1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static int iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 /** 55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 56 * @hw: pointer to the HW structure 57 * @mem: ptr to mem struct to fill out 58 * @size: size of memory requested 59 * @alignment: what to align the allocation to 60 **/ 61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 62 struct iavf_dma_mem *mem, 63 u64 size, u32 alignment) 64 { 65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 66 67 if (!mem) 68 return IAVF_ERR_PARAM; 69 70 mem->size = ALIGN(size, alignment); 71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 72 (dma_addr_t *)&mem->pa, GFP_KERNEL); 73 if (mem->va) 74 return 0; 75 else 76 return IAVF_ERR_NO_MEMORY; 77 } 78 79 /** 80 * iavf_free_dma_mem_d - OS specific memory free for shared code 81 * @hw: pointer to the HW structure 82 * @mem: ptr to mem struct to free 83 **/ 84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 85 struct iavf_dma_mem *mem) 86 { 87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 88 89 if (!mem || !mem->va) 90 return IAVF_ERR_PARAM; 91 dma_free_coherent(&adapter->pdev->dev, mem->size, 92 mem->va, (dma_addr_t)mem->pa); 93 return 0; 94 } 95 96 /** 97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 98 * @hw: pointer to the HW structure 99 * @mem: ptr to mem struct to fill out 100 * @size: size of memory requested 101 **/ 102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 103 struct iavf_virt_mem *mem, u32 size) 104 { 105 if (!mem) 106 return IAVF_ERR_PARAM; 107 108 mem->size = size; 109 mem->va = kzalloc(size, GFP_KERNEL); 110 111 if (mem->va) 112 return 0; 113 else 114 return IAVF_ERR_NO_MEMORY; 115 } 116 117 /** 118 * iavf_free_virt_mem_d - OS specific memory free for shared code 119 * @hw: pointer to the HW structure 120 * @mem: ptr to mem struct to free 121 **/ 122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 123 struct iavf_virt_mem *mem) 124 { 125 if (!mem) 126 return IAVF_ERR_PARAM; 127 128 /* it's ok to kfree a NULL pointer */ 129 kfree(mem->va); 130 131 return 0; 132 } 133 134 /** 135 * iavf_schedule_reset - Set the flags and schedule a reset event 136 * @adapter: board private structure 137 **/ 138 void iavf_schedule_reset(struct iavf_adapter *adapter) 139 { 140 if (!(adapter->flags & 141 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 142 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 143 queue_work(iavf_wq, &adapter->reset_task); 144 } 145 } 146 147 /** 148 * iavf_tx_timeout - Respond to a Tx Hang 149 * @netdev: network interface device structure 150 * @txqueue: queue number that is timing out 151 **/ 152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 153 { 154 struct iavf_adapter *adapter = netdev_priv(netdev); 155 156 adapter->tx_timeout_count++; 157 iavf_schedule_reset(adapter); 158 } 159 160 /** 161 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 162 * @adapter: board private structure 163 **/ 164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 165 { 166 struct iavf_hw *hw = &adapter->hw; 167 168 if (!adapter->msix_entries) 169 return; 170 171 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 172 173 iavf_flush(hw); 174 175 synchronize_irq(adapter->msix_entries[0].vector); 176 } 177 178 /** 179 * iavf_misc_irq_enable - Enable default interrupt generation settings 180 * @adapter: board private structure 181 **/ 182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 183 { 184 struct iavf_hw *hw = &adapter->hw; 185 186 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 187 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 188 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 189 190 iavf_flush(hw); 191 } 192 193 /** 194 * iavf_irq_disable - Mask off interrupt generation on the NIC 195 * @adapter: board private structure 196 **/ 197 static void iavf_irq_disable(struct iavf_adapter *adapter) 198 { 199 int i; 200 struct iavf_hw *hw = &adapter->hw; 201 202 if (!adapter->msix_entries) 203 return; 204 205 for (i = 1; i < adapter->num_msix_vectors; i++) { 206 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 207 synchronize_irq(adapter->msix_entries[i].vector); 208 } 209 iavf_flush(hw); 210 } 211 212 /** 213 * iavf_irq_enable_queues - Enable interrupt for specified queues 214 * @adapter: board private structure 215 * @mask: bitmap of queues to enable 216 **/ 217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 218 { 219 struct iavf_hw *hw = &adapter->hw; 220 int i; 221 222 for (i = 1; i < adapter->num_msix_vectors; i++) { 223 if (mask & BIT(i - 1)) { 224 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 225 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 226 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 227 } 228 } 229 } 230 231 /** 232 * iavf_irq_enable - Enable default interrupt generation settings 233 * @adapter: board private structure 234 * @flush: boolean value whether to run rd32() 235 **/ 236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 237 { 238 struct iavf_hw *hw = &adapter->hw; 239 240 iavf_misc_irq_enable(adapter); 241 iavf_irq_enable_queues(adapter, ~0); 242 243 if (flush) 244 iavf_flush(hw); 245 } 246 247 /** 248 * iavf_msix_aq - Interrupt handler for vector 0 249 * @irq: interrupt number 250 * @data: pointer to netdev 251 **/ 252 static irqreturn_t iavf_msix_aq(int irq, void *data) 253 { 254 struct net_device *netdev = data; 255 struct iavf_adapter *adapter = netdev_priv(netdev); 256 struct iavf_hw *hw = &adapter->hw; 257 258 /* handle non-queue interrupts, these reads clear the registers */ 259 rd32(hw, IAVF_VFINT_ICR01); 260 rd32(hw, IAVF_VFINT_ICR0_ENA1); 261 262 /* schedule work on the private workqueue */ 263 queue_work(iavf_wq, &adapter->adminq_task); 264 265 return IRQ_HANDLED; 266 } 267 268 /** 269 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 270 * @irq: interrupt number 271 * @data: pointer to a q_vector 272 **/ 273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 274 { 275 struct iavf_q_vector *q_vector = data; 276 277 if (!q_vector->tx.ring && !q_vector->rx.ring) 278 return IRQ_HANDLED; 279 280 napi_schedule_irqoff(&q_vector->napi); 281 282 return IRQ_HANDLED; 283 } 284 285 /** 286 * iavf_map_vector_to_rxq - associate irqs with rx queues 287 * @adapter: board private structure 288 * @v_idx: interrupt number 289 * @r_idx: queue number 290 **/ 291 static void 292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 293 { 294 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 295 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 296 struct iavf_hw *hw = &adapter->hw; 297 298 rx_ring->q_vector = q_vector; 299 rx_ring->next = q_vector->rx.ring; 300 rx_ring->vsi = &adapter->vsi; 301 q_vector->rx.ring = rx_ring; 302 q_vector->rx.count++; 303 q_vector->rx.next_update = jiffies + 1; 304 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 305 q_vector->ring_mask |= BIT(r_idx); 306 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 307 q_vector->rx.current_itr >> 1); 308 q_vector->rx.current_itr = q_vector->rx.target_itr; 309 } 310 311 /** 312 * iavf_map_vector_to_txq - associate irqs with tx queues 313 * @adapter: board private structure 314 * @v_idx: interrupt number 315 * @t_idx: queue number 316 **/ 317 static void 318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 319 { 320 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 321 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 322 struct iavf_hw *hw = &adapter->hw; 323 324 tx_ring->q_vector = q_vector; 325 tx_ring->next = q_vector->tx.ring; 326 tx_ring->vsi = &adapter->vsi; 327 q_vector->tx.ring = tx_ring; 328 q_vector->tx.count++; 329 q_vector->tx.next_update = jiffies + 1; 330 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 331 q_vector->num_ringpairs++; 332 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 333 q_vector->tx.target_itr >> 1); 334 q_vector->tx.current_itr = q_vector->tx.target_itr; 335 } 336 337 /** 338 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 339 * @adapter: board private structure to initialize 340 * 341 * This function maps descriptor rings to the queue-specific vectors 342 * we were allotted through the MSI-X enabling code. Ideally, we'd have 343 * one vector per ring/queue, but on a constrained vector budget, we 344 * group the rings as "efficiently" as possible. You would add new 345 * mapping configurations in here. 346 **/ 347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 348 { 349 int rings_remaining = adapter->num_active_queues; 350 int ridx = 0, vidx = 0; 351 int q_vectors; 352 353 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 354 355 for (; ridx < rings_remaining; ridx++) { 356 iavf_map_vector_to_rxq(adapter, vidx, ridx); 357 iavf_map_vector_to_txq(adapter, vidx, ridx); 358 359 /* In the case where we have more queues than vectors, continue 360 * round-robin on vectors until all queues are mapped. 361 */ 362 if (++vidx >= q_vectors) 363 vidx = 0; 364 } 365 366 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 367 } 368 369 /** 370 * iavf_irq_affinity_notify - Callback for affinity changes 371 * @notify: context as to what irq was changed 372 * @mask: the new affinity mask 373 * 374 * This is a callback function used by the irq_set_affinity_notifier function 375 * so that we may register to receive changes to the irq affinity masks. 376 **/ 377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 378 const cpumask_t *mask) 379 { 380 struct iavf_q_vector *q_vector = 381 container_of(notify, struct iavf_q_vector, affinity_notify); 382 383 cpumask_copy(&q_vector->affinity_mask, mask); 384 } 385 386 /** 387 * iavf_irq_affinity_release - Callback for affinity notifier release 388 * @ref: internal core kernel usage 389 * 390 * This is a callback function used by the irq_set_affinity_notifier function 391 * to inform the current notification subscriber that they will no longer 392 * receive notifications. 393 **/ 394 static void iavf_irq_affinity_release(struct kref *ref) {} 395 396 /** 397 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 398 * @adapter: board private structure 399 * @basename: device basename 400 * 401 * Allocates MSI-X vectors for tx and rx handling, and requests 402 * interrupts from the kernel. 403 **/ 404 static int 405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 406 { 407 unsigned int vector, q_vectors; 408 unsigned int rx_int_idx = 0, tx_int_idx = 0; 409 int irq_num, err; 410 int cpu; 411 412 iavf_irq_disable(adapter); 413 /* Decrement for Other and TCP Timer vectors */ 414 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 415 416 for (vector = 0; vector < q_vectors; vector++) { 417 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 418 419 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 420 421 if (q_vector->tx.ring && q_vector->rx.ring) { 422 snprintf(q_vector->name, sizeof(q_vector->name), 423 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 424 tx_int_idx++; 425 } else if (q_vector->rx.ring) { 426 snprintf(q_vector->name, sizeof(q_vector->name), 427 "iavf-%s-rx-%d", basename, rx_int_idx++); 428 } else if (q_vector->tx.ring) { 429 snprintf(q_vector->name, sizeof(q_vector->name), 430 "iavf-%s-tx-%d", basename, tx_int_idx++); 431 } else { 432 /* skip this unused q_vector */ 433 continue; 434 } 435 err = request_irq(irq_num, 436 iavf_msix_clean_rings, 437 0, 438 q_vector->name, 439 q_vector); 440 if (err) { 441 dev_info(&adapter->pdev->dev, 442 "Request_irq failed, error: %d\n", err); 443 goto free_queue_irqs; 444 } 445 /* register for affinity change notifications */ 446 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 447 q_vector->affinity_notify.release = 448 iavf_irq_affinity_release; 449 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 450 /* Spread the IRQ affinity hints across online CPUs. Note that 451 * get_cpu_mask returns a mask with a permanent lifetime so 452 * it's safe to use as a hint for irq_set_affinity_hint. 453 */ 454 cpu = cpumask_local_spread(q_vector->v_idx, -1); 455 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 456 } 457 458 return 0; 459 460 free_queue_irqs: 461 while (vector) { 462 vector--; 463 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 464 irq_set_affinity_notifier(irq_num, NULL); 465 irq_set_affinity_hint(irq_num, NULL); 466 free_irq(irq_num, &adapter->q_vectors[vector]); 467 } 468 return err; 469 } 470 471 /** 472 * iavf_request_misc_irq - Initialize MSI-X interrupts 473 * @adapter: board private structure 474 * 475 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 476 * vector is only for the admin queue, and stays active even when the netdev 477 * is closed. 478 **/ 479 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 480 { 481 struct net_device *netdev = adapter->netdev; 482 int err; 483 484 snprintf(adapter->misc_vector_name, 485 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 486 dev_name(&adapter->pdev->dev)); 487 err = request_irq(adapter->msix_entries[0].vector, 488 &iavf_msix_aq, 0, 489 adapter->misc_vector_name, netdev); 490 if (err) { 491 dev_err(&adapter->pdev->dev, 492 "request_irq for %s failed: %d\n", 493 adapter->misc_vector_name, err); 494 free_irq(adapter->msix_entries[0].vector, netdev); 495 } 496 return err; 497 } 498 499 /** 500 * iavf_free_traffic_irqs - Free MSI-X interrupts 501 * @adapter: board private structure 502 * 503 * Frees all MSI-X vectors other than 0. 504 **/ 505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 506 { 507 int vector, irq_num, q_vectors; 508 509 if (!adapter->msix_entries) 510 return; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (vector = 0; vector < q_vectors; vector++) { 515 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 516 irq_set_affinity_notifier(irq_num, NULL); 517 irq_set_affinity_hint(irq_num, NULL); 518 free_irq(irq_num, &adapter->q_vectors[vector]); 519 } 520 } 521 522 /** 523 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 524 * @adapter: board private structure 525 * 526 * Frees MSI-X vector 0. 527 **/ 528 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 529 { 530 struct net_device *netdev = adapter->netdev; 531 532 if (!adapter->msix_entries) 533 return; 534 535 free_irq(adapter->msix_entries[0].vector, netdev); 536 } 537 538 /** 539 * iavf_configure_tx - Configure Transmit Unit after Reset 540 * @adapter: board private structure 541 * 542 * Configure the Tx unit of the MAC after a reset. 543 **/ 544 static void iavf_configure_tx(struct iavf_adapter *adapter) 545 { 546 struct iavf_hw *hw = &adapter->hw; 547 int i; 548 549 for (i = 0; i < adapter->num_active_queues; i++) 550 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 551 } 552 553 /** 554 * iavf_configure_rx - Configure Receive Unit after Reset 555 * @adapter: board private structure 556 * 557 * Configure the Rx unit of the MAC after a reset. 