1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 56 * @hw: pointer to the HW structure 57 * @mem: ptr to mem struct to fill out 58 * @size: size of memory requested 59 * @alignment: what to align the allocation to 60 **/ 61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 62 struct iavf_dma_mem *mem, 63 u64 size, u32 alignment) 64 { 65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 66 67 if (!mem) 68 return IAVF_ERR_PARAM; 69 70 mem->size = ALIGN(size, alignment); 71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 72 (dma_addr_t *)&mem->pa, GFP_KERNEL); 73 if (mem->va) 74 return 0; 75 else 76 return IAVF_ERR_NO_MEMORY; 77 } 78 79 /** 80 * iavf_free_dma_mem_d - OS specific memory free for shared code 81 * @hw: pointer to the HW structure 82 * @mem: ptr to mem struct to free 83 **/ 84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 85 struct iavf_dma_mem *mem) 86 { 87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 88 89 if (!mem || !mem->va) 90 return IAVF_ERR_PARAM; 91 dma_free_coherent(&adapter->pdev->dev, mem->size, 92 mem->va, (dma_addr_t)mem->pa); 93 return 0; 94 } 95 96 /** 97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 98 * @hw: pointer to the HW structure 99 * @mem: ptr to mem struct to fill out 100 * @size: size of memory requested 101 **/ 102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 103 struct iavf_virt_mem *mem, u32 size) 104 { 105 if (!mem) 106 return IAVF_ERR_PARAM; 107 108 mem->size = size; 109 mem->va = kzalloc(size, GFP_KERNEL); 110 111 if (mem->va) 112 return 0; 113 else 114 return IAVF_ERR_NO_MEMORY; 115 } 116 117 /** 118 * iavf_free_virt_mem_d - OS specific memory free for shared code 119 * @hw: pointer to the HW structure 120 * @mem: ptr to mem struct to free 121 **/ 122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 123 struct iavf_virt_mem *mem) 124 { 125 if (!mem) 126 return IAVF_ERR_PARAM; 127 128 /* it's ok to kfree a NULL pointer */ 129 kfree(mem->va); 130 131 return 0; 132 } 133 134 /** 135 * iavf_schedule_reset - Set the flags and schedule a reset event 136 * @adapter: board private structure 137 **/ 138 void iavf_schedule_reset(struct iavf_adapter *adapter) 139 { 140 if (!(adapter->flags & 141 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 142 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 143 queue_work(iavf_wq, &adapter->reset_task); 144 } 145 } 146 147 /** 148 * iavf_tx_timeout - Respond to a Tx Hang 149 * @netdev: network interface device structure 150 * @txqueue: queue number that is timing out 151 **/ 152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 153 { 154 struct iavf_adapter *adapter = netdev_priv(netdev); 155 156 adapter->tx_timeout_count++; 157 iavf_schedule_reset(adapter); 158 } 159 160 /** 161 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 162 * @adapter: board private structure 163 **/ 164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 165 { 166 struct iavf_hw *hw = &adapter->hw; 167 168 if (!adapter->msix_entries) 169 return; 170 171 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 172 173 iavf_flush(hw); 174 175 synchronize_irq(adapter->msix_entries[0].vector); 176 } 177 178 /** 179 * iavf_misc_irq_enable - Enable default interrupt generation settings 180 * @adapter: board private structure 181 **/ 182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 183 { 184 struct iavf_hw *hw = &adapter->hw; 185 186 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 187 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 188 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 189 190 iavf_flush(hw); 191 } 192 193 /** 194 * iavf_irq_disable - Mask off interrupt generation on the NIC 195 * @adapter: board private structure 196 **/ 197 static void iavf_irq_disable(struct iavf_adapter *adapter) 198 { 199 int i; 200 struct iavf_hw *hw = &adapter->hw; 201 202 if (!adapter->msix_entries) 203 return; 204 205 for (i = 1; i < adapter->num_msix_vectors; i++) { 206 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 207 synchronize_irq(adapter->msix_entries[i].vector); 208 } 209 iavf_flush(hw); 210 } 211 212 /** 213 * iavf_irq_enable_queues - Enable interrupt for specified queues 214 * @adapter: board private structure 215 * @mask: bitmap of queues to enable 216 **/ 217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 218 { 219 struct iavf_hw *hw = &adapter->hw; 220 int i; 221 222 for (i = 1; i < adapter->num_msix_vectors; i++) { 223 if (mask & BIT(i - 1)) { 224 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 225 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 226 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 227 } 228 } 229 } 230 231 /** 232 * iavf_irq_enable - Enable default interrupt generation settings 233 * @adapter: board private structure 234 * @flush: boolean value whether to run rd32() 235 **/ 236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 237 { 238 struct iavf_hw *hw = &adapter->hw; 239 240 iavf_misc_irq_enable(adapter); 241 iavf_irq_enable_queues(adapter, ~0); 242 243 if (flush) 244 iavf_flush(hw); 245 } 246 247 /** 248 * iavf_msix_aq - Interrupt handler for vector 0 249 * @irq: interrupt number 250 * @data: pointer to netdev 251 **/ 252 static irqreturn_t iavf_msix_aq(int irq, void *data) 253 { 254 struct net_device *netdev = data; 255 struct iavf_adapter *adapter = netdev_priv(netdev); 256 struct iavf_hw *hw = &adapter->hw; 257 258 /* handle non-queue interrupts, these reads clear the registers */ 259 rd32(hw, IAVF_VFINT_ICR01); 260 rd32(hw, IAVF_VFINT_ICR0_ENA1); 261 262 /* schedule work on the private workqueue */ 263 queue_work(iavf_wq, &adapter->adminq_task); 264 265 return IRQ_HANDLED; 266 } 267 268 /** 269 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 270 * @irq: interrupt number 271 * @data: pointer to a q_vector 272 **/ 273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 274 { 275 struct iavf_q_vector *q_vector = data; 276 277 if (!q_vector->tx.ring && !q_vector->rx.ring) 278 return IRQ_HANDLED; 279 280 napi_schedule_irqoff(&q_vector->napi); 281 282 return IRQ_HANDLED; 283 } 284 285 /** 286 * iavf_map_vector_to_rxq - associate irqs with rx queues 287 * @adapter: board private structure 288 * @v_idx: interrupt number 289 * @r_idx: queue number 290 **/ 291 static void 292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 293 { 294 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 295 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 296 struct iavf_hw *hw = &adapter->hw; 297 298 rx_ring->q_vector = q_vector; 299 rx_ring->next = q_vector->rx.ring; 300 rx_ring->vsi = &adapter->vsi; 301 q_vector->rx.ring = rx_ring; 302 q_vector->rx.count++; 303 q_vector->rx.next_update = jiffies + 1; 304 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 305 q_vector->ring_mask |= BIT(r_idx); 306 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 307 q_vector->rx.current_itr >> 1); 308 q_vector->rx.current_itr = q_vector->rx.target_itr; 309 } 310 311 /** 312 * iavf_map_vector_to_txq - associate irqs with tx queues 313 * @adapter: board private structure 314 * @v_idx: interrupt number 315 * @t_idx: queue number 316 **/ 317 static void 318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 319 { 320 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 321 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 322 struct iavf_hw *hw = &adapter->hw; 323 324 tx_ring->q_vector = q_vector; 325 tx_ring->next = q_vector->tx.ring; 326 tx_ring->vsi = &adapter->vsi; 327 q_vector->tx.ring = tx_ring; 328 q_vector->tx.count++; 329 q_vector->tx.next_update = jiffies + 1; 330 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 331 q_vector->num_ringpairs++; 332 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 333 q_vector->tx.target_itr >> 1); 334 q_vector->tx.current_itr = q_vector->tx.target_itr; 335 } 336 337 /** 338 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 339 * @adapter: board private structure to initialize 340 * 341 * This function maps descriptor rings to the queue-specific vectors 342 * we were allotted through the MSI-X enabling code. Ideally, we'd have 343 * one vector per ring/queue, but on a constrained vector budget, we 344 * group the rings as "efficiently" as possible. You would add new 345 * mapping configurations in here. 346 **/ 347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 348 { 349 int rings_remaining = adapter->num_active_queues; 350 int ridx = 0, vidx = 0; 351 int q_vectors; 352 353 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 354 355 for (; ridx < rings_remaining; ridx++) { 356 iavf_map_vector_to_rxq(adapter, vidx, ridx); 357 iavf_map_vector_to_txq(adapter, vidx, ridx); 358 359 /* In the case where we have more queues than vectors, continue 360 * round-robin on vectors until all queues are mapped. 361 */ 362 if (++vidx >= q_vectors) 363 vidx = 0; 364 } 365 366 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 367 } 368 369 /** 370 * iavf_irq_affinity_notify - Callback for affinity changes 371 * @notify: context as to what irq was changed 372 * @mask: the new affinity mask 373 * 374 * This is a callback function used by the irq_set_affinity_notifier function 375 * so that we may register to receive changes to the irq affinity masks. 376 **/ 377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 378 const cpumask_t *mask) 379 { 380 struct iavf_q_vector *q_vector = 381 container_of(notify, struct iavf_q_vector, affinity_notify); 382 383 cpumask_copy(&q_vector->affinity_mask, mask); 384 } 385 386 /** 387 * iavf_irq_affinity_release - Callback for affinity notifier release 388 * @ref: internal core kernel usage 389 * 390 * This is a callback function used by the irq_set_affinity_notifier function 391 * to inform the current notification subscriber that they will no longer 392 * receive notifications. 393 **/ 394 static void iavf_irq_affinity_release(struct kref *ref) {} 395 396 /** 397 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 398 * @adapter: board private structure 399 * @basename: device basename 400 * 401 * Allocates MSI-X vectors for tx and rx handling, and requests 402 * interrupts from the kernel. 403 **/ 404 static int 405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 406 { 407 unsigned int vector, q_vectors; 408 unsigned int rx_int_idx = 0, tx_int_idx = 0; 409 int irq_num, err; 410 int cpu; 411 412 iavf_irq_disable(adapter); 413 /* Decrement for Other and TCP Timer vectors */ 414 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 415 416 for (vector = 0; vector < q_vectors; vector++) { 417 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 418 419 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 420 421 if (q_vector->tx.ring && q_vector->rx.ring) { 422 snprintf(q_vector->name, sizeof(q_vector->name), 423 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 424 tx_int_idx++; 425 } else if (q_vector->rx.ring) { 426 snprintf(q_vector->name, sizeof(q_vector->name), 427 "iavf-%s-rx-%d", basename, rx_int_idx++); 428 } else if (q_vector->tx.ring) { 429 snprintf(q_vector->name, sizeof(q_vector->name), 430 "iavf-%s-tx-%d", basename, tx_int_idx++); 431 } else { 432 /* skip this unused q_vector */ 433 continue; 434 } 435 err = request_irq(irq_num, 436 iavf_msix_clean_rings, 437 0, 438 q_vector->name, 439 q_vector); 440 if (err) { 441 dev_info(&adapter->pdev->dev, 442 "Request_irq failed, error: %d\n", err); 443 goto free_queue_irqs; 444 } 445 /* register for affinity change notifications */ 446 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 447 q_vector->affinity_notify.release = 448 iavf_irq_affinity_release; 449 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 450 /* Spread the IRQ affinity hints across online CPUs. Note that 451 * get_cpu_mask returns a mask with a permanent lifetime so 452 * it's safe to use as a hint for irq_set_affinity_hint. 453 */ 454 cpu = cpumask_local_spread(q_vector->v_idx, -1); 455 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 456 } 457 458 return 0; 459 460 free_queue_irqs: 461 while (vector) { 462 vector--; 463 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 464 irq_set_affinity_notifier(irq_num, NULL); 465 irq_set_affinity_hint(irq_num, NULL); 466 free_irq(irq_num, &adapter->q_vectors[vector]); 467 } 468 return err; 469 } 470 471 /** 472 * iavf_request_misc_irq - Initialize MSI-X interrupts 473 * @adapter: board private structure 474 * 475 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 476 * vector is only for the admin queue, and stays active even when the netdev 477 * is closed. 478 **/ 479 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 480 { 481 struct net_device *netdev = adapter->netdev; 482 int err; 483 484 snprintf(adapter->misc_vector_name, 485 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 486 dev_name(&adapter->pdev->dev)); 487 err = request_irq(adapter->msix_entries[0].vector, 488 &iavf_msix_aq, 0, 489 adapter->misc_vector_name, netdev); 490 if (err) { 491 dev_err(&adapter->pdev->dev, 492 "request_irq for %s failed: %d\n", 493 adapter->misc_vector_name, err); 494 free_irq(adapter->msix_entries[0].vector, netdev); 495 } 496 return err; 497 } 498 499 /** 500 * iavf_free_traffic_irqs - Free MSI-X interrupts 501 * @adapter: board private structure 502 * 503 * Frees all MSI-X vectors other than 0. 504 **/ 505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 506 { 507 int vector, irq_num, q_vectors; 508 509 if (!adapter->msix_entries) 510 return; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (vector = 0; vector < q_vectors; vector++) { 515 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 516 irq_set_affinity_notifier(irq_num, NULL); 517 irq_set_affinity_hint(irq_num, NULL); 518 free_irq(irq_num, &adapter->q_vectors[vector]); 519 } 520 } 521 522 /** 523 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 524 * @adapter: board private structure 525 * 526 * Frees MSI-X vector 0. 527 **/ 528 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 529 { 530 struct net_device *netdev = adapter->netdev; 531 532 if (!adapter->msix_entries) 533 return; 534 535 free_irq(adapter->msix_entries[0].vector, netdev); 536 } 537 538 /** 539 * iavf_configure_tx - Configure Transmit Unit after Reset 540 * @adapter: board private structure 541 * 542 * Configure the Tx unit of the MAC after a reset. 543 **/ 544 static void iavf_configure_tx(struct iavf_adapter *adapter) 545 { 546 struct iavf_hw *hw = &adapter->hw; 547 int i; 548 549 for (i = 0; i < adapter->num_active_queues; i++) 550 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 551 } 552 553 /** 554 * iavf_configure_rx - Configure Receive Unit after Reset 555 * @adapter: board private structure 556 * 557 * Configure the Rx unit of the MAC after a reset. 558 **/ 559 static void iavf_configure_rx(struct iavf_adapter *adapter) 560 { 561 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 562 struct iavf_hw *hw = &adapter->hw; 563 int i; 564 565 /* Legacy Rx will always default to a 2048 buffer size. */ 566 #if (PAGE_SIZE < 8192) 567 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 568 struct net_device *netdev = adapter->netdev; 569 570 /* For jumbo frames on systems with 4K pages we have to use 571 * an order 1 page, so we might as well increase the size 572 * of our Rx buffer to make better use of the available space 573 */ 574 rx_buf_len = IAVF_RXBUFFER_3072; 575 576 /* We use a 1536 buffer size for configurations with 577 * standard Ethernet mtu. On x86 this gives us enough room 578 * for shared info and 192 bytes of padding. 