1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 56 * @hw: pointer to the HW structure 57 * @mem: ptr to mem struct to fill out 58 * @size: size of memory requested 59 * @alignment: what to align the allocation to 60 **/ 61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 62 struct iavf_dma_mem *mem, 63 u64 size, u32 alignment) 64 { 65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 66 67 if (!mem) 68 return IAVF_ERR_PARAM; 69 70 mem->size = ALIGN(size, alignment); 71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 72 (dma_addr_t *)&mem->pa, GFP_KERNEL); 73 if (mem->va) 74 return 0; 75 else 76 return IAVF_ERR_NO_MEMORY; 77 } 78 79 /** 80 * iavf_free_dma_mem_d - OS specific memory free for shared code 81 * @hw: pointer to the HW structure 82 * @mem: ptr to mem struct to free 83 **/ 84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 85 struct iavf_dma_mem *mem) 86 { 87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 88 89 if (!mem || !mem->va) 90 return IAVF_ERR_PARAM; 91 dma_free_coherent(&adapter->pdev->dev, mem->size, 92 mem->va, (dma_addr_t)mem->pa); 93 return 0; 94 } 95 96 /** 97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 98 * @hw: pointer to the HW structure 99 * @mem: ptr to mem struct to fill out 100 * @size: size of memory requested 101 **/ 102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 103 struct iavf_virt_mem *mem, u32 size) 104 { 105 if (!mem) 106 return IAVF_ERR_PARAM; 107 108 mem->size = size; 109 mem->va = kzalloc(size, GFP_KERNEL); 110 111 if (mem->va) 112 return 0; 113 else 114 return IAVF_ERR_NO_MEMORY; 115 } 116 117 /** 118 * iavf_free_virt_mem_d - OS specific memory free for shared code 119 * @hw: pointer to the HW structure 120 * @mem: ptr to mem struct to free 121 **/ 122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 123 struct iavf_virt_mem *mem) 124 { 125 if (!mem) 126 return IAVF_ERR_PARAM; 127 128 /* it's ok to kfree a NULL pointer */ 129 kfree(mem->va); 130 131 return 0; 132 } 133 134 /** 135 * iavf_lock_timeout - try to lock mutex but give up after timeout 136 * @lock: mutex that should be locked 137 * @msecs: timeout in msecs 138 * 139 * Returns 0 on success, negative on failure 140 **/ 141 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 142 { 143 unsigned int wait, delay = 10; 144 145 for (wait = 0; wait < msecs; wait += delay) { 146 if (mutex_trylock(lock)) 147 return 0; 148 149 msleep(delay); 150 } 151 152 return -1; 153 } 154 155 /** 156 * iavf_schedule_reset - Set the flags and schedule a reset event 157 * @adapter: board private structure 158 **/ 159 void iavf_schedule_reset(struct iavf_adapter *adapter) 160 { 161 if (!(adapter->flags & 162 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 163 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 164 queue_work(iavf_wq, &adapter->reset_task); 165 } 166 } 167 168 /** 169 * iavf_tx_timeout - Respond to a Tx Hang 170 * @netdev: network interface device structure 171 * @txqueue: queue number that is timing out 172 **/ 173 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 174 { 175 struct iavf_adapter *adapter = netdev_priv(netdev); 176 177 adapter->tx_timeout_count++; 178 iavf_schedule_reset(adapter); 179 } 180 181 /** 182 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 183 * @adapter: board private structure 184 **/ 185 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 186 { 187 struct iavf_hw *hw = &adapter->hw; 188 189 if (!adapter->msix_entries) 190 return; 191 192 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 193 194 iavf_flush(hw); 195 196 synchronize_irq(adapter->msix_entries[0].vector); 197 } 198 199 /** 200 * iavf_misc_irq_enable - Enable default interrupt generation settings 201 * @adapter: board private structure 202 **/ 203 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 204 { 205 struct iavf_hw *hw = &adapter->hw; 206 207 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 208 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 209 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 210 211 iavf_flush(hw); 212 } 213 214 /** 215 * iavf_irq_disable - Mask off interrupt generation on the NIC 216 * @adapter: board private structure 217 **/ 218 static void iavf_irq_disable(struct iavf_adapter *adapter) 219 { 220 int i; 221 struct iavf_hw *hw = &adapter->hw; 222 223 if (!adapter->msix_entries) 224 return; 225 226 for (i = 1; i < adapter->num_msix_vectors; i++) { 227 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 228 synchronize_irq(adapter->msix_entries[i].vector); 229 } 230 iavf_flush(hw); 231 } 232 233 /** 234 * iavf_irq_enable_queues - Enable interrupt for specified queues 235 * @adapter: board private structure 236 * @mask: bitmap of queues to enable 237 **/ 238 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 239 { 240 struct iavf_hw *hw = &adapter->hw; 241 int i; 242 243 for (i = 1; i < adapter->num_msix_vectors; i++) { 244 if (mask & BIT(i - 1)) { 245 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 246 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 247 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 248 } 249 } 250 } 251 252 /** 253 * iavf_irq_enable - Enable default interrupt generation settings 254 * @adapter: board private structure 255 * @flush: boolean value whether to run rd32() 256 **/ 257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 258 { 259 struct iavf_hw *hw = &adapter->hw; 260 261 iavf_misc_irq_enable(adapter); 262 iavf_irq_enable_queues(adapter, ~0); 263 264 if (flush) 265 iavf_flush(hw); 266 } 267 268 /** 269 * iavf_msix_aq - Interrupt handler for vector 0 270 * @irq: interrupt number 271 * @data: pointer to netdev 272 **/ 273 static irqreturn_t iavf_msix_aq(int irq, void *data) 274 { 275 struct net_device *netdev = data; 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 struct iavf_hw *hw = &adapter->hw; 278 279 /* handle non-queue interrupts, these reads clear the registers */ 280 rd32(hw, IAVF_VFINT_ICR01); 281 rd32(hw, IAVF_VFINT_ICR0_ENA1); 282 283 /* schedule work on the private workqueue */ 284 queue_work(iavf_wq, &adapter->adminq_task); 285 286 return IRQ_HANDLED; 287 } 288 289 /** 290 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 291 * @irq: interrupt number 292 * @data: pointer to a q_vector 293 **/ 294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 295 { 296 struct iavf_q_vector *q_vector = data; 297 298 if (!q_vector->tx.ring && !q_vector->rx.ring) 299 return IRQ_HANDLED; 300 301 napi_schedule_irqoff(&q_vector->napi); 302 303 return IRQ_HANDLED; 304 } 305 306 /** 307 * iavf_map_vector_to_rxq - associate irqs with rx queues 308 * @adapter: board private structure 309 * @v_idx: interrupt number 310 * @r_idx: queue number 311 **/ 312 static void 313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 314 { 315 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 316 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 317 struct iavf_hw *hw = &adapter->hw; 318 319 rx_ring->q_vector = q_vector; 320 rx_ring->next = q_vector->rx.ring; 321 rx_ring->vsi = &adapter->vsi; 322 q_vector->rx.ring = rx_ring; 323 q_vector->rx.count++; 324 q_vector->rx.next_update = jiffies + 1; 325 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 326 q_vector->ring_mask |= BIT(r_idx); 327 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 328 q_vector->rx.current_itr >> 1); 329 q_vector->rx.current_itr = q_vector->rx.target_itr; 330 } 331 332 /** 333 * iavf_map_vector_to_txq - associate irqs with tx queues 334 * @adapter: board private structure 335 * @v_idx: interrupt number 336 * @t_idx: queue number 337 **/ 338 static void 339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 340 { 341 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 342 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 343 struct iavf_hw *hw = &adapter->hw; 344 345 tx_ring->q_vector = q_vector; 346 tx_ring->next = q_vector->tx.ring; 347 tx_ring->vsi = &adapter->vsi; 348 q_vector->tx.ring = tx_ring; 349 q_vector->tx.count++; 350 q_vector->tx.next_update = jiffies + 1; 351 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 352 q_vector->num_ringpairs++; 353 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 354 q_vector->tx.target_itr >> 1); 355 q_vector->tx.current_itr = q_vector->tx.target_itr; 356 } 357 358 /** 359 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 360 * @adapter: board private structure to initialize 361 * 362 * This function maps descriptor rings to the queue-specific vectors 363 * we were allotted through the MSI-X enabling code. Ideally, we'd have 364 * one vector per ring/queue, but on a constrained vector budget, we 365 * group the rings as "efficiently" as possible. You would add new 366 * mapping configurations in here. 367 **/ 368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 369 { 370 int rings_remaining = adapter->num_active_queues; 371 int ridx = 0, vidx = 0; 372 int q_vectors; 373 374 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 375 376 for (; ridx < rings_remaining; ridx++) { 377 iavf_map_vector_to_rxq(adapter, vidx, ridx); 378 iavf_map_vector_to_txq(adapter, vidx, ridx); 379 380 /* In the case where we have more queues than vectors, continue 381 * round-robin on vectors until all queues are mapped. 382 */ 383 if (++vidx >= q_vectors) 384 vidx = 0; 385 } 386 387 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 388 } 389 390 /** 391 * iavf_irq_affinity_notify - Callback for affinity changes 392 * @notify: context as to what irq was changed 393 * @mask: the new affinity mask 394 * 395 * This is a callback function used by the irq_set_affinity_notifier function 396 * so that we may register to receive changes to the irq affinity masks. 397 **/ 398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 399 const cpumask_t *mask) 400 { 401 struct iavf_q_vector *q_vector = 402 container_of(notify, struct iavf_q_vector, affinity_notify); 403 404 cpumask_copy(&q_vector->affinity_mask, mask); 405 } 406 407 /** 408 * iavf_irq_affinity_release - Callback for affinity notifier release 409 * @ref: internal core kernel usage 410 * 411 * This is a callback function used by the irq_set_affinity_notifier function 412 * to inform the current notification subscriber that they will no longer 413 * receive notifications. 414 **/ 415 static void iavf_irq_affinity_release(struct kref *ref) {} 416 417 /** 418 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 419 * @adapter: board private structure 420 * @basename: device basename 421 * 422 * Allocates MSI-X vectors for tx and rx handling, and requests 423 * interrupts from the kernel. 424 **/ 425 static int 426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 427 { 428 unsigned int vector, q_vectors; 429 unsigned int rx_int_idx = 0, tx_int_idx = 0; 430 int irq_num, err; 431 int cpu; 432 433 iavf_irq_disable(adapter); 434 /* Decrement for Other and TCP Timer vectors */ 435 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 436 437 for (vector = 0; vector < q_vectors; vector++) { 438 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 439 440 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 441 442 if (q_vector->tx.ring && q_vector->rx.ring) { 443 snprintf(q_vector->name, sizeof(q_vector->name), 444 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 445 tx_int_idx++; 446 } else if (q_vector->rx.ring) { 447 snprintf(q_vector->name, sizeof(q_vector->name), 448 "iavf-%s-rx-%d", basename, rx_int_idx++); 449 } else if (q_vector->tx.ring) { 450 snprintf(q_vector->name, sizeof(q_vector->name), 451 "iavf-%s-tx-%d", basename, tx_int_idx++); 452 } else { 453 /* skip this unused q_vector */ 454 continue; 455 } 456 err = request_irq(irq_num, 457 iavf_msix_clean_rings, 458 0, 459 q_vector->name, 460 q_vector); 461 if (err) { 462 dev_info(&adapter->pdev->dev, 463 "Request_irq failed, error: %d\n", err); 464 goto free_queue_irqs; 465 } 466 /* register for affinity change notifications */ 467 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 468 q_vector->affinity_notify.release = 469 iavf_irq_affinity_release; 470 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 471 /* Spread the IRQ affinity hints across online CPUs. Note that 472 * get_cpu_mask returns a mask with a permanent lifetime so 473 * it's safe to use as a hint for irq_set_affinity_hint. 474 */ 475 cpu = cpumask_local_spread(q_vector->v_idx, -1); 476 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 477 } 478 479 return 0; 480 481 free_queue_irqs: 482 while (vector) { 483 vector--; 484 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 485 irq_set_affinity_notifier(irq_num, NULL); 486 irq_set_affinity_hint(irq_num, NULL); 487 free_irq(irq_num, &adapter->q_vectors[vector]); 488 } 489 return err; 490 } 491 492 /** 493 * iavf_request_misc_irq - Initialize MSI-X interrupts 494 * @adapter: board private structure 495 * 496 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 497 * vector is only for the admin queue, and stays active even when the netdev 498 * is closed. 499 **/ 500 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 501 { 502 struct net_device *netdev = adapter->netdev; 503 int err; 504 505 snprintf(adapter->misc_vector_name, 506 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 507 dev_name(&adapter->pdev->dev)); 508 err = request_irq(adapter->msix_entries[0].vector, 509 &iavf_msix_aq, 0, 510 adapter->misc_vector_name, netdev); 511 if (err) { 512 dev_err(&adapter->pdev->dev, 513 "request_irq for %s failed: %d\n", 514 adapter->misc_vector_name, err); 515 free_irq(adapter->msix_entries[0].vector, netdev); 516 } 517 return err; 518 } 519 520 /** 521 * iavf_free_traffic_irqs - Free MSI-X interrupts 522 * @adapter: board private structure 523 * 524 * Frees all MSI-X vectors other than 0. 525 **/ 526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 527 { 528 int vector, irq_num, q_vectors; 529 530 if (!adapter->msix_entries) 531 return; 532 533 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 534 535 for (vector = 0; vector < q_vectors; vector++) { 536 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 537 irq_set_affinity_notifier(irq_num, NULL); 538 irq_set_affinity_hint(irq_num, NULL); 539 free_irq(irq_num, &adapter->q_vectors[vector]); 540 } 541 } 542 543 /** 544 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 545 * @adapter: board private structure 546 * 547 * Frees MSI-X vector 0. 548 **/ 549 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 550 { 551 struct net_device *netdev = adapter->netdev; 552 553 if (!adapter->msix_entries) 554 return; 555 556 free_irq(adapter->msix_entries[0].vector, netdev); 557 } 558 559 /** 560 * iavf_configure_tx - Configure Transmit Unit after Reset 561 * @adapter: board private structure 562 * 563 * Configure the Tx unit of the MAC after a reset. 564 **/ 565 static void iavf_configure_tx(struct iavf_adapter *adapter) 566 { 567 struct iavf_hw *hw = &adapter->hw; 568 int i; 569 570 for (i = 0; i < adapter->num_active_queues; i++) 571 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 572 } 573 574 /** 575 * iavf_configure_rx - Configure Receive Unit after Reset 576 * @adapter: board private structure 577 * 578 * Configure the Rx unit of the MAC after a reset. 