558 **/ 559 static void iavf_configure_rx(struct iavf_adapter *adapter) 560 { 561 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 562 struct iavf_hw *hw = &adapter->hw; 563 int i; 564 565 /* Legacy Rx will always default to a 2048 buffer size. */ 566 #if (PAGE_SIZE < 8192) 567 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 568 struct net_device *netdev = adapter->netdev; 569 570 /* For jumbo frames on systems with 4K pages we have to use 571 * an order 1 page, so we might as well increase the size 572 * of our Rx buffer to make better use of the available space 573 */ 574 rx_buf_len = IAVF_RXBUFFER_3072; 575 576 /* We use a 1536 buffer size for configurations with 577 * standard Ethernet mtu. On x86 this gives us enough room 578 * for shared info and 192 bytes of padding. 579 */ 580 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 581 (netdev->mtu <= ETH_DATA_LEN)) 582 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 583 } 584 #endif 585 586 for (i = 0; i < adapter->num_active_queues; i++) { 587 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 588 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 589 590 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 591 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 592 else 593 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 594 } 595 } 596 597 /** 598 * iavf_find_vlan - Search filter list for specific vlan filter 599 * @adapter: board private structure 600 * @vlan: vlan tag 601 * 602 * Returns ptr to the filter object or NULL. Must be called while holding the 603 * mac_vlan_list_lock. 604 **/ 605 static struct 606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 607 { 608 struct iavf_vlan_filter *f; 609 610 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 611 if (vlan == f->vlan) 612 return f; 613 } 614 return NULL; 615 } 616 617 /** 618 * iavf_add_vlan - Add a vlan filter to the list 619 * @adapter: board private structure 620 * @vlan: VLAN tag 621 * 622 * Returns ptr to the filter object or NULL when no memory available. 623 **/ 624 static struct 625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 626 { 627 struct iavf_vlan_filter *f = NULL; 628 629 spin_lock_bh(&adapter->mac_vlan_list_lock); 630 631 f = iavf_find_vlan(adapter, vlan); 632 if (!f) { 633 f = kzalloc(sizeof(*f), GFP_ATOMIC); 634 if (!f) 635 goto clearout; 636 637 f->vlan = vlan; 638 639 list_add_tail(&f->list, &adapter->vlan_filter_list); 640 f->add = true; 641 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 642 } 643 644 clearout: 645 spin_unlock_bh(&adapter->mac_vlan_list_lock); 646 return f; 647 } 648 649 /** 650 * iavf_del_vlan - Remove a vlan filter from the list 651 * @adapter: board private structure 652 * @vlan: VLAN tag 653 **/ 654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 655 { 656 struct iavf_vlan_filter *f; 657 658 spin_lock_bh(&adapter->mac_vlan_list_lock); 659 660 f = iavf_find_vlan(adapter, vlan); 661 if (f) { 662 f->remove = true; 663 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 664 } 665 666 spin_unlock_bh(&adapter->mac_vlan_list_lock); 667 } 668 669 /** 670 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 671 * @netdev: network device struct 672 * @proto: unused protocol data 673 * @vid: VLAN tag 674 **/ 675 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 676 __always_unused __be16 proto, u16 vid) 677 { 678 struct iavf_adapter *adapter = netdev_priv(netdev); 679 680 if (!VLAN_ALLOWED(adapter)) 681 return -EIO; 682 if (iavf_add_vlan(adapter, vid) == NULL) 683 return -ENOMEM; 684 return 0; 685 } 686 687 /** 688 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 689 * @netdev: network device struct 690 * @proto: unused protocol data 691 * @vid: VLAN tag 692 **/ 693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 694 __always_unused __be16 proto, u16 vid) 695 { 696 struct iavf_adapter *adapter = netdev_priv(netdev); 697 698 if (VLAN_ALLOWED(adapter)) { 699 iavf_del_vlan(adapter, vid); 700 return 0; 701 } 702 return -EIO; 703 } 704 705 /** 706 * iavf_find_filter - Search filter list for specific mac filter 707 * @adapter: board private structure 708 * @macaddr: the MAC address 709 * 710 * Returns ptr to the filter object or NULL. Must be called while holding the 711 * mac_vlan_list_lock. 712 **/ 713 static struct 714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 715 const u8 *macaddr) 716 { 717 struct iavf_mac_filter *f; 718 719 if (!macaddr) 720 return NULL; 721 722 list_for_each_entry(f, &adapter->mac_filter_list, list) { 723 if (ether_addr_equal(macaddr, f->macaddr)) 724 return f; 725 } 726 return NULL; 727 } 728 729 /** 730 * iavf_add_filter - Add a mac filter to the filter list 731 * @adapter: board private structure 732 * @macaddr: the MAC address 733 * 734 * Returns ptr to the filter object or NULL when no memory available. 735 **/ 736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 737 const u8 *macaddr) 738 { 739 struct iavf_mac_filter *f; 740 741 if (!macaddr) 742 return NULL; 743 744 f = iavf_find_filter(adapter, macaddr); 745 if (!f) { 746 f = kzalloc(sizeof(*f), GFP_ATOMIC); 747 if (!f) 748 return f; 749 750 ether_addr_copy(f->macaddr, macaddr); 751 752 list_add_tail(&f->list, &adapter->mac_filter_list); 753 f->add = true; 754 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 755 } else { 756 f->remove = false; 757 } 758 759 return f; 760 } 761 762 /** 763 * iavf_set_mac - NDO callback to set port mac address 764 * @netdev: network interface device structure 765 * @p: pointer to an address structure 766 * 767 * Returns 0 on success, negative on failure 768 **/ 769 static int iavf_set_mac(struct net_device *netdev, void *p) 770 { 771 struct iavf_adapter *adapter = netdev_priv(netdev); 772 struct iavf_hw *hw = &adapter->hw; 773 struct iavf_mac_filter *f; 774 struct sockaddr *addr = p; 775 776 if (!is_valid_ether_addr(addr->sa_data)) 777 return -EADDRNOTAVAIL; 778 779 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 780 return 0; 781 782 spin_lock_bh(&adapter->mac_vlan_list_lock); 783 784 f = iavf_find_filter(adapter, hw->mac.addr); 785 if (f) { 786 f->remove = true; 787 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 788 } 789 790 f = iavf_add_filter(adapter, addr->sa_data); 791 792 spin_unlock_bh(&adapter->mac_vlan_list_lock); 793 794 if (f) { 795 ether_addr_copy(hw->mac.addr, addr->sa_data); 796 } 797 798 return (f == NULL) ? -ENOMEM : 0; 799 } 800 801 /** 802 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 803 * @netdev: the netdevice 804 * @addr: address to add 805 * 806 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 807 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 808 */ 809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 810 { 811 struct iavf_adapter *adapter = netdev_priv(netdev); 812 813 if (iavf_add_filter(adapter, addr)) 814 return 0; 815 else 816 return -ENOMEM; 817 } 818 819 /** 820 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 821 * @netdev: the netdevice 822 * @addr: address to add 823 * 824 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 825 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 826 */ 827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 828 { 829 struct iavf_adapter *adapter = netdev_priv(netdev); 830 struct iavf_mac_filter *f; 831 832 /* Under some circumstances, we might receive a request to delete 833 * our own device address from our uc list. Because we store the 834 * device address in the VSI's MAC/VLAN filter list, we need to ignore 835 * such requests and not delete our device address from this list. 836 */ 837 if (ether_addr_equal(addr, netdev->dev_addr)) 838 return 0; 839 840 f = iavf_find_filter(adapter, addr); 841 if (f) { 842 f->remove = true; 843 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 844 } 845 return 0; 846 } 847 848 /** 849 * iavf_set_rx_mode - NDO callback to set the netdev filters 850 * @netdev: network interface device structure 851 **/ 852 static void iavf_set_rx_mode(struct net_device *netdev) 853 { 854 struct iavf_adapter *adapter = netdev_priv(netdev); 855 856 spin_lock_bh(&adapter->mac_vlan_list_lock); 857 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 858 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 859 spin_unlock_bh(&adapter->mac_vlan_list_lock); 860 861 if (netdev->flags & IFF_PROMISC && 862 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 863 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 864 else if (!(netdev->flags & IFF_PROMISC) && 865 adapter->flags & IAVF_FLAG_PROMISC_ON) 866 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 867 868 if (netdev->flags & IFF_ALLMULTI && 869 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 870 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 871 else if (!(netdev->flags & IFF_ALLMULTI) && 872 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 873 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 874 } 875 876 /** 877 * iavf_napi_enable_all - enable NAPI on all queue vectors 878 * @adapter: board private structure 879 **/ 880 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 881 { 882 int q_idx; 883 struct iavf_q_vector *q_vector; 884 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 885 886 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 887 struct napi_struct *napi; 888 889 q_vector = &adapter->q_vectors[q_idx]; 890 napi = &q_vector->napi; 891 napi_enable(napi); 892 } 893 } 894 895 /** 896 * iavf_napi_disable_all - disable NAPI on all queue vectors 897 * @adapter: board private structure 898 **/ 899 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 900 { 901 int q_idx; 902 struct iavf_q_vector *q_vector; 903 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 904 905 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 906 q_vector = &adapter->q_vectors[q_idx]; 907 napi_disable(&q_vector->napi); 908 } 909 } 910 911 /** 912 * iavf_configure - set up transmit and receive data structures 913 * @adapter: board private structure 914 **/ 915 static void iavf_configure(struct iavf_adapter *adapter) 916 { 917 struct net_device *netdev = adapter->netdev; 918 int i; 919 920 iavf_set_rx_mode(netdev); 921 922 iavf_configure_tx(adapter); 923 iavf_configure_rx(adapter); 924 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 925 926 for (i = 0; i < adapter->num_active_queues; i++) { 927 struct iavf_ring *ring = &adapter->rx_rings[i]; 928 929 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 930 } 931 } 932 933 /** 934 * iavf_up_complete - Finish the last steps of bringing up a connection 935 * @adapter: board private structure 936 * 937 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 938 **/ 939 static void iavf_up_complete(struct iavf_adapter *adapter) 940 { 941 adapter->state = __IAVF_RUNNING; 942 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 943 944 iavf_napi_enable_all(adapter); 945 946 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 947 if (CLIENT_ENABLED(adapter)) 948 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 949 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 950 } 951 952 /** 953 * iavf_down - Shutdown the connection processing 954 * @adapter: board private structure 955 * 956 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 957 **/ 958 void iavf_down(struct iavf_adapter *adapter) 959 { 960 struct net_device *netdev = adapter->netdev; 961 struct iavf_vlan_filter *vlf; 962 struct iavf_cloud_filter *cf; 963 struct iavf_fdir_fltr *fdir; 964 struct iavf_mac_filter *f; 965 966 if (adapter->state <= __IAVF_DOWN_PENDING) 967 return; 968 969 netif_carrier_off(netdev); 970 netif_tx_disable(netdev); 971 adapter->link_up = false; 972 iavf_napi_disable_all(adapter); 973 iavf_irq_disable(adapter); 974 975 spin_lock_bh(&adapter->mac_vlan_list_lock); 976 977 /* clear the sync flag on all filters */ 978 __dev_uc_unsync(adapter->netdev, NULL); 979 __dev_mc_unsync(adapter->netdev, NULL); 980 981 /* remove all MAC filters */ 982 list_for_each_entry(f, &adapter->mac_filter_list, list) { 983 f->remove = true; 984 } 985 986 /* remove all VLAN filters */ 987 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 988 vlf->remove = true; 989 } 990 991 spin_unlock_bh(&adapter->mac_vlan_list_lock); 992 993 /* remove all cloud filters */ 994 spin_lock_bh(&adapter->cloud_filter_list_lock); 995 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 996 cf->del = true; 997 } 998 spin_unlock_bh(&adapter->cloud_filter_list_lock); 999 1000 /* remove all Flow Director filters */ 1001 spin_lock_bh(&adapter->fdir_fltr_lock); 1002 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1003 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1004 } 1005 spin_unlock_bh(&adapter->fdir_fltr_lock); 1006 1007 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1008 adapter->state != __IAVF_RESETTING) { 1009 /* cancel any current operation */ 1010 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1011 /* Schedule operations to close down the HW. Don't wait 1012 * here for this to complete. The watchdog is still running 1013 * and it will take care of this. 1014 */ 1015 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1016 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1017 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1019 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1020 } 1021 1022 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1023 } 1024 1025 /** 1026 * iavf_acquire_msix_vectors - Setup the MSIX capability 1027 * @adapter: board private structure 1028 * @vectors: number of vectors to request 1029 * 1030 * Work with the OS to set up the MSIX vectors needed. 1031 * 1032 * Returns 0 on success, negative on failure 1033 **/ 1034 static int 1035 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1036 { 1037 int err, vector_threshold; 1038 1039 /* We'll want at least 3 (vector_threshold): 1040 * 0) Other (Admin Queue and link, mostly) 1041 * 1) TxQ[0] Cleanup 1042 * 2) RxQ[0] Cleanup 1043 */ 1044 vector_threshold = MIN_MSIX_COUNT; 1045 1046 /* The more we get, the more we will assign to Tx/Rx Cleanup 1047 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1048 * Right now, we simply care about how many we'll get; we'll 1049 * set them up later while requesting irq's. 1050 */ 1051 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1052 vector_threshold, vectors); 1053 if (err < 0) { 1054 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1055 kfree(adapter->msix_entries); 1056 adapter->msix_entries = NULL; 1057 return err; 1058 } 1059 1060 /* Adjust for only the vectors we'll use, which is minimum 1061 * of max_msix_q_vectors + NONQ_VECS, or the number of 1062 * vectors we were allocated. 1063 */ 1064 adapter->num_msix_vectors = err; 1065 return 0; 1066 } 1067 1068 /** 1069 * iavf_free_queues - Free memory for all rings 1070 * @adapter: board private structure to initialize 1071 * 1072 * Free all of the memory associated with queue pairs. 1073 **/ 1074 static void iavf_free_queues(struct iavf_adapter *adapter) 1075 { 1076 if (!adapter->vsi_res) 1077 return; 1078 adapter->num_active_queues = 0; 1079 kfree(adapter->tx_rings); 1080 adapter->tx_rings = NULL; 1081 kfree(adapter->rx_rings); 1082 adapter->rx_rings = NULL; 1083 } 1084 1085 /** 1086 * iavf_alloc_queues - Allocate memory for all rings 1087 * @adapter: board private structure to initialize 1088 * 1089 * We allocate one ring per queue at run-time since we don't know the 1090 * number of queues at compile-time. The polling_netdev array is 1091 * intended for Multiqueue, but should work fine with a single queue. 