1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 #define DRV_KERN "-k"
25 
26 #define DRV_VERSION_MAJOR 3
27 #define DRV_VERSION_MINOR 2
28 #define DRV_VERSION_BUILD 3
29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
30 	     __stringify(DRV_VERSION_MINOR) "." \
31 	     __stringify(DRV_VERSION_BUILD) \
32 	     DRV_KERN
33 const char iavf_driver_version[] = DRV_VERSION;
34 static const char iavf_copyright[] =
35 	"Copyright (c) 2013 - 2018 Intel Corporation.";
36 
37 /* iavf_pci_tbl - PCI Device ID Table
38  *
39  * Wildcard entries (PCI_ANY_ID) should come last
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id iavf_pci_tbl[] = {
46 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
47 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
48 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
49 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
50 	/* required last entry */
51 	{0, }
52 };
53 
54 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
55 
56 MODULE_ALIAS("i40evf");
57 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
58 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
59 MODULE_LICENSE("GPL v2");
60 MODULE_VERSION(DRV_VERSION);
61 
62 static const struct net_device_ops iavf_netdev_ops;
63 struct workqueue_struct *iavf_wq;
64 
65 /**
66  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
67  * @hw:   pointer to the HW structure
68  * @mem:  ptr to mem struct to fill out
69  * @size: size of memory requested
70  * @alignment: what to align the allocation to
71  **/
72 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
73 					 struct iavf_dma_mem *mem,
74 					 u64 size, u32 alignment)
75 {
76 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
77 
78 	if (!mem)
79 		return IAVF_ERR_PARAM;
80 
81 	mem->size = ALIGN(size, alignment);
82 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
83 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
84 	if (mem->va)
85 		return 0;
86 	else
87 		return IAVF_ERR_NO_MEMORY;
88 }
89 
90 /**
91  * iavf_free_dma_mem_d - OS specific memory free for shared code
92  * @hw:   pointer to the HW structure
93  * @mem:  ptr to mem struct to free
94  **/
95 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
96 				     struct iavf_dma_mem *mem)
97 {
98 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
99 
100 	if (!mem || !mem->va)
101 		return IAVF_ERR_PARAM;
102 	dma_free_coherent(&adapter->pdev->dev, mem->size,
103 			  mem->va, (dma_addr_t)mem->pa);
104 	return 0;
105 }
106 
107 /**
108  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
109  * @hw:   pointer to the HW structure
110  * @mem:  ptr to mem struct to fill out
111  * @size: size of memory requested
112  **/
113 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
114 					  struct iavf_virt_mem *mem, u32 size)
115 {
116 	if (!mem)
117 		return IAVF_ERR_PARAM;
118 
119 	mem->size = size;
120 	mem->va = kzalloc(size, GFP_KERNEL);
121 
122 	if (mem->va)
123 		return 0;
124 	else
125 		return IAVF_ERR_NO_MEMORY;
126 }
127 
128 /**
129  * iavf_free_virt_mem_d - OS specific memory free for shared code
130  * @hw:   pointer to the HW structure
131  * @mem:  ptr to mem struct to free
132  **/
133 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
134 				      struct iavf_virt_mem *mem)
135 {
136 	if (!mem)
137 		return IAVF_ERR_PARAM;
138 
139 	/* it's ok to kfree a NULL pointer */
140 	kfree(mem->va);
141 
142 	return 0;
143 }
144 
145 /**
146  * iavf_schedule_reset - Set the flags and schedule a reset event
147  * @adapter: board private structure
148  **/
149 void iavf_schedule_reset(struct iavf_adapter *adapter)
150 {
151 	if (!(adapter->flags &
152 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
153 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
154 		queue_work(iavf_wq, &adapter->reset_task);
155 	}
156 }
157 
158 /**
159  * iavf_tx_timeout - Respond to a Tx Hang
160  * @netdev: network interface device structure
161  **/
162 static void iavf_tx_timeout(struct net_device *netdev)
163 {
164 	struct iavf_adapter *adapter = netdev_priv(netdev);
165 
166 	adapter->tx_timeout_count++;
167 	iavf_schedule_reset(adapter);
168 }
169 
170 /**
171  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
172  * @adapter: board private structure
173  **/
174 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
175 {
176 	struct iavf_hw *hw = &adapter->hw;
177 
178 	if (!adapter->msix_entries)
179 		return;
180 
181 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
182 
183 	iavf_flush(hw);
184 
185 	synchronize_irq(adapter->msix_entries[0].vector);
186 }
187 
188 /**
189  * iavf_misc_irq_enable - Enable default interrupt generation settings
190  * @adapter: board private structure
191  **/
192 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
193 {
194 	struct iavf_hw *hw = &adapter->hw;
195 
196 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
197 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
198 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
199 
200 	iavf_flush(hw);
201 }
202 
203 /**
204  * iavf_irq_disable - Mask off interrupt generation on the NIC
205  * @adapter: board private structure
206  **/
207 static void iavf_irq_disable(struct iavf_adapter *adapter)
208 {
209 	int i;
210 	struct iavf_hw *hw = &adapter->hw;
211 
212 	if (!adapter->msix_entries)
213 		return;
214 
215 	for (i = 1; i < adapter->num_msix_vectors; i++) {
216 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
217 		synchronize_irq(adapter->msix_entries[i].vector);
218 	}
219 	iavf_flush(hw);
220 }
221 
222 /**
223  * iavf_irq_enable_queues - Enable interrupt for specified queues
224  * @adapter: board private structure
225  * @mask: bitmap of queues to enable
226  **/
227 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
228 {
229 	struct iavf_hw *hw = &adapter->hw;
230 	int i;
231 
232 	for (i = 1; i < adapter->num_msix_vectors; i++) {
233 		if (mask & BIT(i - 1)) {
234 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
235 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
236 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
237 		}
238 	}
239 }
240 
241 /**
242  * iavf_irq_enable - Enable default interrupt generation settings
243  * @adapter: board private structure
244  * @flush: boolean value whether to run rd32()
245  **/
246 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
247 {
248 	struct iavf_hw *hw = &adapter->hw;
249 
250 	iavf_misc_irq_enable(adapter);
251 	iavf_irq_enable_queues(adapter, ~0);
252 
253 	if (flush)
254 		iavf_flush(hw);
255 }
256 
257 /**
258  * iavf_msix_aq - Interrupt handler for vector 0
259  * @irq: interrupt number
260  * @data: pointer to netdev
261  **/
262 static irqreturn_t iavf_msix_aq(int irq, void *data)
263 {
264 	struct net_device *netdev = data;
265 	struct iavf_adapter *adapter = netdev_priv(netdev);
266 	struct iavf_hw *hw = &adapter->hw;
267 
268 	/* handle non-queue interrupts, these reads clear the registers */
269 	rd32(hw, IAVF_VFINT_ICR01);
270 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
271 
272 	/* schedule work on the private workqueue */
273 	queue_work(iavf_wq, &adapter->adminq_task);
274 
275 	return IRQ_HANDLED;
276 }
277 
278 /**
279  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
280  * @irq: interrupt number
281  * @data: pointer to a q_vector
282  **/
283 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
284 {
285 	struct iavf_q_vector *q_vector = data;
286 
287 	if (!q_vector->tx.ring && !q_vector->rx.ring)
288 		return IRQ_HANDLED;
289 
290 	napi_schedule_irqoff(&q_vector->napi);
291 
292 	return IRQ_HANDLED;
293 }
294 
295 /**
296  * iavf_map_vector_to_rxq - associate irqs with rx queues
297  * @adapter: board private structure
298  * @v_idx: interrupt number
299  * @r_idx: queue number
300  **/
301 static void
302 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
303 {
304 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
305 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
306 	struct iavf_hw *hw = &adapter->hw;
307 
308 	rx_ring->q_vector = q_vector;
309 	rx_ring->next = q_vector->rx.ring;
310 	rx_ring->vsi = &adapter->vsi;
311 	q_vector->rx.ring = rx_ring;
312 	q_vector->rx.count++;
313 	q_vector->rx.next_update = jiffies + 1;
314 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
315 	q_vector->ring_mask |= BIT(r_idx);
316 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
317 	     q_vector->rx.current_itr);
318 	q_vector->rx.current_itr = q_vector->rx.target_itr;
319 }
320 
321 /**
322  * iavf_map_vector_to_txq - associate irqs with tx queues
323  * @adapter: board private structure
324  * @v_idx: interrupt number
325  * @t_idx: queue number
326  **/
327 static void
328 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
329 {
330 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
331 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
332 	struct iavf_hw *hw = &adapter->hw;
333 
334 	tx_ring->q_vector = q_vector;
335 	tx_ring->next = q_vector->tx.ring;
336 	tx_ring->vsi = &adapter->vsi;
337 	q_vector->tx.ring = tx_ring;
338 	q_vector->tx.count++;
339 	q_vector->tx.next_update = jiffies + 1;
340 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
341 	q_vector->num_ringpairs++;
342 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
343 	     q_vector->tx.target_itr);
344 	q_vector->tx.current_itr = q_vector->tx.target_itr;
345 }
346 
347 /**
348  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
349  * @adapter: board private structure to initialize
350  *
351  * This function maps descriptor rings to the queue-specific vectors
352  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
353  * one vector per ring/queue, but on a constrained vector budget, we
354  * group the rings as "efficiently" as possible.  You would add new
355  * mapping configurations in here.
356  **/
357 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
358 {
359 	int rings_remaining = adapter->num_active_queues;
360 	int ridx = 0, vidx = 0;
361 	int q_vectors;
362 
363 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
364 
365 	for (; ridx < rings_remaining; ridx++) {
366 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
367 		iavf_map_vector_to_txq(adapter, vidx, ridx);
368 
369 		/* In the case where we have more queues than vectors, continue
370 		 * round-robin on vectors until all queues are mapped.
371 		 */
372 		if (++vidx >= q_vectors)
373 			vidx = 0;
374 	}
375 
376 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
377 }
378 
379 /**
380  * iavf_irq_affinity_notify - Callback for affinity changes
381  * @notify: context as to what irq was changed
382  * @mask: the new affinity mask
383  *
384  * This is a callback function used by the irq_set_affinity_notifier function
385  * so that we may register to receive changes to the irq affinity masks.
386  **/
387 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
388 				     const cpumask_t *mask)
389 {
390 	struct iavf_q_vector *q_vector =
391 		container_of(notify, struct iavf_q_vector, affinity_notify);
392 
393 	cpumask_copy(&q_vector->affinity_mask, mask);
394 }
395 
396 /**
397  * iavf_irq_affinity_release - Callback for affinity notifier release
398  * @ref: internal core kernel usage
399  *
400  * This is a callback function used by the irq_set_affinity_notifier function
401  * to inform the current notification subscriber that they will no longer
402  * receive notifications.
403  **/
404 static void iavf_irq_affinity_release(struct kref *ref) {}
405 
406 /**
407  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
408  * @adapter: board private structure
409  * @basename: device basename
410  *
411  * Allocates MSI-X vectors for tx and rx handling, and requests
412  * interrupts from the kernel.
413  **/
414 static int
415 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
416 {
417 	unsigned int vector, q_vectors;
418 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
419 	int irq_num, err;
420 	int cpu;
421 
422 	iavf_irq_disable(adapter);
423 	/* Decrement for Other and TCP Timer vectors */
424 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
425 
426 	for (vector = 0; vector < q_vectors; vector++) {
427 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
428 
429 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
430 
431 		if (q_vector->tx.ring && q_vector->rx.ring) {
432 			snprintf(q_vector->name, sizeof(q_vector->name),
433 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
434 			tx_int_idx++;
435 		} else if (q_vector->rx.ring) {
436 			snprintf(q_vector->name, sizeof(q_vector->name),
437 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
438 		} else if (q_vector->tx.ring) {
439 			snprintf(q_vector->name, sizeof(q_vector->name),
440 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
441 		} else {
442 			/* skip this unused q_vector */
443 			continue;
444 		}
445 		err = request_irq(irq_num,
446 				  iavf_msix_clean_rings,
447 				  0,
448 				  q_vector->name,
449 				  q_vector);
450 		if (err) {
451 			dev_info(&adapter->pdev->dev,
452 				 "Request_irq failed, error: %d\n", err);
453 			goto free_queue_irqs;
454 		}
455 		/* register for affinity change notifications */
456 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
457 		q_vector->affinity_notify.release =
458 						   iavf_irq_affinity_release;
459 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
460 		/* Spread the IRQ affinity hints across online CPUs. Note that
461 		 * get_cpu_mask returns a mask with a permanent lifetime so
462 		 * it's safe to use as a hint for irq_set_affinity_hint.
463 		 */
464 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
465 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
466 	}
467 
468 	return 0;
469 
470 free_queue_irqs:
471 	while (vector) {
472 		vector--;
473 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
474 		irq_set_affinity_notifier(irq_num, NULL);
475 		irq_set_affinity_hint(irq_num, NULL);
476 		free_irq(irq_num, &adapter->q_vectors[vector]);
477 	}
478 	return err;
479 }
480 
481 /**
482  * iavf_request_misc_irq - Initialize MSI-X interrupts
483  * @adapter: board private structure
484  *
485  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
486  * vector is only for the admin queue, and stays active even when the netdev
487  * is closed.
488  **/
489 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
490 {
491 	struct net_device *netdev = adapter->netdev;
492 	int err;
493 
494 	snprintf(adapter->misc_vector_name,
495 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
496 		 dev_name(&adapter->pdev->dev));
497 	err = request_irq(adapter->msix_entries[0].vector,
498 			  &iavf_msix_aq, 0,
499 			  adapter->misc_vector_name, netdev);
500 	if (err) {
501 		dev_err(&adapter->pdev->dev,
502 			"request_irq for %s failed: %d\n",
503 			adapter->misc_vector_name, err);
504 		free_irq(adapter->msix_entries[0].vector, netdev);
505 	}
506 	return err;
507 }
508 
509 /**
510  * iavf_free_traffic_irqs - Free MSI-X interrupts
511  * @adapter: board private structure
512  *
513  * Frees all MSI-X vectors other than 0.