579 **/ 580 static void iavf_configure_rx(struct iavf_adapter *adapter) 581 { 582 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 583 struct iavf_hw *hw = &adapter->hw; 584 int i; 585 586 /* Legacy Rx will always default to a 2048 buffer size. */ 587 #if (PAGE_SIZE < 8192) 588 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 589 struct net_device *netdev = adapter->netdev; 590 591 /* For jumbo frames on systems with 4K pages we have to use 592 * an order 1 page, so we might as well increase the size 593 * of our Rx buffer to make better use of the available space 594 */ 595 rx_buf_len = IAVF_RXBUFFER_3072; 596 597 /* We use a 1536 buffer size for configurations with 598 * standard Ethernet mtu. On x86 this gives us enough room 599 * for shared info and 192 bytes of padding. 600 */ 601 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 602 (netdev->mtu <= ETH_DATA_LEN)) 603 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 604 } 605 #endif 606 607 for (i = 0; i < adapter->num_active_queues; i++) { 608 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 609 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 610 611 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 612 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 613 else 614 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 615 } 616 } 617 618 /** 619 * iavf_find_vlan - Search filter list for specific vlan filter 620 * @adapter: board private structure 621 * @vlan: vlan tag 622 * 623 * Returns ptr to the filter object or NULL. Must be called while holding the 624 * mac_vlan_list_lock. 625 **/ 626 static struct 627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 628 { 629 struct iavf_vlan_filter *f; 630 631 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 632 if (vlan == f->vlan) 633 return f; 634 } 635 return NULL; 636 } 637 638 /** 639 * iavf_add_vlan - Add a vlan filter to the list 640 * @adapter: board private structure 641 * @vlan: VLAN tag 642 * 643 * Returns ptr to the filter object or NULL when no memory available. 644 **/ 645 static struct 646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 647 { 648 struct iavf_vlan_filter *f = NULL; 649 650 spin_lock_bh(&adapter->mac_vlan_list_lock); 651 652 f = iavf_find_vlan(adapter, vlan); 653 if (!f) { 654 f = kzalloc(sizeof(*f), GFP_ATOMIC); 655 if (!f) 656 goto clearout; 657 658 f->vlan = vlan; 659 660 list_add_tail(&f->list, &adapter->vlan_filter_list); 661 f->add = true; 662 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 663 } 664 665 clearout: 666 spin_unlock_bh(&adapter->mac_vlan_list_lock); 667 return f; 668 } 669 670 /** 671 * iavf_del_vlan - Remove a vlan filter from the list 672 * @adapter: board private structure 673 * @vlan: VLAN tag 674 **/ 675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 676 { 677 struct iavf_vlan_filter *f; 678 679 spin_lock_bh(&adapter->mac_vlan_list_lock); 680 681 f = iavf_find_vlan(adapter, vlan); 682 if (f) { 683 f->remove = true; 684 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 685 } 686 687 spin_unlock_bh(&adapter->mac_vlan_list_lock); 688 } 689 690 /** 691 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 692 * @netdev: network device struct 693 * @proto: unused protocol data 694 * @vid: VLAN tag 695 **/ 696 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 697 __always_unused __be16 proto, u16 vid) 698 { 699 struct iavf_adapter *adapter = netdev_priv(netdev); 700 701 if (!VLAN_ALLOWED(adapter)) 702 return -EIO; 703 if (iavf_add_vlan(adapter, vid) == NULL) 704 return -ENOMEM; 705 return 0; 706 } 707 708 /** 709 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 710 * @netdev: network device struct 711 * @proto: unused protocol data 712 * @vid: VLAN tag 713 **/ 714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 715 __always_unused __be16 proto, u16 vid) 716 { 717 struct iavf_adapter *adapter = netdev_priv(netdev); 718 719 if (VLAN_ALLOWED(adapter)) { 720 iavf_del_vlan(adapter, vid); 721 return 0; 722 } 723 return -EIO; 724 } 725 726 /** 727 * iavf_find_filter - Search filter list for specific mac filter 728 * @adapter: board private structure 729 * @macaddr: the MAC address 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 736 const u8 *macaddr) 737 { 738 struct iavf_mac_filter *f; 739 740 if (!macaddr) 741 return NULL; 742 743 list_for_each_entry(f, &adapter->mac_filter_list, list) { 744 if (ether_addr_equal(macaddr, f->macaddr)) 745 return f; 746 } 747 return NULL; 748 } 749 750 /** 751 * iavf_add_filter - Add a mac filter to the filter list 752 * @adapter: board private structure 753 * @macaddr: the MAC address 754 * 755 * Returns ptr to the filter object or NULL when no memory available. 756 **/ 757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 758 const u8 *macaddr) 759 { 760 struct iavf_mac_filter *f; 761 762 if (!macaddr) 763 return NULL; 764 765 f = iavf_find_filter(adapter, macaddr); 766 if (!f) { 767 f = kzalloc(sizeof(*f), GFP_ATOMIC); 768 if (!f) 769 return f; 770 771 ether_addr_copy(f->macaddr, macaddr); 772 773 list_add_tail(&f->list, &adapter->mac_filter_list); 774 f->add = true; 775 f->is_new_mac = true; 776 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 777 } else { 778 f->remove = false; 779 } 780 781 return f; 782 } 783 784 /** 785 * iavf_set_mac - NDO callback to set port mac address 786 * @netdev: network interface device structure 787 * @p: pointer to an address structure 788 * 789 * Returns 0 on success, negative on failure 790 **/ 791 static int iavf_set_mac(struct net_device *netdev, void *p) 792 { 793 struct iavf_adapter *adapter = netdev_priv(netdev); 794 struct iavf_hw *hw = &adapter->hw; 795 struct iavf_mac_filter *f; 796 struct sockaddr *addr = p; 797 798 if (!is_valid_ether_addr(addr->sa_data)) 799 return -EADDRNOTAVAIL; 800 801 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 802 return 0; 803 804 spin_lock_bh(&adapter->mac_vlan_list_lock); 805 806 f = iavf_find_filter(adapter, hw->mac.addr); 807 if (f) { 808 f->remove = true; 809 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 810 } 811 812 f = iavf_add_filter(adapter, addr->sa_data); 813 814 spin_unlock_bh(&adapter->mac_vlan_list_lock); 815 816 if (f) { 817 ether_addr_copy(hw->mac.addr, addr->sa_data); 818 } 819 820 return (f == NULL) ? -ENOMEM : 0; 821 } 822 823 /** 824 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 825 * @netdev: the netdevice 826 * @addr: address to add 827 * 828 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 829 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 830 */ 831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 832 { 833 struct iavf_adapter *adapter = netdev_priv(netdev); 834 835 if (iavf_add_filter(adapter, addr)) 836 return 0; 837 else 838 return -ENOMEM; 839 } 840 841 /** 842 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 843 * @netdev: the netdevice 844 * @addr: address to add 845 * 846 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 847 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 848 */ 849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 850 { 851 struct iavf_adapter *adapter = netdev_priv(netdev); 852 struct iavf_mac_filter *f; 853 854 /* Under some circumstances, we might receive a request to delete 855 * our own device address from our uc list. Because we store the 856 * device address in the VSI's MAC/VLAN filter list, we need to ignore 857 * such requests and not delete our device address from this list. 858 */ 859 if (ether_addr_equal(addr, netdev->dev_addr)) 860 return 0; 861 862 f = iavf_find_filter(adapter, addr); 863 if (f) { 864 f->remove = true; 865 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 866 } 867 return 0; 868 } 869 870 /** 871 * iavf_set_rx_mode - NDO callback to set the netdev filters 872 * @netdev: network interface device structure 873 **/ 874 static void iavf_set_rx_mode(struct net_device *netdev) 875 { 876 struct iavf_adapter *adapter = netdev_priv(netdev); 877 878 spin_lock_bh(&adapter->mac_vlan_list_lock); 879 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 880 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 881 spin_unlock_bh(&adapter->mac_vlan_list_lock); 882 883 if (netdev->flags & IFF_PROMISC && 884 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 885 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 886 else if (!(netdev->flags & IFF_PROMISC) && 887 adapter->flags & IAVF_FLAG_PROMISC_ON) 888 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 889 890 if (netdev->flags & IFF_ALLMULTI && 891 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 892 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 893 else if (!(netdev->flags & IFF_ALLMULTI) && 894 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 895 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 896 } 897 898 /** 899 * iavf_napi_enable_all - enable NAPI on all queue vectors 900 * @adapter: board private structure 901 **/ 902 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 903 { 904 int q_idx; 905 struct iavf_q_vector *q_vector; 906 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 907 908 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 909 struct napi_struct *napi; 910 911 q_vector = &adapter->q_vectors[q_idx]; 912 napi = &q_vector->napi; 913 napi_enable(napi); 914 } 915 } 916 917 /** 918 * iavf_napi_disable_all - disable NAPI on all queue vectors 919 * @adapter: board private structure 920 **/ 921 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 922 { 923 int q_idx; 924 struct iavf_q_vector *q_vector; 925 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 926 927 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 928 q_vector = &adapter->q_vectors[q_idx]; 929 napi_disable(&q_vector->napi); 930 } 931 } 932 933 /** 934 * iavf_configure - set up transmit and receive data structures 935 * @adapter: board private structure 936 **/ 937 static void iavf_configure(struct iavf_adapter *adapter) 938 { 939 struct net_device *netdev = adapter->netdev; 940 int i; 941 942 iavf_set_rx_mode(netdev); 943 944 iavf_configure_tx(adapter); 945 iavf_configure_rx(adapter); 946 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 947 948 for (i = 0; i < adapter->num_active_queues; i++) { 949 struct iavf_ring *ring = &adapter->rx_rings[i]; 950 951 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 952 } 953 } 954 955 /** 956 * iavf_up_complete - Finish the last steps of bringing up a connection 957 * @adapter: board private structure 958 * 959 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 960 **/ 961 static void iavf_up_complete(struct iavf_adapter *adapter) 962 { 963 adapter->state = __IAVF_RUNNING; 964 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 965 966 iavf_napi_enable_all(adapter); 967 968 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 969 if (CLIENT_ENABLED(adapter)) 970 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 971 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 972 } 973 974 /** 975 * iavf_down - Shutdown the connection processing 976 * @adapter: board private structure 977 * 978 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 979 **/ 980 void iavf_down(struct iavf_adapter *adapter) 981 { 982 struct net_device *netdev = adapter->netdev; 983 struct iavf_vlan_filter *vlf; 984 struct iavf_cloud_filter *cf; 985 struct iavf_fdir_fltr *fdir; 986 struct iavf_mac_filter *f; 987 struct iavf_adv_rss *rss; 988 989 if (adapter->state <= __IAVF_DOWN_PENDING) 990 return; 991 992 netif_carrier_off(netdev); 993 netif_tx_disable(netdev); 994 adapter->link_up = false; 995 iavf_napi_disable_all(adapter); 996 iavf_irq_disable(adapter); 997 998 spin_lock_bh(&adapter->mac_vlan_list_lock); 999 1000 /* clear the sync flag on all filters */ 1001 __dev_uc_unsync(adapter->netdev, NULL); 1002 __dev_mc_unsync(adapter->netdev, NULL); 1003 1004 /* remove all MAC filters */ 1005 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1006 f->remove = true; 1007 } 1008 1009 /* remove all VLAN filters */ 1010 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1011 vlf->remove = true; 1012 } 1013 1014 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1015 1016 /* remove all cloud filters */ 1017 spin_lock_bh(&adapter->cloud_filter_list_lock); 1018 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1019 cf->del = true; 1020 } 1021 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1022 1023 /* remove all Flow Director filters */ 1024 spin_lock_bh(&adapter->fdir_fltr_lock); 1025 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1026 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1027 } 1028 spin_unlock_bh(&adapter->fdir_fltr_lock); 1029 1030 /* remove all advance RSS configuration */ 1031 spin_lock_bh(&adapter->adv_rss_lock); 1032 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1033 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1034 spin_unlock_bh(&adapter->adv_rss_lock); 1035 1036 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1037 adapter->state != __IAVF_RESETTING) { 1038 /* cancel any current operation */ 1039 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1040 /* Schedule operations to close down the HW. Don't wait 1041 * here for this to complete. The watchdog is still running 1042 * and it will take care of this. 1043 */ 1044 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1045 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1046 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1047 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1048 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1049 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1050 } 1051 1052 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1053 } 1054 1055 /** 1056 * iavf_acquire_msix_vectors - Setup the MSIX capability 1057 * @adapter: board private structure 1058 * @vectors: number of vectors to request 1059 * 1060 * Work with the OS to set up the MSIX vectors needed. 1061 * 1062 * Returns 0 on success, negative on failure 1063 **/ 1064 static int 1065 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1066 { 1067 int err, vector_threshold; 1068 1069 /* We'll want at least 3 (vector_threshold): 1070 * 0) Other (Admin Queue and link, mostly) 1071 * 1) TxQ[0] Cleanup 1072 * 2) RxQ[0] Cleanup 1073 */ 1074 vector_threshold = MIN_MSIX_COUNT; 1075 1076 /* The more we get, the more we will assign to Tx/Rx Cleanup 1077 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1078 * Right now, we simply care about how many we'll get; we'll 1079 * set them up later while requesting irq's. 1080 */ 1081 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1082 vector_threshold, vectors); 1083 if (err < 0) { 1084 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1085 kfree(adapter->msix_entries); 1086 adapter->msix_entries = NULL; 1087 return err; 1088 } 1089 1090 /* Adjust for only the vectors we'll use, which is minimum 1091 * of max_msix_q_vectors + NONQ_VECS, or the number of 1092 * vectors we were allocated. 1093 */ 1094 adapter->num_msix_vectors = err; 1095 return 0; 1096 } 1097 1098 /** 1099 * iavf_free_queues - Free memory for all rings 1100 * @adapter: board private structure to initialize 1101 * 1102 * Free all of the memory associated with queue pairs. 