rss_lut(adapter); 2077 return 0; 2078 } 2079 2080 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2081 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2082 FLAG_VF_MULTICAST_PROMISC); 2083 return 0; 2084 } 2085 2086 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2087 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2088 return 0; 2089 } 2090 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2091 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2092 iavf_set_promiscuous(adapter, 0); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2097 iavf_enable_channels(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2102 iavf_disable_channels(adapter); 2103 return 0; 2104 } 2105 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2106 iavf_add_cloud_filter(adapter); 2107 return 0; 2108 } 2109 2110 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2111 iavf_del_cloud_filter(adapter); 2112 return 0; 2113 } 2114 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2115 iavf_del_cloud_filter(adapter); 2116 return 0; 2117 } 2118 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2119 iavf_add_cloud_filter(adapter); 2120 return 0; 2121 } 2122 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2123 iavf_add_fdir_filter(adapter); 2124 return IAVF_SUCCESS; 2125 } 2126 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2127 iavf_del_fdir_filter(adapter); 2128 return IAVF_SUCCESS; 2129 } 2130 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2131 iavf_add_adv_rss_cfg(adapter); 2132 return 0; 2133 } 2134 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2135 iavf_del_adv_rss_cfg(adapter); 2136 return 0; 2137 } 2138 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2139 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2140 return 0; 2141 } 2142 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2143 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2144 return 0; 2145 } 2146 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2147 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2148 return 0; 2149 } 2150 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2151 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2152 return 0; 2153 } 2154 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2155 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2156 return 0; 2157 } 2158 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2159 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2160 return 0; 2161 } 2162 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2163 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2164 return 0; 2165 } 2166 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2167 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2168 return 0; 2169 } 2170 2171 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2172 iavf_request_stats(adapter); 2173 return 0; 2174 } 2175 2176 return -EAGAIN; 2177 } 2178 2179 /** 2180 * iavf_set_vlan_offload_features - set VLAN offload configuration 2181 * @adapter: board private structure 2182 * @prev_features: previous features used for comparison 2183 * @features: updated features used for configuration 2184 * 2185 * Set the aq_required bit(s) based on the requested features passed in to 2186 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2187 * the watchdog if any changes are requested to expedite the request via 2188 * virtchnl. 2189 **/ 2190 void 2191 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2192 netdev_features_t prev_features, 2193 netdev_features_t features) 2194 { 2195 bool enable_stripping = true, enable_insertion = true; 2196 u16 vlan_ethertype = 0; 2197 u64 aq_required = 0; 2198 2199 /* keep cases separate because one ethertype for offloads can be 2200 * disabled at the same time as another is disabled, so check for an 2201 * enabled ethertype first, then check for disabled. Default to 2202 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2203 * stripping. 2204 */ 2205 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2206 vlan_ethertype = ETH_P_8021AD; 2207 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2208 vlan_ethertype = ETH_P_8021Q; 2209 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2210 vlan_ethertype = ETH_P_8021AD; 2211 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2212 vlan_ethertype = ETH_P_8021Q; 2213 else 2214 vlan_ethertype = ETH_P_8021Q; 2215 2216 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2217 enable_stripping = false; 2218 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2219 enable_insertion = false; 2220 2221 if (VLAN_ALLOWED(adapter)) { 2222 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2223 * stripping via virtchnl. VLAN insertion can be toggled on the 2224 * netdev, but it doesn't require a virtchnl message 2225 */ 2226 if (enable_stripping) 2227 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2228 else 2229 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2230 2231 } else if (VLAN_V2_ALLOWED(adapter)) { 2232 switch (vlan_ethertype) { 2233 case ETH_P_8021Q: 2234 if (enable_stripping) 2235 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2236 else 2237 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2238 2239 if (enable_insertion) 2240 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2241 else 2242 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2243 break; 2244 case ETH_P_8021AD: 2245 if (enable_stripping) 2246 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2247 else 2248 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2249 2250 if (enable_insertion) 2251 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2252 else 2253 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2254 break; 2255 } 2256 } 2257 2258 if (aq_required) { 2259 adapter->aq_required |= aq_required; 2260 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2261 } 2262 } 2263 2264 /** 2265 * iavf_startup - first step of driver startup 2266 * @adapter: board private structure 2267 * 2268 * Function process __IAVF_STARTUP driver state. 2269 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2270 * when fails the state is changed to __IAVF_INIT_FAILED 2271 **/ 2272 static void iavf_startup(struct iavf_adapter *adapter) 2273 { 2274 struct pci_dev *pdev = adapter->pdev; 2275 struct iavf_hw *hw = &adapter->hw; 2276 enum iavf_status status; 2277 int ret; 2278 2279 WARN_ON(adapter->state != __IAVF_STARTUP); 2280 2281 /* driver loaded, probe complete */ 2282 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2283 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2284 status = iavf_set_mac_type(hw); 2285 if (status) { 2286 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2287 goto err; 2288 } 2289 2290 ret = iavf_check_reset_complete(hw); 2291 if (ret) { 2292 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2293 ret); 2294 goto err; 2295 } 2296 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2297 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2298 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2299 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2300 2301 status = iavf_init_adminq(hw); 2302 if (status) { 2303 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2304 status); 2305 goto err; 2306 } 2307 ret = iavf_send_api_ver(adapter); 2308 if (ret) { 2309 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2310 iavf_shutdown_adminq(hw); 2311 goto err; 2312 } 2313 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2314 return; 2315 err: 2316 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2317 } 2318 2319 /** 2320 * iavf_init_version_check - second step of driver startup 2321 * @adapter: board private structure 2322 * 2323 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2324 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2325 * when fails the state is changed to __IAVF_INIT_FAILED 2326 **/ 2327 static void iavf_init_version_check(struct iavf_adapter *adapter) 2328 { 2329 struct pci_dev *pdev = adapter->pdev; 2330 struct iavf_hw *hw = &adapter->hw; 2331 int err = -EAGAIN; 2332 2333 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2334 2335 if (!iavf_asq_done(hw)) { 2336 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2337 iavf_shutdown_adminq(hw); 2338 iavf_change_state(adapter, __IAVF_STARTUP); 2339 goto err; 2340 } 2341 2342 /* aq msg sent, awaiting reply */ 2343 err = iavf_verify_api_ver(adapter); 2344 if (err) { 2345 if (err == -EALREADY) 2346 err = iavf_send_api_ver(adapter); 2347 else 2348 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2349 adapter->pf_version.major, 2350 adapter->pf_version.minor, 2351 VIRTCHNL_VERSION_MAJOR, 2352 VIRTCHNL_VERSION_MINOR); 2353 goto err; 2354 } 2355 err = iavf_send_vf_config_msg(adapter); 2356 if (err) { 2357 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2358 err); 2359 goto err; 2360 } 2361 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2362 return; 2363 err: 2364 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2365 } 2366 2367 /** 2368 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2369 * @adapter: board private structure 2370 */ 2371 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2372 { 2373 int i, num_req_queues = adapter->num_req_queues; 2374 struct iavf_vsi *vsi = &adapter->vsi; 2375 2376 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2377 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2378 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2379 } 2380 if (!adapter->vsi_res) { 2381 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2382 return -ENODEV; 2383 } 2384 2385 if (num_req_queues && 2386 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2387 /* Problem. The PF gave us fewer queues than what we had 2388 * negotiated in our request. Need a reset to see if we can't 2389 * get back to a working state. 2390 */ 2391 dev_err(&adapter->pdev->dev, 2392 "Requested %d queues, but PF only gave us %d.\n", 2393 num_req_queues, 2394 adapter->vsi_res->num_queue_pairs); 2395 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2396 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2397 iavf_schedule_reset(adapter); 2398 2399 return -EAGAIN; 2400 } 2401 adapter->num_req_queues = 0; 2402 adapter->vsi.id = adapter->vsi_res->vsi_id; 2403 2404 adapter->vsi.back = adapter; 2405 adapter->vsi.base_vector = 1; 2406 vsi->netdev = adapter->netdev; 2407 vsi->qs_handle = adapter->vsi_res->qset_handle; 2408 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2409 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2410 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2411 } else { 2412 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2413 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2414 } 2415 2416 return 0; 2417 } 2418 2419 /** 2420 * iavf_init_get_resources - third step of driver startup 2421 * @adapter: board private structure 2422 * 2423 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2424 * finishes driver initialization procedure. 2425 * When success the state is changed to __IAVF_DOWN 2426 * when fails the state is changed to __IAVF_INIT_FAILED 2427 **/ 2428 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2429 { 2430 struct pci_dev *pdev = adapter->pdev; 2431 struct iavf_hw *hw = &adapter->hw; 2432 int err; 2433 2434 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2435 /* aq msg sent, awaiting reply */ 2436 if (!adapter->vf_res) { 2437 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2438 GFP_KERNEL); 2439 if (!adapter->vf_res) { 2440 err = -ENOMEM; 2441 goto err; 2442 } 2443 } 2444 err = iavf_get_vf_config(adapter); 2445 if (err == -EALREADY) { 2446 err = iavf_send_vf_config_msg(adapter); 2447 goto err; 2448 } else if (err == -EINVAL) { 2449 /* We only get -EINVAL if the device is in a very bad 2450 * state or if we've been disabled for previous bad 2451 * behavior. Either way, we're done now. 2452 */ 2453 iavf_shutdown_adminq(hw); 2454 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2455 return; 2456 } 2457 if (err) { 2458 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2459 goto err_alloc; 2460 } 2461 2462 err = iavf_parse_vf_resource_msg(adapter); 2463 if (err) { 2464 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2465 err); 2466 goto err_alloc; 2467 } 2468 /* Some features require additional messages to negotiate extended 2469 * capabilities. These are processed in sequence by the 2470 * __IAVF_INIT_EXTENDED_CAPS driver state. 