514  **/
515 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
516 {
517 	int vector, irq_num, q_vectors;
518 
519 	if (!adapter->msix_entries)
520 		return;
521 
522 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
523 
524 	for (vector = 0; vector < q_vectors; vector++) {
525 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
526 		irq_set_affinity_notifier(irq_num, NULL);
527 		irq_set_affinity_hint(irq_num, NULL);
528 		free_irq(irq_num, &adapter->q_vectors[vector]);
529 	}
530 }
531 
532 /**
533  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
534  * @adapter: board private structure
535  *
536  * Frees MSI-X vector 0.
537  **/
538 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
539 {
540 	struct net_device *netdev = adapter->netdev;
541 
542 	if (!adapter->msix_entries)
543 		return;
544 
545 	free_irq(adapter->msix_entries[0].vector, netdev);
546 }
547 
548 /**
549  * iavf_configure_tx - Configure Transmit Unit after Reset
550  * @adapter: board private structure
551  *
552  * Configure the Tx unit of the MAC after a reset.
553  **/
554 static void iavf_configure_tx(struct iavf_adapter *adapter)
555 {
556 	struct iavf_hw *hw = &adapter->hw;
557 	int i;
558 
559 	for (i = 0; i < adapter->num_active_queues; i++)
560 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
561 }
562 
563 /**
564  * iavf_configure_rx - Configure Receive Unit after Reset
565  * @adapter: board private structure
566  *
567  * Configure the Rx unit of the MAC after a reset.
568  **/
569 static void iavf_configure_rx(struct iavf_adapter *adapter)
570 {
571 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
572 	struct iavf_hw *hw = &adapter->hw;
573 	int i;
574 
575 	/* Legacy Rx will always default to a 2048 buffer size. */
576 #if (PAGE_SIZE < 8192)
577 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
578 		struct net_device *netdev = adapter->netdev;
579 
580 		/* For jumbo frames on systems with 4K pages we have to use
581 		 * an order 1 page, so we might as well increase the size
582 		 * of our Rx buffer to make better use of the available space
583 		 */
584 		rx_buf_len = IAVF_RXBUFFER_3072;
585 
586 		/* We use a 1536 buffer size for configurations with
587 		 * standard Ethernet mtu.  On x86 this gives us enough room
588 		 * for shared info and 192 bytes of padding.
589 		 */
590 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
591 		    (netdev->mtu <= ETH_DATA_LEN))
592 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
593 	}
594 #endif
595 
596 	for (i = 0; i < adapter->num_active_queues; i++) {
597 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
598 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
599 
600 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
601 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
602 		else
603 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
604 	}
605 }
606 
607 /**
608  * iavf_find_vlan - Search filter list for specific vlan filter
609  * @adapter: board private structure
610  * @vlan: vlan tag
611  *
612  * Returns ptr to the filter object or NULL. Must be called while holding the
613  * mac_vlan_list_lock.
614  **/
615 static struct
616 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
617 {
618 	struct iavf_vlan_filter *f;
619 
620 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
621 		if (vlan == f->vlan)
622 			return f;
623 	}
624 	return NULL;
625 }
626 
627 /**
628  * iavf_add_vlan - Add a vlan filter to the list
629  * @adapter: board private structure
630  * @vlan: VLAN tag
631  *
632  * Returns ptr to the filter object or NULL when no memory available.
633  **/
634 static struct
635 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
636 {
637 	struct iavf_vlan_filter *f = NULL;
638 
639 	spin_lock_bh(&adapter->mac_vlan_list_lock);
640 
641 	f = iavf_find_vlan(adapter, vlan);
642 	if (!f) {
643 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
644 		if (!f)
645 			goto clearout;
646 
647 		f->vlan = vlan;
648 
649 		list_add_tail(&f->list, &adapter->vlan_filter_list);
650 		f->add = true;
651 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
652 	}
653 
654 clearout:
655 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
656 	return f;
657 }
658 
659 /**
660  * iavf_del_vlan - Remove a vlan filter from the list
661  * @adapter: board private structure
662  * @vlan: VLAN tag
663  **/
664 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
665 {
666 	struct iavf_vlan_filter *f;
667 
668 	spin_lock_bh(&adapter->mac_vlan_list_lock);
669 
670 	f = iavf_find_vlan(adapter, vlan);
671 	if (f) {
672 		f->remove = true;
673 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
674 	}
675 
676 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
677 }
678 
679 /**
680  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
681  * @netdev: network device struct
682  * @proto: unused protocol data
683  * @vid: VLAN tag
684  **/
685 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
686 				__always_unused __be16 proto, u16 vid)
687 {
688 	struct iavf_adapter *adapter = netdev_priv(netdev);
689 
690 	if (!VLAN_ALLOWED(adapter))
691 		return -EIO;
692 	if (iavf_add_vlan(adapter, vid) == NULL)
693 		return -ENOMEM;
694 	return 0;
695 }
696 
697 /**
698  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
699  * @netdev: network device struct
700  * @proto: unused protocol data
701  * @vid: VLAN tag
702  **/
703 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
704 				 __always_unused __be16 proto, u16 vid)
705 {
706 	struct iavf_adapter *adapter = netdev_priv(netdev);
707 
708 	if (VLAN_ALLOWED(adapter)) {
709 		iavf_del_vlan(adapter, vid);
710 		return 0;
711 	}
712 	return -EIO;
713 }
714 
715 /**
716  * iavf_find_filter - Search filter list for specific mac filter
717  * @adapter: board private structure
718  * @macaddr: the MAC address
719  *
720  * Returns ptr to the filter object or NULL. Must be called while holding the
721  * mac_vlan_list_lock.
722  **/
723 static struct
724 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
725 				  const u8 *macaddr)
726 {
727 	struct iavf_mac_filter *f;
728 
729 	if (!macaddr)
730 		return NULL;
731 
732 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
733 		if (ether_addr_equal(macaddr, f->macaddr))
734 			return f;
735 	}
736 	return NULL;
737 }
738 
739 /**
740  * iavf_add_filter - Add a mac filter to the filter list
741  * @adapter: board private structure
742  * @macaddr: the MAC address
743  *
744  * Returns ptr to the filter object or NULL when no memory available.
745  **/
746 static struct
747 iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
748 				 const u8 *macaddr)
749 {
750 	struct iavf_mac_filter *f;
751 
752 	if (!macaddr)
753 		return NULL;
754 
755 	f = iavf_find_filter(adapter, macaddr);
756 	if (!f) {
757 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
758 		if (!f)
759 			return f;
760 
761 		ether_addr_copy(f->macaddr, macaddr);
762 
763 		list_add_tail(&f->list, &adapter->mac_filter_list);
764 		f->add = true;
765 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
766 	} else {
767 		f->remove = false;
768 	}
769 
770 	return f;
771 }
772 
773 /**
774  * iavf_set_mac - NDO callback to set port mac address
775  * @netdev: network interface device structure
776  * @p: pointer to an address structure
777  *
778  * Returns 0 on success, negative on failure
779  **/
780 static int iavf_set_mac(struct net_device *netdev, void *p)
781 {
782 	struct iavf_adapter *adapter = netdev_priv(netdev);
783 	struct iavf_hw *hw = &adapter->hw;
784 	struct iavf_mac_filter *f;
785 	struct sockaddr *addr = p;
786 
787 	if (!is_valid_ether_addr(addr->sa_data))
788 		return -EADDRNOTAVAIL;
789 
790 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
791 		return 0;
792 
793 	spin_lock_bh(&adapter->mac_vlan_list_lock);
794 
795 	f = iavf_find_filter(adapter, hw->mac.addr);
796 	if (f) {
797 		f->remove = true;
798 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
799 	}
800 
801 	f = iavf_add_filter(adapter, addr->sa_data);
802 
803 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
804 
805 	if (f) {
806 		ether_addr_copy(hw->mac.addr, addr->sa_data);
807 	}
808 
809 	return (f == NULL) ? -ENOMEM : 0;
810 }
811 
812 /**
813  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
814  * @netdev: the netdevice
815  * @addr: address to add
816  *
817  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
818  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
819  */
820 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
821 {
822 	struct iavf_adapter *adapter = netdev_priv(netdev);
823 
824 	if (iavf_add_filter(adapter, addr))
825 		return 0;
826 	else
827 		return -ENOMEM;
828 }
829 
830 /**
831  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
832  * @netdev: the netdevice
833  * @addr: address to add
834  *
835  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
836  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
837  */
838 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
839 {
840 	struct iavf_adapter *adapter = netdev_priv(netdev);
841 	struct iavf_mac_filter *f;
842 
843 	/* Under some circumstances, we might receive a request to delete
844 	 * our own device address from our uc list. Because we store the
845 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
846 	 * such requests and not delete our device address from this list.
847 	 */
848 	if (ether_addr_equal(addr, netdev->dev_addr))
849 		return 0;
850 
851 	f = iavf_find_filter(adapter, addr);
852 	if (f) {
853 		f->remove = true;
854 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
855 	}
856 	return 0;
857 }
858 
859 /**
860  * iavf_set_rx_mode - NDO callback to set the netdev filters
861  * @netdev: network interface device structure
862  **/
863 static void iavf_set_rx_mode(struct net_device *netdev)
864 {
865 	struct iavf_adapter *adapter = netdev_priv(netdev);
866 
867 	spin_lock_bh(&adapter->mac_vlan_list_lock);
868 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
869 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
870 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
871 
872 	if (netdev->flags & IFF_PROMISC &&
873 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
874 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
875 	else if (!(netdev->flags & IFF_PROMISC) &&
876 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
877 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
878 
879 	if (netdev->flags & IFF_ALLMULTI &&
880 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
881 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
882 	else if (!(netdev->flags & IFF_ALLMULTI) &&
883 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
884 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
885 }
886 
887 /**
888  * iavf_napi_enable_all - enable NAPI on all queue vectors
889  * @adapter: board private structure
890  **/
891 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
892 {
893 	int q_idx;
894 	struct iavf_q_vector *q_vector;
895 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
896 
897 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
898 		struct napi_struct *napi;
899 
900 		q_vector = &adapter->q_vectors[q_idx];
901 		napi = &q_vector->napi;
902 		napi_enable(napi);
903 	}
904 }
905 
906 /**
907  * iavf_napi_disable_all - disable NAPI on all queue vectors
908  * @adapter: board private structure
909  **/
910 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
911 {
912 	int q_idx;
913 	struct iavf_q_vector *q_vector;
914 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
915 
916 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
917 		q_vector = &adapter->q_vectors[q_idx];
918 		napi_disable(&q_vector->napi);
919 	}
920 }
921 
922 /**
923  * iavf_configure - set up transmit and receive data structures
924  * @adapter: board private structure
925  **/
926 static void iavf_configure(struct iavf_adapter *adapter)
927 {
928 	struct net_device *netdev = adapter->netdev;
929 	int i;
930 
931 	iavf_set_rx_mode(netdev);
932 
933 	iavf_configure_tx(adapter);
934 	iavf_configure_rx(adapter);
935 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
936 
937 	for (i = 0; i < adapter->num_active_queues; i++) {
938 		struct iavf_ring *ring = &adapter->rx_rings[i];
939 
940 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
941 	}
942 }
943 
944 /**
945  * iavf_up_complete - Finish the last steps of bringing up a connection
946  * @adapter: board private structure
947  *
948  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
949  **/
950 static void iavf_up_complete(struct iavf_adapter *adapter)
951 {
952 	adapter->state = __IAVF_RUNNING;
953 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
954 
955 	iavf_napi_enable_all(adapter);
956 
957 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
958 	if (CLIENT_ENABLED(adapter))
959 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
960 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
961 }
962 
963 /**
964  * iavf_down - Shutdown the connection processing
965  * @adapter: board private structure
966  *
967  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
968  **/
969 void iavf_down(struct iavf_adapter *adapter)
970 {
971 	struct net_device *netdev = adapter->netdev;
972 	struct iavf_vlan_filter *vlf;
973 	struct iavf_mac_filter *f;
974 	struct iavf_cloud_filter *cf;
975 
976 	if (adapter->state <= __IAVF_DOWN_PENDING)
977 		return;
978 
979 	netif_carrier_off(netdev);
980 	netif_tx_disable(netdev);
981 	adapter->link_up = false;
982 	iavf_napi_disable_all(adapter);
983 	iavf_irq_disable(adapter);
984 
985 	spin_lock_bh(&adapter->mac_vlan_list_lock);
986 
987 	/* clear the sync flag on all filters */
988 	__dev_uc_unsync(adapter->netdev, NULL);
989 	__dev_mc_unsync(adapter->netdev, NULL);
990 
991 	/* remove all MAC filters */
992 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
993 		f->remove = true;
994 	}
995 
996 	/* remove all VLAN filters */
997 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
998 		vlf->remove = true;
999 	}
1000 
1001 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1002 
1003 	/* remove all cloud filters */
1004 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1005 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006 		cf->del = true;
1007 	}
1008 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1009 
1010 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011 	    adapter->state != __IAVF_RESETTING) {
1012 		/* cancel any current operation */
1013 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014 		/* Schedule operations to close down the HW. Don't wait
1015 		 * here for this to complete. The watchdog is still running
1016 		 * and it will take care of this.
1017 		 */
1018 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1022 	}
1023 
1024 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025 }
1026 
1027 /**
1028  * iavf_acquire_msix_vectors - Setup the MSIX capability
1029  * @adapter: board private structure
1030  * @vectors: number of vectors to request
1031  *
1032  * Work with the OS to set up the MSIX vectors needed.