1103 **/ 1104 static void iavf_free_queues(struct iavf_adapter *adapter) 1105 { 1106 if (!adapter->vsi_res) 1107 return; 1108 adapter->num_active_queues = 0; 1109 kfree(adapter->tx_rings); 1110 adapter->tx_rings = NULL; 1111 kfree(adapter->rx_rings); 1112 adapter->rx_rings = NULL; 1113 } 1114 1115 /** 1116 * iavf_alloc_queues - Allocate memory for all rings 1117 * @adapter: board private structure to initialize 1118 * 1119 * We allocate one ring per queue at run-time since we don't know the 1120 * number of queues at compile-time. The polling_netdev array is 1121 * intended for Multiqueue, but should work fine with a single queue. 1122 **/ 1123 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1124 { 1125 int i, num_active_queues; 1126 1127 /* If we're in reset reallocating queues we don't actually know yet for 1128 * certain the PF gave us the number of queues we asked for but we'll 1129 * assume it did. Once basic reset is finished we'll confirm once we 1130 * start negotiating config with PF. 1131 */ 1132 if (adapter->num_req_queues) 1133 num_active_queues = adapter->num_req_queues; 1134 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1135 adapter->num_tc) 1136 num_active_queues = adapter->ch_config.total_qps; 1137 else 1138 num_active_queues = min_t(int, 1139 adapter->vsi_res->num_queue_pairs, 1140 (int)(num_online_cpus())); 1141 1142 1143 adapter->tx_rings = kcalloc(num_active_queues, 1144 sizeof(struct iavf_ring), GFP_KERNEL); 1145 if (!adapter->tx_rings) 1146 goto err_out; 1147 adapter->rx_rings = kcalloc(num_active_queues, 1148 sizeof(struct iavf_ring), GFP_KERNEL); 1149 if (!adapter->rx_rings) 1150 goto err_out; 1151 1152 for (i = 0; i < num_active_queues; i++) { 1153 struct iavf_ring *tx_ring; 1154 struct iavf_ring *rx_ring; 1155 1156 tx_ring = &adapter->tx_rings[i]; 1157 1158 tx_ring->queue_index = i; 1159 tx_ring->netdev = adapter->netdev; 1160 tx_ring->dev = &adapter->pdev->dev; 1161 tx_ring->count = adapter->tx_desc_count; 1162 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1163 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1164 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1165 1166 rx_ring = &adapter->rx_rings[i]; 1167 rx_ring->queue_index = i; 1168 rx_ring->netdev = adapter->netdev; 1169 rx_ring->dev = &adapter->pdev->dev; 1170 rx_ring->count = adapter->rx_desc_count; 1171 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1172 } 1173 1174 adapter->num_active_queues = num_active_queues; 1175 1176 return 0; 1177 1178 err_out: 1179 iavf_free_queues(adapter); 1180 return -ENOMEM; 1181 } 1182 1183 /** 1184 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1185 * @adapter: board private structure to initialize 1186 * 1187 * Attempt to configure the interrupts using the best available 1188 * capabilities of the hardware and the kernel. 1189 **/ 1190 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1191 { 1192 int vector, v_budget; 1193 int pairs = 0; 1194 int err = 0; 1195 1196 if (!adapter->vsi_res) { 1197 err = -EIO; 1198 goto out; 1199 } 1200 pairs = adapter->num_active_queues; 1201 1202 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1203 * us much good if we have more vectors than CPUs. However, we already 1204 * limit the total number of queues by the number of CPUs so we do not 1205 * need any further limiting here. 1206 */ 1207 v_budget = min_t(int, pairs + NONQ_VECS, 1208 (int)adapter->vf_res->max_vectors); 1209 1210 adapter->msix_entries = kcalloc(v_budget, 1211 sizeof(struct msix_entry), GFP_KERNEL); 1212 if (!adapter->msix_entries) { 1213 err = -ENOMEM; 1214 goto out; 1215 } 1216 1217 for (vector = 0; vector < v_budget; vector++) 1218 adapter->msix_entries[vector].entry = vector; 1219 1220 err = iavf_acquire_msix_vectors(adapter, v_budget); 1221 1222 out: 1223 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1224 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1225 return err; 1226 } 1227 1228 /** 1229 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1230 * @adapter: board private structure 1231 * 1232 * Return 0 on success, negative on failure 1233 **/ 1234 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1235 { 1236 struct iavf_aqc_get_set_rss_key_data *rss_key = 1237 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1238 struct iavf_hw *hw = &adapter->hw; 1239 int ret = 0; 1240 1241 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1242 /* bail because we already have a command pending */ 1243 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1244 adapter->current_op); 1245 return -EBUSY; 1246 } 1247 1248 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1249 if (ret) { 1250 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1251 iavf_stat_str(hw, ret), 1252 iavf_aq_str(hw, hw->aq.asq_last_status)); 1253 return ret; 1254 1255 } 1256 1257 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1258 adapter->rss_lut, adapter->rss_lut_size); 1259 if (ret) { 1260 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1261 iavf_stat_str(hw, ret), 1262 iavf_aq_str(hw, hw->aq.asq_last_status)); 1263 } 1264 1265 return ret; 1266 1267 } 1268 1269 /** 1270 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1271 * @adapter: board private structure 1272 * 1273 * Returns 0 on success, negative on failure 1274 **/ 1275 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1276 { 1277 struct iavf_hw *hw = &adapter->hw; 1278 u32 *dw; 1279 u16 i; 1280 1281 dw = (u32 *)adapter->rss_key; 1282 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1283 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1284 1285 dw = (u32 *)adapter->rss_lut; 1286 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1287 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1288 1289 iavf_flush(hw); 1290 1291 return 0; 1292 } 1293 1294 /** 1295 * iavf_config_rss - Configure RSS keys and lut 1296 * @adapter: board private structure 1297 * 1298 * Returns 0 on success, negative on failure 1299 **/ 1300 int iavf_config_rss(struct iavf_adapter *adapter) 1301 { 1302 1303 if (RSS_PF(adapter)) { 1304 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1305 IAVF_FLAG_AQ_SET_RSS_KEY; 1306 return 0; 1307 } else if (RSS_AQ(adapter)) { 1308 return iavf_config_rss_aq(adapter); 1309 } else { 1310 return iavf_config_rss_reg(adapter); 1311 } 1312 } 1313 1314 /** 1315 * iavf_fill_rss_lut - Fill the lut with default values 1316 * @adapter: board private structure 1317 **/ 1318 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1319 { 1320 u16 i; 1321 1322 for (i = 0; i < adapter->rss_lut_size; i++) 1323 adapter->rss_lut[i] = i % adapter->num_active_queues; 1324 } 1325 1326 /** 1327 * iavf_init_rss - Prepare for RSS 1328 * @adapter: board private structure 1329 * 1330 * Return 0 on success, negative on failure 1331 **/ 1332 static int iavf_init_rss(struct iavf_adapter *adapter) 1333 { 1334 struct iavf_hw *hw = &adapter->hw; 1335 int ret; 1336 1337 if (!RSS_PF(adapter)) { 1338 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1339 if (adapter->vf_res->vf_cap_flags & 1340 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1341 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1342 else 1343 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1344 1345 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1346 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1347 } 1348 1349 iavf_fill_rss_lut(adapter); 1350 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1351 ret = iavf_config_rss(adapter); 1352 1353 return ret; 1354 } 1355 1356 /** 1357 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1358 * @adapter: board private structure to initialize 1359 * 1360 * We allocate one q_vector per queue interrupt. If allocation fails we 1361 * return -ENOMEM. 1362 **/ 1363 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1364 { 1365 int q_idx = 0, num_q_vectors; 1366 struct iavf_q_vector *q_vector; 1367 1368 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1369 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1370 GFP_KERNEL); 1371 if (!adapter->q_vectors) 1372 return -ENOMEM; 1373 1374 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1375 q_vector = &adapter->q_vectors[q_idx]; 1376 q_vector->adapter = adapter; 1377 q_vector->vsi = &adapter->vsi; 1378 q_vector->v_idx = q_idx; 1379 q_vector->reg_idx = q_idx; 1380 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1381 netif_napi_add(adapter->netdev, &q_vector->napi, 1382 iavf_napi_poll, NAPI_POLL_WEIGHT); 1383 } 1384 1385 return 0; 1386 } 1387 1388 /** 1389 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1390 * @adapter: board private structure to initialize 1391 * 1392 * This function frees the memory allocated to the q_vectors. In addition if 1393 * NAPI is enabled it will delete any references to the NAPI struct prior 1394 * to freeing the q_vector. 1395 **/ 1396 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1397 { 1398 int q_idx, num_q_vectors; 1399 int napi_vectors; 1400 1401 if (!adapter->q_vectors) 1402 return; 1403 1404 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1405 napi_vectors = adapter->num_active_queues; 1406 1407 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1408 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1409 1410 if (q_idx < napi_vectors) 1411 netif_napi_del(&q_vector->napi); 1412 } 1413 kfree(adapter->q_vectors); 1414 adapter->q_vectors = NULL; 1415 } 1416 1417 /** 1418 * iavf_reset_interrupt_capability - Reset MSIX setup 1419 * @adapter: board private structure 1420 * 1421 **/ 1422 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1423 { 1424 if (!adapter->msix_entries) 1425 return; 1426 1427 pci_disable_msix(adapter->pdev); 1428 kfree(adapter->msix_entries); 1429 adapter->msix_entries = NULL; 1430 } 1431 1432 /** 1433 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1434 * @adapter: board private structure to initialize 1435 * 1436 **/ 1437 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1438 { 1439 int err; 1440 1441 err = iavf_alloc_queues(adapter); 1442 if (err) { 1443 dev_err(&adapter->pdev->dev, 1444 "Unable to allocate memory for queues\n"); 1445 goto err_alloc_queues; 1446 } 1447 1448 rtnl_lock(); 1449 err = iavf_set_interrupt_capability(adapter); 1450 rtnl_unlock(); 1451 if (err) { 1452 dev_err(&adapter->pdev->dev, 1453 "Unable to setup interrupt capabilities\n"); 1454 goto err_set_interrupt; 1455 } 1456 1457 err = iavf_alloc_q_vectors(adapter); 1458 if (err) { 1459 dev_err(&adapter->pdev->dev, 1460 "Unable to allocate memory for queue vectors\n"); 1461 goto err_alloc_q_vectors; 1462 } 1463 1464 /* If we've made it so far while ADq flag being ON, then we haven't 1465 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1466 * resources have been allocated in the reset path. 1467 * Now we can truly claim that ADq is enabled. 1468 */ 1469 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1470 adapter->num_tc) 1471 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1472 adapter->num_tc); 1473 1474 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1475 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1476 adapter->num_active_queues); 1477 1478 return 0; 1479 err_alloc_q_vectors: 1480 iavf_reset_interrupt_capability(adapter); 1481 err_set_interrupt: 1482 iavf_free_queues(adapter); 1483 err_alloc_queues: 1484 return err; 1485 } 1486 1487 /** 1488 * iavf_free_rss - Free memory used by RSS structs 1489 * @adapter: board private structure 1490 **/ 1491 static void iavf_free_rss(struct iavf_adapter *adapter) 1492 { 1493 kfree(adapter->rss_key); 1494 adapter->rss_key = NULL; 1495 1496 kfree(adapter->rss_lut); 1497 adapter->rss_lut = NULL; 1498 } 1499 1500 /** 1501 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1502 * @adapter: board private structure 1503 * 1504 * Returns 0 on success, negative on failure 1505 **/ 1506 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1507 { 1508 struct net_device *netdev = adapter->netdev; 1509 int err; 1510 1511 if (netif_running(netdev)) 1512 iavf_free_traffic_irqs(adapter); 1513 iavf_free_misc_irq(adapter); 1514 iavf_reset_interrupt_capability(adapter); 1515 iavf_free_q_vectors(adapter); 1516 iavf_free_queues(adapter); 1517 1518 err = iavf_init_interrupt_scheme(adapter); 1519 if (err) 1520 goto err; 1521 1522 netif_tx_stop_all_queues(netdev); 1523 1524 err = iavf_request_misc_irq(adapter); 1525 if (err) 1526 goto err; 1527 1528 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1529 1530 iavf_map_rings_to_vectors(adapter); 1531 err: 1532 return err; 1533 } 1534 1535 /** 1536 * iavf_process_aq_command - process aq_required flags 1537 * and sends aq command 1538 * @adapter: pointer to iavf adapter structure 1539 * 1540 * Returns 0 on success 1541 * Returns error code if no command was sent 1542 * or error code if the command failed. 1543 **/ 1544 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1545 { 1546 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1547 return iavf_send_vf_config_msg(adapter); 1548 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1549 iavf_disable_queues(adapter); 1550 return 0; 1551 } 1552 1553 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1554 iavf_map_queues(adapter); 1555 return 0; 1556 } 1557 1558 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1559 iavf_add_ether_addrs(adapter); 1560 return 0; 1561 } 1562 1563 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1564 iavf_add_vlans(adapter); 1565 return 0; 1566 } 1567 1568 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1569 iavf_del_ether_addrs(adapter); 1570 return 0; 1571 } 1572 1573 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1574 iavf_del_vlans(adapter); 1575 return 0; 1576 } 1577 1578 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1579 iavf_enable_vlan_stripping(adapter); 1580 return 0; 1581 } 1582 1583 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1584 iavf_disable_vlan_stripping(adapter); 1585 return 0; 1586 } 1587 1588 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1589 iavf_configure_queues(adapter); 1590 return 0; 1591 } 1592 1593 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1594 iavf_enable_queues(adapter); 1595 return 0; 1596 } 1597 1598 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1599 /* This message goes straight to the firmware, not the 1600 * PF, so we don't have to set current_op as we will 1601 * not get a response through the ARQ. 1602 */ 1603 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1604 return 0; 1605 } 1606 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1607 iavf_get_hena(adapter); 1608 return 0; 1609 } 1610 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1611 iavf_set_hena(adapter); 1612 return 0; 1613 } 1614 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1615 iavf_set_rss_key(adapter); 1616 return 0; 1617 } 1618 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1619 iavf_set_rss_lut(adapter); 1620 return 0; 1621 } 1622 1623 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1624 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1625 FLAG_VF_MULTICAST_PROMISC); 1626 return 0; 1627 } 1628 1629 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1630 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1631 return 0; 1632 } 1633 1634 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1635 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1636 iavf_set_promiscuous(adapter, 0); 1637 return 0; 1638 } 1639 1640 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1641 iavf_enable_channels(adapter); 1642 return 0; 1643 } 1644 1645 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1646 iavf_disable_channels(adapter); 1647 return 0; 1648 } 1649 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1650 iavf_add_cloud_filter(adapter); 1651 return 0; 1652 } 1653 1654 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1655 iavf_del_cloud_filter(adapter); 1656 return 0; 1657 } 1658 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1659 iavf_del_cloud_filter(adapter); 1660 return 0; 1661 } 1662 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1663 iavf_add_cloud_filter(adapter); 1664 return 0; 1665 } 1666 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1667 iavf_add_fdir_filter(adapter); 1668 return IAVF_SUCCESS; 1669 } 1670 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1671 iavf_del_fdir_filter(adapter); 1672 return IAVF_SUCCESS; 1673 } 1674 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1675 iavf_add_adv_rss_cfg(adapter); 1676 return 0; 1677 } 1678 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1679 iavf_del_adv_rss_cfg(adapter); 1680 return 0; 1681 } 1682 return -EAGAIN; 1683 } 1684 1685 /** 1686 * iavf_startup - first step of driver startup 1687 * @adapter: board private structure 1688 * 1689 * Function process __IAVF_STARTUP driver state. 