2471 */ 2472 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2473 2474 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2475 return; 2476 2477 err_alloc: 2478 kfree(adapter->vf_res); 2479 adapter->vf_res = NULL; 2480 err: 2481 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2482 } 2483 2484 /** 2485 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2486 * @adapter: board private structure 2487 * 2488 * Function processes send of the extended VLAN V2 capability message to the 2489 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2490 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2491 */ 2492 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2493 { 2494 int ret; 2495 2496 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2497 2498 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2499 if (ret && ret == -EOPNOTSUPP) { 2500 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2501 * we did not send the capability exchange message and do not 2502 * expect a response. 2503 */ 2504 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2505 } 2506 2507 /* We sent the message, so move on to the next step */ 2508 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2509 } 2510 2511 /** 2512 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2513 * @adapter: board private structure 2514 * 2515 * Function processes receipt of the extended VLAN V2 capability message from 2516 * the PF. 2517 **/ 2518 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2519 { 2520 int ret; 2521 2522 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2523 2524 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2525 2526 ret = iavf_get_vf_vlan_v2_caps(adapter); 2527 if (ret) 2528 goto err; 2529 2530 /* We've processed receipt of the VLAN V2 caps message */ 2531 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2532 return; 2533 err: 2534 /* We didn't receive a reply. Make sure we try sending again when 2535 * __IAVF_INIT_FAILED attempts to recover. 2536 */ 2537 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2538 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2539 } 2540 2541 /** 2542 * iavf_init_process_extended_caps - Part of driver startup 2543 * @adapter: board private structure 2544 * 2545 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2546 * handles negotiating capabilities for features which require an additional 2547 * message. 2548 * 2549 * Once all extended capabilities exchanges are finished, the driver will 2550 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2551 */ 2552 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2553 { 2554 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2555 2556 /* Process capability exchange for VLAN V2 */ 2557 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2558 iavf_init_send_offload_vlan_v2_caps(adapter); 2559 return; 2560 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2561 iavf_init_recv_offload_vlan_v2_caps(adapter); 2562 return; 2563 } 2564 2565 /* When we reach here, no further extended capabilities exchanges are 2566 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2567 */ 2568 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2569 } 2570 2571 /** 2572 * iavf_init_config_adapter - last part of driver startup 2573 * @adapter: board private structure 2574 * 2575 * After all the supported capabilities are negotiated, then the 2576 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2577 */ 2578 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2579 { 2580 struct net_device *netdev = adapter->netdev; 2581 struct pci_dev *pdev = adapter->pdev; 2582 int err; 2583 2584 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2585 2586 if (iavf_process_config(adapter)) 2587 goto err; 2588 2589 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2590 2591 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2592 2593 netdev->netdev_ops = &iavf_netdev_ops; 2594 iavf_set_ethtool_ops(netdev); 2595 netdev->watchdog_timeo = 5 * HZ; 2596 2597 /* MTU range: 68 - 9710 */ 2598 netdev->min_mtu = ETH_MIN_MTU; 2599 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2600 2601 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2602 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2603 adapter->hw.mac.addr); 2604 eth_hw_addr_random(netdev); 2605 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2606 } else { 2607 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2608 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2609 } 2610 2611 adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET; 2612 2613 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2614 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2615 err = iavf_init_interrupt_scheme(adapter); 2616 if (err) 2617 goto err_sw_init; 2618 iavf_map_rings_to_vectors(adapter); 2619 if (adapter->vf_res->vf_cap_flags & 2620 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2621 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2622 2623 err = iavf_request_misc_irq(adapter); 2624 if (err) 2625 goto err_sw_init; 2626 2627 netif_carrier_off(netdev); 2628 adapter->link_up = false; 2629 2630 /* set the semaphore to prevent any callbacks after device registration 2631 * up to time when state of driver will be set to __IAVF_DOWN 2632 */ 2633 rtnl_lock(); 2634 if (!adapter->netdev_registered) { 2635 err = register_netdevice(netdev); 2636 if (err) { 2637 rtnl_unlock(); 2638 goto err_register; 2639 } 2640 } 2641 2642 adapter->netdev_registered = true; 2643 2644 netif_tx_stop_all_queues(netdev); 2645 if (CLIENT_ALLOWED(adapter)) { 2646 err = iavf_lan_add_device(adapter); 2647 if (err) 2648 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2649 err); 2650 } 2651 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2652 if (netdev->features & NETIF_F_GRO) 2653 dev_info(&pdev->dev, "GRO is enabled\n"); 2654 2655 iavf_change_state(adapter, __IAVF_DOWN); 2656 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2657 rtnl_unlock(); 2658 2659 iavf_misc_irq_enable(adapter); 2660 wake_up(&adapter->down_waitqueue); 2661 2662 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2663 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2664 if (!adapter->rss_key || !adapter->rss_lut) { 2665 err = -ENOMEM; 2666 goto err_mem; 2667 } 2668 if (RSS_AQ(adapter)) 2669 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2670 else 2671 iavf_init_rss(adapter); 2672 2673 if (VLAN_V2_ALLOWED(adapter)) 2674 /* request initial VLAN offload settings */ 2675 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2676 2677 return; 2678 err_mem: 2679 iavf_free_rss(adapter); 2680 err_register: 2681 iavf_free_misc_irq(adapter); 2682 err_sw_init: 2683 iavf_reset_interrupt_capability(adapter); 2684 err: 2685 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2686 } 2687 2688 /** 2689 * iavf_watchdog_task - Periodic call-back task 2690 * @work: pointer to work_struct 2691 **/ 2692 static void iavf_watchdog_task(struct work_struct *work) 2693 { 2694 struct iavf_adapter *adapter = container_of(work, 2695 struct iavf_adapter, 2696 watchdog_task.work); 2697 struct iavf_hw *hw = &adapter->hw; 2698 u32 reg_val; 2699 2700 if (!mutex_trylock(&adapter->crit_lock)) { 2701 if (adapter->state == __IAVF_REMOVE) 2702 return; 2703 2704 goto restart_watchdog; 2705 } 2706 2707 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2708 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2709 2710 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2711 adapter->aq_required = 0; 2712 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2713 mutex_unlock(&adapter->crit_lock); 2714 queue_work(iavf_wq, &adapter->reset_task); 2715 return; 2716 } 2717 2718 switch (adapter->state) { 2719 case __IAVF_STARTUP: 2720 iavf_startup(adapter); 2721 mutex_unlock(&adapter->crit_lock); 2722 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2723 msecs_to_jiffies(30)); 2724 return; 2725 case __IAVF_INIT_VERSION_CHECK: 2726 iavf_init_version_check(adapter); 2727 mutex_unlock(&adapter->crit_lock); 2728 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2729 msecs_to_jiffies(30)); 2730 return; 2731 case __IAVF_INIT_GET_RESOURCES: 2732 iavf_init_get_resources(adapter); 2733 mutex_unlock(&adapter->crit_lock); 2734 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2735 msecs_to_jiffies(1)); 2736 return; 2737 case __IAVF_INIT_EXTENDED_CAPS: 2738 iavf_init_process_extended_caps(adapter); 2739 mutex_unlock(&adapter->crit_lock); 2740 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2741 msecs_to_jiffies(1)); 2742 return; 2743 case __IAVF_INIT_CONFIG_ADAPTER: 2744 iavf_init_config_adapter(adapter); 2745 mutex_unlock(&adapter->crit_lock); 2746 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2747 msecs_to_jiffies(1)); 2748 return; 2749 case __IAVF_INIT_FAILED: 2750 if (test_bit(__IAVF_IN_REMOVE_TASK, 2751 &adapter->crit_section)) { 2752 /* Do not update the state and do not reschedule 2753 * watchdog task, iavf_remove should handle this state 2754 * as it can loop forever 2755 */ 2756 mutex_unlock(&adapter->crit_lock); 2757 return; 2758 } 2759 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2760 dev_err(&adapter->pdev->dev, 2761 "Failed to communicate with PF; waiting before retry\n"); 2762 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2763 iavf_shutdown_adminq(hw); 2764 mutex_unlock(&adapter->crit_lock); 2765 queue_delayed_work(iavf_wq, 2766 &adapter->watchdog_task, (5 * HZ)); 2767 return; 2768 } 2769 /* Try again from failed step*/ 2770 iavf_change_state(adapter, adapter->last_state); 2771 mutex_unlock(&adapter->crit_lock); 2772 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2773 return; 2774 case __IAVF_COMM_FAILED: 2775 if (test_bit(__IAVF_IN_REMOVE_TASK, 2776 &adapter->crit_section)) { 2777 /* Set state to __IAVF_INIT_FAILED and perform remove 2778 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2779 * doesn't bring the state back to __IAVF_COMM_FAILED. 2780 */ 2781 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2782 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2783 mutex_unlock(&adapter->crit_lock); 2784 return; 2785 } 2786 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2787 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2788 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2789 reg_val == VIRTCHNL_VFR_COMPLETED) { 2790 /* A chance for redemption! */ 2791 dev_err(&adapter->pdev->dev, 2792 "Hardware came out of reset. Attempting reinit.\n"); 2793 /* When init task contacts the PF and 2794 * gets everything set up again, it'll restart the 2795 * watchdog for us. Down, boy. Sit. Stay. Woof. 2796 */ 2797 iavf_change_state(adapter, __IAVF_STARTUP); 2798 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2799 } 2800 adapter->aq_required = 0; 2801 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2802 mutex_unlock(&adapter->crit_lock); 2803 queue_delayed_work(iavf_wq, 2804 &adapter->watchdog_task, 2805 msecs_to_jiffies(10)); 2806 return; 2807 case __IAVF_RESETTING: 2808 mutex_unlock(&adapter->crit_lock); 2809 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2810 return; 2811 case __IAVF_DOWN: 2812 case __IAVF_DOWN_PENDING: 2813 case __IAVF_TESTING: 2814 case __IAVF_RUNNING: 2815 if (adapter->current_op) { 2816 if (!iavf_asq_done(hw)) { 2817 dev_dbg(&adapter->pdev->dev, 2818 "Admin queue timeout\n"); 2819 iavf_send_api_ver(adapter); 2820 } 2821 } else { 2822 int ret = iavf_process_aq_command(adapter); 2823 2824 /* An error will be returned if no commands were 2825 * processed; use this opportunity to update stats 2826 * if the error isn't -ENOTSUPP 2827 */ 2828 if (ret && ret != -EOPNOTSUPP && 2829 adapter->state == __IAVF_RUNNING) 2830 iavf_request_stats(adapter); 2831 } 2832 if (adapter->state == __IAVF_RUNNING) 2833 iavf_detect_recover_hung(&adapter->vsi); 2834 break; 2835 case __IAVF_REMOVE: 2836 default: 2837 mutex_unlock(&adapter->crit_lock); 2838 return; 2839 } 2840 2841 /* check for hw reset */ 2842 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2843 if (!reg_val) { 2844 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2845 adapter->aq_required = 0; 2846 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2847 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2848 queue_work(iavf_wq, &adapter->reset_task); 2849 mutex_unlock(&adapter->crit_lock); 2850 queue_delayed_work(iavf_wq, 2851 &adapter->watchdog_task, HZ * 2); 2852 return; 2853 } 2854 2855 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2856 mutex_unlock(&adapter->crit_lock); 2857 restart_watchdog: 2858 if (adapter->state >= __IAVF_DOWN) 2859 queue_work(iavf_wq, &adapter->adminq_task); 2860 if (adapter->aq_required) 2861 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2862 msecs_to_jiffies(20)); 2863 else 2864 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2865 } 2866 2867 /** 2868 * iavf_disable_vf - disable VF 2869 * @adapter: board private structure 2870 * 2871 * Set communication failed flag and free all resources. 