1092 **/ 1093 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1094 { 1095 int i, num_active_queues; 1096 1097 /* If we're in reset reallocating queues we don't actually know yet for 1098 * certain the PF gave us the number of queues we asked for but we'll 1099 * assume it did. Once basic reset is finished we'll confirm once we 1100 * start negotiating config with PF. 1101 */ 1102 if (adapter->num_req_queues) 1103 num_active_queues = adapter->num_req_queues; 1104 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1105 adapter->num_tc) 1106 num_active_queues = adapter->ch_config.total_qps; 1107 else 1108 num_active_queues = min_t(int, 1109 adapter->vsi_res->num_queue_pairs, 1110 (int)(num_online_cpus())); 1111 1112 1113 adapter->tx_rings = kcalloc(num_active_queues, 1114 sizeof(struct iavf_ring), GFP_KERNEL); 1115 if (!adapter->tx_rings) 1116 goto err_out; 1117 adapter->rx_rings = kcalloc(num_active_queues, 1118 sizeof(struct iavf_ring), GFP_KERNEL); 1119 if (!adapter->rx_rings) 1120 goto err_out; 1121 1122 for (i = 0; i < num_active_queues; i++) { 1123 struct iavf_ring *tx_ring; 1124 struct iavf_ring *rx_ring; 1125 1126 tx_ring = &adapter->tx_rings[i]; 1127 1128 tx_ring->queue_index = i; 1129 tx_ring->netdev = adapter->netdev; 1130 tx_ring->dev = &adapter->pdev->dev; 1131 tx_ring->count = adapter->tx_desc_count; 1132 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1133 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1134 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1135 1136 rx_ring = &adapter->rx_rings[i]; 1137 rx_ring->queue_index = i; 1138 rx_ring->netdev = adapter->netdev; 1139 rx_ring->dev = &adapter->pdev->dev; 1140 rx_ring->count = adapter->rx_desc_count; 1141 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1142 } 1143 1144 adapter->num_active_queues = num_active_queues; 1145 1146 return 0; 1147 1148 err_out: 1149 iavf_free_queues(adapter); 1150 return -ENOMEM; 1151 } 1152 1153 /** 1154 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1155 * @adapter: board private structure to initialize 1156 * 1157 * Attempt to configure the interrupts using the best available 1158 * capabilities of the hardware and the kernel. 1159 **/ 1160 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1161 { 1162 int vector, v_budget; 1163 int pairs = 0; 1164 int err = 0; 1165 1166 if (!adapter->vsi_res) { 1167 err = -EIO; 1168 goto out; 1169 } 1170 pairs = adapter->num_active_queues; 1171 1172 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1173 * us much good if we have more vectors than CPUs. However, we already 1174 * limit the total number of queues by the number of CPUs so we do not 1175 * need any further limiting here. 1176 */ 1177 v_budget = min_t(int, pairs + NONQ_VECS, 1178 (int)adapter->vf_res->max_vectors); 1179 1180 adapter->msix_entries = kcalloc(v_budget, 1181 sizeof(struct msix_entry), GFP_KERNEL); 1182 if (!adapter->msix_entries) { 1183 err = -ENOMEM; 1184 goto out; 1185 } 1186 1187 for (vector = 0; vector < v_budget; vector++) 1188 adapter->msix_entries[vector].entry = vector; 1189 1190 err = iavf_acquire_msix_vectors(adapter, v_budget); 1191 1192 out: 1193 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1194 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1195 return err; 1196 } 1197 1198 /** 1199 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1200 * @adapter: board private structure 1201 * 1202 * Return 0 on success, negative on failure 1203 **/ 1204 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1205 { 1206 struct iavf_aqc_get_set_rss_key_data *rss_key = 1207 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1208 struct iavf_hw *hw = &adapter->hw; 1209 int ret = 0; 1210 1211 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1212 /* bail because we already have a command pending */ 1213 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1214 adapter->current_op); 1215 return -EBUSY; 1216 } 1217 1218 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1219 if (ret) { 1220 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1221 iavf_stat_str(hw, ret), 1222 iavf_aq_str(hw, hw->aq.asq_last_status)); 1223 return ret; 1224 1225 } 1226 1227 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1228 adapter->rss_lut, adapter->rss_lut_size); 1229 if (ret) { 1230 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1231 iavf_stat_str(hw, ret), 1232 iavf_aq_str(hw, hw->aq.asq_last_status)); 1233 } 1234 1235 return ret; 1236 1237 } 1238 1239 /** 1240 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1241 * @adapter: board private structure 1242 * 1243 * Returns 0 on success, negative on failure 1244 **/ 1245 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1246 { 1247 struct iavf_hw *hw = &adapter->hw; 1248 u32 *dw; 1249 u16 i; 1250 1251 dw = (u32 *)adapter->rss_key; 1252 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1253 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1254 1255 dw = (u32 *)adapter->rss_lut; 1256 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1257 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1258 1259 iavf_flush(hw); 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * iavf_config_rss - Configure RSS keys and lut 1266 * @adapter: board private structure 1267 * 1268 * Returns 0 on success, negative on failure 1269 **/ 1270 int iavf_config_rss(struct iavf_adapter *adapter) 1271 { 1272 1273 if (RSS_PF(adapter)) { 1274 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1275 IAVF_FLAG_AQ_SET_RSS_KEY; 1276 return 0; 1277 } else if (RSS_AQ(adapter)) { 1278 return iavf_config_rss_aq(adapter); 1279 } else { 1280 return iavf_config_rss_reg(adapter); 1281 } 1282 } 1283 1284 /** 1285 * iavf_fill_rss_lut - Fill the lut with default values 1286 * @adapter: board private structure 1287 **/ 1288 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1289 { 1290 u16 i; 1291 1292 for (i = 0; i < adapter->rss_lut_size; i++) 1293 adapter->rss_lut[i] = i % adapter->num_active_queues; 1294 } 1295 1296 /** 1297 * iavf_init_rss - Prepare for RSS 1298 * @adapter: board private structure 1299 * 1300 * Return 0 on success, negative on failure 1301 **/ 1302 static int iavf_init_rss(struct iavf_adapter *adapter) 1303 { 1304 struct iavf_hw *hw = &adapter->hw; 1305 int ret; 1306 1307 if (!RSS_PF(adapter)) { 1308 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1309 if (adapter->vf_res->vf_cap_flags & 1310 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1311 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1312 else 1313 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1314 1315 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1316 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1317 } 1318 1319 iavf_fill_rss_lut(adapter); 1320 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1321 ret = iavf_config_rss(adapter); 1322 1323 return ret; 1324 } 1325 1326 /** 1327 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1328 * @adapter: board private structure to initialize 1329 * 1330 * We allocate one q_vector per queue interrupt. If allocation fails we 1331 * return -ENOMEM. 1332 **/ 1333 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1334 { 1335 int q_idx = 0, num_q_vectors; 1336 struct iavf_q_vector *q_vector; 1337 1338 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1339 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1340 GFP_KERNEL); 1341 if (!adapter->q_vectors) 1342 return -ENOMEM; 1343 1344 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1345 q_vector = &adapter->q_vectors[q_idx]; 1346 q_vector->adapter = adapter; 1347 q_vector->vsi = &adapter->vsi; 1348 q_vector->v_idx = q_idx; 1349 q_vector->reg_idx = q_idx; 1350 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1351 netif_napi_add(adapter->netdev, &q_vector->napi, 1352 iavf_napi_poll, NAPI_POLL_WEIGHT); 1353 } 1354 1355 return 0; 1356 } 1357 1358 /** 1359 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1360 * @adapter: board private structure to initialize 1361 * 1362 * This function frees the memory allocated to the q_vectors. In addition if 1363 * NAPI is enabled it will delete any references to the NAPI struct prior 1364 * to freeing the q_vector. 1365 **/ 1366 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1367 { 1368 int q_idx, num_q_vectors; 1369 int napi_vectors; 1370 1371 if (!adapter->q_vectors) 1372 return; 1373 1374 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1375 napi_vectors = adapter->num_active_queues; 1376 1377 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1378 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1379 1380 if (q_idx < napi_vectors) 1381 netif_napi_del(&q_vector->napi); 1382 } 1383 kfree(adapter->q_vectors); 1384 adapter->q_vectors = NULL; 1385 } 1386 1387 /** 1388 * iavf_reset_interrupt_capability - Reset MSIX setup 1389 * @adapter: board private structure 1390 * 1391 **/ 1392 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1393 { 1394 if (!adapter->msix_entries) 1395 return; 1396 1397 pci_disable_msix(adapter->pdev); 1398 kfree(adapter->msix_entries); 1399 adapter->msix_entries = NULL; 1400 } 1401 1402 /** 1403 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1404 * @adapter: board private structure to initialize 1405 * 1406 **/ 1407 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1408 { 1409 int err; 1410 1411 err = iavf_alloc_queues(adapter); 1412 if (err) { 1413 dev_err(&adapter->pdev->dev, 1414 "Unable to allocate memory for queues\n"); 1415 goto err_alloc_queues; 1416 } 1417 1418 rtnl_lock(); 1419 err = iavf_set_interrupt_capability(adapter); 1420 rtnl_unlock(); 1421 if (err) { 1422 dev_err(&adapter->pdev->dev, 1423 "Unable to setup interrupt capabilities\n"); 1424 goto err_set_interrupt; 1425 } 1426 1427 err = iavf_alloc_q_vectors(adapter); 1428 if (err) { 1429 dev_err(&adapter->pdev->dev, 1430 "Unable to allocate memory for queue vectors\n"); 1431 goto err_alloc_q_vectors; 1432 } 1433 1434 /* If we've made it so far while ADq flag being ON, then we haven't 1435 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1436 * resources have been allocated in the reset path. 1437 * Now we can truly claim that ADq is enabled. 1438 */ 1439 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1440 adapter->num_tc) 1441 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1442 adapter->num_tc); 1443 1444 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1445 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1446 adapter->num_active_queues); 1447 1448 return 0; 1449 err_alloc_q_vectors: 1450 iavf_reset_interrupt_capability(adapter); 1451 err_set_interrupt: 1452 iavf_free_queues(adapter); 1453 err_alloc_queues: 1454 return err; 1455 } 1456 1457 /** 1458 * iavf_free_rss - Free memory used by RSS structs 1459 * @adapter: board private structure 1460 **/ 1461 static void iavf_free_rss(struct iavf_adapter *adapter) 1462 { 1463 kfree(adapter->rss_key); 1464 adapter->rss_key = NULL; 1465 1466 kfree(adapter->rss_lut); 1467 adapter->rss_lut = NULL; 1468 } 1469 1470 /** 1471 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1472 * @adapter: board private structure 1473 * 1474 * Returns 0 on success, negative on failure 1475 **/ 1476 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1477 { 1478 struct net_device *netdev = adapter->netdev; 1479 int err; 1480 1481 if (netif_running(netdev)) 1482 iavf_free_traffic_irqs(adapter); 1483 iavf_free_misc_irq(adapter); 1484 iavf_reset_interrupt_capability(adapter); 1485 iavf_free_q_vectors(adapter); 1486 iavf_free_queues(adapter); 1487 1488 err = iavf_init_interrupt_scheme(adapter); 1489 if (err) 1490 goto err; 1491 1492 netif_tx_stop_all_queues(netdev); 1493 1494 err = iavf_request_misc_irq(adapter); 1495 if (err) 1496 goto err; 1497 1498 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1499 1500 iavf_map_rings_to_vectors(adapter); 1501 1502 if (RSS_AQ(adapter)) 1503 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1504 else 1505 err = iavf_init_rss(adapter); 1506 err: 1507 return err; 1508 } 1509 1510 /** 1511 * iavf_process_aq_command - process aq_required flags 1512 * and sends aq command 1513 * @adapter: pointer to iavf adapter structure 1514 * 1515 * Returns 0 on success 1516 * Returns error code if no command was sent 1517 * or error code if the command failed. 1518 **/ 1519 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1520 { 1521 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1522 return iavf_send_vf_config_msg(adapter); 1523 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1524 iavf_disable_queues(adapter); 1525 return 0; 1526 } 1527 1528 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1529 iavf_map_queues(adapter); 1530 return 0; 1531 } 1532 1533 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1534 iavf_add_ether_addrs(adapter); 1535 return 0; 1536 } 1537 1538 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1539 iavf_add_vlans(adapter); 1540 return 0; 1541 } 1542 1543 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1544 iavf_del_ether_addrs(adapter); 1545 return 0; 1546 } 1547 1548 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1549 iavf_del_vlans(adapter); 1550 return 0; 1551 } 1552 1553 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1554 iavf_enable_vlan_stripping(adapter); 1555 return 0; 1556 } 1557 1558 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1559 iavf_disable_vlan_stripping(adapter); 1560 return 0; 1561 } 1562 1563 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1564 iavf_configure_queues(adapter); 1565 return 0; 1566 } 1567 1568 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1569 iavf_enable_queues(adapter); 1570 return 0; 1571 } 1572 1573 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1574 /* This message goes straight to the firmware, not the 1575 * PF, so we don't have to set current_op as we will 1576 * not get a response through the ARQ. 1577 */ 1578 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1579 return 0; 1580 } 1581 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1582 iavf_get_hena(adapter); 1583 return 0; 1584 } 1585 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1586 iavf_set_hena(adapter); 1587 return 0; 1588 } 1589 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1590 iavf_set_rss_key(adapter); 1591 return 0; 1592 } 1593 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1594 iavf_set_rss_lut(adapter); 1595 return 0; 1596 } 1597 1598 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1599 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1600 FLAG_VF_MULTICAST_PROMISC); 1601 return 0; 1602 } 1603 1604 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1605 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1606 return 0; 1607 } 1608 1609 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1610 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1611 iavf_set_promiscuous(adapter, 0); 1612 return 0; 1613 } 1614 1615 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1616 iavf_enable_channels(adapter); 1617 return 0; 1618 } 1619 1620 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1621 iavf_disable_channels(adapter); 1622 return 0; 1623 } 1624 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1625 iavf_add_cloud_filter(adapter); 1626 return 0; 1627 } 1628 1629 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1630 iavf_del_cloud_filter(adapter); 1631 return 0; 1632 } 1633 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1634 iavf_del_cloud_filter(adapter); 1635 return 0; 1636 } 1637 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1638 iavf_add_cloud_filter(adapter); 1639 return 0; 1640 } 1641 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1642 iavf_add_fdir_filter(adapter); 1643 return IAVF_SUCCESS; 1644 } 1645 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1646 iavf_del_fdir_filter(adapter); 1647 return IAVF_SUCCESS; 1648 } 1649 return -EAGAIN; 1650 } 1651 1652 /** 1653 * iavf_startup - first step of driver startup 1654 * @adapter: board private structure 1655 * 1656 * Function process __IAVF_STARTUP driver state. 