1690 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1691 * when fails it returns -EAGAIN 1692 **/ 1693 static int iavf_startup(struct iavf_adapter *adapter) 1694 { 1695 struct pci_dev *pdev = adapter->pdev; 1696 struct iavf_hw *hw = &adapter->hw; 1697 int err; 1698 1699 WARN_ON(adapter->state != __IAVF_STARTUP); 1700 1701 /* driver loaded, probe complete */ 1702 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1703 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1704 err = iavf_set_mac_type(hw); 1705 if (err) { 1706 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1707 goto err; 1708 } 1709 1710 err = iavf_check_reset_complete(hw); 1711 if (err) { 1712 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1713 err); 1714 goto err; 1715 } 1716 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1717 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1718 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1719 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1720 1721 err = iavf_init_adminq(hw); 1722 if (err) { 1723 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1724 goto err; 1725 } 1726 err = iavf_send_api_ver(adapter); 1727 if (err) { 1728 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1729 iavf_shutdown_adminq(hw); 1730 goto err; 1731 } 1732 adapter->state = __IAVF_INIT_VERSION_CHECK; 1733 err: 1734 return err; 1735 } 1736 1737 /** 1738 * iavf_init_version_check - second step of driver startup 1739 * @adapter: board private structure 1740 * 1741 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1742 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1743 * when fails it returns -EAGAIN 1744 **/ 1745 static int iavf_init_version_check(struct iavf_adapter *adapter) 1746 { 1747 struct pci_dev *pdev = adapter->pdev; 1748 struct iavf_hw *hw = &adapter->hw; 1749 int err = -EAGAIN; 1750 1751 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1752 1753 if (!iavf_asq_done(hw)) { 1754 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1755 iavf_shutdown_adminq(hw); 1756 adapter->state = __IAVF_STARTUP; 1757 goto err; 1758 } 1759 1760 /* aq msg sent, awaiting reply */ 1761 err = iavf_verify_api_ver(adapter); 1762 if (err) { 1763 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1764 err = iavf_send_api_ver(adapter); 1765 else 1766 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1767 adapter->pf_version.major, 1768 adapter->pf_version.minor, 1769 VIRTCHNL_VERSION_MAJOR, 1770 VIRTCHNL_VERSION_MINOR); 1771 goto err; 1772 } 1773 err = iavf_send_vf_config_msg(adapter); 1774 if (err) { 1775 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1776 err); 1777 goto err; 1778 } 1779 adapter->state = __IAVF_INIT_GET_RESOURCES; 1780 1781 err: 1782 return err; 1783 } 1784 1785 /** 1786 * iavf_init_get_resources - third step of driver startup 1787 * @adapter: board private structure 1788 * 1789 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1790 * finishes driver initialization procedure. 1791 * When success the state is changed to __IAVF_DOWN 1792 * when fails it returns -EAGAIN 1793 **/ 1794 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1795 { 1796 struct net_device *netdev = adapter->netdev; 1797 struct pci_dev *pdev = adapter->pdev; 1798 struct iavf_hw *hw = &adapter->hw; 1799 int err; 1800 1801 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1802 /* aq msg sent, awaiting reply */ 1803 if (!adapter->vf_res) { 1804 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 1805 GFP_KERNEL); 1806 if (!adapter->vf_res) { 1807 err = -ENOMEM; 1808 goto err; 1809 } 1810 } 1811 err = iavf_get_vf_config(adapter); 1812 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1813 err = iavf_send_vf_config_msg(adapter); 1814 goto err; 1815 } else if (err == IAVF_ERR_PARAM) { 1816 /* We only get ERR_PARAM if the device is in a very bad 1817 * state or if we've been disabled for previous bad 1818 * behavior. Either way, we're done now. 1819 */ 1820 iavf_shutdown_adminq(hw); 1821 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1822 return 0; 1823 } 1824 if (err) { 1825 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1826 goto err_alloc; 1827 } 1828 1829 err = iavf_process_config(adapter); 1830 if (err) 1831 goto err_alloc; 1832 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1833 1834 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1835 1836 netdev->netdev_ops = &iavf_netdev_ops; 1837 iavf_set_ethtool_ops(netdev); 1838 netdev->watchdog_timeo = 5 * HZ; 1839 1840 /* MTU range: 68 - 9710 */ 1841 netdev->min_mtu = ETH_MIN_MTU; 1842 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1843 1844 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1845 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1846 adapter->hw.mac.addr); 1847 eth_hw_addr_random(netdev); 1848 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1849 } else { 1850 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1851 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1852 } 1853 1854 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1855 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1856 err = iavf_init_interrupt_scheme(adapter); 1857 if (err) 1858 goto err_sw_init; 1859 iavf_map_rings_to_vectors(adapter); 1860 if (adapter->vf_res->vf_cap_flags & 1861 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1862 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1863 1864 err = iavf_request_misc_irq(adapter); 1865 if (err) 1866 goto err_sw_init; 1867 1868 netif_carrier_off(netdev); 1869 adapter->link_up = false; 1870 1871 /* set the semaphore to prevent any callbacks after device registration 1872 * up to time when state of driver will be set to __IAVF_DOWN 1873 */ 1874 rtnl_lock(); 1875 if (!adapter->netdev_registered) { 1876 err = register_netdevice(netdev); 1877 if (err) { 1878 rtnl_unlock(); 1879 goto err_register; 1880 } 1881 } 1882 1883 adapter->netdev_registered = true; 1884 1885 netif_tx_stop_all_queues(netdev); 1886 if (CLIENT_ALLOWED(adapter)) { 1887 err = iavf_lan_add_device(adapter); 1888 if (err) 1889 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1890 err); 1891 } 1892 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1893 if (netdev->features & NETIF_F_GRO) 1894 dev_info(&pdev->dev, "GRO is enabled\n"); 1895 1896 adapter->state = __IAVF_DOWN; 1897 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1898 rtnl_unlock(); 1899 1900 iavf_misc_irq_enable(adapter); 1901 wake_up(&adapter->down_waitqueue); 1902 1903 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1904 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1905 if (!adapter->rss_key || !adapter->rss_lut) { 1906 err = -ENOMEM; 1907 goto err_mem; 1908 } 1909 if (RSS_AQ(adapter)) 1910 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1911 else 1912 iavf_init_rss(adapter); 1913 1914 return err; 1915 err_mem: 1916 iavf_free_rss(adapter); 1917 err_register: 1918 iavf_free_misc_irq(adapter); 1919 err_sw_init: 1920 iavf_reset_interrupt_capability(adapter); 1921 err_alloc: 1922 kfree(adapter->vf_res); 1923 adapter->vf_res = NULL; 1924 err: 1925 return err; 1926 } 1927 1928 /** 1929 * iavf_watchdog_task - Periodic call-back task 1930 * @work: pointer to work_struct 1931 **/ 1932 static void iavf_watchdog_task(struct work_struct *work) 1933 { 1934 struct iavf_adapter *adapter = container_of(work, 1935 struct iavf_adapter, 1936 watchdog_task.work); 1937 struct iavf_hw *hw = &adapter->hw; 1938 u32 reg_val; 1939 1940 if (!mutex_trylock(&adapter->crit_lock)) 1941 goto restart_watchdog; 1942 1943 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1944 adapter->state = __IAVF_COMM_FAILED; 1945 1946 switch (adapter->state) { 1947 case __IAVF_COMM_FAILED: 1948 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1949 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1950 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1951 reg_val == VIRTCHNL_VFR_COMPLETED) { 1952 /* A chance for redemption! */ 1953 dev_err(&adapter->pdev->dev, 1954 "Hardware came out of reset. Attempting reinit.\n"); 1955 adapter->state = __IAVF_STARTUP; 1956 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1957 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1958 mutex_unlock(&adapter->crit_lock); 1959 /* Don't reschedule the watchdog, since we've restarted 1960 * the init task. When init_task contacts the PF and 1961 * gets everything set up again, it'll restart the 1962 * watchdog for us. Down, boy. Sit. Stay. Woof. 1963 */ 1964 return; 1965 } 1966 adapter->aq_required = 0; 1967 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1968 mutex_unlock(&adapter->crit_lock); 1969 queue_delayed_work(iavf_wq, 1970 &adapter->watchdog_task, 1971 msecs_to_jiffies(10)); 1972 goto watchdog_done; 1973 case __IAVF_RESETTING: 1974 mutex_unlock(&adapter->crit_lock); 1975 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1976 return; 1977 case __IAVF_DOWN: 1978 case __IAVF_DOWN_PENDING: 1979 case __IAVF_TESTING: 1980 case __IAVF_RUNNING: 1981 if (adapter->current_op) { 1982 if (!iavf_asq_done(hw)) { 1983 dev_dbg(&adapter->pdev->dev, 1984 "Admin queue timeout\n"); 1985 iavf_send_api_ver(adapter); 1986 } 1987 } else { 1988 /* An error will be returned if no commands were 1989 * processed; use this opportunity to update stats 1990 */ 1991 if (iavf_process_aq_command(adapter) && 1992 adapter->state == __IAVF_RUNNING) 1993 iavf_request_stats(adapter); 1994 } 1995 break; 1996 case __IAVF_REMOVE: 1997 mutex_unlock(&adapter->crit_lock); 1998 return; 1999 default: 2000 goto restart_watchdog; 2001 } 2002 2003 /* check for hw reset */ 2004 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2005 if (!reg_val) { 2006 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2007 adapter->aq_required = 0; 2008 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2009 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2010 queue_work(iavf_wq, &adapter->reset_task); 2011 goto watchdog_done; 2012 } 2013 2014 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2015 watchdog_done: 2016 if (adapter->state == __IAVF_RUNNING || 2017 adapter->state == __IAVF_COMM_FAILED) 2018 iavf_detect_recover_hung(&adapter->vsi); 2019 mutex_unlock(&adapter->crit_lock); 2020 restart_watchdog: 2021 if (adapter->aq_required) 2022 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2023 msecs_to_jiffies(20)); 2024 else 2025 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2026 queue_work(iavf_wq, &adapter->adminq_task); 2027 } 2028 2029 static void iavf_disable_vf(struct iavf_adapter *adapter) 2030 { 2031 struct iavf_mac_filter *f, *ftmp; 2032 struct iavf_vlan_filter *fv, *fvtmp; 2033 struct iavf_cloud_filter *cf, *cftmp; 2034 2035 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2036 2037 /* We don't use netif_running() because it may be true prior to 2038 * ndo_open() returning, so we can't assume it means all our open 2039 * tasks have finished, since we're not holding the rtnl_lock here. 2040 */ 2041 if (adapter->state == __IAVF_RUNNING) { 2042 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2043 netif_carrier_off(adapter->netdev); 2044 netif_tx_disable(adapter->netdev); 2045 adapter->link_up = false; 2046 iavf_napi_disable_all(adapter); 2047 iavf_irq_disable(adapter); 2048 iavf_free_traffic_irqs(adapter); 2049 iavf_free_all_tx_resources(adapter); 2050 iavf_free_all_rx_resources(adapter); 2051 } 2052 2053 spin_lock_bh(&adapter->mac_vlan_list_lock); 2054 2055 /* Delete all of the filters */ 2056 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2057 list_del(&f->list); 2058 kfree(f); 2059 } 2060 2061 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2062 list_del(&fv->list); 2063 kfree(fv); 2064 } 2065 2066 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2067 2068 spin_lock_bh(&adapter->cloud_filter_list_lock); 2069 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2070 list_del(&cf->list); 2071 kfree(cf); 2072 adapter->num_cloud_filters--; 2073 } 2074 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2075 2076 iavf_free_misc_irq(adapter); 2077 iavf_reset_interrupt_capability(adapter); 2078 iavf_free_queues(adapter); 2079 iavf_free_q_vectors(adapter); 2080 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2081 iavf_shutdown_adminq(&adapter->hw); 2082 adapter->netdev->flags &= ~IFF_UP; 2083 mutex_unlock(&adapter->crit_lock); 2084 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2085 adapter->state = __IAVF_DOWN; 2086 wake_up(&adapter->down_waitqueue); 2087 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2088 } 2089 2090 /** 2091 * iavf_reset_task - Call-back task to handle hardware reset 2092 * @work: pointer to work_struct 2093 * 2094 * During reset we need to shut down and reinitialize the admin queue 2095 * before we can use it to communicate with the PF again. We also clear 2096 * and reinit the rings because that context is lost as well. 2097 **/ 2098 static void iavf_reset_task(struct work_struct *work) 2099 { 2100 struct iavf_adapter *adapter = container_of(work, 2101 struct iavf_adapter, 2102 reset_task); 2103 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2104 struct net_device *netdev = adapter->netdev; 2105 struct iavf_hw *hw = &adapter->hw; 2106 struct iavf_mac_filter *f, *ftmp; 2107 struct iavf_vlan_filter *vlf; 2108 struct iavf_cloud_filter *cf; 2109 u32 reg_val; 2110 int i = 0, err; 2111 bool running; 2112 2113 /* When device is being removed it doesn't make sense to run the reset 2114 * task, just return in such a case. 2115 */ 2116 if (mutex_is_locked(&adapter->remove_lock)) 2117 return; 2118 2119 if (iavf_lock_timeout(&adapter->crit_lock, 200)) { 2120 schedule_work(&adapter->reset_task); 2121 return; 2122 } 2123 while (!mutex_trylock(&adapter->client_lock)) 2124 usleep_range(500, 1000); 2125 if (CLIENT_ENABLED(adapter)) { 2126 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2127 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2128 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2129 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2130 cancel_delayed_work_sync(&adapter->client_task); 2131 iavf_notify_client_close(&adapter->vsi, true); 2132 } 2133 iavf_misc_irq_disable(adapter); 2134 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2135 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2136 /* Restart the AQ here. If we have been reset but didn't 2137 * detect it, or if the PF had to reinit, our AQ will be hosed. 