2872 * NOTE: This function is expected to be called with crit_lock being held. 2873 **/ 2874 static void iavf_disable_vf(struct iavf_adapter *adapter) 2875 { 2876 struct iavf_mac_filter *f, *ftmp; 2877 struct iavf_vlan_filter *fv, *fvtmp; 2878 struct iavf_cloud_filter *cf, *cftmp; 2879 2880 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2881 2882 /* We don't use netif_running() because it may be true prior to 2883 * ndo_open() returning, so we can't assume it means all our open 2884 * tasks have finished, since we're not holding the rtnl_lock here. 2885 */ 2886 if (adapter->state == __IAVF_RUNNING) { 2887 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2888 netif_carrier_off(adapter->netdev); 2889 netif_tx_disable(adapter->netdev); 2890 adapter->link_up = false; 2891 iavf_napi_disable_all(adapter); 2892 iavf_irq_disable(adapter); 2893 iavf_free_traffic_irqs(adapter); 2894 iavf_free_all_tx_resources(adapter); 2895 iavf_free_all_rx_resources(adapter); 2896 } 2897 2898 spin_lock_bh(&adapter->mac_vlan_list_lock); 2899 2900 /* Delete all of the filters */ 2901 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2902 list_del(&f->list); 2903 kfree(f); 2904 } 2905 2906 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2907 list_del(&fv->list); 2908 kfree(fv); 2909 } 2910 2911 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2912 2913 spin_lock_bh(&adapter->cloud_filter_list_lock); 2914 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2915 list_del(&cf->list); 2916 kfree(cf); 2917 adapter->num_cloud_filters--; 2918 } 2919 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2920 2921 iavf_free_misc_irq(adapter); 2922 iavf_reset_interrupt_capability(adapter); 2923 iavf_free_q_vectors(adapter); 2924 iavf_free_queues(adapter); 2925 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2926 iavf_shutdown_adminq(&adapter->hw); 2927 adapter->netdev->flags &= ~IFF_UP; 2928 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2929 iavf_change_state(adapter, __IAVF_DOWN); 2930 wake_up(&adapter->down_waitqueue); 2931 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2932 } 2933 2934 /** 2935 * iavf_reset_task - Call-back task to handle hardware reset 2936 * @work: pointer to work_struct 2937 * 2938 * During reset we need to shut down and reinitialize the admin queue 2939 * before we can use it to communicate with the PF again. We also clear 2940 * and reinit the rings because that context is lost as well. 2941 **/ 2942 static void iavf_reset_task(struct work_struct *work) 2943 { 2944 struct iavf_adapter *adapter = container_of(work, 2945 struct iavf_adapter, 2946 reset_task); 2947 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2948 struct net_device *netdev = adapter->netdev; 2949 struct iavf_hw *hw = &adapter->hw; 2950 struct iavf_mac_filter *f, *ftmp; 2951 struct iavf_cloud_filter *cf; 2952 enum iavf_status status; 2953 u32 reg_val; 2954 int i = 0, err; 2955 bool running; 2956 2957 /* Detach interface to avoid subsequent NDO callbacks */ 2958 rtnl_lock(); 2959 netif_device_detach(netdev); 2960 rtnl_unlock(); 2961 2962 /* When device is being removed it doesn't make sense to run the reset 2963 * task, just return in such a case. 2964 */ 2965 if (!mutex_trylock(&adapter->crit_lock)) { 2966 if (adapter->state != __IAVF_REMOVE) 2967 queue_work(iavf_wq, &adapter->reset_task); 2968 2969 goto reset_finish; 2970 } 2971 2972 while (!mutex_trylock(&adapter->client_lock)) 2973 usleep_range(500, 1000); 2974 if (CLIENT_ENABLED(adapter)) { 2975 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2976 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2977 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2978 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2979 cancel_delayed_work_sync(&adapter->client_task); 2980 iavf_notify_client_close(&adapter->vsi, true); 2981 } 2982 iavf_misc_irq_disable(adapter); 2983 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2984 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2985 /* Restart the AQ here. If we have been reset but didn't 2986 * detect it, or if the PF had to reinit, our AQ will be hosed. 2987 */ 2988 iavf_shutdown_adminq(hw); 2989 iavf_init_adminq(hw); 2990 iavf_request_reset(adapter); 2991 } 2992 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2993 2994 /* poll until we see the reset actually happen */ 2995 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2996 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2997 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2998 if (!reg_val) 2999 break; 3000 usleep_range(5000, 10000); 3001 } 3002 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3003 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3004 goto continue_reset; /* act like the reset happened */ 3005 } 3006 3007 /* wait until the reset is complete and the PF is responding to us */ 3008 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3009 /* sleep first to make sure a minimum wait time is met */ 3010 msleep(IAVF_RESET_WAIT_MS); 3011 3012 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3013 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3014 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3015 break; 3016 } 3017 3018 pci_set_master(adapter->pdev); 3019 pci_restore_msi_state(adapter->pdev); 3020 3021 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3022 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3023 reg_val); 3024 iavf_disable_vf(adapter); 3025 mutex_unlock(&adapter->client_lock); 3026 mutex_unlock(&adapter->crit_lock); 3027 return; /* Do not attempt to reinit. It's dead, Jim. */ 3028 } 3029 3030 continue_reset: 3031 /* We don't use netif_running() because it may be true prior to 3032 * ndo_open() returning, so we can't assume it means all our open 3033 * tasks have finished, since we're not holding the rtnl_lock here. 3034 */ 3035 running = adapter->state == __IAVF_RUNNING; 3036 3037 if (running) { 3038 netif_carrier_off(netdev); 3039 adapter->link_up = false; 3040 iavf_napi_disable_all(adapter); 3041 } 3042 iavf_irq_disable(adapter); 3043 3044 iavf_change_state(adapter, __IAVF_RESETTING); 3045 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3046 3047 /* free the Tx/Rx rings and descriptors, might be better to just 3048 * re-use them sometime in the future 3049 */ 3050 iavf_free_all_rx_resources(adapter); 3051 iavf_free_all_tx_resources(adapter); 3052 3053 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3054 /* kill and reinit the admin queue */ 3055 iavf_shutdown_adminq(hw); 3056 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3057 status = iavf_init_adminq(hw); 3058 if (status) { 3059 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3060 status); 3061 goto reset_err; 3062 } 3063 adapter->aq_required = 0; 3064 3065 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3066 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3067 err = iavf_reinit_interrupt_scheme(adapter); 3068 if (err) 3069 goto reset_err; 3070 } 3071 3072 if (RSS_AQ(adapter)) { 3073 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3074 } else { 3075 err = iavf_init_rss(adapter); 3076 if (err) 3077 goto reset_err; 3078 } 3079 3080 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3081 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3082 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3083 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3084 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3085 * been successfully sent and negotiated 3086 */ 3087 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3088 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3089 3090 spin_lock_bh(&adapter->mac_vlan_list_lock); 3091 3092 /* Delete filter for the current MAC address, it could have 3093 * been changed by the PF via administratively set MAC. 3094 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3095 */ 3096 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3097 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3098 list_del(&f->list); 3099 kfree(f); 3100 } 3101 } 3102 /* re-add all MAC filters */ 3103 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3104 f->add = true; 3105 } 3106 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3107 3108 /* check if TCs are running and re-add all cloud filters */ 3109 spin_lock_bh(&adapter->cloud_filter_list_lock); 3110 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3111 adapter->num_tc) { 3112 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3113 cf->add = true; 3114 } 3115 } 3116 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3117 3118 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3119 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3120 iavf_misc_irq_enable(adapter); 3121 3122 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3123 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3124 3125 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 3126 3127 /* We were running when the reset started, so we need to restore some 3128 * state here. 3129 */ 3130 if (running) { 3131 /* allocate transmit descriptors */ 3132 err = iavf_setup_all_tx_resources(adapter); 3133 if (err) 3134 goto reset_err; 3135 3136 /* allocate receive descriptors */ 3137 err = iavf_setup_all_rx_resources(adapter); 3138 if (err) 3139 goto reset_err; 3140 3141 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3142 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3143 err = iavf_request_traffic_irqs(adapter, netdev->name); 3144 if (err) 3145 goto reset_err; 3146 3147 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3148 } 3149 3150 iavf_configure(adapter); 3151 3152 /* iavf_up_complete() will switch device back 3153 * to __IAVF_RUNNING 3154 */ 3155 iavf_up_complete(adapter); 3156 3157 iavf_irq_enable(adapter, true); 3158 } else { 3159 iavf_change_state(adapter, __IAVF_DOWN); 3160 wake_up(&adapter->down_waitqueue); 3161 } 3162 3163 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3164 3165 mutex_unlock(&adapter->client_lock); 3166 mutex_unlock(&adapter->crit_lock); 3167 3168 goto reset_finish; 3169 reset_err: 3170 if (running) { 3171 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3172 iavf_free_traffic_irqs(adapter); 3173 } 3174 iavf_disable_vf(adapter); 3175 3176 mutex_unlock(&adapter->client_lock); 3177 mutex_unlock(&adapter->crit_lock); 3178 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3179 reset_finish: 3180 rtnl_lock(); 3181 netif_device_attach(netdev); 3182 rtnl_unlock(); 3183 } 3184 3185 /** 3186 * iavf_adminq_task - worker thread to clean the admin queue 3187 * @work: pointer to work_struct containing our data 3188 **/ 3189 static void iavf_adminq_task(struct work_struct *work) 3190 { 3191 struct iavf_adapter *adapter = 3192 container_of(work, struct iavf_adapter, adminq_task); 3193 struct iavf_hw *hw = &adapter->hw; 3194 struct iavf_arq_event_info event; 3195 enum virtchnl_ops v_op; 3196 enum iavf_status ret, v_ret; 3197 u32 val, oldval; 3198 u16 pending; 3199 3200 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3201 goto out; 3202 3203 if (!mutex_trylock(&adapter->crit_lock)) { 3204 if (adapter->state == __IAVF_REMOVE) 3205 return; 3206 3207 queue_work(iavf_wq, &adapter->adminq_task); 3208 goto out; 3209 } 3210 3211 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3212 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3213 if (!event.msg_buf) 3214 goto out; 3215 3216 do { 3217 ret = iavf_clean_arq_element(hw, &event, &pending); 3218 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3219 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3220 3221 if (ret || !v_op) 3222 break; /* No event to process or error cleaning ARQ */ 3223 3224 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3225 event.msg_len); 3226 if (pending != 0) 3227 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3228 } while (pending); 3229 mutex_unlock(&adapter->crit_lock); 3230 3231 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3232 if (adapter->netdev_registered || 3233 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3234 struct net_device *netdev = adapter->netdev; 3235 3236 rtnl_lock(); 3237 netdev_update_features(netdev); 3238 rtnl_unlock(); 3239 /* Request VLAN offload settings */ 3240 if (VLAN_V2_ALLOWED(adapter)) 3241 