1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 	switch (status) {
57 	case IAVF_SUCCESS:
58 		return 0;
59 	case IAVF_ERR_PARAM:
60 	case IAVF_ERR_MAC_TYPE:
61 	case IAVF_ERR_INVALID_MAC_ADDR:
62 	case IAVF_ERR_INVALID_LINK_SETTINGS:
63 	case IAVF_ERR_INVALID_PD_ID:
64 	case IAVF_ERR_INVALID_QP_ID:
65 	case IAVF_ERR_INVALID_CQ_ID:
66 	case IAVF_ERR_INVALID_CEQ_ID:
67 	case IAVF_ERR_INVALID_AEQ_ID:
68 	case IAVF_ERR_INVALID_SIZE:
69 	case IAVF_ERR_INVALID_ARP_INDEX:
70 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 	case IAVF_ERR_INVALID_FRAG_COUNT:
73 	case IAVF_ERR_INVALID_ALIGNMENT:
74 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 	case IAVF_ERR_INVALID_VF_ID:
77 	case IAVF_ERR_INVALID_HMCFN_ID:
78 	case IAVF_ERR_INVALID_PBLE_INDEX:
79 	case IAVF_ERR_INVALID_SD_INDEX:
80 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 	case IAVF_ERR_INVALID_SD_TYPE:
82 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 		return -EINVAL;
86 	case IAVF_ERR_NVM:
87 	case IAVF_ERR_NVM_CHECKSUM:
88 	case IAVF_ERR_PHY:
89 	case IAVF_ERR_CONFIG:
90 	case IAVF_ERR_UNKNOWN_PHY:
91 	case IAVF_ERR_LINK_SETUP:
92 	case IAVF_ERR_ADAPTER_STOPPED:
93 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 	case IAVF_ERR_RESET_FAILED:
96 	case IAVF_ERR_BAD_PTR:
97 	case IAVF_ERR_SWFW_SYNC:
98 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 	case IAVF_ERR_QUEUE_EMPTY:
100 	case IAVF_ERR_FLUSHED_QUEUE:
101 	case IAVF_ERR_OPCODE_MISMATCH:
102 	case IAVF_ERR_CQP_COMPL_ERROR:
103 	case IAVF_ERR_BACKING_PAGE_ERROR:
104 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 	case IAVF_ERR_MEMCPY_FAILED:
106 	case IAVF_ERR_SRQ_ENABLED:
107 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 	case IAVF_ERR_ADMIN_QUEUE_FULL:
109 	case IAVF_ERR_BAD_IWARP_CQE:
110 	case IAVF_ERR_NVM_BLANK_MODE:
111 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 	case IAVF_ERR_DIAG_TEST_FAILED:
113 	case IAVF_ERR_FIRMWARE_API_VERSION:
114 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 		return -EIO;
116 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 		return -ENODEV;
118 	case IAVF_ERR_NO_AVAILABLE_VSI:
119 	case IAVF_ERR_RING_FULL:
120 		return -ENOSPC;
121 	case IAVF_ERR_NO_MEMORY:
122 		return -ENOMEM;
123 	case IAVF_ERR_TIMEOUT:
124 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 		return -ETIMEDOUT;
126 	case IAVF_ERR_NOT_IMPLEMENTED:
127 	case IAVF_NOT_SUPPORTED:
128 		return -EOPNOTSUPP;
129 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 		return -EALREADY;
131 	case IAVF_ERR_NOT_READY:
132 		return -EBUSY;
133 	case IAVF_ERR_BUF_TOO_SHORT:
134 		return -EMSGSIZE;
135 	}
136 
137 	return -EIO;
138 }
139 
140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 	switch (v_status) {
143 	case VIRTCHNL_STATUS_SUCCESS:
144 		return 0;
145 	case VIRTCHNL_STATUS_ERR_PARAM:
146 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 		return -EINVAL;
148 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 		return -ENOMEM;
150 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 		return -EIO;
154 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 		return -EOPNOTSUPP;
156 	}
157 
158 	return -EIO;
159 }
160 
161 /**
162  * iavf_pdev_to_adapter - go from pci_dev to adapter
163  * @pdev: pci_dev pointer
164  */
165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 	return netdev_priv(pci_get_drvdata(pdev));
168 }
169 
170 /**
171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172  * @hw:   pointer to the HW structure
173  * @mem:  ptr to mem struct to fill out
174  * @size: size of memory requested
175  * @alignment: what to align the allocation to
176  **/
177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 					 struct iavf_dma_mem *mem,
179 					 u64 size, u32 alignment)
180 {
181 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182 
183 	if (!mem)
184 		return IAVF_ERR_PARAM;
185 
186 	mem->size = ALIGN(size, alignment);
187 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 	if (mem->va)
190 		return 0;
191 	else
192 		return IAVF_ERR_NO_MEMORY;
193 }
194 
195 /**
196  * iavf_free_dma_mem_d - OS specific memory free for shared code
197  * @hw:   pointer to the HW structure
198  * @mem:  ptr to mem struct to free
199  **/
200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 				     struct iavf_dma_mem *mem)
202 {
203 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204 
205 	if (!mem || !mem->va)
206 		return IAVF_ERR_PARAM;
207 	dma_free_coherent(&adapter->pdev->dev, mem->size,
208 			  mem->va, (dma_addr_t)mem->pa);
209 	return 0;
210 }
211 
212 /**
213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214  * @hw:   pointer to the HW structure
215  * @mem:  ptr to mem struct to fill out
216  * @size: size of memory requested
217  **/
218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 					  struct iavf_virt_mem *mem, u32 size)
220 {
221 	if (!mem)
222 		return IAVF_ERR_PARAM;
223 
224 	mem->size = size;
225 	mem->va = kzalloc(size, GFP_KERNEL);
226 
227 	if (mem->va)
228 		return 0;
229 	else
230 		return IAVF_ERR_NO_MEMORY;
231 }
232 
233 /**
234  * iavf_free_virt_mem_d - OS specific memory free for shared code
235  * @hw:   pointer to the HW structure
236  * @mem:  ptr to mem struct to free
237  **/
238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 				      struct iavf_virt_mem *mem)
240 {
241 	if (!mem)
242 		return IAVF_ERR_PARAM;
243 
244 	/* it's ok to kfree a NULL pointer */
245 	kfree(mem->va);
246 
247 	return 0;
248 }
249 
250 /**
251  * iavf_lock_timeout - try to lock mutex but give up after timeout
252  * @lock: mutex that should be locked
253  * @msecs: timeout in msecs
254  *
255  * Returns 0 on success, negative on failure
256  **/
257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 	unsigned int wait, delay = 10;
260 
261 	for (wait = 0; wait < msecs; wait += delay) {
262 		if (mutex_trylock(lock))
263 			return 0;
264 
265 		msleep(delay);
266 	}
267 
268 	return -1;
269 }
270 
271 /**
272  * iavf_schedule_reset - Set the flags and schedule a reset event
273  * @adapter: board private structure
274  **/
275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 	if (!(adapter->flags &
278 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 		queue_work(iavf_wq, &adapter->reset_task);
281 	}
282 }
283 
284 /**
285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
286  * @adapter: board private structure
287  *
288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289  * request and refresh ethtool stats
290  **/
291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296 
297 /**
298  * iavf_tx_timeout - Respond to a Tx Hang
299  * @netdev: network interface device structure
300  * @txqueue: queue number that is timing out
301  **/
302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 	struct iavf_adapter *adapter = netdev_priv(netdev);
305 
306 	adapter->tx_timeout_count++;
307 	iavf_schedule_reset(adapter);
308 }
309 
310 /**
311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312  * @adapter: board private structure
313  **/
314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 	struct iavf_hw *hw = &adapter->hw;
317 
318 	if (!adapter->msix_entries)
319 		return;
320 
321 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322 
323 	iavf_flush(hw);
324 
325 	synchronize_irq(adapter->msix_entries[0].vector);
326 }
327 
328 /**
329  * iavf_misc_irq_enable - Enable default interrupt generation settings
330  * @adapter: board private structure
331  **/
332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 	struct iavf_hw *hw = &adapter->hw;
335 
336 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339 
340 	iavf_flush(hw);
341 }
342 
343 /**
344  * iavf_irq_disable - Mask off interrupt generation on the NIC
345  * @adapter: board private structure
346  **/
347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 	int i;
350 	struct iavf_hw *hw = &adapter->hw;
351 
352 	if (!adapter->msix_entries)
353 		return;
354 
355 	for (i = 1; i < adapter->num_msix_vectors; i++) {
356 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 		synchronize_irq(adapter->msix_entries[i].vector);
358 	}
359 	iavf_flush(hw);
360 }
361 
362 /**
363  * iavf_irq_enable_queues - Enable interrupt for specified queues
364  * @adapter: board private structure
365  * @mask: bitmap of queues to enable
366  **/
367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 	struct iavf_hw *hw = &adapter->hw;
370 	int i;
371 
372 	for (i = 1; i < adapter->num_msix_vectors; i++) {
373 		if (mask & BIT(i - 1)) {
374 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 		}
378 	}
379 }
380 
381 /**
382  * iavf_irq_enable - Enable default interrupt generation settings
383  * @adapter: board private structure
384  * @flush: boolean value whether to run rd32()
385  **/
386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 	struct iavf_hw *hw = &adapter->hw;
389 
390 	iavf_misc_irq_enable(adapter);
391 	iavf_irq_enable_queues(adapter, ~0);
392 
393 	if (flush)
394 		iavf_flush(hw);
395 }
396 
397 /**
398  * iavf_msix_aq - Interrupt handler for vector 0
399  * @irq: interrupt number
400  * @data: pointer to netdev
401  **/
402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 	struct net_device *netdev = data;
405 	struct iavf_adapter *adapter = netdev_priv(netdev);
406 	struct iavf_hw *hw = &adapter->hw;
407 
408 	/* handle non-queue interrupts, these reads clear the registers */
409 	rd32(hw, IAVF_VFINT_ICR01);
410 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
411 
412 	if (adapter->state != __IAVF_REMOVE)
413 		/* schedule work on the private workqueue */
414 		queue_work(iavf_wq, &adapter->adminq_task);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /**
420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421  * @irq: interrupt number
422  * @data: pointer to a q_vector
423  **/
424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 	struct iavf_q_vector *q_vector = data;
427 
428 	if (!q_vector->tx.ring && !q_vector->rx.ring)
429 		return IRQ_HANDLED;
430 
431 	napi_schedule_irqoff(&q_vector->napi);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * iavf_map_vector_to_rxq - associate irqs with rx queues
438  * @adapter: board private structure
439  * @v_idx: interrupt number
440  * @r_idx: queue number
441  **/
442 static void
443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 	struct iavf_hw *hw = &adapter->hw;
448 
449 	rx_ring->q_vector = q_vector;
450 	rx_ring->next = q_vector->rx.ring;
451 	rx_ring->vsi = &adapter->vsi;
452 	q_vector->rx.ring = rx_ring;
453 	q_vector->rx.count++;
454 	q_vector->rx.next_update = jiffies + 1;
455 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 	q_vector->ring_mask |= BIT(r_idx);
457 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 	     q_vector->rx.current_itr >> 1);
459 	q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461 
462 /**
463  * iavf_map_vector_to_txq - associate irqs with tx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @t_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	tx_ring->q_vector = q_vector;
476 	tx_ring->next = q_vector->tx.ring;
477 	tx_ring->vsi = &adapter->vsi;
478 	q_vector->tx.ring = tx_ring;
479 	q_vector->tx.count++;
480 	q_vector->tx.next_update = jiffies + 1;
481 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 	q_vector->num_ringpairs++;
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 	     q_vector->tx.target_itr >> 1);
485 	q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487 
488 /**
489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490  * @adapter: board private structure to initialize
491  *
492  * This function maps descriptor rings to the queue-specific vectors
493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
494  * one vector per ring/queue, but on a constrained vector budget, we
495  * group the rings as "efficiently" as possible.  You would add new
496  * mapping configurations in here.
497  **/
498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 	int rings_remaining = adapter->num_active_queues;
501 	int ridx = 0, vidx = 0;
502 	int q_vectors;
503 
504 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505 
506 	for (; ridx < rings_remaining; ridx++) {
507 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 		iavf_map_vector_to_txq(adapter, vidx, ridx);
509 
510 		/* In the case where we have more queues than vectors, continue
511 		 * round-robin on vectors until all queues are mapped.
512 		 */
513 		if (++vidx >= q_vectors)
514 			vidx = 0;
515 	}
516 
517 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519 
520 /**
521  * iavf_irq_affinity_notify - Callback for affinity changes
522  * @notify: context as to what irq was changed
523  * @mask: the new affinity mask
524  *
525  * This is a callback function used by the irq_set_affinity_notifier function
526  * so that we may register to receive changes to the irq affinity masks.
527  **/
528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 				     const cpumask_t *mask)
530 {
531 	struct iavf_q_vector *q_vector =
532 		container_of(notify, struct iavf_q_vector, affinity_notify);
533 
534 	cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536 
537 /**
538  * iavf_irq_affinity_release - Callback for affinity notifier release
539  * @ref: internal core kernel usage
540  *
541  * This is a callback function used by the irq_set_affinity_notifier function
542  * to inform the current notification subscriber that they will no longer
543  * receive notifications.
544  **/
545 static void iavf_irq_affinity_release(struct kref *ref) {}
546 
547 /**
548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549  * @adapter: board private structure
550  * @basename: device basename
551  *
552  * Allocates MSI-X vectors for tx and rx handling, and requests
553  * interrupts from the kernel.
554  **/
555 static int
556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 	unsigned int vector, q_vectors;
559 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 	int irq_num, err;
561 	int cpu;
562 
563 	iavf_irq_disable(adapter);
564 	/* Decrement for Other and TCP Timer vectors */
565 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566 
567 	for (vector = 0; vector < q_vectors; vector++) {
568 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569 
570 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571 
572 		if (q_vector->tx.ring && q_vector->rx.ring) {
573 			snprintf(q_vector->name, sizeof(q_vector->name),
574 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 			tx_int_idx++;
576 		} else if (q_vector->rx.ring) {
577 			snprintf(q_vector->name, sizeof(q_vector->name),
578 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 		} else if (q_vector->tx.ring) {
580 			snprintf(q_vector->name, sizeof(q_vector->name),
581 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 		} else {
583 			/* skip this unused q_vector */
584 			continue;
585 		}
586 		err = request_irq(irq_num,
587 				  iavf_msix_clean_rings,
588 				  0,
589 				  q_vector->name,
590 				  q_vector);
591 		if (err) {
592 			dev_info(&adapter->pdev->dev,
593 				 "Request_irq failed, error: %d\n", err);
594 			goto free_queue_irqs;
595 		}
596 		/* register for affinity change notifications */
597 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 		q_vector->affinity_notify.release =
599 						   iavf_irq_affinity_release;
600 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 		/* Spread the IRQ affinity hints across online CPUs. Note that
602 		 * get_cpu_mask returns a mask with a permanent lifetime so
603 		 * it's safe to use as a hint for irq_update_affinity_hint.
604 		 */
605 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 	}
608 
609 	return 0;
610 
611 free_queue_irqs:
612 	while (vector) {
613 		vector--;
614 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 		irq_set_affinity_notifier(irq_num, NULL);
616 		irq_update_affinity_hint(irq_num, NULL);
617 		free_irq(irq_num, &adapter->q_vectors[vector]);
618 	}
619 	return err;
620 }
621 
622 /**
623  * iavf_request_misc_irq - Initialize MSI-X interrupts
624  * @adapter: board private structure
625  *
626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627  * vector is only for the admin queue, and stays active even when the netdev
628  * is closed.
629  **/
630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 	struct net_device *netdev = adapter->netdev;
633 	int err;
634 
635 	snprintf(adapter->misc_vector_name,
636 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 		 dev_name(&adapter->pdev->dev));
638 	err = request_irq(adapter->msix_entries[0].vector,
639 			  &iavf_msix_aq, 0,
640 			  adapter->misc_vector_name, netdev);
641 	if (err) {
642 		dev_err(&adapter->pdev->dev,
643 			"request_irq for %s failed: %d\n",
644 			adapter->misc_vector_name, err);
645 		free_irq(adapter->msix_entries[0].vector, netdev);
646 	}
647 	return err;
648 }
649 
650 /**
651  * iavf_free_traffic_irqs - Free MSI-X interrupts
652  * @adapter: board private structure
653  *
654  * Frees all MSI-X vectors other than 0.
655  **/
656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 	int vector, irq_num, q_vectors;
659 
660 	if (!adapter->msix_entries)
661 		return;
662 
663 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664 
665 	for (vector = 0; vector < q_vectors; vector++) {
666 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 		irq_set_affinity_notifier(irq_num, NULL);
668 		irq_update_affinity_hint(irq_num, NULL);
669 		free_irq(irq_num, &adapter->q_vectors[vector]);
670 	}
671 }
672 
673 /**
674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675  * @adapter: board private structure
676  *
677  * Frees MSI-X vector 0.
678  **/
679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 	struct net_device *netdev = adapter->netdev;
682 
683 	if (!adapter->msix_entries)
684 		return;
685 
686 	free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688 
689 /**
690  * iavf_configure_tx - Configure Transmit Unit after Reset
691  * @adapter: board private structure
692  *
693  * Configure the Tx unit of the MAC after a reset.