2138 */ 2139 iavf_shutdown_adminq(hw); 2140 iavf_init_adminq(hw); 2141 iavf_request_reset(adapter); 2142 } 2143 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2144 2145 /* poll until we see the reset actually happen */ 2146 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2147 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2148 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2149 if (!reg_val) 2150 break; 2151 usleep_range(5000, 10000); 2152 } 2153 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2154 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2155 goto continue_reset; /* act like the reset happened */ 2156 } 2157 2158 /* wait until the reset is complete and the PF is responding to us */ 2159 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2160 /* sleep first to make sure a minimum wait time is met */ 2161 msleep(IAVF_RESET_WAIT_MS); 2162 2163 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2164 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2165 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2166 break; 2167 } 2168 2169 pci_set_master(adapter->pdev); 2170 2171 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2172 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2173 reg_val); 2174 iavf_disable_vf(adapter); 2175 mutex_unlock(&adapter->client_lock); 2176 return; /* Do not attempt to reinit. It's dead, Jim. */ 2177 } 2178 2179 continue_reset: 2180 /* We don't use netif_running() because it may be true prior to 2181 * ndo_open() returning, so we can't assume it means all our open 2182 * tasks have finished, since we're not holding the rtnl_lock here. 2183 */ 2184 running = ((adapter->state == __IAVF_RUNNING) || 2185 (adapter->state == __IAVF_RESETTING)); 2186 2187 if (running) { 2188 netif_carrier_off(netdev); 2189 netif_tx_stop_all_queues(netdev); 2190 adapter->link_up = false; 2191 iavf_napi_disable_all(adapter); 2192 } 2193 iavf_irq_disable(adapter); 2194 2195 adapter->state = __IAVF_RESETTING; 2196 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2197 2198 /* free the Tx/Rx rings and descriptors, might be better to just 2199 * re-use them sometime in the future 2200 */ 2201 iavf_free_all_rx_resources(adapter); 2202 iavf_free_all_tx_resources(adapter); 2203 2204 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2205 /* kill and reinit the admin queue */ 2206 iavf_shutdown_adminq(hw); 2207 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2208 err = iavf_init_adminq(hw); 2209 if (err) 2210 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2211 err); 2212 adapter->aq_required = 0; 2213 2214 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2215 err = iavf_reinit_interrupt_scheme(adapter); 2216 if (err) 2217 goto reset_err; 2218 } 2219 2220 if (RSS_AQ(adapter)) { 2221 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2222 } else { 2223 err = iavf_init_rss(adapter); 2224 if (err) 2225 goto reset_err; 2226 } 2227 2228 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2229 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2230 2231 spin_lock_bh(&adapter->mac_vlan_list_lock); 2232 2233 /* Delete filter for the current MAC address, it could have 2234 * been changed by the PF via administratively set MAC. 2235 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2236 */ 2237 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2238 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2239 list_del(&f->list); 2240 kfree(f); 2241 } 2242 } 2243 /* re-add all MAC filters */ 2244 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2245 f->add = true; 2246 } 2247 /* re-add all VLAN filters */ 2248 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2249 vlf->add = true; 2250 } 2251 2252 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2253 2254 /* check if TCs are running and re-add all cloud filters */ 2255 spin_lock_bh(&adapter->cloud_filter_list_lock); 2256 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2257 adapter->num_tc) { 2258 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2259 cf->add = true; 2260 } 2261 } 2262 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2263 2264 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2265 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2266 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2267 iavf_misc_irq_enable(adapter); 2268 2269 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2270 2271 /* We were running when the reset started, so we need to restore some 2272 * state here. 2273 */ 2274 if (running) { 2275 /* allocate transmit descriptors */ 2276 err = iavf_setup_all_tx_resources(adapter); 2277 if (err) 2278 goto reset_err; 2279 2280 /* allocate receive descriptors */ 2281 err = iavf_setup_all_rx_resources(adapter); 2282 if (err) 2283 goto reset_err; 2284 2285 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2286 err = iavf_request_traffic_irqs(adapter, netdev->name); 2287 if (err) 2288 goto reset_err; 2289 2290 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2291 } 2292 2293 iavf_configure(adapter); 2294 2295 iavf_up_complete(adapter); 2296 2297 iavf_irq_enable(adapter, true); 2298 } else { 2299 adapter->state = __IAVF_DOWN; 2300 wake_up(&adapter->down_waitqueue); 2301 } 2302 mutex_unlock(&adapter->client_lock); 2303 mutex_unlock(&adapter->crit_lock); 2304 2305 return; 2306 reset_err: 2307 mutex_unlock(&adapter->client_lock); 2308 mutex_unlock(&adapter->crit_lock); 2309 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2310 iavf_close(netdev); 2311 } 2312 2313 /** 2314 * iavf_adminq_task - worker thread to clean the admin queue 2315 * @work: pointer to work_struct containing our data 2316 **/ 2317 static void iavf_adminq_task(struct work_struct *work) 2318 { 2319 struct iavf_adapter *adapter = 2320 container_of(work, struct iavf_adapter, adminq_task); 2321 struct iavf_hw *hw = &adapter->hw; 2322 struct iavf_arq_event_info event; 2323 enum virtchnl_ops v_op; 2324 enum iavf_status ret, v_ret; 2325 u32 val, oldval; 2326 u16 pending; 2327 2328 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2329 goto out; 2330 2331 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2332 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2333 if (!event.msg_buf) 2334 goto out; 2335 2336 if (iavf_lock_timeout(&adapter->crit_lock, 200)) 2337 goto freedom; 2338 do { 2339 ret = iavf_clean_arq_element(hw, &event, &pending); 2340 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2341 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2342 2343 if (ret || !v_op) 2344 break; /* No event to process or error cleaning ARQ */ 2345 2346 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2347 event.msg_len); 2348 if (pending != 0) 2349 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2350 } while (pending); 2351 mutex_unlock(&adapter->crit_lock); 2352 2353 if ((adapter->flags & 2354 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2355 adapter->state == __IAVF_RESETTING) 2356 goto freedom; 2357 2358 /* check for error indications */ 2359 val = rd32(hw, hw->aq.arq.len); 2360 if (val == 0xdeadbeef) /* indicates device in reset */ 2361 goto freedom; 2362 oldval = val; 2363 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2364 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2365 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2366 } 2367 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2368 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2369 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2370 } 2371 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2372 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2373 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2374 } 2375 if (oldval != val) 2376 wr32(hw, hw->aq.arq.len, val); 2377 2378 val = rd32(hw, hw->aq.asq.len); 2379 oldval = val; 2380 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2381 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2382 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2383 } 2384 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2385 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2386 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2387 } 2388 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2389 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2390 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2391 } 2392 if (oldval != val) 2393 wr32(hw, hw->aq.asq.len, val); 2394 2395 freedom: 2396 kfree(event.msg_buf); 2397 out: 2398 /* re-enable Admin queue interrupt cause */ 2399 iavf_misc_irq_enable(adapter); 2400 } 2401 2402 /** 2403 * iavf_client_task - worker thread to perform client work 2404 * @work: pointer to work_struct containing our data 2405 * 2406 * This task handles client interactions. Because client calls can be 2407 * reentrant, we can't handle them in the watchdog. 2408 **/ 2409 static void iavf_client_task(struct work_struct *work) 2410 { 2411 struct iavf_adapter *adapter = 2412 container_of(work, struct iavf_adapter, client_task.work); 2413 2414 /* If we can't get the client bit, just give up. We'll be rescheduled 2415 * later. 2416 */ 2417 2418 if (!mutex_trylock(&adapter->client_lock)) 2419 return; 2420 2421 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2422 iavf_client_subtask(adapter); 2423 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2424 goto out; 2425 } 2426 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2427 iavf_notify_client_l2_params(&adapter->vsi); 2428 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2429 goto out; 2430 } 2431 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2432 iavf_notify_client_close(&adapter->vsi, false); 2433 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2434 goto out; 2435 } 2436 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2437 iavf_notify_client_open(&adapter->vsi); 2438 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2439 } 2440 out: 2441 mutex_unlock(&adapter->client_lock); 2442 } 2443 2444 /** 2445 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2446 * @adapter: board private structure 2447 * 2448 * Free all transmit software resources 2449 **/ 2450 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2451 { 2452 int i; 2453 2454 if (!adapter->tx_rings) 2455 return; 2456 2457 for (i = 0; i < adapter->num_active_queues; i++) 2458 if (adapter->tx_rings[i].desc) 2459 iavf_free_tx_resources(&adapter->tx_rings[i]); 2460 } 2461 2462 /** 2463 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2464 * @adapter: board private structure 2465 * 2466 * If this function returns with an error, then it's possible one or 2467 * more of the rings is populated (while the rest are not). It is the 2468 * callers duty to clean those orphaned rings. 2469 * 2470 * Return 0 on success, negative on failure 2471 **/ 2472 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2473 { 2474 int i, err = 0; 2475 2476 for (i = 0; i < adapter->num_active_queues; i++) { 2477 adapter->tx_rings[i].count = adapter->tx_desc_count; 2478 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2479 if (!err) 2480 continue; 2481 dev_err(&adapter->pdev->dev, 2482 "Allocation for Tx Queue %u failed\n", i); 2483 break; 2484 } 2485 2486 return err; 2487 } 2488 2489 /** 2490 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2491 * @adapter: board private structure 2492 * 2493 * If this function returns with an error, then it's possible one or 2494 * more of the rings is populated (while the rest are not). It is the 2495 * callers duty to clean those orphaned rings. 2496 * 2497 * Return 0 on success, negative on failure 2498 **/ 2499 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2500 { 2501 int i, err = 0; 2502 2503 for (i = 0; i < adapter->num_active_queues; i++) { 2504 adapter->rx_rings[i].count = adapter->rx_desc_count; 2505 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2506 if (!err) 2507 continue; 2508 dev_err(&adapter->pdev->dev, 2509 "Allocation for Rx Queue %u failed\n", i); 2510 break; 2511 } 2512 return err; 2513 } 2514 2515 /** 2516 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2517 * @adapter: board private structure 2518 * 2519 * Free all receive software resources 2520 **/ 2521 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2522 { 2523 int i; 2524 2525 if (!adapter->rx_rings) 2526 return; 2527 2528 for (i = 0; i < adapter->num_active_queues; i++) 2529 if (adapter->rx_rings[i].desc) 2530 iavf_free_rx_resources(&adapter->rx_rings[i]); 2531 } 2532 2533 /** 2534 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2535 * @adapter: board private structure 2536 * @max_tx_rate: max Tx bw for a tc 2537 **/ 2538 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2539 u64 max_tx_rate) 2540 { 2541 int speed = 0, ret = 0; 2542 2543 if (ADV_LINK_SUPPORT(adapter)) { 2544 if (adapter->link_speed_mbps < U32_MAX) { 2545 speed = adapter->link_speed_mbps; 2546 goto validate_bw; 2547 } else { 2548 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 2549 return -EINVAL; 2550 } 2551 } 2552 2553 switch (adapter->link_speed) { 2554 case VIRTCHNL_LINK_SPEED_40GB: 2555 speed = SPEED_40000; 2556 break; 2557 case VIRTCHNL_LINK_SPEED_25GB: 2558 speed = SPEED_25000; 2559 break; 2560 case VIRTCHNL_LINK_SPEED_20GB: 2561 speed = SPEED_20000; 2562 break; 2563 case VIRTCHNL_LINK_SPEED_10GB: 2564 speed = SPEED_10000; 2565 break; 2566 case VIRTCHNL_LINK_SPEED_5GB: 2567 speed = SPEED_5000; 2568 break; 2569 case VIRTCHNL_LINK_SPEED_2_5GB: 2570 speed = SPEED_2500; 2571 break; 2572 case VIRTCHNL_LINK_SPEED_1GB: 2573 speed = SPEED_1000; 2574 break; 2575 case VIRTCHNL_LINK_SPEED_100MB: 2576 speed = SPEED_100; 2577 break; 2578 default: 2579 break; 2580 } 2581 2582 validate_bw: 2583 if (max_tx_rate > speed) { 2584 dev_err(&adapter->pdev->dev, 2585 "Invalid tx rate specified\n"); 2586 ret = -EINVAL; 2587 } 2588 2589 return ret; 2590 } 2591 2592 /** 2593 * iavf_validate_ch_config - validate queue mapping info 2594 * @adapter: board private structure 2595 * @mqprio_qopt: queue parameters 2596 * 2597 * This function validates if the config provided by the user to 2598 * configure queue channels is valid or not. Returns 0 on a valid 2599 * config. 