1033  *
1034  * Returns 0 on success, negative on failure
1035  **/
1036 static int
1037 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038 {
1039 	int err, vector_threshold;
1040 
1041 	/* We'll want at least 3 (vector_threshold):
1042 	 * 0) Other (Admin Queue and link, mostly)
1043 	 * 1) TxQ[0] Cleanup
1044 	 * 2) RxQ[0] Cleanup
1045 	 */
1046 	vector_threshold = MIN_MSIX_COUNT;
1047 
1048 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1049 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050 	 * Right now, we simply care about how many we'll get; we'll
1051 	 * set them up later while requesting irq's.
1052 	 */
1053 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054 				    vector_threshold, vectors);
1055 	if (err < 0) {
1056 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057 		kfree(adapter->msix_entries);
1058 		adapter->msix_entries = NULL;
1059 		return err;
1060 	}
1061 
1062 	/* Adjust for only the vectors we'll use, which is minimum
1063 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1064 	 * vectors we were allocated.
1065 	 */
1066 	adapter->num_msix_vectors = err;
1067 	return 0;
1068 }
1069 
1070 /**
1071  * iavf_free_queues - Free memory for all rings
1072  * @adapter: board private structure to initialize
1073  *
1074  * Free all of the memory associated with queue pairs.
1075  **/
1076 static void iavf_free_queues(struct iavf_adapter *adapter)
1077 {
1078 	if (!adapter->vsi_res)
1079 		return;
1080 	adapter->num_active_queues = 0;
1081 	kfree(adapter->tx_rings);
1082 	adapter->tx_rings = NULL;
1083 	kfree(adapter->rx_rings);
1084 	adapter->rx_rings = NULL;
1085 }
1086 
1087 /**
1088  * iavf_alloc_queues - Allocate memory for all rings
1089  * @adapter: board private structure to initialize
1090  *
1091  * We allocate one ring per queue at run-time since we don't know the
1092  * number of queues at compile-time.  The polling_netdev array is
1093  * intended for Multiqueue, but should work fine with a single queue.
1094  **/
1095 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096 {
1097 	int i, num_active_queues;
1098 
1099 	/* If we're in reset reallocating queues we don't actually know yet for
1100 	 * certain the PF gave us the number of queues we asked for but we'll
1101 	 * assume it did.  Once basic reset is finished we'll confirm once we
1102 	 * start negotiating config with PF.
1103 	 */
1104 	if (adapter->num_req_queues)
1105 		num_active_queues = adapter->num_req_queues;
1106 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107 		 adapter->num_tc)
1108 		num_active_queues = adapter->ch_config.total_qps;
1109 	else
1110 		num_active_queues = min_t(int,
1111 					  adapter->vsi_res->num_queue_pairs,
1112 					  (int)(num_online_cpus()));
1113 
1114 
1115 	adapter->tx_rings = kcalloc(num_active_queues,
1116 				    sizeof(struct iavf_ring), GFP_KERNEL);
1117 	if (!adapter->tx_rings)
1118 		goto err_out;
1119 	adapter->rx_rings = kcalloc(num_active_queues,
1120 				    sizeof(struct iavf_ring), GFP_KERNEL);
1121 	if (!adapter->rx_rings)
1122 		goto err_out;
1123 
1124 	for (i = 0; i < num_active_queues; i++) {
1125 		struct iavf_ring *tx_ring;
1126 		struct iavf_ring *rx_ring;
1127 
1128 		tx_ring = &adapter->tx_rings[i];
1129 
1130 		tx_ring->queue_index = i;
1131 		tx_ring->netdev = adapter->netdev;
1132 		tx_ring->dev = &adapter->pdev->dev;
1133 		tx_ring->count = adapter->tx_desc_count;
1134 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137 
1138 		rx_ring = &adapter->rx_rings[i];
1139 		rx_ring->queue_index = i;
1140 		rx_ring->netdev = adapter->netdev;
1141 		rx_ring->dev = &adapter->pdev->dev;
1142 		rx_ring->count = adapter->rx_desc_count;
1143 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144 	}
1145 
1146 	adapter->num_active_queues = num_active_queues;
1147 
1148 	return 0;
1149 
1150 err_out:
1151 	iavf_free_queues(adapter);
1152 	return -ENOMEM;
1153 }
1154 
1155 /**
1156  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157  * @adapter: board private structure to initialize
1158  *
1159  * Attempt to configure the interrupts using the best available
1160  * capabilities of the hardware and the kernel.
1161  **/
1162 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163 {
1164 	int vector, v_budget;
1165 	int pairs = 0;
1166 	int err = 0;
1167 
1168 	if (!adapter->vsi_res) {
1169 		err = -EIO;
1170 		goto out;
1171 	}
1172 	pairs = adapter->num_active_queues;
1173 
1174 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175 	 * us much good if we have more vectors than CPUs. However, we already
1176 	 * limit the total number of queues by the number of CPUs so we do not
1177 	 * need any further limiting here.
1178 	 */
1179 	v_budget = min_t(int, pairs + NONQ_VECS,
1180 			 (int)adapter->vf_res->max_vectors);
1181 
1182 	adapter->msix_entries = kcalloc(v_budget,
1183 					sizeof(struct msix_entry), GFP_KERNEL);
1184 	if (!adapter->msix_entries) {
1185 		err = -ENOMEM;
1186 		goto out;
1187 	}
1188 
1189 	for (vector = 0; vector < v_budget; vector++)
1190 		adapter->msix_entries[vector].entry = vector;
1191 
1192 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1193 
1194 out:
1195 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197 	return err;
1198 }
1199 
1200 /**
1201  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202  * @adapter: board private structure
1203  *
1204  * Return 0 on success, negative on failure
1205  **/
1206 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207 {
1208 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1209 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210 	struct iavf_hw *hw = &adapter->hw;
1211 	int ret = 0;
1212 
1213 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214 		/* bail because we already have a command pending */
1215 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216 			adapter->current_op);
1217 		return -EBUSY;
1218 	}
1219 
1220 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221 	if (ret) {
1222 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223 			iavf_stat_str(hw, ret),
1224 			iavf_aq_str(hw, hw->aq.asq_last_status));
1225 		return ret;
1226 
1227 	}
1228 
1229 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230 				  adapter->rss_lut, adapter->rss_lut_size);
1231 	if (ret) {
1232 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233 			iavf_stat_str(hw, ret),
1234 			iavf_aq_str(hw, hw->aq.asq_last_status));
1235 	}
1236 
1237 	return ret;
1238 
1239 }
1240 
1241 /**
1242  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243  * @adapter: board private structure
1244  *
1245  * Returns 0 on success, negative on failure
1246  **/
1247 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248 {
1249 	struct iavf_hw *hw = &adapter->hw;
1250 	u32 *dw;
1251 	u16 i;
1252 
1253 	dw = (u32 *)adapter->rss_key;
1254 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256 
1257 	dw = (u32 *)adapter->rss_lut;
1258 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260 
1261 	iavf_flush(hw);
1262 
1263 	return 0;
1264 }
1265 
1266 /**
1267  * iavf_config_rss - Configure RSS keys and lut
1268  * @adapter: board private structure
1269  *
1270  * Returns 0 on success, negative on failure
1271  **/
1272 int iavf_config_rss(struct iavf_adapter *adapter)
1273 {
1274 
1275 	if (RSS_PF(adapter)) {
1276 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277 					IAVF_FLAG_AQ_SET_RSS_KEY;
1278 		return 0;
1279 	} else if (RSS_AQ(adapter)) {
1280 		return iavf_config_rss_aq(adapter);
1281 	} else {
1282 		return iavf_config_rss_reg(adapter);
1283 	}
1284 }
1285 
1286 /**
1287  * iavf_fill_rss_lut - Fill the lut with default values
1288  * @adapter: board private structure
1289  **/
1290 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291 {
1292 	u16 i;
1293 
1294 	for (i = 0; i < adapter->rss_lut_size; i++)
1295 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1296 }
1297 
1298 /**
1299  * iavf_init_rss - Prepare for RSS
1300  * @adapter: board private structure
1301  *
1302  * Return 0 on success, negative on failure
1303  **/
1304 static int iavf_init_rss(struct iavf_adapter *adapter)
1305 {
1306 	struct iavf_hw *hw = &adapter->hw;
1307 	int ret;
1308 
1309 	if (!RSS_PF(adapter)) {
1310 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311 		if (adapter->vf_res->vf_cap_flags &
1312 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314 		else
1315 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316 
1317 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319 	}
1320 
1321 	iavf_fill_rss_lut(adapter);
1322 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323 	ret = iavf_config_rss(adapter);
1324 
1325 	return ret;
1326 }
1327 
1328 /**
1329  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330  * @adapter: board private structure to initialize
1331  *
1332  * We allocate one q_vector per queue interrupt.  If allocation fails we
1333  * return -ENOMEM.
1334  **/
1335 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336 {
1337 	int q_idx = 0, num_q_vectors;
1338 	struct iavf_q_vector *q_vector;
1339 
1340 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342 				     GFP_KERNEL);
1343 	if (!adapter->q_vectors)
1344 		return -ENOMEM;
1345 
1346 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347 		q_vector = &adapter->q_vectors[q_idx];
1348 		q_vector->adapter = adapter;
1349 		q_vector->vsi = &adapter->vsi;
1350 		q_vector->v_idx = q_idx;
1351 		q_vector->reg_idx = q_idx;
1352 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353 		netif_napi_add(adapter->netdev, &q_vector->napi,
1354 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 /**
1361  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362  * @adapter: board private structure to initialize
1363  *
1364  * This function frees the memory allocated to the q_vectors.  In addition if
1365  * NAPI is enabled it will delete any references to the NAPI struct prior
1366  * to freeing the q_vector.
1367  **/
1368 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369 {
1370 	int q_idx, num_q_vectors;
1371 	int napi_vectors;
1372 
1373 	if (!adapter->q_vectors)
1374 		return;
1375 
1376 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377 	napi_vectors = adapter->num_active_queues;
1378 
1379 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381 
1382 		if (q_idx < napi_vectors)
1383 			netif_napi_del(&q_vector->napi);
1384 	}
1385 	kfree(adapter->q_vectors);
1386 	adapter->q_vectors = NULL;
1387 }
1388 
1389 /**
1390  * iavf_reset_interrupt_capability - Reset MSIX setup
1391  * @adapter: board private structure
1392  *
1393  **/
1394 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395 {
1396 	if (!adapter->msix_entries)
1397 		return;
1398 
1399 	pci_disable_msix(adapter->pdev);
1400 	kfree(adapter->msix_entries);
1401 	adapter->msix_entries = NULL;
1402 }
1403 
1404 /**
1405  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406  * @adapter: board private structure to initialize
1407  *
1408  **/
1409 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410 {
1411 	int err;
1412 
1413 	err = iavf_alloc_queues(adapter);
1414 	if (err) {
1415 		dev_err(&adapter->pdev->dev,
1416 			"Unable to allocate memory for queues\n");
1417 		goto err_alloc_queues;
1418 	}
1419 
1420 	rtnl_lock();
1421 	err = iavf_set_interrupt_capability(adapter);
1422 	rtnl_unlock();
1423 	if (err) {
1424 		dev_err(&adapter->pdev->dev,
1425 			"Unable to setup interrupt capabilities\n");
1426 		goto err_set_interrupt;
1427 	}
1428 
1429 	err = iavf_alloc_q_vectors(adapter);
1430 	if (err) {
1431 		dev_err(&adapter->pdev->dev,
1432 			"Unable to allocate memory for queue vectors\n");
1433 		goto err_alloc_q_vectors;
1434 	}
1435 
1436 	/* If we've made it so far while ADq flag being ON, then we haven't
1437 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438 	 * resources have been allocated in the reset path.
1439 	 * Now we can truly claim that ADq is enabled.
1440 	 */
1441 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442 	    adapter->num_tc)
1443 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444 			 adapter->num_tc);
1445 
1446 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448 		 adapter->num_active_queues);
1449 
1450 	return 0;
1451 err_alloc_q_vectors:
1452 	iavf_reset_interrupt_capability(adapter);
1453 err_set_interrupt:
1454 	iavf_free_queues(adapter);
1455 err_alloc_queues:
1456 	return err;
1457 }
1458 
1459 /**
1460  * iavf_free_rss - Free memory used by RSS structs
1461  * @adapter: board private structure
1462  **/
1463 static void iavf_free_rss(struct iavf_adapter *adapter)
1464 {
1465 	kfree(adapter->rss_key);
1466 	adapter->rss_key = NULL;
1467 
1468 	kfree(adapter->rss_lut);
1469 	adapter->rss_lut = NULL;
1470 }
1471 
1472 /**
1473  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474  * @adapter: board private structure
1475  *
1476  * Returns 0 on success, negative on failure
1477  **/
1478 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479 {
1480 	struct net_device *netdev = adapter->netdev;
1481 	int err;
1482 
1483 	if (netif_running(netdev))
1484 		iavf_free_traffic_irqs(adapter);
1485 	iavf_free_misc_irq(adapter);
1486 	iavf_reset_interrupt_capability(adapter);
1487 	iavf_free_q_vectors(adapter);
1488 	iavf_free_queues(adapter);
1489 
1490 	err =  iavf_init_interrupt_scheme(adapter);
1491 	if (err)
1492 		goto err;
1493 
1494 	netif_tx_stop_all_queues(netdev);
1495 
1496 	err = iavf_request_misc_irq(adapter);
1497 	if (err)
1498 		goto err;
1499 
1500 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501 
1502 	iavf_map_rings_to_vectors(adapter);
1503 
1504 	if (RSS_AQ(adapter))
1505 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506 	else
1507 		err = iavf_init_rss(adapter);
1508 err:
1509 	return err;
1510 }
1511 
1512 /**
1513  * iavf_process_aq_command - process aq_required flags
1514  * and sends aq command
1515  * @adapter: pointer to iavf adapter structure
1516  *
1517  * Returns 0 on success
1518  * Returns error code if no command was sent
1519  * or error code if the command failed.