579 */ 580 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 581 (netdev->mtu <= ETH_DATA_LEN)) 582 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 583 } 584 #endif 585 586 for (i = 0; i < adapter->num_active_queues; i++) { 587 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 588 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 589 590 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 591 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 592 else 593 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 594 } 595 } 596 597 /** 598 * iavf_find_vlan - Search filter list for specific vlan filter 599 * @adapter: board private structure 600 * @vlan: vlan tag 601 * 602 * Returns ptr to the filter object or NULL. Must be called while holding the 603 * mac_vlan_list_lock. 604 **/ 605 static struct 606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 607 { 608 struct iavf_vlan_filter *f; 609 610 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 611 if (vlan == f->vlan) 612 return f; 613 } 614 return NULL; 615 } 616 617 /** 618 * iavf_add_vlan - Add a vlan filter to the list 619 * @adapter: board private structure 620 * @vlan: VLAN tag 621 * 622 * Returns ptr to the filter object or NULL when no memory available. 623 **/ 624 static struct 625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 626 { 627 struct iavf_vlan_filter *f = NULL; 628 629 spin_lock_bh(&adapter->mac_vlan_list_lock); 630 631 f = iavf_find_vlan(adapter, vlan); 632 if (!f) { 633 f = kzalloc(sizeof(*f), GFP_ATOMIC); 634 if (!f) 635 goto clearout; 636 637 f->vlan = vlan; 638 639 list_add_tail(&f->list, &adapter->vlan_filter_list); 640 f->add = true; 641 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 642 } 643 644 clearout: 645 spin_unlock_bh(&adapter->mac_vlan_list_lock); 646 return f; 647 } 648 649 /** 650 * iavf_del_vlan - Remove a vlan filter from the list 651 * @adapter: board private structure 652 * @vlan: VLAN tag 653 **/ 654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 655 { 656 struct iavf_vlan_filter *f; 657 658 spin_lock_bh(&adapter->mac_vlan_list_lock); 659 660 f = iavf_find_vlan(adapter, vlan); 661 if (f) { 662 f->remove = true; 663 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 664 } 665 666 spin_unlock_bh(&adapter->mac_vlan_list_lock); 667 } 668 669 /** 670 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 671 * @netdev: network device struct 672 * @proto: unused protocol data 673 * @vid: VLAN tag 674 **/ 675 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 676 __always_unused __be16 proto, u16 vid) 677 { 678 struct iavf_adapter *adapter = netdev_priv(netdev); 679 680 if (!VLAN_ALLOWED(adapter)) 681 return -EIO; 682 if (iavf_add_vlan(adapter, vid) == NULL) 683 return -ENOMEM; 684 return 0; 685 } 686 687 /** 688 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 689 * @netdev: network device struct 690 * @proto: unused protocol data 691 * @vid: VLAN tag 692 **/ 693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 694 __always_unused __be16 proto, u16 vid) 695 { 696 struct iavf_adapter *adapter = netdev_priv(netdev); 697 698 if (VLAN_ALLOWED(adapter)) { 699 iavf_del_vlan(adapter, vid); 700 return 0; 701 } 702 return -EIO; 703 } 704 705 /** 706 * iavf_find_filter - Search filter list for specific mac filter 707 * @adapter: board private structure 708 * @macaddr: the MAC address 709 * 710 * Returns ptr to the filter object or NULL. Must be called while holding the 711 * mac_vlan_list_lock. 712 **/ 713 static struct 714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 715 const u8 *macaddr) 716 { 717 struct iavf_mac_filter *f; 718 719 if (!macaddr) 720 return NULL; 721 722 list_for_each_entry(f, &adapter->mac_filter_list, list) { 723 if (ether_addr_equal(macaddr, f->macaddr)) 724 return f; 725 } 726 return NULL; 727 } 728 729 /** 730 * iavf_add_filter - Add a mac filter to the filter list 731 * @adapter: board private structure 732 * @macaddr: the MAC address 733 * 734 * Returns ptr to the filter object or NULL when no memory available. 735 **/ 736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 737 const u8 *macaddr) 738 { 739 struct iavf_mac_filter *f; 740 741 if (!macaddr) 742 return NULL; 743 744 f = iavf_find_filter(adapter, macaddr); 745 if (!f) { 746 f = kzalloc(sizeof(*f), GFP_ATOMIC); 747 if (!f) 748 return f; 749 750 ether_addr_copy(f->macaddr, macaddr); 751 752 list_add_tail(&f->list, &adapter->mac_filter_list); 753 f->add = true; 754 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 755 } else { 756 f->remove = false; 757 } 758 759 return f; 760 } 761 762 /** 763 * iavf_set_mac - NDO callback to set port mac address 764 * @netdev: network interface device structure 765 * @p: pointer to an address structure 766 * 767 * Returns 0 on success, negative on failure 768 **/ 769 static int iavf_set_mac(struct net_device *netdev, void *p) 770 { 771 struct iavf_adapter *adapter = netdev_priv(netdev); 772 struct iavf_hw *hw = &adapter->hw; 773 struct iavf_mac_filter *f; 774 struct sockaddr *addr = p; 775 776 if (!is_valid_ether_addr(addr->sa_data)) 777 return -EADDRNOTAVAIL; 778 779 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 780 return 0; 781 782 spin_lock_bh(&adapter->mac_vlan_list_lock); 783 784 f = iavf_find_filter(adapter, hw->mac.addr); 785 if (f) { 786 f->remove = true; 787 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 788 } 789 790 f = iavf_add_filter(adapter, addr->sa_data); 791 792 spin_unlock_bh(&adapter->mac_vlan_list_lock); 793 794 if (f) { 795 ether_addr_copy(hw->mac.addr, addr->sa_data); 796 } 797 798 return (f == NULL) ? -ENOMEM : 0; 799 } 800 801 /** 802 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 803 * @netdev: the netdevice 804 * @addr: address to add 805 * 806 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 807 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 808 */ 809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 810 { 811 struct iavf_adapter *adapter = netdev_priv(netdev); 812 813 if (iavf_add_filter(adapter, addr)) 814 return 0; 815 else 816 return -ENOMEM; 817 } 818 819 /** 820 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 821 * @netdev: the netdevice 822 * @addr: address to add 823 * 824 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 825 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 826 */ 827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 828 { 829 struct iavf_adapter *adapter = netdev_priv(netdev); 830 struct iavf_mac_filter *f; 831 832 /* Under some circumstances, we might receive a request to delete 833 * our own device address from our uc list. Because we store the 834 * device address in the VSI's MAC/VLAN filter list, we need to ignore 835 * such requests and not delete our device address from this list. 836 */ 837 if (ether_addr_equal(addr, netdev->dev_addr)) 838 return 0; 839 840 f = iavf_find_filter(adapter, addr); 841 if (f) { 842 f->remove = true; 843 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 844 } 845 return 0; 846 } 847 848 /** 849 * iavf_set_rx_mode - NDO callback to set the netdev filters 850 * @netdev: network interface device structure 851 **/ 852 static void iavf_set_rx_mode(struct net_device *netdev) 853 { 854 struct iavf_adapter *adapter = netdev_priv(netdev); 855 856 spin_lock_bh(&adapter->mac_vlan_list_lock); 857 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 858 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 859 spin_unlock_bh(&adapter->mac_vlan_list_lock); 860 861 if (netdev->flags & IFF_PROMISC && 862 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 863 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 864 else if (!(netdev->flags & IFF_PROMISC) && 865 adapter->flags & IAVF_FLAG_PROMISC_ON) 866 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 867 868 if (netdev->flags & IFF_ALLMULTI && 869 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 870 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 871 else if (!(netdev->flags & IFF_ALLMULTI) && 872 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 873 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 874 } 875 876 /** 877 * iavf_napi_enable_all - enable NAPI on all queue vectors 878 * @adapter: board private structure 879 **/ 880 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 881 { 882 int q_idx; 883 struct iavf_q_vector *q_vector; 884 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 885 886 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 887 struct napi_struct *napi; 888 889 q_vector = &adapter->q_vectors[q_idx]; 890 napi = &q_vector->napi; 891 napi_enable(napi); 892 } 893 } 894 895 /** 896 * iavf_napi_disable_all - disable NAPI on all queue vectors 897 * @adapter: board private structure 898 **/ 899 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 900 { 901 int q_idx; 902 struct iavf_q_vector *q_vector; 903 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 904 905 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 906 q_vector = &adapter->q_vectors[q_idx]; 907 napi_disable(&q_vector->napi); 908 } 909 } 910 911 /** 912 * iavf_configure - set up transmit and receive data structures 913 * @adapter: board private structure 914 **/ 915 static void iavf_configure(struct iavf_adapter *adapter) 916 { 917 struct net_device *netdev = adapter->netdev; 918 int i; 919 920 iavf_set_rx_mode(netdev); 921 922 iavf_configure_tx(adapter); 923 iavf_configure_rx(adapter); 924 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 925 926 for (i = 0; i < adapter->num_active_queues; i++) { 927 struct iavf_ring *ring = &adapter->rx_rings[i]; 928 929 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 930 } 931 } 932 933 /** 934 * iavf_up_complete - Finish the last steps of bringing up a connection 935 * @adapter: board private structure 936 * 937 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 938 **/ 939 static void iavf_up_complete(struct iavf_adapter *adapter) 940 { 941 adapter->state = __IAVF_RUNNING; 942 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 943 944 iavf_napi_enable_all(adapter); 945 946 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 947 if (CLIENT_ENABLED(adapter)) 948 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 949 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 950 } 951 952 /** 953 * iavf_down - Shutdown the connection processing 954 * @adapter: board private structure 955 * 956 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 957 **/ 958 void iavf_down(struct iavf_adapter *adapter) 959 { 960 struct net_device *netdev = adapter->netdev; 961 struct iavf_vlan_filter *vlf; 962 struct iavf_cloud_filter *cf; 963 struct iavf_fdir_fltr *fdir; 964 struct iavf_mac_filter *f; 965 struct iavf_adv_rss *rss; 966 967 if (adapter->state <= __IAVF_DOWN_PENDING) 968 return; 969 970 netif_carrier_off(netdev); 971 netif_tx_disable(netdev); 972 adapter->link_up = false; 973 iavf_napi_disable_all(adapter); 974 iavf_irq_disable(adapter); 975 976 spin_lock_bh(&adapter->mac_vlan_list_lock); 977 978 /* clear the sync flag on all filters */ 979 __dev_uc_unsync(adapter->netdev, NULL); 980 __dev_mc_unsync(adapter->netdev, NULL); 981 982 /* remove all MAC filters */ 983 list_for_each_entry(f, &adapter->mac_filter_list, list) { 984 f->remove = true; 985 } 986 987 /* remove all VLAN filters */ 988 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 989 vlf->remove = true; 990 } 991 992 spin_unlock_bh(&adapter->mac_vlan_list_lock); 993 994 /* remove all cloud filters */ 995 spin_lock_bh(&adapter->cloud_filter_list_lock); 996 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 997 cf->del = true; 998 } 999 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1000 1001 /* remove all Flow Director filters */ 1002 spin_lock_bh(&adapter->fdir_fltr_lock); 1003 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1004 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1005 } 1006 spin_unlock_bh(&adapter->fdir_fltr_lock); 1007 1008 /* remove all advance RSS configuration */ 1009 spin_lock_bh(&adapter->adv_rss_lock); 1010 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1011 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1012 spin_unlock_bh(&adapter->adv_rss_lock); 1013 1014 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1015 adapter->state != __IAVF_RESETTING) { 1016 /* cancel any current operation */ 1017 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1018 /* Schedule operations to close down the HW. Don't wait 1019 * here for this to complete. The watchdog is still running 1020 * and it will take care of this. 1021 */ 1022 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1023 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1024 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1025 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1026 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1027 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1028 } 1029 1030 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1031 } 1032 1033 /** 1034 * iavf_acquire_msix_vectors - Setup the MSIX capability 1035 * @adapter: board private structure 1036 * @vectors: number of vectors to request 1037 * 1038 * Work with the OS to set up the MSIX vectors needed. 1039 * 1040 * Returns 0 on success, negative on failure 1041 **/ 1042 static int 1043 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1044 { 1045 int err, vector_threshold; 1046 1047 /* We'll want at least 3 (vector_threshold): 1048 * 0) Other (Admin Queue and link, mostly) 1049 * 1) TxQ[0] Cleanup 1050 * 2) RxQ[0] Cleanup 1051 */ 1052 vector_threshold = MIN_MSIX_COUNT; 1053 1054 /* The more we get, the more we will assign to Tx/Rx Cleanup 1055 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1056 * Right now, we simply care about how many we'll get; we'll 1057 * set them up later while requesting irq's. 1058 */ 1059 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1060 vector_threshold, vectors); 1061 if (err < 0) { 1062 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1063 kfree(adapter->msix_entries); 1064 adapter->msix_entries = NULL; 1065 return err; 1066 } 1067 1068 /* Adjust for only the vectors we'll use, which is minimum 1069 * of max_msix_q_vectors + NONQ_VECS, or the number of 1070 * vectors we were allocated. 1071 */ 1072 adapter->num_msix_vectors = err; 1073 return 0; 1074 } 1075 1076 /** 1077 * iavf_free_queues - Free memory for all rings 1078 * @adapter: board private structure to initialize 1079 * 1080 * Free all of the memory associated with queue pairs. 