2600 **/ 2601 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2602 struct tc_mqprio_qopt_offload *mqprio_qopt) 2603 { 2604 u64 total_max_rate = 0; 2605 int i, num_qps = 0; 2606 u64 tx_rate = 0; 2607 int ret = 0; 2608 2609 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2610 mqprio_qopt->qopt.num_tc < 1) 2611 return -EINVAL; 2612 2613 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2614 if (!mqprio_qopt->qopt.count[i] || 2615 mqprio_qopt->qopt.offset[i] != num_qps) 2616 return -EINVAL; 2617 if (mqprio_qopt->min_rate[i]) { 2618 dev_err(&adapter->pdev->dev, 2619 "Invalid min tx rate (greater than 0) specified\n"); 2620 return -EINVAL; 2621 } 2622 /*convert to Mbps */ 2623 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2624 IAVF_MBPS_DIVISOR); 2625 total_max_rate += tx_rate; 2626 num_qps += mqprio_qopt->qopt.count[i]; 2627 } 2628 if (num_qps > IAVF_MAX_REQ_QUEUES) 2629 return -EINVAL; 2630 2631 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2632 return ret; 2633 } 2634 2635 /** 2636 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 2637 * @adapter: board private structure 2638 **/ 2639 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2640 { 2641 struct iavf_cloud_filter *cf, *cftmp; 2642 2643 spin_lock_bh(&adapter->cloud_filter_list_lock); 2644 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2645 list) { 2646 list_del(&cf->list); 2647 kfree(cf); 2648 adapter->num_cloud_filters--; 2649 } 2650 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2651 } 2652 2653 /** 2654 * __iavf_setup_tc - configure multiple traffic classes 2655 * @netdev: network interface device structure 2656 * @type_data: tc offload data 2657 * 2658 * This function processes the config information provided by the 2659 * user to configure traffic classes/queue channels and packages the 2660 * information to request the PF to setup traffic classes. 2661 * 2662 * Returns 0 on success. 2663 **/ 2664 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2665 { 2666 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2667 struct iavf_adapter *adapter = netdev_priv(netdev); 2668 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2669 u8 num_tc = 0, total_qps = 0; 2670 int ret = 0, netdev_tc = 0; 2671 u64 max_tx_rate; 2672 u16 mode; 2673 int i; 2674 2675 num_tc = mqprio_qopt->qopt.num_tc; 2676 mode = mqprio_qopt->mode; 2677 2678 /* delete queue_channel */ 2679 if (!mqprio_qopt->qopt.hw) { 2680 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2681 /* reset the tc configuration */ 2682 netdev_reset_tc(netdev); 2683 adapter->num_tc = 0; 2684 netif_tx_stop_all_queues(netdev); 2685 netif_tx_disable(netdev); 2686 iavf_del_all_cloud_filters(adapter); 2687 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2688 goto exit; 2689 } else { 2690 return -EINVAL; 2691 } 2692 } 2693 2694 /* add queue channel */ 2695 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2696 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2697 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2698 return -EOPNOTSUPP; 2699 } 2700 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2701 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2702 return -EINVAL; 2703 } 2704 2705 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2706 if (ret) 2707 return ret; 2708 /* Return if same TC config is requested */ 2709 if (adapter->num_tc == num_tc) 2710 return 0; 2711 adapter->num_tc = num_tc; 2712 2713 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2714 if (i < num_tc) { 2715 adapter->ch_config.ch_info[i].count = 2716 mqprio_qopt->qopt.count[i]; 2717 adapter->ch_config.ch_info[i].offset = 2718 mqprio_qopt->qopt.offset[i]; 2719 total_qps += mqprio_qopt->qopt.count[i]; 2720 max_tx_rate = mqprio_qopt->max_rate[i]; 2721 /* convert to Mbps */ 2722 max_tx_rate = div_u64(max_tx_rate, 2723 IAVF_MBPS_DIVISOR); 2724 adapter->ch_config.ch_info[i].max_tx_rate = 2725 max_tx_rate; 2726 } else { 2727 adapter->ch_config.ch_info[i].count = 1; 2728 adapter->ch_config.ch_info[i].offset = 0; 2729 } 2730 } 2731 adapter->ch_config.total_qps = total_qps; 2732 netif_tx_stop_all_queues(netdev); 2733 netif_tx_disable(netdev); 2734 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2735 netdev_reset_tc(netdev); 2736 /* Report the tc mapping up the stack */ 2737 netdev_set_num_tc(adapter->netdev, num_tc); 2738 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2739 u16 qcount = mqprio_qopt->qopt.count[i]; 2740 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2741 2742 if (i < num_tc) 2743 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2744 qoffset); 2745 } 2746 } 2747 exit: 2748 return ret; 2749 } 2750 2751 /** 2752 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2753 * @adapter: board private structure 2754 * @f: pointer to struct flow_cls_offload 2755 * @filter: pointer to cloud filter structure 2756 */ 2757 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2758 struct flow_cls_offload *f, 2759 struct iavf_cloud_filter *filter) 2760 { 2761 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2762 struct flow_dissector *dissector = rule->match.dissector; 2763 u16 n_proto_mask = 0; 2764 u16 n_proto_key = 0; 2765 u8 field_flags = 0; 2766 u16 addr_type = 0; 2767 u16 n_proto = 0; 2768 int i = 0; 2769 struct virtchnl_filter *vf = &filter->f; 2770 2771 if (dissector->used_keys & 2772 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2773 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2774 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2775 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2776 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2777 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2778 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2779 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2780 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2781 dissector->used_keys); 2782 return -EOPNOTSUPP; 2783 } 2784 2785 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2786 struct flow_match_enc_keyid match; 2787 2788 flow_rule_match_enc_keyid(rule, &match); 2789 if (match.mask->keyid != 0) 2790 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2791 } 2792 2793 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2794 struct flow_match_basic match; 2795 2796 flow_rule_match_basic(rule, &match); 2797 n_proto_key = ntohs(match.key->n_proto); 2798 n_proto_mask = ntohs(match.mask->n_proto); 2799 2800 if (n_proto_key == ETH_P_ALL) { 2801 n_proto_key = 0; 2802 n_proto_mask = 0; 2803 } 2804 n_proto = n_proto_key & n_proto_mask; 2805 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2806 return -EINVAL; 2807 if (n_proto == ETH_P_IPV6) { 2808 /* specify flow type as TCP IPv6 */ 2809 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2810 } 2811 2812 if (match.key->ip_proto != IPPROTO_TCP) { 2813 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2814 return -EINVAL; 2815 } 2816 } 2817 2818 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2819 struct flow_match_eth_addrs match; 2820 2821 flow_rule_match_eth_addrs(rule, &match); 2822 2823 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2824 if (!is_zero_ether_addr(match.mask->dst)) { 2825 if (is_broadcast_ether_addr(match.mask->dst)) { 2826 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2827 } else { 2828 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2829 match.mask->dst); 2830 return IAVF_ERR_CONFIG; 2831 } 2832 } 2833 2834 if (!is_zero_ether_addr(match.mask->src)) { 2835 if (is_broadcast_ether_addr(match.mask->src)) { 2836 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2837 } else { 2838 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2839 match.mask->src); 2840 return IAVF_ERR_CONFIG; 2841 } 2842 } 2843 2844 if (!is_zero_ether_addr(match.key->dst)) 2845 if (is_valid_ether_addr(match.key->dst) || 2846 is_multicast_ether_addr(match.key->dst)) { 2847 /* set the mask if a valid dst_mac address */ 2848 for (i = 0; i < ETH_ALEN; i++) 2849 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2850 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2851 match.key->dst); 2852 } 2853 2854 if (!is_zero_ether_addr(match.key->src)) 2855 if (is_valid_ether_addr(match.key->src) || 2856 is_multicast_ether_addr(match.key->src)) { 2857 /* set the mask if a valid dst_mac address */ 2858 for (i = 0; i < ETH_ALEN; i++) 2859 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2860 ether_addr_copy(vf->data.tcp_spec.src_mac, 2861 match.key->src); 2862 } 2863 } 2864 2865 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2866 struct flow_match_vlan match; 2867 2868 flow_rule_match_vlan(rule, &match); 2869 if (match.mask->vlan_id) { 2870 if (match.mask->vlan_id == VLAN_VID_MASK) { 2871 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2872 } else { 2873 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2874 match.mask->vlan_id); 2875 return IAVF_ERR_CONFIG; 2876 } 2877 } 2878 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2879 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2880 } 2881 2882 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2883 struct flow_match_control match; 2884 2885 flow_rule_match_control(rule, &match); 2886 addr_type = match.key->addr_type; 2887 } 2888 2889 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2890 struct flow_match_ipv4_addrs match; 2891 2892 flow_rule_match_ipv4_addrs(rule, &match); 2893 if (match.mask->dst) { 2894 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2895 field_flags |= IAVF_CLOUD_FIELD_IIP; 2896 } else { 2897 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2898 be32_to_cpu(match.mask->dst)); 2899 return IAVF_ERR_CONFIG; 2900 } 2901 } 2902 2903 if (match.mask->src) { 2904 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2905 field_flags |= IAVF_CLOUD_FIELD_IIP; 2906 } else { 2907 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2908 be32_to_cpu(match.mask->dst)); 2909 return IAVF_ERR_CONFIG; 2910 } 2911 } 2912 2913 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2914 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2915 return IAVF_ERR_CONFIG; 2916 } 2917 if (match.key->dst) { 2918 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2919 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2920 } 2921 if (match.key->src) { 2922 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2923 vf->data.tcp_spec.src_ip[0] = match.key->src; 2924 } 2925 } 2926 2927 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2928 struct flow_match_ipv6_addrs match; 2929 2930 flow_rule_match_ipv6_addrs(rule, &match); 2931 2932 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2933 if (ipv6_addr_any(&match.mask->dst)) { 2934 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2935 IPV6_ADDR_ANY); 2936 return IAVF_ERR_CONFIG; 2937 } 2938 2939 /* src and dest IPv6 address should not be LOOPBACK 2940 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2941 */ 2942 if (ipv6_addr_loopback(&match.key->dst) || 2943 ipv6_addr_loopback(&match.key->src)) { 2944 dev_err(&adapter->pdev->dev, 2945 "ipv6 addr should not be loopback\n"); 2946 return IAVF_ERR_CONFIG; 2947 } 2948 if (!ipv6_addr_any(&match.mask->dst) || 2949 !ipv6_addr_any(&match.mask->src)) 2950 field_flags |= IAVF_CLOUD_FIELD_IIP; 2951 2952 for (i = 0; i < 4; i++) 2953 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2954 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2955 sizeof(vf->data.tcp_spec.dst_ip)); 2956 for (i = 0; i < 4; i++) 2957 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2958 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2959 sizeof(vf->data.tcp_spec.src_ip)); 2960 } 2961 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2962 struct flow_match_ports match; 2963 2964 flow_rule_match_ports(rule, &match); 2965 if (match.mask->src) { 2966 if (match.mask->src == cpu_to_be16(0xffff)) { 2967 field_flags |= IAVF_CLOUD_FIELD_IIP; 2968 } else { 2969 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2970 be16_to_cpu(match.mask->src)); 2971 return IAVF_ERR_CONFIG; 2972 } 2973 } 2974 2975 if (match.mask->dst) { 2976 if (match.mask->dst == cpu_to_be16(0xffff)) { 2977 field_flags |= IAVF_CLOUD_FIELD_IIP; 2978 } else { 2979 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2980 be16_to_cpu(match.mask->dst)); 2981 return IAVF_ERR_CONFIG; 2982 } 2983 } 2984 if (match.key->dst) { 2985 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2986 vf->data.tcp_spec.dst_port = match.key->dst; 2987 } 2988 2989 if (match.key->src) { 2990 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2991 vf->data.tcp_spec.src_port = match.key->src; 2992 } 2993 } 2994 vf->field_flags = field_flags; 2995 2996 return 0; 2997 } 2998 2999 /** 3000 * iavf_handle_tclass - Forward to a traffic class on the device 3001 * @adapter: board private structure 3002 * @tc: traffic class index on the device 3003 * @filter: pointer to cloud filter structure 3004 */ 3005 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3006 struct iavf_cloud_filter *filter) 3007 { 3008 if (tc == 0) 3009 return 0; 3010 if (tc < adapter->num_tc) { 3011 if (!filter->f.data.tcp_spec.dst_port) { 3012 dev_err(&adapter->pdev->dev, 3013 "Specify destination port to redirect to traffic class other than TC0\n"); 3014 return -EINVAL; 3015 } 3016 } 3017 /* redirect to a traffic class on the same device */ 3018 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3019 filter->f.action_meta = tc; 3020 return 0; 3021 } 3022 3023 /** 3024 * iavf_configure_clsflower - Add tc flower filters 3025 * @adapter: board private structure 3026 * @cls_flower: Pointer to struct flow_cls_offload 3027 */ 3028 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3029 struct flow_cls_offload *cls_flower) 3030 { 3031 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3032 struct iavf_cloud_filter *filter = NULL; 3033 int err = -EINVAL, count = 50; 3034 3035 if (tc < 0) { 3036 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3037 return -EINVAL; 3038 } 3039 3040 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3041 if (!filter) 3042 return -ENOMEM; 3043 3044 while (!mutex_trylock(&adapter->crit_lock)) { 3045 if (--count == 0) 3046 goto err; 3047 udelay(1); 3048 } 3049 3050 filter->cookie = cls_flower->cookie; 3051 3052 /* set the mask to all zeroes to begin with */ 3053 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3054 /* start out with flow type and eth type IPv4 to begin with */ 3055 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3056 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3057 if (err < 0) 3058 goto err; 3059 3060 err = iavf_handle_tclass(adapter, tc, filter); 3061 if (err < 0) 3062 goto err; 3063 3064 /* add filter to the list */ 3065 spin_lock_bh(&adapter->cloud_filter_list_lock); 3066 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3067 adapter->num_cloud_filters++; 3068 filter->add = true; 3069 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3070 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3071 err: 3072 if (err) 3073 kfree(filter); 3074 3075 mutex_unlock(&adapter->crit_lock); 3076 return err; 3077 } 3078 3079 /* iavf_find_cf - Find the cloud filter in the list 3080 * @adapter: Board private structure 3081 * @cookie: filter specific cookie 3082 * 3083 * Returns ptr to the filter object or NULL. Must be called while holding the 3084 * cloud_filter_list_lock. 3085 */ 3086 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3087 unsigned long *cookie) 3088 { 3089 struct iavf_cloud_filter *filter = NULL; 3090 3091 if (!cookie) 3092 return NULL; 3093 3094 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3095 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3096 return filter; 3097 } 3098 return NULL; 3099 } 3100 3101 /** 3102 * iavf_delete_clsflower - Remove tc flower filters 3103 * @adapter: board private structure 