694  **/
695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 	struct iavf_hw *hw = &adapter->hw;
698 	int i;
699 
700 	for (i = 0; i < adapter->num_active_queues; i++)
701 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703 
704 /**
705  * iavf_configure_rx - Configure Receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  **/
710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 	struct iavf_hw *hw = &adapter->hw;
714 	int i;
715 
716 	/* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 		struct net_device *netdev = adapter->netdev;
720 
721 		/* For jumbo frames on systems with 4K pages we have to use
722 		 * an order 1 page, so we might as well increase the size
723 		 * of our Rx buffer to make better use of the available space
724 		 */
725 		rx_buf_len = IAVF_RXBUFFER_3072;
726 
727 		/* We use a 1536 buffer size for configurations with
728 		 * standard Ethernet mtu.  On x86 this gives us enough room
729 		 * for shared info and 192 bytes of padding.
730 		 */
731 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 		    (netdev->mtu <= ETH_DATA_LEN))
733 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 	}
735 #endif
736 
737 	for (i = 0; i < adapter->num_active_queues; i++) {
738 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740 
741 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 		else
744 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 	}
746 }
747 
748 /**
749  * iavf_find_vlan - Search filter list for specific vlan filter
750  * @adapter: board private structure
751  * @vlan: vlan tag
752  *
753  * Returns ptr to the filter object or NULL. Must be called while holding the
754  * mac_vlan_list_lock.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 				 struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f;
761 
762 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 		if (f->vlan.vid == vlan.vid &&
764 		    f->vlan.tpid == vlan.tpid)
765 			return f;
766 	}
767 
768 	return NULL;
769 }
770 
771 /**
772  * iavf_add_vlan - Add a vlan filter to the list
773  * @adapter: board private structure
774  * @vlan: VLAN tag
775  *
776  * Returns ptr to the filter object or NULL when no memory available.
777  **/
778 static struct
779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 				struct iavf_vlan vlan)
781 {
782 	struct iavf_vlan_filter *f = NULL;
783 
784 	spin_lock_bh(&adapter->mac_vlan_list_lock);
785 
786 	f = iavf_find_vlan(adapter, vlan);
787 	if (!f) {
788 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 		if (!f)
790 			goto clearout;
791 
792 		f->vlan = vlan;
793 
794 		list_add_tail(&f->list, &adapter->vlan_filter_list);
795 		f->add = true;
796 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 	}
798 
799 clearout:
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 	return f;
802 }
803 
804 /**
805  * iavf_del_vlan - Remove a vlan filter from the list
806  * @adapter: board private structure
807  * @vlan: VLAN tag
808  **/
809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	spin_lock_bh(&adapter->mac_vlan_list_lock);
814 
815 	f = iavf_find_vlan(adapter, vlan);
816 	if (f) {
817 		f->remove = true;
818 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823 
824 /**
825  * iavf_restore_filters
826  * @adapter: board private structure
827  *
828  * Restore existing non MAC filters when VF netdev comes back up
829  **/
830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 	u16 vid;
833 
834 	/* re-add all VLAN filters */
835 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837 
838 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841 
842 /**
843  * iavf_get_num_vlans_added - get number of VLANs added
844  * @adapter: board private structure
845  */
846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851 
852 /**
853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854  * @adapter: board private structure
855  *
856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857  * do not impose a limit as that maintains current behavior and for
858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859  **/
860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 	 * never been a limit on the VF driver side
864 	 */
865 	if (VLAN_ALLOWED(adapter))
866 		return VLAN_N_VID;
867 	else if (VLAN_V2_ALLOWED(adapter))
868 		return adapter->vlan_v2_caps.filtering.max_filters;
869 
870 	return 0;
871 }
872 
873 /**
874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875  * @adapter: board private structure
876  **/
877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 	if (iavf_get_num_vlans_added(adapter) <
880 	    iavf_get_max_vlans_allowed(adapter))
881 		return false;
882 
883 	return true;
884 }
885 
886 /**
887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888  * @netdev: network device struct
889  * @proto: unused protocol data
890  * @vid: VLAN tag
891  **/
892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 				__always_unused __be16 proto, u16 vid)
894 {
895 	struct iavf_adapter *adapter = netdev_priv(netdev);
896 
897 	if (!VLAN_FILTERING_ALLOWED(adapter))
898 		return -EIO;
899 
900 	if (iavf_max_vlans_added(adapter)) {
901 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 			   iavf_get_max_vlans_allowed(adapter));
903 		return -EIO;
904 	}
905 
906 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 		return -ENOMEM;
908 
909 	return 0;
910 }
911 
912 /**
913  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
914  * @netdev: network device struct
915  * @proto: unused protocol data
916  * @vid: VLAN tag
917  **/
918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
919 				 __always_unused __be16 proto, u16 vid)
920 {
921 	struct iavf_adapter *adapter = netdev_priv(netdev);
922 
923 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
924 	if (proto == cpu_to_be16(ETH_P_8021Q))
925 		clear_bit(vid, adapter->vsi.active_cvlans);
926 	else
927 		clear_bit(vid, adapter->vsi.active_svlans);
928 
929 	return 0;
930 }
931 
932 /**
933  * iavf_find_filter - Search filter list for specific mac filter
934  * @adapter: board private structure
935  * @macaddr: the MAC address
936  *
937  * Returns ptr to the filter object or NULL. Must be called while holding the
938  * mac_vlan_list_lock.
939  **/
940 static struct
941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 				  const u8 *macaddr)
943 {
944 	struct iavf_mac_filter *f;
945 
946 	if (!macaddr)
947 		return NULL;
948 
949 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 		if (ether_addr_equal(macaddr, f->macaddr))
951 			return f;
952 	}
953 	return NULL;
954 }
955 
956 /**
957  * iavf_add_filter - Add a mac filter to the filter list
958  * @adapter: board private structure
959  * @macaddr: the MAC address
960  *
961  * Returns ptr to the filter object or NULL when no memory available.
962  **/
963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 					const u8 *macaddr)
965 {
966 	struct iavf_mac_filter *f;
967 
968 	if (!macaddr)
969 		return NULL;
970 
971 	f = iavf_find_filter(adapter, macaddr);
972 	if (!f) {
973 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 		if (!f)
975 			return f;
976 
977 		ether_addr_copy(f->macaddr, macaddr);
978 
979 		list_add_tail(&f->list, &adapter->mac_filter_list);
980 		f->add = true;
981 		f->add_handled = false;
982 		f->is_new_mac = true;
983 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 	} else {
986 		f->remove = false;
987 	}
988 
989 	return f;
990 }
991 
992 /**
993  * iavf_replace_primary_mac - Replace current primary address
994  * @adapter: board private structure
995  * @new_mac: new MAC address to be applied
996  *
997  * Replace current dev_addr and send request to PF for removal of previous
998  * primary MAC address filter and addition of new primary MAC filter.
999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 			     const u8 *new_mac)
1005 {
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *f;
1008 
1009 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1010 
1011 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1012 		f->is_primary = false;
1013 	}
1014 
1015 	f = iavf_find_filter(adapter, hw->mac.addr);
1016 	if (f) {
1017 		f->remove = true;
1018 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 	}
1020 
1021 	f = iavf_add_filter(adapter, new_mac);
1022 
1023 	if (f) {
1024 		/* Always send the request to add if changing primary MAC
1025 		 * even if filter is already present on the list
1026 		 */
1027 		f->is_primary = true;
1028 		f->add = true;
1029 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1030 		ether_addr_copy(hw->mac.addr, new_mac);
1031 	}
1032 
1033 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1034 
1035 	/* schedule the watchdog task to immediately process the request */
1036 	if (f) {
1037 		queue_work(iavf_wq, &adapter->watchdog_task.work);
1038 		return 0;
1039 	}
1040 	return -ENOMEM;
1041 }
1042 
1043 /**
1044  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1045  * @netdev: network interface device structure
1046  * @macaddr: MAC address to set
1047  *
1048  * Returns true on success, false on failure
1049  */
1050 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1051 				    const u8 *macaddr)
1052 {
1053 	struct iavf_adapter *adapter = netdev_priv(netdev);
1054 	struct iavf_mac_filter *f;
1055 	bool ret = false;
1056 
1057 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1058 
1059 	f = iavf_find_filter(adapter, macaddr);
1060 
1061 	if (!f || (!f->add && f->add_handled))
1062 		ret = true;
1063 
1064 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * iavf_set_mac - NDO callback to set port MAC address
1071  * @netdev: network interface device structure
1072  * @p: pointer to an address structure
1073  *
1074  * Returns 0 on success, negative on failure
1075  */
1076 static int iavf_set_mac(struct net_device *netdev, void *p)
1077 {
1078 	struct iavf_adapter *adapter = netdev_priv(netdev);
1079 	struct sockaddr *addr = p;
1080 	bool handle_mac = iavf_is_mac_set_handled(netdev, addr->sa_data);
1081 	int ret;
1082 
1083 	if (!is_valid_ether_addr(addr->sa_data))
1084 		return -EADDRNOTAVAIL;
1085 
1086 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1087 
1088 	if (ret)
1089 		return ret;
1090 
1091 	/* If this is an initial set MAC during VF spawn do not wait */
1092 	if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) {
1093 		adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET;
1094 		return 0;
1095 	}
1096 
1097 	if (handle_mac)
1098 		goto done;
1099 
1100 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, false, msecs_to_jiffies(2500));
1101 
1102 	/* If ret < 0 then it means wait was interrupted.
1103 	 * If ret == 0 then it means we got a timeout.
1104 	 * else it means we got response for set MAC from PF,
1105 	 * check if netdev MAC was updated to requested MAC,
1106 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1107 	 */
1108 	if (ret < 0)
1109 		return ret;
1110 
1111 	if (!ret)
1112 		return -EAGAIN;
1113 
1114 done:
1115 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1116 		return -EACCES;
1117 
1118 	return 0;
1119 }
1120 
1121 /**
1122  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1123  * @netdev: the netdevice
1124  * @addr: address to add
1125  *
1126  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1127  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1128  */
1129 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1130 {
1131 	struct iavf_adapter *adapter = netdev_priv(netdev);
1132 
1133 	if (iavf_add_filter(adapter, addr))
1134 		return 0;
1135 	else
1136 		return -ENOMEM;
1137 }
1138 
1139 /**
1140  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1141  * @netdev: the netdevice
1142  * @addr: address to add
1143  *
1144  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1145  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1146  */
1147 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1148 {
1149 	struct iavf_adapter *adapter = netdev_priv(netdev);
1150 	struct iavf_mac_filter *f;
1151 
1152 	/* Under some circumstances, we might receive a request to delete
1153 	 * our own device address from our uc list. Because we store the
1154 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1155 	 * such requests and not delete our device address from this list.
1156 	 */
1157 	if (ether_addr_equal(addr, netdev->dev_addr))
1158 		return 0;
1159 
1160 	f = iavf_find_filter(adapter, addr);
1161 	if (f) {
1162 		f->remove = true;
1163 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1164 	}
1165 	return 0;
1166 }
1167 
1168 /**
1169  * iavf_set_rx_mode - NDO callback to set the netdev filters
1170  * @netdev: network interface device structure
1171  **/
1172 static void iavf_set_rx_mode(struct net_device *netdev)
1173 {
1174 	struct iavf_adapter *adapter = netdev_priv(netdev);
1175 
1176 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1177 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1178 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1179 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1180 
1181 	if (netdev->flags & IFF_PROMISC &&
1182 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1183 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1184 	else if (!(netdev->flags & IFF_PROMISC) &&
1185 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1186 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1187 
1188 	if (netdev->flags & IFF_ALLMULTI &&
1189 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1190 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1191 	else if (!(netdev->flags & IFF_ALLMULTI) &&
1192 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1193 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1194 }
1195 
1196 /**
1197  * iavf_napi_enable_all - enable NAPI on all queue vectors
1198  * @adapter: board private structure
1199  **/
1200 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1201 {
1202 	int q_idx;
1203 	struct iavf_q_vector *q_vector;
1204 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1205 
1206 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1207 		struct napi_struct *napi;
1208 
1209 		q_vector = &adapter->q_vectors[q_idx];
1210 		napi = &q_vector->napi;
1211 		napi_enable(napi);
1212 	}
1213 }
1214 
1215 /**
1216  * iavf_napi_disable_all - disable NAPI on all queue vectors
1217  * @adapter: board private structure
1218  **/
1219 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1220 {
1221 	int q_idx;
1222 	struct iavf_q_vector *q_vector;
1223 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1224 
1225 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1226 		q_vector = &adapter->q_vectors[q_idx];
1227 		napi_disable(&q_vector->napi);
1228 	}
1229 }
1230 
1231 /**
1232  * iavf_configure - set up transmit and receive data structures
1233  * @adapter: board private structure
1234  **/
1235 static void iavf_configure(struct iavf_adapter *adapter)
1236 {
1237 	struct net_device *netdev = adapter->netdev;
1238 	int i;
1239 
1240 	iavf_set_rx_mode(netdev);
1241 
1242 	iavf_configure_tx(adapter);
1243 	iavf_configure_rx(adapter);
1244 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1245 
1246 	for (i = 0; i < adapter->num_active_queues; i++) {
1247 		struct iavf_ring *ring = &adapter->rx_rings[i];
1248 
1249 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1250 	}
1251 }
1252 
1253 /**
1254  * iavf_up_complete - Finish the last steps of bringing up a connection
1255  * @adapter: board private structure
1256  *
1257  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1258  **/
1259 static void iavf_up_complete(struct iavf_adapter *adapter)
1260 {
1261 	iavf_change_state(adapter, __IAVF_RUNNING);
1262 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1263 
1264 	iavf_napi_enable_all(adapter);
1265 
1266 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1267 	if (CLIENT_ENABLED(adapter))
1268 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1269 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1270 }
1271 
1272 /**
1273  * iavf_down - Shutdown the connection processing
1274  * @adapter: board private structure
1275  *
1276  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1277  **/
1278 void iavf_down(struct iavf_adapter *adapter)
1279 {
1280 	struct net_device *netdev = adapter->netdev;
1281 	struct iavf_vlan_filter *vlf;
1282 	struct iavf_cloud_filter *cf;
1283 	struct iavf_fdir_fltr *fdir;
1284 	struct iavf_mac_filter *f;
1285 	struct iavf_adv_rss *rss;
1286 
1287 	if (adapter->state <= __IAVF_DOWN_PENDING)
1288 		return;
1289 
1290 	netif_carrier_off(netdev);
1291 	netif_tx_disable(netdev);
1292 	adapter->link_up = false;
1293 	iavf_napi_disable_all(adapter);
1294 	iavf_irq_disable(adapter);
1295 
1296 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1297 
1298 	/* clear the sync flag on all filters */
1299 	__dev_uc_unsync(adapter->netdev, NULL);
1300 	__dev_mc_unsync(adapter->netdev, NULL);
1301 
1302 	/* remove all MAC filters */
1303 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1304 		f->remove = true;
1305 	}
1306 
1307 	/* remove all VLAN filters */
1308 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1309 		vlf->remove = true;
1310 	}
1311 
1312 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1313 
1314 	/* remove all cloud filters */
1315 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1316 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1317 		cf->del = true;
1318 	}
1319 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1320 
1321 	/* remove all Flow Director filters */
1322 	spin_lock_bh(&adapter->fdir_fltr_lock);
1323 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1324 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1325 	}
1326 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1327 
1328 	/* remove all advance RSS configuration */
1329 	spin_lock_bh(&adapter->adv_rss_lock);
1330 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1331 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1332 	spin_unlock_bh(&adapter->adv_rss_lock);
1333 
1334 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1335 		/* cancel any current operation */
1336 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1337 		/* Schedule operations to close down the HW. Don't wait
1338 		 * here for this to complete. The watchdog is still running
1339 		 * and it will take care of this.
1340 		 */
1341 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1342 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1343 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1344 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1345 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1346 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1347 	}
1348 
1349 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1350 }
1351 
1352 /**
1353  * iavf_acquire_msix_vectors - Setup the MSIX capability
1354  * @adapter: board private structure
1355  * @vectors: number of vectors to request
1356  *
1357  * Work with the OS to set up the MSIX vectors needed.
1358  *
1359  * Returns 0 on success, negative on failure
1360  **/
1361 static int
1362 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1363 {
1364 	int err, vector_threshold;
1365 
1366 	/* We'll want at least 3 (vector_threshold):
1367 	 * 0) Other (Admin Queue and link, mostly)
1368 	 * 1) TxQ[0] Cleanup
1369 	 * 2) RxQ[0] Cleanup
1370 	 */
1371 	vector_threshold = MIN_MSIX_COUNT;
1372 
1373 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1374 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1375 	 * Right now, we simply care about how many we'll get; we'll
1376 	 * set them up later while requesting irq's.
1377 	 */
1378 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1379 				    vector_threshold, vectors);
1380 	if (err < 0) {
1381 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1382 		kfree(adapter->msix_entries);
1383 		adapter->msix_entries = NULL;
1384 		return err;
1385 	}
1386 
1387 	/* Adjust for only the vectors we'll use, which is minimum
1388 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1389 	 * vectors we were allocated.
1390 	 */
1391 	adapter->num_msix_vectors = err;
1392 	return 0;
1393 }
1394 
1395 /**
1396  * iavf_free_queues - Free memory for all rings
1397  * @adapter: board private structure to initialize
1398  *
1399  * Free all of the memory associated with queue pairs.
1400  **/
1401 static void iavf_free_queues(struct iavf_adapter *adapter)
1402 {
1403 	if (!adapter->vsi_res)
1404 		return;
1405 	adapter->num_active_queues = 0;
1406 	kfree(adapter->tx_rings);
1407 	adapter->tx_rings = NULL;
1408 	kfree(adapter->rx_rings);
1409 	adapter->rx_rings = NULL;
1410 }
1411 
1412 /**
1413  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1414  * @adapter: board private structure
1415  *
1416  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1417  * stripped in certain descriptor fields. Instead of checking the offload
1418  * capability bits in the hot path, cache the location the ring specific
1419  * flags.