1081 **/ 1082 static void iavf_free_queues(struct iavf_adapter *adapter) 1083 { 1084 if (!adapter->vsi_res) 1085 return; 1086 adapter->num_active_queues = 0; 1087 kfree(adapter->tx_rings); 1088 adapter->tx_rings = NULL; 1089 kfree(adapter->rx_rings); 1090 adapter->rx_rings = NULL; 1091 } 1092 1093 /** 1094 * iavf_alloc_queues - Allocate memory for all rings 1095 * @adapter: board private structure to initialize 1096 * 1097 * We allocate one ring per queue at run-time since we don't know the 1098 * number of queues at compile-time. The polling_netdev array is 1099 * intended for Multiqueue, but should work fine with a single queue. 1100 **/ 1101 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1102 { 1103 int i, num_active_queues; 1104 1105 /* If we're in reset reallocating queues we don't actually know yet for 1106 * certain the PF gave us the number of queues we asked for but we'll 1107 * assume it did. Once basic reset is finished we'll confirm once we 1108 * start negotiating config with PF. 1109 */ 1110 if (adapter->num_req_queues) 1111 num_active_queues = adapter->num_req_queues; 1112 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1113 adapter->num_tc) 1114 num_active_queues = adapter->ch_config.total_qps; 1115 else 1116 num_active_queues = min_t(int, 1117 adapter->vsi_res->num_queue_pairs, 1118 (int)(num_online_cpus())); 1119 1120 1121 adapter->tx_rings = kcalloc(num_active_queues, 1122 sizeof(struct iavf_ring), GFP_KERNEL); 1123 if (!adapter->tx_rings) 1124 goto err_out; 1125 adapter->rx_rings = kcalloc(num_active_queues, 1126 sizeof(struct iavf_ring), GFP_KERNEL); 1127 if (!adapter->rx_rings) 1128 goto err_out; 1129 1130 for (i = 0; i < num_active_queues; i++) { 1131 struct iavf_ring *tx_ring; 1132 struct iavf_ring *rx_ring; 1133 1134 tx_ring = &adapter->tx_rings[i]; 1135 1136 tx_ring->queue_index = i; 1137 tx_ring->netdev = adapter->netdev; 1138 tx_ring->dev = &adapter->pdev->dev; 1139 tx_ring->count = adapter->tx_desc_count; 1140 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1141 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1142 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1143 1144 rx_ring = &adapter->rx_rings[i]; 1145 rx_ring->queue_index = i; 1146 rx_ring->netdev = adapter->netdev; 1147 rx_ring->dev = &adapter->pdev->dev; 1148 rx_ring->count = adapter->rx_desc_count; 1149 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1150 } 1151 1152 adapter->num_active_queues = num_active_queues; 1153 1154 return 0; 1155 1156 err_out: 1157 iavf_free_queues(adapter); 1158 return -ENOMEM; 1159 } 1160 1161 /** 1162 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1163 * @adapter: board private structure to initialize 1164 * 1165 * Attempt to configure the interrupts using the best available 1166 * capabilities of the hardware and the kernel. 1167 **/ 1168 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1169 { 1170 int vector, v_budget; 1171 int pairs = 0; 1172 int err = 0; 1173 1174 if (!adapter->vsi_res) { 1175 err = -EIO; 1176 goto out; 1177 } 1178 pairs = adapter->num_active_queues; 1179 1180 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1181 * us much good if we have more vectors than CPUs. However, we already 1182 * limit the total number of queues by the number of CPUs so we do not 1183 * need any further limiting here. 1184 */ 1185 v_budget = min_t(int, pairs + NONQ_VECS, 1186 (int)adapter->vf_res->max_vectors); 1187 1188 adapter->msix_entries = kcalloc(v_budget, 1189 sizeof(struct msix_entry), GFP_KERNEL); 1190 if (!adapter->msix_entries) { 1191 err = -ENOMEM; 1192 goto out; 1193 } 1194 1195 for (vector = 0; vector < v_budget; vector++) 1196 adapter->msix_entries[vector].entry = vector; 1197 1198 err = iavf_acquire_msix_vectors(adapter, v_budget); 1199 1200 out: 1201 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1202 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1203 return err; 1204 } 1205 1206 /** 1207 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1208 * @adapter: board private structure 1209 * 1210 * Return 0 on success, negative on failure 1211 **/ 1212 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1213 { 1214 struct iavf_aqc_get_set_rss_key_data *rss_key = 1215 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1216 struct iavf_hw *hw = &adapter->hw; 1217 int ret = 0; 1218 1219 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1220 /* bail because we already have a command pending */ 1221 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1222 adapter->current_op); 1223 return -EBUSY; 1224 } 1225 1226 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1227 if (ret) { 1228 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1229 iavf_stat_str(hw, ret), 1230 iavf_aq_str(hw, hw->aq.asq_last_status)); 1231 return ret; 1232 1233 } 1234 1235 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1236 adapter->rss_lut, adapter->rss_lut_size); 1237 if (ret) { 1238 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1239 iavf_stat_str(hw, ret), 1240 iavf_aq_str(hw, hw->aq.asq_last_status)); 1241 } 1242 1243 return ret; 1244 1245 } 1246 1247 /** 1248 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1249 * @adapter: board private structure 1250 * 1251 * Returns 0 on success, negative on failure 1252 **/ 1253 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1254 { 1255 struct iavf_hw *hw = &adapter->hw; 1256 u32 *dw; 1257 u16 i; 1258 1259 dw = (u32 *)adapter->rss_key; 1260 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1261 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1262 1263 dw = (u32 *)adapter->rss_lut; 1264 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1265 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1266 1267 iavf_flush(hw); 1268 1269 return 0; 1270 } 1271 1272 /** 1273 * iavf_config_rss - Configure RSS keys and lut 1274 * @adapter: board private structure 1275 * 1276 * Returns 0 on success, negative on failure 1277 **/ 1278 int iavf_config_rss(struct iavf_adapter *adapter) 1279 { 1280 1281 if (RSS_PF(adapter)) { 1282 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1283 IAVF_FLAG_AQ_SET_RSS_KEY; 1284 return 0; 1285 } else if (RSS_AQ(adapter)) { 1286 return iavf_config_rss_aq(adapter); 1287 } else { 1288 return iavf_config_rss_reg(adapter); 1289 } 1290 } 1291 1292 /** 1293 * iavf_fill_rss_lut - Fill the lut with default values 1294 * @adapter: board private structure 1295 **/ 1296 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1297 { 1298 u16 i; 1299 1300 for (i = 0; i < adapter->rss_lut_size; i++) 1301 adapter->rss_lut[i] = i % adapter->num_active_queues; 1302 } 1303 1304 /** 1305 * iavf_init_rss - Prepare for RSS 1306 * @adapter: board private structure 1307 * 1308 * Return 0 on success, negative on failure 1309 **/ 1310 static int iavf_init_rss(struct iavf_adapter *adapter) 1311 { 1312 struct iavf_hw *hw = &adapter->hw; 1313 int ret; 1314 1315 if (!RSS_PF(adapter)) { 1316 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1317 if (adapter->vf_res->vf_cap_flags & 1318 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1319 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1320 else 1321 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1322 1323 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1324 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1325 } 1326 1327 iavf_fill_rss_lut(adapter); 1328 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1329 ret = iavf_config_rss(adapter); 1330 1331 return ret; 1332 } 1333 1334 /** 1335 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1336 * @adapter: board private structure to initialize 1337 * 1338 * We allocate one q_vector per queue interrupt. If allocation fails we 1339 * return -ENOMEM. 1340 **/ 1341 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1342 { 1343 int q_idx = 0, num_q_vectors; 1344 struct iavf_q_vector *q_vector; 1345 1346 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1347 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1348 GFP_KERNEL); 1349 if (!adapter->q_vectors) 1350 return -ENOMEM; 1351 1352 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1353 q_vector = &adapter->q_vectors[q_idx]; 1354 q_vector->adapter = adapter; 1355 q_vector->vsi = &adapter->vsi; 1356 q_vector->v_idx = q_idx; 1357 q_vector->reg_idx = q_idx; 1358 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1359 netif_napi_add(adapter->netdev, &q_vector->napi, 1360 iavf_napi_poll, NAPI_POLL_WEIGHT); 1361 } 1362 1363 return 0; 1364 } 1365 1366 /** 1367 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1368 * @adapter: board private structure to initialize 1369 * 1370 * This function frees the memory allocated to the q_vectors. In addition if 1371 * NAPI is enabled it will delete any references to the NAPI struct prior 1372 * to freeing the q_vector. 1373 **/ 1374 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1375 { 1376 int q_idx, num_q_vectors; 1377 int napi_vectors; 1378 1379 if (!adapter->q_vectors) 1380 return; 1381 1382 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1383 napi_vectors = adapter->num_active_queues; 1384 1385 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1386 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1387 1388 if (q_idx < napi_vectors) 1389 netif_napi_del(&q_vector->napi); 1390 } 1391 kfree(adapter->q_vectors); 1392 adapter->q_vectors = NULL; 1393 } 1394 1395 /** 1396 * iavf_reset_interrupt_capability - Reset MSIX setup 1397 * @adapter: board private structure 1398 * 1399 **/ 1400 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1401 { 1402 if (!adapter->msix_entries) 1403 return; 1404 1405 pci_disable_msix(adapter->pdev); 1406 kfree(adapter->msix_entries); 1407 adapter->msix_entries = NULL; 1408 } 1409 1410 /** 1411 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1412 * @adapter: board private structure to initialize 1413 * 1414 **/ 1415 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1416 { 1417 int err; 1418 1419 err = iavf_alloc_queues(adapter); 1420 if (err) { 1421 dev_err(&adapter->pdev->dev, 1422 "Unable to allocate memory for queues\n"); 1423 goto err_alloc_queues; 1424 } 1425 1426 rtnl_lock(); 1427 err = iavf_set_interrupt_capability(adapter); 1428 rtnl_unlock(); 1429 if (err) { 1430 dev_err(&adapter->pdev->dev, 1431 "Unable to setup interrupt capabilities\n"); 1432 goto err_set_interrupt; 1433 } 1434 1435 err = iavf_alloc_q_vectors(adapter); 1436 if (err) { 1437 dev_err(&adapter->pdev->dev, 1438 "Unable to allocate memory for queue vectors\n"); 1439 goto err_alloc_q_vectors; 1440 } 1441 1442 /* If we've made it so far while ADq flag being ON, then we haven't 1443 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1444 * resources have been allocated in the reset path. 1445 * Now we can truly claim that ADq is enabled. 1446 */ 1447 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1448 adapter->num_tc) 1449 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1450 adapter->num_tc); 1451 1452 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1453 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1454 adapter->num_active_queues); 1455 1456 return 0; 1457 err_alloc_q_vectors: 1458 iavf_reset_interrupt_capability(adapter); 1459 err_set_interrupt: 1460 iavf_free_queues(adapter); 1461 err_alloc_queues: 1462 return err; 1463 } 1464 1465 /** 1466 * iavf_free_rss - Free memory used by RSS structs 1467 * @adapter: board private structure 1468 **/ 1469 static void iavf_free_rss(struct iavf_adapter *adapter) 1470 { 1471 kfree(adapter->rss_key); 1472 adapter->rss_key = NULL; 1473 1474 kfree(adapter->rss_lut); 1475 adapter->rss_lut = NULL; 1476 } 1477 1478 /** 1479 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1480 * @adapter: board private structure 1481 * 1482 * Returns 0 on success, negative on failure 1483 **/ 1484 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1485 { 1486 struct net_device *netdev = adapter->netdev; 1487 int err; 1488 1489 if (netif_running(netdev)) 1490 iavf_free_traffic_irqs(adapter); 1491 iavf_free_misc_irq(adapter); 1492 iavf_reset_interrupt_capability(adapter); 1493 iavf_free_q_vectors(adapter); 1494 iavf_free_queues(adapter); 1495 1496 err = iavf_init_interrupt_scheme(adapter); 1497 if (err) 1498 goto err; 1499 1500 netif_tx_stop_all_queues(netdev); 1501 1502 err = iavf_request_misc_irq(adapter); 1503 if (err) 1504 goto err; 1505 1506 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1507 1508 iavf_map_rings_to_vectors(adapter); 1509 1510 if (RSS_AQ(adapter)) 1511 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1512 else 1513 err = iavf_init_rss(adapter); 1514 err: 1515 return err; 1516 } 1517 1518 /** 1519 * iavf_process_aq_command - process aq_required flags 1520 * and sends aq command 1521 * @adapter: pointer to iavf adapter structure 1522 * 1523 * Returns 0 on success 1524 * Returns error code if no command was sent 1525 * or error code if the command failed. 1526 **/ 1527 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1528 { 1529 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1530 return iavf_send_vf_config_msg(adapter); 1531 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1532 iavf_disable_queues(adapter); 1533 return 0; 1534 } 1535 1536 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1537 iavf_map_queues(adapter); 1538 return 0; 1539 } 1540 1541 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1542 iavf_add_ether_addrs(adapter); 1543 return 0; 1544 } 1545 1546 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1547 iavf_add_vlans(adapter); 1548 return 0; 1549 } 1550 1551 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1552 iavf_del_ether_addrs(adapter); 1553 return 0; 1554 } 1555 1556 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1557 iavf_del_vlans(adapter); 1558 return 0; 1559 } 1560 1561 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1562 iavf_enable_vlan_stripping(adapter); 1563 return 0; 1564 } 1565 1566 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1567 iavf_disable_vlan_stripping(adapter); 1568 return 0; 1569 } 1570 1571 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1572 iavf_configure_queues(adapter); 1573 return 0; 1574 } 1575 1576 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1577 iavf_enable_queues(adapter); 1578 return 0; 1579 } 1580 1581 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1582 /* This message goes straight to the firmware, not the 1583 * PF, so we don't have to set current_op as we will 1584 * not get a response through the ARQ. 1585 */ 1586 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1587 return 0; 1588 } 1589 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1590 iavf_get_hena(adapter); 1591 return 0; 1592 } 1593 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1594 iavf_set_hena(adapter); 1595 return 0; 1596 } 1597 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1598 iavf_set_rss_key(adapter); 1599 return 0; 1600 } 1601 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1602 iavf_set_rss_lut(adapter); 1603 return 0; 1604 } 1605 1606 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1607 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1608 FLAG_VF_MULTICAST_PROMISC); 1609 return 0; 1610 } 1611 1612 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1613 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1614 return 0; 1615 } 1616 1617 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1618 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1619 iavf_set_promiscuous(adapter, 0); 1620 return 0; 1621 } 1622 1623 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1624 iavf_enable_channels(adapter); 1625 return 0; 1626 } 1627 1628 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1629 iavf_disable_channels(adapter); 1630 return 0; 1631 } 1632 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1633 iavf_add_cloud_filter(adapter); 1634 return 0; 1635 } 1636 1637 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1638 iavf_del_cloud_filter(adapter); 1639 return 0; 1640 } 1641 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1642 iavf_del_cloud_filter(adapter); 1643 return 0; 1644 } 1645 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1646 iavf_add_cloud_filter(adapter); 1647 return 0; 1648 } 1649 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1650 iavf_add_fdir_filter(adapter); 1651 return IAVF_SUCCESS; 1652 } 1653 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1654 iavf_del_fdir_filter(adapter); 1655 return IAVF_SUCCESS; 1656 } 1657 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1658 iavf_add_adv_rss_cfg(adapter); 1659 return 0; 1660 } 1661 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1662 iavf_del_adv_rss_cfg(adapter); 1663 return 0; 1664 } 1665 return -EAGAIN; 1666 } 1667 1668 /** 1669 * iavf_startup - first step of driver startup 1670 * @adapter: board private structure 1671 * 1672 * Function process __IAVF_STARTUP driver state. 