1520  **/
1521 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522 {
1523 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524 		return iavf_send_vf_config_msg(adapter);
1525 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526 		iavf_disable_queues(adapter);
1527 		return 0;
1528 	}
1529 
1530 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531 		iavf_map_queues(adapter);
1532 		return 0;
1533 	}
1534 
1535 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536 		iavf_add_ether_addrs(adapter);
1537 		return 0;
1538 	}
1539 
1540 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541 		iavf_add_vlans(adapter);
1542 		return 0;
1543 	}
1544 
1545 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546 		iavf_del_ether_addrs(adapter);
1547 		return 0;
1548 	}
1549 
1550 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551 		iavf_del_vlans(adapter);
1552 		return 0;
1553 	}
1554 
1555 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556 		iavf_enable_vlan_stripping(adapter);
1557 		return 0;
1558 	}
1559 
1560 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561 		iavf_disable_vlan_stripping(adapter);
1562 		return 0;
1563 	}
1564 
1565 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566 		iavf_configure_queues(adapter);
1567 		return 0;
1568 	}
1569 
1570 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571 		iavf_enable_queues(adapter);
1572 		return 0;
1573 	}
1574 
1575 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576 		/* This message goes straight to the firmware, not the
1577 		 * PF, so we don't have to set current_op as we will
1578 		 * not get a response through the ARQ.
1579 		 */
1580 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581 		return 0;
1582 	}
1583 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584 		iavf_get_hena(adapter);
1585 		return 0;
1586 	}
1587 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588 		iavf_set_hena(adapter);
1589 		return 0;
1590 	}
1591 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592 		iavf_set_rss_key(adapter);
1593 		return 0;
1594 	}
1595 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596 		iavf_set_rss_lut(adapter);
1597 		return 0;
1598 	}
1599 
1600 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602 				       FLAG_VF_MULTICAST_PROMISC);
1603 		return 0;
1604 	}
1605 
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608 		return 0;
1609 	}
1610 
1611 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 		iavf_set_promiscuous(adapter, 0);
1614 		return 0;
1615 	}
1616 
1617 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 		iavf_enable_channels(adapter);
1619 		return 0;
1620 	}
1621 
1622 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 		iavf_disable_channels(adapter);
1624 		return 0;
1625 	}
1626 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 		iavf_add_cloud_filter(adapter);
1628 		return 0;
1629 	}
1630 
1631 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 		iavf_del_cloud_filter(adapter);
1633 		return 0;
1634 	}
1635 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 		iavf_del_cloud_filter(adapter);
1637 		return 0;
1638 	}
1639 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 		iavf_add_cloud_filter(adapter);
1641 		return 0;
1642 	}
1643 	return -EAGAIN;
1644 }
1645 
1646 /**
1647  * iavf_startup - first step of driver startup
1648  * @adapter: board private structure
1649  *
1650  * Function process __IAVF_STARTUP driver state.
1651  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652  * when fails it returns -EAGAIN
1653  **/
1654 static int iavf_startup(struct iavf_adapter *adapter)
1655 {
1656 	struct pci_dev *pdev = adapter->pdev;
1657 	struct iavf_hw *hw = &adapter->hw;
1658 	int err;
1659 
1660 	WARN_ON(adapter->state != __IAVF_STARTUP);
1661 
1662 	/* driver loaded, probe complete */
1663 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 	err = iavf_set_mac_type(hw);
1666 	if (err) {
1667 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 		goto err;
1669 	}
1670 
1671 	err = iavf_check_reset_complete(hw);
1672 	if (err) {
1673 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 			 err);
1675 		goto err;
1676 	}
1677 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681 
1682 	err = iavf_init_adminq(hw);
1683 	if (err) {
1684 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 		goto err;
1686 	}
1687 	err = iavf_send_api_ver(adapter);
1688 	if (err) {
1689 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 		iavf_shutdown_adminq(hw);
1691 		goto err;
1692 	}
1693 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1694 err:
1695 	return err;
1696 }
1697 
1698 /**
1699  * iavf_init_version_check - second step of driver startup
1700  * @adapter: board private structure
1701  *
1702  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704  * when fails it returns -EAGAIN
1705  **/
1706 static int iavf_init_version_check(struct iavf_adapter *adapter)
1707 {
1708 	struct pci_dev *pdev = adapter->pdev;
1709 	struct iavf_hw *hw = &adapter->hw;
1710 	int err = -EAGAIN;
1711 
1712 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713 
1714 	if (!iavf_asq_done(hw)) {
1715 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 		iavf_shutdown_adminq(hw);
1717 		adapter->state = __IAVF_STARTUP;
1718 		goto err;
1719 	}
1720 
1721 	/* aq msg sent, awaiting reply */
1722 	err = iavf_verify_api_ver(adapter);
1723 	if (err) {
1724 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 			err = iavf_send_api_ver(adapter);
1726 		else
1727 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 				adapter->pf_version.major,
1729 				adapter->pf_version.minor,
1730 				VIRTCHNL_VERSION_MAJOR,
1731 				VIRTCHNL_VERSION_MINOR);
1732 		goto err;
1733 	}
1734 	err = iavf_send_vf_config_msg(adapter);
1735 	if (err) {
1736 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 			err);
1738 		goto err;
1739 	}
1740 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1741 
1742 err:
1743 	return err;
1744 }
1745 
1746 /**
1747  * iavf_init_get_resources - third step of driver startup
1748  * @adapter: board private structure
1749  *
1750  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751  * finishes driver initialization procedure.
1752  * When success the state is changed to __IAVF_DOWN
1753  * when fails it returns -EAGAIN
1754  **/
1755 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756 {
1757 	struct net_device *netdev = adapter->netdev;
1758 	struct pci_dev *pdev = adapter->pdev;
1759 	struct iavf_hw *hw = &adapter->hw;
1760 	int err = 0, bufsz;
1761 
1762 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763 	/* aq msg sent, awaiting reply */
1764 	if (!adapter->vf_res) {
1765 		bufsz = sizeof(struct virtchnl_vf_resource) +
1766 			(IAVF_MAX_VF_VSI *
1767 			sizeof(struct virtchnl_vsi_resource));
1768 		adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769 		if (!adapter->vf_res)
1770 			goto err;
1771 	}
1772 	err = iavf_get_vf_config(adapter);
1773 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774 		err = iavf_send_vf_config_msg(adapter);
1775 		goto err;
1776 	} else if (err == IAVF_ERR_PARAM) {
1777 		/* We only get ERR_PARAM if the device is in a very bad
1778 		 * state or if we've been disabled for previous bad
1779 		 * behavior. Either way, we're done now.
1780 		 */
1781 		iavf_shutdown_adminq(hw);
1782 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783 		return 0;
1784 	}
1785 	if (err) {
1786 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787 		goto err_alloc;
1788 	}
1789 
1790 	if (iavf_process_config(adapter))
1791 		goto err_alloc;
1792 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793 
1794 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795 
1796 	netdev->netdev_ops = &iavf_netdev_ops;
1797 	iavf_set_ethtool_ops(netdev);
1798 	netdev->watchdog_timeo = 5 * HZ;
1799 
1800 	/* MTU range: 68 - 9710 */
1801 	netdev->min_mtu = ETH_MIN_MTU;
1802 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803 
1804 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 			 adapter->hw.mac.addr);
1807 		eth_hw_addr_random(netdev);
1808 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 	} else {
1810 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 	}
1813 
1814 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 	err = iavf_init_interrupt_scheme(adapter);
1817 	if (err)
1818 		goto err_sw_init;
1819 	iavf_map_rings_to_vectors(adapter);
1820 	if (adapter->vf_res->vf_cap_flags &
1821 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823 
1824 	err = iavf_request_misc_irq(adapter);
1825 	if (err)
1826 		goto err_sw_init;
1827 
1828 	netif_carrier_off(netdev);
1829 	adapter->link_up = false;
1830 
1831 	/* set the semaphore to prevent any callbacks after device registration
1832 	 * up to time when state of driver will be set to __IAVF_DOWN
1833 	 */
1834 	rtnl_lock();
1835 	if (!adapter->netdev_registered) {
1836 		err = register_netdevice(netdev);
1837 		if (err) {
1838 			rtnl_unlock();
1839 			goto err_register;
1840 		}
1841 	}
1842 
1843 	adapter->netdev_registered = true;
1844 
1845 	netif_tx_stop_all_queues(netdev);
1846 	if (CLIENT_ALLOWED(adapter)) {
1847 		err = iavf_lan_add_device(adapter);
1848 		if (err) {
1849 			rtnl_unlock();
1850 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851 				 err);
1852 		}
1853 	}
1854 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855 	if (netdev->features & NETIF_F_GRO)
1856 		dev_info(&pdev->dev, "GRO is enabled\n");
1857 
1858 	adapter->state = __IAVF_DOWN;
1859 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860 	rtnl_unlock();
1861 
1862 	iavf_misc_irq_enable(adapter);
1863 	wake_up(&adapter->down_waitqueue);
1864 
1865 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867 	if (!adapter->rss_key || !adapter->rss_lut)
1868 		goto err_mem;
1869 	if (RSS_AQ(adapter))
1870 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 	else
1872 		iavf_init_rss(adapter);
1873 
1874 	return err;
1875 err_mem:
1876 	iavf_free_rss(adapter);
1877 err_register:
1878 	iavf_free_misc_irq(adapter);
1879 err_sw_init:
1880 	iavf_reset_interrupt_capability(adapter);
1881 err_alloc:
1882 	kfree(adapter->vf_res);
1883 	adapter->vf_res = NULL;
1884 err:
1885 	return err;
1886 }
1887 
1888 /**
1889  * iavf_watchdog_task - Periodic call-back task
1890  * @work: pointer to work_struct
1891  **/
1892 static void iavf_watchdog_task(struct work_struct *work)
1893 {
1894 	struct iavf_adapter *adapter = container_of(work,
1895 						    struct iavf_adapter,
1896 						    watchdog_task.work);
1897 	struct iavf_hw *hw = &adapter->hw;
1898 	u32 reg_val;
1899 
1900 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 		goto restart_watchdog;
1902 
1903 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 		adapter->state = __IAVF_COMM_FAILED;
1905 
1906 	switch (adapter->state) {
1907 	case __IAVF_COMM_FAILED:
1908 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 			/* A chance for redemption! */
1913 			dev_err(&adapter->pdev->dev,
1914 				"Hardware came out of reset. Attempting reinit.\n");
1915 			adapter->state = __IAVF_STARTUP;
1916 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 				  &adapter->crit_section);
1920 			/* Don't reschedule the watchdog, since we've restarted
1921 			 * the init task. When init_task contacts the PF and
1922 			 * gets everything set up again, it'll restart the
1923 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 			 */
1925 			return;
1926 		}
1927 		adapter->aq_required = 0;
1928 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 			  &adapter->crit_section);
1931 		queue_delayed_work(iavf_wq,
1932 				   &adapter->watchdog_task,
1933 				   msecs_to_jiffies(10));
1934 		goto watchdog_done;
1935 	case __IAVF_RESETTING:
1936 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 		return;
1939 	case __IAVF_DOWN:
1940 	case __IAVF_DOWN_PENDING:
1941 	case __IAVF_TESTING:
1942 	case __IAVF_RUNNING:
1943 		if (adapter->current_op) {
1944 			if (!iavf_asq_done(hw)) {
1945 				dev_dbg(&adapter->pdev->dev,
1946 					"Admin queue timeout\n");
1947 				iavf_send_api_ver(adapter);
1948 			}
1949 		} else {
1950 			if (!iavf_process_aq_command(adapter) &&
1951 			    adapter->state == __IAVF_RUNNING)
1952 				iavf_request_stats(adapter);
1953 		}
1954 		break;
1955 	case __IAVF_REMOVE:
1956 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957 		return;
1958 	default:
1959 		goto restart_watchdog;
1960 	}
1961 
1962 		/* check for hw reset */
1963 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964 	if (!reg_val) {
1965 		adapter->state = __IAVF_RESETTING;
1966 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967 		adapter->aq_required = 0;
1968 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970 		queue_work(iavf_wq, &adapter->reset_task);
1971 		goto watchdog_done;
1972 	}
1973 
1974 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975 watchdog_done:
1976 	if (adapter->state == __IAVF_RUNNING ||
1977 	    adapter->state == __IAVF_COMM_FAILED)
1978 		iavf_detect_recover_hung(&adapter->vsi);
1979 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980 restart_watchdog:
1981 	if (adapter->aq_required)
1982 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983 				   msecs_to_jiffies(20));
1984 	else
1985 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986 	queue_work(iavf_wq, &adapter->adminq_task);
1987 }
1988 
1989 static void iavf_disable_vf(struct iavf_adapter *adapter)
1990 {
1991 	struct iavf_mac_filter *f, *ftmp;
1992 	struct iavf_vlan_filter *fv, *fvtmp;
1993 	struct iavf_cloud_filter *cf, *cftmp;
1994 
1995 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996 
1997 	/* We don't use netif_running() because it may be true prior to
1998 	 * ndo_open() returning, so we can't assume it means all our open
1999 	 * tasks have finished, since we're not holding the rtnl_lock here.