1420  */
1421 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1422 {
1423 	int i;
1424 
1425 	for (i = 0; i < adapter->num_active_queues; i++) {
1426 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1427 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1428 
1429 		/* prevent multiple L2TAG bits being set after VFR */
1430 		tx_ring->flags &=
1431 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1432 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1433 		rx_ring->flags &=
1434 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1435 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1436 
1437 		if (VLAN_ALLOWED(adapter)) {
1438 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1439 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1440 		} else if (VLAN_V2_ALLOWED(adapter)) {
1441 			struct virtchnl_vlan_supported_caps *stripping_support;
1442 			struct virtchnl_vlan_supported_caps *insertion_support;
1443 
1444 			stripping_support =
1445 				&adapter->vlan_v2_caps.offloads.stripping_support;
1446 			insertion_support =
1447 				&adapter->vlan_v2_caps.offloads.insertion_support;
1448 
1449 			if (stripping_support->outer) {
1450 				if (stripping_support->outer &
1451 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1452 					rx_ring->flags |=
1453 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1454 				else if (stripping_support->outer &
1455 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1456 					rx_ring->flags |=
1457 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1458 			} else if (stripping_support->inner) {
1459 				if (stripping_support->inner &
1460 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1461 					rx_ring->flags |=
1462 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1463 				else if (stripping_support->inner &
1464 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1465 					rx_ring->flags |=
1466 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1467 			}
1468 
1469 			if (insertion_support->outer) {
1470 				if (insertion_support->outer &
1471 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1472 					tx_ring->flags |=
1473 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1474 				else if (insertion_support->outer &
1475 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1476 					tx_ring->flags |=
1477 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1478 			} else if (insertion_support->inner) {
1479 				if (insertion_support->inner &
1480 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1481 					tx_ring->flags |=
1482 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1483 				else if (insertion_support->inner &
1484 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1485 					tx_ring->flags |=
1486 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1487 			}
1488 		}
1489 	}
1490 }
1491 
1492 /**
1493  * iavf_alloc_queues - Allocate memory for all rings
1494  * @adapter: board private structure to initialize
1495  *
1496  * We allocate one ring per queue at run-time since we don't know the
1497  * number of queues at compile-time.  The polling_netdev array is
1498  * intended for Multiqueue, but should work fine with a single queue.
1499  **/
1500 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1501 {
1502 	int i, num_active_queues;
1503 
1504 	/* If we're in reset reallocating queues we don't actually know yet for
1505 	 * certain the PF gave us the number of queues we asked for but we'll
1506 	 * assume it did.  Once basic reset is finished we'll confirm once we
1507 	 * start negotiating config with PF.
1508 	 */
1509 	if (adapter->num_req_queues)
1510 		num_active_queues = adapter->num_req_queues;
1511 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1512 		 adapter->num_tc)
1513 		num_active_queues = adapter->ch_config.total_qps;
1514 	else
1515 		num_active_queues = min_t(int,
1516 					  adapter->vsi_res->num_queue_pairs,
1517 					  (int)(num_online_cpus()));
1518 
1519 
1520 	adapter->tx_rings = kcalloc(num_active_queues,
1521 				    sizeof(struct iavf_ring), GFP_KERNEL);
1522 	if (!adapter->tx_rings)
1523 		goto err_out;
1524 	adapter->rx_rings = kcalloc(num_active_queues,
1525 				    sizeof(struct iavf_ring), GFP_KERNEL);
1526 	if (!adapter->rx_rings)
1527 		goto err_out;
1528 
1529 	for (i = 0; i < num_active_queues; i++) {
1530 		struct iavf_ring *tx_ring;
1531 		struct iavf_ring *rx_ring;
1532 
1533 		tx_ring = &adapter->tx_rings[i];
1534 
1535 		tx_ring->queue_index = i;
1536 		tx_ring->netdev = adapter->netdev;
1537 		tx_ring->dev = &adapter->pdev->dev;
1538 		tx_ring->count = adapter->tx_desc_count;
1539 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1540 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1541 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1542 
1543 		rx_ring = &adapter->rx_rings[i];
1544 		rx_ring->queue_index = i;
1545 		rx_ring->netdev = adapter->netdev;
1546 		rx_ring->dev = &adapter->pdev->dev;
1547 		rx_ring->count = adapter->rx_desc_count;
1548 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1549 	}
1550 
1551 	adapter->num_active_queues = num_active_queues;
1552 
1553 	iavf_set_queue_vlan_tag_loc(adapter);
1554 
1555 	return 0;
1556 
1557 err_out:
1558 	iavf_free_queues(adapter);
1559 	return -ENOMEM;
1560 }
1561 
1562 /**
1563  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1564  * @adapter: board private structure to initialize
1565  *
1566  * Attempt to configure the interrupts using the best available
1567  * capabilities of the hardware and the kernel.
1568  **/
1569 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1570 {
1571 	int vector, v_budget;
1572 	int pairs = 0;
1573 	int err = 0;
1574 
1575 	if (!adapter->vsi_res) {
1576 		err = -EIO;
1577 		goto out;
1578 	}
1579 	pairs = adapter->num_active_queues;
1580 
1581 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1582 	 * us much good if we have more vectors than CPUs. However, we already
1583 	 * limit the total number of queues by the number of CPUs so we do not
1584 	 * need any further limiting here.
1585 	 */
1586 	v_budget = min_t(int, pairs + NONQ_VECS,
1587 			 (int)adapter->vf_res->max_vectors);
1588 
1589 	adapter->msix_entries = kcalloc(v_budget,
1590 					sizeof(struct msix_entry), GFP_KERNEL);
1591 	if (!adapter->msix_entries) {
1592 		err = -ENOMEM;
1593 		goto out;
1594 	}
1595 
1596 	for (vector = 0; vector < v_budget; vector++)
1597 		adapter->msix_entries[vector].entry = vector;
1598 
1599 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1600 
1601 out:
1602 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1603 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1604 	return err;
1605 }
1606 
1607 /**
1608  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1609  * @adapter: board private structure
1610  *
1611  * Return 0 on success, negative on failure
1612  **/
1613 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1614 {
1615 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1616 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1617 	struct iavf_hw *hw = &adapter->hw;
1618 	enum iavf_status status;
1619 
1620 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1621 		/* bail because we already have a command pending */
1622 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1623 			adapter->current_op);
1624 		return -EBUSY;
1625 	}
1626 
1627 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1628 	if (status) {
1629 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1630 			iavf_stat_str(hw, status),
1631 			iavf_aq_str(hw, hw->aq.asq_last_status));
1632 		return iavf_status_to_errno(status);
1633 
1634 	}
1635 
1636 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1637 				     adapter->rss_lut, adapter->rss_lut_size);
1638 	if (status) {
1639 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1640 			iavf_stat_str(hw, status),
1641 			iavf_aq_str(hw, hw->aq.asq_last_status));
1642 		return iavf_status_to_errno(status);
1643 	}
1644 
1645 	return 0;
1646 
1647 }
1648 
1649 /**
1650  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1651  * @adapter: board private structure
1652  *
1653  * Returns 0 on success, negative on failure
1654  **/
1655 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1656 {
1657 	struct iavf_hw *hw = &adapter->hw;
1658 	u32 *dw;
1659 	u16 i;
1660 
1661 	dw = (u32 *)adapter->rss_key;
1662 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1663 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1664 
1665 	dw = (u32 *)adapter->rss_lut;
1666 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1667 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1668 
1669 	iavf_flush(hw);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * iavf_config_rss - Configure RSS keys and lut
1676  * @adapter: board private structure
1677  *
1678  * Returns 0 on success, negative on failure
1679  **/
1680 int iavf_config_rss(struct iavf_adapter *adapter)
1681 {
1682 
1683 	if (RSS_PF(adapter)) {
1684 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1685 					IAVF_FLAG_AQ_SET_RSS_KEY;
1686 		return 0;
1687 	} else if (RSS_AQ(adapter)) {
1688 		return iavf_config_rss_aq(adapter);
1689 	} else {
1690 		return iavf_config_rss_reg(adapter);
1691 	}
1692 }
1693 
1694 /**
1695  * iavf_fill_rss_lut - Fill the lut with default values
1696  * @adapter: board private structure
1697  **/
1698 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1699 {
1700 	u16 i;
1701 
1702 	for (i = 0; i < adapter->rss_lut_size; i++)
1703 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1704 }
1705 
1706 /**
1707  * iavf_init_rss - Prepare for RSS
1708  * @adapter: board private structure
1709  *
1710  * Return 0 on success, negative on failure
1711  **/
1712 static int iavf_init_rss(struct iavf_adapter *adapter)
1713 {
1714 	struct iavf_hw *hw = &adapter->hw;
1715 
1716 	if (!RSS_PF(adapter)) {
1717 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1718 		if (adapter->vf_res->vf_cap_flags &
1719 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1720 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1721 		else
1722 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1723 
1724 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1725 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1726 	}
1727 
1728 	iavf_fill_rss_lut(adapter);
1729 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1730 
1731 	return iavf_config_rss(adapter);
1732 }
1733 
1734 /**
1735  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1736  * @adapter: board private structure to initialize
1737  *
1738  * We allocate one q_vector per queue interrupt.  If allocation fails we
1739  * return -ENOMEM.
1740  **/
1741 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1742 {
1743 	int q_idx = 0, num_q_vectors;
1744 	struct iavf_q_vector *q_vector;
1745 
1746 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1747 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1748 				     GFP_KERNEL);
1749 	if (!adapter->q_vectors)
1750 		return -ENOMEM;
1751 
1752 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1753 		q_vector = &adapter->q_vectors[q_idx];
1754 		q_vector->adapter = adapter;
1755 		q_vector->vsi = &adapter->vsi;
1756 		q_vector->v_idx = q_idx;
1757 		q_vector->reg_idx = q_idx;
1758 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1759 		netif_napi_add(adapter->netdev, &q_vector->napi,
1760 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 /**
1767  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1768  * @adapter: board private structure to initialize
1769  *
1770  * This function frees the memory allocated to the q_vectors.  In addition if
1771  * NAPI is enabled it will delete any references to the NAPI struct prior
1772  * to freeing the q_vector.
1773  **/
1774 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1775 {
1776 	int q_idx, num_q_vectors;
1777 	int napi_vectors;
1778 
1779 	if (!adapter->q_vectors)
1780 		return;
1781 
1782 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1783 	napi_vectors = adapter->num_active_queues;
1784 
1785 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1786 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1787 
1788 		if (q_idx < napi_vectors)
1789 			netif_napi_del(&q_vector->napi);
1790 	}
1791 	kfree(adapter->q_vectors);
1792 	adapter->q_vectors = NULL;
1793 }
1794 
1795 /**
1796  * iavf_reset_interrupt_capability - Reset MSIX setup
1797  * @adapter: board private structure
1798  *
1799  **/
1800 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1801 {
1802 	if (!adapter->msix_entries)
1803 		return;
1804 
1805 	pci_disable_msix(adapter->pdev);
1806 	kfree(adapter->msix_entries);
1807 	adapter->msix_entries = NULL;
1808 }
1809 
1810 /**
1811  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1812  * @adapter: board private structure to initialize
1813  *
1814  **/
1815 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1816 {
1817 	int err;
1818 
1819 	err = iavf_alloc_queues(adapter);
1820 	if (err) {
1821 		dev_err(&adapter->pdev->dev,
1822 			"Unable to allocate memory for queues\n");
1823 		goto err_alloc_queues;
1824 	}
1825 
1826 	rtnl_lock();
1827 	err = iavf_set_interrupt_capability(adapter);
1828 	rtnl_unlock();
1829 	if (err) {
1830 		dev_err(&adapter->pdev->dev,
1831 			"Unable to setup interrupt capabilities\n");
1832 		goto err_set_interrupt;
1833 	}
1834 
1835 	err = iavf_alloc_q_vectors(adapter);
1836 	if (err) {
1837 		dev_err(&adapter->pdev->dev,
1838 			"Unable to allocate memory for queue vectors\n");
1839 		goto err_alloc_q_vectors;
1840 	}
1841 
1842 	/* If we've made it so far while ADq flag being ON, then we haven't
1843 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1844 	 * resources have been allocated in the reset path.
1845 	 * Now we can truly claim that ADq is enabled.
1846 	 */
1847 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1848 	    adapter->num_tc)
1849 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1850 			 adapter->num_tc);
1851 
1852 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1853 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1854 		 adapter->num_active_queues);
1855 
1856 	return 0;
1857 err_alloc_q_vectors:
1858 	iavf_reset_interrupt_capability(adapter);
1859 err_set_interrupt:
1860 	iavf_free_queues(adapter);
1861 err_alloc_queues:
1862 	return err;
1863 }
1864 
1865 /**
1866  * iavf_free_rss - Free memory used by RSS structs
1867  * @adapter: board private structure
1868  **/
1869 static void iavf_free_rss(struct iavf_adapter *adapter)
1870 {
1871 	kfree(adapter->rss_key);
1872 	adapter->rss_key = NULL;
1873 
1874 	kfree(adapter->rss_lut);
1875 	adapter->rss_lut = NULL;
1876 }
1877 
1878 /**
1879  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1880  * @adapter: board private structure
1881  *
1882  * Returns 0 on success, negative on failure
1883  **/
1884 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1885 {
1886 	struct net_device *netdev = adapter->netdev;
1887 	int err;
1888 
1889 	if (netif_running(netdev))
1890 		iavf_free_traffic_irqs(adapter);
1891 	iavf_free_misc_irq(adapter);
1892 	iavf_reset_interrupt_capability(adapter);
1893 	iavf_free_q_vectors(adapter);
1894 	iavf_free_queues(adapter);
1895 
1896 	err =  iavf_init_interrupt_scheme(adapter);
1897 	if (err)
1898 		goto err;
1899 
1900 	netif_tx_stop_all_queues(netdev);
1901 
1902 	err = iavf_request_misc_irq(adapter);
1903 	if (err)
1904 		goto err;
1905 
1906 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1907 
1908 	iavf_map_rings_to_vectors(adapter);
1909 err:
1910 	return err;
1911 }
1912 
1913 /**
1914  * iavf_process_aq_command - process aq_required flags
1915  * and sends aq command
1916  * @adapter: pointer to iavf adapter structure
1917  *
1918  * Returns 0 on success
1919  * Returns error code if no command was sent
1920  * or error code if the command failed.
1921  **/
1922 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1923 {
1924 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1925 		return iavf_send_vf_config_msg(adapter);
1926 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1927 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1928 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1929 		iavf_disable_queues(adapter);
1930 		return 0;
1931 	}
1932 
1933 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1934 		iavf_map_queues(adapter);
1935 		return 0;
1936 	}
1937 
1938 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1939 		iavf_add_ether_addrs(adapter);
1940 		return 0;
1941 	}
1942 
1943 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1944 		iavf_add_vlans(adapter);
1945 		return 0;
1946 	}
1947 
1948 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1949 		iavf_del_ether_addrs(adapter);
1950 		return 0;
1951 	}
1952 
1953 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1954 		iavf_del_vlans(adapter);
1955 		return 0;
1956 	}
1957 
1958 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1959 		iavf_enable_vlan_stripping(adapter);
1960 		return 0;
1961 	}
1962 
1963 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1964 		iavf_disable_vlan_stripping(adapter);
1965 		return 0;
1966 	}
1967 
1968 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1969 		iavf_configure_queues(adapter);
1970 		return 0;
1971 	}
1972 
1973 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1974 		iavf_enable_queues(adapter);
1975 		return 0;
1976 	}
1977 
1978 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1979 		/* This message goes straight to the firmware, not the
1980 		 * PF, so we don't have to set current_op as we will
1981 		 * not get a response through the ARQ.
1982 		 */
1983 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1984 		return 0;
1985 	}
1986 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1987 		iavf_get_hena(adapter);
1988 		return 0;
1989 	}
1990 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1991 		iavf_set_hena(adapter);
1992 		return 0;
1993 	}
1994 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1995 		iavf_set_rss_key(adapter);
1996 		return 0;
1997 	}
1998 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1999 		iavf_set_rss_lut(adapter);
2000 		return 0;
2001 	}
2002 
2003 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2004 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2005 				       FLAG_VF_MULTICAST_PROMISC);
2006 		return 0;
2007 	}
2008 
2009 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2010 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2011 		return 0;
2012 	}
2013 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2014 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2015 		iavf_set_promiscuous(adapter, 0);
2016 		return 0;
2017 	}
2018 
2019 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2020 		iavf_enable_channels(adapter);
2021 		return 0;
2022 	}
2023 
2024 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2025 		iavf_disable_channels(adapter);
2026 		return 0;
2027 	}
2028 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2029 		iavf_add_cloud_filter(adapter);
2030 		return 0;
2031 	}
2032 
2033 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2034 		iavf_del_cloud_filter(adapter);
2035 		return 0;
2036 	}
2037 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2038 		iavf_del_cloud_filter(adapter);
2039 		return 0;
2040 	}
2041 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2042 		iavf_add_cloud_filter(adapter);
2043 		return 0;
2044 	}
2045 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2046 		iavf_add_fdir_filter(adapter);
2047 		return IAVF_SUCCESS;
2048 	}
2049 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2050 		iavf_del_fdir_filter(adapter);
2051 		return IAVF_SUCCESS;
2052 	}
2053 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2054 		iavf_add_adv_rss_cfg(adapter);
2055 		return 0;
2056 	}
2057 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2058 		iavf_del_adv_rss_cfg(adapter);
2059 		return 0;
2060 	}
2061 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2062 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2063 		return 0;
2064 	}
2065 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2066 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2067 		return 0;
2068 	}
2069 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2070 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2071 		return 0;
2072 	}
2073 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2074 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2075 		return 0;
2076 	}
2077 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2078 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2079 		return 0;
2080 	}
2081 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2082 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2083 		return 0;
2084 	}
2085 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2086 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2087 		return 0;
2088 	}
2089 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2090 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2091 		return 0;
2092 	}
2093 
2094 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2095 		iavf_request_stats(adapter);
2096 		return 0;
2097 	}
2098 
2099 	return -EAGAIN;
2100 }
2101 
2102 /**
2103  * iavf_set_vlan_offload_features - set VLAN offload configuration
2104  * @adapter: board private structure
2105  * @prev_features: previous features used for comparison
2106  * @features: updated features used for configuration
2107  *
2108  * Set the aq_required bit(s) based on the requested features passed in to
2109  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2110  * the watchdog if any changes are requested to expedite the request via
2111  * virtchnl.