1657 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 1658 * when fails it returns -EAGAIN 1659 **/ 1660 static int iavf_startup(struct iavf_adapter *adapter) 1661 { 1662 struct pci_dev *pdev = adapter->pdev; 1663 struct iavf_hw *hw = &adapter->hw; 1664 int err; 1665 1666 WARN_ON(adapter->state != __IAVF_STARTUP); 1667 1668 /* driver loaded, probe complete */ 1669 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1670 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1671 err = iavf_set_mac_type(hw); 1672 if (err) { 1673 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); 1674 goto err; 1675 } 1676 1677 err = iavf_check_reset_complete(hw); 1678 if (err) { 1679 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 1680 err); 1681 goto err; 1682 } 1683 hw->aq.num_arq_entries = IAVF_AQ_LEN; 1684 hw->aq.num_asq_entries = IAVF_AQ_LEN; 1685 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1686 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 1687 1688 err = iavf_init_adminq(hw); 1689 if (err) { 1690 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); 1691 goto err; 1692 } 1693 err = iavf_send_api_ver(adapter); 1694 if (err) { 1695 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 1696 iavf_shutdown_adminq(hw); 1697 goto err; 1698 } 1699 adapter->state = __IAVF_INIT_VERSION_CHECK; 1700 err: 1701 return err; 1702 } 1703 1704 /** 1705 * iavf_init_version_check - second step of driver startup 1706 * @adapter: board private structure 1707 * 1708 * Function process __IAVF_INIT_VERSION_CHECK driver state. 1709 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 1710 * when fails it returns -EAGAIN 1711 **/ 1712 static int iavf_init_version_check(struct iavf_adapter *adapter) 1713 { 1714 struct pci_dev *pdev = adapter->pdev; 1715 struct iavf_hw *hw = &adapter->hw; 1716 int err = -EAGAIN; 1717 1718 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 1719 1720 if (!iavf_asq_done(hw)) { 1721 dev_err(&pdev->dev, "Admin queue command never completed\n"); 1722 iavf_shutdown_adminq(hw); 1723 adapter->state = __IAVF_STARTUP; 1724 goto err; 1725 } 1726 1727 /* aq msg sent, awaiting reply */ 1728 err = iavf_verify_api_ver(adapter); 1729 if (err) { 1730 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 1731 err = iavf_send_api_ver(adapter); 1732 else 1733 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 1734 adapter->pf_version.major, 1735 adapter->pf_version.minor, 1736 VIRTCHNL_VERSION_MAJOR, 1737 VIRTCHNL_VERSION_MINOR); 1738 goto err; 1739 } 1740 err = iavf_send_vf_config_msg(adapter); 1741 if (err) { 1742 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 1743 err); 1744 goto err; 1745 } 1746 adapter->state = __IAVF_INIT_GET_RESOURCES; 1747 1748 err: 1749 return err; 1750 } 1751 1752 /** 1753 * iavf_init_get_resources - third step of driver startup 1754 * @adapter: board private structure 1755 * 1756 * Function process __IAVF_INIT_GET_RESOURCES driver state and 1757 * finishes driver initialization procedure. 1758 * When success the state is changed to __IAVF_DOWN 1759 * when fails it returns -EAGAIN 1760 **/ 1761 static int iavf_init_get_resources(struct iavf_adapter *adapter) 1762 { 1763 struct net_device *netdev = adapter->netdev; 1764 struct pci_dev *pdev = adapter->pdev; 1765 struct iavf_hw *hw = &adapter->hw; 1766 int err; 1767 1768 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 1769 /* aq msg sent, awaiting reply */ 1770 if (!adapter->vf_res) { 1771 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 1772 GFP_KERNEL); 1773 if (!adapter->vf_res) { 1774 err = -ENOMEM; 1775 goto err; 1776 } 1777 } 1778 err = iavf_get_vf_config(adapter); 1779 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 1780 err = iavf_send_vf_config_msg(adapter); 1781 goto err; 1782 } else if (err == IAVF_ERR_PARAM) { 1783 /* We only get ERR_PARAM if the device is in a very bad 1784 * state or if we've been disabled for previous bad 1785 * behavior. Either way, we're done now. 1786 */ 1787 iavf_shutdown_adminq(hw); 1788 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 1789 return 0; 1790 } 1791 if (err) { 1792 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 1793 goto err_alloc; 1794 } 1795 1796 err = iavf_process_config(adapter); 1797 if (err) 1798 goto err_alloc; 1799 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1800 1801 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 1802 1803 netdev->netdev_ops = &iavf_netdev_ops; 1804 iavf_set_ethtool_ops(netdev); 1805 netdev->watchdog_timeo = 5 * HZ; 1806 1807 /* MTU range: 68 - 9710 */ 1808 netdev->min_mtu = ETH_MIN_MTU; 1809 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 1810 1811 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 1812 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 1813 adapter->hw.mac.addr); 1814 eth_hw_addr_random(netdev); 1815 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 1816 } else { 1817 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 1818 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 1819 } 1820 1821 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 1822 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 1823 err = iavf_init_interrupt_scheme(adapter); 1824 if (err) 1825 goto err_sw_init; 1826 iavf_map_rings_to_vectors(adapter); 1827 if (adapter->vf_res->vf_cap_flags & 1828 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 1829 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 1830 1831 err = iavf_request_misc_irq(adapter); 1832 if (err) 1833 goto err_sw_init; 1834 1835 netif_carrier_off(netdev); 1836 adapter->link_up = false; 1837 1838 /* set the semaphore to prevent any callbacks after device registration 1839 * up to time when state of driver will be set to __IAVF_DOWN 1840 */ 1841 rtnl_lock(); 1842 if (!adapter->netdev_registered) { 1843 err = register_netdevice(netdev); 1844 if (err) { 1845 rtnl_unlock(); 1846 goto err_register; 1847 } 1848 } 1849 1850 adapter->netdev_registered = true; 1851 1852 netif_tx_stop_all_queues(netdev); 1853 if (CLIENT_ALLOWED(adapter)) { 1854 err = iavf_lan_add_device(adapter); 1855 if (err) 1856 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 1857 err); 1858 } 1859 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 1860 if (netdev->features & NETIF_F_GRO) 1861 dev_info(&pdev->dev, "GRO is enabled\n"); 1862 1863 adapter->state = __IAVF_DOWN; 1864 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1865 rtnl_unlock(); 1866 1867 iavf_misc_irq_enable(adapter); 1868 wake_up(&adapter->down_waitqueue); 1869 1870 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 1871 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 1872 if (!adapter->rss_key || !adapter->rss_lut) { 1873 err = -ENOMEM; 1874 goto err_mem; 1875 } 1876 if (RSS_AQ(adapter)) 1877 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1878 else 1879 iavf_init_rss(adapter); 1880 1881 return err; 1882 err_mem: 1883 iavf_free_rss(adapter); 1884 err_register: 1885 iavf_free_misc_irq(adapter); 1886 err_sw_init: 1887 iavf_reset_interrupt_capability(adapter); 1888 err_alloc: 1889 kfree(adapter->vf_res); 1890 adapter->vf_res = NULL; 1891 err: 1892 return err; 1893 } 1894 1895 /** 1896 * iavf_watchdog_task - Periodic call-back task 1897 * @work: pointer to work_struct 1898 **/ 1899 static void iavf_watchdog_task(struct work_struct *work) 1900 { 1901 struct iavf_adapter *adapter = container_of(work, 1902 struct iavf_adapter, 1903 watchdog_task.work); 1904 struct iavf_hw *hw = &adapter->hw; 1905 u32 reg_val; 1906 1907 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) 1908 goto restart_watchdog; 1909 1910 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1911 adapter->state = __IAVF_COMM_FAILED; 1912 1913 switch (adapter->state) { 1914 case __IAVF_COMM_FAILED: 1915 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1916 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1917 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 1918 reg_val == VIRTCHNL_VFR_COMPLETED) { 1919 /* A chance for redemption! */ 1920 dev_err(&adapter->pdev->dev, 1921 "Hardware came out of reset. Attempting reinit.\n"); 1922 adapter->state = __IAVF_STARTUP; 1923 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1924 queue_delayed_work(iavf_wq, &adapter->init_task, 10); 1925 clear_bit(__IAVF_IN_CRITICAL_TASK, 1926 &adapter->crit_section); 1927 /* Don't reschedule the watchdog, since we've restarted 1928 * the init task. When init_task contacts the PF and 1929 * gets everything set up again, it'll restart the 1930 * watchdog for us. Down, boy. Sit. Stay. Woof. 1931 */ 1932 return; 1933 } 1934 adapter->aq_required = 0; 1935 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1936 clear_bit(__IAVF_IN_CRITICAL_TASK, 1937 &adapter->crit_section); 1938 queue_delayed_work(iavf_wq, 1939 &adapter->watchdog_task, 1940 msecs_to_jiffies(10)); 1941 goto watchdog_done; 1942 case __IAVF_RESETTING: 1943 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1944 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1945 return; 1946 case __IAVF_DOWN: 1947 case __IAVF_DOWN_PENDING: 1948 case __IAVF_TESTING: 1949 case __IAVF_RUNNING: 1950 if (adapter->current_op) { 1951 if (!iavf_asq_done(hw)) { 1952 dev_dbg(&adapter->pdev->dev, 1953 "Admin queue timeout\n"); 1954 iavf_send_api_ver(adapter); 1955 } 1956 } else { 1957 /* An error will be returned if no commands were 1958 * processed; use this opportunity to update stats 1959 */ 1960 if (iavf_process_aq_command(adapter) && 1961 adapter->state == __IAVF_RUNNING) 1962 iavf_request_stats(adapter); 1963 } 1964 break; 1965 case __IAVF_REMOVE: 1966 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1967 return; 1968 default: 1969 goto restart_watchdog; 1970 } 1971 1972 /* check for hw reset */ 1973 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1974 if (!reg_val) { 1975 adapter->state = __IAVF_RESETTING; 1976 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1977 adapter->aq_required = 0; 1978 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1979 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 1980 queue_work(iavf_wq, &adapter->reset_task); 1981 goto watchdog_done; 1982 } 1983 1984 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 1985 watchdog_done: 1986 if (adapter->state == __IAVF_RUNNING || 1987 adapter->state == __IAVF_COMM_FAILED) 1988 iavf_detect_recover_hung(&adapter->vsi); 1989 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1990 restart_watchdog: 1991 if (adapter->aq_required) 1992 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 1993 msecs_to_jiffies(20)); 1994 else 1995 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 1996 queue_work(iavf_wq, &adapter->adminq_task); 1997 } 1998 1999 static void iavf_disable_vf(struct iavf_adapter *adapter) 2000 { 2001 struct iavf_mac_filter *f, *ftmp; 2002 struct iavf_vlan_filter *fv, *fvtmp; 2003 struct iavf_cloud_filter *cf, *cftmp; 2004 2005 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2006 2007 /* We don't use netif_running() because it may be true prior to 2008 * ndo_open() returning, so we can't assume it means all our open 2009 * tasks have finished, since we're not holding the rtnl_lock here. 2010 */ 2011 if (adapter->state == __IAVF_RUNNING) { 2012 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2013 netif_carrier_off(adapter->netdev); 2014 netif_tx_disable(adapter->netdev); 2015 adapter->link_up = false; 2016 iavf_napi_disable_all(adapter); 2017 iavf_irq_disable(adapter); 2018 iavf_free_traffic_irqs(adapter); 2019 iavf_free_all_tx_resources(adapter); 2020 iavf_free_all_rx_resources(adapter); 2021 } 2022 2023 spin_lock_bh(&adapter->mac_vlan_list_lock); 2024 2025 /* Delete all of the filters */ 2026 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2027 list_del(&f->list); 2028 kfree(f); 2029 } 2030 2031 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2032 list_del(&fv->list); 2033 kfree(fv); 2034 } 2035 2036 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2037 2038 spin_lock_bh(&adapter->cloud_filter_list_lock); 2039 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2040 list_del(&cf->list); 2041 kfree(cf); 2042 adapter->num_cloud_filters--; 2043 } 2044 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2045 2046 iavf_free_misc_irq(adapter); 2047 iavf_reset_interrupt_capability(adapter); 2048 iavf_free_queues(adapter); 2049 iavf_free_q_vectors(adapter); 2050 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2051 iavf_shutdown_adminq(&adapter->hw); 2052 adapter->netdev->flags &= ~IFF_UP; 2053 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2054 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2055 adapter->state = __IAVF_DOWN; 2056 wake_up(&adapter->down_waitqueue); 2057 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2058 } 2059 2060 /** 2061 * iavf_reset_task - Call-back task to handle hardware reset 2062 * @work: pointer to work_struct 2063 * 2064 * During reset we need to shut down and reinitialize the admin queue 2065 * before we can use it to communicate with the PF again. We also clear 2066 * and reinit the rings because that context is lost as well. 2067 **/ 2068 static void iavf_reset_task(struct work_struct *work) 2069 { 2070 struct iavf_adapter *adapter = container_of(work, 2071 struct iavf_adapter, 2072 reset_task); 2073 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2074 struct net_device *netdev = adapter->netdev; 2075 struct iavf_hw *hw = &adapter->hw; 2076 struct iavf_mac_filter *f, *ftmp; 2077 struct iavf_vlan_filter *vlf; 2078 struct iavf_cloud_filter *cf; 2079 u32 reg_val; 2080 int i = 0, err; 2081 bool running; 2082 2083 /* When device is being removed it doesn't make sense to run the reset 2084 * task, just return in such a case. 2085 */ 2086 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2087 return; 2088 2089 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, 2090 &adapter->crit_section)) 2091 usleep_range(500, 1000); 2092 if (CLIENT_ENABLED(adapter)) { 2093 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2094 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2095 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2096 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2097 cancel_delayed_work_sync(&adapter->client_task); 2098 iavf_notify_client_close(&adapter->vsi, true); 2099 } 2100 iavf_misc_irq_disable(adapter); 2101 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2102 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2103 /* Restart the AQ here. If we have been reset but didn't 2104 * detect it, or if the PF had to reinit, our AQ will be hosed. 