1673 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1674 * when fails it returns -EAGAIN 1675 **/ 1676 static int iavf_startup(struct iavf_adapter *adapter) 1677 { 1678 struct pci_dev *pdev = adapter->pdev; 1679 struct iavf_hw *hw = &adapter->hw; 1680 int err; 1681 1682 WARN_ON(adapter->state != __IAVF_STARTUP); 1683 1684 /* driver loaded, probe complete */ 1685 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1686 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1687 err = iavf_set_mac_type(hw); 1688 if (err) { 1689 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1690 goto err; 1691 } 1692 1693 err = iavf_check_reset_complete(hw); 1694 if (err) { 1695 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1696 err); 1697 goto err; 1698 } 1699 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1700 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1701 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1702 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1703 1704 err = iavf_init_adminq(hw); 1705 if (err) { 1706 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1707 goto err; 1708 } 1709 err = iavf_send_api_ver(adapter); 1710 if (err) { 1711 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1712 iavf_shutdown_adminq(hw); 1713 goto err; 1714 } 1715 adapter->state = __IAVF_INIT_VERSION_CHECK; 1716 err: 1717 return err; 1718 } 1719 1720 /** 1721 * iavf_init_version_check - second step of driver startup 1722 * @adapter: board private structure 1723 * 1724 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1725 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1726 * when fails it returns -EAGAIN 1727 **/ 1728 static int iavf_init_version_check(struct iavf_adapter *adapter) 1729 { 1730 struct pci_dev *pdev = adapter->pdev; 1731 struct iavf_hw *hw = &adapter->hw; 1732 int err = -EAGAIN; 1733 1734 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1735 1736 if (!iavf_asq_done(hw)) { 1737 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1738 iavf_shutdown_adminq(hw); 1739 adapter->state = __IAVF_STARTUP; 1740 goto err; 1741 } 1742 1743 /* aq msg sent, awaiting reply */ 1744 err = iavf_verify_api_ver(adapter); 1745 if (err) { 1746 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1747 err = iavf_send_api_ver(adapter); 1748 else 1749 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1750 adapter->pf_version.major, 1751 adapter->pf_version.minor, 1752 VIRTCHNL_VERSION_MAJOR, 1753 VIRTCHNL_VERSION_MINOR); 1754 goto err; 1755 } 1756 err = iavf_send_vf_config_msg(adapter); 1757 if (err) { 1758 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1759 err); 1760 goto err; 1761 } 1762 adapter->state = __IAVF_INIT_GET_RESOURCES; 1763 1764 err: 1765 return err; 1766 } 1767 1768 /** 1769 * iavf_init_get_resources - third step of driver startup 1770 * @adapter: board private structure 1771 * 1772 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1773 * finishes driver initialization procedure. 1774 * When success the state is changed to __IAVF_DOWN 1775 * when fails it returns -EAGAIN 1776 **/ 1777 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1778 { 1779 struct net_device *netdev = adapter->netdev; 1780 struct pci_dev *pdev = adapter->pdev; 1781 struct iavf_hw *hw = &adapter->hw; 1782 int err; 1783 1784 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1785 /* aq msg sent, awaiting reply */ 1786 if (!adapter->vf_res) { 1787 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 1788 GFP_KERNEL); 1789 if (!adapter->vf_res) { 1790 err = -ENOMEM; 1791 goto err; 1792 } 1793 } 1794 err = iavf_get_vf_config(adapter); 1795 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1796 err = iavf_send_vf_config_msg(adapter); 1797 goto err; 1798 } else if (err == IAVF_ERR_PARAM) { 1799 /* We only get ERR_PARAM if the device is in a very bad 1800 * state or if we've been disabled for previous bad 1801 * behavior. Either way, we're done now. 1802 */ 1803 iavf_shutdown_adminq(hw); 1804 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1805 return 0; 1806 } 1807 if (err) { 1808 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1809 goto err_alloc; 1810 } 1811 1812 err = iavf_process_config(adapter); 1813 if (err) 1814 goto err_alloc; 1815 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1816 1817 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1818 1819 netdev->netdev_ops = &iavf_netdev_ops; 1820 iavf_set_ethtool_ops(netdev); 1821 netdev->watchdog_timeo = 5 * HZ; 1822 1823 /* MTU range: 68 - 9710 */ 1824 netdev->min_mtu = ETH_MIN_MTU; 1825 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1826 1827 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1828 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1829 adapter->hw.mac.addr); 1830 eth_hw_addr_random(netdev); 1831 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1832 } else { 1833 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1834 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1835 } 1836 1837 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1838 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1839 err = iavf_init_interrupt_scheme(adapter); 1840 if (err) 1841 goto err_sw_init; 1842 iavf_map_rings_to_vectors(adapter); 1843 if (adapter->vf_res->vf_cap_flags & 1844 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1845 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1846 1847 err = iavf_request_misc_irq(adapter); 1848 if (err) 1849 goto err_sw_init; 1850 1851 netif_carrier_off(netdev); 1852 adapter->link_up = false; 1853 1854 /* set the semaphore to prevent any callbacks after device registration 1855 * up to time when state of driver will be set to __IAVF_DOWN 1856 */ 1857 rtnl_lock(); 1858 if (!adapter->netdev_registered) { 1859 err = register_netdevice(netdev); 1860 if (err) { 1861 rtnl_unlock(); 1862 goto err_register; 1863 } 1864 } 1865 1866 adapter->netdev_registered = true; 1867 1868 netif_tx_stop_all_queues(netdev); 1869 if (CLIENT_ALLOWED(adapter)) { 1870 err = iavf_lan_add_device(adapter); 1871 if (err) 1872 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1873 err); 1874 } 1875 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1876 if (netdev->features & NETIF_F_GRO) 1877 dev_info(&pdev->dev, "GRO is enabled\n"); 1878 1879 adapter->state = __IAVF_DOWN; 1880 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1881 rtnl_unlock(); 1882 1883 iavf_misc_irq_enable(adapter); 1884 wake_up(&adapter->down_waitqueue); 1885 1886 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1887 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1888 if (!adapter->rss_key || !adapter->rss_lut) { 1889 err = -ENOMEM; 1890 goto err_mem; 1891 } 1892 if (RSS_AQ(adapter)) 1893 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1894 else 1895 iavf_init_rss(adapter); 1896 1897 return err; 1898 err_mem: 1899 iavf_free_rss(adapter); 1900 err_register: 1901 iavf_free_misc_irq(adapter); 1902 err_sw_init: 1903 iavf_reset_interrupt_capability(adapter); 1904 err_alloc: 1905 kfree(adapter->vf_res); 1906 adapter->vf_res = NULL; 1907 err: 1908 return err; 1909 } 1910 1911 /** 1912 * iavf_watchdog_task - Periodic call-back task 1913 * @work: pointer to work_struct 1914 **/ 1915 static void iavf_watchdog_task(struct work_struct *work) 1916 { 1917 struct iavf_adapter *adapter = container_of(work, 1918 struct iavf_adapter, 1919 watchdog_task.work); 1920 struct iavf_hw *hw = &adapter->hw; 1921 u32 reg_val; 1922 1923 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) 1924 goto restart_watchdog; 1925 1926 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1927 adapter->state = __IAVF_COMM_FAILED; 1928 1929 switch (adapter->state) { 1930 case __IAVF_COMM_FAILED: 1931 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1932 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1933 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1934 reg_val == VIRTCHNL_VFR_COMPLETED) { 1935 /* A chance for redemption! */ 1936 dev_err(&adapter->pdev->dev, 1937 "Hardware came out of reset. Attempting reinit.\n"); 1938 adapter->state = __IAVF_STARTUP; 1939 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1940 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1941 clear_bit(__IAVF_IN_CRITICAL_TASK, 1942 &adapter->crit_section); 1943 /* Don't reschedule the watchdog, since we've restarted 1944 * the init task. When init_task contacts the PF and 1945 * gets everything set up again, it'll restart the 1946 * watchdog for us. Down, boy. Sit. Stay. Woof. 1947 */ 1948 return; 1949 } 1950 adapter->aq_required = 0; 1951 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1952 clear_bit(__IAVF_IN_CRITICAL_TASK, 1953 &adapter->crit_section); 1954 queue_delayed_work(iavf_wq, 1955 &adapter->watchdog_task, 1956 msecs_to_jiffies(10)); 1957 goto watchdog_done; 1958 case __IAVF_RESETTING: 1959 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1960 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1961 return; 1962 case __IAVF_DOWN: 1963 case __IAVF_DOWN_PENDING: 1964 case __IAVF_TESTING: 1965 case __IAVF_RUNNING: 1966 if (adapter->current_op) { 1967 if (!iavf_asq_done(hw)) { 1968 dev_dbg(&adapter->pdev->dev, 1969 "Admin queue timeout\n"); 1970 iavf_send_api_ver(adapter); 1971 } 1972 } else { 1973 /* An error will be returned if no commands were 1974 * processed; use this opportunity to update stats 1975 */ 1976 if (iavf_process_aq_command(adapter) && 1977 adapter->state == __IAVF_RUNNING) 1978 iavf_request_stats(adapter); 1979 } 1980 break; 1981 case __IAVF_REMOVE: 1982 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1983 return; 1984 default: 1985 goto restart_watchdog; 1986 } 1987 1988 /* check for hw reset */ 1989 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1990 if (!reg_val) { 1991 adapter->state = __IAVF_RESETTING; 1992 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1993 adapter->aq_required = 0; 1994 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1995 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 1996 queue_work(iavf_wq, &adapter->reset_task); 1997 goto watchdog_done; 1998 } 1999 2000 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2001 watchdog_done: 2002 if (adapter->state == __IAVF_RUNNING || 2003 adapter->state == __IAVF_COMM_FAILED) 2004 iavf_detect_recover_hung(&adapter->vsi); 2005 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2006 restart_watchdog: 2007 if (adapter->aq_required) 2008 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2009 msecs_to_jiffies(20)); 2010 else 2011 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2012 queue_work(iavf_wq, &adapter->adminq_task); 2013 } 2014 2015 static void iavf_disable_vf(struct iavf_adapter *adapter) 2016 { 2017 struct iavf_mac_filter *f, *ftmp; 2018 struct iavf_vlan_filter *fv, *fvtmp; 2019 struct iavf_cloud_filter *cf, *cftmp; 2020 2021 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2022 2023 /* We don't use netif_running() because it may be true prior to 2024 * ndo_open() returning, so we can't assume it means all our open 2025 * tasks have finished, since we're not holding the rtnl_lock here. 2026 */ 2027 if (adapter->state == __IAVF_RUNNING) { 2028 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2029 netif_carrier_off(adapter->netdev); 2030 netif_tx_disable(adapter->netdev); 2031 adapter->link_up = false; 2032 iavf_napi_disable_all(adapter); 2033 iavf_irq_disable(adapter); 2034 iavf_free_traffic_irqs(adapter); 2035 iavf_free_all_tx_resources(adapter); 2036 iavf_free_all_rx_resources(adapter); 2037 } 2038 2039 spin_lock_bh(&adapter->mac_vlan_list_lock); 2040 2041 /* Delete all of the filters */ 2042 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2043 list_del(&f->list); 2044 kfree(f); 2045 } 2046 2047 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2048 list_del(&fv->list); 2049 kfree(fv); 2050 } 2051 2052 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2053 2054 spin_lock_bh(&adapter->cloud_filter_list_lock); 2055 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2056 list_del(&cf->list); 2057 kfree(cf); 2058 adapter->num_cloud_filters--; 2059 } 2060 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2061 2062 iavf_free_misc_irq(adapter); 2063 iavf_reset_interrupt_capability(adapter); 2064 iavf_free_queues(adapter); 2065 iavf_free_q_vectors(adapter); 2066 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2067 iavf_shutdown_adminq(&adapter->hw); 2068 adapter->netdev->flags &= ~IFF_UP; 2069 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2070 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2071 adapter->state = __IAVF_DOWN; 2072 wake_up(&adapter->down_waitqueue); 2073 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2074 } 2075 2076 /** 2077 * iavf_reset_task - Call-back task to handle hardware reset 2078 * @work: pointer to work_struct 2079 * 2080 * During reset we need to shut down and reinitialize the admin queue 2081 * before we can use it to communicate with the PF again. We also clear 2082 * and reinit the rings because that context is lost as well. 2083 **/ 2084 static void iavf_reset_task(struct work_struct *work) 2085 { 2086 struct iavf_adapter *adapter = container_of(work, 2087 struct iavf_adapter, 2088 reset_task); 2089 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2090 struct net_device *netdev = adapter->netdev; 2091 struct iavf_hw *hw = &adapter->hw; 2092 struct iavf_mac_filter *f, *ftmp; 2093 struct iavf_vlan_filter *vlf; 2094 struct iavf_cloud_filter *cf; 2095 u32 reg_val; 2096 int i = 0, err; 2097 bool running; 2098 2099 /* When device is being removed it doesn't make sense to run the reset 2100 * task, just return in such a case. 2101 */ 2102 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2103 return; 2104 2105 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, 2106 &adapter->crit_section)) 2107 usleep_range(500, 1000); 2108 if (CLIENT_ENABLED(adapter)) { 2109 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2110 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2111 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2112 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2113 cancel_delayed_work_sync(&adapter->client_task); 2114 iavf_notify_client_close(&adapter->vsi, true); 2115 } 2116 iavf_misc_irq_disable(adapter); 2117 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2118 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2119 /* Restart the AQ here. If we have been reset but didn't 2120 * detect it, or if the PF had to reinit, our AQ will be hosed. 