iavf_set_vlan_offload_features 3242 (adapter, 0, netdev->features); 3243 3244 iavf_set_queue_vlan_tag_loc(adapter); 3245 } 3246 3247 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3248 } 3249 if ((adapter->flags & 3250 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3251 adapter->state == __IAVF_RESETTING) 3252 goto freedom; 3253 3254 /* check for error indications */ 3255 val = rd32(hw, hw->aq.arq.len); 3256 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3257 goto freedom; 3258 oldval = val; 3259 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3260 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3261 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3262 } 3263 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3264 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3265 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3266 } 3267 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3268 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3269 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3270 } 3271 if (oldval != val) 3272 wr32(hw, hw->aq.arq.len, val); 3273 3274 val = rd32(hw, hw->aq.asq.len); 3275 oldval = val; 3276 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3277 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3278 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3279 } 3280 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3281 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3282 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3283 } 3284 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3285 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3286 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3287 } 3288 if (oldval != val) 3289 wr32(hw, hw->aq.asq.len, val); 3290 3291 freedom: 3292 kfree(event.msg_buf); 3293 out: 3294 /* re-enable Admin queue interrupt cause */ 3295 iavf_misc_irq_enable(adapter); 3296 } 3297 3298 /** 3299 * iavf_client_task - worker thread to perform client work 3300 * @work: pointer to work_struct containing our data 3301 * 3302 * This task handles client interactions. Because client calls can be 3303 * reentrant, we can't handle them in the watchdog. 3304 **/ 3305 static void iavf_client_task(struct work_struct *work) 3306 { 3307 struct iavf_adapter *adapter = 3308 container_of(work, struct iavf_adapter, client_task.work); 3309 3310 /* If we can't get the client bit, just give up. We'll be rescheduled 3311 * later. 3312 */ 3313 3314 if (!mutex_trylock(&adapter->client_lock)) 3315 return; 3316 3317 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3318 iavf_client_subtask(adapter); 3319 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3320 goto out; 3321 } 3322 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3323 iavf_notify_client_l2_params(&adapter->vsi); 3324 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3325 goto out; 3326 } 3327 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3328 iavf_notify_client_close(&adapter->vsi, false); 3329 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3330 goto out; 3331 } 3332 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3333 iavf_notify_client_open(&adapter->vsi); 3334 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3335 } 3336 out: 3337 mutex_unlock(&adapter->client_lock); 3338 } 3339 3340 /** 3341 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3342 * @adapter: board private structure 3343 * 3344 * Free all transmit software resources 3345 **/ 3346 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3347 { 3348 int i; 3349 3350 if (!adapter->tx_rings) 3351 return; 3352 3353 for (i = 0; i < adapter->num_active_queues; i++) 3354 if (adapter->tx_rings[i].desc) 3355 iavf_free_tx_resources(&adapter->tx_rings[i]); 3356 } 3357 3358 /** 3359 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3360 * @adapter: board private structure 3361 * 3362 * If this function returns with an error, then it's possible one or 3363 * more of the rings is populated (while the rest are not). It is the 3364 * callers duty to clean those orphaned rings. 3365 * 3366 * Return 0 on success, negative on failure 3367 **/ 3368 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3369 { 3370 int i, err = 0; 3371 3372 for (i = 0; i < adapter->num_active_queues; i++) { 3373 adapter->tx_rings[i].count = adapter->tx_desc_count; 3374 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3375 if (!err) 3376 continue; 3377 dev_err(&adapter->pdev->dev, 3378 "Allocation for Tx Queue %u failed\n", i); 3379 break; 3380 } 3381 3382 return err; 3383 } 3384 3385 /** 3386 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3387 * @adapter: board private structure 3388 * 3389 * If this function returns with an error, then it's possible one or 3390 * more of the rings is populated (while the rest are not). It is the 3391 * callers duty to clean those orphaned rings. 3392 * 3393 * Return 0 on success, negative on failure 3394 **/ 3395 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3396 { 3397 int i, err = 0; 3398 3399 for (i = 0; i < adapter->num_active_queues; i++) { 3400 adapter->rx_rings[i].count = adapter->rx_desc_count; 3401 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3402 if (!err) 3403 continue; 3404 dev_err(&adapter->pdev->dev, 3405 "Allocation for Rx Queue %u failed\n", i); 3406 break; 3407 } 3408 return err; 3409 } 3410 3411 /** 3412 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3413 * @adapter: board private structure 3414 * 3415 * Free all receive software resources 3416 **/ 3417 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3418 { 3419 int i; 3420 3421 if (!adapter->rx_rings) 3422 return; 3423 3424 for (i = 0; i < adapter->num_active_queues; i++) 3425 if (adapter->rx_rings[i].desc) 3426 iavf_free_rx_resources(&adapter->rx_rings[i]); 3427 } 3428 3429 /** 3430 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3431 * @adapter: board private structure 3432 * @max_tx_rate: max Tx bw for a tc 3433 **/ 3434 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3435 u64 max_tx_rate) 3436 { 3437 int speed = 0, ret = 0; 3438 3439 if (ADV_LINK_SUPPORT(adapter)) { 3440 if (adapter->link_speed_mbps < U32_MAX) { 3441 speed = adapter->link_speed_mbps; 3442 goto validate_bw; 3443 } else { 3444 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3445 return -EINVAL; 3446 } 3447 } 3448 3449 switch (adapter->link_speed) { 3450 case VIRTCHNL_LINK_SPEED_40GB: 3451 speed = SPEED_40000; 3452 break; 3453 case VIRTCHNL_LINK_SPEED_25GB: 3454 speed = SPEED_25000; 3455 break; 3456 case VIRTCHNL_LINK_SPEED_20GB: 3457 speed = SPEED_20000; 3458 break; 3459 case VIRTCHNL_LINK_SPEED_10GB: 3460 speed = SPEED_10000; 3461 break; 3462 case VIRTCHNL_LINK_SPEED_5GB: 3463 speed = SPEED_5000; 3464 break; 3465 case VIRTCHNL_LINK_SPEED_2_5GB: 3466 speed = SPEED_2500; 3467 break; 3468 case VIRTCHNL_LINK_SPEED_1GB: 3469 speed = SPEED_1000; 3470 break; 3471 case VIRTCHNL_LINK_SPEED_100MB: 3472 speed = SPEED_100; 3473 break; 3474 default: 3475 break; 3476 } 3477 3478 validate_bw: 3479 if (max_tx_rate > speed) { 3480 dev_err(&adapter->pdev->dev, 3481 "Invalid tx rate specified\n"); 3482 ret = -EINVAL; 3483 } 3484 3485 return ret; 3486 } 3487 3488 /** 3489 * iavf_validate_ch_config - validate queue mapping info 3490 * @adapter: board private structure 3491 * @mqprio_qopt: queue parameters 3492 * 3493 * This function validates if the config provided by the user to 3494 * configure queue channels is valid or not. Returns 0 on a valid 3495 * config. 3496 **/ 3497 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3498 struct tc_mqprio_qopt_offload *mqprio_qopt) 3499 { 3500 u64 total_max_rate = 0; 3501 u32 tx_rate_rem = 0; 3502 int i, num_qps = 0; 3503 u64 tx_rate = 0; 3504 int ret = 0; 3505 3506 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3507 mqprio_qopt->qopt.num_tc < 1) 3508 return -EINVAL; 3509 3510 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3511 if (!mqprio_qopt->qopt.count[i] || 3512 mqprio_qopt->qopt.offset[i] != num_qps) 3513 return -EINVAL; 3514 if (mqprio_qopt->min_rate[i]) { 3515 dev_err(&adapter->pdev->dev, 3516 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3517 i); 3518 return -EINVAL; 3519 } 3520 3521 /* convert to Mbps */ 3522 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3523 IAVF_MBPS_DIVISOR); 3524 3525 if (mqprio_qopt->max_rate[i] && 3526 tx_rate < IAVF_MBPS_QUANTA) { 3527 dev_err(&adapter->pdev->dev, 3528 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3529 i, IAVF_MBPS_QUANTA); 3530 return -EINVAL; 3531 } 3532 3533 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3534 3535 if (tx_rate_rem != 0) { 3536 dev_err(&adapter->pdev->dev, 3537 "Invalid max tx rate for TC%d, not divisible by %d\n", 3538 i, IAVF_MBPS_QUANTA); 3539 return -EINVAL; 3540 } 3541 3542 total_max_rate += tx_rate; 3543 num_qps += mqprio_qopt->qopt.count[i]; 3544 } 3545 if (num_qps > adapter->num_active_queues) { 3546 dev_err(&adapter->pdev->dev, 3547 "Cannot support requested number of queues\n"); 3548 return -EINVAL; 3549 } 3550 3551 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3552 return ret; 3553 } 3554 3555 /** 3556 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3557 * @adapter: board private structure 3558 **/ 3559 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3560 { 3561 struct iavf_cloud_filter *cf, *cftmp; 3562 3563 spin_lock_bh(&adapter->cloud_filter_list_lock); 3564 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3565 list) { 3566 list_del(&cf->list); 3567 kfree(cf); 3568 adapter->num_cloud_filters--; 3569 } 3570 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3571 } 3572 3573 /** 3574 * __iavf_setup_tc - configure multiple traffic classes 3575 * @netdev: network interface device structure 3576 * @type_data: tc offload data 3577 * 3578 * This function processes the config information provided by the 3579 * user to configure traffic classes/queue channels and packages the 3580 * information to request the PF to setup traffic classes. 3581 * 3582 * Returns 0 on success. 3583 **/ 3584 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3585 { 3586 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3587 struct iavf_adapter *adapter = netdev_priv(netdev); 3588 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3589 u8 num_tc = 0, total_qps = 0; 3590 int ret = 0, netdev_tc = 0; 3591 u64 max_tx_rate; 3592 u16 mode; 3593 int i; 3594 3595 num_tc = mqprio_qopt->qopt.num_tc; 3596 mode = mqprio_qopt->mode; 3597 3598 /* delete queue_channel */ 3599 if (!mqprio_qopt->qopt.hw) { 3600 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3601 /* reset the tc configuration */ 3602 netdev_reset_tc(netdev); 3603 adapter->num_tc = 0; 3604 netif_tx_stop_all_queues(netdev); 3605 netif_tx_disable(netdev); 3606 iavf_del_all_cloud_filters(adapter); 3607 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3608 total_qps = adapter->orig_num_active_queues; 3609 goto exit; 3610 } else { 3611 return -EINVAL; 3612 } 3613 } 3614 3615 /* add queue channel */ 3616 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3617 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3618 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3619 return -EOPNOTSUPP; 3620 } 3621 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3622 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3623 return -EINVAL; 3624 } 3625 3626 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3627 if (ret) 3628 return ret; 3629 /* Return if same TC config is requested */ 3630 if (adapter->num_tc == num_tc) 3631 return 0; 3632 adapter->num_tc = num_tc; 3633 3634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3635 if (i < num_tc) { 3636 adapter->ch_config.ch_info[i].count = 3637 mqprio_qopt->qopt.count[i]; 3638 adapter->ch_config.ch_info[i].offset = 3639 mqprio_qopt->qopt.offset[i]; 3640 total_qps += mqprio_qopt->qopt.count[i]; 3641 max_tx_rate = mqprio_qopt->max_rate[i]; 3642 /* convert to Mbps */ 3643 max_tx_rate = div_u64(max_tx_rate, 3644 IAVF_MBPS_DIVISOR); 3645 adapter->ch_config.ch_info[i].max_tx_rate = 3646 max_tx_rate; 3647 } else { 3648 adapter->ch_config.ch_info[i].count = 1; 3649 adapter->ch_config.ch_info[i].offset = 0; 3650 } 3651 } 3652 3653 /* Take snapshot of original config such as "num_active_queues" 3654 * It is used later when delete ADQ flow is exercised, so that 3655 * once delete ADQ flow completes, VF shall go back to its 3656 * original queue configuration 3657 */ 3658 3659 adapter->orig_num_active_queues = adapter->num_active_queues; 3660 3661 /* Store queue info based on TC so