3104 * @cls_flower: Pointer to struct flow_cls_offload 3105 */ 3106 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3107 struct flow_cls_offload *cls_flower) 3108 { 3109 struct iavf_cloud_filter *filter = NULL; 3110 int err = 0; 3111 3112 spin_lock_bh(&adapter->cloud_filter_list_lock); 3113 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3114 if (filter) { 3115 filter->del = true; 3116 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3117 } else { 3118 err = -EINVAL; 3119 } 3120 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3121 3122 return err; 3123 } 3124 3125 /** 3126 * iavf_setup_tc_cls_flower - flower classifier offloads 3127 * @adapter: board private structure 3128 * @cls_flower: pointer to flow_cls_offload struct with flow info 3129 */ 3130 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3131 struct flow_cls_offload *cls_flower) 3132 { 3133 switch (cls_flower->command) { 3134 case FLOW_CLS_REPLACE: 3135 return iavf_configure_clsflower(adapter, cls_flower); 3136 case FLOW_CLS_DESTROY: 3137 return iavf_delete_clsflower(adapter, cls_flower); 3138 case FLOW_CLS_STATS: 3139 return -EOPNOTSUPP; 3140 default: 3141 return -EOPNOTSUPP; 3142 } 3143 } 3144 3145 /** 3146 * iavf_setup_tc_block_cb - block callback for tc 3147 * @type: type of offload 3148 * @type_data: offload data 3149 * @cb_priv: 3150 * 3151 * This function is the block callback for traffic classes 3152 **/ 3153 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3154 void *cb_priv) 3155 { 3156 struct iavf_adapter *adapter = cb_priv; 3157 3158 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3159 return -EOPNOTSUPP; 3160 3161 switch (type) { 3162 case TC_SETUP_CLSFLOWER: 3163 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3164 default: 3165 return -EOPNOTSUPP; 3166 } 3167 } 3168 3169 static LIST_HEAD(iavf_block_cb_list); 3170 3171 /** 3172 * iavf_setup_tc - configure multiple traffic classes 3173 * @netdev: network interface device structure 3174 * @type: type of offload 3175 * @type_data: tc offload data 3176 * 3177 * This function is the callback to ndo_setup_tc in the 3178 * netdev_ops. 3179 * 3180 * Returns 0 on success 3181 **/ 3182 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3183 void *type_data) 3184 { 3185 struct iavf_adapter *adapter = netdev_priv(netdev); 3186 3187 switch (type) { 3188 case TC_SETUP_QDISC_MQPRIO: 3189 return __iavf_setup_tc(netdev, type_data); 3190 case TC_SETUP_BLOCK: 3191 return flow_block_cb_setup_simple(type_data, 3192 &iavf_block_cb_list, 3193 iavf_setup_tc_block_cb, 3194 adapter, adapter, true); 3195 default: 3196 return -EOPNOTSUPP; 3197 } 3198 } 3199 3200 /** 3201 * iavf_open - Called when a network interface is made active 3202 * @netdev: network interface device structure 3203 * 3204 * Returns 0 on success, negative value on failure 3205 * 3206 * The open entry point is called when a network interface is made 3207 * active by the system (IFF_UP). At this point all resources needed 3208 * for transmit and receive operations are allocated, the interrupt 3209 * handler is registered with the OS, the watchdog is started, 3210 * and the stack is notified that the interface is ready. 3211 **/ 3212 static int iavf_open(struct net_device *netdev) 3213 { 3214 struct iavf_adapter *adapter = netdev_priv(netdev); 3215 int err; 3216 3217 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3218 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3219 return -EIO; 3220 } 3221 3222 while (!mutex_trylock(&adapter->crit_lock)) 3223 usleep_range(500, 1000); 3224 3225 if (adapter->state != __IAVF_DOWN) { 3226 err = -EBUSY; 3227 goto err_unlock; 3228 } 3229 3230 /* allocate transmit descriptors */ 3231 err = iavf_setup_all_tx_resources(adapter); 3232 if (err) 3233 goto err_setup_tx; 3234 3235 /* allocate receive descriptors */ 3236 err = iavf_setup_all_rx_resources(adapter); 3237 if (err) 3238 goto err_setup_rx; 3239 3240 /* clear any pending interrupts, may auto mask */ 3241 err = iavf_request_traffic_irqs(adapter, netdev->name); 3242 if (err) 3243 goto err_req_irq; 3244 3245 spin_lock_bh(&adapter->mac_vlan_list_lock); 3246 3247 iavf_add_filter(adapter, adapter->hw.mac.addr); 3248 3249 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3250 3251 iavf_configure(adapter); 3252 3253 iavf_up_complete(adapter); 3254 3255 iavf_irq_enable(adapter, true); 3256 3257 mutex_unlock(&adapter->crit_lock); 3258 3259 return 0; 3260 3261 err_req_irq: 3262 iavf_down(adapter); 3263 iavf_free_traffic_irqs(adapter); 3264 err_setup_rx: 3265 iavf_free_all_rx_resources(adapter); 3266 err_setup_tx: 3267 iavf_free_all_tx_resources(adapter); 3268 err_unlock: 3269 mutex_unlock(&adapter->crit_lock); 3270 3271 return err; 3272 } 3273 3274 /** 3275 * iavf_close - Disables a network interface 3276 * @netdev: network interface device structure 3277 * 3278 * Returns 0, this is not allowed to fail 3279 * 3280 * The close entry point is called when an interface is de-activated 3281 * by the OS. The hardware is still under the drivers control, but 3282 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3283 * are freed, along with all transmit and receive resources. 3284 **/ 3285 static int iavf_close(struct net_device *netdev) 3286 { 3287 struct iavf_adapter *adapter = netdev_priv(netdev); 3288 int status; 3289 3290 if (adapter->state <= __IAVF_DOWN_PENDING) 3291 return 0; 3292 3293 while (!mutex_trylock(&adapter->crit_lock)) 3294 usleep_range(500, 1000); 3295 3296 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3297 if (CLIENT_ENABLED(adapter)) 3298 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3299 3300 iavf_down(adapter); 3301 adapter->state = __IAVF_DOWN_PENDING; 3302 iavf_free_traffic_irqs(adapter); 3303 3304 mutex_unlock(&adapter->crit_lock); 3305 3306 /* We explicitly don't free resources here because the hardware is 3307 * still active and can DMA into memory. Resources are cleared in 3308 * iavf_virtchnl_completion() after we get confirmation from the PF 3309 * driver that the rings have been stopped. 3310 * 3311 * Also, we wait for state to transition to __IAVF_DOWN before 3312 * returning. State change occurs in iavf_virtchnl_completion() after 3313 * VF resources are released (which occurs after PF driver processes and 3314 * responds to admin queue commands). 3315 */ 3316 3317 status = wait_event_timeout(adapter->down_waitqueue, 3318 adapter->state == __IAVF_DOWN, 3319 msecs_to_jiffies(500)); 3320 if (!status) 3321 netdev_warn(netdev, "Device resources not yet released\n"); 3322 return 0; 3323 } 3324 3325 /** 3326 * iavf_change_mtu - Change the Maximum Transfer Unit 3327 * @netdev: network interface device structure 3328 * @new_mtu: new value for maximum frame size 3329 * 3330 * Returns 0 on success, negative on failure 3331 **/ 3332 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3333 { 3334 struct iavf_adapter *adapter = netdev_priv(netdev); 3335 3336 netdev->mtu = new_mtu; 3337 if (CLIENT_ENABLED(adapter)) { 3338 iavf_notify_client_l2_params(&adapter->vsi); 3339 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3340 } 3341 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3342 queue_work(iavf_wq, &adapter->reset_task); 3343 3344 return 0; 3345 } 3346 3347 /** 3348 * iavf_set_features - set the netdev feature flags 3349 * @netdev: ptr to the netdev being adjusted 3350 * @features: the feature set that the stack is suggesting 3351 * Note: expects to be called while under rtnl_lock() 3352 **/ 3353 static int iavf_set_features(struct net_device *netdev, 3354 netdev_features_t features) 3355 { 3356 struct iavf_adapter *adapter = netdev_priv(netdev); 3357 3358 /* Don't allow changing VLAN_RX flag when adapter is not capable 3359 * of VLAN offload 3360 */ 3361 if (!VLAN_ALLOWED(adapter)) { 3362 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3363 return -EINVAL; 3364 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3365 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3366 adapter->aq_required |= 3367 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3368 else 3369 adapter->aq_required |= 3370 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3371 } 3372 3373 return 0; 3374 } 3375 3376 /** 3377 * iavf_features_check - Validate encapsulated packet conforms to limits 3378 * @skb: skb buff 3379 * @dev: This physical port's netdev 3380 * @features: Offload features that the stack believes apply 3381 **/ 3382 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3383 struct net_device *dev, 3384 netdev_features_t features) 3385 { 3386 size_t len; 3387 3388 /* No point in doing any of this if neither checksum nor GSO are 3389 * being requested for this frame. We can rule out both by just 3390 * checking for CHECKSUM_PARTIAL 3391 */ 3392 if (skb->ip_summed != CHECKSUM_PARTIAL) 3393 return features; 3394 3395 /* We cannot support GSO if the MSS is going to be less than 3396 * 64 bytes. If it is then we need to drop support for GSO. 3397 */ 3398 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3399 features &= ~NETIF_F_GSO_MASK; 3400 3401 /* MACLEN can support at most 63 words */ 3402 len = skb_network_header(skb) - skb->data; 3403 if (len & ~(63 * 2)) 3404 goto out_err; 3405 3406 /* IPLEN and EIPLEN can support at most 127 dwords */ 3407 len = skb_transport_header(skb) - skb_network_header(skb); 3408 if (len & ~(127 * 4)) 3409 goto out_err; 3410 3411 if (skb->encapsulation) { 3412 /* L4TUNLEN can support 127 words */ 3413 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3414 if (len & ~(127 * 2)) 3415 goto out_err; 3416 3417 /* IPLEN can support at most 127 dwords */ 3418 len = skb_inner_transport_header(skb) - 3419 skb_inner_network_header(skb); 3420 if (len & ~(127 * 4)) 3421 goto out_err; 3422 } 3423 3424 /* No need to validate L4LEN as TCP is the only protocol with a 3425 * a flexible value and we support all possible values supported 3426 * by TCP, which is at most 15 dwords 3427 */ 3428 3429 return features; 3430 out_err: 3431 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3432 } 3433 3434 /** 3435 * iavf_fix_features - fix up the netdev feature bits 3436 * @netdev: our net device 3437 * @features: desired feature bits 3438 * 3439 * Returns fixed-up features bits 3440 **/ 3441 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3442 netdev_features_t features) 3443 { 3444 struct iavf_adapter *adapter = netdev_priv(netdev); 3445 3446 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3447 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3448 NETIF_F_HW_VLAN_CTAG_RX | 3449 NETIF_F_HW_VLAN_CTAG_FILTER); 3450 3451 return features; 3452 } 3453 3454 static const struct net_device_ops iavf_netdev_ops = { 3455 .ndo_open = iavf_open, 3456 .ndo_stop = iavf_close, 3457 .ndo_start_xmit = iavf_xmit_frame, 3458 .ndo_set_rx_mode = iavf_set_rx_mode, 3459 .ndo_validate_addr = eth_validate_addr, 3460 .ndo_set_mac_address = iavf_set_mac, 3461 .ndo_change_mtu = iavf_change_mtu, 3462 .ndo_tx_timeout = iavf_tx_timeout, 3463 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3464 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3465 .ndo_features_check = iavf_features_check, 3466 .ndo_fix_features = iavf_fix_features, 3467 .ndo_set_features = iavf_set_features, 3468 .ndo_setup_tc = iavf_setup_tc, 3469 }; 3470 3471 /** 3472 * iavf_check_reset_complete - check that VF reset is complete 3473 * @hw: pointer to hw struct 3474 * 3475 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3476 **/ 3477 static int iavf_check_reset_complete(struct iavf_hw *hw) 3478 { 3479 u32 rstat; 3480 int i; 3481 3482 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3483 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3484 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3485 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3486 (rstat == VIRTCHNL_VFR_COMPLETED)) 3487 return 0; 3488 usleep_range(10, 20); 3489 } 3490 return -EBUSY; 3491 } 3492 3493 /** 3494 * iavf_process_config - Process the config information we got from the PF 3495 * @adapter: board private structure 3496 * 3497 * Verify that we have a valid config struct, and set up our netdev features 3498 * and our VSI struct. 3499 **/ 3500 int iavf_process_config(struct iavf_adapter *adapter) 3501 { 3502 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3503 int i, num_req_queues = adapter->num_req_queues; 3504 struct net_device *netdev = adapter->netdev; 3505 struct iavf_vsi *vsi = &adapter->vsi; 3506 netdev_features_t hw_enc_features; 3507 netdev_features_t hw_features; 3508 3509 /* got VF config message back from PF, now we can parse it */ 3510 for (i = 0; i < vfres->num_vsis; i++) { 3511 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3512 adapter->vsi_res = &vfres->vsi_res[i]; 3513 } 3514 if (!adapter->vsi_res) { 3515 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3516 return -ENODEV; 3517 } 3518 3519 if (num_req_queues && 3520 num_req_queues > adapter->vsi_res->num_queue_pairs) { 3521 /* Problem. The PF gave us fewer queues than what we had 3522 * negotiated in our request. Need a reset to see if we can't 3523 * get back to a working state. 3524 */ 3525 dev_err(&adapter->pdev->dev, 3526 "Requested %d queues, but PF only gave us %d.\n", 3527 num_req_queues, 3528 adapter->vsi_res->num_queue_pairs); 3529 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3530 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3531 iavf_schedule_reset(adapter); 3532 return -ENODEV; 3533 } 3534 adapter->num_req_queues = 0; 3535 3536 hw_enc_features = NETIF_F_SG | 3537 NETIF_F_IP_CSUM | 3538 NETIF_F_IPV6_CSUM | 3539 NETIF_F_HIGHDMA | 3540 NETIF_F_SOFT_FEATURES | 3541 NETIF_F_TSO | 3542 NETIF_F_TSO_ECN | 3543 NETIF_F_TSO6 | 3544 NETIF_F_SCTP_CRC | 3545 NETIF_F_RXHASH | 3546 NETIF_F_RXCSUM | 3547 0; 3548 3549 /* advertise to stack only if offloads for encapsulated packets is 3550 * supported 3551 */ 3552 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3553 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3554 NETIF_F_GSO_GRE | 3555 NETIF_F_GSO_GRE_CSUM | 3556 NETIF_F_GSO_IPXIP4 | 3557 NETIF_F_GSO_IPXIP6 | 3558 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3559 NETIF_F_GSO_PARTIAL | 3560 0; 3561 3562 if (!(vfres->vf_cap_flags & 3563 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3564 netdev->gso_partial_features |= 3565 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3566 3567 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3568 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3569 netdev->hw_enc_features |= hw_enc_features; 3570 } 3571 /* record features VLANs can make use of */ 3572 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3573 3574 /* Write features and hw_features separately to avoid polluting 3575 * with, or dropping, features that are set when we registered. 3576 */ 3577 hw_features = hw_enc_features; 3578 3579 /* Enable VLAN features if supported */ 3580 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3581 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3582 NETIF_F_HW_VLAN_CTAG_RX); 3583 /* Enable cloud filter if ADQ is supported */ 3584 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3585 hw_features |= NETIF_F_HW_TC; 3586 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 3587 hw_features |= NETIF_F_GSO_UDP_L4; 3588 3589 netdev->hw_features |= hw_features; 3590 3591 netdev->features |= hw_features; 3592 3593 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3594 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3595 3596 netdev->priv_flags |= IFF_UNICAST_FLT; 3597 3598 /* Do not turn on offloads when they are requested to be turned off. 3599 * TSO needs minimum 576 bytes to work correctly. 