2112  **/
2113 void
2114 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2115 			       netdev_features_t prev_features,
2116 			       netdev_features_t features)
2117 {
2118 	bool enable_stripping = true, enable_insertion = true;
2119 	u16 vlan_ethertype = 0;
2120 	u64 aq_required = 0;
2121 
2122 	/* keep cases separate because one ethertype for offloads can be
2123 	 * disabled at the same time as another is disabled, so check for an
2124 	 * enabled ethertype first, then check for disabled. Default to
2125 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2126 	 * stripping.
2127 	 */
2128 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2129 		vlan_ethertype = ETH_P_8021AD;
2130 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2131 		vlan_ethertype = ETH_P_8021Q;
2132 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2133 		vlan_ethertype = ETH_P_8021AD;
2134 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2135 		vlan_ethertype = ETH_P_8021Q;
2136 	else
2137 		vlan_ethertype = ETH_P_8021Q;
2138 
2139 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2140 		enable_stripping = false;
2141 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2142 		enable_insertion = false;
2143 
2144 	if (VLAN_ALLOWED(adapter)) {
2145 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2146 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2147 		 * netdev, but it doesn't require a virtchnl message
2148 		 */
2149 		if (enable_stripping)
2150 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2151 		else
2152 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2153 
2154 	} else if (VLAN_V2_ALLOWED(adapter)) {
2155 		switch (vlan_ethertype) {
2156 		case ETH_P_8021Q:
2157 			if (enable_stripping)
2158 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2159 			else
2160 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2161 
2162 			if (enable_insertion)
2163 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2164 			else
2165 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2166 			break;
2167 		case ETH_P_8021AD:
2168 			if (enable_stripping)
2169 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2170 			else
2171 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2172 
2173 			if (enable_insertion)
2174 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2175 			else
2176 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2177 			break;
2178 		}
2179 	}
2180 
2181 	if (aq_required) {
2182 		adapter->aq_required |= aq_required;
2183 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2184 	}
2185 }
2186 
2187 /**
2188  * iavf_startup - first step of driver startup
2189  * @adapter: board private structure
2190  *
2191  * Function process __IAVF_STARTUP driver state.
2192  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2193  * when fails the state is changed to __IAVF_INIT_FAILED
2194  **/
2195 static void iavf_startup(struct iavf_adapter *adapter)
2196 {
2197 	struct pci_dev *pdev = adapter->pdev;
2198 	struct iavf_hw *hw = &adapter->hw;
2199 	enum iavf_status status;
2200 	int ret;
2201 
2202 	WARN_ON(adapter->state != __IAVF_STARTUP);
2203 
2204 	/* driver loaded, probe complete */
2205 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2206 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2207 	status = iavf_set_mac_type(hw);
2208 	if (status) {
2209 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2210 		goto err;
2211 	}
2212 
2213 	ret = iavf_check_reset_complete(hw);
2214 	if (ret) {
2215 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2216 			 ret);
2217 		goto err;
2218 	}
2219 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2220 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2221 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2222 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2223 
2224 	status = iavf_init_adminq(hw);
2225 	if (status) {
2226 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2227 			status);
2228 		goto err;
2229 	}
2230 	ret = iavf_send_api_ver(adapter);
2231 	if (ret) {
2232 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2233 		iavf_shutdown_adminq(hw);
2234 		goto err;
2235 	}
2236 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2237 	return;
2238 err:
2239 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2240 }
2241 
2242 /**
2243  * iavf_init_version_check - second step of driver startup
2244  * @adapter: board private structure
2245  *
2246  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2247  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2248  * when fails the state is changed to __IAVF_INIT_FAILED
2249  **/
2250 static void iavf_init_version_check(struct iavf_adapter *adapter)
2251 {
2252 	struct pci_dev *pdev = adapter->pdev;
2253 	struct iavf_hw *hw = &adapter->hw;
2254 	int err = -EAGAIN;
2255 
2256 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2257 
2258 	if (!iavf_asq_done(hw)) {
2259 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2260 		iavf_shutdown_adminq(hw);
2261 		iavf_change_state(adapter, __IAVF_STARTUP);
2262 		goto err;
2263 	}
2264 
2265 	/* aq msg sent, awaiting reply */
2266 	err = iavf_verify_api_ver(adapter);
2267 	if (err) {
2268 		if (err == -EALREADY)
2269 			err = iavf_send_api_ver(adapter);
2270 		else
2271 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2272 				adapter->pf_version.major,
2273 				adapter->pf_version.minor,
2274 				VIRTCHNL_VERSION_MAJOR,
2275 				VIRTCHNL_VERSION_MINOR);
2276 		goto err;
2277 	}
2278 	err = iavf_send_vf_config_msg(adapter);
2279 	if (err) {
2280 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2281 			err);
2282 		goto err;
2283 	}
2284 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2285 	return;
2286 err:
2287 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2288 }
2289 
2290 /**
2291  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2292  * @adapter: board private structure
2293  */
2294 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2295 {
2296 	int i, num_req_queues = adapter->num_req_queues;
2297 	struct iavf_vsi *vsi = &adapter->vsi;
2298 
2299 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2300 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2301 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2302 	}
2303 	if (!adapter->vsi_res) {
2304 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2305 		return -ENODEV;
2306 	}
2307 
2308 	if (num_req_queues &&
2309 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2310 		/* Problem.  The PF gave us fewer queues than what we had
2311 		 * negotiated in our request.  Need a reset to see if we can't
2312 		 * get back to a working state.
2313 		 */
2314 		dev_err(&adapter->pdev->dev,
2315 			"Requested %d queues, but PF only gave us %d.\n",
2316 			num_req_queues,
2317 			adapter->vsi_res->num_queue_pairs);
2318 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2319 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2320 		iavf_schedule_reset(adapter);
2321 
2322 		return -EAGAIN;
2323 	}
2324 	adapter->num_req_queues = 0;
2325 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2326 
2327 	adapter->vsi.back = adapter;
2328 	adapter->vsi.base_vector = 1;
2329 	vsi->netdev = adapter->netdev;
2330 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2331 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2332 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2333 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2334 	} else {
2335 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2336 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 /**
2343  * iavf_init_get_resources - third step of driver startup
2344  * @adapter: board private structure
2345  *
2346  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2347  * finishes driver initialization procedure.
2348  * When success the state is changed to __IAVF_DOWN
2349  * when fails the state is changed to __IAVF_INIT_FAILED
2350  **/
2351 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2352 {
2353 	struct pci_dev *pdev = adapter->pdev;
2354 	struct iavf_hw *hw = &adapter->hw;
2355 	int err;
2356 
2357 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2358 	/* aq msg sent, awaiting reply */
2359 	if (!adapter->vf_res) {
2360 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2361 					  GFP_KERNEL);
2362 		if (!adapter->vf_res) {
2363 			err = -ENOMEM;
2364 			goto err;
2365 		}
2366 	}
2367 	err = iavf_get_vf_config(adapter);
2368 	if (err == -EALREADY) {
2369 		err = iavf_send_vf_config_msg(adapter);
2370 		goto err_alloc;
2371 	} else if (err == -EINVAL) {
2372 		/* We only get -EINVAL if the device is in a very bad
2373 		 * state or if we've been disabled for previous bad
2374 		 * behavior. Either way, we're done now.
2375 		 */
2376 		iavf_shutdown_adminq(hw);
2377 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2378 		return;
2379 	}
2380 	if (err) {
2381 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2382 		goto err_alloc;
2383 	}
2384 
2385 	err = iavf_parse_vf_resource_msg(adapter);
2386 	if (err) {
2387 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2388 			err);
2389 		goto err_alloc;
2390 	}
2391 	/* Some features require additional messages to negotiate extended
2392 	 * capabilities. These are processed in sequence by the
2393 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2394 	 */
2395 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2396 
2397 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2398 	return;
2399 
2400 err_alloc:
2401 	kfree(adapter->vf_res);
2402 	adapter->vf_res = NULL;
2403 err:
2404 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2405 }
2406 
2407 /**
2408  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2409  * @adapter: board private structure
2410  *
2411  * Function processes send of the extended VLAN V2 capability message to the
2412  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2413  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2414  */
2415 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2416 {
2417 	int ret;
2418 
2419 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2420 
2421 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2422 	if (ret && ret == -EOPNOTSUPP) {
2423 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2424 		 * we did not send the capability exchange message and do not
2425 		 * expect a response.
2426 		 */
2427 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2428 	}
2429 
2430 	/* We sent the message, so move on to the next step */
2431 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2432 }
2433 
2434 /**
2435  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2436  * @adapter: board private structure
2437  *
2438  * Function processes receipt of the extended VLAN V2 capability message from
2439  * the PF.
2440  **/
2441 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2442 {
2443 	int ret;
2444 
2445 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2446 
2447 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2448 
2449 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2450 	if (ret)
2451 		goto err;
2452 
2453 	/* We've processed receipt of the VLAN V2 caps message */
2454 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2455 	return;
2456 err:
2457 	/* We didn't receive a reply. Make sure we try sending again when
2458 	 * __IAVF_INIT_FAILED attempts to recover.
2459 	 */
2460 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2461 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2462 }
2463 
2464 /**
2465  * iavf_init_process_extended_caps - Part of driver startup
2466  * @adapter: board private structure
2467  *
2468  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2469  * handles negotiating capabilities for features which require an additional
2470  * message.
2471  *
2472  * Once all extended capabilities exchanges are finished, the driver will
2473  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2474  */
2475 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2476 {
2477 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2478 
2479 	/* Process capability exchange for VLAN V2 */
2480 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2481 		iavf_init_send_offload_vlan_v2_caps(adapter);
2482 		return;
2483 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2484 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2485 		return;
2486 	}
2487 
2488 	/* When we reach here, no further extended capabilities exchanges are
2489 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2490 	 */
2491 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2492 }
2493 
2494 /**
2495  * iavf_init_config_adapter - last part of driver startup
2496  * @adapter: board private structure
2497  *
2498  * After all the supported capabilities are negotiated, then the
2499  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2500  */
2501 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2502 {
2503 	struct net_device *netdev = adapter->netdev;
2504 	struct pci_dev *pdev = adapter->pdev;
2505 	int err;
2506 
2507 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2508 
2509 	if (iavf_process_config(adapter))
2510 		goto err;
2511 
2512 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2513 
2514 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2515 
2516 	netdev->netdev_ops = &iavf_netdev_ops;
2517 	iavf_set_ethtool_ops(netdev);
2518 	netdev->watchdog_timeo = 5 * HZ;
2519 
2520 	/* MTU range: 68 - 9710 */
2521 	netdev->min_mtu = ETH_MIN_MTU;
2522 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2523 
2524 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2525 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2526 			 adapter->hw.mac.addr);
2527 		eth_hw_addr_random(netdev);
2528 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2529 	} else {
2530 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2531 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2532 	}
2533 
2534 	adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET;
2535 
2536 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2537 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2538 	err = iavf_init_interrupt_scheme(adapter);
2539 	if (err)
2540 		goto err_sw_init;
2541 	iavf_map_rings_to_vectors(adapter);
2542 	if (adapter->vf_res->vf_cap_flags &
2543 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2544 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2545 
2546 	err = iavf_request_misc_irq(adapter);
2547 	if (err)
2548 		goto err_sw_init;
2549 
2550 	netif_carrier_off(netdev);
2551 	adapter->link_up = false;
2552 
2553 	/* set the semaphore to prevent any callbacks after device registration
2554 	 * up to time when state of driver will be set to __IAVF_DOWN
2555 	 */
2556 	rtnl_lock();
2557 	if (!adapter->netdev_registered) {
2558 		err = register_netdevice(netdev);
2559 		if (err) {
2560 			rtnl_unlock();
2561 			goto err_register;
2562 		}
2563 	}
2564 
2565 	adapter->netdev_registered = true;
2566 
2567 	netif_tx_stop_all_queues(netdev);
2568 	if (CLIENT_ALLOWED(adapter)) {
2569 		err = iavf_lan_add_device(adapter);
2570 		if (err)
2571 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2572 				 err);
2573 	}
2574 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2575 	if (netdev->features & NETIF_F_GRO)
2576 		dev_info(&pdev->dev, "GRO is enabled\n");
2577 
2578 	iavf_change_state(adapter, __IAVF_DOWN);
2579 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2580 	rtnl_unlock();
2581 
2582 	iavf_misc_irq_enable(adapter);
2583 	wake_up(&adapter->down_waitqueue);
2584 
2585 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2586 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2587 	if (!adapter->rss_key || !adapter->rss_lut) {
2588 		err = -ENOMEM;
2589 		goto err_mem;
2590 	}
2591 	if (RSS_AQ(adapter))
2592 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2593 	else
2594 		iavf_init_rss(adapter);
2595 
2596 	if (VLAN_V2_ALLOWED(adapter))
2597 		/* request initial VLAN offload settings */
2598 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2599 
2600 	return;
2601 err_mem:
2602 	iavf_free_rss(adapter);
2603 err_register:
2604 	iavf_free_misc_irq(adapter);
2605 err_sw_init:
2606 	iavf_reset_interrupt_capability(adapter);
2607 err:
2608 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2609 }
2610 
2611 /**
2612  * iavf_watchdog_task - Periodic call-back task
2613  * @work: pointer to work_struct
2614  **/
2615 static void iavf_watchdog_task(struct work_struct *work)
2616 {
2617 	struct iavf_adapter *adapter = container_of(work,
2618 						    struct iavf_adapter,
2619 						    watchdog_task.work);
2620 	struct iavf_hw *hw = &adapter->hw;
2621 	u32 reg_val;
2622 
2623 	if (!mutex_trylock(&adapter->crit_lock)) {
2624 		if (adapter->state == __IAVF_REMOVE)
2625 			return;
2626 
2627 		goto restart_watchdog;
2628 	}
2629 
2630 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2631 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2632 
2633 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2634 		adapter->aq_required = 0;
2635 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2636 		mutex_unlock(&adapter->crit_lock);
2637 		queue_work(iavf_wq, &adapter->reset_task);
2638 		return;
2639 	}
2640 
2641 	switch (adapter->state) {
2642 	case __IAVF_STARTUP:
2643 		iavf_startup(adapter);
2644 		mutex_unlock(&adapter->crit_lock);
2645 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2646 				   msecs_to_jiffies(30));
2647 		return;
2648 	case __IAVF_INIT_VERSION_CHECK:
2649 		iavf_init_version_check(adapter);
2650 		mutex_unlock(&adapter->crit_lock);
2651 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2652 				   msecs_to_jiffies(30));
2653 		return;
2654 	case __IAVF_INIT_GET_RESOURCES:
2655 		iavf_init_get_resources(adapter);
2656 		mutex_unlock(&adapter->crit_lock);
2657 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2658 				   msecs_to_jiffies(1));
2659 		return;
2660 	case __IAVF_INIT_EXTENDED_CAPS:
2661 		iavf_init_process_extended_caps(adapter);
2662 		mutex_unlock(&adapter->crit_lock);
2663 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2664 				   msecs_to_jiffies(1));
2665 		return;
2666 	case __IAVF_INIT_CONFIG_ADAPTER:
2667 		iavf_init_config_adapter(adapter);
2668 		mutex_unlock(&adapter->crit_lock);
2669 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2670 				   msecs_to_jiffies(1));
2671 		return;
2672 	case __IAVF_INIT_FAILED:
2673 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2674 			     &adapter->crit_section)) {
2675 			/* Do not update the state and do not reschedule
2676 			 * watchdog task, iavf_remove should handle this state
2677 			 * as it can loop forever
2678 			 */
2679 			mutex_unlock(&adapter->crit_lock);
2680 			return;
2681 		}
2682 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2683 			dev_err(&adapter->pdev->dev,
2684 				"Failed to communicate with PF; waiting before retry\n");
2685 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2686 			iavf_shutdown_adminq(hw);
2687 			mutex_unlock(&adapter->crit_lock);
2688 			queue_delayed_work(iavf_wq,
2689 					   &adapter->watchdog_task, (5 * HZ));
2690 			return;
2691 		}
2692 		/* Try again from failed step*/
2693 		iavf_change_state(adapter, adapter->last_state);
2694 		mutex_unlock(&adapter->crit_lock);
2695 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2696 		return;
2697 	case __IAVF_COMM_FAILED:
2698 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2699 			     &adapter->crit_section)) {
2700 			/* Set state to __IAVF_INIT_FAILED and perform remove
2701 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2702 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2703 			 */
2704 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2705 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2706 			mutex_unlock(&adapter->crit_lock);
2707 			return;
2708 		}
2709 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2710 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2711 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2712 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2713 			/* A chance for redemption! */
2714 			dev_err(&adapter->pdev->dev,
2715 				"Hardware came out of reset. Attempting reinit.\n");
2716 			/* When init task contacts the PF and
2717 			 * gets everything set up again, it'll restart the
2718 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2719 			 */
2720 			iavf_change_state(adapter, __IAVF_STARTUP);
2721 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2722 		}
2723 		adapter->aq_required = 0;
2724 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2725 		mutex_unlock(&adapter->crit_lock);
2726 		queue_delayed_work(iavf_wq,
2727 				   &adapter->watchdog_task,
2728 				   msecs_to_jiffies(10));
2729 		return;
2730 	case __IAVF_RESETTING:
2731 		mutex_unlock(&adapter->crit_lock);
2732 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2733 		return;
2734 	case __IAVF_DOWN:
2735 	case __IAVF_DOWN_PENDING:
2736 	case __IAVF_TESTING:
2737 	case __IAVF_RUNNING:
2738 		if (adapter->current_op) {
2739 			if (!iavf_asq_done(hw)) {
2740 				dev_dbg(&adapter->pdev->dev,
2741 					"Admin queue timeout\n");
2742 				iavf_send_api_ver(adapter);
2743 			}
2744 		} else {
2745 			int ret = iavf_process_aq_command(adapter);
2746 
2747 			/* An error will be returned if no commands were
2748 			 * processed; use this opportunity to update stats
2749 			 * if the error isn't -ENOTSUPP
2750 			 */
2751 			if (ret && ret != -EOPNOTSUPP &&
2752 			    adapter->state == __IAVF_RUNNING)
2753 				iavf_request_stats(adapter);
2754 		}
2755 		if (adapter->state == __IAVF_RUNNING)
2756 			iavf_detect_recover_hung(&adapter->vsi);
2757 		break;
2758 	case __IAVF_REMOVE:
2759 	default:
2760 		mutex_unlock(&adapter->crit_lock);
2761 		return;
2762 	}
2763 
2764 	/* check for hw reset */
2765 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2766 	if (!reg_val) {
2767 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2768 		adapter->aq_required = 0;
2769 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2770 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2771 		queue_work(iavf_wq, &adapter->reset_task);
2772 		mutex_unlock(&adapter->crit_lock);
2773 		queue_delayed_work(iavf_wq,
2774 				   &adapter->watchdog_task, HZ * 2);
2775 		return;
2776 	}
2777 
2778 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2779 	mutex_unlock(&adapter->crit_lock);
2780 restart_watchdog:
2781 	if (adapter->state >= __IAVF_DOWN)
2782 		queue_work(iavf_wq, &adapter->adminq_task);
2783 	if (adapter->aq_required)
2784 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2785 				   msecs_to_jiffies(20));
2786 	else
2787 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2788 }
2789 
2790 /**
2791  * iavf_disable_vf - disable VF
2792  * @adapter: board private structure
2793  *
2794  * Set communication failed flag and free all resources.