2121 */ 2122 iavf_shutdown_adminq(hw); 2123 iavf_init_adminq(hw); 2124 iavf_request_reset(adapter); 2125 } 2126 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2127 2128 /* poll until we see the reset actually happen */ 2129 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2130 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2131 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2132 if (!reg_val) 2133 break; 2134 usleep_range(5000, 10000); 2135 } 2136 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2137 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2138 goto continue_reset; /* act like the reset happened */ 2139 } 2140 2141 /* wait until the reset is complete and the PF is responding to us */ 2142 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2143 /* sleep first to make sure a minimum wait time is met */ 2144 msleep(IAVF_RESET_WAIT_MS); 2145 2146 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2147 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2148 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2149 break; 2150 } 2151 2152 pci_set_master(adapter->pdev); 2153 2154 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2155 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2156 reg_val); 2157 iavf_disable_vf(adapter); 2158 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2159 return; /* Do not attempt to reinit. It's dead, Jim. */ 2160 } 2161 2162 continue_reset: 2163 /* We don't use netif_running() because it may be true prior to 2164 * ndo_open() returning, so we can't assume it means all our open 2165 * tasks have finished, since we're not holding the rtnl_lock here. 2166 */ 2167 running = ((adapter->state == __IAVF_RUNNING) || 2168 (adapter->state == __IAVF_RESETTING)); 2169 2170 if (running) { 2171 netif_carrier_off(netdev); 2172 netif_tx_stop_all_queues(netdev); 2173 adapter->link_up = false; 2174 iavf_napi_disable_all(adapter); 2175 } 2176 iavf_irq_disable(adapter); 2177 2178 adapter->state = __IAVF_RESETTING; 2179 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2180 2181 /* free the Tx/Rx rings and descriptors, might be better to just 2182 * re-use them sometime in the future 2183 */ 2184 iavf_free_all_rx_resources(adapter); 2185 iavf_free_all_tx_resources(adapter); 2186 2187 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2188 /* kill and reinit the admin queue */ 2189 iavf_shutdown_adminq(hw); 2190 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2191 err = iavf_init_adminq(hw); 2192 if (err) 2193 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2194 err); 2195 adapter->aq_required = 0; 2196 2197 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2198 err = iavf_reinit_interrupt_scheme(adapter); 2199 if (err) 2200 goto reset_err; 2201 } 2202 2203 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2204 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2205 2206 spin_lock_bh(&adapter->mac_vlan_list_lock); 2207 2208 /* Delete filter for the current MAC address, it could have 2209 * been changed by the PF via administratively set MAC. 2210 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2211 */ 2212 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2213 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2214 list_del(&f->list); 2215 kfree(f); 2216 } 2217 } 2218 /* re-add all MAC filters */ 2219 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2220 f->add = true; 2221 } 2222 /* re-add all VLAN filters */ 2223 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2224 vlf->add = true; 2225 } 2226 2227 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2228 2229 /* check if TCs are running and re-add all cloud filters */ 2230 spin_lock_bh(&adapter->cloud_filter_list_lock); 2231 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2232 adapter->num_tc) { 2233 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2234 cf->add = true; 2235 } 2236 } 2237 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2238 2239 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2240 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2241 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2242 iavf_misc_irq_enable(adapter); 2243 2244 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2245 2246 /* We were running when the reset started, so we need to restore some 2247 * state here. 2248 */ 2249 if (running) { 2250 /* allocate transmit descriptors */ 2251 err = iavf_setup_all_tx_resources(adapter); 2252 if (err) 2253 goto reset_err; 2254 2255 /* allocate receive descriptors */ 2256 err = iavf_setup_all_rx_resources(adapter); 2257 if (err) 2258 goto reset_err; 2259 2260 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2261 err = iavf_request_traffic_irqs(adapter, netdev->name); 2262 if (err) 2263 goto reset_err; 2264 2265 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2266 } 2267 2268 iavf_configure(adapter); 2269 2270 iavf_up_complete(adapter); 2271 2272 iavf_irq_enable(adapter, true); 2273 } else { 2274 adapter->state = __IAVF_DOWN; 2275 wake_up(&adapter->down_waitqueue); 2276 } 2277 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2278 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2279 2280 return; 2281 reset_err: 2282 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2283 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2284 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2285 iavf_close(netdev); 2286 } 2287 2288 /** 2289 * iavf_adminq_task - worker thread to clean the admin queue 2290 * @work: pointer to work_struct containing our data 2291 **/ 2292 static void iavf_adminq_task(struct work_struct *work) 2293 { 2294 struct iavf_adapter *adapter = 2295 container_of(work, struct iavf_adapter, adminq_task); 2296 struct iavf_hw *hw = &adapter->hw; 2297 struct iavf_arq_event_info event; 2298 enum virtchnl_ops v_op; 2299 enum iavf_status ret, v_ret; 2300 u32 val, oldval; 2301 u16 pending; 2302 2303 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2304 goto out; 2305 2306 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2307 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2308 if (!event.msg_buf) 2309 goto out; 2310 2311 do { 2312 ret = iavf_clean_arq_element(hw, &event, &pending); 2313 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2314 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2315 2316 if (ret || !v_op) 2317 break; /* No event to process or error cleaning ARQ */ 2318 2319 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2320 event.msg_len); 2321 if (pending != 0) 2322 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2323 } while (pending); 2324 2325 if ((adapter->flags & 2326 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2327 adapter->state == __IAVF_RESETTING) 2328 goto freedom; 2329 2330 /* check for error indications */ 2331 val = rd32(hw, hw->aq.arq.len); 2332 if (val == 0xdeadbeef) /* indicates device in reset */ 2333 goto freedom; 2334 oldval = val; 2335 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2336 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2337 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2338 } 2339 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2340 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2341 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2342 } 2343 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2344 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2345 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2346 } 2347 if (oldval != val) 2348 wr32(hw, hw->aq.arq.len, val); 2349 2350 val = rd32(hw, hw->aq.asq.len); 2351 oldval = val; 2352 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2353 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2354 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2355 } 2356 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2357 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2358 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2359 } 2360 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2361 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2362 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2363 } 2364 if (oldval != val) 2365 wr32(hw, hw->aq.asq.len, val); 2366 2367 freedom: 2368 kfree(event.msg_buf); 2369 out: 2370 /* re-enable Admin queue interrupt cause */ 2371 iavf_misc_irq_enable(adapter); 2372 } 2373 2374 /** 2375 * iavf_client_task - worker thread to perform client work 2376 * @work: pointer to work_struct containing our data 2377 * 2378 * This task handles client interactions. Because client calls can be 2379 * reentrant, we can't handle them in the watchdog. 2380 **/ 2381 static void iavf_client_task(struct work_struct *work) 2382 { 2383 struct iavf_adapter *adapter = 2384 container_of(work, struct iavf_adapter, client_task.work); 2385 2386 /* If we can't get the client bit, just give up. We'll be rescheduled 2387 * later. 2388 */ 2389 2390 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) 2391 return; 2392 2393 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2394 iavf_client_subtask(adapter); 2395 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2396 goto out; 2397 } 2398 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2399 iavf_notify_client_l2_params(&adapter->vsi); 2400 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2401 goto out; 2402 } 2403 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2404 iavf_notify_client_close(&adapter->vsi, false); 2405 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2406 goto out; 2407 } 2408 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2409 iavf_notify_client_open(&adapter->vsi); 2410 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2411 } 2412 out: 2413 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2414 } 2415 2416 /** 2417 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2418 * @adapter: board private structure 2419 * 2420 * Free all transmit software resources 2421 **/ 2422 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2423 { 2424 int i; 2425 2426 if (!adapter->tx_rings) 2427 return; 2428 2429 for (i = 0; i < adapter->num_active_queues; i++) 2430 if (adapter->tx_rings[i].desc) 2431 iavf_free_tx_resources(&adapter->tx_rings[i]); 2432 } 2433 2434 /** 2435 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2436 * @adapter: board private structure 2437 * 2438 * If this function returns with an error, then it's possible one or 2439 * more of the rings is populated (while the rest are not). It is the 2440 * callers duty to clean those orphaned rings. 2441 * 2442 * Return 0 on success, negative on failure 2443 **/ 2444 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2445 { 2446 int i, err = 0; 2447 2448 for (i = 0; i < adapter->num_active_queues; i++) { 2449 adapter->tx_rings[i].count = adapter->tx_desc_count; 2450 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2451 if (!err) 2452 continue; 2453 dev_err(&adapter->pdev->dev, 2454 "Allocation for Tx Queue %u failed\n", i); 2455 break; 2456 } 2457 2458 return err; 2459 } 2460 2461 /** 2462 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2463 * @adapter: board private structure 2464 * 2465 * If this function returns with an error, then it's possible one or 2466 * more of the rings is populated (while the rest are not). It is the 2467 * callers duty to clean those orphaned rings. 2468 * 2469 * Return 0 on success, negative on failure 2470 **/ 2471 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2472 { 2473 int i, err = 0; 2474 2475 for (i = 0; i < adapter->num_active_queues; i++) { 2476 adapter->rx_rings[i].count = adapter->rx_desc_count; 2477 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2478 if (!err) 2479 continue; 2480 dev_err(&adapter->pdev->dev, 2481 "Allocation for Rx Queue %u failed\n", i); 2482 break; 2483 } 2484 return err; 2485 } 2486 2487 /** 2488 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2489 * @adapter: board private structure 2490 * 2491 * Free all receive software resources 2492 **/ 2493 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2494 { 2495 int i; 2496 2497 if (!adapter->rx_rings) 2498 return; 2499 2500 for (i = 0; i < adapter->num_active_queues; i++) 2501 if (adapter->rx_rings[i].desc) 2502 iavf_free_rx_resources(&adapter->rx_rings[i]); 2503 } 2504 2505 /** 2506 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2507 * @adapter: board private structure 2508 * @max_tx_rate: max Tx bw for a tc 2509 **/ 2510 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2511 u64 max_tx_rate) 2512 { 2513 int speed = 0, ret = 0; 2514 2515 if (ADV_LINK_SUPPORT(adapter)) { 2516 if (adapter->link_speed_mbps < U32_MAX) { 2517 speed = adapter->link_speed_mbps; 2518 goto validate_bw; 2519 } else { 2520 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 2521 return -EINVAL; 2522 } 2523 } 2524 2525 switch (adapter->link_speed) { 2526 case VIRTCHNL_LINK_SPEED_40GB: 2527 speed = SPEED_40000; 2528 break; 2529 case VIRTCHNL_LINK_SPEED_25GB: 2530 speed = SPEED_25000; 2531 break; 2532 case VIRTCHNL_LINK_SPEED_20GB: 2533 speed = SPEED_20000; 2534 break; 2535 case VIRTCHNL_LINK_SPEED_10GB: 2536 speed = SPEED_10000; 2537 break; 2538 case VIRTCHNL_LINK_SPEED_5GB: 2539 speed = SPEED_5000; 2540 break; 2541 case VIRTCHNL_LINK_SPEED_2_5GB: 2542 speed = SPEED_2500; 2543 break; 2544 case VIRTCHNL_LINK_SPEED_1GB: 2545 speed = SPEED_1000; 2546 break; 2547 case VIRTCHNL_LINK_SPEED_100MB: 2548 speed = SPEED_100; 2549 break; 2550 default: 2551 break; 2552 } 2553 2554 validate_bw: 2555 if (max_tx_rate > speed) { 2556 dev_err(&adapter->pdev->dev, 2557 "Invalid tx rate specified\n"); 2558 ret = -EINVAL; 2559 } 2560 2561 return ret; 2562 } 2563 2564 /** 2565 * iavf_validate_ch_config - validate queue mapping info 2566 * @adapter: board private structure 2567 * @mqprio_qopt: queue parameters 2568 * 2569 * This function validates if the config provided by the user to 2570 * configure queue channels is valid or not. Returns 0 on a valid 2571 * config. 