2000 	 */
2001 	if (adapter->state == __IAVF_RUNNING) {
2002 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003 		netif_carrier_off(adapter->netdev);
2004 		netif_tx_disable(adapter->netdev);
2005 		adapter->link_up = false;
2006 		iavf_napi_disable_all(adapter);
2007 		iavf_irq_disable(adapter);
2008 		iavf_free_traffic_irqs(adapter);
2009 		iavf_free_all_tx_resources(adapter);
2010 		iavf_free_all_rx_resources(adapter);
2011 	}
2012 
2013 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2014 
2015 	/* Delete all of the filters */
2016 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017 		list_del(&f->list);
2018 		kfree(f);
2019 	}
2020 
2021 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022 		list_del(&fv->list);
2023 		kfree(fv);
2024 	}
2025 
2026 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027 
2028 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2029 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030 		list_del(&cf->list);
2031 		kfree(cf);
2032 		adapter->num_cloud_filters--;
2033 	}
2034 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035 
2036 	iavf_free_misc_irq(adapter);
2037 	iavf_reset_interrupt_capability(adapter);
2038 	iavf_free_queues(adapter);
2039 	iavf_free_q_vectors(adapter);
2040 	kfree(adapter->vf_res);
2041 	iavf_shutdown_adminq(&adapter->hw);
2042 	adapter->netdev->flags &= ~IFF_UP;
2043 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045 	adapter->state = __IAVF_DOWN;
2046 	wake_up(&adapter->down_waitqueue);
2047 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048 }
2049 
2050 #define IAVF_RESET_WAIT_MS 10
2051 #define IAVF_RESET_WAIT_COUNT 500
2052 /**
2053  * iavf_reset_task - Call-back task to handle hardware reset
2054  * @work: pointer to work_struct
2055  *
2056  * During reset we need to shut down and reinitialize the admin queue
2057  * before we can use it to communicate with the PF again. We also clear
2058  * and reinit the rings because that context is lost as well.
2059  **/
2060 static void iavf_reset_task(struct work_struct *work)
2061 {
2062 	struct iavf_adapter *adapter = container_of(work,
2063 						      struct iavf_adapter,
2064 						      reset_task);
2065 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066 	struct net_device *netdev = adapter->netdev;
2067 	struct iavf_hw *hw = &adapter->hw;
2068 	struct iavf_vlan_filter *vlf;
2069 	struct iavf_cloud_filter *cf;
2070 	struct iavf_mac_filter *f;
2071 	u32 reg_val;
2072 	int i = 0, err;
2073 	bool running;
2074 
2075 	/* When device is being removed it doesn't make sense to run the reset
2076 	 * task, just return in such a case.
2077 	 */
2078 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079 		return;
2080 
2081 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082 				&adapter->crit_section))
2083 		usleep_range(500, 1000);
2084 	if (CLIENT_ENABLED(adapter)) {
2085 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089 		cancel_delayed_work_sync(&adapter->client_task);
2090 		iavf_notify_client_close(&adapter->vsi, true);
2091 	}
2092 	iavf_misc_irq_disable(adapter);
2093 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095 		/* Restart the AQ here. If we have been reset but didn't
2096 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097 		 */
2098 		iavf_shutdown_adminq(hw);
2099 		iavf_init_adminq(hw);
2100 		iavf_request_reset(adapter);
2101 	}
2102 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103 
2104 	/* poll until we see the reset actually happen */
2105 	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108 		if (!reg_val)
2109 			break;
2110 		usleep_range(5000, 10000);
2111 	}
2112 	if (i == IAVF_RESET_WAIT_COUNT) {
2113 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114 		goto continue_reset; /* act like the reset happened */
2115 	}
2116 
2117 	/* wait until the reset is complete and the PF is responding to us */
2118 	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119 		/* sleep first to make sure a minimum wait time is met */
2120 		msleep(IAVF_RESET_WAIT_MS);
2121 
2122 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125 			break;
2126 	}
2127 
2128 	pci_set_master(adapter->pdev);
2129 
2130 	if (i == IAVF_RESET_WAIT_COUNT) {
2131 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132 			reg_val);
2133 		iavf_disable_vf(adapter);
2134 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135 		return; /* Do not attempt to reinit. It's dead, Jim. */
2136 	}
2137 
2138 continue_reset:
2139 	/* We don't use netif_running() because it may be true prior to
2140 	 * ndo_open() returning, so we can't assume it means all our open
2141 	 * tasks have finished, since we're not holding the rtnl_lock here.
2142 	 */
2143 	running = ((adapter->state == __IAVF_RUNNING) ||
2144 		   (adapter->state == __IAVF_RESETTING));
2145 
2146 	if (running) {
2147 		netif_carrier_off(netdev);
2148 		netif_tx_stop_all_queues(netdev);
2149 		adapter->link_up = false;
2150 		iavf_napi_disable_all(adapter);
2151 	}
2152 	iavf_irq_disable(adapter);
2153 
2154 	adapter->state = __IAVF_RESETTING;
2155 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156 
2157 	/* free the Tx/Rx rings and descriptors, might be better to just
2158 	 * re-use them sometime in the future
2159 	 */
2160 	iavf_free_all_rx_resources(adapter);
2161 	iavf_free_all_tx_resources(adapter);
2162 
2163 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164 	/* kill and reinit the admin queue */
2165 	iavf_shutdown_adminq(hw);
2166 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167 	err = iavf_init_adminq(hw);
2168 	if (err)
2169 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170 			 err);
2171 	adapter->aq_required = 0;
2172 
2173 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174 		err = iavf_reinit_interrupt_scheme(adapter);
2175 		if (err)
2176 			goto reset_err;
2177 	}
2178 
2179 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2180 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181 
2182 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2183 
2184 	/* re-add all MAC filters */
2185 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186 		f->add = true;
2187 	}
2188 	/* re-add all VLAN filters */
2189 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190 		vlf->add = true;
2191 	}
2192 
2193 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194 
2195 	/* check if TCs are running and re-add all cloud filters */
2196 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2197 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198 	    adapter->num_tc) {
2199 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200 			cf->add = true;
2201 		}
2202 	}
2203 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204 
2205 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208 	iavf_misc_irq_enable(adapter);
2209 
2210 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211 
2212 	/* We were running when the reset started, so we need to restore some
2213 	 * state here.
2214 	 */
2215 	if (running) {
2216 		/* allocate transmit descriptors */
2217 		err = iavf_setup_all_tx_resources(adapter);
2218 		if (err)
2219 			goto reset_err;
2220 
2221 		/* allocate receive descriptors */
2222 		err = iavf_setup_all_rx_resources(adapter);
2223 		if (err)
2224 			goto reset_err;
2225 
2226 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2228 			if (err)
2229 				goto reset_err;
2230 
2231 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232 		}
2233 
2234 		iavf_configure(adapter);
2235 
2236 		iavf_up_complete(adapter);
2237 
2238 		iavf_irq_enable(adapter, true);
2239 	} else {
2240 		adapter->state = __IAVF_DOWN;
2241 		wake_up(&adapter->down_waitqueue);
2242 	}
2243 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245 
2246 	return;
2247 reset_err:
2248 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251 	iavf_close(netdev);
2252 }
2253 
2254 /**
2255  * iavf_adminq_task - worker thread to clean the admin queue
2256  * @work: pointer to work_struct containing our data
2257  **/
2258 static void iavf_adminq_task(struct work_struct *work)
2259 {
2260 	struct iavf_adapter *adapter =
2261 		container_of(work, struct iavf_adapter, adminq_task);
2262 	struct iavf_hw *hw = &adapter->hw;
2263 	struct iavf_arq_event_info event;
2264 	enum virtchnl_ops v_op;
2265 	enum iavf_status ret, v_ret;
2266 	u32 val, oldval;
2267 	u16 pending;
2268 
2269 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270 		goto out;
2271 
2272 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274 	if (!event.msg_buf)
2275 		goto out;
2276 
2277 	do {
2278 		ret = iavf_clean_arq_element(hw, &event, &pending);
2279 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281 
2282 		if (ret || !v_op)
2283 			break; /* No event to process or error cleaning ARQ */
2284 
2285 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286 					 event.msg_len);
2287 		if (pending != 0)
2288 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289 	} while (pending);
2290 
2291 	if ((adapter->flags &
2292 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293 	    adapter->state == __IAVF_RESETTING)
2294 		goto freedom;
2295 
2296 	/* check for error indications */
2297 	val = rd32(hw, hw->aq.arq.len);
2298 	if (val == 0xdeadbeef) /* indicates device in reset */
2299 		goto freedom;
2300 	oldval = val;
2301 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304 	}
2305 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308 	}
2309 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312 	}
2313 	if (oldval != val)
2314 		wr32(hw, hw->aq.arq.len, val);
2315 
2316 	val = rd32(hw, hw->aq.asq.len);
2317 	oldval = val;
2318 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321 	}
2322 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325 	}
2326 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329 	}
2330 	if (oldval != val)
2331 		wr32(hw, hw->aq.asq.len, val);
2332 
2333 freedom:
2334 	kfree(event.msg_buf);
2335 out:
2336 	/* re-enable Admin queue interrupt cause */
2337 	iavf_misc_irq_enable(adapter);
2338 }
2339 
2340 /**
2341  * iavf_client_task - worker thread to perform client work
2342  * @work: pointer to work_struct containing our data
2343  *
2344  * This task handles client interactions. Because client calls can be
2345  * reentrant, we can't handle them in the watchdog.
2346  **/
2347 static void iavf_client_task(struct work_struct *work)
2348 {
2349 	struct iavf_adapter *adapter =
2350 		container_of(work, struct iavf_adapter, client_task.work);
2351 
2352 	/* If we can't get the client bit, just give up. We'll be rescheduled
2353 	 * later.
2354 	 */
2355 
2356 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357 		return;
2358 
2359 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360 		iavf_client_subtask(adapter);
2361 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362 		goto out;
2363 	}
2364 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365 		iavf_notify_client_l2_params(&adapter->vsi);
2366 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367 		goto out;
2368 	}
2369 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370 		iavf_notify_client_close(&adapter->vsi, false);
2371 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372 		goto out;
2373 	}
2374 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375 		iavf_notify_client_open(&adapter->vsi);
2376 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377 	}
2378 out:
2379 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380 }
2381 
2382 /**
2383  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384  * @adapter: board private structure
2385  *
2386  * Free all transmit software resources
2387  **/
2388 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389 {
2390 	int i;
2391 
2392 	if (!adapter->tx_rings)
2393 		return;
2394 
2395 	for (i = 0; i < adapter->num_active_queues; i++)
2396 		if (adapter->tx_rings[i].desc)
2397 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2398 }
2399 
2400 /**
2401  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402  * @adapter: board private structure
2403  *
2404  * If this function returns with an error, then it's possible one or
2405  * more of the rings is populated (while the rest are not).  It is the
2406  * callers duty to clean those orphaned rings.
2407  *
2408  * Return 0 on success, negative on failure
2409  **/
2410 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411 {
2412 	int i, err = 0;
2413 
2414 	for (i = 0; i < adapter->num_active_queues; i++) {
2415 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2416 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417 		if (!err)
2418 			continue;
2419 		dev_err(&adapter->pdev->dev,
2420 			"Allocation for Tx Queue %u failed\n", i);
2421 		break;
2422 	}
2423 
2424 	return err;
2425 }
2426 
2427 /**
2428  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429  * @adapter: board private structure
2430  *
2431  * If this function returns with an error, then it's possible one or
2432  * more of the rings is populated (while the rest are not).  It is the
2433  * callers duty to clean those orphaned rings.
2434  *
2435  * Return 0 on success, negative on failure
2436  **/
2437 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438 {
2439 	int i, err = 0;
2440 
2441 	for (i = 0; i < adapter->num_active_queues; i++) {
2442 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2443 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444 		if (!err)
2445 			continue;
2446 		dev_err(&adapter->pdev->dev,
2447 			"Allocation for Rx Queue %u failed\n", i);
2448 		break;
2449 	}
2450 	return err;
2451 }
2452 
2453 /**
2454  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455  * @adapter: board private structure
2456  *
2457  * Free all receive software resources
2458  **/
2459 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460 {
2461 	int i;
2462 
2463 	if (!adapter->rx_rings)
2464 		return;
2465 
2466 	for (i = 0; i < adapter->num_active_queues; i++)
2467 		if (adapter->rx_rings[i].desc)
2468 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2469 }
2470 
2471 /**
2472  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473  * @adapter: board private structure
2474  * @max_tx_rate: max Tx bw for a tc
2475  **/
2476 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477 				      u64 max_tx_rate)
2478 {
2479 	int speed = 0, ret = 0;
2480 
2481 	switch (adapter->link_speed) {
2482 	case IAVF_LINK_SPEED_40GB:
2483 		speed = 40000;
2484 		break;
2485 	case IAVF_LINK_SPEED_25GB:
2486 		speed = 25000;
2487 		break;
2488 	case IAVF_LINK_SPEED_20GB:
2489 		speed = 20000;
2490 		break;
2491 	case IAVF_LINK_SPEED_10GB:
2492 		speed = 10000;
2493 		break;
2494 	case IAVF_LINK_SPEED_1GB:
2495 		speed = 1000;
2496 		break;
2497 	case IAVF_LINK_SPEED_100MB:
2498 		speed = 100;
2499 		break;
2500 	default:
2501 		break;
2502 	}
2503 
2504 	if (max_tx_rate > speed) {
2505 		dev_err(&adapter->pdev->dev,
2506 			"Invalid tx rate specified\n");
2507 		ret = -EINVAL;
2508 	}
2509 
2510 	return ret;
2511 }
2512 
2513 /**
2514  * iavf_validate_channel_config - validate queue mapping info
2515  * @adapter: board private structure
2516  * @mqprio_qopt: queue parameters
2517  *
2518  * This function validates if the config provided by the user to
2519  * configure queue channels is valid or not. Returns 0 on a valid
2520  * config.