2795  * NOTE: This function is expected to be called with crit_lock being held.
2796  **/
2797 static void iavf_disable_vf(struct iavf_adapter *adapter)
2798 {
2799 	struct iavf_mac_filter *f, *ftmp;
2800 	struct iavf_vlan_filter *fv, *fvtmp;
2801 	struct iavf_cloud_filter *cf, *cftmp;
2802 
2803 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2804 
2805 	/* We don't use netif_running() because it may be true prior to
2806 	 * ndo_open() returning, so we can't assume it means all our open
2807 	 * tasks have finished, since we're not holding the rtnl_lock here.
2808 	 */
2809 	if (adapter->state == __IAVF_RUNNING) {
2810 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2811 		netif_carrier_off(adapter->netdev);
2812 		netif_tx_disable(adapter->netdev);
2813 		adapter->link_up = false;
2814 		iavf_napi_disable_all(adapter);
2815 		iavf_irq_disable(adapter);
2816 		iavf_free_traffic_irqs(adapter);
2817 		iavf_free_all_tx_resources(adapter);
2818 		iavf_free_all_rx_resources(adapter);
2819 	}
2820 
2821 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2822 
2823 	/* Delete all of the filters */
2824 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2825 		list_del(&f->list);
2826 		kfree(f);
2827 	}
2828 
2829 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2830 		list_del(&fv->list);
2831 		kfree(fv);
2832 	}
2833 
2834 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2835 
2836 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2837 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2838 		list_del(&cf->list);
2839 		kfree(cf);
2840 		adapter->num_cloud_filters--;
2841 	}
2842 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2843 
2844 	iavf_free_misc_irq(adapter);
2845 	iavf_reset_interrupt_capability(adapter);
2846 	iavf_free_q_vectors(adapter);
2847 	iavf_free_queues(adapter);
2848 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2849 	iavf_shutdown_adminq(&adapter->hw);
2850 	adapter->netdev->flags &= ~IFF_UP;
2851 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2852 	iavf_change_state(adapter, __IAVF_DOWN);
2853 	wake_up(&adapter->down_waitqueue);
2854 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2855 }
2856 
2857 /**
2858  * iavf_reset_task - Call-back task to handle hardware reset
2859  * @work: pointer to work_struct
2860  *
2861  * During reset we need to shut down and reinitialize the admin queue
2862  * before we can use it to communicate with the PF again. We also clear
2863  * and reinit the rings because that context is lost as well.
2864  **/
2865 static void iavf_reset_task(struct work_struct *work)
2866 {
2867 	struct iavf_adapter *adapter = container_of(work,
2868 						      struct iavf_adapter,
2869 						      reset_task);
2870 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2871 	struct net_device *netdev = adapter->netdev;
2872 	struct iavf_hw *hw = &adapter->hw;
2873 	struct iavf_mac_filter *f, *ftmp;
2874 	struct iavf_cloud_filter *cf;
2875 	enum iavf_status status;
2876 	u32 reg_val;
2877 	int i = 0, err;
2878 	bool running;
2879 
2880 	/* When device is being removed it doesn't make sense to run the reset
2881 	 * task, just return in such a case.
2882 	 */
2883 	if (!mutex_trylock(&adapter->crit_lock)) {
2884 		if (adapter->state != __IAVF_REMOVE)
2885 			queue_work(iavf_wq, &adapter->reset_task);
2886 
2887 		return;
2888 	}
2889 
2890 	while (!mutex_trylock(&adapter->client_lock))
2891 		usleep_range(500, 1000);
2892 	if (CLIENT_ENABLED(adapter)) {
2893 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2894 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2895 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2896 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2897 		cancel_delayed_work_sync(&adapter->client_task);
2898 		iavf_notify_client_close(&adapter->vsi, true);
2899 	}
2900 	iavf_misc_irq_disable(adapter);
2901 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2902 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2903 		/* Restart the AQ here. If we have been reset but didn't
2904 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2905 		 */
2906 		iavf_shutdown_adminq(hw);
2907 		iavf_init_adminq(hw);
2908 		iavf_request_reset(adapter);
2909 	}
2910 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2911 
2912 	/* poll until we see the reset actually happen */
2913 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2914 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2915 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2916 		if (!reg_val)
2917 			break;
2918 		usleep_range(5000, 10000);
2919 	}
2920 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2921 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2922 		goto continue_reset; /* act like the reset happened */
2923 	}
2924 
2925 	/* wait until the reset is complete and the PF is responding to us */
2926 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2927 		/* sleep first to make sure a minimum wait time is met */
2928 		msleep(IAVF_RESET_WAIT_MS);
2929 
2930 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2931 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2932 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2933 			break;
2934 	}
2935 
2936 	pci_set_master(adapter->pdev);
2937 	pci_restore_msi_state(adapter->pdev);
2938 
2939 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2940 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2941 			reg_val);
2942 		iavf_disable_vf(adapter);
2943 		mutex_unlock(&adapter->client_lock);
2944 		mutex_unlock(&adapter->crit_lock);
2945 		return; /* Do not attempt to reinit. It's dead, Jim. */
2946 	}
2947 
2948 continue_reset:
2949 	/* We don't use netif_running() because it may be true prior to
2950 	 * ndo_open() returning, so we can't assume it means all our open
2951 	 * tasks have finished, since we're not holding the rtnl_lock here.
2952 	 */
2953 	running = adapter->state == __IAVF_RUNNING;
2954 
2955 	if (running) {
2956 		netif_carrier_off(netdev);
2957 		netif_tx_stop_all_queues(netdev);
2958 		adapter->link_up = false;
2959 		iavf_napi_disable_all(adapter);
2960 	}
2961 	iavf_irq_disable(adapter);
2962 
2963 	iavf_change_state(adapter, __IAVF_RESETTING);
2964 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2965 
2966 	/* free the Tx/Rx rings and descriptors, might be better to just
2967 	 * re-use them sometime in the future
2968 	 */
2969 	iavf_free_all_rx_resources(adapter);
2970 	iavf_free_all_tx_resources(adapter);
2971 
2972 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2973 	/* kill and reinit the admin queue */
2974 	iavf_shutdown_adminq(hw);
2975 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2976 	status = iavf_init_adminq(hw);
2977 	if (status) {
2978 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2979 			 status);
2980 		goto reset_err;
2981 	}
2982 	adapter->aq_required = 0;
2983 
2984 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2985 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2986 		err = iavf_reinit_interrupt_scheme(adapter);
2987 		if (err)
2988 			goto reset_err;
2989 	}
2990 
2991 	if (RSS_AQ(adapter)) {
2992 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2993 	} else {
2994 		err = iavf_init_rss(adapter);
2995 		if (err)
2996 			goto reset_err;
2997 	}
2998 
2999 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3000 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3001 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3002 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3003 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3004 	 * been successfully sent and negotiated
3005 	 */
3006 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3007 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3008 
3009 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3010 
3011 	/* Delete filter for the current MAC address, it could have
3012 	 * been changed by the PF via administratively set MAC.
3013 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3014 	 */
3015 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3016 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3017 			list_del(&f->list);
3018 			kfree(f);
3019 		}
3020 	}
3021 	/* re-add all MAC filters */
3022 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3023 		f->add = true;
3024 	}
3025 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3026 
3027 	/* check if TCs are running and re-add all cloud filters */
3028 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3029 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3030 	    adapter->num_tc) {
3031 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3032 			cf->add = true;
3033 		}
3034 	}
3035 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3036 
3037 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3038 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3039 	iavf_misc_irq_enable(adapter);
3040 
3041 	bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3042 	bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3043 
3044 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
3045 
3046 	/* We were running when the reset started, so we need to restore some
3047 	 * state here.
3048 	 */
3049 	if (running) {
3050 		/* allocate transmit descriptors */
3051 		err = iavf_setup_all_tx_resources(adapter);
3052 		if (err)
3053 			goto reset_err;
3054 
3055 		/* allocate receive descriptors */
3056 		err = iavf_setup_all_rx_resources(adapter);
3057 		if (err)
3058 			goto reset_err;
3059 
3060 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3061 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3062 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3063 			if (err)
3064 				goto reset_err;
3065 
3066 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3067 		}
3068 
3069 		iavf_configure(adapter);
3070 
3071 		/* iavf_up_complete() will switch device back
3072 		 * to __IAVF_RUNNING
3073 		 */
3074 		iavf_up_complete(adapter);
3075 
3076 		iavf_irq_enable(adapter, true);
3077 	} else {
3078 		iavf_change_state(adapter, __IAVF_DOWN);
3079 		wake_up(&adapter->down_waitqueue);
3080 	}
3081 
3082 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3083 
3084 	mutex_unlock(&adapter->client_lock);
3085 	mutex_unlock(&adapter->crit_lock);
3086 
3087 	return;
3088 reset_err:
3089 	mutex_unlock(&adapter->client_lock);
3090 	mutex_unlock(&adapter->crit_lock);
3091 	if (running)
3092 		iavf_change_state(adapter, __IAVF_RUNNING);
3093 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3094 	iavf_close(netdev);
3095 }
3096 
3097 /**
3098  * iavf_adminq_task - worker thread to clean the admin queue
3099  * @work: pointer to work_struct containing our data
3100  **/
3101 static void iavf_adminq_task(struct work_struct *work)
3102 {
3103 	struct iavf_adapter *adapter =
3104 		container_of(work, struct iavf_adapter, adminq_task);
3105 	struct iavf_hw *hw = &adapter->hw;
3106 	struct iavf_arq_event_info event;
3107 	enum virtchnl_ops v_op;
3108 	enum iavf_status ret, v_ret;
3109 	u32 val, oldval;
3110 	u16 pending;
3111 
3112 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3113 		goto out;
3114 
3115 	if (!mutex_trylock(&adapter->crit_lock)) {
3116 		if (adapter->state == __IAVF_REMOVE)
3117 			return;
3118 
3119 		queue_work(iavf_wq, &adapter->adminq_task);
3120 		goto out;
3121 	}
3122 
3123 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3124 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3125 	if (!event.msg_buf)
3126 		goto out;
3127 
3128 	do {
3129 		ret = iavf_clean_arq_element(hw, &event, &pending);
3130 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3131 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3132 
3133 		if (ret || !v_op)
3134 			break; /* No event to process or error cleaning ARQ */
3135 
3136 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3137 					 event.msg_len);
3138 		if (pending != 0)
3139 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3140 	} while (pending);
3141 	mutex_unlock(&adapter->crit_lock);
3142 
3143 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3144 		if (adapter->netdev_registered ||
3145 		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3146 			struct net_device *netdev = adapter->netdev;
3147 
3148 			rtnl_lock();
3149 			netdev_update_features(netdev);
3150 			rtnl_unlock();
3151 			/* Request VLAN offload settings */
3152 			if (VLAN_V2_ALLOWED(adapter))
3153 				iavf_set_vlan_offload_features
3154 					(adapter, 0, netdev->features);
3155 
3156 			iavf_set_queue_vlan_tag_loc(adapter);
3157 		}
3158 
3159 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3160 	}
3161 	if ((adapter->flags &
3162 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3163 	    adapter->state == __IAVF_RESETTING)
3164 		goto freedom;
3165 
3166 	/* check for error indications */
3167 	val = rd32(hw, hw->aq.arq.len);
3168 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3169 		goto freedom;
3170 	oldval = val;
3171 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3172 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3173 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3174 	}
3175 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3176 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3177 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3178 	}
3179 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3180 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3181 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3182 	}
3183 	if (oldval != val)
3184 		wr32(hw, hw->aq.arq.len, val);
3185 
3186 	val = rd32(hw, hw->aq.asq.len);
3187 	oldval = val;
3188 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3189 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3190 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3191 	}
3192 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3193 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3194 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3195 	}
3196 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3197 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3198 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3199 	}
3200 	if (oldval != val)
3201 		wr32(hw, hw->aq.asq.len, val);
3202 
3203 freedom:
3204 	kfree(event.msg_buf);
3205 out:
3206 	/* re-enable Admin queue interrupt cause */
3207 	iavf_misc_irq_enable(adapter);
3208 }
3209 
3210 /**
3211  * iavf_client_task - worker thread to perform client work
3212  * @work: pointer to work_struct containing our data
3213  *
3214  * This task handles client interactions. Because client calls can be
3215  * reentrant, we can't handle them in the watchdog.
3216  **/
3217 static void iavf_client_task(struct work_struct *work)
3218 {
3219 	struct iavf_adapter *adapter =
3220 		container_of(work, struct iavf_adapter, client_task.work);
3221 
3222 	/* If we can't get the client bit, just give up. We'll be rescheduled
3223 	 * later.
3224 	 */
3225 
3226 	if (!mutex_trylock(&adapter->client_lock))
3227 		return;
3228 
3229 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3230 		iavf_client_subtask(adapter);
3231 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3232 		goto out;
3233 	}
3234 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3235 		iavf_notify_client_l2_params(&adapter->vsi);
3236 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3237 		goto out;
3238 	}
3239 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3240 		iavf_notify_client_close(&adapter->vsi, false);
3241 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3242 		goto out;
3243 	}
3244 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3245 		iavf_notify_client_open(&adapter->vsi);
3246 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3247 	}
3248 out:
3249 	mutex_unlock(&adapter->client_lock);
3250 }
3251 
3252 /**
3253  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3254  * @adapter: board private structure
3255  *
3256  * Free all transmit software resources
3257  **/
3258 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3259 {
3260 	int i;
3261 
3262 	if (!adapter->tx_rings)
3263 		return;
3264 
3265 	for (i = 0; i < adapter->num_active_queues; i++)
3266 		if (adapter->tx_rings[i].desc)
3267 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3268 }
3269 
3270 /**
3271  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3272  * @adapter: board private structure
3273  *
3274  * If this function returns with an error, then it's possible one or
3275  * more of the rings is populated (while the rest are not).  It is the
3276  * callers duty to clean those orphaned rings.
3277  *
3278  * Return 0 on success, negative on failure
3279  **/
3280 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3281 {
3282 	int i, err = 0;
3283 
3284 	for (i = 0; i < adapter->num_active_queues; i++) {
3285 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3286 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3287 		if (!err)
3288 			continue;
3289 		dev_err(&adapter->pdev->dev,
3290 			"Allocation for Tx Queue %u failed\n", i);
3291 		break;
3292 	}
3293 
3294 	return err;
3295 }
3296 
3297 /**
3298  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3299  * @adapter: board private structure
3300  *
3301  * If this function returns with an error, then it's possible one or
3302  * more of the rings is populated (while the rest are not).  It is the
3303  * callers duty to clean those orphaned rings.