3600 */ 3601 if (netdev->wanted_features) { 3602 if (!(netdev->wanted_features & NETIF_F_TSO) || 3603 netdev->mtu < 576) 3604 netdev->features &= ~NETIF_F_TSO; 3605 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3606 netdev->mtu < 576) 3607 netdev->features &= ~NETIF_F_TSO6; 3608 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3609 netdev->features &= ~NETIF_F_TSO_ECN; 3610 if (!(netdev->wanted_features & NETIF_F_GRO)) 3611 netdev->features &= ~NETIF_F_GRO; 3612 if (!(netdev->wanted_features & NETIF_F_GSO)) 3613 netdev->features &= ~NETIF_F_GSO; 3614 } 3615 3616 adapter->vsi.id = adapter->vsi_res->vsi_id; 3617 3618 adapter->vsi.back = adapter; 3619 adapter->vsi.base_vector = 1; 3620 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3621 vsi->netdev = adapter->netdev; 3622 vsi->qs_handle = adapter->vsi_res->qset_handle; 3623 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3624 adapter->rss_key_size = vfres->rss_key_size; 3625 adapter->rss_lut_size = vfres->rss_lut_size; 3626 } else { 3627 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3628 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3629 } 3630 3631 return 0; 3632 } 3633 3634 /** 3635 * iavf_init_task - worker thread to perform delayed initialization 3636 * @work: pointer to work_struct containing our data 3637 * 3638 * This task completes the work that was begun in probe. Due to the nature 3639 * of VF-PF communications, we may need to wait tens of milliseconds to get 3640 * responses back from the PF. Rather than busy-wait in probe and bog down the 3641 * whole system, we'll do it in a task so we can sleep. 3642 * This task only runs during driver init. Once we've established 3643 * communications with the PF driver and set up our netdev, the watchdog 3644 * takes over. 3645 **/ 3646 static void iavf_init_task(struct work_struct *work) 3647 { 3648 struct iavf_adapter *adapter = container_of(work, 3649 struct iavf_adapter, 3650 init_task.work); 3651 struct iavf_hw *hw = &adapter->hw; 3652 3653 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) { 3654 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3655 return; 3656 } 3657 switch (adapter->state) { 3658 case __IAVF_STARTUP: 3659 if (iavf_startup(adapter) < 0) 3660 goto init_failed; 3661 break; 3662 case __IAVF_INIT_VERSION_CHECK: 3663 if (iavf_init_version_check(adapter) < 0) 3664 goto init_failed; 3665 break; 3666 case __IAVF_INIT_GET_RESOURCES: 3667 if (iavf_init_get_resources(adapter) < 0) 3668 goto init_failed; 3669 goto out; 3670 default: 3671 goto init_failed; 3672 } 3673 3674 queue_delayed_work(iavf_wq, &adapter->init_task, 3675 msecs_to_jiffies(30)); 3676 goto out; 3677 init_failed: 3678 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3679 dev_err(&adapter->pdev->dev, 3680 "Failed to communicate with PF; waiting before retry\n"); 3681 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3682 iavf_shutdown_adminq(hw); 3683 adapter->state = __IAVF_STARTUP; 3684 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3685 goto out; 3686 } 3687 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3688 out: 3689 mutex_unlock(&adapter->crit_lock); 3690 } 3691 3692 /** 3693 * iavf_shutdown - Shutdown the device in preparation for a reboot 3694 * @pdev: pci device structure 3695 **/ 3696 static void iavf_shutdown(struct pci_dev *pdev) 3697 { 3698 struct net_device *netdev = pci_get_drvdata(pdev); 3699 struct iavf_adapter *adapter = netdev_priv(netdev); 3700 3701 netif_device_detach(netdev); 3702 3703 if (netif_running(netdev)) 3704 iavf_close(netdev); 3705 3706 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 3707 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3708 /* Prevent the watchdog from running. */ 3709 adapter->state = __IAVF_REMOVE; 3710 adapter->aq_required = 0; 3711 mutex_unlock(&adapter->crit_lock); 3712 3713 #ifdef CONFIG_PM 3714 pci_save_state(pdev); 3715 3716 #endif 3717 pci_disable_device(pdev); 3718 } 3719 3720 /** 3721 * iavf_probe - Device Initialization Routine 3722 * @pdev: PCI device information struct 3723 * @ent: entry in iavf_pci_tbl 3724 * 3725 * Returns 0 on success, negative on failure 3726 * 3727 * iavf_probe initializes an adapter identified by a pci_dev structure. 3728 * The OS initialization, configuring of the adapter private structure, 3729 * and a hardware reset occur. 3730 **/ 3731 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3732 { 3733 struct net_device *netdev; 3734 struct iavf_adapter *adapter = NULL; 3735 struct iavf_hw *hw = NULL; 3736 int err; 3737 3738 err = pci_enable_device(pdev); 3739 if (err) 3740 return err; 3741 3742 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3743 if (err) { 3744 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3745 if (err) { 3746 dev_err(&pdev->dev, 3747 "DMA configuration failed: 0x%x\n", err); 3748 goto err_dma; 3749 } 3750 } 3751 3752 err = pci_request_regions(pdev, iavf_driver_name); 3753 if (err) { 3754 dev_err(&pdev->dev, 3755 "pci_request_regions failed 0x%x\n", err); 3756 goto err_pci_reg; 3757 } 3758 3759 pci_enable_pcie_error_reporting(pdev); 3760 3761 pci_set_master(pdev); 3762 3763 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3764 IAVF_MAX_REQ_QUEUES); 3765 if (!netdev) { 3766 err = -ENOMEM; 3767 goto err_alloc_etherdev; 3768 } 3769 3770 SET_NETDEV_DEV(netdev, &pdev->dev); 3771 3772 pci_set_drvdata(pdev, netdev); 3773 adapter = netdev_priv(netdev); 3774 3775 adapter->netdev = netdev; 3776 adapter->pdev = pdev; 3777 3778 hw = &adapter->hw; 3779 hw->back = adapter; 3780 3781 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3782 adapter->state = __IAVF_STARTUP; 3783 3784 /* Call save state here because it relies on the adapter struct. */ 3785 pci_save_state(pdev); 3786 3787 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3788 pci_resource_len(pdev, 0)); 3789 if (!hw->hw_addr) { 3790 err = -EIO; 3791 goto err_ioremap; 3792 } 3793 hw->vendor_id = pdev->vendor; 3794 hw->device_id = pdev->device; 3795 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3796 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3797 hw->subsystem_device_id = pdev->subsystem_device; 3798 hw->bus.device = PCI_SLOT(pdev->devfn); 3799 hw->bus.func = PCI_FUNC(pdev->devfn); 3800 hw->bus.bus_id = pdev->bus->number; 3801 3802 /* set up the locks for the AQ, do this only once in probe 3803 * and destroy them only once in remove 3804 */ 3805 mutex_init(&adapter->crit_lock); 3806 mutex_init(&adapter->client_lock); 3807 mutex_init(&adapter->remove_lock); 3808 mutex_init(&hw->aq.asq_mutex); 3809 mutex_init(&hw->aq.arq_mutex); 3810 3811 spin_lock_init(&adapter->mac_vlan_list_lock); 3812 spin_lock_init(&adapter->cloud_filter_list_lock); 3813 spin_lock_init(&adapter->fdir_fltr_lock); 3814 spin_lock_init(&adapter->adv_rss_lock); 3815 3816 INIT_LIST_HEAD(&adapter->mac_filter_list); 3817 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3818 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3819 INIT_LIST_HEAD(&adapter->fdir_list_head); 3820 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 3821 3822 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3823 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3824 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3825 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3826 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3827 queue_delayed_work(iavf_wq, &adapter->init_task, 3828 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3829 3830 /* Setup the wait queue for indicating transition to down status */ 3831 init_waitqueue_head(&adapter->down_waitqueue); 3832 3833 return 0; 3834 3835 err_ioremap: 3836 free_netdev(netdev); 3837 err_alloc_etherdev: 3838 pci_disable_pcie_error_reporting(pdev); 3839 pci_release_regions(pdev); 3840 err_pci_reg: 3841 err_dma: 3842 pci_disable_device(pdev); 3843 return err; 3844 } 3845 3846 /** 3847 * iavf_suspend - Power management suspend routine 3848 * @dev_d: device info pointer 3849 * 3850 * Called when the system (VM) is entering sleep/suspend. 3851 **/ 3852 static int __maybe_unused iavf_suspend(struct device *dev_d) 3853 { 3854 struct net_device *netdev = dev_get_drvdata(dev_d); 3855 struct iavf_adapter *adapter = netdev_priv(netdev); 3856 3857 netif_device_detach(netdev); 3858 3859 while (!mutex_trylock(&adapter->crit_lock)) 3860 usleep_range(500, 1000); 3861 3862 if (netif_running(netdev)) { 3863 rtnl_lock(); 3864 iavf_down(adapter); 3865 rtnl_unlock(); 3866 } 3867 iavf_free_misc_irq(adapter); 3868 iavf_reset_interrupt_capability(adapter); 3869 3870 mutex_unlock(&adapter->crit_lock); 3871 3872 return 0; 3873 } 3874 3875 /** 3876 * iavf_resume - Power management resume routine 3877 * @dev_d: device info pointer 3878 * 3879 * Called when the system (VM) is resumed from sleep/suspend. 3880 **/ 3881 static int __maybe_unused iavf_resume(struct device *dev_d) 3882 { 3883 struct pci_dev *pdev = to_pci_dev(dev_d); 3884 struct net_device *netdev = pci_get_drvdata(pdev); 3885 struct iavf_adapter *adapter = netdev_priv(netdev); 3886 u32 err; 3887 3888 pci_set_master(pdev); 3889 3890 rtnl_lock(); 3891 err = iavf_set_interrupt_capability(adapter); 3892 if (err) { 3893 rtnl_unlock(); 3894 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3895 return err; 3896 } 3897 err = iavf_request_misc_irq(adapter); 3898 rtnl_unlock(); 3899 if (err) { 3900 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3901 return err; 3902 } 3903 3904 queue_work(iavf_wq, &adapter->reset_task); 3905 3906 netif_device_attach(netdev); 3907 3908 return err; 3909 } 3910 3911 /** 3912 * iavf_remove - Device Removal Routine 3913 * @pdev: PCI device information struct 3914 * 3915 * iavf_remove is called by the PCI subsystem to alert the driver 3916 * that it should release a PCI device. The could be caused by a 3917 * Hot-Plug event, or because the driver is going to be removed from 3918 * memory. 3919 **/ 3920 static void iavf_remove(struct pci_dev *pdev) 3921 { 3922 struct net_device *netdev = pci_get_drvdata(pdev); 3923 struct iavf_adapter *adapter = netdev_priv(netdev); 3924 struct iavf_fdir_fltr *fdir, *fdirtmp; 3925 struct iavf_vlan_filter *vlf, *vlftmp; 3926 struct iavf_adv_rss *rss, *rsstmp; 3927 struct iavf_mac_filter *f, *ftmp; 3928 struct iavf_cloud_filter *cf, *cftmp; 3929 struct iavf_hw *hw = &adapter->hw; 3930 int err; 3931 /* Indicate we are in remove and not to run reset_task */ 3932 mutex_lock(&adapter->remove_lock); 3933 cancel_delayed_work_sync(&adapter->init_task); 3934 cancel_work_sync(&adapter->reset_task); 3935 cancel_delayed_work_sync(&adapter->client_task); 3936 if (adapter->netdev_registered) { 3937 unregister_netdev(netdev); 3938 adapter->netdev_registered = false; 3939 } 3940 if (CLIENT_ALLOWED(adapter)) { 3941 err = iavf_lan_del_device(adapter); 3942 if (err) 3943 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3944 err); 3945 } 3946 3947 iavf_request_reset(adapter); 3948 msleep(50); 3949 /* If the FW isn't responding, kick it once, but only once. */ 3950 if (!iavf_asq_done(hw)) { 3951 iavf_request_reset(adapter); 3952 msleep(50); 3953 } 3954 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 3955 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 3956 3957 /* Shut down all the garbage mashers on the detention level */ 3958 adapter->state = __IAVF_REMOVE; 3959 adapter->aq_required = 0; 3960 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3961 iavf_free_all_tx_resources(adapter); 3962 iavf_free_all_rx_resources(adapter); 3963 iavf_misc_irq_disable(adapter); 3964 iavf_free_misc_irq(adapter); 3965 iavf_reset_interrupt_capability(adapter); 3966 iavf_free_q_vectors(adapter); 3967 3968 cancel_delayed_work_sync(&adapter->watchdog_task); 3969 3970 cancel_work_sync(&adapter->adminq_task); 3971 3972 iavf_free_rss(adapter); 3973 3974 if (hw->aq.asq.count) 3975 iavf_shutdown_adminq(hw); 3976 3977 /* destroy the locks only once, here */ 3978 mutex_destroy(&hw->aq.arq_mutex); 3979 mutex_destroy(&hw->aq.asq_mutex); 3980 mutex_destroy(&adapter->client_lock); 3981 mutex_unlock(&adapter->crit_lock); 3982 mutex_destroy(&adapter->crit_lock); 3983 mutex_unlock(&adapter->remove_lock); 3984 mutex_destroy(&adapter->remove_lock); 3985 3986 iounmap(hw->hw_addr); 3987 pci_release_regions(pdev); 3988 iavf_free_queues(adapter); 3989 kfree(adapter->vf_res); 3990 spin_lock_bh(&adapter->mac_vlan_list_lock); 3991 /* If we got removed before an up/down sequence, we've got a filter 3992 * hanging out there that we need to get rid of. 3993 */ 3994 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3995 list_del(&f->list); 3996 kfree(f); 3997 } 3998 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3999 list) { 4000 list_del(&vlf->list); 4001 kfree(vlf); 4002 } 4003 4004 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4005 4006 spin_lock_bh(&adapter->cloud_filter_list_lock); 4007 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 4008 list_del(&cf->list); 4009 kfree(cf); 4010 } 4011 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4012 4013 spin_lock_bh(&adapter->fdir_fltr_lock); 4014 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 4015 list_del(&fdir->list); 4016 kfree(fdir); 4017 } 4018 spin_unlock_bh(&adapter->fdir_fltr_lock); 4019 4020 spin_lock_bh(&adapter->adv_rss_lock); 4021 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 4022 list) { 4023 list_del(&rss->list); 4024 kfree(rss); 4025 } 4026 spin_unlock_bh(&adapter->adv_rss_lock); 4027 4028 free_netdev(netdev); 4029 4030 pci_disable_pcie_error_reporting(pdev); 4031 4032 pci_disable_device(pdev); 4033 } 4034 4035 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 4036 4037 static struct pci_driver iavf_driver = { 4038 .name = iavf_driver_name, 4039 .id_table = iavf_pci_tbl, 4040 .probe = iavf_probe, 4041 .remove = iavf_remove, 4042 .driver.pm = &iavf_pm_ops, 4043 .shutdown = iavf_shutdown, 4044 }; 4045 4046 /** 4047 * iavf_init_module - Driver Registration Routine 4048 * 4049 * iavf_init_module is the first routine called when the driver is 4050 * loaded. All it does is register with the PCI subsystem. 4051 **/ 4052 static int __init iavf_init_module(void) 4053 { 4054 int ret; 4055 4056 pr_info("iavf: %s\n", iavf_driver_string); 4057 4058 pr_info("%s\n", iavf_copyright); 4059 4060 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4061 iavf_driver_name); 4062 if (!iavf_wq) { 4063 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4064 return -ENOMEM; 4065 } 4066 ret = pci_register_driver(&iavf_driver); 4067 return ret; 4068 } 4069 4070 module_init(iavf_init_module); 4071 4072 /** 4073 * iavf_exit_module - Driver Exit Cleanup Routine 4074 * 4075 * iavf_exit_module is called just before the driver is removed 4076 * from memory. 4077 **/ 4078 static void __exit iavf_exit_module(void) 4079 { 4080 pci_unregister_driver(&iavf_driver); 4081 destroy_workqueue(iavf_wq); 4082 } 4083 4084 module_exit(iavf_exit_module); 4085 4086 /* iavf_main.c */ 4087