that VF gets configured 3662 * with correct number of queues when VF completes ADQ config 3663 * flow 3664 */ 3665 adapter->ch_config.total_qps = total_qps; 3666 3667 netif_tx_stop_all_queues(netdev); 3668 netif_tx_disable(netdev); 3669 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3670 netdev_reset_tc(netdev); 3671 /* Report the tc mapping up the stack */ 3672 netdev_set_num_tc(adapter->netdev, num_tc); 3673 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3674 u16 qcount = mqprio_qopt->qopt.count[i]; 3675 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3676 3677 if (i < num_tc) 3678 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3679 qoffset); 3680 } 3681 } 3682 exit: 3683 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3684 return 0; 3685 3686 netif_set_real_num_rx_queues(netdev, total_qps); 3687 netif_set_real_num_tx_queues(netdev, total_qps); 3688 3689 return ret; 3690 } 3691 3692 /** 3693 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3694 * @adapter: board private structure 3695 * @f: pointer to struct flow_cls_offload 3696 * @filter: pointer to cloud filter structure 3697 */ 3698 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3699 struct flow_cls_offload *f, 3700 struct iavf_cloud_filter *filter) 3701 { 3702 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3703 struct flow_dissector *dissector = rule->match.dissector; 3704 u16 n_proto_mask = 0; 3705 u16 n_proto_key = 0; 3706 u8 field_flags = 0; 3707 u16 addr_type = 0; 3708 u16 n_proto = 0; 3709 int i = 0; 3710 struct virtchnl_filter *vf = &filter->f; 3711 3712 if (dissector->used_keys & 3713 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3714 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3715 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3716 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3717 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3718 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3719 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3720 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3721 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3722 dissector->used_keys); 3723 return -EOPNOTSUPP; 3724 } 3725 3726 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3727 struct flow_match_enc_keyid match; 3728 3729 flow_rule_match_enc_keyid(rule, &match); 3730 if (match.mask->keyid != 0) 3731 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3732 } 3733 3734 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3735 struct flow_match_basic match; 3736 3737 flow_rule_match_basic(rule, &match); 3738 n_proto_key = ntohs(match.key->n_proto); 3739 n_proto_mask = ntohs(match.mask->n_proto); 3740 3741 if (n_proto_key == ETH_P_ALL) { 3742 n_proto_key = 0; 3743 n_proto_mask = 0; 3744 } 3745 n_proto = n_proto_key & n_proto_mask; 3746 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3747 return -EINVAL; 3748 if (n_proto == ETH_P_IPV6) { 3749 /* specify flow type as TCP IPv6 */ 3750 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3751 } 3752 3753 if (match.key->ip_proto != IPPROTO_TCP) { 3754 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3755 return -EINVAL; 3756 } 3757 } 3758 3759 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3760 struct flow_match_eth_addrs match; 3761 3762 flow_rule_match_eth_addrs(rule, &match); 3763 3764 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3765 if (!is_zero_ether_addr(match.mask->dst)) { 3766 if (is_broadcast_ether_addr(match.mask->dst)) { 3767 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3768 } else { 3769 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3770 match.mask->dst); 3771 return -EINVAL; 3772 } 3773 } 3774 3775 if (!is_zero_ether_addr(match.mask->src)) { 3776 if (is_broadcast_ether_addr(match.mask->src)) { 3777 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3778 } else { 3779 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3780 match.mask->src); 3781 return -EINVAL; 3782 } 3783 } 3784 3785 if (!is_zero_ether_addr(match.key->dst)) 3786 if (is_valid_ether_addr(match.key->dst) || 3787 is_multicast_ether_addr(match.key->dst)) { 3788 /* set the mask if a valid dst_mac address */ 3789 for (i = 0; i < ETH_ALEN; i++) 3790 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3791 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3792 match.key->dst); 3793 } 3794 3795 if (!is_zero_ether_addr(match.key->src)) 3796 if (is_valid_ether_addr(match.key->src) || 3797 is_multicast_ether_addr(match.key->src)) { 3798 /* set the mask if a valid dst_mac address */ 3799 for (i = 0; i < ETH_ALEN; i++) 3800 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3801 ether_addr_copy(vf->data.tcp_spec.src_mac, 3802 match.key->src); 3803 } 3804 } 3805 3806 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3807 struct flow_match_vlan match; 3808 3809 flow_rule_match_vlan(rule, &match); 3810 if (match.mask->vlan_id) { 3811 if (match.mask->vlan_id == VLAN_VID_MASK) { 3812 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3813 } else { 3814 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3815 match.mask->vlan_id); 3816 return -EINVAL; 3817 } 3818 } 3819 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3820 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3821 } 3822 3823 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3824 struct flow_match_control match; 3825 3826 flow_rule_match_control(rule, &match); 3827 addr_type = match.key->addr_type; 3828 } 3829 3830 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3831 struct flow_match_ipv4_addrs match; 3832 3833 flow_rule_match_ipv4_addrs(rule, &match); 3834 if (match.mask->dst) { 3835 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3836 field_flags |= IAVF_CLOUD_FIELD_IIP; 3837 } else { 3838 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3839 be32_to_cpu(match.mask->dst)); 3840 return -EINVAL; 3841 } 3842 } 3843 3844 if (match.mask->src) { 3845 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3846 field_flags |= IAVF_CLOUD_FIELD_IIP; 3847 } else { 3848 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3849 be32_to_cpu(match.mask->dst)); 3850 return -EINVAL; 3851 } 3852 } 3853 3854 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3855 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3856 return -EINVAL; 3857 } 3858 if (match.key->dst) { 3859 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3860 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3861 } 3862 if (match.key->src) { 3863 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3864 vf->data.tcp_spec.src_ip[0] = match.key->src; 3865 } 3866 } 3867 3868 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3869 struct flow_match_ipv6_addrs match; 3870 3871 flow_rule_match_ipv6_addrs(rule, &match); 3872 3873 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3874 if (ipv6_addr_any(&match.mask->dst)) { 3875 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3876 IPV6_ADDR_ANY); 3877 return -EINVAL; 3878 } 3879 3880 /* src and dest IPv6 address should not be LOOPBACK 3881 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3882 */ 3883 if (ipv6_addr_loopback(&match.key->dst) || 3884 ipv6_addr_loopback(&match.key->src)) { 3885 dev_err(&adapter->pdev->dev, 3886 "ipv6 addr should not be loopback\n"); 3887 return -EINVAL; 3888 } 3889 if (!ipv6_addr_any(&match.mask->dst) || 3890 !ipv6_addr_any(&match.mask->src)) 3891 field_flags |= IAVF_CLOUD_FIELD_IIP; 3892 3893 for (i = 0; i < 4; i++) 3894 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3895 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3896 sizeof(vf->data.tcp_spec.dst_ip)); 3897 for (i = 0; i < 4; i++) 3898 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3899 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3900 sizeof(vf->data.tcp_spec.src_ip)); 3901 } 3902 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3903 struct flow_match_ports match; 3904 3905 flow_rule_match_ports(rule, &match); 3906 if (match.mask->src) { 3907 if (match.mask->src == cpu_to_be16(0xffff)) { 3908 field_flags |= IAVF_CLOUD_FIELD_IIP; 3909 } else { 3910 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3911 be16_to_cpu(match.mask->src)); 3912 return -EINVAL; 3913 } 3914 } 3915 3916 if (match.mask->dst) { 3917 if (match.mask->dst == cpu_to_be16(0xffff)) { 3918 field_flags |= IAVF_CLOUD_FIELD_IIP; 3919 } else { 3920 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3921 be16_to_cpu(match.mask->dst)); 3922 return -EINVAL; 3923 } 3924 } 3925 if (match.key->dst) { 3926 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3927 vf->data.tcp_spec.dst_port = match.key->dst; 3928 } 3929 3930 if (match.key->src) { 3931 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3932 vf->data.tcp_spec.src_port = match.key->src; 3933 } 3934 } 3935 vf->field_flags = field_flags; 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * iavf_handle_tclass - Forward to a traffic class on the device 3942 * @adapter: board private structure 3943 * @tc: traffic class index on the device 3944 * @filter: pointer to cloud filter structure 3945 */ 3946 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3947 struct iavf_cloud_filter *filter) 3948 { 3949 if (tc == 0) 3950 return 0; 3951 if (tc < adapter->num_tc) { 3952 if (!filter->f.data.tcp_spec.dst_port) { 3953 dev_err(&adapter->pdev->dev, 3954 "Specify destination port to redirect to traffic class other than TC0\n"); 3955 return -EINVAL; 3956 } 3957 } 3958 /* redirect to a traffic class on the same device */ 3959 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3960 filter->f.action_meta = tc; 3961 return 0; 3962 } 3963 3964 /** 3965 * iavf_find_cf - Find the cloud filter in the list 3966 * @adapter: Board private structure 3967 * @cookie: filter specific cookie 3968 * 3969 * Returns ptr to the filter object or NULL. Must be called while holding the 3970 * cloud_filter_list_lock. 3971 */ 3972 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3973 unsigned long *cookie) 3974 { 3975 struct iavf_cloud_filter *filter = NULL; 3976 3977 if (!cookie) 3978 return NULL; 3979 3980 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3981 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3982 return filter; 3983 } 3984 return NULL; 3985 } 3986 3987 /** 3988 * iavf_configure_clsflower - Add tc flower filters 3989 * @adapter: board private structure 3990 * @cls_flower: Pointer to struct flow_cls_offload 3991 */ 3992 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3993 struct flow_cls_offload *cls_flower) 3994 { 3995 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3996 struct iavf_cloud_filter *filter = NULL; 3997 int err = -EINVAL, count = 50; 3998 3999 if (tc < 0) { 4000 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4001 return -EINVAL; 4002 } 4003 4004 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4005 if (!filter) 4006 return -ENOMEM; 4007 4008 while (!mutex_trylock(&adapter->crit_lock)) { 4009 if (--count == 0) { 4010 kfree(filter); 4011 return err; 4012 } 4013 udelay(1); 4014 } 4015 4016 filter->cookie = cls_flower->cookie; 4017 4018 /* bail out here if filter already exists */ 4019 spin_lock_bh(&adapter->cloud_filter_list_lock); 4020 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4021 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4022 err = -EEXIST; 4023 goto spin_unlock; 4024 } 4025 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4026 4027 /* set the mask to all zeroes to begin with */ 4028 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4029 /* start out with flow type and eth type IPv4 to begin with */ 4030 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4031 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4032 if (err) 4033 goto err; 4034 4035 err = iavf_handle_tclass(adapter, tc, filter); 4036 if (err) 4037 goto err; 4038 4039 /* add filter to the list */ 4040 spin_lock_bh(&adapter->cloud_filter_list_lock); 4041 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4042 adapter->num_cloud_filters++; 4043 filter->add = true; 4044 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4045 spin_unlock: 4046 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4047 err: 4048 if (err) 4049 kfree(filter); 4050 4051 mutex_unlock(&adapter->crit_lock); 4052 return err; 4053 } 4054 4055 /** 4056 * iavf_delete_clsflower - Remove tc flower filters 4057 * @adapter: board private structure 4058 * @cls_flower: Pointer to struct flow_cls_offload 4059 */ 4060 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4061 struct flow_cls_offload *cls_flower) 4062 { 4063 struct