2572 **/ 2573 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2574 struct tc_mqprio_qopt_offload *mqprio_qopt) 2575 { 2576 u64 total_max_rate = 0; 2577 int i, num_qps = 0; 2578 u64 tx_rate = 0; 2579 int ret = 0; 2580 2581 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2582 mqprio_qopt->qopt.num_tc < 1) 2583 return -EINVAL; 2584 2585 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2586 if (!mqprio_qopt->qopt.count[i] || 2587 mqprio_qopt->qopt.offset[i] != num_qps) 2588 return -EINVAL; 2589 if (mqprio_qopt->min_rate[i]) { 2590 dev_err(&adapter->pdev->dev, 2591 "Invalid min tx rate (greater than 0) specified\n"); 2592 return -EINVAL; 2593 } 2594 /*convert to Mbps */ 2595 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2596 IAVF_MBPS_DIVISOR); 2597 total_max_rate += tx_rate; 2598 num_qps += mqprio_qopt->qopt.count[i]; 2599 } 2600 if (num_qps > IAVF_MAX_REQ_QUEUES) 2601 return -EINVAL; 2602 2603 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2604 return ret; 2605 } 2606 2607 /** 2608 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 2609 * @adapter: board private structure 2610 **/ 2611 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2612 { 2613 struct iavf_cloud_filter *cf, *cftmp; 2614 2615 spin_lock_bh(&adapter->cloud_filter_list_lock); 2616 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2617 list) { 2618 list_del(&cf->list); 2619 kfree(cf); 2620 adapter->num_cloud_filters--; 2621 } 2622 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2623 } 2624 2625 /** 2626 * __iavf_setup_tc - configure multiple traffic classes 2627 * @netdev: network interface device structure 2628 * @type_data: tc offload data 2629 * 2630 * This function processes the config information provided by the 2631 * user to configure traffic classes/queue channels and packages the 2632 * information to request the PF to setup traffic classes. 2633 * 2634 * Returns 0 on success. 2635 **/ 2636 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2637 { 2638 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2639 struct iavf_adapter *adapter = netdev_priv(netdev); 2640 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2641 u8 num_tc = 0, total_qps = 0; 2642 int ret = 0, netdev_tc = 0; 2643 u64 max_tx_rate; 2644 u16 mode; 2645 int i; 2646 2647 num_tc = mqprio_qopt->qopt.num_tc; 2648 mode = mqprio_qopt->mode; 2649 2650 /* delete queue_channel */ 2651 if (!mqprio_qopt->qopt.hw) { 2652 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2653 /* reset the tc configuration */ 2654 netdev_reset_tc(netdev); 2655 adapter->num_tc = 0; 2656 netif_tx_stop_all_queues(netdev); 2657 netif_tx_disable(netdev); 2658 iavf_del_all_cloud_filters(adapter); 2659 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2660 goto exit; 2661 } else { 2662 return -EINVAL; 2663 } 2664 } 2665 2666 /* add queue channel */ 2667 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2668 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2669 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2670 return -EOPNOTSUPP; 2671 } 2672 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2673 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2674 return -EINVAL; 2675 } 2676 2677 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2678 if (ret) 2679 return ret; 2680 /* Return if same TC config is requested */ 2681 if (adapter->num_tc == num_tc) 2682 return 0; 2683 adapter->num_tc = num_tc; 2684 2685 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2686 if (i < num_tc) { 2687 adapter->ch_config.ch_info[i].count = 2688 mqprio_qopt->qopt.count[i]; 2689 adapter->ch_config.ch_info[i].offset = 2690 mqprio_qopt->qopt.offset[i]; 2691 total_qps += mqprio_qopt->qopt.count[i]; 2692 max_tx_rate = mqprio_qopt->max_rate[i]; 2693 /* convert to Mbps */ 2694 max_tx_rate = div_u64(max_tx_rate, 2695 IAVF_MBPS_DIVISOR); 2696 adapter->ch_config.ch_info[i].max_tx_rate = 2697 max_tx_rate; 2698 } else { 2699 adapter->ch_config.ch_info[i].count = 1; 2700 adapter->ch_config.ch_info[i].offset = 0; 2701 } 2702 } 2703 adapter->ch_config.total_qps = total_qps; 2704 netif_tx_stop_all_queues(netdev); 2705 netif_tx_disable(netdev); 2706 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2707 netdev_reset_tc(netdev); 2708 /* Report the tc mapping up the stack */ 2709 netdev_set_num_tc(adapter->netdev, num_tc); 2710 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2711 u16 qcount = mqprio_qopt->qopt.count[i]; 2712 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2713 2714 if (i < num_tc) 2715 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2716 qoffset); 2717 } 2718 } 2719 exit: 2720 return ret; 2721 } 2722 2723 /** 2724 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2725 * @adapter: board private structure 2726 * @f: pointer to struct flow_cls_offload 2727 * @filter: pointer to cloud filter structure 2728 */ 2729 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2730 struct flow_cls_offload *f, 2731 struct iavf_cloud_filter *filter) 2732 { 2733 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2734 struct flow_dissector *dissector = rule->match.dissector; 2735 u16 n_proto_mask = 0; 2736 u16 n_proto_key = 0; 2737 u8 field_flags = 0; 2738 u16 addr_type = 0; 2739 u16 n_proto = 0; 2740 int i = 0; 2741 struct virtchnl_filter *vf = &filter->f; 2742 2743 if (dissector->used_keys & 2744 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2745 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2746 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2747 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2748 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2749 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2750 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2751 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2752 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2753 dissector->used_keys); 2754 return -EOPNOTSUPP; 2755 } 2756 2757 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2758 struct flow_match_enc_keyid match; 2759 2760 flow_rule_match_enc_keyid(rule, &match); 2761 if (match.mask->keyid != 0) 2762 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2763 } 2764 2765 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2766 struct flow_match_basic match; 2767 2768 flow_rule_match_basic(rule, &match); 2769 n_proto_key = ntohs(match.key->n_proto); 2770 n_proto_mask = ntohs(match.mask->n_proto); 2771 2772 if (n_proto_key == ETH_P_ALL) { 2773 n_proto_key = 0; 2774 n_proto_mask = 0; 2775 } 2776 n_proto = n_proto_key & n_proto_mask; 2777 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2778 return -EINVAL; 2779 if (n_proto == ETH_P_IPV6) { 2780 /* specify flow type as TCP IPv6 */ 2781 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2782 } 2783 2784 if (match.key->ip_proto != IPPROTO_TCP) { 2785 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2786 return -EINVAL; 2787 } 2788 } 2789 2790 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2791 struct flow_match_eth_addrs match; 2792 2793 flow_rule_match_eth_addrs(rule, &match); 2794 2795 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2796 if (!is_zero_ether_addr(match.mask->dst)) { 2797 if (is_broadcast_ether_addr(match.mask->dst)) { 2798 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2799 } else { 2800 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2801 match.mask->dst); 2802 return IAVF_ERR_CONFIG; 2803 } 2804 } 2805 2806 if (!is_zero_ether_addr(match.mask->src)) { 2807 if (is_broadcast_ether_addr(match.mask->src)) { 2808 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2809 } else { 2810 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2811 match.mask->src); 2812 return IAVF_ERR_CONFIG; 2813 } 2814 } 2815 2816 if (!is_zero_ether_addr(match.key->dst)) 2817 if (is_valid_ether_addr(match.key->dst) || 2818 is_multicast_ether_addr(match.key->dst)) { 2819 /* set the mask if a valid dst_mac address */ 2820 for (i = 0; i < ETH_ALEN; i++) 2821 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2822 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2823 match.key->dst); 2824 } 2825 2826 if (!is_zero_ether_addr(match.key->src)) 2827 if (is_valid_ether_addr(match.key->src) || 2828 is_multicast_ether_addr(match.key->src)) { 2829 /* set the mask if a valid dst_mac address */ 2830 for (i = 0; i < ETH_ALEN; i++) 2831 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2832 ether_addr_copy(vf->data.tcp_spec.src_mac, 2833 match.key->src); 2834 } 2835 } 2836 2837 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2838 struct flow_match_vlan match; 2839 2840 flow_rule_match_vlan(rule, &match); 2841 if (match.mask->vlan_id) { 2842 if (match.mask->vlan_id == VLAN_VID_MASK) { 2843 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2844 } else { 2845 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2846 match.mask->vlan_id); 2847 return IAVF_ERR_CONFIG; 2848 } 2849 } 2850 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2851 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2852 } 2853 2854 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2855 struct flow_match_control match; 2856 2857 flow_rule_match_control(rule, &match); 2858 addr_type = match.key->addr_type; 2859 } 2860 2861 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2862 struct flow_match_ipv4_addrs match; 2863 2864 flow_rule_match_ipv4_addrs(rule, &match); 2865 if (match.mask->dst) { 2866 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2867 field_flags |= IAVF_CLOUD_FIELD_IIP; 2868 } else { 2869 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2870 be32_to_cpu(match.mask->dst)); 2871 return IAVF_ERR_CONFIG; 2872 } 2873 } 2874 2875 if (match.mask->src) { 2876 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2877 field_flags |= IAVF_CLOUD_FIELD_IIP; 2878 } else { 2879 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2880 be32_to_cpu(match.mask->dst)); 2881 return IAVF_ERR_CONFIG; 2882 } 2883 } 2884 2885 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2886 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2887 return IAVF_ERR_CONFIG; 2888 } 2889 if (match.key->dst) { 2890 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2891 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2892 } 2893 if (match.key->src) { 2894 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2895 vf->data.tcp_spec.src_ip[0] = match.key->src; 2896 } 2897 } 2898 2899 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2900 struct flow_match_ipv6_addrs match; 2901 2902 flow_rule_match_ipv6_addrs(rule, &match); 2903 2904 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2905 if (ipv6_addr_any(&match.mask->dst)) { 2906 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2907 IPV6_ADDR_ANY); 2908 return IAVF_ERR_CONFIG; 2909 } 2910 2911 /* src and dest IPv6 address should not be LOOPBACK 2912 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2913 */ 2914 if (ipv6_addr_loopback(&match.key->dst) || 2915 ipv6_addr_loopback(&match.key->src)) { 2916 dev_err(&adapter->pdev->dev, 2917 "ipv6 addr should not be loopback\n"); 2918 return IAVF_ERR_CONFIG; 2919 } 2920 if (!ipv6_addr_any(&match.mask->dst) || 2921 !ipv6_addr_any(&match.mask->src)) 2922 field_flags |= IAVF_CLOUD_FIELD_IIP; 2923 2924 for (i = 0; i < 4; i++) 2925 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2926 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2927 sizeof(vf->data.tcp_spec.dst_ip)); 2928 for (i = 0; i < 4; i++) 2929 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2930 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2931 sizeof(vf->data.tcp_spec.src_ip)); 2932 } 2933 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2934 struct flow_match_ports match; 2935 2936 flow_rule_match_ports(rule, &match); 2937 if (match.mask->src) { 2938 if (match.mask->src == cpu_to_be16(0xffff)) { 2939 field_flags |= IAVF_CLOUD_FIELD_IIP; 2940 } else { 2941 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2942 be16_to_cpu(match.mask->src)); 2943 return IAVF_ERR_CONFIG; 2944 } 2945 } 2946 2947 if (match.mask->dst) { 2948 if (match.mask->dst == cpu_to_be16(0xffff)) { 2949 field_flags |= IAVF_CLOUD_FIELD_IIP; 2950 } else { 2951 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2952 be16_to_cpu(match.mask->dst)); 2953 return IAVF_ERR_CONFIG; 2954 } 2955 } 2956 if (match.key->dst) { 2957 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2958 vf->data.tcp_spec.dst_port = match.key->dst; 2959 } 2960 2961 if (match.key->src) { 2962 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2963 vf->data.tcp_spec.src_port = match.key->src; 2964 } 2965 } 2966 vf->field_flags = field_flags; 2967 2968 return 0; 2969 } 2970 2971 /** 2972 * iavf_handle_tclass - Forward to a traffic class on the device 2973 * @adapter: board private structure 2974 * @tc: traffic class index on the device 2975 * @filter: pointer to cloud filter structure 2976 */ 2977 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 2978 struct iavf_cloud_filter *filter) 2979 { 2980 if (tc == 0) 2981 return 0; 2982 if (tc < adapter->num_tc) { 2983 if (!filter->f.data.tcp_spec.dst_port) { 2984 dev_err(&adapter->pdev->dev, 2985 "Specify destination port to redirect to traffic class other than TC0\n"); 2986 return -EINVAL; 2987 } 2988 } 2989 /* redirect to a traffic class on the same device */ 2990 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 2991 filter->f.action_meta = tc; 2992 return 0; 2993 } 2994 2995 /** 2996 * iavf_configure_clsflower - Add tc flower filters 2997 * @adapter: board private structure 2998 * @cls_flower: Pointer to struct flow_cls_offload 2999 */ 3000 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3001 struct flow_cls_offload *cls_flower) 3002 { 3003 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3004 struct iavf_cloud_filter *filter = NULL; 3005 int err = -EINVAL, count = 50; 3006 3007 if (tc < 0) { 3008 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3009 return -EINVAL; 3010 } 3011 3012 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3013 if (!filter) 3014 return -ENOMEM; 3015 3016 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3017 &adapter->crit_section)) { 3018 if (--count == 0) 3019 goto err; 3020 udelay(1); 3021 } 3022 3023 filter->cookie = cls_flower->cookie; 3024 3025 /* set the mask to all zeroes to begin with */ 3026 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3027 /* start out with flow type and eth type IPv4 to begin with */ 3028 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3029 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3030 if (err < 0) 3031 goto err; 3032 3033 err = iavf_handle_tclass(adapter, tc, filter); 3034 if (err < 0) 3035 goto err; 3036 3037 /* add filter to the list */ 3038 spin_lock_bh(&adapter->cloud_filter_list_lock); 3039 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3040 adapter->num_cloud_filters++; 3041 filter->add = true; 3042 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3043 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3044 err: 3045 if (err) 3046 kfree(filter); 3047 3048 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3049 return err; 3050 } 3051 3052 /* iavf_find_cf - Find the cloud filter in the list 3053 * @adapter: Board private structure 3054 * @cookie: filter specific cookie 3055 * 3056 * Returns ptr to the filter object or NULL. Must be called while holding the 3057 * cloud_filter_list_lock. 3058 */ 3059 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3060 