2105 */ 2106 iavf_shutdown_adminq(hw); 2107 iavf_init_adminq(hw); 2108 iavf_request_reset(adapter); 2109 } 2110 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2111 2112 /* poll until we see the reset actually happen */ 2113 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2114 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2115 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2116 if (!reg_val) 2117 break; 2118 usleep_range(5000, 10000); 2119 } 2120 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2121 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2122 goto continue_reset; /* act like the reset happened */ 2123 } 2124 2125 /* wait until the reset is complete and the PF is responding to us */ 2126 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2127 /* sleep first to make sure a minimum wait time is met */ 2128 msleep(IAVF_RESET_WAIT_MS); 2129 2130 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2131 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2132 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2133 break; 2134 } 2135 2136 pci_set_master(adapter->pdev); 2137 2138 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2139 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2140 reg_val); 2141 iavf_disable_vf(adapter); 2142 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2143 return; /* Do not attempt to reinit. It's dead, Jim. */ 2144 } 2145 2146 continue_reset: 2147 /* We don't use netif_running() because it may be true prior to 2148 * ndo_open() returning, so we can't assume it means all our open 2149 * tasks have finished, since we're not holding the rtnl_lock here. 2150 */ 2151 running = ((adapter->state == __IAVF_RUNNING) || 2152 (adapter->state == __IAVF_RESETTING)); 2153 2154 if (running) { 2155 netif_carrier_off(netdev); 2156 netif_tx_stop_all_queues(netdev); 2157 adapter->link_up = false; 2158 iavf_napi_disable_all(adapter); 2159 } 2160 iavf_irq_disable(adapter); 2161 2162 adapter->state = __IAVF_RESETTING; 2163 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2164 2165 /* free the Tx/Rx rings and descriptors, might be better to just 2166 * re-use them sometime in the future 2167 */ 2168 iavf_free_all_rx_resources(adapter); 2169 iavf_free_all_tx_resources(adapter); 2170 2171 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2172 /* kill and reinit the admin queue */ 2173 iavf_shutdown_adminq(hw); 2174 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2175 err = iavf_init_adminq(hw); 2176 if (err) 2177 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2178 err); 2179 adapter->aq_required = 0; 2180 2181 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2182 err = iavf_reinit_interrupt_scheme(adapter); 2183 if (err) 2184 goto reset_err; 2185 } 2186 2187 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2188 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2189 2190 spin_lock_bh(&adapter->mac_vlan_list_lock); 2191 2192 /* Delete filter for the current MAC address, it could have 2193 * been changed by the PF via administratively set MAC. 2194 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2195 */ 2196 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2197 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2198 list_del(&f->list); 2199 kfree(f); 2200 } 2201 } 2202 /* re-add all MAC filters */ 2203 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2204 f->add = true; 2205 } 2206 /* re-add all VLAN filters */ 2207 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 2208 vlf->add = true; 2209 } 2210 2211 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2212 2213 /* check if TCs are running and re-add all cloud filters */ 2214 spin_lock_bh(&adapter->cloud_filter_list_lock); 2215 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2216 adapter->num_tc) { 2217 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2218 cf->add = true; 2219 } 2220 } 2221 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2222 2223 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2224 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 2225 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2226 iavf_misc_irq_enable(adapter); 2227 2228 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2229 2230 /* We were running when the reset started, so we need to restore some 2231 * state here. 2232 */ 2233 if (running) { 2234 /* allocate transmit descriptors */ 2235 err = iavf_setup_all_tx_resources(adapter); 2236 if (err) 2237 goto reset_err; 2238 2239 /* allocate receive descriptors */ 2240 err = iavf_setup_all_rx_resources(adapter); 2241 if (err) 2242 goto reset_err; 2243 2244 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2245 err = iavf_request_traffic_irqs(adapter, netdev->name); 2246 if (err) 2247 goto reset_err; 2248 2249 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2250 } 2251 2252 iavf_configure(adapter); 2253 2254 iavf_up_complete(adapter); 2255 2256 iavf_irq_enable(adapter, true); 2257 } else { 2258 adapter->state = __IAVF_DOWN; 2259 wake_up(&adapter->down_waitqueue); 2260 } 2261 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2262 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2263 2264 return; 2265 reset_err: 2266 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2267 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2268 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2269 iavf_close(netdev); 2270 } 2271 2272 /** 2273 * iavf_adminq_task - worker thread to clean the admin queue 2274 * @work: pointer to work_struct containing our data 2275 **/ 2276 static void iavf_adminq_task(struct work_struct *work) 2277 { 2278 struct iavf_adapter *adapter = 2279 container_of(work, struct iavf_adapter, adminq_task); 2280 struct iavf_hw *hw = &adapter->hw; 2281 struct iavf_arq_event_info event; 2282 enum virtchnl_ops v_op; 2283 enum iavf_status ret, v_ret; 2284 u32 val, oldval; 2285 u16 pending; 2286 2287 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2288 goto out; 2289 2290 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2291 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2292 if (!event.msg_buf) 2293 goto out; 2294 2295 do { 2296 ret = iavf_clean_arq_element(hw, &event, &pending); 2297 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2298 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2299 2300 if (ret || !v_op) 2301 break; /* No event to process or error cleaning ARQ */ 2302 2303 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2304 event.msg_len); 2305 if (pending != 0) 2306 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2307 } while (pending); 2308 2309 if ((adapter->flags & 2310 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2311 adapter->state == __IAVF_RESETTING) 2312 goto freedom; 2313 2314 /* check for error indications */ 2315 val = rd32(hw, hw->aq.arq.len); 2316 if (val == 0xdeadbeef) /* indicates device in reset */ 2317 goto freedom; 2318 oldval = val; 2319 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2320 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2321 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2322 } 2323 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2324 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2325 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2326 } 2327 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2328 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2329 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2330 } 2331 if (oldval != val) 2332 wr32(hw, hw->aq.arq.len, val); 2333 2334 val = rd32(hw, hw->aq.asq.len); 2335 oldval = val; 2336 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2337 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2338 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2339 } 2340 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2341 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2342 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2343 } 2344 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2345 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2346 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2347 } 2348 if (oldval != val) 2349 wr32(hw, hw->aq.asq.len, val); 2350 2351 freedom: 2352 kfree(event.msg_buf); 2353 out: 2354 /* re-enable Admin queue interrupt cause */ 2355 iavf_misc_irq_enable(adapter); 2356 } 2357 2358 /** 2359 * iavf_client_task - worker thread to perform client work 2360 * @work: pointer to work_struct containing our data 2361 * 2362 * This task handles client interactions. Because client calls can be 2363 * reentrant, we can't handle them in the watchdog. 2364 **/ 2365 static void iavf_client_task(struct work_struct *work) 2366 { 2367 struct iavf_adapter *adapter = 2368 container_of(work, struct iavf_adapter, client_task.work); 2369 2370 /* If we can't get the client bit, just give up. We'll be rescheduled 2371 * later. 2372 */ 2373 2374 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) 2375 return; 2376 2377 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2378 iavf_client_subtask(adapter); 2379 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2380 goto out; 2381 } 2382 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2383 iavf_notify_client_l2_params(&adapter->vsi); 2384 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2385 goto out; 2386 } 2387 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2388 iavf_notify_client_close(&adapter->vsi, false); 2389 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2390 goto out; 2391 } 2392 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2393 iavf_notify_client_open(&adapter->vsi); 2394 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2395 } 2396 out: 2397 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2398 } 2399 2400 /** 2401 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2402 * @adapter: board private structure 2403 * 2404 * Free all transmit software resources 2405 **/ 2406 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2407 { 2408 int i; 2409 2410 if (!adapter->tx_rings) 2411 return; 2412 2413 for (i = 0; i < adapter->num_active_queues; i++) 2414 if (adapter->tx_rings[i].desc) 2415 iavf_free_tx_resources(&adapter->tx_rings[i]); 2416 } 2417 2418 /** 2419 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2420 * @adapter: board private structure 2421 * 2422 * If this function returns with an error, then it's possible one or 2423 * more of the rings is populated (while the rest are not). It is the 2424 * callers duty to clean those orphaned rings. 2425 * 2426 * Return 0 on success, negative on failure 2427 **/ 2428 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2429 { 2430 int i, err = 0; 2431 2432 for (i = 0; i < adapter->num_active_queues; i++) { 2433 adapter->tx_rings[i].count = adapter->tx_desc_count; 2434 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2435 if (!err) 2436 continue; 2437 dev_err(&adapter->pdev->dev, 2438 "Allocation for Tx Queue %u failed\n", i); 2439 break; 2440 } 2441 2442 return err; 2443 } 2444 2445 /** 2446 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2447 * @adapter: board private structure 2448 * 2449 * If this function returns with an error, then it's possible one or 2450 * more of the rings is populated (while the rest are not). It is the 2451 * callers duty to clean those orphaned rings. 2452 * 2453 * Return 0 on success, negative on failure 2454 **/ 2455 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2456 { 2457 int i, err = 0; 2458 2459 for (i = 0; i < adapter->num_active_queues; i++) { 2460 adapter->rx_rings[i].count = adapter->rx_desc_count; 2461 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2462 if (!err) 2463 continue; 2464 dev_err(&adapter->pdev->dev, 2465 "Allocation for Rx Queue %u failed\n", i); 2466 break; 2467 } 2468 return err; 2469 } 2470 2471 /** 2472 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2473 * @adapter: board private structure 2474 * 2475 * Free all receive software resources 2476 **/ 2477 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2478 { 2479 int i; 2480 2481 if (!adapter->rx_rings) 2482 return; 2483 2484 for (i = 0; i < adapter->num_active_queues; i++) 2485 if (adapter->rx_rings[i].desc) 2486 iavf_free_rx_resources(&adapter->rx_rings[i]); 2487 } 2488 2489 /** 2490 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2491 * @adapter: board private structure 2492 * @max_tx_rate: max Tx bw for a tc 2493 **/ 2494 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2495 u64 max_tx_rate) 2496 { 2497 int speed = 0, ret = 0; 2498 2499 if (ADV_LINK_SUPPORT(adapter)) { 2500 if (adapter->link_speed_mbps < U32_MAX) { 2501 speed = adapter->link_speed_mbps; 2502 goto validate_bw; 2503 } else { 2504 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 2505 return -EINVAL; 2506 } 2507 } 2508 2509 switch (adapter->link_speed) { 2510 case VIRTCHNL_LINK_SPEED_40GB: 2511 speed = SPEED_40000; 2512 break; 2513 case VIRTCHNL_LINK_SPEED_25GB: 2514 speed = SPEED_25000; 2515 break; 2516 case VIRTCHNL_LINK_SPEED_20GB: 2517 speed = SPEED_20000; 2518 break; 2519 case VIRTCHNL_LINK_SPEED_10GB: 2520 speed = SPEED_10000; 2521 break; 2522 case VIRTCHNL_LINK_SPEED_5GB: 2523 speed = SPEED_5000; 2524 break; 2525 case VIRTCHNL_LINK_SPEED_2_5GB: 2526 speed = SPEED_2500; 2527 break; 2528 case VIRTCHNL_LINK_SPEED_1GB: 2529 speed = SPEED_1000; 2530 break; 2531 case VIRTCHNL_LINK_SPEED_100MB: 2532 speed = SPEED_100; 2533 break; 2534 default: 2535 break; 2536 } 2537 2538 validate_bw: 2539 if (max_tx_rate > speed) { 2540 dev_err(&adapter->pdev->dev, 2541 "Invalid tx rate specified\n"); 2542 ret = -EINVAL; 2543 } 2544 2545 return ret; 2546 } 2547 2548 /** 2549 * iavf_validate_ch_config - validate queue mapping info 2550 * @adapter: board private structure 2551 * @mqprio_qopt: queue parameters 2552 * 2553 * This function validates if the config provided by the user to 2554 * configure queue channels is valid or not. Returns 0 on a valid 2555 * config. 