iavf_cloud_filter *filter = NULL; 4064 int err = 0; 4065 4066 spin_lock_bh(&adapter->cloud_filter_list_lock); 4067 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4068 if (filter) { 4069 filter->del = true; 4070 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4071 } else { 4072 err = -EINVAL; 4073 } 4074 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4075 4076 return err; 4077 } 4078 4079 /** 4080 * iavf_setup_tc_cls_flower - flower classifier offloads 4081 * @adapter: board private structure 4082 * @cls_flower: pointer to flow_cls_offload struct with flow info 4083 */ 4084 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4085 struct flow_cls_offload *cls_flower) 4086 { 4087 switch (cls_flower->command) { 4088 case FLOW_CLS_REPLACE: 4089 return iavf_configure_clsflower(adapter, cls_flower); 4090 case FLOW_CLS_DESTROY: 4091 return iavf_delete_clsflower(adapter, cls_flower); 4092 case FLOW_CLS_STATS: 4093 return -EOPNOTSUPP; 4094 default: 4095 return -EOPNOTSUPP; 4096 } 4097 } 4098 4099 /** 4100 * iavf_setup_tc_block_cb - block callback for tc 4101 * @type: type of offload 4102 * @type_data: offload data 4103 * @cb_priv: 4104 * 4105 * This function is the block callback for traffic classes 4106 **/ 4107 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4108 void *cb_priv) 4109 { 4110 struct iavf_adapter *adapter = cb_priv; 4111 4112 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4113 return -EOPNOTSUPP; 4114 4115 switch (type) { 4116 case TC_SETUP_CLSFLOWER: 4117 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4118 default: 4119 return -EOPNOTSUPP; 4120 } 4121 } 4122 4123 static LIST_HEAD(iavf_block_cb_list); 4124 4125 /** 4126 * iavf_setup_tc - configure multiple traffic classes 4127 * @netdev: network interface device structure 4128 * @type: type of offload 4129 * @type_data: tc offload data 4130 * 4131 * This function is the callback to ndo_setup_tc in the 4132 * netdev_ops. 4133 * 4134 * Returns 0 on success 4135 **/ 4136 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4137 void *type_data) 4138 { 4139 struct iavf_adapter *adapter = netdev_priv(netdev); 4140 4141 switch (type) { 4142 case TC_SETUP_QDISC_MQPRIO: 4143 return __iavf_setup_tc(netdev, type_data); 4144 case TC_SETUP_BLOCK: 4145 return flow_block_cb_setup_simple(type_data, 4146 &iavf_block_cb_list, 4147 iavf_setup_tc_block_cb, 4148 adapter, adapter, true); 4149 default: 4150 return -EOPNOTSUPP; 4151 } 4152 } 4153 4154 /** 4155 * iavf_open - Called when a network interface is made active 4156 * @netdev: network interface device structure 4157 * 4158 * Returns 0 on success, negative value on failure 4159 * 4160 * The open entry point is called when a network interface is made 4161 * active by the system (IFF_UP). At this point all resources needed 4162 * for transmit and receive operations are allocated, the interrupt 4163 * handler is registered with the OS, the watchdog is started, 4164 * and the stack is notified that the interface is ready. 4165 **/ 4166 static int iavf_open(struct net_device *netdev) 4167 { 4168 struct iavf_adapter *adapter = netdev_priv(netdev); 4169 int err; 4170 4171 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4172 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4173 return -EIO; 4174 } 4175 4176 while (!mutex_trylock(&adapter->crit_lock)) { 4177 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4178 * is already taken and iavf_open is called from an upper 4179 * device's notifier reacting on NETDEV_REGISTER event. 4180 * We have to leave here to avoid dead lock. 4181 */ 4182 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4183 return -EBUSY; 4184 4185 usleep_range(500, 1000); 4186 } 4187 4188 if (adapter->state != __IAVF_DOWN) { 4189 err = -EBUSY; 4190 goto err_unlock; 4191 } 4192 4193 if (adapter->state == __IAVF_RUNNING && 4194 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4195 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4196 err = 0; 4197 goto err_unlock; 4198 } 4199 4200 /* allocate transmit descriptors */ 4201 err = iavf_setup_all_tx_resources(adapter); 4202 if (err) 4203 goto err_setup_tx; 4204 4205 /* allocate receive descriptors */ 4206 err = iavf_setup_all_rx_resources(adapter); 4207 if (err) 4208 goto err_setup_rx; 4209 4210 /* clear any pending interrupts, may auto mask */ 4211 err = iavf_request_traffic_irqs(adapter, netdev->name); 4212 if (err) 4213 goto err_req_irq; 4214 4215 spin_lock_bh(&adapter->mac_vlan_list_lock); 4216 4217 iavf_add_filter(adapter, adapter->hw.mac.addr); 4218 4219 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4220 4221 /* Restore VLAN filters that were removed with IFF_DOWN */ 4222 iavf_restore_filters(adapter); 4223 4224 iavf_configure(adapter); 4225 4226 iavf_up_complete(adapter); 4227 4228 iavf_irq_enable(adapter, true); 4229 4230 mutex_unlock(&adapter->crit_lock); 4231 4232 return 0; 4233 4234 err_req_irq: 4235 iavf_down(adapter); 4236 iavf_free_traffic_irqs(adapter); 4237 err_setup_rx: 4238 iavf_free_all_rx_resources(adapter); 4239 err_setup_tx: 4240 iavf_free_all_tx_resources(adapter); 4241 err_unlock: 4242 mutex_unlock(&adapter->crit_lock); 4243 4244 return err; 4245 } 4246 4247 /** 4248 * iavf_close - Disables a network interface 4249 * @netdev: network interface device structure 4250 * 4251 * Returns 0, this is not allowed to fail 4252 * 4253 * The close entry point is called when an interface is de-activated 4254 * by the OS. The hardware is still under the drivers control, but 4255 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4256 * are freed, along with all transmit and receive resources. 4257 **/ 4258 static int iavf_close(struct net_device *netdev) 4259 { 4260 struct iavf_adapter *adapter = netdev_priv(netdev); 4261 u64 aq_to_restore; 4262 int status; 4263 4264 mutex_lock(&adapter->crit_lock); 4265 4266 if (adapter->state <= __IAVF_DOWN_PENDING) { 4267 mutex_unlock(&adapter->crit_lock); 4268 return 0; 4269 } 4270 4271 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4272 if (CLIENT_ENABLED(adapter)) 4273 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4274 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4275 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4276 * deadlock with adminq_task() until iavf_close timeouts. We must send 4277 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4278 * disable queues possible for vf. Give only necessary flags to 4279 * iavf_down and save other to set them right before iavf_close() 4280 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4281 * iavf will be in DOWN state. 4282 */ 4283 aq_to_restore = adapter->aq_required; 4284 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4285 4286 /* Remove flags which we do not want to send after close or we want to 4287 * send before disable queues. 4288 */ 4289 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4290 IAVF_FLAG_AQ_ENABLE_QUEUES | 4291 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4292 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4293 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4294 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4295 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4296 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4297 4298 iavf_down(adapter); 4299 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4300 iavf_free_traffic_irqs(adapter); 4301 4302 mutex_unlock(&adapter->crit_lock); 4303 4304 /* We explicitly don't free resources here because the hardware is 4305 * still active and can DMA into memory. Resources are cleared in 4306 * iavf_virtchnl_completion() after we get confirmation from the PF 4307 * driver that the rings have been stopped. 4308 * 4309 * Also, we wait for state to transition to __IAVF_DOWN before 4310 * returning. State change occurs in iavf_virtchnl_completion() after 4311 * VF resources are released (which occurs after PF driver processes and 4312 * responds to admin queue commands). 4313 */ 4314 4315 status = wait_event_timeout(adapter->down_waitqueue, 4316 adapter->state == __IAVF_DOWN, 4317 msecs_to_jiffies(500)); 4318 if (!status) 4319 netdev_warn(netdev, "Device resources not yet released\n"); 4320 4321 mutex_lock(&adapter->crit_lock); 4322 adapter->aq_required |= aq_to_restore; 4323 mutex_unlock(&adapter->crit_lock); 4324 return 0; 4325 } 4326 4327 /** 4328 * iavf_change_mtu - Change the Maximum Transfer Unit 4329 * @netdev: network interface device structure 4330 * @new_mtu: new value for maximum frame size 4331 * 4332 * Returns 0 on success, negative on failure 4333 **/ 4334 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4335 { 4336 struct iavf_adapter *adapter = netdev_priv(netdev); 4337 4338 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4339 netdev->mtu, new_mtu); 4340 netdev->mtu = new_mtu; 4341 if (CLIENT_ENABLED(adapter)) { 4342 iavf_notify_client_l2_params(&adapter->vsi); 4343 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4344 } 4345 4346 if (netif_running(netdev)) { 4347 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4348 queue_work(iavf_wq, &adapter->reset_task); 4349 } 4350 4351 return 0; 4352 } 4353 4354 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4355 NETIF_F_HW_VLAN_CTAG_TX | \ 4356 NETIF_F_HW_VLAN_STAG_RX | \ 4357 NETIF_F_HW_VLAN_STAG_TX) 4358 4359 /** 4360 * iavf_set_features - set the netdev feature flags 4361 * @netdev: ptr to the netdev being adjusted 4362 * @features: the feature set that the stack is suggesting 4363 * Note: expects to be called while under rtnl_lock() 4364 **/ 4365 static int iavf_set_features(struct net_device *netdev, 4366 netdev_features_t features) 4367 { 4368 struct iavf_adapter *adapter = netdev_priv(netdev); 4369 4370 /* trigger update on any VLAN feature change */ 4371 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4372 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4373 iavf_set_vlan_offload_features(adapter, netdev->features, 4374 features); 4375 4376 return 0; 4377 } 4378 4379 /** 4380 * iavf_features_check - Validate encapsulated packet conforms to limits 4381 * @skb: skb buff 4382 * @dev: This physical port's netdev 4383 * @features: Offload features that the stack believes apply 4384 **/ 4385 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4386 struct net_device *dev, 4387 netdev_features_t features) 4388 { 4389 size_t len; 4390 4391 /* No point in doing any of this if neither checksum nor GSO are 4392 * being requested for this frame. We can rule out both by just 4393 * checking for CHECKSUM_PARTIAL 4394 */ 4395 if (skb->ip_summed != CHECKSUM_PARTIAL) 4396 return features; 4397 4398 /* We cannot support GSO if the MSS is going to be less than 4399 * 64 bytes. If it is then we need to drop support for GSO. 4400 */ 4401 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4402 features &= ~NETIF_F_GSO_MASK; 4403 4404 /* MACLEN can support at most 63 words */ 4405 len = skb_network_header(skb) - skb->data; 4406 if (len & ~(63 * 2)) 4407 goto out_err; 4408 4409 /* IPLEN and EIPLEN can support at most 127 dwords */ 4410 len = skb_transport_header(skb) - skb_network_header(skb); 4411 if (len & ~(127 * 4)) 4412 goto out_err; 4413 4414 if (skb->encapsulation) { 4415 /* L4TUNLEN can support 127 words */ 4416 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4417 if (len & ~(127 * 2)) 4418 goto out_err; 4419 4420 /* IPLEN can support at most 127 dwords */ 4421 len = skb_inner_transport_header(skb) - 4422 skb_inner_network_header(skb); 4423 if (len & ~(127 * 4)) 4424 goto out_err; 4425 } 4426 4427 /* No need to validate L4LEN as TCP is the only protocol with a 4428 * flexible value and we support all possible values supported 4429 * by TCP, which is at most 15 dwords 4430 */ 4431 4432 return features; 4433 out_err: 4434 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4435 } 4436 4437 /** 4438 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4439 * @adapter: board private structure 4440 * 4441 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4442 * were negotiated determine the VLAN features that can be toggled on and off. 4443 **/ 4444 static netdev_features_t 4445 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4446 { 4447 netdev_features_t hw_features = 0; 4448 4449 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4450 return hw_features; 4451 4452 /* Enable VLAN features if supported */ 4453 if (VLAN_ALLOWED(adapter)) { 4454 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4455 NETIF_F_HW_VLAN_CTAG_RX); 4456 } else if (VLAN_V2_ALLOWED(adapter)) { 4457 struct virtchnl_vlan_caps *vlan_v2_caps = 4458 &adapter->vlan_v2_caps; 4459 struct virtchnl_vlan_supported_caps *stripping_support = 4460 &vlan_v2_caps->offloads.stripping_support; 4461 struct virtchnl_vlan_supported_caps *insertion_support = 4462 &vlan_v2_caps->offloads.insertion_support; 4463 4464 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4465 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4466 if (stripping_support->outer & 4467 VIRTCHNL_VLAN_ETHERTYPE_8100) 4468 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4469 if (stripping_support->outer & 4470 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4471 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4472 } else if (stripping_support->inner != 4473 VIRTCHNL_VLAN_UNSUPPORTED && 4474 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4475 if (stripping_support->inner & 4476 VIRTCHNL_VLAN_ETHERTYPE_8100) 4477 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4478 } 4479 4480 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4481 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4482 if (insertion_support->outer & 4483 VIRTCHNL_VLAN_ETHERTYPE_8100) 4484 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4485 if (insertion_support->outer & 4486 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4487 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4488 } else if (insertion_support->inner && 4489 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4490 if (insertion_support->inner & 4491 VIRTCHNL_VLAN_ETHERTYPE_8100) 4492 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4493 } 4494 } 4495 4496 return hw_features; 4497 } 4498 4499 /** 4500 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4501 * @adapter: board private structure 4502 * 4503 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4504 * were negotiated determine the VLAN features that are enabled by default. 