3304  *
3305  * Return 0 on success, negative on failure
3306  **/
3307 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3308 {
3309 	int i, err = 0;
3310 
3311 	for (i = 0; i < adapter->num_active_queues; i++) {
3312 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3313 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3314 		if (!err)
3315 			continue;
3316 		dev_err(&adapter->pdev->dev,
3317 			"Allocation for Rx Queue %u failed\n", i);
3318 		break;
3319 	}
3320 	return err;
3321 }
3322 
3323 /**
3324  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3325  * @adapter: board private structure
3326  *
3327  * Free all receive software resources
3328  **/
3329 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3330 {
3331 	int i;
3332 
3333 	if (!adapter->rx_rings)
3334 		return;
3335 
3336 	for (i = 0; i < adapter->num_active_queues; i++)
3337 		if (adapter->rx_rings[i].desc)
3338 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3339 }
3340 
3341 /**
3342  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3343  * @adapter: board private structure
3344  * @max_tx_rate: max Tx bw for a tc
3345  **/
3346 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3347 				      u64 max_tx_rate)
3348 {
3349 	int speed = 0, ret = 0;
3350 
3351 	if (ADV_LINK_SUPPORT(adapter)) {
3352 		if (adapter->link_speed_mbps < U32_MAX) {
3353 			speed = adapter->link_speed_mbps;
3354 			goto validate_bw;
3355 		} else {
3356 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3357 			return -EINVAL;
3358 		}
3359 	}
3360 
3361 	switch (adapter->link_speed) {
3362 	case VIRTCHNL_LINK_SPEED_40GB:
3363 		speed = SPEED_40000;
3364 		break;
3365 	case VIRTCHNL_LINK_SPEED_25GB:
3366 		speed = SPEED_25000;
3367 		break;
3368 	case VIRTCHNL_LINK_SPEED_20GB:
3369 		speed = SPEED_20000;
3370 		break;
3371 	case VIRTCHNL_LINK_SPEED_10GB:
3372 		speed = SPEED_10000;
3373 		break;
3374 	case VIRTCHNL_LINK_SPEED_5GB:
3375 		speed = SPEED_5000;
3376 		break;
3377 	case VIRTCHNL_LINK_SPEED_2_5GB:
3378 		speed = SPEED_2500;
3379 		break;
3380 	case VIRTCHNL_LINK_SPEED_1GB:
3381 		speed = SPEED_1000;
3382 		break;
3383 	case VIRTCHNL_LINK_SPEED_100MB:
3384 		speed = SPEED_100;
3385 		break;
3386 	default:
3387 		break;
3388 	}
3389 
3390 validate_bw:
3391 	if (max_tx_rate > speed) {
3392 		dev_err(&adapter->pdev->dev,
3393 			"Invalid tx rate specified\n");
3394 		ret = -EINVAL;
3395 	}
3396 
3397 	return ret;
3398 }
3399 
3400 /**
3401  * iavf_validate_ch_config - validate queue mapping info
3402  * @adapter: board private structure
3403  * @mqprio_qopt: queue parameters
3404  *
3405  * This function validates if the config provided by the user to
3406  * configure queue channels is valid or not. Returns 0 on a valid
3407  * config.
3408  **/
3409 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3410 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3411 {
3412 	u64 total_max_rate = 0;
3413 	int i, num_qps = 0;
3414 	u64 tx_rate = 0;
3415 	int ret = 0;
3416 
3417 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3418 	    mqprio_qopt->qopt.num_tc < 1)
3419 		return -EINVAL;
3420 
3421 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3422 		if (!mqprio_qopt->qopt.count[i] ||
3423 		    mqprio_qopt->qopt.offset[i] != num_qps)
3424 			return -EINVAL;
3425 		if (mqprio_qopt->min_rate[i]) {
3426 			dev_err(&adapter->pdev->dev,
3427 				"Invalid min tx rate (greater than 0) specified\n");
3428 			return -EINVAL;
3429 		}
3430 		/*convert to Mbps */
3431 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3432 				  IAVF_MBPS_DIVISOR);
3433 		total_max_rate += tx_rate;
3434 		num_qps += mqprio_qopt->qopt.count[i];
3435 	}
3436 	if (num_qps > adapter->num_active_queues) {
3437 		dev_err(&adapter->pdev->dev,
3438 			"Cannot support requested number of queues\n");
3439 		return -EINVAL;
3440 	}
3441 
3442 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3443 	return ret;
3444 }
3445 
3446 /**
3447  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3448  * @adapter: board private structure
3449  **/
3450 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3451 {
3452 	struct iavf_cloud_filter *cf, *cftmp;
3453 
3454 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3455 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3456 				 list) {
3457 		list_del(&cf->list);
3458 		kfree(cf);
3459 		adapter->num_cloud_filters--;
3460 	}
3461 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3462 }
3463 
3464 /**
3465  * __iavf_setup_tc - configure multiple traffic classes
3466  * @netdev: network interface device structure
3467  * @type_data: tc offload data
3468  *
3469  * This function processes the config information provided by the
3470  * user to configure traffic classes/queue channels and packages the
3471  * information to request the PF to setup traffic classes.
3472  *
3473  * Returns 0 on success.
3474  **/
3475 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3476 {
3477 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3478 	struct iavf_adapter *adapter = netdev_priv(netdev);
3479 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3480 	u8 num_tc = 0, total_qps = 0;
3481 	int ret = 0, netdev_tc = 0;
3482 	u64 max_tx_rate;
3483 	u16 mode;
3484 	int i;
3485 
3486 	num_tc = mqprio_qopt->qopt.num_tc;
3487 	mode = mqprio_qopt->mode;
3488 
3489 	/* delete queue_channel */
3490 	if (!mqprio_qopt->qopt.hw) {
3491 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3492 			/* reset the tc configuration */
3493 			netdev_reset_tc(netdev);
3494 			adapter->num_tc = 0;
3495 			netif_tx_stop_all_queues(netdev);
3496 			netif_tx_disable(netdev);
3497 			iavf_del_all_cloud_filters(adapter);
3498 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3499 			goto exit;
3500 		} else {
3501 			return -EINVAL;
3502 		}
3503 	}
3504 
3505 	/* add queue channel */
3506 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3507 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3508 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3509 			return -EOPNOTSUPP;
3510 		}
3511 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3512 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3513 			return -EINVAL;
3514 		}
3515 
3516 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3517 		if (ret)
3518 			return ret;
3519 		/* Return if same TC config is requested */
3520 		if (adapter->num_tc == num_tc)
3521 			return 0;
3522 		adapter->num_tc = num_tc;
3523 
3524 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3525 			if (i < num_tc) {
3526 				adapter->ch_config.ch_info[i].count =
3527 					mqprio_qopt->qopt.count[i];
3528 				adapter->ch_config.ch_info[i].offset =
3529 					mqprio_qopt->qopt.offset[i];
3530 				total_qps += mqprio_qopt->qopt.count[i];
3531 				max_tx_rate = mqprio_qopt->max_rate[i];
3532 				/* convert to Mbps */
3533 				max_tx_rate = div_u64(max_tx_rate,
3534 						      IAVF_MBPS_DIVISOR);
3535 				adapter->ch_config.ch_info[i].max_tx_rate =
3536 					max_tx_rate;
3537 			} else {
3538 				adapter->ch_config.ch_info[i].count = 1;
3539 				adapter->ch_config.ch_info[i].offset = 0;
3540 			}
3541 		}
3542 		adapter->ch_config.total_qps = total_qps;
3543 		netif_tx_stop_all_queues(netdev);
3544 		netif_tx_disable(netdev);
3545 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3546 		netdev_reset_tc(netdev);
3547 		/* Report the tc mapping up the stack */
3548 		netdev_set_num_tc(adapter->netdev, num_tc);
3549 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3550 			u16 qcount = mqprio_qopt->qopt.count[i];
3551 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3552 
3553 			if (i < num_tc)
3554 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3555 						    qoffset);
3556 		}
3557 	}
3558 exit:
3559 	return ret;
3560 }
3561 
3562 /**
3563  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3564  * @adapter: board private structure
3565  * @f: pointer to struct flow_cls_offload
3566  * @filter: pointer to cloud filter structure
3567  */
3568 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3569 				 struct flow_cls_offload *f,
3570 				 struct iavf_cloud_filter *filter)
3571 {
3572 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3573 	struct flow_dissector *dissector = rule->match.dissector;
3574 	u16 n_proto_mask = 0;
3575 	u16 n_proto_key = 0;
3576 	u8 field_flags = 0;
3577 	u16 addr_type = 0;
3578 	u16 n_proto = 0;
3579 	int i = 0;
3580 	struct virtchnl_filter *vf = &filter->f;
3581 
3582 	if (dissector->used_keys &
3583 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3584 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3585 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3586 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3587 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3588 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3589 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3590 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3591 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3592 			dissector->used_keys);
3593 		return -EOPNOTSUPP;
3594 	}
3595 
3596 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3597 		struct flow_match_enc_keyid match;
3598 
3599 		flow_rule_match_enc_keyid(rule, &match);
3600 		if (match.mask->keyid != 0)
3601 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3602 	}
3603 
3604 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3605 		struct flow_match_basic match;
3606 
3607 		flow_rule_match_basic(rule, &match);
3608 		n_proto_key = ntohs(match.key->n_proto);
3609 		n_proto_mask = ntohs(match.mask->n_proto);
3610 
3611 		if (n_proto_key == ETH_P_ALL) {
3612 			n_proto_key = 0;
3613 			n_proto_mask = 0;
3614 		}
3615 		n_proto = n_proto_key & n_proto_mask;
3616 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3617 			return -EINVAL;
3618 		if (n_proto == ETH_P_IPV6) {
3619 			/* specify flow type as TCP IPv6 */
3620 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3621 		}
3622 
3623 		if (match.key->ip_proto != IPPROTO_TCP) {
3624 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3625 			return -EINVAL;
3626 		}
3627 	}
3628 
3629 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3630 		struct flow_match_eth_addrs match;
3631 
3632 		flow_rule_match_eth_addrs(rule, &match);
3633 
3634 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3635 		if (!is_zero_ether_addr(match.mask->dst)) {
3636 			if (is_broadcast_ether_addr(match.mask->dst)) {
3637 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3638 			} else {
3639 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3640 					match.mask->dst);
3641 				return -EINVAL;
3642 			}
3643 		}
3644 
3645 		if (!is_zero_ether_addr(match.mask->src)) {
3646 			if (is_broadcast_ether_addr(match.mask->src)) {
3647 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3648 			} else {
3649 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3650 					match.mask->src);
3651 				return -EINVAL;
3652 			}
3653 		}
3654 
3655 		if (!is_zero_ether_addr(match.key->dst))
3656 			if (is_valid_ether_addr(match.key->dst) ||
3657 			    is_multicast_ether_addr(match.key->dst)) {
3658 				/* set the mask if a valid dst_mac address */
3659 				for (i = 0; i < ETH_ALEN; i++)
3660 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3661 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3662 						match.key->dst);
3663 			}
3664 
3665 		if (!is_zero_ether_addr(match.key->src))
3666 			if (is_valid_ether_addr(match.key->src) ||
3667 			    is_multicast_ether_addr(match.key->src)) {
3668 				/* set the mask if a valid dst_mac address */
3669 				for (i = 0; i < ETH_ALEN; i++)
3670 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3671 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3672 						match.key->src);
3673 		}
3674 	}
3675 
3676 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3677 		struct flow_match_vlan match;
3678 
3679 		flow_rule_match_vlan(rule, &match);
3680 		if (match.mask->vlan_id) {
3681 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3682 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3683 			} else {
3684 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3685 					match.mask->vlan_id);
3686 				return -EINVAL;
3687 			}
3688 		}
3689 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3690 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3691 	}
3692 
3693 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3694 		struct flow_match_control match;
3695 
3696 		flow_rule_match_control(rule, &match);
3697 		addr_type = match.key->addr_type;
3698 	}
3699 
3700 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3701 		struct flow_match_ipv4_addrs match;
3702 
3703 		flow_rule_match_ipv4_addrs(rule, &match);
3704 		if (match.mask->dst) {
3705 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3706 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3707 			} else {
3708 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3709 					be32_to_cpu(match.mask->dst));
3710 				return -EINVAL;
3711 			}
3712 		}
3713 
3714 		if (match.mask->src) {
3715 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3716 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3717 			} else {
3718 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3719 					be32_to_cpu(match.mask->dst));
3720 				return -EINVAL;
3721 			}
3722 		}
3723 
3724 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3725 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3726 			return -EINVAL;
3727 		}
3728 		if (match.key->dst) {
3729 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3730 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3731 		}
3732 		if (match.key->src) {
3733 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3734 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3735 		}
3736 	}
3737 
3738 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3739 		struct flow_match_ipv6_addrs match;
3740 
3741 		flow_rule_match_ipv6_addrs(rule, &match);
3742 
3743 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3744 		if (ipv6_addr_any(&match.mask->dst)) {
3745 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3746 				IPV6_ADDR_ANY);
3747 			return -EINVAL;
3748 		}
3749 
3750 		/* src and dest IPv6 address should not be LOOPBACK
3751 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3752 		 */
3753 		if (ipv6_addr_loopback(&match.key->dst) ||
3754 		    ipv6_addr_loopback(&match.key->src)) {
3755 			dev_err(&adapter->pdev->dev,
3756 				"ipv6 addr should not be loopback\n");
3757 			return -EINVAL;
3758 		}
3759 		if (!ipv6_addr_any(&match.mask->dst) ||
3760 		    !ipv6_addr_any(&match.mask->src))
3761 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3762 
3763 		for (i = 0; i < 4; i++)
3764 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3765 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3766 		       sizeof(vf->data.tcp_spec.dst_ip));
3767 		for (i = 0; i < 4; i++)
3768 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3769 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3770 		       sizeof(vf->data.tcp_spec.src_ip));
3771 	}
3772 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3773 		struct flow_match_ports match;
3774 
3775 		flow_rule_match_ports(rule, &match);
3776 		if (match.mask->src) {
3777 			if (match.mask->src == cpu_to_be16(0xffff)) {
3778 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3779 			} else {
3780 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3781 					be16_to_cpu(match.mask->src));
3782 				return -EINVAL;
3783 			}
3784 		}
3785 
3786 		if (match.mask->dst) {
3787 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3788 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3789 			} else {
3790 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3791 					be16_to_cpu(match.mask->dst));
3792 				return -EINVAL;
3793 			}
3794 		}
3795 		if (match.key->dst) {
3796 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3797 			vf->data.tcp_spec.dst_port = match.key->dst;
3798 		}
3799 
3800 		if (match.key->src) {
3801 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3802 			vf->data.tcp_spec.src_port = match.key->src;
3803 		}
3804 	}
3805 	vf->field_flags = field_flags;
3806 
3807 	return 0;
3808 }
3809 
3810 /**
3811  * iavf_handle_tclass - Forward to a traffic class on the device
3812  * @adapter: board private structure
3813  * @tc: traffic class index on the device
3814  * @filter: pointer to cloud filter structure
3815  */
3816 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3817 			      struct iavf_cloud_filter *filter)
3818 {
3819 	if (tc == 0)
3820 		return 0;
3821 	if (tc < adapter->num_tc) {
3822 		if (!filter->f.data.tcp_spec.dst_port) {
3823 			dev_err(&adapter->pdev->dev,
3824 				"Specify destination port to redirect to traffic class other than TC0\n");
3825 			return -EINVAL;
3826 		}
3827 	}
3828 	/* redirect to a traffic class on the same device */
3829 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3830 	filter->f.action_meta = tc;
3831 	return 0;
3832 }
3833 
3834 /**
3835  * iavf_configure_clsflower - Add tc flower filters
3836  * @adapter: board private structure
3837  * @cls_flower: Pointer to struct flow_cls_offload
3838  */
3839 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3840 				    struct flow_cls_offload *cls_flower)
3841 {
3842 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3843 	struct iavf_cloud_filter *filter = NULL;
3844 	int err = -EINVAL, count = 50;
3845 
3846 	if (tc < 0) {
3847 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3848 		return -EINVAL;
3849 	}
3850 
3851 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3852 	if (!filter)
3853 		return -ENOMEM;
3854 
3855 	while (!mutex_trylock(&adapter->crit_lock)) {
3856 		if (--count == 0) {
3857 			kfree(filter);
3858 			return err;
3859 		}
3860 		udelay(1);
3861 	}
3862 
3863 	filter->cookie = cls_flower->cookie;
3864 
3865 	/* set the mask to all zeroes to begin with */
3866 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3867 	/* start out with flow type and eth type IPv4 to begin with */
3868 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3869 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3870 	if (err)
3871 		goto err;
3872 
3873 	err = iavf_handle_tclass(adapter, tc, filter);
3874 	if (err)
3875 		goto err;
3876 
3877 	/* add filter to the list */
3878 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3879 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3880 	adapter->num_cloud_filters++;
3881 	filter->add = true;
3882 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3883 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3884 err:
3885 	if (err)
3886 		kfree(filter);
3887 
3888 	mutex_unlock(&adapter->crit_lock);
3889 	return err;
3890 }
3891 
3892 /* iavf_find_cf - Find the cloud filter in the list
3893  * @adapter: Board private structure
3894  * @cookie: filter specific cookie
3895  *
3896  * Returns ptr to the filter object or NULL. Must be called while holding the
3897  * cloud_filter_list_lock.