2556 **/ 2557 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2558 struct tc_mqprio_qopt_offload *mqprio_qopt) 2559 { 2560 u64 total_max_rate = 0; 2561 int i, num_qps = 0; 2562 u64 tx_rate = 0; 2563 int ret = 0; 2564 2565 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2566 mqprio_qopt->qopt.num_tc < 1) 2567 return -EINVAL; 2568 2569 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2570 if (!mqprio_qopt->qopt.count[i] || 2571 mqprio_qopt->qopt.offset[i] != num_qps) 2572 return -EINVAL; 2573 if (mqprio_qopt->min_rate[i]) { 2574 dev_err(&adapter->pdev->dev, 2575 "Invalid min tx rate (greater than 0) specified\n"); 2576 return -EINVAL; 2577 } 2578 /*convert to Mbps */ 2579 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2580 IAVF_MBPS_DIVISOR); 2581 total_max_rate += tx_rate; 2582 num_qps += mqprio_qopt->qopt.count[i]; 2583 } 2584 if (num_qps > IAVF_MAX_REQ_QUEUES) 2585 return -EINVAL; 2586 2587 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2588 return ret; 2589 } 2590 2591 /** 2592 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 2593 * @adapter: board private structure 2594 **/ 2595 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2596 { 2597 struct iavf_cloud_filter *cf, *cftmp; 2598 2599 spin_lock_bh(&adapter->cloud_filter_list_lock); 2600 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2601 list) { 2602 list_del(&cf->list); 2603 kfree(cf); 2604 adapter->num_cloud_filters--; 2605 } 2606 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2607 } 2608 2609 /** 2610 * __iavf_setup_tc - configure multiple traffic classes 2611 * @netdev: network interface device structure 2612 * @type_data: tc offload data 2613 * 2614 * This function processes the config information provided by the 2615 * user to configure traffic classes/queue channels and packages the 2616 * information to request the PF to setup traffic classes. 2617 * 2618 * Returns 0 on success. 2619 **/ 2620 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2621 { 2622 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2623 struct iavf_adapter *adapter = netdev_priv(netdev); 2624 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2625 u8 num_tc = 0, total_qps = 0; 2626 int ret = 0, netdev_tc = 0; 2627 u64 max_tx_rate; 2628 u16 mode; 2629 int i; 2630 2631 num_tc = mqprio_qopt->qopt.num_tc; 2632 mode = mqprio_qopt->mode; 2633 2634 /* delete queue_channel */ 2635 if (!mqprio_qopt->qopt.hw) { 2636 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2637 /* reset the tc configuration */ 2638 netdev_reset_tc(netdev); 2639 adapter->num_tc = 0; 2640 netif_tx_stop_all_queues(netdev); 2641 netif_tx_disable(netdev); 2642 iavf_del_all_cloud_filters(adapter); 2643 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2644 goto exit; 2645 } else { 2646 return -EINVAL; 2647 } 2648 } 2649 2650 /* add queue channel */ 2651 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2652 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2653 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2654 return -EOPNOTSUPP; 2655 } 2656 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2657 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2658 return -EINVAL; 2659 } 2660 2661 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2662 if (ret) 2663 return ret; 2664 /* Return if same TC config is requested */ 2665 if (adapter->num_tc == num_tc) 2666 return 0; 2667 adapter->num_tc = num_tc; 2668 2669 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2670 if (i < num_tc) { 2671 adapter->ch_config.ch_info[i].count = 2672 mqprio_qopt->qopt.count[i]; 2673 adapter->ch_config.ch_info[i].offset = 2674 mqprio_qopt->qopt.offset[i]; 2675 total_qps += mqprio_qopt->qopt.count[i]; 2676 max_tx_rate = mqprio_qopt->max_rate[i]; 2677 /* convert to Mbps */ 2678 max_tx_rate = div_u64(max_tx_rate, 2679 IAVF_MBPS_DIVISOR); 2680 adapter->ch_config.ch_info[i].max_tx_rate = 2681 max_tx_rate; 2682 } else { 2683 adapter->ch_config.ch_info[i].count = 1; 2684 adapter->ch_config.ch_info[i].offset = 0; 2685 } 2686 } 2687 adapter->ch_config.total_qps = total_qps; 2688 netif_tx_stop_all_queues(netdev); 2689 netif_tx_disable(netdev); 2690 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2691 netdev_reset_tc(netdev); 2692 /* Report the tc mapping up the stack */ 2693 netdev_set_num_tc(adapter->netdev, num_tc); 2694 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2695 u16 qcount = mqprio_qopt->qopt.count[i]; 2696 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2697 2698 if (i < num_tc) 2699 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2700 qoffset); 2701 } 2702 } 2703 exit: 2704 return ret; 2705 } 2706 2707 /** 2708 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2709 * @adapter: board private structure 2710 * @f: pointer to struct flow_cls_offload 2711 * @filter: pointer to cloud filter structure 2712 */ 2713 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2714 struct flow_cls_offload *f, 2715 struct iavf_cloud_filter *filter) 2716 { 2717 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2718 struct flow_dissector *dissector = rule->match.dissector; 2719 u16 n_proto_mask = 0; 2720 u16 n_proto_key = 0; 2721 u8 field_flags = 0; 2722 u16 addr_type = 0; 2723 u16 n_proto = 0; 2724 int i = 0; 2725 struct virtchnl_filter *vf = &filter->f; 2726 2727 if (dissector->used_keys & 2728 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2729 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2730 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2731 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2732 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2733 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2734 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2735 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2736 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2737 dissector->used_keys); 2738 return -EOPNOTSUPP; 2739 } 2740 2741 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2742 struct flow_match_enc_keyid match; 2743 2744 flow_rule_match_enc_keyid(rule, &match); 2745 if (match.mask->keyid != 0) 2746 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2747 } 2748 2749 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2750 struct flow_match_basic match; 2751 2752 flow_rule_match_basic(rule, &match); 2753 n_proto_key = ntohs(match.key->n_proto); 2754 n_proto_mask = ntohs(match.mask->n_proto); 2755 2756 if (n_proto_key == ETH_P_ALL) { 2757 n_proto_key = 0; 2758 n_proto_mask = 0; 2759 } 2760 n_proto = n_proto_key & n_proto_mask; 2761 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2762 return -EINVAL; 2763 if (n_proto == ETH_P_IPV6) { 2764 /* specify flow type as TCP IPv6 */ 2765 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2766 } 2767 2768 if (match.key->ip_proto != IPPROTO_TCP) { 2769 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2770 return -EINVAL; 2771 } 2772 } 2773 2774 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2775 struct flow_match_eth_addrs match; 2776 2777 flow_rule_match_eth_addrs(rule, &match); 2778 2779 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2780 if (!is_zero_ether_addr(match.mask->dst)) { 2781 if (is_broadcast_ether_addr(match.mask->dst)) { 2782 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2783 } else { 2784 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2785 match.mask->dst); 2786 return IAVF_ERR_CONFIG; 2787 } 2788 } 2789 2790 if (!is_zero_ether_addr(match.mask->src)) { 2791 if (is_broadcast_ether_addr(match.mask->src)) { 2792 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2793 } else { 2794 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2795 match.mask->src); 2796 return IAVF_ERR_CONFIG; 2797 } 2798 } 2799 2800 if (!is_zero_ether_addr(match.key->dst)) 2801 if (is_valid_ether_addr(match.key->dst) || 2802 is_multicast_ether_addr(match.key->dst)) { 2803 /* set the mask if a valid dst_mac address */ 2804 for (i = 0; i < ETH_ALEN; i++) 2805 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2806 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2807 match.key->dst); 2808 } 2809 2810 if (!is_zero_ether_addr(match.key->src)) 2811 if (is_valid_ether_addr(match.key->src) || 2812 is_multicast_ether_addr(match.key->src)) { 2813 /* set the mask if a valid dst_mac address */ 2814 for (i = 0; i < ETH_ALEN; i++) 2815 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2816 ether_addr_copy(vf->data.tcp_spec.src_mac, 2817 match.key->src); 2818 } 2819 } 2820 2821 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2822 struct flow_match_vlan match; 2823 2824 flow_rule_match_vlan(rule, &match); 2825 if (match.mask->vlan_id) { 2826 if (match.mask->vlan_id == VLAN_VID_MASK) { 2827 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2828 } else { 2829 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2830 match.mask->vlan_id); 2831 return IAVF_ERR_CONFIG; 2832 } 2833 } 2834 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2835 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2836 } 2837 2838 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2839 struct flow_match_control match; 2840 2841 flow_rule_match_control(rule, &match); 2842 addr_type = match.key->addr_type; 2843 } 2844 2845 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2846 struct flow_match_ipv4_addrs match; 2847 2848 flow_rule_match_ipv4_addrs(rule, &match); 2849 if (match.mask->dst) { 2850 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2851 field_flags |= IAVF_CLOUD_FIELD_IIP; 2852 } else { 2853 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2854 be32_to_cpu(match.mask->dst)); 2855 return IAVF_ERR_CONFIG; 2856 } 2857 } 2858 2859 if (match.mask->src) { 2860 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2861 field_flags |= IAVF_CLOUD_FIELD_IIP; 2862 } else { 2863 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2864 be32_to_cpu(match.mask->dst)); 2865 return IAVF_ERR_CONFIG; 2866 } 2867 } 2868 2869 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2870 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2871 return IAVF_ERR_CONFIG; 2872 } 2873 if (match.key->dst) { 2874 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2875 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2876 } 2877 if (match.key->src) { 2878 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2879 vf->data.tcp_spec.src_ip[0] = match.key->src; 2880 } 2881 } 2882 2883 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2884 struct flow_match_ipv6_addrs match; 2885 2886 flow_rule_match_ipv6_addrs(rule, &match); 2887 2888 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2889 if (ipv6_addr_any(&match.mask->dst)) { 2890 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2891 IPV6_ADDR_ANY); 2892 return IAVF_ERR_CONFIG; 2893 } 2894 2895 /* src and dest IPv6 address should not be LOOPBACK 2896 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2897 */ 2898 if (ipv6_addr_loopback(&match.key->dst) || 2899 ipv6_addr_loopback(&match.key->src)) { 2900 dev_err(&adapter->pdev->dev, 2901 "ipv6 addr should not be loopback\n"); 2902 return IAVF_ERR_CONFIG; 2903 } 2904 if (!ipv6_addr_any(&match.mask->dst) || 2905 !ipv6_addr_any(&match.mask->src)) 2906 field_flags |= IAVF_CLOUD_FIELD_IIP; 2907 2908 for (i = 0; i < 4; i++) 2909 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2910 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2911 sizeof(vf->data.tcp_spec.dst_ip)); 2912 for (i = 0; i < 4; i++) 2913 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2914 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2915 sizeof(vf->data.tcp_spec.src_ip)); 2916 } 2917 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2918 struct flow_match_ports match; 2919 2920 flow_rule_match_ports(rule, &match); 2921 if (match.mask->src) { 2922 if (match.mask->src == cpu_to_be16(0xffff)) { 2923 field_flags |= IAVF_CLOUD_FIELD_IIP; 2924 } else { 2925 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2926 be16_to_cpu(match.mask->src)); 2927 return IAVF_ERR_CONFIG; 2928 } 2929 } 2930 2931 if (match.mask->dst) { 2932 if (match.mask->dst == cpu_to_be16(0xffff)) { 2933 field_flags |= IAVF_CLOUD_FIELD_IIP; 2934 } else { 2935 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2936 be16_to_cpu(match.mask->dst)); 2937 return IAVF_ERR_CONFIG; 2938 } 2939 } 2940 if (match.key->dst) { 2941 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2942 vf->data.tcp_spec.dst_port = match.key->dst; 2943 } 2944 2945 if (match.key->src) { 2946 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2947 vf->data.tcp_spec.src_port = match.key->src; 2948 } 2949 } 2950 vf->field_flags = field_flags; 2951 2952 return 0; 2953 } 2954 2955 /** 2956 * iavf_handle_tclass - Forward to a traffic class on the device 2957 * @adapter: board private structure 2958 * @tc: traffic class index on the device 2959 * @filter: pointer to cloud filter structure 2960 */ 2961 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 2962 struct iavf_cloud_filter *filter) 2963 { 2964 if (tc == 0) 2965 return 0; 2966 if (tc < adapter->num_tc) { 2967 if (!filter->f.data.tcp_spec.dst_port) { 2968 dev_err(&adapter->pdev->dev, 2969 "Specify destination port to redirect to traffic class other than TC0\n"); 2970 return -EINVAL; 2971 } 2972 } 2973 /* redirect to a traffic class on the same device */ 2974 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 2975 filter->f.action_meta = tc; 2976 return 0; 2977 } 2978 2979 /** 2980 * iavf_configure_clsflower - Add tc flower filters 2981 * @adapter: board private structure 2982 * @cls_flower: Pointer to struct flow_cls_offload 2983 */ 2984 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 2985 struct flow_cls_offload *cls_flower) 2986 { 2987 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2988 struct iavf_cloud_filter *filter = NULL; 2989 int err = -EINVAL, count = 50; 2990 2991 if (tc < 0) { 2992 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 2993 return -EINVAL; 2994 } 2995 2996 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2997 if (!filter) 2998 return -ENOMEM; 2999 3000 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3001 &adapter->crit_section)) { 3002 if (--count == 0) 3003 goto err; 3004 udelay(1); 3005 } 3006 3007 filter->cookie = cls_flower->cookie; 3008 3009 /* set the mask to all zeroes to begin with */ 3010 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3011 /* start out with flow type and eth type IPv4 to begin with */ 3012 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3013 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3014 if (err < 0) 3015 goto err; 3016 3017 err = iavf_handle_tclass(adapter, tc, filter); 3018 if (err < 0) 3019 goto err; 3020 3021 /* add filter to the list */ 3022 spin_lock_bh(&adapter->cloud_filter_list_lock); 3023 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3024 adapter->num_cloud_filters++; 3025 filter->add = true; 3026 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3027 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3028 err: 3029 if (err) 3030 kfree(filter); 3031 3032 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3033 return err; 3034 } 3035 3036 /* iavf_find_cf - Find the cloud filter in the list 3037 * @adapter: Board private structure 3038 * @cookie: filter specific cookie 3039 * 3040 * Returns