unsigned long *cookie) 3061 { 3062 struct iavf_cloud_filter *filter = NULL; 3063 3064 if (!cookie) 3065 return NULL; 3066 3067 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3068 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3069 return filter; 3070 } 3071 return NULL; 3072 } 3073 3074 /** 3075 * iavf_delete_clsflower - Remove tc flower filters 3076 * @adapter: board private structure 3077 * @cls_flower: Pointer to struct flow_cls_offload 3078 */ 3079 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3080 struct flow_cls_offload *cls_flower) 3081 { 3082 struct iavf_cloud_filter *filter = NULL; 3083 int err = 0; 3084 3085 spin_lock_bh(&adapter->cloud_filter_list_lock); 3086 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3087 if (filter) { 3088 filter->del = true; 3089 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3090 } else { 3091 err = -EINVAL; 3092 } 3093 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3094 3095 return err; 3096 } 3097 3098 /** 3099 * iavf_setup_tc_cls_flower - flower classifier offloads 3100 * @adapter: board private structure 3101 * @cls_flower: pointer to flow_cls_offload struct with flow info 3102 */ 3103 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3104 struct flow_cls_offload *cls_flower) 3105 { 3106 switch (cls_flower->command) { 3107 case FLOW_CLS_REPLACE: 3108 return iavf_configure_clsflower(adapter, cls_flower); 3109 case FLOW_CLS_DESTROY: 3110 return iavf_delete_clsflower(adapter, cls_flower); 3111 case FLOW_CLS_STATS: 3112 return -EOPNOTSUPP; 3113 default: 3114 return -EOPNOTSUPP; 3115 } 3116 } 3117 3118 /** 3119 * iavf_setup_tc_block_cb - block callback for tc 3120 * @type: type of offload 3121 * @type_data: offload data 3122 * @cb_priv: 3123 * 3124 * This function is the block callback for traffic classes 3125 **/ 3126 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3127 void *cb_priv) 3128 { 3129 struct iavf_adapter *adapter = cb_priv; 3130 3131 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3132 return -EOPNOTSUPP; 3133 3134 switch (type) { 3135 case TC_SETUP_CLSFLOWER: 3136 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3137 default: 3138 return -EOPNOTSUPP; 3139 } 3140 } 3141 3142 static LIST_HEAD(iavf_block_cb_list); 3143 3144 /** 3145 * iavf_setup_tc - configure multiple traffic classes 3146 * @netdev: network interface device structure 3147 * @type: type of offload 3148 * @type_data: tc offload data 3149 * 3150 * This function is the callback to ndo_setup_tc in the 3151 * netdev_ops. 3152 * 3153 * Returns 0 on success 3154 **/ 3155 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3156 void *type_data) 3157 { 3158 struct iavf_adapter *adapter = netdev_priv(netdev); 3159 3160 switch (type) { 3161 case TC_SETUP_QDISC_MQPRIO: 3162 return __iavf_setup_tc(netdev, type_data); 3163 case TC_SETUP_BLOCK: 3164 return flow_block_cb_setup_simple(type_data, 3165 &iavf_block_cb_list, 3166 iavf_setup_tc_block_cb, 3167 adapter, adapter, true); 3168 default: 3169 return -EOPNOTSUPP; 3170 } 3171 } 3172 3173 /** 3174 * iavf_open - Called when a network interface is made active 3175 * @netdev: network interface device structure 3176 * 3177 * Returns 0 on success, negative value on failure 3178 * 3179 * The open entry point is called when a network interface is made 3180 * active by the system (IFF_UP). At this point all resources needed 3181 * for transmit and receive operations are allocated, the interrupt 3182 * handler is registered with the OS, the watchdog is started, 3183 * and the stack is notified that the interface is ready. 3184 **/ 3185 static int iavf_open(struct net_device *netdev) 3186 { 3187 struct iavf_adapter *adapter = netdev_priv(netdev); 3188 int err; 3189 3190 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3191 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3192 return -EIO; 3193 } 3194 3195 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3196 &adapter->crit_section)) 3197 usleep_range(500, 1000); 3198 3199 if (adapter->state != __IAVF_DOWN) { 3200 err = -EBUSY; 3201 goto err_unlock; 3202 } 3203 3204 /* allocate transmit descriptors */ 3205 err = iavf_setup_all_tx_resources(adapter); 3206 if (err) 3207 goto err_setup_tx; 3208 3209 /* allocate receive descriptors */ 3210 err = iavf_setup_all_rx_resources(adapter); 3211 if (err) 3212 goto err_setup_rx; 3213 3214 /* clear any pending interrupts, may auto mask */ 3215 err = iavf_request_traffic_irqs(adapter, netdev->name); 3216 if (err) 3217 goto err_req_irq; 3218 3219 spin_lock_bh(&adapter->mac_vlan_list_lock); 3220 3221 iavf_add_filter(adapter, adapter->hw.mac.addr); 3222 3223 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3224 3225 iavf_configure(adapter); 3226 3227 iavf_up_complete(adapter); 3228 3229 iavf_irq_enable(adapter, true); 3230 3231 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3232 3233 return 0; 3234 3235 err_req_irq: 3236 iavf_down(adapter); 3237 iavf_free_traffic_irqs(adapter); 3238 err_setup_rx: 3239 iavf_free_all_rx_resources(adapter); 3240 err_setup_tx: 3241 iavf_free_all_tx_resources(adapter); 3242 err_unlock: 3243 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3244 3245 return err; 3246 } 3247 3248 /** 3249 * iavf_close - Disables a network interface 3250 * @netdev: network interface device structure 3251 * 3252 * Returns 0, this is not allowed to fail 3253 * 3254 * The close entry point is called when an interface is de-activated 3255 * by the OS. The hardware is still under the drivers control, but 3256 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3257 * are freed, along with all transmit and receive resources. 3258 **/ 3259 static int iavf_close(struct net_device *netdev) 3260 { 3261 struct iavf_adapter *adapter = netdev_priv(netdev); 3262 int status; 3263 3264 if (adapter->state <= __IAVF_DOWN_PENDING) 3265 return 0; 3266 3267 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3268 &adapter->crit_section)) 3269 usleep_range(500, 1000); 3270 3271 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3272 if (CLIENT_ENABLED(adapter)) 3273 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3274 3275 iavf_down(adapter); 3276 adapter->state = __IAVF_DOWN_PENDING; 3277 iavf_free_traffic_irqs(adapter); 3278 3279 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3280 3281 /* We explicitly don't free resources here because the hardware is 3282 * still active and can DMA into memory. Resources are cleared in 3283 * iavf_virtchnl_completion() after we get confirmation from the PF 3284 * driver that the rings have been stopped. 3285 * 3286 * Also, we wait for state to transition to __IAVF_DOWN before 3287 * returning. State change occurs in iavf_virtchnl_completion() after 3288 * VF resources are released (which occurs after PF driver processes and 3289 * responds to admin queue commands). 3290 */ 3291 3292 status = wait_event_timeout(adapter->down_waitqueue, 3293 adapter->state == __IAVF_DOWN, 3294 msecs_to_jiffies(500)); 3295 if (!status) 3296 netdev_warn(netdev, "Device resources not yet released\n"); 3297 return 0; 3298 } 3299 3300 /** 3301 * iavf_change_mtu - Change the Maximum Transfer Unit 3302 * @netdev: network interface device structure 3303 * @new_mtu: new value for maximum frame size 3304 * 3305 * Returns 0 on success, negative on failure 3306 **/ 3307 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3308 { 3309 struct iavf_adapter *adapter = netdev_priv(netdev); 3310 3311 netdev->mtu = new_mtu; 3312 if (CLIENT_ENABLED(adapter)) { 3313 iavf_notify_client_l2_params(&adapter->vsi); 3314 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3315 } 3316 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3317 queue_work(iavf_wq, &adapter->reset_task); 3318 3319 return 0; 3320 } 3321 3322 /** 3323 * iavf_set_features - set the netdev feature flags 3324 * @netdev: ptr to the netdev being adjusted 3325 * @features: the feature set that the stack is suggesting 3326 * Note: expects to be called while under rtnl_lock() 3327 **/ 3328 static int iavf_set_features(struct net_device *netdev, 3329 netdev_features_t features) 3330 { 3331 struct iavf_adapter *adapter = netdev_priv(netdev); 3332 3333 /* Don't allow changing VLAN_RX flag when adapter is not capable 3334 * of VLAN offload 3335 */ 3336 if (!VLAN_ALLOWED(adapter)) { 3337 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3338 return -EINVAL; 3339 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3340 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3341 adapter->aq_required |= 3342 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3343 else 3344 adapter->aq_required |= 3345 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3346 } 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * iavf_features_check - Validate encapsulated packet conforms to limits 3353 * @skb: skb buff 3354 * @dev: This physical port's netdev 3355 * @features: Offload features that the stack believes apply 3356 **/ 3357 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3358 struct net_device *dev, 3359 netdev_features_t features) 3360 { 3361 size_t len; 3362 3363 /* No point in doing any of this if neither checksum nor GSO are 3364 * being requested for this frame. We can rule out both by just 3365 * checking for CHECKSUM_PARTIAL 3366 */ 3367 if (skb->ip_summed != CHECKSUM_PARTIAL) 3368 return features; 3369 3370 /* We cannot support GSO if the MSS is going to be less than 3371 * 64 bytes. If it is then we need to drop support for GSO. 3372 */ 3373 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3374 features &= ~NETIF_F_GSO_MASK; 3375 3376 /* MACLEN can support at most 63 words */ 3377 len = skb_network_header(skb) - skb->data; 3378 if (len & ~(63 * 2)) 3379 goto out_err; 3380 3381 /* IPLEN and EIPLEN can support at most 127 dwords */ 3382 len = skb_transport_header(skb) - skb_network_header(skb); 3383 if (len & ~(127 * 4)) 3384 goto out_err; 3385 3386 if (skb->encapsulation) { 3387 /* L4TUNLEN can support 127 words */ 3388 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3389 if (len & ~(127 * 2)) 3390 goto out_err; 3391 3392 /* IPLEN can support at most 127 dwords */ 3393 len = skb_inner_transport_header(skb) - 3394 skb_inner_network_header(skb); 3395 if (len & ~(127 * 4)) 3396 goto out_err; 3397 } 3398 3399 /* No need to validate L4LEN as TCP is the only protocol with a 3400 * a flexible value and we support all possible values supported 3401 * by TCP, which is at most 15 dwords 3402 */ 3403 3404 return features; 3405 out_err: 3406 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3407 } 3408 3409 /** 3410 * iavf_fix_features - fix up the netdev feature bits 3411 * @netdev: our net device 3412 * @features: desired feature bits 3413 * 3414 * Returns fixed-up features bits 3415 **/ 3416 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3417 netdev_features_t features) 3418 { 3419 struct iavf_adapter *adapter = netdev_priv(netdev); 3420 3421 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3422 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3423 NETIF_F_HW_VLAN_CTAG_RX | 3424 NETIF_F_HW_VLAN_CTAG_FILTER); 3425 3426 return features; 3427 } 3428 3429 static const struct net_device_ops iavf_netdev_ops = { 3430 .ndo_open = iavf_open, 3431 .ndo_stop = iavf_close, 3432 .ndo_start_xmit = iavf_xmit_frame, 3433 .ndo_set_rx_mode = iavf_set_rx_mode, 3434 .ndo_validate_addr = eth_validate_addr, 3435 .ndo_set_mac_address = iavf_set_mac, 3436 .ndo_change_mtu = iavf_change_mtu, 3437 .ndo_tx_timeout = iavf_tx_timeout, 3438 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3439 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3440 .ndo_features_check = iavf_features_check, 3441 .ndo_fix_features = iavf_fix_features, 3442 .ndo_set_features = iavf_set_features, 3443 .ndo_setup_tc = iavf_setup_tc, 3444 }; 3445 3446 /** 3447 * iavf_check_reset_complete - check that VF reset is complete 3448 * @hw: pointer to hw struct 3449 * 3450 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3451 **/ 3452 static int iavf_check_reset_complete(struct iavf_hw *hw) 3453 { 3454 u32 rstat; 3455 int i; 3456 3457 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3458 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3459 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3460 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3461 (rstat == VIRTCHNL_VFR_COMPLETED)) 3462 return 0; 3463 usleep_range(10, 20); 3464 } 3465 return -EBUSY; 3466 } 3467 3468 /** 3469 * iavf_process_config - Process the config information we got from the PF 3470 * @adapter: board private structure 3471 * 3472 * Verify that we have a valid config struct, and set up our netdev features 3473 * and our VSI struct. 3474 **/ 3475 int iavf_process_config(struct iavf_adapter *adapter) 3476 { 3477 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3478 int i, num_req_queues = adapter->num_req_queues; 3479 struct net_device *netdev = adapter->netdev; 3480 struct iavf_vsi *vsi = &adapter->vsi; 3481 netdev_features_t hw_enc_features; 3482 netdev_features_t hw_features; 3483 3484 /* got VF config message back from PF, now we can parse it */ 3485 for (i = 0; i < vfres->num_vsis; i++) { 3486 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3487 adapter->vsi_res = &vfres->vsi_res[i]; 3488 } 3489 if (!adapter->vsi_res) { 3490 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3491 return -ENODEV; 3492 } 3493 3494 if (num_req_queues && 3495 num_req_queues > adapter->vsi_res->num_queue_pairs) { 3496 /* Problem. The PF gave us fewer queues than what we had 3497 * negotiated in our request. Need a reset to see if we can't 3498 * get back to a working state. 3499 */ 3500 dev_err(&adapter->pdev->dev, 3501 "Requested %d queues, but PF only gave us %d.\n", 3502 num_req_queues, 3503 adapter->vsi_res->num_queue_pairs); 3504 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3505 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3506 iavf_schedule_reset(adapter); 3507 return -ENODEV; 3508 } 3509 adapter->num_req_queues = 0; 3510 3511 hw_enc_features = NETIF_F_SG | 3512 NETIF_F_IP_CSUM | 3513 NETIF_F_IPV6_CSUM | 3514 NETIF_F_HIGHDMA | 3515 NETIF_F_SOFT_FEATURES | 3516 NETIF_F_TSO | 3517 NETIF_F_TSO_ECN | 3518 NETIF_F_TSO6 | 3519 NETIF_F_SCTP_CRC | 3520 NETIF_F_RXHASH | 3521 NETIF_F_RXCSUM | 3522 0; 3523 3524 /* advertise to stack only if offloads for encapsulated packets is 3525 * supported 3526 */ 3527 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3528 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3529 NETIF_F_GSO_GRE | 3530 NETIF_F_GSO_GRE_CSUM | 3531 NETIF_F_GSO_IPXIP4 | 3532 NETIF_F_GSO_IPXIP6 | 3533 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3534 NETIF_F_GSO_PARTIAL | 3535 0; 3536 3537 if (!(vfres->vf_cap_flags & 3538 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3539 netdev->gso_partial_features |= 3540 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3541 3542 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3543 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3544 netdev->hw_enc_features |= hw_enc_features; 3545 } 3546 /* record features VLANs can make use of */ 3547 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3548 3549 /* Write features and hw_features separately to avoid polluting 3550 * with, or dropping, features that are set when we registered. 