2521  **/
2522 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2524 {
2525 	u64 total_max_rate = 0;
2526 	int i, num_qps = 0;
2527 	u64 tx_rate = 0;
2528 	int ret = 0;
2529 
2530 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531 	    mqprio_qopt->qopt.num_tc < 1)
2532 		return -EINVAL;
2533 
2534 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535 		if (!mqprio_qopt->qopt.count[i] ||
2536 		    mqprio_qopt->qopt.offset[i] != num_qps)
2537 			return -EINVAL;
2538 		if (mqprio_qopt->min_rate[i]) {
2539 			dev_err(&adapter->pdev->dev,
2540 				"Invalid min tx rate (greater than 0) specified\n");
2541 			return -EINVAL;
2542 		}
2543 		/*convert to Mbps */
2544 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545 				  IAVF_MBPS_DIVISOR);
2546 		total_max_rate += tx_rate;
2547 		num_qps += mqprio_qopt->qopt.count[i];
2548 	}
2549 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2550 		return -EINVAL;
2551 
2552 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553 	return ret;
2554 }
2555 
2556 /**
2557  * iavf_del_all_cloud_filters - delete all cloud filters
2558  * on the traffic classes
2559  **/
2560 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561 {
2562 	struct iavf_cloud_filter *cf, *cftmp;
2563 
2564 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2565 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566 				 list) {
2567 		list_del(&cf->list);
2568 		kfree(cf);
2569 		adapter->num_cloud_filters--;
2570 	}
2571 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572 }
2573 
2574 /**
2575  * __iavf_setup_tc - configure multiple traffic classes
2576  * @netdev: network interface device structure
2577  * @type_date: tc offload data
2578  *
2579  * This function processes the config information provided by the
2580  * user to configure traffic classes/queue channels and packages the
2581  * information to request the PF to setup traffic classes.
2582  *
2583  * Returns 0 on success.
2584  **/
2585 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586 {
2587 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588 	struct iavf_adapter *adapter = netdev_priv(netdev);
2589 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590 	u8 num_tc = 0, total_qps = 0;
2591 	int ret = 0, netdev_tc = 0;
2592 	u64 max_tx_rate;
2593 	u16 mode;
2594 	int i;
2595 
2596 	num_tc = mqprio_qopt->qopt.num_tc;
2597 	mode = mqprio_qopt->mode;
2598 
2599 	/* delete queue_channel */
2600 	if (!mqprio_qopt->qopt.hw) {
2601 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602 			/* reset the tc configuration */
2603 			netdev_reset_tc(netdev);
2604 			adapter->num_tc = 0;
2605 			netif_tx_stop_all_queues(netdev);
2606 			netif_tx_disable(netdev);
2607 			iavf_del_all_cloud_filters(adapter);
2608 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2609 			goto exit;
2610 		} else {
2611 			return -EINVAL;
2612 		}
2613 	}
2614 
2615 	/* add queue channel */
2616 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619 			return -EOPNOTSUPP;
2620 		}
2621 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623 			return -EINVAL;
2624 		}
2625 
2626 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627 		if (ret)
2628 			return ret;
2629 		/* Return if same TC config is requested */
2630 		if (adapter->num_tc == num_tc)
2631 			return 0;
2632 		adapter->num_tc = num_tc;
2633 
2634 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635 			if (i < num_tc) {
2636 				adapter->ch_config.ch_info[i].count =
2637 					mqprio_qopt->qopt.count[i];
2638 				adapter->ch_config.ch_info[i].offset =
2639 					mqprio_qopt->qopt.offset[i];
2640 				total_qps += mqprio_qopt->qopt.count[i];
2641 				max_tx_rate = mqprio_qopt->max_rate[i];
2642 				/* convert to Mbps */
2643 				max_tx_rate = div_u64(max_tx_rate,
2644 						      IAVF_MBPS_DIVISOR);
2645 				adapter->ch_config.ch_info[i].max_tx_rate =
2646 					max_tx_rate;
2647 			} else {
2648 				adapter->ch_config.ch_info[i].count = 1;
2649 				adapter->ch_config.ch_info[i].offset = 0;
2650 			}
2651 		}
2652 		adapter->ch_config.total_qps = total_qps;
2653 		netif_tx_stop_all_queues(netdev);
2654 		netif_tx_disable(netdev);
2655 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656 		netdev_reset_tc(netdev);
2657 		/* Report the tc mapping up the stack */
2658 		netdev_set_num_tc(adapter->netdev, num_tc);
2659 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660 			u16 qcount = mqprio_qopt->qopt.count[i];
2661 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2662 
2663 			if (i < num_tc)
2664 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665 						    qoffset);
2666 		}
2667 	}
2668 exit:
2669 	return ret;
2670 }
2671 
2672 /**
2673  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674  * @adapter: board private structure
2675  * @cls_flower: pointer to struct flow_cls_offload
2676  * @filter: pointer to cloud filter structure
2677  */
2678 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679 				 struct flow_cls_offload *f,
2680 				 struct iavf_cloud_filter *filter)
2681 {
2682 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683 	struct flow_dissector *dissector = rule->match.dissector;
2684 	u16 n_proto_mask = 0;
2685 	u16 n_proto_key = 0;
2686 	u8 field_flags = 0;
2687 	u16 addr_type = 0;
2688 	u16 n_proto = 0;
2689 	int i = 0;
2690 	struct virtchnl_filter *vf = &filter->f;
2691 
2692 	if (dissector->used_keys &
2693 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702 			dissector->used_keys);
2703 		return -EOPNOTSUPP;
2704 	}
2705 
2706 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707 		struct flow_match_enc_keyid match;
2708 
2709 		flow_rule_match_enc_keyid(rule, &match);
2710 		if (match.mask->keyid != 0)
2711 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712 	}
2713 
2714 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715 		struct flow_match_basic match;
2716 
2717 		flow_rule_match_basic(rule, &match);
2718 		n_proto_key = ntohs(match.key->n_proto);
2719 		n_proto_mask = ntohs(match.mask->n_proto);
2720 
2721 		if (n_proto_key == ETH_P_ALL) {
2722 			n_proto_key = 0;
2723 			n_proto_mask = 0;
2724 		}
2725 		n_proto = n_proto_key & n_proto_mask;
2726 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727 			return -EINVAL;
2728 		if (n_proto == ETH_P_IPV6) {
2729 			/* specify flow type as TCP IPv6 */
2730 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731 		}
2732 
2733 		if (match.key->ip_proto != IPPROTO_TCP) {
2734 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735 			return -EINVAL;
2736 		}
2737 	}
2738 
2739 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740 		struct flow_match_eth_addrs match;
2741 
2742 		flow_rule_match_eth_addrs(rule, &match);
2743 
2744 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2745 		if (!is_zero_ether_addr(match.mask->dst)) {
2746 			if (is_broadcast_ether_addr(match.mask->dst)) {
2747 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748 			} else {
2749 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750 					match.mask->dst);
2751 				return IAVF_ERR_CONFIG;
2752 			}
2753 		}
2754 
2755 		if (!is_zero_ether_addr(match.mask->src)) {
2756 			if (is_broadcast_ether_addr(match.mask->src)) {
2757 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758 			} else {
2759 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760 					match.mask->src);
2761 				return IAVF_ERR_CONFIG;
2762 			}
2763 		}
2764 
2765 		if (!is_zero_ether_addr(match.key->dst))
2766 			if (is_valid_ether_addr(match.key->dst) ||
2767 			    is_multicast_ether_addr(match.key->dst)) {
2768 				/* set the mask if a valid dst_mac address */
2769 				for (i = 0; i < ETH_ALEN; i++)
2770 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772 						match.key->dst);
2773 			}
2774 
2775 		if (!is_zero_ether_addr(match.key->src))
2776 			if (is_valid_ether_addr(match.key->src) ||
2777 			    is_multicast_ether_addr(match.key->src)) {
2778 				/* set the mask if a valid dst_mac address */
2779 				for (i = 0; i < ETH_ALEN; i++)
2780 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2782 						match.key->src);
2783 		}
2784 	}
2785 
2786 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787 		struct flow_match_vlan match;
2788 
2789 		flow_rule_match_vlan(rule, &match);
2790 		if (match.mask->vlan_id) {
2791 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2792 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793 			} else {
2794 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795 					match.mask->vlan_id);
2796 				return IAVF_ERR_CONFIG;
2797 			}
2798 		}
2799 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801 	}
2802 
2803 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804 		struct flow_match_control match;
2805 
2806 		flow_rule_match_control(rule, &match);
2807 		addr_type = match.key->addr_type;
2808 	}
2809 
2810 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811 		struct flow_match_ipv4_addrs match;
2812 
2813 		flow_rule_match_ipv4_addrs(rule, &match);
2814 		if (match.mask->dst) {
2815 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2817 			} else {
2818 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819 					be32_to_cpu(match.mask->dst));
2820 				return IAVF_ERR_CONFIG;
2821 			}
2822 		}
2823 
2824 		if (match.mask->src) {
2825 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2827 			} else {
2828 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829 					be32_to_cpu(match.mask->dst));
2830 				return IAVF_ERR_CONFIG;
2831 			}
2832 		}
2833 
2834 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836 			return IAVF_ERR_CONFIG;
2837 		}
2838 		if (match.key->dst) {
2839 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841 		}
2842 		if (match.key->src) {
2843 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2845 		}
2846 	}
2847 
2848 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849 		struct flow_match_ipv6_addrs match;
2850 
2851 		flow_rule_match_ipv6_addrs(rule, &match);
2852 
2853 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2854 		if (ipv6_addr_any(&match.mask->dst)) {
2855 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856 				IPV6_ADDR_ANY);
2857 			return IAVF_ERR_CONFIG;
2858 		}
2859 
2860 		/* src and dest IPv6 address should not be LOOPBACK
2861 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862 		 */
2863 		if (ipv6_addr_loopback(&match.key->dst) ||
2864 		    ipv6_addr_loopback(&match.key->src)) {
2865 			dev_err(&adapter->pdev->dev,
2866 				"ipv6 addr should not be loopback\n");
2867 			return IAVF_ERR_CONFIG;
2868 		}
2869 		if (!ipv6_addr_any(&match.mask->dst) ||
2870 		    !ipv6_addr_any(&match.mask->src))
2871 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2872 
2873 		for (i = 0; i < 4; i++)
2874 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876 		       sizeof(vf->data.tcp_spec.dst_ip));
2877 		for (i = 0; i < 4; i++)
2878 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880 		       sizeof(vf->data.tcp_spec.src_ip));
2881 	}
2882 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883 		struct flow_match_ports match;
2884 
2885 		flow_rule_match_ports(rule, &match);
2886 		if (match.mask->src) {
2887 			if (match.mask->src == cpu_to_be16(0xffff)) {
2888 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2889 			} else {
2890 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891 					be16_to_cpu(match.mask->src));
2892 				return IAVF_ERR_CONFIG;
2893 			}
2894 		}
2895 
2896 		if (match.mask->dst) {
2897 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2898 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2899 			} else {
2900 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901 					be16_to_cpu(match.mask->dst));
2902 				return IAVF_ERR_CONFIG;
2903 			}
2904 		}
2905 		if (match.key->dst) {
2906 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907 			vf->data.tcp_spec.dst_port = match.key->dst;
2908 		}
2909 
2910 		if (match.key->src) {
2911 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912 			vf->data.tcp_spec.src_port = match.key->src;
2913 		}
2914 	}
2915 	vf->field_flags = field_flags;
2916 
2917 	return 0;
2918 }
2919 
2920 /**
2921  * iavf_handle_tclass - Forward to a traffic class on the device
2922  * @adapter: board private structure
2923  * @tc: traffic class index on the device
2924  * @filter: pointer to cloud filter structure
2925  */
2926 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927 			      struct iavf_cloud_filter *filter)
2928 {
2929 	if (tc == 0)
2930 		return 0;
2931 	if (tc < adapter->num_tc) {
2932 		if (!filter->f.data.tcp_spec.dst_port) {
2933 			dev_err(&adapter->pdev->dev,
2934 				"Specify destination port to redirect to traffic class other than TC0\n");
2935 			return -EINVAL;
2936 		}
2937 	}
2938 	/* redirect to a traffic class on the same device */
2939 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940 	filter->f.action_meta = tc;
2941 	return 0;
2942 }
2943 
2944 /**
2945  * iavf_configure_clsflower - Add tc flower filters
2946  * @adapter: board private structure
2947  * @cls_flower: Pointer to struct flow_cls_offload
2948  */
2949 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950 				    struct flow_cls_offload *cls_flower)
2951 {
2952 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953 	struct iavf_cloud_filter *filter = NULL;
2954 	int err = -EINVAL, count = 50;
2955 
2956 	if (tc < 0) {
2957 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958 		return -EINVAL;
2959 	}
2960 
2961 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962 	if (!filter)
2963 		return -ENOMEM;
2964 
2965 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966 				&adapter->crit_section)) {
2967 		if (--count == 0)
2968 			goto err;
2969 		udelay(1);
2970 	}
2971 
2972 	filter->cookie = cls_flower->cookie;
2973 
2974 	/* set the mask to all zeroes to begin with */
2975 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976 	/* start out with flow type and eth type IPv4 to begin with */
2977 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979 	if (err < 0)
2980 		goto err;
2981 
2982 	err = iavf_handle_tclass(adapter, tc, filter);
2983 	if (err < 0)
2984 		goto err;
2985 
2986 	/* add filter to the list */
2987 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2988 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989 	adapter->num_cloud_filters++;
2990 	filter->add = true;
2991 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2992 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993 err:
2994 	if (err)
2995 		kfree(filter);
2996 
2997 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998 	return err;
2999 }
3000 
3001 /* iavf_find_cf - Find the cloud filter in the list
3002  * @adapter: Board private structure
3003  * @cookie: filter specific cookie
3004  *
3005  * Returns ptr to the filter object or NULL. Must be called while holding the
3006  * cloud_filter_list_lock.