3898  */
3899 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3900 					      unsigned long *cookie)
3901 {
3902 	struct iavf_cloud_filter *filter = NULL;
3903 
3904 	if (!cookie)
3905 		return NULL;
3906 
3907 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3908 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3909 			return filter;
3910 	}
3911 	return NULL;
3912 }
3913 
3914 /**
3915  * iavf_delete_clsflower - Remove tc flower filters
3916  * @adapter: board private structure
3917  * @cls_flower: Pointer to struct flow_cls_offload
3918  */
3919 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3920 				 struct flow_cls_offload *cls_flower)
3921 {
3922 	struct iavf_cloud_filter *filter = NULL;
3923 	int err = 0;
3924 
3925 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3926 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3927 	if (filter) {
3928 		filter->del = true;
3929 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3930 	} else {
3931 		err = -EINVAL;
3932 	}
3933 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3934 
3935 	return err;
3936 }
3937 
3938 /**
3939  * iavf_setup_tc_cls_flower - flower classifier offloads
3940  * @adapter: board private structure
3941  * @cls_flower: pointer to flow_cls_offload struct with flow info
3942  */
3943 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3944 				    struct flow_cls_offload *cls_flower)
3945 {
3946 	switch (cls_flower->command) {
3947 	case FLOW_CLS_REPLACE:
3948 		return iavf_configure_clsflower(adapter, cls_flower);
3949 	case FLOW_CLS_DESTROY:
3950 		return iavf_delete_clsflower(adapter, cls_flower);
3951 	case FLOW_CLS_STATS:
3952 		return -EOPNOTSUPP;
3953 	default:
3954 		return -EOPNOTSUPP;
3955 	}
3956 }
3957 
3958 /**
3959  * iavf_setup_tc_block_cb - block callback for tc
3960  * @type: type of offload
3961  * @type_data: offload data
3962  * @cb_priv:
3963  *
3964  * This function is the block callback for traffic classes
3965  **/
3966 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3967 				  void *cb_priv)
3968 {
3969 	struct iavf_adapter *adapter = cb_priv;
3970 
3971 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3972 		return -EOPNOTSUPP;
3973 
3974 	switch (type) {
3975 	case TC_SETUP_CLSFLOWER:
3976 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3977 	default:
3978 		return -EOPNOTSUPP;
3979 	}
3980 }
3981 
3982 static LIST_HEAD(iavf_block_cb_list);
3983 
3984 /**
3985  * iavf_setup_tc - configure multiple traffic classes
3986  * @netdev: network interface device structure
3987  * @type: type of offload
3988  * @type_data: tc offload data
3989  *
3990  * This function is the callback to ndo_setup_tc in the
3991  * netdev_ops.
3992  *
3993  * Returns 0 on success
3994  **/
3995 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3996 			 void *type_data)
3997 {
3998 	struct iavf_adapter *adapter = netdev_priv(netdev);
3999 
4000 	switch (type) {
4001 	case TC_SETUP_QDISC_MQPRIO:
4002 		return __iavf_setup_tc(netdev, type_data);
4003 	case TC_SETUP_BLOCK:
4004 		return flow_block_cb_setup_simple(type_data,
4005 						  &iavf_block_cb_list,
4006 						  iavf_setup_tc_block_cb,
4007 						  adapter, adapter, true);
4008 	default:
4009 		return -EOPNOTSUPP;
4010 	}
4011 }
4012 
4013 /**
4014  * iavf_open - Called when a network interface is made active
4015  * @netdev: network interface device structure
4016  *
4017  * Returns 0 on success, negative value on failure
4018  *
4019  * The open entry point is called when a network interface is made
4020  * active by the system (IFF_UP).  At this point all resources needed
4021  * for transmit and receive operations are allocated, the interrupt
4022  * handler is registered with the OS, the watchdog is started,
4023  * and the stack is notified that the interface is ready.
4024  **/
4025 static int iavf_open(struct net_device *netdev)
4026 {
4027 	struct iavf_adapter *adapter = netdev_priv(netdev);
4028 	int err;
4029 
4030 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4031 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4032 		return -EIO;
4033 	}
4034 
4035 	while (!mutex_trylock(&adapter->crit_lock))
4036 		usleep_range(500, 1000);
4037 
4038 	if (adapter->state != __IAVF_DOWN) {
4039 		err = -EBUSY;
4040 		goto err_unlock;
4041 	}
4042 
4043 	if (adapter->state == __IAVF_RUNNING &&
4044 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4045 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4046 		err = 0;
4047 		goto err_unlock;
4048 	}
4049 
4050 	/* allocate transmit descriptors */
4051 	err = iavf_setup_all_tx_resources(adapter);
4052 	if (err)
4053 		goto err_setup_tx;
4054 
4055 	/* allocate receive descriptors */
4056 	err = iavf_setup_all_rx_resources(adapter);
4057 	if (err)
4058 		goto err_setup_rx;
4059 
4060 	/* clear any pending interrupts, may auto mask */
4061 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4062 	if (err)
4063 		goto err_req_irq;
4064 
4065 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4066 
4067 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4068 
4069 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4070 
4071 	/* Restore VLAN filters that were removed with IFF_DOWN */
4072 	iavf_restore_filters(adapter);
4073 
4074 	iavf_configure(adapter);
4075 
4076 	iavf_up_complete(adapter);
4077 
4078 	iavf_irq_enable(adapter, true);
4079 
4080 	mutex_unlock(&adapter->crit_lock);
4081 
4082 	return 0;
4083 
4084 err_req_irq:
4085 	iavf_down(adapter);
4086 	iavf_free_traffic_irqs(adapter);
4087 err_setup_rx:
4088 	iavf_free_all_rx_resources(adapter);
4089 err_setup_tx:
4090 	iavf_free_all_tx_resources(adapter);
4091 err_unlock:
4092 	mutex_unlock(&adapter->crit_lock);
4093 
4094 	return err;
4095 }
4096 
4097 /**
4098  * iavf_close - Disables a network interface
4099  * @netdev: network interface device structure
4100  *
4101  * Returns 0, this is not allowed to fail
4102  *
4103  * The close entry point is called when an interface is de-activated
4104  * by the OS.  The hardware is still under the drivers control, but
4105  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4106  * are freed, along with all transmit and receive resources.
4107  **/
4108 static int iavf_close(struct net_device *netdev)
4109 {
4110 	struct iavf_adapter *adapter = netdev_priv(netdev);
4111 	int status;
4112 
4113 	mutex_lock(&adapter->crit_lock);
4114 
4115 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4116 		mutex_unlock(&adapter->crit_lock);
4117 		return 0;
4118 	}
4119 
4120 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4121 	if (CLIENT_ENABLED(adapter))
4122 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4123 
4124 	iavf_down(adapter);
4125 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4126 	iavf_free_traffic_irqs(adapter);
4127 
4128 	mutex_unlock(&adapter->crit_lock);
4129 
4130 	/* We explicitly don't free resources here because the hardware is
4131 	 * still active and can DMA into memory. Resources are cleared in
4132 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4133 	 * driver that the rings have been stopped.
4134 	 *
4135 	 * Also, we wait for state to transition to __IAVF_DOWN before
4136 	 * returning. State change occurs in iavf_virtchnl_completion() after
4137 	 * VF resources are released (which occurs after PF driver processes and
4138 	 * responds to admin queue commands).
4139 	 */
4140 
4141 	status = wait_event_timeout(adapter->down_waitqueue,
4142 				    adapter->state == __IAVF_DOWN,
4143 				    msecs_to_jiffies(500));
4144 	if (!status)
4145 		netdev_warn(netdev, "Device resources not yet released\n");
4146 	return 0;
4147 }
4148 
4149 /**
4150  * iavf_change_mtu - Change the Maximum Transfer Unit
4151  * @netdev: network interface device structure
4152  * @new_mtu: new value for maximum frame size
4153  *
4154  * Returns 0 on success, negative on failure
4155  **/
4156 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4157 {
4158 	struct iavf_adapter *adapter = netdev_priv(netdev);
4159 
4160 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4161 		   netdev->mtu, new_mtu);
4162 	netdev->mtu = new_mtu;
4163 	if (CLIENT_ENABLED(adapter)) {
4164 		iavf_notify_client_l2_params(&adapter->vsi);
4165 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4166 	}
4167 
4168 	if (netif_running(netdev)) {
4169 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4170 		queue_work(iavf_wq, &adapter->reset_task);
4171 	}
4172 
4173 	return 0;
4174 }
4175 
4176 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4177 					 NETIF_F_HW_VLAN_CTAG_TX | \
4178 					 NETIF_F_HW_VLAN_STAG_RX | \
4179 					 NETIF_F_HW_VLAN_STAG_TX)
4180 
4181 /**
4182  * iavf_set_features - set the netdev feature flags
4183  * @netdev: ptr to the netdev being adjusted
4184  * @features: the feature set that the stack is suggesting
4185  * Note: expects to be called while under rtnl_lock()
4186  **/
4187 static int iavf_set_features(struct net_device *netdev,
4188 			     netdev_features_t features)
4189 {
4190 	struct iavf_adapter *adapter = netdev_priv(netdev);
4191 
4192 	/* trigger update on any VLAN feature change */
4193 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4194 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4195 		iavf_set_vlan_offload_features(adapter, netdev->features,
4196 					       features);
4197 
4198 	return 0;
4199 }
4200 
4201 /**
4202  * iavf_features_check - Validate encapsulated packet conforms to limits
4203  * @skb: skb buff
4204  * @dev: This physical port's netdev
4205  * @features: Offload features that the stack believes apply
4206  **/
4207 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4208 					     struct net_device *dev,
4209 					     netdev_features_t features)
4210 {
4211 	size_t len;
4212 
4213 	/* No point in doing any of this if neither checksum nor GSO are
4214 	 * being requested for this frame.  We can rule out both by just
4215 	 * checking for CHECKSUM_PARTIAL
4216 	 */
4217 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4218 		return features;
4219 
4220 	/* We cannot support GSO if the MSS is going to be less than
4221 	 * 64 bytes.  If it is then we need to drop support for GSO.
4222 	 */
4223 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4224 		features &= ~NETIF_F_GSO_MASK;
4225 
4226 	/* MACLEN can support at most 63 words */
4227 	len = skb_network_header(skb) - skb->data;
4228 	if (len & ~(63 * 2))
4229 		goto out_err;
4230 
4231 	/* IPLEN and EIPLEN can support at most 127 dwords */
4232 	len = skb_transport_header(skb) - skb_network_header(skb);
4233 	if (len & ~(127 * 4))
4234 		goto out_err;
4235 
4236 	if (skb->encapsulation) {
4237 		/* L4TUNLEN can support 127 words */
4238 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4239 		if (len & ~(127 * 2))
4240 			goto out_err;
4241 
4242 		/* IPLEN can support at most 127 dwords */
4243 		len = skb_inner_transport_header(skb) -
4244 		      skb_inner_network_header(skb);
4245 		if (len & ~(127 * 4))
4246 			goto out_err;
4247 	}
4248 
4249 	/* No need to validate L4LEN as TCP is the only protocol with a
4250 	 * flexible value and we support all possible values supported
4251 	 * by TCP, which is at most 15 dwords
4252 	 */
4253 
4254 	return features;
4255 out_err:
4256 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4257 }
4258 
4259 /**
4260  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4261  * @adapter: board private structure
4262  *
4263  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4264  * were negotiated determine the VLAN features that can be toggled on and off.
4265  **/
4266 static netdev_features_t
4267 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4268 {
4269 	netdev_features_t hw_features = 0;
4270 
4271 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4272 		return hw_features;
4273 
4274 	/* Enable VLAN features if supported */
4275 	if (VLAN_ALLOWED(adapter)) {
4276 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4277 				NETIF_F_HW_VLAN_CTAG_RX);
4278 	} else if (VLAN_V2_ALLOWED(adapter)) {
4279 		struct virtchnl_vlan_caps *vlan_v2_caps =
4280 			&adapter->vlan_v2_caps;
4281 		struct virtchnl_vlan_supported_caps *stripping_support =
4282 			&vlan_v2_caps->offloads.stripping_support;
4283 		struct virtchnl_vlan_supported_caps *insertion_support =
4284 			&vlan_v2_caps->offloads.insertion_support;
4285 
4286 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4287 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4288 			if (stripping_support->outer &
4289 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4290 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4291 			if (stripping_support->outer &
4292 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4293 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4294 		} else if (stripping_support->inner !=
4295 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4296 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4297 			if (stripping_support->inner &
4298 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4299 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4300 		}
4301 
4302 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4303 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4304 			if (insertion_support->outer &
4305 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4306 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4307 			if (insertion_support->outer &
4308 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4309 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4310 		} else if (insertion_support->inner &&
4311 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4312 			if (insertion_support->inner &
4313 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4314 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4315 		}
4316 	}
4317 
4318 	return hw_features;
4319 }
4320 
4321 /**
4322  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4323  * @adapter: board private structure
4324  *
4325  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4326  * were negotiated determine the VLAN features that are enabled by default.
4327  **/
4328 static netdev_features_t
4329 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4330 {
4331 	netdev_features_t features = 0;
4332 
4333 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4334 		return features;
4335 
4336 	if (VLAN_ALLOWED(adapter)) {
4337 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4338 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4339 	} else if (VLAN_V2_ALLOWED(adapter)) {
4340 		struct virtchnl_vlan_caps *vlan_v2_caps =
4341 			&adapter->vlan_v2_caps;
4342 		struct virtchnl_vlan_supported_caps *filtering_support =
4343 			&vlan_v2_caps->filtering.filtering_support;
4344 		struct virtchnl_vlan_supported_caps *stripping_support =
4345 			&vlan_v2_caps->offloads.stripping_support;
4346 		struct virtchnl_vlan_supported_caps *insertion_support =
4347 			&vlan_v2_caps->offloads.insertion_support;
4348 		u32 ethertype_init;
4349 
4350 		/* give priority to outer stripping and don't support both outer
4351 		 * and inner stripping
4352 		 */
4353 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4354 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4355 			if (stripping_support->outer &
4356 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4357 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4358 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4359 			else if (stripping_support->outer &
4360 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4361 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4362 				features |= NETIF_F_HW_VLAN_STAG_RX;
4363 		} else if (stripping_support->inner !=
4364 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4365 			if (stripping_support->inner &
4366 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4367 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4368 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4369 		}
4370 
4371 		/* give priority to outer insertion and don't support both outer
4372 		 * and inner insertion
4373 		 */
4374 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4375 			if (insertion_support->outer &
4376 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4377 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4378 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4379 			else if (insertion_support->outer &
4380 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4381 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4382 				features |= NETIF_F_HW_VLAN_STAG_TX;
4383 		} else if (insertion_support->inner !=
4384 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4385 			if (insertion_support->inner &
4386 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4387 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4388 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4389 		}
4390 
4391 		/* give priority to outer filtering and don't bother if both
4392 		 * outer and inner filtering are enabled
4393 		 */
4394 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4395 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4396 			if (filtering_support->outer &
4397 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4398 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4399 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4400 			if (filtering_support->outer &
4401 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4402 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4403 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4404 		} else if (filtering_support->inner !=
4405 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4406 			if (filtering_support->inner &
4407 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4408 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4409 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4410 			if (filtering_support->inner &
4411 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4412 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4413 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4414 		}
4415 	}
4416 
4417 	return features;
4418 }
4419 
4420 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4421 	(!(((requested) & (feature_bit)) && \
4422 	   !((allowed) & (feature_bit))))
4423 
4424 /**
4425  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4426  * @adapter: board private structure
4427  * @requested_features: stack requested NETDEV features
4428  **/
4429 static netdev_features_t
4430 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4431 			      netdev_features_t requested_features)
4432 {
4433 	netdev_features_t allowed_features;
4434 
4435 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4436 		iavf_get_netdev_vlan_features(adapter);
4437 
4438 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4439 					      allowed_features,
4440 					      NETIF_F_HW_VLAN_CTAG_TX))
4441 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4442 
4443 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4444 					      allowed_features,
4445 					      NETIF_F_HW_VLAN_CTAG_RX))
4446 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4447 
4448 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4449 					      allowed_features,
4450 					      NETIF_F_HW_VLAN_STAG_TX))
4451 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4452 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4453 					      allowed_features,
4454 					      NETIF_F_HW_VLAN_STAG_RX))
4455 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4456 
4457 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4458 					      allowed_features,
4459 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4460 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4461 
4462 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4463 					      allowed_features,
4464 					      NETIF_F_HW_VLAN_STAG_FILTER))
4465 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4466 
4467 	if ((requested_features &
4468 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4469 	    (requested_features &
4470 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4471 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4472 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4473 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4474 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4475 					NETIF_F_HW_VLAN_STAG_TX);
4476 	}
4477 
4478 	return requested_features;
4479 }
4480 
4481 /**
4482  * iavf_fix_features - fix up the netdev feature bits
4483  * @netdev: our net device
4484  * @features: desired feature bits
4485  *
4486  * Returns fixed-up features bits
4487  **/
4488 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4489 					   netdev_features_t features)
4490 {
4491 	struct iavf_adapter *adapter = netdev_priv(netdev);
4492 
4493 	return iavf_fix_netdev_vlan_features(adapter, features);
4494 }
4495 
4496 static const struct net_device_ops iavf_netdev_ops = {
4497 	.ndo_open		= iavf_open,
4498 	.ndo_stop		= iavf_close,
4499 	.ndo_start_xmit		= iavf_xmit_frame,
4500 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4501 	.ndo_validate_addr	= eth_validate_addr,
4502 	.ndo_set_mac_address	= iavf_set_mac,
4503 	.ndo_change_mtu		= iavf_change_mtu,
4504 	.ndo_tx_timeout		= iavf_tx_timeout,
4505 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4506 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4507 	.ndo_features_check	= iavf_features_check,
4508 	.ndo_fix_features	= iavf_fix_features,
4509 	.ndo_set_features	= iavf_set_features,
4510 	.ndo_setup_tc		= iavf_setup_tc,
4511 };
4512 
4513 /**
4514  * iavf_check_reset_complete - check that VF reset is complete
4515  * @hw: pointer to hw struct
4516  *
4517  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4518  **/
4519 static int iavf_check_reset_complete(struct iavf_hw *hw)
4520 {
4521 	u32 rstat;
4522 	int i;
4523 
4524 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4525 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4526 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4527 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4528 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4529 			return 0;
4530 		usleep_range(10, 20);
4531 	}
4532 	return -EBUSY;
4533 }
4534 
4535 /**
4536  * iavf_process_config - Process the config information we got from the PF
4537  * @adapter: board private structure
4538  *
4539  * Verify that we have a valid config struct, and set up our netdev features
4540  * and our VSI struct.