4505 **/ 4506 static netdev_features_t 4507 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4508 { 4509 netdev_features_t features = 0; 4510 4511 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4512 return features; 4513 4514 if (VLAN_ALLOWED(adapter)) { 4515 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4516 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4517 } else if (VLAN_V2_ALLOWED(adapter)) { 4518 struct virtchnl_vlan_caps *vlan_v2_caps = 4519 &adapter->vlan_v2_caps; 4520 struct virtchnl_vlan_supported_caps *filtering_support = 4521 &vlan_v2_caps->filtering.filtering_support; 4522 struct virtchnl_vlan_supported_caps *stripping_support = 4523 &vlan_v2_caps->offloads.stripping_support; 4524 struct virtchnl_vlan_supported_caps *insertion_support = 4525 &vlan_v2_caps->offloads.insertion_support; 4526 u32 ethertype_init; 4527 4528 /* give priority to outer stripping and don't support both outer 4529 * and inner stripping 4530 */ 4531 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4532 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4533 if (stripping_support->outer & 4534 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4535 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4536 features |= NETIF_F_HW_VLAN_CTAG_RX; 4537 else if (stripping_support->outer & 4538 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4539 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4540 features |= NETIF_F_HW_VLAN_STAG_RX; 4541 } else if (stripping_support->inner != 4542 VIRTCHNL_VLAN_UNSUPPORTED) { 4543 if (stripping_support->inner & 4544 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4545 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4546 features |= NETIF_F_HW_VLAN_CTAG_RX; 4547 } 4548 4549 /* give priority to outer insertion and don't support both outer 4550 * and inner insertion 4551 */ 4552 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4553 if (insertion_support->outer & 4554 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4555 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4556 features |= NETIF_F_HW_VLAN_CTAG_TX; 4557 else if (insertion_support->outer & 4558 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4559 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4560 features |= NETIF_F_HW_VLAN_STAG_TX; 4561 } else if (insertion_support->inner != 4562 VIRTCHNL_VLAN_UNSUPPORTED) { 4563 if (insertion_support->inner & 4564 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4565 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4566 features |= NETIF_F_HW_VLAN_CTAG_TX; 4567 } 4568 4569 /* give priority to outer filtering and don't bother if both 4570 * outer and inner filtering are enabled 4571 */ 4572 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4573 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4574 if (filtering_support->outer & 4575 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4576 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4577 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4578 if (filtering_support->outer & 4579 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4580 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4581 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4582 } else if (filtering_support->inner != 4583 VIRTCHNL_VLAN_UNSUPPORTED) { 4584 if (filtering_support->inner & 4585 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4586 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4587 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4588 if (filtering_support->inner & 4589 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4590 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4591 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4592 } 4593 } 4594 4595 return features; 4596 } 4597 4598 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4599 (!(((requested) & (feature_bit)) && \ 4600 !((allowed) & (feature_bit)))) 4601 4602 /** 4603 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4604 * @adapter: board private structure 4605 * @requested_features: stack requested NETDEV features 4606 **/ 4607 static netdev_features_t 4608 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4609 netdev_features_t requested_features) 4610 { 4611 netdev_features_t allowed_features; 4612 4613 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4614 iavf_get_netdev_vlan_features(adapter); 4615 4616 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4617 allowed_features, 4618 NETIF_F_HW_VLAN_CTAG_TX)) 4619 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4620 4621 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4622 allowed_features, 4623 NETIF_F_HW_VLAN_CTAG_RX)) 4624 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4625 4626 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4627 allowed_features, 4628 NETIF_F_HW_VLAN_STAG_TX)) 4629 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4630 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4631 allowed_features, 4632 NETIF_F_HW_VLAN_STAG_RX)) 4633 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4634 4635 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4636 allowed_features, 4637 NETIF_F_HW_VLAN_CTAG_FILTER)) 4638 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4639 4640 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4641 allowed_features, 4642 NETIF_F_HW_VLAN_STAG_FILTER)) 4643 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4644 4645 if ((requested_features & 4646 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4647 (requested_features & 4648 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4649 adapter->vlan_v2_caps.offloads.ethertype_match == 4650 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4651 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4652 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4653 NETIF_F_HW_VLAN_STAG_TX); 4654 } 4655 4656 return requested_features; 4657 } 4658 4659 /** 4660 * iavf_fix_features - fix up the netdev feature bits 4661 * @netdev: our net device 4662 * @features: desired feature bits 4663 * 4664 * Returns fixed-up features bits 4665 **/ 4666 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4667 netdev_features_t features) 4668 { 4669 struct iavf_adapter *adapter = netdev_priv(netdev); 4670 4671 return iavf_fix_netdev_vlan_features(adapter, features); 4672 } 4673 4674 static const struct net_device_ops iavf_netdev_ops = { 4675 .ndo_open = iavf_open, 4676 .ndo_stop = iavf_close, 4677 .ndo_start_xmit = iavf_xmit_frame, 4678 .ndo_set_rx_mode = iavf_set_rx_mode, 4679 .ndo_validate_addr = eth_validate_addr, 4680 .ndo_set_mac_address = iavf_set_mac, 4681 .ndo_change_mtu = iavf_change_mtu, 4682 .ndo_tx_timeout = iavf_tx_timeout, 4683 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4684 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4685 .ndo_features_check = iavf_features_check, 4686 .ndo_fix_features = iavf_fix_features, 4687 .ndo_set_features = iavf_set_features, 4688 .ndo_setup_tc = iavf_setup_tc, 4689 }; 4690 4691 /** 4692 * iavf_check_reset_complete - check that VF reset is complete 4693 * @hw: pointer to hw struct 4694 * 4695 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4696 **/ 4697 static int iavf_check_reset_complete(struct iavf_hw *hw) 4698 { 4699 u32 rstat; 4700 int i; 4701 4702 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4703 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4704 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4705 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4706 (rstat == VIRTCHNL_VFR_COMPLETED)) 4707 return 0; 4708 usleep_range(10, 20); 4709 } 4710 return -EBUSY; 4711 } 4712 4713 /** 4714 * iavf_process_config - Process the config information we got from the PF 4715 * @adapter: board private structure 4716 * 4717 * Verify that we have a valid config struct, and set up our netdev features 4718 * and our VSI struct. 4719 **/ 4720 int iavf_process_config(struct iavf_adapter *adapter) 4721 { 4722 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4723 netdev_features_t hw_vlan_features, vlan_features; 4724 struct net_device *netdev = adapter->netdev; 4725 netdev_features_t hw_enc_features; 4726 netdev_features_t hw_features; 4727 4728 hw_enc_features = NETIF_F_SG | 4729 NETIF_F_IP_CSUM | 4730 NETIF_F_IPV6_CSUM | 4731 NETIF_F_HIGHDMA | 4732 NETIF_F_SOFT_FEATURES | 4733 NETIF_F_TSO | 4734 NETIF_F_TSO_ECN | 4735 NETIF_F_TSO6 | 4736 NETIF_F_SCTP_CRC | 4737 NETIF_F_RXHASH | 4738 NETIF_F_RXCSUM | 4739 0; 4740 4741 /* advertise to stack only if offloads for encapsulated packets is 4742 * supported 4743 */ 4744 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4745 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4746 NETIF_F_GSO_GRE | 4747 NETIF_F_GSO_GRE_CSUM | 4748 NETIF_F_GSO_IPXIP4 | 4749 NETIF_F_GSO_IPXIP6 | 4750 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4751 NETIF_F_GSO_PARTIAL | 4752 0; 4753 4754 if (!(vfres->vf_cap_flags & 4755 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4756 netdev->gso_partial_features |= 4757 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4758 4759 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4760 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4761 netdev->hw_enc_features |= hw_enc_features; 4762 } 4763 /* record features VLANs can make use of */ 4764 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4765 4766 /* Write features and hw_features separately to avoid polluting 4767 * with, or dropping, features that are set when we registered. 4768 */ 4769 hw_features = hw_enc_features; 4770 4771 /* get HW VLAN features that can be toggled */ 4772 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4773 4774 /* Enable cloud filter if ADQ is supported */ 4775 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4776 hw_features |= NETIF_F_HW_TC; 4777 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4778 hw_features |= NETIF_F_GSO_UDP_L4; 4779 4780 netdev->hw_features |= hw_features | hw_vlan_features; 4781 vlan_features = iavf_get_netdev_vlan_features(adapter); 4782 4783 netdev->features |= hw_features | vlan_features; 4784 4785 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4786 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4787 4788 netdev->priv_flags |= IFF_UNICAST_FLT; 4789 4790 /* Do not turn on offloads when they are requested to be turned off. 4791 * TSO needs minimum 576 bytes to work correctly. 4792 */ 4793 if (netdev->wanted_features) { 4794 if (!(netdev->wanted_features & NETIF_F_TSO) || 4795 netdev->mtu < 576) 4796 netdev->features &= ~NETIF_F_TSO; 4797 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4798 netdev->mtu < 576) 4799 netdev->features &= ~NETIF_F_TSO6; 4800 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4801 netdev->features &= ~NETIF_F_TSO_ECN; 4802 if (!