3551 */ 3552 hw_features = hw_enc_features; 3553 3554 /* Enable VLAN features if supported */ 3555 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3556 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3557 NETIF_F_HW_VLAN_CTAG_RX); 3558 /* Enable cloud filter if ADQ is supported */ 3559 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3560 hw_features |= NETIF_F_HW_TC; 3561 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 3562 hw_features |= NETIF_F_GSO_UDP_L4; 3563 3564 netdev->hw_features |= hw_features; 3565 3566 netdev->features |= hw_features; 3567 3568 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3569 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3570 3571 netdev->priv_flags |= IFF_UNICAST_FLT; 3572 3573 /* Do not turn on offloads when they are requested to be turned off. 3574 * TSO needs minimum 576 bytes to work correctly. 3575 */ 3576 if (netdev->wanted_features) { 3577 if (!(netdev->wanted_features & NETIF_F_TSO) || 3578 netdev->mtu < 576) 3579 netdev->features &= ~NETIF_F_TSO; 3580 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3581 netdev->mtu < 576) 3582 netdev->features &= ~NETIF_F_TSO6; 3583 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3584 netdev->features &= ~NETIF_F_TSO_ECN; 3585 if (!(netdev->wanted_features & NETIF_F_GRO)) 3586 netdev->features &= ~NETIF_F_GRO; 3587 if (!(netdev->wanted_features & NETIF_F_GSO)) 3588 netdev->features &= ~NETIF_F_GSO; 3589 } 3590 3591 adapter->vsi.id = adapter->vsi_res->vsi_id; 3592 3593 adapter->vsi.back = adapter; 3594 adapter->vsi.base_vector = 1; 3595 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3596 vsi->netdev = adapter->netdev; 3597 vsi->qs_handle = adapter->vsi_res->qset_handle; 3598 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3599 adapter->rss_key_size = vfres->rss_key_size; 3600 adapter->rss_lut_size = vfres->rss_lut_size; 3601 } else { 3602 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3603 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3604 } 3605 3606 return 0; 3607 } 3608 3609 /** 3610 * iavf_init_task - worker thread to perform delayed initialization 3611 * @work: pointer to work_struct containing our data 3612 * 3613 * This task completes the work that was begun in probe. Due to the nature 3614 * of VF-PF communications, we may need to wait tens of milliseconds to get 3615 * responses back from the PF. Rather than busy-wait in probe and bog down the 3616 * whole system, we'll do it in a task so we can sleep. 3617 * This task only runs during driver init. Once we've established 3618 * communications with the PF driver and set up our netdev, the watchdog 3619 * takes over. 3620 **/ 3621 static void iavf_init_task(struct work_struct *work) 3622 { 3623 struct iavf_adapter *adapter = container_of(work, 3624 struct iavf_adapter, 3625 init_task.work); 3626 struct iavf_hw *hw = &adapter->hw; 3627 3628 switch (adapter->state) { 3629 case __IAVF_STARTUP: 3630 if (iavf_startup(adapter) < 0) 3631 goto init_failed; 3632 break; 3633 case __IAVF_INIT_VERSION_CHECK: 3634 if (iavf_init_version_check(adapter) < 0) 3635 goto init_failed; 3636 break; 3637 case __IAVF_INIT_GET_RESOURCES: 3638 if (iavf_init_get_resources(adapter) < 0) 3639 goto init_failed; 3640 return; 3641 default: 3642 goto init_failed; 3643 } 3644 3645 queue_delayed_work(iavf_wq, &adapter->init_task, 3646 msecs_to_jiffies(30)); 3647 return; 3648 init_failed: 3649 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3650 dev_err(&adapter->pdev->dev, 3651 "Failed to communicate with PF; waiting before retry\n"); 3652 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3653 iavf_shutdown_adminq(hw); 3654 adapter->state = __IAVF_STARTUP; 3655 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3656 return; 3657 } 3658 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3659 } 3660 3661 /** 3662 * iavf_shutdown - Shutdown the device in preparation for a reboot 3663 * @pdev: pci device structure 3664 **/ 3665 static void iavf_shutdown(struct pci_dev *pdev) 3666 { 3667 struct net_device *netdev = pci_get_drvdata(pdev); 3668 struct iavf_adapter *adapter = netdev_priv(netdev); 3669 3670 netif_device_detach(netdev); 3671 3672 if (netif_running(netdev)) 3673 iavf_close(netdev); 3674 3675 /* Prevent the watchdog from running. */ 3676 adapter->state = __IAVF_REMOVE; 3677 adapter->aq_required = 0; 3678 3679 #ifdef CONFIG_PM 3680 pci_save_state(pdev); 3681 3682 #endif 3683 pci_disable_device(pdev); 3684 } 3685 3686 /** 3687 * iavf_probe - Device Initialization Routine 3688 * @pdev: PCI device information struct 3689 * @ent: entry in iavf_pci_tbl 3690 * 3691 * Returns 0 on success, negative on failure 3692 * 3693 * iavf_probe initializes an adapter identified by a pci_dev structure. 3694 * The OS initialization, configuring of the adapter private structure, 3695 * and a hardware reset occur. 3696 **/ 3697 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3698 { 3699 struct net_device *netdev; 3700 struct iavf_adapter *adapter = NULL; 3701 struct iavf_hw *hw = NULL; 3702 int err; 3703 3704 err = pci_enable_device(pdev); 3705 if (err) 3706 return err; 3707 3708 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3709 if (err) { 3710 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3711 if (err) { 3712 dev_err(&pdev->dev, 3713 "DMA configuration failed: 0x%x\n", err); 3714 goto err_dma; 3715 } 3716 } 3717 3718 err = pci_request_regions(pdev, iavf_driver_name); 3719 if (err) { 3720 dev_err(&pdev->dev, 3721 "pci_request_regions failed 0x%x\n", err); 3722 goto err_pci_reg; 3723 } 3724 3725 pci_enable_pcie_error_reporting(pdev); 3726 3727 pci_set_master(pdev); 3728 3729 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3730 IAVF_MAX_REQ_QUEUES); 3731 if (!netdev) { 3732 err = -ENOMEM; 3733 goto err_alloc_etherdev; 3734 } 3735 3736 SET_NETDEV_DEV(netdev, &pdev->dev); 3737 3738 pci_set_drvdata(pdev, netdev); 3739 adapter = netdev_priv(netdev); 3740 3741 adapter->netdev = netdev; 3742 adapter->pdev = pdev; 3743 3744 hw = &adapter->hw; 3745 hw->back = adapter; 3746 3747 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3748 adapter->state = __IAVF_STARTUP; 3749 3750 /* Call save state here because it relies on the adapter struct. */ 3751 pci_save_state(pdev); 3752 3753 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3754 pci_resource_len(pdev, 0)); 3755 if (!hw->hw_addr) { 3756 err = -EIO; 3757 goto err_ioremap; 3758 } 3759 hw->vendor_id = pdev->vendor; 3760 hw->device_id = pdev->device; 3761 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3762 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3763 hw->subsystem_device_id = pdev->subsystem_device; 3764 hw->bus.device = PCI_SLOT(pdev->devfn); 3765 hw->bus.func = PCI_FUNC(pdev->devfn); 3766 hw->bus.bus_id = pdev->bus->number; 3767 3768 /* set up the locks for the AQ, do this only once in probe 3769 * and destroy them only once in remove 3770 */ 3771 mutex_init(&hw->aq.asq_mutex); 3772 mutex_init(&hw->aq.arq_mutex); 3773 3774 spin_lock_init(&adapter->mac_vlan_list_lock); 3775 spin_lock_init(&adapter->cloud_filter_list_lock); 3776 spin_lock_init(&adapter->fdir_fltr_lock); 3777 spin_lock_init(&adapter->adv_rss_lock); 3778 3779 INIT_LIST_HEAD(&adapter->mac_filter_list); 3780 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3781 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3782 INIT_LIST_HEAD(&adapter->fdir_list_head); 3783 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 3784 3785 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3786 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3787 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3788 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3789 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3790 queue_delayed_work(iavf_wq, &adapter->init_task, 3791 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3792 3793 /* Setup the wait queue for indicating transition to down status */ 3794 init_waitqueue_head(&adapter->down_waitqueue); 3795 3796 return 0; 3797 3798 err_ioremap: 3799 free_netdev(netdev); 3800 err_alloc_etherdev: 3801 pci_release_regions(pdev); 3802 err_pci_reg: 3803 err_dma: 3804 pci_disable_device(pdev); 3805 return err; 3806 } 3807 3808 /** 3809 * iavf_suspend - Power management suspend routine 3810 * @dev_d: device info pointer 3811 * 3812 * Called when the system (VM) is entering sleep/suspend. 3813 **/ 3814 static int __maybe_unused iavf_suspend(struct device *dev_d) 3815 { 3816 struct net_device *netdev = dev_get_drvdata(dev_d); 3817 struct iavf_adapter *adapter = netdev_priv(netdev); 3818 3819 netif_device_detach(netdev); 3820 3821 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3822 &adapter->crit_section)) 3823 usleep_range(500, 1000); 3824 3825 if (netif_running(netdev)) { 3826 rtnl_lock(); 3827 iavf_down(adapter); 3828 rtnl_unlock(); 3829 } 3830 iavf_free_misc_irq(adapter); 3831 iavf_reset_interrupt_capability(adapter); 3832 3833 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3834 3835 return 0; 3836 } 3837 3838 /** 3839 * iavf_resume - Power management resume routine 3840 * @dev_d: device info pointer 3841 * 3842 * Called when the system (VM) is resumed from sleep/suspend. 3843 **/ 3844 static int __maybe_unused iavf_resume(struct device *dev_d) 3845 { 3846 struct pci_dev *pdev = to_pci_dev(dev_d); 3847 struct net_device *netdev = pci_get_drvdata(pdev); 3848 struct iavf_adapter *adapter = netdev_priv(netdev); 3849 u32 err; 3850 3851 pci_set_master(pdev); 3852 3853 rtnl_lock(); 3854 err = iavf_set_interrupt_capability(adapter); 3855 if (err) { 3856 rtnl_unlock(); 3857 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3858 return err; 3859 } 3860 err = iavf_request_misc_irq(adapter); 3861 rtnl_unlock(); 3862 if (err) { 3863 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3864 return err; 3865 } 3866 3867 queue_work(iavf_wq, &adapter->reset_task); 3868 3869 netif_device_attach(netdev); 3870 3871 return err; 3872 } 3873 3874 /** 3875 * iavf_remove - Device Removal Routine 3876 * @pdev: PCI device information struct 3877 * 3878 * iavf_remove is called by the PCI subsystem to alert the driver 3879 * that it should release a PCI device. The could be caused by a 3880 * Hot-Plug event, or because the driver is going to be removed from 3881 * memory. 3882 **/ 3883 static void iavf_remove(struct pci_dev *pdev) 3884 { 3885 struct net_device *netdev = pci_get_drvdata(pdev); 3886 struct iavf_adapter *adapter = netdev_priv(netdev); 3887 struct iavf_fdir_fltr *fdir, *fdirtmp; 3888 struct iavf_vlan_filter *vlf, *vlftmp; 3889 struct iavf_adv_rss *rss, *rsstmp; 3890 struct iavf_mac_filter *f, *ftmp; 3891 struct iavf_cloud_filter *cf, *cftmp; 3892 struct iavf_hw *hw = &adapter->hw; 3893 int err; 3894 /* Indicate we are in remove and not to run reset_task */ 3895 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 3896 cancel_delayed_work_sync(&adapter->init_task); 3897 cancel_work_sync(&adapter->reset_task); 3898 cancel_delayed_work_sync(&adapter->client_task); 3899 if (adapter->netdev_registered) { 3900 unregister_netdev(netdev); 3901 adapter->netdev_registered = false; 3902 } 3903 if (CLIENT_ALLOWED(adapter)) { 3904 err = iavf_lan_del_device(adapter); 3905 if (err) 3906 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3907 err); 3908 } 3909 3910 /* Shut down all the garbage mashers on the detention level */ 3911 adapter->state = __IAVF_REMOVE; 3912 adapter->aq_required = 0; 3913 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3914 iavf_request_reset(adapter); 3915 msleep(50); 3916 /* If the FW isn't responding, kick it once, but only once. */ 3917 if (!iavf_asq_done(hw)) { 3918 iavf_request_reset(adapter); 3919 msleep(50); 3920 } 3921 iavf_free_all_tx_resources(adapter); 3922 iavf_free_all_rx_resources(adapter); 3923 iavf_misc_irq_disable(adapter); 3924 iavf_free_misc_irq(adapter); 3925 iavf_reset_interrupt_capability(adapter); 3926 iavf_free_q_vectors(adapter); 3927 3928 cancel_delayed_work_sync(&adapter->watchdog_task); 3929 3930 cancel_work_sync(&adapter->adminq_task); 3931 3932 iavf_free_rss(adapter); 3933 3934 if (hw->aq.asq.count) 3935 iavf_shutdown_adminq(hw); 3936 3937 /* destroy the locks only once, here */ 3938 mutex_destroy(&hw->aq.arq_mutex); 3939 mutex_destroy(&hw->aq.asq_mutex); 3940 3941 iounmap(hw->hw_addr); 3942 pci_release_regions(pdev); 3943 iavf_free_queues(adapter); 3944 kfree(adapter->vf_res); 3945 spin_lock_bh(&adapter->mac_vlan_list_lock); 3946 /* If we got removed before an up/down sequence, we've got a filter 3947 * hanging out there that we need to get rid of. 3948 */ 3949 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3950 list_del(&f->list); 3951 kfree(f); 3952 } 3953 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3954 list) { 3955 list_del(&vlf->list); 3956 kfree(vlf); 3957 } 3958 3959 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3960 3961 spin_lock_bh(&adapter->cloud_filter_list_lock); 3962 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3963 list_del(&cf->list); 3964 kfree(cf); 3965 } 3966 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3967 3968 spin_lock_bh(&adapter->fdir_fltr_lock); 3969 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 3970 list_del(&fdir->list); 3971 kfree(fdir); 3972 } 3973 spin_unlock_bh(&adapter->fdir_fltr_lock); 3974 3975 spin_lock_bh(&adapter->adv_rss_lock); 3976 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 3977 list) { 3978 list_del(&rss->list); 3979 kfree(rss); 3980 } 3981 spin_unlock_bh(&adapter->adv_rss_lock); 3982 3983 free_netdev(netdev); 3984 3985 pci_disable_pcie_error_reporting(pdev); 3986 3987 pci_disable_device(pdev); 3988 } 3989 3990 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 3991 3992 static struct pci_driver iavf_driver = { 3993 .name = iavf_driver_name, 3994 .id_table = iavf_pci_tbl, 3995 .probe = iavf_probe, 3996 .remove = iavf_remove, 3997 .driver.pm = &iavf_pm_ops, 3998 .shutdown = iavf_shutdown, 3999 }; 4000 4001 /** 4002 * iavf_init_module - Driver Registration Routine 4003 * 4004 * iavf_init_module is the first routine called when the driver is 4005 * loaded. All it does is register with the PCI subsystem. 4006 **/ 4007 static int __init iavf_init_module(void) 4008 { 4009 int ret; 4010 4011 pr_info("iavf: %s\n", iavf_driver_string); 4012 4013 pr_info("%s\n", iavf_copyright); 4014 4015 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4016 iavf_driver_name); 4017 if (!iavf_wq) { 4018 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4019 return -ENOMEM; 4020 } 4021 ret = pci_register_driver(&iavf_driver); 4022 return ret; 4023 } 4024 4025 module_init(iavf_init_module); 4026 4027 /** 4028 * iavf_exit_module - Driver Exit Cleanup Routine 4029 * 4030 * iavf_exit_module is called just before the driver is removed 4031 * from memory. 4032 **/ 4033 static void __exit iavf_exit_module(void) 4034 { 4035 pci_unregister_driver(&iavf_driver); 4036 destroy_workqueue(iavf_wq); 4037 } 4038 4039 module_exit(iavf_exit_module); 4040 4041 /* iavf_main.c */ 4042