ptr to the filter object or NULL. Must be called while holding the 3041 * cloud_filter_list_lock. 3042 */ 3043 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3044 unsigned long *cookie) 3045 { 3046 struct iavf_cloud_filter *filter = NULL; 3047 3048 if (!cookie) 3049 return NULL; 3050 3051 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3052 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3053 return filter; 3054 } 3055 return NULL; 3056 } 3057 3058 /** 3059 * iavf_delete_clsflower - Remove tc flower filters 3060 * @adapter: board private structure 3061 * @cls_flower: Pointer to struct flow_cls_offload 3062 */ 3063 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3064 struct flow_cls_offload *cls_flower) 3065 { 3066 struct iavf_cloud_filter *filter = NULL; 3067 int err = 0; 3068 3069 spin_lock_bh(&adapter->cloud_filter_list_lock); 3070 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3071 if (filter) { 3072 filter->del = true; 3073 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3074 } else { 3075 err = -EINVAL; 3076 } 3077 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3078 3079 return err; 3080 } 3081 3082 /** 3083 * iavf_setup_tc_cls_flower - flower classifier offloads 3084 * @adapter: board private structure 3085 * @cls_flower: pointer to flow_cls_offload struct with flow info 3086 */ 3087 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3088 struct flow_cls_offload *cls_flower) 3089 { 3090 switch (cls_flower->command) { 3091 case FLOW_CLS_REPLACE: 3092 return iavf_configure_clsflower(adapter, cls_flower); 3093 case FLOW_CLS_DESTROY: 3094 return iavf_delete_clsflower(adapter, cls_flower); 3095 case FLOW_CLS_STATS: 3096 return -EOPNOTSUPP; 3097 default: 3098 return -EOPNOTSUPP; 3099 } 3100 } 3101 3102 /** 3103 * iavf_setup_tc_block_cb - block callback for tc 3104 * @type: type of offload 3105 * @type_data: offload data 3106 * @cb_priv: 3107 * 3108 * This function is the block callback for traffic classes 3109 **/ 3110 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3111 void *cb_priv) 3112 { 3113 struct iavf_adapter *adapter = cb_priv; 3114 3115 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3116 return -EOPNOTSUPP; 3117 3118 switch (type) { 3119 case TC_SETUP_CLSFLOWER: 3120 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3121 default: 3122 return -EOPNOTSUPP; 3123 } 3124 } 3125 3126 static LIST_HEAD(iavf_block_cb_list); 3127 3128 /** 3129 * iavf_setup_tc - configure multiple traffic classes 3130 * @netdev: network interface device structure 3131 * @type: type of offload 3132 * @type_data: tc offload data 3133 * 3134 * This function is the callback to ndo_setup_tc in the 3135 * netdev_ops. 3136 * 3137 * Returns 0 on success 3138 **/ 3139 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3140 void *type_data) 3141 { 3142 struct iavf_adapter *adapter = netdev_priv(netdev); 3143 3144 switch (type) { 3145 case TC_SETUP_QDISC_MQPRIO: 3146 return __iavf_setup_tc(netdev, type_data); 3147 case TC_SETUP_BLOCK: 3148 return flow_block_cb_setup_simple(type_data, 3149 &iavf_block_cb_list, 3150 iavf_setup_tc_block_cb, 3151 adapter, adapter, true); 3152 default: 3153 return -EOPNOTSUPP; 3154 } 3155 } 3156 3157 /** 3158 * iavf_open - Called when a network interface is made active 3159 * @netdev: network interface device structure 3160 * 3161 * Returns 0 on success, negative value on failure 3162 * 3163 * The open entry point is called when a network interface is made 3164 * active by the system (IFF_UP). At this point all resources needed 3165 * for transmit and receive operations are allocated, the interrupt 3166 * handler is registered with the OS, the watchdog is started, 3167 * and the stack is notified that the interface is ready. 3168 **/ 3169 static int iavf_open(struct net_device *netdev) 3170 { 3171 struct iavf_adapter *adapter = netdev_priv(netdev); 3172 int err; 3173 3174 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3175 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3176 return -EIO; 3177 } 3178 3179 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3180 &adapter->crit_section)) 3181 usleep_range(500, 1000); 3182 3183 if (adapter->state != __IAVF_DOWN) { 3184 err = -EBUSY; 3185 goto err_unlock; 3186 } 3187 3188 /* allocate transmit descriptors */ 3189 err = iavf_setup_all_tx_resources(adapter); 3190 if (err) 3191 goto err_setup_tx; 3192 3193 /* allocate receive descriptors */ 3194 err = iavf_setup_all_rx_resources(adapter); 3195 if (err) 3196 goto err_setup_rx; 3197 3198 /* clear any pending interrupts, may auto mask */ 3199 err = iavf_request_traffic_irqs(adapter, netdev->name); 3200 if (err) 3201 goto err_req_irq; 3202 3203 spin_lock_bh(&adapter->mac_vlan_list_lock); 3204 3205 iavf_add_filter(adapter, adapter->hw.mac.addr); 3206 3207 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3208 3209 iavf_configure(adapter); 3210 3211 iavf_up_complete(adapter); 3212 3213 iavf_irq_enable(adapter, true); 3214 3215 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3216 3217 return 0; 3218 3219 err_req_irq: 3220 iavf_down(adapter); 3221 iavf_free_traffic_irqs(adapter); 3222 err_setup_rx: 3223 iavf_free_all_rx_resources(adapter); 3224 err_setup_tx: 3225 iavf_free_all_tx_resources(adapter); 3226 err_unlock: 3227 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3228 3229 return err; 3230 } 3231 3232 /** 3233 * iavf_close - Disables a network interface 3234 * @netdev: network interface device structure 3235 * 3236 * Returns 0, this is not allowed to fail 3237 * 3238 * The close entry point is called when an interface is de-activated 3239 * by the OS. The hardware is still under the drivers control, but 3240 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 3241 * are freed, along with all transmit and receive resources. 3242 **/ 3243 static int iavf_close(struct net_device *netdev) 3244 { 3245 struct iavf_adapter *adapter = netdev_priv(netdev); 3246 int status; 3247 3248 if (adapter->state <= __IAVF_DOWN_PENDING) 3249 return 0; 3250 3251 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3252 &adapter->crit_section)) 3253 usleep_range(500, 1000); 3254 3255 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3256 if (CLIENT_ENABLED(adapter)) 3257 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3258 3259 iavf_down(adapter); 3260 adapter->state = __IAVF_DOWN_PENDING; 3261 iavf_free_traffic_irqs(adapter); 3262 3263 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3264 3265 /* We explicitly don't free resources here because the hardware is 3266 * still active and can DMA into memory. Resources are cleared in 3267 * iavf_virtchnl_completion() after we get confirmation from the PF 3268 * driver that the rings have been stopped. 3269 * 3270 * Also, we wait for state to transition to __IAVF_DOWN before 3271 * returning. State change occurs in iavf_virtchnl_completion() after 3272 * VF resources are released (which occurs after PF driver processes and 3273 * responds to admin queue commands). 3274 */ 3275 3276 status = wait_event_timeout(adapter->down_waitqueue, 3277 adapter->state == __IAVF_DOWN, 3278 msecs_to_jiffies(500)); 3279 if (!status) 3280 netdev_warn(netdev, "Device resources not yet released\n"); 3281 return 0; 3282 } 3283 3284 /** 3285 * iavf_change_mtu - Change the Maximum Transfer Unit 3286 * @netdev: network interface device structure 3287 * @new_mtu: new value for maximum frame size 3288 * 3289 * Returns 0 on success, negative on failure 3290 **/ 3291 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3292 { 3293 struct iavf_adapter *adapter = netdev_priv(netdev); 3294 3295 netdev->mtu = new_mtu; 3296 if (CLIENT_ENABLED(adapter)) { 3297 iavf_notify_client_l2_params(&adapter->vsi); 3298 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3299 } 3300 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3301 queue_work(iavf_wq, &adapter->reset_task); 3302 3303 return 0; 3304 } 3305 3306 /** 3307 * iavf_set_features - set the netdev feature flags 3308 * @netdev: ptr to the netdev being adjusted 3309 * @features: the feature set that the stack is suggesting 3310 * Note: expects to be called while under rtnl_lock() 3311 **/ 3312 static int iavf_set_features(struct net_device *netdev, 3313 netdev_features_t features) 3314 { 3315 struct iavf_adapter *adapter = netdev_priv(netdev); 3316 3317 /* Don't allow changing VLAN_RX flag when adapter is not capable 3318 * of VLAN offload 3319 */ 3320 if (!VLAN_ALLOWED(adapter)) { 3321 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3322 return -EINVAL; 3323 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3324 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3325 adapter->aq_required |= 3326 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3327 else 3328 adapter->aq_required |= 3329 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3330 } 3331 3332 return 0; 3333 } 3334 3335 /** 3336 * iavf_features_check - Validate encapsulated packet conforms to limits 3337 * @skb: skb buff 3338 * @dev: This physical port's netdev 3339 * @features: Offload features that the stack believes apply 3340 **/ 3341 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3342 struct net_device *dev, 3343 netdev_features_t features) 3344 { 3345 size_t len; 3346 3347 /* No point in doing any of this if neither checksum nor GSO are 3348 * being requested for this frame. We can rule out both by just 3349 * checking for CHECKSUM_PARTIAL 3350 */ 3351 if (skb->ip_summed != CHECKSUM_PARTIAL) 3352 return features; 3353 3354 /* We cannot support GSO if the MSS is going to be less than 3355 * 64 bytes. If it is then we need to drop support for GSO. 3356 */ 3357 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3358 features &= ~NETIF_F_GSO_MASK; 3359 3360 /* MACLEN can support at most 63 words */ 3361 len = skb_network_header(skb) - skb->data; 3362 if (len & ~(63 * 2)) 3363 goto out_err; 3364 3365 /* IPLEN and EIPLEN can support at most 127 dwords */ 3366 len = skb_transport_header(skb) - skb_network_header(skb); 3367 if (len & ~(127 * 4)) 3368 goto out_err; 3369 3370 if (skb->encapsulation) { 3371 /* L4TUNLEN can support 127 words */ 3372 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3373 if (len & ~(127 * 2)) 3374 goto out_err; 3375 3376 /* IPLEN can support at most 127 dwords */ 3377 len = skb_inner_transport_header(skb) - 3378 skb_inner_network_header(skb); 3379 if (len & ~(127 * 4)) 3380 goto out_err; 3381 } 3382 3383 /* No need to validate L4LEN as TCP is the only protocol with a 3384 * a flexible value and we support all possible values supported 3385 * by TCP, which is at most 15 dwords 3386 */ 3387 3388 return features; 3389 out_err: 3390 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3391 } 3392 3393 /** 3394 * iavf_fix_features - fix up the netdev feature bits 3395 * @netdev: our net device 3396 * @features: desired feature bits 3397 * 3398 * Returns fixed-up features bits 3399 **/ 3400 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3401 netdev_features_t features) 3402 { 3403 struct iavf_adapter *adapter = netdev_priv(netdev); 3404 3405 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3406 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3407 NETIF_F_HW_VLAN_CTAG_RX | 3408 NETIF_F_HW_VLAN_CTAG_FILTER); 3409 3410 return features; 3411 } 3412 3413 static const struct net_device_ops iavf_netdev_ops = { 3414 .ndo_open = iavf_open, 3415 .ndo_stop = iavf_close, 3416 .ndo_start_xmit = iavf_xmit_frame, 3417 .ndo_set_rx_mode = iavf_set_rx_mode, 3418 .ndo_validate_addr = eth_validate_addr, 3419 .ndo_set_mac_address = iavf_set_mac, 3420 .ndo_change_mtu = iavf_change_mtu, 3421 .ndo_tx_timeout = iavf_tx_timeout, 3422 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3423 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3424 .ndo_features_check = iavf_features_check, 3425 .ndo_fix_features = iavf_fix_features, 3426 .ndo_set_features = iavf_set_features, 3427 .ndo_setup_tc = iavf_setup_tc, 3428 }; 3429 3430 /** 3431 * iavf_check_reset_complete - check that VF reset is complete 3432 * @hw: pointer to hw struct 3433 * 3434 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3435 **/ 3436 static int iavf_check_reset_complete(struct iavf_hw *hw) 3437 { 3438 u32 rstat; 3439 int i; 3440 3441 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3442 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3443 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3444 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3445 (rstat == VIRTCHNL_VFR_COMPLETED)) 3446 return 0; 3447 usleep_range(10, 20); 3448 } 3449 return -EBUSY; 3450 } 3451 3452 /** 3453 * iavf_process_config - Process the config information we got from the PF 3454 * @adapter: board private structure 3455 * 3456 * Verify that we have a valid config struct, and set up our netdev features 3457 * and our VSI struct. 3458 **/ 3459 int iavf_process_config(struct iavf_adapter *adapter) 3460 { 3461 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3462 int i, num_req_queues = adapter->num_req_queues; 3463 struct net_device *netdev = adapter->netdev; 3464 struct iavf_vsi *vsi = &adapter->vsi; 3465 netdev_features_t hw_enc_features; 3466 netdev_features_t hw_features; 3467 3468 /* got VF config message back from PF, now we can parse it */ 3469 for (i = 0; i < vfres->num_vsis; i++) { 3470 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3471 adapter->vsi_res = &vfres->vsi_res[i]; 3472 } 3473 if (!adapter->vsi_res) { 3474 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3475 return -ENODEV; 3476 } 3477 3478 if (num_req_queues && 3479 num_req_queues > adapter->vsi_res->num_queue_pairs) { 3480 /* Problem. The PF gave us fewer queues than what we had 3481 * negotiated in our request. Need a reset to see if we can't 3482 * get back to a working state. 3483 */ 3484 dev_err(&adapter->pdev->dev, 3485 "Requested %d queues, but PF only gave us %d.\n", 3486 num_req_queues, 3487 adapter->vsi_res->num_queue_pairs); 3488 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3489 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3490 iavf_schedule_reset(adapter); 3491 return -ENODEV; 3492 } 3493 adapter->num_req_queues = 0; 3494 3495 hw_enc_features = NETIF_F_SG | 3496 NETIF_F_IP_CSUM | 3497 NETIF_F_IPV6_CSUM | 3498 NETIF_F_HIGHDMA | 3499 NETIF_F_SOFT_FEATURES | 3500 NETIF_F_TSO | 3501 NETIF_F_TSO_ECN | 3502 NETIF_F_TSO6 | 3503 NETIF_F_SCTP_CRC | 3504 NETIF_F_RXHASH | 3505 NETIF_F_RXCSUM | 3506 0; 3507 3508 /* advertise to stack only if offloads for encapsulated packets is 3509 * supported 3510 */ 3511 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3512 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3513 NETIF_F_GSO_GRE | 3514 NETIF_F_GSO_GRE_CSUM | 3515 NETIF_F_GSO_IPXIP4 | 3516 NETIF_F_GSO_IPXIP6 | 3517 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3518 NETIF_F_GSO_PARTIAL | 3519 0; 3520 3521 if (!