3007  */
3008 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009 					      unsigned long *cookie)
3010 {
3011 	struct iavf_cloud_filter *filter = NULL;
3012 
3013 	if (!cookie)
3014 		return NULL;
3015 
3016 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018 			return filter;
3019 	}
3020 	return NULL;
3021 }
3022 
3023 /**
3024  * iavf_delete_clsflower - Remove tc flower filters
3025  * @adapter: board private structure
3026  * @cls_flower: Pointer to struct flow_cls_offload
3027  */
3028 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029 				 struct flow_cls_offload *cls_flower)
3030 {
3031 	struct iavf_cloud_filter *filter = NULL;
3032 	int err = 0;
3033 
3034 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3035 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036 	if (filter) {
3037 		filter->del = true;
3038 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039 	} else {
3040 		err = -EINVAL;
3041 	}
3042 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043 
3044 	return err;
3045 }
3046 
3047 /**
3048  * iavf_setup_tc_cls_flower - flower classifier offloads
3049  * @netdev: net device to configure
3050  * @type_data: offload data
3051  */
3052 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053 				    struct flow_cls_offload *cls_flower)
3054 {
3055 	if (cls_flower->common.chain_index)
3056 		return -EOPNOTSUPP;
3057 
3058 	switch (cls_flower->command) {
3059 	case FLOW_CLS_REPLACE:
3060 		return iavf_configure_clsflower(adapter, cls_flower);
3061 	case FLOW_CLS_DESTROY:
3062 		return iavf_delete_clsflower(adapter, cls_flower);
3063 	case FLOW_CLS_STATS:
3064 		return -EOPNOTSUPP;
3065 	default:
3066 		return -EOPNOTSUPP;
3067 	}
3068 }
3069 
3070 /**
3071  * iavf_setup_tc_block_cb - block callback for tc
3072  * @type: type of offload
3073  * @type_data: offload data
3074  * @cb_priv:
3075  *
3076  * This function is the block callback for traffic classes
3077  **/
3078 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079 				  void *cb_priv)
3080 {
3081 	switch (type) {
3082 	case TC_SETUP_CLSFLOWER:
3083 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084 	default:
3085 		return -EOPNOTSUPP;
3086 	}
3087 }
3088 
3089 static LIST_HEAD(iavf_block_cb_list);
3090 
3091 /**
3092  * iavf_setup_tc - configure multiple traffic classes
3093  * @netdev: network interface device structure
3094  * @type: type of offload
3095  * @type_date: tc offload data
3096  *
3097  * This function is the callback to ndo_setup_tc in the
3098  * netdev_ops.
3099  *
3100  * Returns 0 on success
3101  **/
3102 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103 			 void *type_data)
3104 {
3105 	struct iavf_adapter *adapter = netdev_priv(netdev);
3106 
3107 	switch (type) {
3108 	case TC_SETUP_QDISC_MQPRIO:
3109 		return __iavf_setup_tc(netdev, type_data);
3110 	case TC_SETUP_BLOCK:
3111 		return flow_block_cb_setup_simple(type_data,
3112 						  &iavf_block_cb_list,
3113 						  iavf_setup_tc_block_cb,
3114 						  adapter, adapter, true);
3115 	default:
3116 		return -EOPNOTSUPP;
3117 	}
3118 }
3119 
3120 /**
3121  * iavf_open - Called when a network interface is made active
3122  * @netdev: network interface device structure
3123  *
3124  * Returns 0 on success, negative value on failure
3125  *
3126  * The open entry point is called when a network interface is made
3127  * active by the system (IFF_UP).  At this point all resources needed
3128  * for transmit and receive operations are allocated, the interrupt
3129  * handler is registered with the OS, the watchdog is started,
3130  * and the stack is notified that the interface is ready.
3131  **/
3132 static int iavf_open(struct net_device *netdev)
3133 {
3134 	struct iavf_adapter *adapter = netdev_priv(netdev);
3135 	int err;
3136 
3137 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139 		return -EIO;
3140 	}
3141 
3142 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143 				&adapter->crit_section))
3144 		usleep_range(500, 1000);
3145 
3146 	if (adapter->state != __IAVF_DOWN) {
3147 		err = -EBUSY;
3148 		goto err_unlock;
3149 	}
3150 
3151 	/* allocate transmit descriptors */
3152 	err = iavf_setup_all_tx_resources(adapter);
3153 	if (err)
3154 		goto err_setup_tx;
3155 
3156 	/* allocate receive descriptors */
3157 	err = iavf_setup_all_rx_resources(adapter);
3158 	if (err)
3159 		goto err_setup_rx;
3160 
3161 	/* clear any pending interrupts, may auto mask */
3162 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3163 	if (err)
3164 		goto err_req_irq;
3165 
3166 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3167 
3168 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3169 
3170 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171 
3172 	iavf_configure(adapter);
3173 
3174 	iavf_up_complete(adapter);
3175 
3176 	iavf_irq_enable(adapter, true);
3177 
3178 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179 
3180 	return 0;
3181 
3182 err_req_irq:
3183 	iavf_down(adapter);
3184 	iavf_free_traffic_irqs(adapter);
3185 err_setup_rx:
3186 	iavf_free_all_rx_resources(adapter);
3187 err_setup_tx:
3188 	iavf_free_all_tx_resources(adapter);
3189 err_unlock:
3190 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191 
3192 	return err;
3193 }
3194 
3195 /**
3196  * iavf_close - Disables a network interface
3197  * @netdev: network interface device structure
3198  *
3199  * Returns 0, this is not allowed to fail
3200  *
3201  * The close entry point is called when an interface is de-activated
3202  * by the OS.  The hardware is still under the drivers control, but
3203  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204  * are freed, along with all transmit and receive resources.
3205  **/
3206 static int iavf_close(struct net_device *netdev)
3207 {
3208 	struct iavf_adapter *adapter = netdev_priv(netdev);
3209 	int status;
3210 
3211 	if (adapter->state <= __IAVF_DOWN_PENDING)
3212 		return 0;
3213 
3214 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215 				&adapter->crit_section))
3216 		usleep_range(500, 1000);
3217 
3218 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219 	if (CLIENT_ENABLED(adapter))
3220 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3221 
3222 	iavf_down(adapter);
3223 	adapter->state = __IAVF_DOWN_PENDING;
3224 	iavf_free_traffic_irqs(adapter);
3225 
3226 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227 
3228 	/* We explicitly don't free resources here because the hardware is
3229 	 * still active and can DMA into memory. Resources are cleared in
3230 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3231 	 * driver that the rings have been stopped.
3232 	 *
3233 	 * Also, we wait for state to transition to __IAVF_DOWN before
3234 	 * returning. State change occurs in iavf_virtchnl_completion() after
3235 	 * VF resources are released (which occurs after PF driver processes and
3236 	 * responds to admin queue commands).
3237 	 */
3238 
3239 	status = wait_event_timeout(adapter->down_waitqueue,
3240 				    adapter->state == __IAVF_DOWN,
3241 				    msecs_to_jiffies(500));
3242 	if (!status)
3243 		netdev_warn(netdev, "Device resources not yet released\n");
3244 	return 0;
3245 }
3246 
3247 /**
3248  * iavf_change_mtu - Change the Maximum Transfer Unit
3249  * @netdev: network interface device structure
3250  * @new_mtu: new value for maximum frame size
3251  *
3252  * Returns 0 on success, negative on failure
3253  **/
3254 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255 {
3256 	struct iavf_adapter *adapter = netdev_priv(netdev);
3257 
3258 	netdev->mtu = new_mtu;
3259 	if (CLIENT_ENABLED(adapter)) {
3260 		iavf_notify_client_l2_params(&adapter->vsi);
3261 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3262 	}
3263 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264 	queue_work(iavf_wq, &adapter->reset_task);
3265 
3266 	return 0;
3267 }
3268 
3269 /**
3270  * iavf_set_features - set the netdev feature flags
3271  * @netdev: ptr to the netdev being adjusted
3272  * @features: the feature set that the stack is suggesting
3273  * Note: expects to be called while under rtnl_lock()
3274  **/
3275 static int iavf_set_features(struct net_device *netdev,
3276 			     netdev_features_t features)
3277 {
3278 	struct iavf_adapter *adapter = netdev_priv(netdev);
3279 
3280 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3281 	 * of VLAN offload
3282 	 */
3283 	if (!VLAN_ALLOWED(adapter)) {
3284 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285 			return -EINVAL;
3286 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288 			adapter->aq_required |=
3289 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3290 		else
3291 			adapter->aq_required |=
3292 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 /**
3299  * iavf_features_check - Validate encapsulated packet conforms to limits
3300  * @skb: skb buff
3301  * @dev: This physical port's netdev
3302  * @features: Offload features that the stack believes apply
3303  **/
3304 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305 					     struct net_device *dev,
3306 					     netdev_features_t features)
3307 {
3308 	size_t len;
3309 
3310 	/* No point in doing any of this if neither checksum nor GSO are
3311 	 * being requested for this frame.  We can rule out both by just
3312 	 * checking for CHECKSUM_PARTIAL
3313 	 */
3314 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3315 		return features;
3316 
3317 	/* We cannot support GSO if the MSS is going to be less than
3318 	 * 64 bytes.  If it is then we need to drop support for GSO.
3319 	 */
3320 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321 		features &= ~NETIF_F_GSO_MASK;
3322 
3323 	/* MACLEN can support at most 63 words */
3324 	len = skb_network_header(skb) - skb->data;
3325 	if (len & ~(63 * 2))
3326 		goto out_err;
3327 
3328 	/* IPLEN and EIPLEN can support at most 127 dwords */
3329 	len = skb_transport_header(skb) - skb_network_header(skb);
3330 	if (len & ~(127 * 4))
3331 		goto out_err;
3332 
3333 	if (skb->encapsulation) {
3334 		/* L4TUNLEN can support 127 words */
3335 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336 		if (len & ~(127 * 2))
3337 			goto out_err;
3338 
3339 		/* IPLEN can support at most 127 dwords */
3340 		len = skb_inner_transport_header(skb) -
3341 		      skb_inner_network_header(skb);
3342 		if (len & ~(127 * 4))
3343 			goto out_err;
3344 	}
3345 
3346 	/* No need to validate L4LEN as TCP is the only protocol with a
3347 	 * a flexible value and we support all possible values supported
3348 	 * by TCP, which is at most 15 dwords
3349 	 */
3350 
3351 	return features;
3352 out_err:
3353 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354 }
3355 
3356 /**
3357  * iavf_fix_features - fix up the netdev feature bits
3358  * @netdev: our net device
3359  * @features: desired feature bits
3360  *
3361  * Returns fixed-up features bits
3362  **/
3363 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364 					   netdev_features_t features)
3365 {
3366 	struct iavf_adapter *adapter = netdev_priv(netdev);
3367 
3368 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370 			      NETIF_F_HW_VLAN_CTAG_RX |
3371 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3372 
3373 	return features;
3374 }
3375 
3376 static const struct net_device_ops iavf_netdev_ops = {
3377 	.ndo_open		= iavf_open,
3378 	.ndo_stop		= iavf_close,
3379 	.ndo_start_xmit		= iavf_xmit_frame,
3380 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3381 	.ndo_validate_addr	= eth_validate_addr,
3382 	.ndo_set_mac_address	= iavf_set_mac,
3383 	.ndo_change_mtu		= iavf_change_mtu,
3384 	.ndo_tx_timeout		= iavf_tx_timeout,
3385 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3386 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3387 	.ndo_features_check	= iavf_features_check,
3388 	.ndo_fix_features	= iavf_fix_features,
3389 	.ndo_set_features	= iavf_set_features,
3390 	.ndo_setup_tc		= iavf_setup_tc,
3391 };
3392 
3393 /**
3394  * iavf_check_reset_complete - check that VF reset is complete
3395  * @hw: pointer to hw struct
3396  *
3397  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398  **/
3399 static int iavf_check_reset_complete(struct iavf_hw *hw)
3400 {
3401 	u32 rstat;
3402 	int i;
3403 
3404 	for (i = 0; i < 100; i++) {
3405 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3409 			return 0;
3410 		usleep_range(10, 20);
3411 	}
3412 	return -EBUSY;
3413 }
3414 
3415 /**
3416  * iavf_process_config - Process the config information we got from the PF
3417  * @adapter: board private structure
3418  *
3419  * Verify that we have a valid config struct, and set up our netdev features
3420  * and our VSI struct.
3421  **/
3422 int iavf_process_config(struct iavf_adapter *adapter)
3423 {
3424 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425 	int i, num_req_queues = adapter->num_req_queues;
3426 	struct net_device *netdev = adapter->netdev;
3427 	struct iavf_vsi *vsi = &adapter->vsi;
3428 	netdev_features_t hw_enc_features;
3429 	netdev_features_t hw_features;
3430 
3431 	/* got VF config message back from PF, now we can parse it */
3432 	for (i = 0; i < vfres->num_vsis; i++) {
3433 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434 			adapter->vsi_res = &vfres->vsi_res[i];
3435 	}
3436 	if (!adapter->vsi_res) {
3437 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438 		return -ENODEV;
3439 	}
3440 
3441 	if (num_req_queues &&
3442 	    num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443 		/* Problem.  The PF gave us fewer queues than what we had
3444 		 * negotiated in our request.  Need a reset to see if we can't
3445 		 * get back to a working state.
3446 		 */
3447 		dev_err(&adapter->pdev->dev,
3448 			"Requested %d queues, but PF only gave us %d.\n",
3449 			num_req_queues,
3450 			adapter->vsi_res->num_queue_pairs);
3451 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453 		iavf_schedule_reset(adapter);
3454 		return -ENODEV;
3455 	}
3456 	adapter->num_req_queues = 0;
3457 
3458 	hw_enc_features = NETIF_F_SG			|
3459 			  NETIF_F_IP_CSUM		|
3460 			  NETIF_F_IPV6_CSUM		|
3461 			  NETIF_F_HIGHDMA		|
3462 			  NETIF_F_SOFT_FEATURES	|
3463 			  NETIF_F_TSO			|
3464 			  NETIF_F_TSO_ECN		|
3465 			  NETIF_F_TSO6			|
3466 			  NETIF_F_SCTP_CRC		|
3467 			  NETIF_F_RXHASH		|
3468 			  NETIF_F_RXCSUM		|
3469 			  0;
3470 
3471 	/* advertise to stack only if offloads for encapsulated packets is
3472 	 * supported
3473 	 */
3474 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3476 				   NETIF_F_GSO_GRE		|
3477 				   NETIF_F_GSO_GRE_CSUM		|
3478 				   NETIF_F_GSO_IPXIP4		|
3479 				   NETIF_F_GSO_IPXIP6		|
3480 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3481 				   NETIF_F_GSO_PARTIAL		|
3482 				   0;
3483 
3484 		if (!(vfres->vf_cap_flags &
3485 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486 			netdev->gso_partial_features |=
3487 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488 
3489 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491 		netdev->hw_enc_features |= hw_enc_features;
3492 	}
3493 	/* record features VLANs can make use of */
3494 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495 
3496 	/* Write features and hw_features separately to avoid polluting
3497 	 * with, or dropping, features that are set when we registered.