4541  **/
4542 int iavf_process_config(struct iavf_adapter *adapter)
4543 {
4544 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4545 	netdev_features_t hw_vlan_features, vlan_features;
4546 	struct net_device *netdev = adapter->netdev;
4547 	netdev_features_t hw_enc_features;
4548 	netdev_features_t hw_features;
4549 
4550 	hw_enc_features = NETIF_F_SG			|
4551 			  NETIF_F_IP_CSUM		|
4552 			  NETIF_F_IPV6_CSUM		|
4553 			  NETIF_F_HIGHDMA		|
4554 			  NETIF_F_SOFT_FEATURES	|
4555 			  NETIF_F_TSO			|
4556 			  NETIF_F_TSO_ECN		|
4557 			  NETIF_F_TSO6			|
4558 			  NETIF_F_SCTP_CRC		|
4559 			  NETIF_F_RXHASH		|
4560 			  NETIF_F_RXCSUM		|
4561 			  0;
4562 
4563 	/* advertise to stack only if offloads for encapsulated packets is
4564 	 * supported
4565 	 */
4566 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4567 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4568 				   NETIF_F_GSO_GRE		|
4569 				   NETIF_F_GSO_GRE_CSUM		|
4570 				   NETIF_F_GSO_IPXIP4		|
4571 				   NETIF_F_GSO_IPXIP6		|
4572 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4573 				   NETIF_F_GSO_PARTIAL		|
4574 				   0;
4575 
4576 		if (!(vfres->vf_cap_flags &
4577 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4578 			netdev->gso_partial_features |=
4579 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4580 
4581 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4582 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4583 		netdev->hw_enc_features |= hw_enc_features;
4584 	}
4585 	/* record features VLANs can make use of */
4586 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4587 
4588 	/* Write features and hw_features separately to avoid polluting
4589 	 * with, or dropping, features that are set when we registered.
4590 	 */
4591 	hw_features = hw_enc_features;
4592 
4593 	/* get HW VLAN features that can be toggled */
4594 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4595 
4596 	/* Enable cloud filter if ADQ is supported */
4597 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4598 		hw_features |= NETIF_F_HW_TC;
4599 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4600 		hw_features |= NETIF_F_GSO_UDP_L4;
4601 
4602 	netdev->hw_features |= hw_features | hw_vlan_features;
4603 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4604 
4605 	netdev->features |= hw_features | vlan_features;
4606 
4607 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4608 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4609 
4610 	netdev->priv_flags |= IFF_UNICAST_FLT;
4611 
4612 	/* Do not turn on offloads when they are requested to be turned off.
4613 	 * TSO needs minimum 576 bytes to work correctly.
4614 	 */
4615 	if (netdev->wanted_features) {
4616 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4617 		    netdev->mtu < 576)
4618 			netdev->features &= ~NETIF_F_TSO;
4619 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4620 		    netdev->mtu < 576)
4621 			netdev->features &= ~NETIF_F_TSO6;
4622 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4623 			netdev->features &= ~NETIF_F_TSO_ECN;
4624 		if (!(netdev->wanted_features & NETIF_F_GRO))
4625 			netdev->features &= ~NETIF_F_GRO;
4626 		if (!(netdev->wanted_features & NETIF_F_GSO))
4627 			netdev->features &= ~NETIF_F_GSO;
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 /**
4634  * iavf_shutdown - Shutdown the device in preparation for a reboot
4635  * @pdev: pci device structure
4636  **/
4637 static void iavf_shutdown(struct pci_dev *pdev)
4638 {
4639 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4640 	struct net_device *netdev = adapter->netdev;
4641 
4642 	netif_device_detach(netdev);
4643 
4644 	if (netif_running(netdev))
4645 		iavf_close(netdev);
4646 
4647 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4648 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4649 	/* Prevent the watchdog from running. */
4650 	iavf_change_state(adapter, __IAVF_REMOVE);
4651 	adapter->aq_required = 0;
4652 	mutex_unlock(&adapter->crit_lock);
4653 
4654 #ifdef CONFIG_PM
4655 	pci_save_state(pdev);
4656 
4657 #endif
4658 	pci_disable_device(pdev);
4659 }
4660 
4661 /**
4662  * iavf_probe - Device Initialization Routine
4663  * @pdev: PCI device information struct
4664  * @ent: entry in iavf_pci_tbl
4665  *
4666  * Returns 0 on success, negative on failure
4667  *
4668  * iavf_probe initializes an adapter identified by a pci_dev structure.
4669  * The OS initialization, configuring of the adapter private structure,
4670  * and a hardware reset occur.
4671  **/
4672 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4673 {
4674 	struct net_device *netdev;
4675 	struct iavf_adapter *adapter = NULL;
4676 	struct iavf_hw *hw = NULL;
4677 	int err;
4678 
4679 	err = pci_enable_device(pdev);
4680 	if (err)
4681 		return err;
4682 
4683 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4684 	if (err) {
4685 		dev_err(&pdev->dev,
4686 			"DMA configuration failed: 0x%x\n", err);
4687 		goto err_dma;
4688 	}
4689 
4690 	err = pci_request_regions(pdev, iavf_driver_name);
4691 	if (err) {
4692 		dev_err(&pdev->dev,
4693 			"pci_request_regions failed 0x%x\n", err);
4694 		goto err_pci_reg;
4695 	}
4696 
4697 	pci_enable_pcie_error_reporting(pdev);
4698 
4699 	pci_set_master(pdev);
4700 
4701 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4702 				   IAVF_MAX_REQ_QUEUES);
4703 	if (!netdev) {
4704 		err = -ENOMEM;
4705 		goto err_alloc_etherdev;
4706 	}
4707 
4708 	SET_NETDEV_DEV(netdev, &pdev->dev);
4709 
4710 	pci_set_drvdata(pdev, netdev);
4711 	adapter = netdev_priv(netdev);
4712 
4713 	adapter->netdev = netdev;
4714 	adapter->pdev = pdev;
4715 
4716 	hw = &adapter->hw;
4717 	hw->back = adapter;
4718 
4719 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4720 	iavf_change_state(adapter, __IAVF_STARTUP);
4721 
4722 	/* Call save state here because it relies on the adapter struct. */
4723 	pci_save_state(pdev);
4724 
4725 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4726 			      pci_resource_len(pdev, 0));
4727 	if (!hw->hw_addr) {
4728 		err = -EIO;
4729 		goto err_ioremap;
4730 	}
4731 	hw->vendor_id = pdev->vendor;
4732 	hw->device_id = pdev->device;
4733 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4734 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4735 	hw->subsystem_device_id = pdev->subsystem_device;
4736 	hw->bus.device = PCI_SLOT(pdev->devfn);
4737 	hw->bus.func = PCI_FUNC(pdev->devfn);
4738 	hw->bus.bus_id = pdev->bus->number;
4739 
4740 	/* set up the locks for the AQ, do this only once in probe
4741 	 * and destroy them only once in remove
4742 	 */
4743 	mutex_init(&adapter->crit_lock);
4744 	mutex_init(&adapter->client_lock);
4745 	mutex_init(&hw->aq.asq_mutex);
4746 	mutex_init(&hw->aq.arq_mutex);
4747 
4748 	spin_lock_init(&adapter->mac_vlan_list_lock);
4749 	spin_lock_init(&adapter->cloud_filter_list_lock);
4750 	spin_lock_init(&adapter->fdir_fltr_lock);
4751 	spin_lock_init(&adapter->adv_rss_lock);
4752 
4753 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4754 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4755 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4756 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4757 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4758 
4759 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4760 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4761 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4762 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4763 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4764 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4765 
4766 	/* Setup the wait queue for indicating transition to down status */
4767 	init_waitqueue_head(&adapter->down_waitqueue);
4768 
4769 	/* Setup the wait queue for indicating virtchannel events */
4770 	init_waitqueue_head(&adapter->vc_waitqueue);
4771 
4772 	return 0;
4773 
4774 err_ioremap:
4775 	free_netdev(netdev);
4776 err_alloc_etherdev:
4777 	pci_disable_pcie_error_reporting(pdev);
4778 	pci_release_regions(pdev);
4779 err_pci_reg:
4780 err_dma:
4781 	pci_disable_device(pdev);
4782 	return err;
4783 }
4784 
4785 /**
4786  * iavf_suspend - Power management suspend routine
4787  * @dev_d: device info pointer
4788  *
4789  * Called when the system (VM) is entering sleep/suspend.
4790  **/
4791 static int __maybe_unused iavf_suspend(struct device *dev_d)
4792 {
4793 	struct net_device *netdev = dev_get_drvdata(dev_d);
4794 	struct iavf_adapter *adapter = netdev_priv(netdev);
4795 
4796 	netif_device_detach(netdev);
4797 
4798 	while (!mutex_trylock(&adapter->crit_lock))
4799 		usleep_range(500, 1000);
4800 
4801 	if (netif_running(netdev)) {
4802 		rtnl_lock();
4803 		iavf_down(adapter);
4804 		rtnl_unlock();
4805 	}
4806 	iavf_free_misc_irq(adapter);
4807 	iavf_reset_interrupt_capability(adapter);
4808 
4809 	mutex_unlock(&adapter->crit_lock);
4810 
4811 	return 0;
4812 }
4813 
4814 /**
4815  * iavf_resume - Power management resume routine
4816  * @dev_d: device info pointer
4817  *
4818  * Called when the system (VM) is resumed from sleep/suspend.
4819  **/
4820 static int __maybe_unused iavf_resume(struct device *dev_d)
4821 {
4822 	struct pci_dev *pdev = to_pci_dev(dev_d);
4823 	struct iavf_adapter *adapter;
4824 	u32 err;
4825 
4826 	adapter = iavf_pdev_to_adapter(pdev);
4827 
4828 	pci_set_master(pdev);
4829 
4830 	rtnl_lock();
4831 	err = iavf_set_interrupt_capability(adapter);
4832 	if (err) {
4833 		rtnl_unlock();
4834 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4835 		return err;
4836 	}
4837 	err = iavf_request_misc_irq(adapter);
4838 	rtnl_unlock();
4839 	if (err) {
4840 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4841 		return err;
4842 	}
4843 
4844 	queue_work(iavf_wq, &adapter->reset_task);
4845 
4846 	netif_device_attach(adapter->netdev);
4847 
4848 	return err;
4849 }
4850 
4851 /**
4852  * iavf_remove - Device Removal Routine
4853  * @pdev: PCI device information struct
4854  *
4855  * iavf_remove is called by the PCI subsystem to alert the driver
4856  * that it should release a PCI device.  The could be caused by a
4857  * Hot-Plug event, or because the driver is going to be removed from
4858  * memory.
4859  **/
4860 static void iavf_remove(struct pci_dev *pdev)
4861 {
4862 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4863 	struct net_device *netdev = adapter->netdev;
4864 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4865 	struct iavf_vlan_filter *vlf, *vlftmp;
4866 	struct iavf_adv_rss *rss, *rsstmp;
4867 	struct iavf_mac_filter *f, *ftmp;
4868 	struct iavf_cloud_filter *cf, *cftmp;
4869 	struct iavf_hw *hw = &adapter->hw;
4870 	int err;
4871 
4872 	/* When reboot/shutdown is in progress no need to do anything
4873 	 * as the adapter is already REMOVE state that was set during
4874 	 * iavf_shutdown() callback.
4875 	 */
4876 	if (adapter->state == __IAVF_REMOVE)
4877 		return;
4878 
4879 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4880 	/* Wait until port initialization is complete.
4881 	 * There are flows where register/unregister netdev may race.
4882 	 */
4883 	while (1) {
4884 		mutex_lock(&adapter->crit_lock);
4885 		if (adapter->state == __IAVF_RUNNING ||
4886 		    adapter->state == __IAVF_DOWN ||
4887 		    adapter->state == __IAVF_INIT_FAILED) {
4888 			mutex_unlock(&adapter->crit_lock);
4889 			break;
4890 		}
4891 
4892 		mutex_unlock(&adapter->crit_lock);
4893 		usleep_range(500, 1000);
4894 	}
4895 	cancel_delayed_work_sync(&adapter->watchdog_task);
4896 
4897 	if (adapter->netdev_registered) {
4898 		rtnl_lock();
4899 		unregister_netdevice(netdev);
4900 		adapter->netdev_registered = false;
4901 		rtnl_unlock();
4902 	}
4903 	if (CLIENT_ALLOWED(adapter)) {
4904 		err = iavf_lan_del_device(adapter);
4905 		if (err)
4906 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4907 				 err);
4908 	}
4909 
4910 	mutex_lock(&adapter->crit_lock);
4911 	dev_info(&adapter->pdev->dev, "Remove device\n");
4912 	iavf_change_state(adapter, __IAVF_REMOVE);
4913 
4914 	iavf_request_reset(adapter);
4915 	msleep(50);
4916 	/* If the FW isn't responding, kick it once, but only once. */
4917 	if (!iavf_asq_done(hw)) {
4918 		iavf_request_reset(adapter);
4919 		msleep(50);
4920 	}
4921 
4922 	iavf_misc_irq_disable(adapter);
4923 	/* Shut down all the garbage mashers on the detention level */
4924 	cancel_work_sync(&adapter->reset_task);
4925 	cancel_delayed_work_sync(&adapter->watchdog_task);
4926 	cancel_work_sync(&adapter->adminq_task);
4927 	cancel_delayed_work_sync(&adapter->client_task);
4928 
4929 	adapter->aq_required = 0;
4930 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4931 
4932 	iavf_free_all_tx_resources(adapter);
4933 	iavf_free_all_rx_resources(adapter);
4934 	iavf_free_misc_irq(adapter);
4935 
4936 	iavf_reset_interrupt_capability(adapter);
4937 	iavf_free_q_vectors(adapter);
4938 
4939 	iavf_free_rss(adapter);
4940 
4941 	if (hw->aq.asq.count)
4942 		iavf_shutdown_adminq(hw);
4943 
4944 	/* destroy the locks only once, here */
4945 	mutex_destroy(&hw->aq.arq_mutex);
4946 	mutex_destroy(&hw->aq.asq_mutex);
4947 	mutex_destroy(&adapter->client_lock);
4948 	mutex_unlock(&adapter->crit_lock);
4949 	mutex_destroy(&adapter->crit_lock);
4950 
4951 	iounmap(hw->hw_addr);
4952 	pci_release_regions(pdev);
4953 	iavf_free_queues(adapter);
4954 	kfree(adapter->vf_res);
4955 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4956 	/* If we got removed before an up/down sequence, we've got a filter
4957 	 * hanging out there that we need to get rid of.
4958 	 */
4959 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4960 		list_del(&f->list);
4961 		kfree(f);
4962 	}
4963 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4964 				 list) {
4965 		list_del(&vlf->list);
4966 		kfree(vlf);
4967 	}
4968 
4969 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4970 
4971 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4972 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4973 		list_del(&cf->list);
4974 		kfree(cf);
4975 	}
4976 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4977 
4978 	spin_lock_bh(&adapter->fdir_fltr_lock);
4979 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4980 		list_del(&fdir->list);
4981 		kfree(fdir);
4982 	}
4983 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4984 
4985 	spin_lock_bh(&adapter->adv_rss_lock);
4986 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4987 				 list) {
4988 		list_del(&rss->list);
4989 		kfree(rss);
4990 	}
4991 	spin_unlock_bh(&adapter->adv_rss_lock);
4992 
4993 	free_netdev(netdev);
4994 
4995 	pci_disable_pcie_error_reporting(pdev);
4996 
4997 	pci_disable_device(pdev);
4998 }
4999 
5000 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5001 
5002 static struct pci_driver iavf_driver = {
5003 	.name      = iavf_driver_name,
5004 	.id_table  = iavf_pci_tbl,
5005 	.probe     = iavf_probe,
5006 	.remove    = iavf_remove,
5007 	.driver.pm = &iavf_pm_ops,
5008 	.shutdown  = iavf_shutdown,
5009 };
5010 
5011 /**
5012  * iavf_init_module - Driver Registration Routine
5013  *
5014  * iavf_init_module is the first routine called when the driver is
5015  * loaded. All it does is register with the PCI subsystem.
5016  **/
5017 static int __init iavf_init_module(void)
5018 {
5019 	pr_info("iavf: %s\n", iavf_driver_string);
5020 
5021 	pr_info("%s\n", iavf_copyright);
5022 
5023 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
5024 				  iavf_driver_name);
5025 	if (!iavf_wq) {
5026 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
5027 		return -ENOMEM;
5028 	}
5029 	return pci_register_driver(&iavf_driver);
5030 }
5031 
5032 module_init(iavf_init_module);
5033 
5034 /**
5035  * iavf_exit_module - Driver Exit Cleanup Routine
5036  *
5037  * iavf_exit_module is called just before the driver is removed
5038  * from memory.
5039  **/
5040 static void __exit iavf_exit_module(void)
5041 {
5042 	pci_unregister_driver(&iavf_driver);
5043 	destroy_workqueue(iavf_wq);
5044 }
5045 
5046 module_exit(iavf_exit_module);
5047 
5048 /* iavf_main.c */
5049