(netdev->wanted_features & NETIF_F_GRO)) 4803 netdev->features &= ~NETIF_F_GRO; 4804 if (!(netdev->wanted_features & NETIF_F_GSO)) 4805 netdev->features &= ~NETIF_F_GSO; 4806 } 4807 4808 return 0; 4809 } 4810 4811 /** 4812 * iavf_shutdown - Shutdown the device in preparation for a reboot 4813 * @pdev: pci device structure 4814 **/ 4815 static void iavf_shutdown(struct pci_dev *pdev) 4816 { 4817 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4818 struct net_device *netdev = adapter->netdev; 4819 4820 netif_device_detach(netdev); 4821 4822 if (netif_running(netdev)) 4823 iavf_close(netdev); 4824 4825 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4826 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4827 /* Prevent the watchdog from running. */ 4828 iavf_change_state(adapter, __IAVF_REMOVE); 4829 adapter->aq_required = 0; 4830 mutex_unlock(&adapter->crit_lock); 4831 4832 #ifdef CONFIG_PM 4833 pci_save_state(pdev); 4834 4835 #endif 4836 pci_disable_device(pdev); 4837 } 4838 4839 /** 4840 * iavf_probe - Device Initialization Routine 4841 * @pdev: PCI device information struct 4842 * @ent: entry in iavf_pci_tbl 4843 * 4844 * Returns 0 on success, negative on failure 4845 * 4846 * iavf_probe initializes an adapter identified by a pci_dev structure. 4847 * The OS initialization, configuring of the adapter private structure, 4848 * and a hardware reset occur. 4849 **/ 4850 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4851 { 4852 struct net_device *netdev; 4853 struct iavf_adapter *adapter = NULL; 4854 struct iavf_hw *hw = NULL; 4855 int err; 4856 4857 err = pci_enable_device(pdev); 4858 if (err) 4859 return err; 4860 4861 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4862 if (err) { 4863 dev_err(&pdev->dev, 4864 "DMA configuration failed: 0x%x\n", err); 4865 goto err_dma; 4866 } 4867 4868 err = pci_request_regions(pdev, iavf_driver_name); 4869 if (err) { 4870 dev_err(&pdev->dev, 4871 "pci_request_regions failed 0x%x\n", err); 4872 goto err_pci_reg; 4873 } 4874 4875 pci_enable_pcie_error_reporting(pdev); 4876 4877 pci_set_master(pdev); 4878 4879 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4880 IAVF_MAX_REQ_QUEUES); 4881 if (!netdev) { 4882 err = -ENOMEM; 4883 goto err_alloc_etherdev; 4884 } 4885 4886 SET_NETDEV_DEV(netdev, &pdev->dev); 4887 4888 pci_set_drvdata(pdev, netdev); 4889 adapter = netdev_priv(netdev); 4890 4891 adapter->netdev = netdev; 4892 adapter->pdev = pdev; 4893 4894 hw = &adapter->hw; 4895 hw->back = adapter; 4896 4897 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4898 iavf_change_state(adapter, __IAVF_STARTUP); 4899 4900 /* Call save state here because it relies on the adapter struct. */ 4901 pci_save_state(pdev); 4902 4903 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4904 pci_resource_len(pdev, 0)); 4905 if (!hw->hw_addr) { 4906 err = -EIO; 4907 goto err_ioremap; 4908 } 4909 hw->vendor_id = pdev->vendor; 4910 hw->device_id = pdev->device; 4911 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4912 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4913 hw->subsystem_device_id = pdev->subsystem_device; 4914 hw->bus.device = PCI_SLOT(pdev->devfn); 4915 hw->bus.func = PCI_FUNC(pdev->devfn); 4916 hw->bus.bus_id = pdev->bus->number; 4917 4918 /* set up the locks for the AQ, do this only once in probe 4919 * and destroy them only once in remove 4920 */ 4921 mutex_init(&adapter->crit_lock); 4922 mutex_init(&adapter->client_lock); 4923 mutex_init(&hw->aq.asq_mutex); 4924 mutex_init(&hw->aq.arq_mutex); 4925 4926 spin_lock_init(&adapter->mac_vlan_list_lock); 4927 spin_lock_init(&adapter->cloud_filter_list_lock); 4928 spin_lock_init(&adapter->fdir_fltr_lock); 4929 spin_lock_init(&adapter->adv_rss_lock); 4930 4931 INIT_LIST_HEAD(&adapter->mac_filter_list); 4932 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4933 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4934 INIT_LIST_HEAD(&adapter->fdir_list_head); 4935 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4936 4937 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4938 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4939 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4940 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4941 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4942 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4943 4944 /* Setup the wait queue for indicating transition to down status */ 4945 init_waitqueue_head(&adapter->down_waitqueue); 4946 4947 /* Setup the wait queue for indicating virtchannel events */ 4948 init_waitqueue_head(&adapter->vc_waitqueue); 4949 4950 return 0; 4951 4952 err_ioremap: 4953 free_netdev(netdev); 4954 err_alloc_etherdev: 4955 pci_disable_pcie_error_reporting(pdev); 4956 pci_release_regions(pdev); 4957 err_pci_reg: 4958 err_dma: 4959 pci_disable_device(pdev); 4960 return err; 4961 } 4962 4963 /** 4964 * iavf_suspend - Power management suspend routine 4965 * @dev_d: device info pointer 4966 * 4967 * Called when the system (VM) is entering sleep/suspend. 4968 **/ 4969 static int __maybe_unused iavf_suspend(struct device *dev_d) 4970 { 4971 struct net_device *netdev = dev_get_drvdata(dev_d); 4972 struct iavf_adapter *adapter = netdev_priv(netdev); 4973 4974 netif_device_detach(netdev); 4975 4976 while (!mutex_trylock(&adapter->crit_lock)) 4977 usleep_range(500, 1000); 4978 4979 if (netif_running(netdev)) { 4980 rtnl_lock(); 4981 iavf_down(adapter); 4982 rtnl_unlock(); 4983 } 4984 iavf_free_misc_irq(adapter); 4985 iavf_reset_interrupt_capability(adapter); 4986 4987 mutex_unlock(&adapter->crit_lock); 4988 4989 return 0; 4990 } 4991 4992 /** 4993 * iavf_resume - Power management resume routine 4994 * @dev_d: device info pointer 4995 * 4996 * Called when the system (VM) is resumed from sleep/suspend. 4997 **/ 4998 static int __maybe_unused iavf_resume(struct device *dev_d) 4999 { 5000 struct pci_dev *pdev = to_pci_dev(dev_d); 5001 struct iavf_adapter *adapter; 5002 u32 err; 5003 5004 adapter = iavf_pdev_to_adapter(pdev); 5005 5006 pci_set_master(pdev); 5007 5008 rtnl_lock(); 5009 err = iavf_set_interrupt_capability(adapter); 5010 if (err) { 5011 rtnl_unlock(); 5012 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5013 return err; 5014 } 5015 err = iavf_request_misc_irq(adapter); 5016 rtnl_unlock(); 5017 if (err) { 5018 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5019 return err; 5020 } 5021 5022 queue_work(iavf_wq, &adapter->reset_task); 5023 5024 netif_device_attach(adapter->netdev); 5025 5026 return err; 5027 } 5028 5029 /** 5030 * iavf_remove - Device Removal Routine 5031 * @pdev: PCI device information struct 5032 * 5033 * iavf_remove is called by the PCI subsystem to alert the driver 5034 * that it should release a PCI device. The could be caused by a 5035 * Hot-Plug event, or because the driver is going to be removed from 5036 * memory. 5037 **/ 5038 static void iavf_remove(struct pci_dev *pdev) 5039 { 5040 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5041 struct net_device *netdev = adapter->netdev; 5042 struct iavf_fdir_fltr *fdir, *fdirtmp; 5043 struct iavf_vlan_filter *vlf, *vlftmp; 5044 struct iavf_adv_rss *rss, *rsstmp; 5045 struct iavf_mac_filter *f, *ftmp; 5046 struct iavf_cloud_filter *cf, *cftmp; 5047 struct iavf_hw *hw = &adapter->hw; 5048 int err; 5049 5050 /* When reboot/shutdown is in progress no need to do anything 5051 * as the adapter is already REMOVE state that was set during 5052 * iavf_shutdown() callback. 5053 */ 5054 if (adapter->state == __IAVF_REMOVE) 5055 return; 5056 5057 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 5058 /* Wait until port initialization is complete. 5059 * There are flows where register/unregister netdev may race. 5060 */ 5061 while (1) { 5062 mutex_lock(&adapter->crit_lock); 5063 if (adapter->state == __IAVF_RUNNING || 5064 adapter->state == __IAVF_DOWN || 5065 adapter->state == __IAVF_INIT_FAILED) { 5066 mutex_unlock(&adapter->crit_lock); 5067 break; 5068 } 5069 5070 mutex_unlock(&adapter->crit_lock); 5071 usleep_range(500, 1000); 5072 } 5073 cancel_delayed_work_sync(&adapter->watchdog_task); 5074 5075 if (adapter->netdev_registered) { 5076 rtnl_lock(); 5077 unregister_netdevice(netdev); 5078 adapter->netdev_registered = false; 5079 rtnl_unlock(); 5080 } 5081 if (CLIENT_ALLOWED(adapter)) { 5082 err = iavf_lan_del_device(adapter); 5083 if (err) 5084 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 5085 err); 5086 } 5087 5088 mutex_lock(&adapter->crit_lock); 5089 dev_info(&adapter->pdev->dev, "Remove device\n"); 5090 iavf_change_state(adapter, __IAVF_REMOVE); 5091 5092 iavf_request_reset(adapter); 5093 msleep(50); 5094 /* If the FW isn't responding, kick it once, but only once. */ 5095 if (!iavf_asq_done(hw)) { 5096 iavf_request_reset(adapter); 5097 msleep(50); 5098 } 5099 5100 iavf_misc_irq_disable(adapter); 5101 /* Shut down all the garbage mashers on the detention level */ 5102 cancel_work_sync(&adapter->reset_task); 5103 cancel_delayed_work_sync(&adapter->watchdog_task); 5104 cancel_work_sync(&adapter->adminq_task); 5105 cancel_delayed_work_sync(&adapter->client_task); 5106 5107 adapter->aq_required = 0; 5108 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5109 5110 iavf_free_all_tx_resources(adapter); 5111 iavf_free_all_rx_resources(adapter); 5112 iavf_free_misc_irq(adapter); 5113 5114 iavf_reset_interrupt_capability(adapter); 5115 iavf_free_q_vectors(adapter); 5116 5117 iavf_free_rss(adapter); 5118 5119 if (hw->aq.asq.count) 5120 iavf_shutdown_adminq(hw); 5121 5122 /* destroy the locks only once, here */ 5123 mutex_destroy(&hw->aq.arq_mutex); 5124 mutex_destroy(&hw->aq.asq_mutex); 5125 mutex_destroy(&adapter->client_lock); 5126 mutex_unlock(&adapter->crit_lock); 5127 mutex_destroy(&adapter->crit_lock); 5128 5129 iounmap(hw->hw_addr); 5130 pci_release_regions(pdev); 5131 iavf_free_queues(adapter); 5132 kfree(adapter->vf_res); 5133 spin_lock_bh(&adapter->mac_vlan_list_lock); 5134 /* If we got removed before an up/down sequence, we've got a filter 5135 * hanging out there that we need to get rid of. 5136 */ 5137 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5138 list_del(&f->list); 5139 kfree(f); 5140 } 5141 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5142 list) { 5143 list_del(&vlf->list); 5144 kfree(vlf); 5145 } 5146 5147 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5148 5149 spin_lock_bh(&adapter->cloud_filter_list_lock); 5150 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5151 list_del(&cf->list); 5152 kfree(cf); 5153 } 5154 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5155 5156 spin_lock_bh(&adapter->fdir_fltr_lock); 5157 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5158 list_del(&fdir->list); 5159 kfree(fdir); 5160 } 5161 spin_unlock_bh(&adapter->fdir_fltr_lock); 5162 5163 spin_lock_bh(&adapter->adv_rss_lock); 5164 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5165 list) { 5166 list_del(&rss->list); 5167 kfree(rss); 5168 } 5169 spin_unlock_bh(&adapter->adv_rss_lock); 5170 5171 free_netdev(netdev); 5172 5173 pci_disable_pcie_error_reporting(pdev); 5174 5175 pci_disable_device(pdev); 5176 } 5177 5178 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5179 5180 static struct pci_driver iavf_driver = { 5181 .name = iavf_driver_name, 5182 .id_table = iavf_pci_tbl, 5183 .probe = iavf_probe, 5184 .remove = iavf_remove, 5185 .driver.pm = &iavf_pm_ops, 5186 .shutdown = iavf_shutdown, 5187 }; 5188 5189 /** 5190 * iavf_init_module - Driver Registration Routine 5191 * 5192 * iavf_init_module is the first routine called when the driver is 5193 * loaded. All it does is register with the PCI subsystem. 5194 **/ 5195 static int __init iavf_init_module(void) 5196 { 5197 pr_info("iavf: %s\n", iavf_driver_string); 5198 5199 pr_info("%s\n", iavf_copyright); 5200 5201 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 5202 iavf_driver_name); 5203 if (!iavf_wq) { 5204 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 5205 return -ENOMEM; 5206 } 5207 return pci_register_driver(&iavf_driver); 5208 } 5209 5210 module_init(iavf_init_module); 5211 5212 /** 5213 * iavf_exit_module - Driver Exit Cleanup Routine 5214 * 5215 * iavf_exit_module is called just before the driver is removed 5216 * from memory. 5217 **/ 5218 static void __exit iavf_exit_module(void) 5219 { 5220 pci_unregister_driver(&iavf_driver); 5221 destroy_workqueue(iavf_wq); 5222 } 5223 5224 module_exit(iavf_exit_module); 5225 5226 /* iavf_main.c */ 5227