(vfres->vf_cap_flags & 3522 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3523 netdev->gso_partial_features |= 3524 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3525 3526 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3527 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3528 netdev->hw_enc_features |= hw_enc_features; 3529 } 3530 /* record features VLANs can make use of */ 3531 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3532 3533 /* Write features and hw_features separately to avoid polluting 3534 * with, or dropping, features that are set when we registered. 3535 */ 3536 hw_features = hw_enc_features; 3537 3538 /* Enable VLAN features if supported */ 3539 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3540 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3541 NETIF_F_HW_VLAN_CTAG_RX); 3542 /* Enable cloud filter if ADQ is supported */ 3543 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3544 hw_features |= NETIF_F_HW_TC; 3545 3546 netdev->hw_features |= hw_features; 3547 3548 netdev->features |= hw_features; 3549 3550 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3551 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3552 3553 netdev->priv_flags |= IFF_UNICAST_FLT; 3554 3555 /* Do not turn on offloads when they are requested to be turned off. 3556 * TSO needs minimum 576 bytes to work correctly. 3557 */ 3558 if (netdev->wanted_features) { 3559 if (!(netdev->wanted_features & NETIF_F_TSO) || 3560 netdev->mtu < 576) 3561 netdev->features &= ~NETIF_F_TSO; 3562 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3563 netdev->mtu < 576) 3564 netdev->features &= ~NETIF_F_TSO6; 3565 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3566 netdev->features &= ~NETIF_F_TSO_ECN; 3567 if (!(netdev->wanted_features & NETIF_F_GRO)) 3568 netdev->features &= ~NETIF_F_GRO; 3569 if (!(netdev->wanted_features & NETIF_F_GSO)) 3570 netdev->features &= ~NETIF_F_GSO; 3571 } 3572 3573 adapter->vsi.id = adapter->vsi_res->vsi_id; 3574 3575 adapter->vsi.back = adapter; 3576 adapter->vsi.base_vector = 1; 3577 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3578 vsi->netdev = adapter->netdev; 3579 vsi->qs_handle = adapter->vsi_res->qset_handle; 3580 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3581 adapter->rss_key_size = vfres->rss_key_size; 3582 adapter->rss_lut_size = vfres->rss_lut_size; 3583 } else { 3584 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3585 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3586 } 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * iavf_init_task - worker thread to perform delayed initialization 3593 * @work: pointer to work_struct containing our data 3594 * 3595 * This task completes the work that was begun in probe. Due to the nature 3596 * of VF-PF communications, we may need to wait tens of milliseconds to get 3597 * responses back from the PF. Rather than busy-wait in probe and bog down the 3598 * whole system, we'll do it in a task so we can sleep. 3599 * This task only runs during driver init. Once we've established 3600 * communications with the PF driver and set up our netdev, the watchdog 3601 * takes over. 3602 **/ 3603 static void iavf_init_task(struct work_struct *work) 3604 { 3605 struct iavf_adapter *adapter = container_of(work, 3606 struct iavf_adapter, 3607 init_task.work); 3608 struct iavf_hw *hw = &adapter->hw; 3609 3610 switch (adapter->state) { 3611 case __IAVF_STARTUP: 3612 if (iavf_startup(adapter) < 0) 3613 goto init_failed; 3614 break; 3615 case __IAVF_INIT_VERSION_CHECK: 3616 if (iavf_init_version_check(adapter) < 0) 3617 goto init_failed; 3618 break; 3619 case __IAVF_INIT_GET_RESOURCES: 3620 if (iavf_init_get_resources(adapter) < 0) 3621 goto init_failed; 3622 return; 3623 default: 3624 goto init_failed; 3625 } 3626 3627 queue_delayed_work(iavf_wq, &adapter->init_task, 3628 msecs_to_jiffies(30)); 3629 return; 3630 init_failed: 3631 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3632 dev_err(&adapter->pdev->dev, 3633 "Failed to communicate with PF; waiting before retry\n"); 3634 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3635 iavf_shutdown_adminq(hw); 3636 adapter->state = __IAVF_STARTUP; 3637 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5); 3638 return; 3639 } 3640 queue_delayed_work(iavf_wq, &adapter->init_task, HZ); 3641 } 3642 3643 /** 3644 * iavf_shutdown - Shutdown the device in preparation for a reboot 3645 * @pdev: pci device structure 3646 **/ 3647 static void iavf_shutdown(struct pci_dev *pdev) 3648 { 3649 struct net_device *netdev = pci_get_drvdata(pdev); 3650 struct iavf_adapter *adapter = netdev_priv(netdev); 3651 3652 netif_device_detach(netdev); 3653 3654 if (netif_running(netdev)) 3655 iavf_close(netdev); 3656 3657 /* Prevent the watchdog from running. */ 3658 adapter->state = __IAVF_REMOVE; 3659 adapter->aq_required = 0; 3660 3661 #ifdef CONFIG_PM 3662 pci_save_state(pdev); 3663 3664 #endif 3665 pci_disable_device(pdev); 3666 } 3667 3668 /** 3669 * iavf_probe - Device Initialization Routine 3670 * @pdev: PCI device information struct 3671 * @ent: entry in iavf_pci_tbl 3672 * 3673 * Returns 0 on success, negative on failure 3674 * 3675 * iavf_probe initializes an adapter identified by a pci_dev structure. 3676 * The OS initialization, configuring of the adapter private structure, 3677 * and a hardware reset occur. 3678 **/ 3679 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3680 { 3681 struct net_device *netdev; 3682 struct iavf_adapter *adapter = NULL; 3683 struct iavf_hw *hw = NULL; 3684 int err; 3685 3686 err = pci_enable_device(pdev); 3687 if (err) 3688 return err; 3689 3690 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3691 if (err) { 3692 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3693 if (err) { 3694 dev_err(&pdev->dev, 3695 "DMA configuration failed: 0x%x\n", err); 3696 goto err_dma; 3697 } 3698 } 3699 3700 err = pci_request_regions(pdev, iavf_driver_name); 3701 if (err) { 3702 dev_err(&pdev->dev, 3703 "pci_request_regions failed 0x%x\n", err); 3704 goto err_pci_reg; 3705 } 3706 3707 pci_enable_pcie_error_reporting(pdev); 3708 3709 pci_set_master(pdev); 3710 3711 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3712 IAVF_MAX_REQ_QUEUES); 3713 if (!netdev) { 3714 err = -ENOMEM; 3715 goto err_alloc_etherdev; 3716 } 3717 3718 SET_NETDEV_DEV(netdev, &pdev->dev); 3719 3720 pci_set_drvdata(pdev, netdev); 3721 adapter = netdev_priv(netdev); 3722 3723 adapter->netdev = netdev; 3724 adapter->pdev = pdev; 3725 3726 hw = &adapter->hw; 3727 hw->back = adapter; 3728 3729 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3730 adapter->state = __IAVF_STARTUP; 3731 3732 /* Call save state here because it relies on the adapter struct. */ 3733 pci_save_state(pdev); 3734 3735 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3736 pci_resource_len(pdev, 0)); 3737 if (!hw->hw_addr) { 3738 err = -EIO; 3739 goto err_ioremap; 3740 } 3741 hw->vendor_id = pdev->vendor; 3742 hw->device_id = pdev->device; 3743 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3744 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3745 hw->subsystem_device_id = pdev->subsystem_device; 3746 hw->bus.device = PCI_SLOT(pdev->devfn); 3747 hw->bus.func = PCI_FUNC(pdev->devfn); 3748 hw->bus.bus_id = pdev->bus->number; 3749 3750 /* set up the locks for the AQ, do this only once in probe 3751 * and destroy them only once in remove 3752 */ 3753 mutex_init(&hw->aq.asq_mutex); 3754 mutex_init(&hw->aq.arq_mutex); 3755 3756 spin_lock_init(&adapter->mac_vlan_list_lock); 3757 spin_lock_init(&adapter->cloud_filter_list_lock); 3758 spin_lock_init(&adapter->fdir_fltr_lock); 3759 3760 INIT_LIST_HEAD(&adapter->mac_filter_list); 3761 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3762 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3763 INIT_LIST_HEAD(&adapter->fdir_list_head); 3764 3765 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3766 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3767 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3768 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3769 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3770 queue_delayed_work(iavf_wq, &adapter->init_task, 3771 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3772 3773 /* Setup the wait queue for indicating transition to down status */ 3774 init_waitqueue_head(&adapter->down_waitqueue); 3775 3776 return 0; 3777 3778 err_ioremap: 3779 free_netdev(netdev); 3780 err_alloc_etherdev: 3781 pci_release_regions(pdev); 3782 err_pci_reg: 3783 err_dma: 3784 pci_disable_device(pdev); 3785 return err; 3786 } 3787 3788 /** 3789 * iavf_suspend - Power management suspend routine 3790 * @dev_d: device info pointer 3791 * 3792 * Called when the system (VM) is entering sleep/suspend. 3793 **/ 3794 static int __maybe_unused iavf_suspend(struct device *dev_d) 3795 { 3796 struct net_device *netdev = dev_get_drvdata(dev_d); 3797 struct iavf_adapter *adapter = netdev_priv(netdev); 3798 3799 netif_device_detach(netdev); 3800 3801 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3802 &adapter->crit_section)) 3803 usleep_range(500, 1000); 3804 3805 if (netif_running(netdev)) { 3806 rtnl_lock(); 3807 iavf_down(adapter); 3808 rtnl_unlock(); 3809 } 3810 iavf_free_misc_irq(adapter); 3811 iavf_reset_interrupt_capability(adapter); 3812 3813 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3814 3815 return 0; 3816 } 3817 3818 /** 3819 * iavf_resume - Power management resume routine 3820 * @dev_d: device info pointer 3821 * 3822 * Called when the system (VM) is resumed from sleep/suspend. 3823 **/ 3824 static int __maybe_unused iavf_resume(struct device *dev_d) 3825 { 3826 struct pci_dev *pdev = to_pci_dev(dev_d); 3827 struct net_device *netdev = pci_get_drvdata(pdev); 3828 struct iavf_adapter *adapter = netdev_priv(netdev); 3829 u32 err; 3830 3831 pci_set_master(pdev); 3832 3833 rtnl_lock(); 3834 err = iavf_set_interrupt_capability(adapter); 3835 if (err) { 3836 rtnl_unlock(); 3837 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3838 return err; 3839 } 3840 err = iavf_request_misc_irq(adapter); 3841 rtnl_unlock(); 3842 if (err) { 3843 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3844 return err; 3845 } 3846 3847 queue_work(iavf_wq, &adapter->reset_task); 3848 3849 netif_device_attach(netdev); 3850 3851 return err; 3852 } 3853 3854 /** 3855 * iavf_remove - Device Removal Routine 3856 * @pdev: PCI device information struct 3857 * 3858 * iavf_remove is called by the PCI subsystem to alert the driver 3859 * that it should release a PCI device. The could be caused by a 3860 * Hot-Plug event, or because the driver is going to be removed from 3861 * memory. 3862 **/ 3863 static void iavf_remove(struct pci_dev *pdev) 3864 { 3865 struct net_device *netdev = pci_get_drvdata(pdev); 3866 struct iavf_adapter *adapter = netdev_priv(netdev); 3867 struct iavf_fdir_fltr *fdir, *fdirtmp; 3868 struct iavf_vlan_filter *vlf, *vlftmp; 3869 struct iavf_mac_filter *f, *ftmp; 3870 struct iavf_cloud_filter *cf, *cftmp; 3871 struct iavf_hw *hw = &adapter->hw; 3872 int err; 3873 /* Indicate we are in remove and not to run reset_task */ 3874 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 3875 cancel_delayed_work_sync(&adapter->init_task); 3876 cancel_work_sync(&adapter->reset_task); 3877 cancel_delayed_work_sync(&adapter->client_task); 3878 if (adapter->netdev_registered) { 3879 unregister_netdev(netdev); 3880 adapter->netdev_registered = false; 3881 } 3882 if (CLIENT_ALLOWED(adapter)) { 3883 err = iavf_lan_del_device(adapter); 3884 if (err) 3885 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3886 err); 3887 } 3888 3889 /* Shut down all the garbage mashers on the detention level */ 3890 adapter->state = __IAVF_REMOVE; 3891 adapter->aq_required = 0; 3892 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3893 iavf_request_reset(adapter); 3894 msleep(50); 3895 /* If the FW isn't responding, kick it once, but only once. */ 3896 if (!iavf_asq_done(hw)) { 3897 iavf_request_reset(adapter); 3898 msleep(50); 3899 } 3900 iavf_free_all_tx_resources(adapter); 3901 iavf_free_all_rx_resources(adapter); 3902 iavf_misc_irq_disable(adapter); 3903 iavf_free_misc_irq(adapter); 3904 iavf_reset_interrupt_capability(adapter); 3905 iavf_free_q_vectors(adapter); 3906 3907 cancel_delayed_work_sync(&adapter->watchdog_task); 3908 3909 cancel_work_sync(&adapter->adminq_task); 3910 3911 iavf_free_rss(adapter); 3912 3913 if (hw->aq.asq.count) 3914 iavf_shutdown_adminq(hw); 3915 3916 /* destroy the locks only once, here */ 3917 mutex_destroy(&hw->aq.arq_mutex); 3918 mutex_destroy(&hw->aq.asq_mutex); 3919 3920 iounmap(hw->hw_addr); 3921 pci_release_regions(pdev); 3922 iavf_free_all_tx_resources(adapter); 3923 iavf_free_all_rx_resources(adapter); 3924 iavf_free_queues(adapter); 3925 kfree(adapter->vf_res); 3926 spin_lock_bh(&adapter->mac_vlan_list_lock); 3927 /* If we got removed before an up/down sequence, we've got a filter 3928 * hanging out there that we need to get rid of. 3929 */ 3930 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3931 list_del(&f->list); 3932 kfree(f); 3933 } 3934 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3935 list) { 3936 list_del(&vlf->list); 3937 kfree(vlf); 3938 } 3939 3940 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3941 3942 spin_lock_bh(&adapter->cloud_filter_list_lock); 3943 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3944 list_del(&cf->list); 3945 kfree(cf); 3946 } 3947 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3948 3949 spin_lock_bh(&adapter->fdir_fltr_lock); 3950 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 3951 list_del(&fdir->list); 3952 kfree(fdir); 3953 } 3954 spin_unlock_bh(&adapter->fdir_fltr_lock); 3955 3956 free_netdev(netdev); 3957 3958 pci_disable_pcie_error_reporting(pdev); 3959 3960 pci_disable_device(pdev); 3961 } 3962 3963 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 3964 3965 static struct pci_driver iavf_driver = { 3966 .name = iavf_driver_name, 3967 .id_table = iavf_pci_tbl, 3968 .probe = iavf_probe, 3969 .remove = iavf_remove, 3970 .driver.pm = &iavf_pm_ops, 3971 .shutdown = iavf_shutdown, 3972 }; 3973 3974 /** 3975 * iavf_init_module - Driver Registration Routine 3976 * 3977 * iavf_init_module is the first routine called when the driver is 3978 * loaded. All it does is register with the PCI subsystem. 3979 **/ 3980 static int __init iavf_init_module(void) 3981 { 3982 int ret; 3983 3984 pr_info("iavf: %s\n", iavf_driver_string); 3985 3986 pr_info("%s\n", iavf_copyright); 3987 3988 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 3989 iavf_driver_name); 3990 if (!iavf_wq) { 3991 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 3992 return -ENOMEM; 3993 } 3994 ret = pci_register_driver(&iavf_driver); 3995 return ret; 3996 } 3997 3998 module_init(iavf_init_module); 3999 4000 /** 4001 * iavf_exit_module - Driver Exit Cleanup Routine 4002 * 4003 * iavf_exit_module is called just before the driver is removed 4004 * from memory. 4005 **/ 4006 static void __exit iavf_exit_module(void) 4007 { 4008 pci_unregister_driver(&iavf_driver); 4009 destroy_workqueue(iavf_wq); 4010 } 4011 4012 module_exit(iavf_exit_module); 4013 4014 /* iavf_main.c */ 4015