3498 	 */
3499 	hw_features = hw_enc_features;
3500 
3501 	/* Enable VLAN features if supported */
3502 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504 				NETIF_F_HW_VLAN_CTAG_RX);
3505 	/* Enable cloud filter if ADQ is supported */
3506 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507 		hw_features |= NETIF_F_HW_TC;
3508 
3509 	netdev->hw_features |= hw_features;
3510 
3511 	netdev->features |= hw_features;
3512 
3513 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515 
3516 	netdev->priv_flags |= IFF_UNICAST_FLT;
3517 
3518 	/* Do not turn on offloads when they are requested to be turned off.
3519 	 * TSO needs minimum 576 bytes to work correctly.
3520 	 */
3521 	if (netdev->wanted_features) {
3522 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523 		    netdev->mtu < 576)
3524 			netdev->features &= ~NETIF_F_TSO;
3525 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526 		    netdev->mtu < 576)
3527 			netdev->features &= ~NETIF_F_TSO6;
3528 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529 			netdev->features &= ~NETIF_F_TSO_ECN;
3530 		if (!(netdev->wanted_features & NETIF_F_GRO))
3531 			netdev->features &= ~NETIF_F_GRO;
3532 		if (!(netdev->wanted_features & NETIF_F_GSO))
3533 			netdev->features &= ~NETIF_F_GSO;
3534 	}
3535 
3536 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3537 
3538 	adapter->vsi.back = adapter;
3539 	adapter->vsi.base_vector = 1;
3540 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541 	vsi->netdev = adapter->netdev;
3542 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3543 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544 		adapter->rss_key_size = vfres->rss_key_size;
3545 		adapter->rss_lut_size = vfres->rss_lut_size;
3546 	} else {
3547 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 /**
3555  * iavf_init_task - worker thread to perform delayed initialization
3556  * @work: pointer to work_struct containing our data
3557  *
3558  * This task completes the work that was begun in probe. Due to the nature
3559  * of VF-PF communications, we may need to wait tens of milliseconds to get
3560  * responses back from the PF. Rather than busy-wait in probe and bog down the
3561  * whole system, we'll do it in a task so we can sleep.
3562  * This task only runs during driver init. Once we've established
3563  * communications with the PF driver and set up our netdev, the watchdog
3564  * takes over.
3565  **/
3566 static void iavf_init_task(struct work_struct *work)
3567 {
3568 	struct iavf_adapter *adapter = container_of(work,
3569 						    struct iavf_adapter,
3570 						    init_task.work);
3571 	struct iavf_hw *hw = &adapter->hw;
3572 
3573 	switch (adapter->state) {
3574 	case __IAVF_STARTUP:
3575 		if (iavf_startup(adapter) < 0)
3576 			goto init_failed;
3577 		break;
3578 	case __IAVF_INIT_VERSION_CHECK:
3579 		if (iavf_init_version_check(adapter) < 0)
3580 			goto init_failed;
3581 		break;
3582 	case __IAVF_INIT_GET_RESOURCES:
3583 		if (iavf_init_get_resources(adapter) < 0)
3584 			goto init_failed;
3585 		return;
3586 	default:
3587 		goto init_failed;
3588 	}
3589 
3590 	queue_delayed_work(iavf_wq, &adapter->init_task,
3591 			   msecs_to_jiffies(30));
3592 	return;
3593 init_failed:
3594 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595 		dev_err(&adapter->pdev->dev,
3596 			"Failed to communicate with PF; waiting before retry\n");
3597 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598 		iavf_shutdown_adminq(hw);
3599 		adapter->state = __IAVF_STARTUP;
3600 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601 		return;
3602 	}
3603 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604 }
3605 
3606 /**
3607  * iavf_shutdown - Shutdown the device in preparation for a reboot
3608  * @pdev: pci device structure
3609  **/
3610 static void iavf_shutdown(struct pci_dev *pdev)
3611 {
3612 	struct net_device *netdev = pci_get_drvdata(pdev);
3613 	struct iavf_adapter *adapter = netdev_priv(netdev);
3614 
3615 	netif_device_detach(netdev);
3616 
3617 	if (netif_running(netdev))
3618 		iavf_close(netdev);
3619 
3620 	/* Prevent the watchdog from running. */
3621 	adapter->state = __IAVF_REMOVE;
3622 	adapter->aq_required = 0;
3623 
3624 #ifdef CONFIG_PM
3625 	pci_save_state(pdev);
3626 
3627 #endif
3628 	pci_disable_device(pdev);
3629 }
3630 
3631 /**
3632  * iavf_probe - Device Initialization Routine
3633  * @pdev: PCI device information struct
3634  * @ent: entry in iavf_pci_tbl
3635  *
3636  * Returns 0 on success, negative on failure
3637  *
3638  * iavf_probe initializes an adapter identified by a pci_dev structure.
3639  * The OS initialization, configuring of the adapter private structure,
3640  * and a hardware reset occur.
3641  **/
3642 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643 {
3644 	struct net_device *netdev;
3645 	struct iavf_adapter *adapter = NULL;
3646 	struct iavf_hw *hw = NULL;
3647 	int err;
3648 
3649 	err = pci_enable_device(pdev);
3650 	if (err)
3651 		return err;
3652 
3653 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654 	if (err) {
3655 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656 		if (err) {
3657 			dev_err(&pdev->dev,
3658 				"DMA configuration failed: 0x%x\n", err);
3659 			goto err_dma;
3660 		}
3661 	}
3662 
3663 	err = pci_request_regions(pdev, iavf_driver_name);
3664 	if (err) {
3665 		dev_err(&pdev->dev,
3666 			"pci_request_regions failed 0x%x\n", err);
3667 		goto err_pci_reg;
3668 	}
3669 
3670 	pci_enable_pcie_error_reporting(pdev);
3671 
3672 	pci_set_master(pdev);
3673 
3674 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675 				   IAVF_MAX_REQ_QUEUES);
3676 	if (!netdev) {
3677 		err = -ENOMEM;
3678 		goto err_alloc_etherdev;
3679 	}
3680 
3681 	SET_NETDEV_DEV(netdev, &pdev->dev);
3682 
3683 	pci_set_drvdata(pdev, netdev);
3684 	adapter = netdev_priv(netdev);
3685 
3686 	adapter->netdev = netdev;
3687 	adapter->pdev = pdev;
3688 
3689 	hw = &adapter->hw;
3690 	hw->back = adapter;
3691 
3692 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693 	adapter->state = __IAVF_STARTUP;
3694 
3695 	/* Call save state here because it relies on the adapter struct. */
3696 	pci_save_state(pdev);
3697 
3698 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699 			      pci_resource_len(pdev, 0));
3700 	if (!hw->hw_addr) {
3701 		err = -EIO;
3702 		goto err_ioremap;
3703 	}
3704 	hw->vendor_id = pdev->vendor;
3705 	hw->device_id = pdev->device;
3706 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708 	hw->subsystem_device_id = pdev->subsystem_device;
3709 	hw->bus.device = PCI_SLOT(pdev->devfn);
3710 	hw->bus.func = PCI_FUNC(pdev->devfn);
3711 	hw->bus.bus_id = pdev->bus->number;
3712 
3713 	/* set up the locks for the AQ, do this only once in probe
3714 	 * and destroy them only once in remove
3715 	 */
3716 	mutex_init(&hw->aq.asq_mutex);
3717 	mutex_init(&hw->aq.arq_mutex);
3718 
3719 	spin_lock_init(&adapter->mac_vlan_list_lock);
3720 	spin_lock_init(&adapter->cloud_filter_list_lock);
3721 
3722 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3723 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3725 
3726 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3728 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731 	queue_delayed_work(iavf_wq, &adapter->init_task,
3732 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733 
3734 	/* Setup the wait queue for indicating transition to down status */
3735 	init_waitqueue_head(&adapter->down_waitqueue);
3736 
3737 	return 0;
3738 
3739 err_ioremap:
3740 	free_netdev(netdev);
3741 err_alloc_etherdev:
3742 	pci_release_regions(pdev);
3743 err_pci_reg:
3744 err_dma:
3745 	pci_disable_device(pdev);
3746 	return err;
3747 }
3748 
3749 #ifdef CONFIG_PM
3750 /**
3751  * iavf_suspend - Power management suspend routine
3752  * @pdev: PCI device information struct
3753  * @state: unused
3754  *
3755  * Called when the system (VM) is entering sleep/suspend.
3756  **/
3757 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758 {
3759 	struct net_device *netdev = pci_get_drvdata(pdev);
3760 	struct iavf_adapter *adapter = netdev_priv(netdev);
3761 	int retval = 0;
3762 
3763 	netif_device_detach(netdev);
3764 
3765 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766 				&adapter->crit_section))
3767 		usleep_range(500, 1000);
3768 
3769 	if (netif_running(netdev)) {
3770 		rtnl_lock();
3771 		iavf_down(adapter);
3772 		rtnl_unlock();
3773 	}
3774 	iavf_free_misc_irq(adapter);
3775 	iavf_reset_interrupt_capability(adapter);
3776 
3777 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778 
3779 	retval = pci_save_state(pdev);
3780 	if (retval)
3781 		return retval;
3782 
3783 	pci_disable_device(pdev);
3784 
3785 	return 0;
3786 }
3787 
3788 /**
3789  * iavf_resume - Power management resume routine
3790  * @pdev: PCI device information struct
3791  *
3792  * Called when the system (VM) is resumed from sleep/suspend.
3793  **/
3794 static int iavf_resume(struct pci_dev *pdev)
3795 {
3796 	struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797 	struct net_device *netdev = adapter->netdev;
3798 	u32 err;
3799 
3800 	pci_set_power_state(pdev, PCI_D0);
3801 	pci_restore_state(pdev);
3802 	/* pci_restore_state clears dev->state_saved so call
3803 	 * pci_save_state to restore it.
3804 	 */
3805 	pci_save_state(pdev);
3806 
3807 	err = pci_enable_device_mem(pdev);
3808 	if (err) {
3809 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810 		return err;
3811 	}
3812 	pci_set_master(pdev);
3813 
3814 	rtnl_lock();
3815 	err = iavf_set_interrupt_capability(adapter);
3816 	if (err) {
3817 		rtnl_unlock();
3818 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819 		return err;
3820 	}
3821 	err = iavf_request_misc_irq(adapter);
3822 	rtnl_unlock();
3823 	if (err) {
3824 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825 		return err;
3826 	}
3827 
3828 	queue_work(iavf_wq, &adapter->reset_task);
3829 
3830 	netif_device_attach(netdev);
3831 
3832 	return err;
3833 }
3834 
3835 #endif /* CONFIG_PM */
3836 /**
3837  * iavf_remove - Device Removal Routine
3838  * @pdev: PCI device information struct
3839  *
3840  * iavf_remove is called by the PCI subsystem to alert the driver
3841  * that it should release a PCI device.  The could be caused by a
3842  * Hot-Plug event, or because the driver is going to be removed from
3843  * memory.
3844  **/
3845 static void iavf_remove(struct pci_dev *pdev)
3846 {
3847 	struct net_device *netdev = pci_get_drvdata(pdev);
3848 	struct iavf_adapter *adapter = netdev_priv(netdev);
3849 	struct iavf_vlan_filter *vlf, *vlftmp;
3850 	struct iavf_mac_filter *f, *ftmp;
3851 	struct iavf_cloud_filter *cf, *cftmp;
3852 	struct iavf_hw *hw = &adapter->hw;
3853 	int err;
3854 	/* Indicate we are in remove and not to run reset_task */
3855 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 	cancel_delayed_work_sync(&adapter->init_task);
3857 	cancel_work_sync(&adapter->reset_task);
3858 	cancel_delayed_work_sync(&adapter->client_task);
3859 	if (adapter->netdev_registered) {
3860 		unregister_netdev(netdev);
3861 		adapter->netdev_registered = false;
3862 	}
3863 	if (CLIENT_ALLOWED(adapter)) {
3864 		err = iavf_lan_del_device(adapter);
3865 		if (err)
3866 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 				 err);
3868 	}
3869 
3870 	/* Shut down all the garbage mashers on the detention level */
3871 	adapter->state = __IAVF_REMOVE;
3872 	adapter->aq_required = 0;
3873 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 	iavf_request_reset(adapter);
3875 	msleep(50);
3876 	/* If the FW isn't responding, kick it once, but only once. */
3877 	if (!iavf_asq_done(hw)) {
3878 		iavf_request_reset(adapter);
3879 		msleep(50);
3880 	}
3881 	iavf_free_all_tx_resources(adapter);
3882 	iavf_free_all_rx_resources(adapter);
3883 	iavf_misc_irq_disable(adapter);
3884 	iavf_free_misc_irq(adapter);
3885 	iavf_reset_interrupt_capability(adapter);
3886 	iavf_free_q_vectors(adapter);
3887 
3888 	cancel_delayed_work_sync(&adapter->watchdog_task);
3889 
3890 	cancel_work_sync(&adapter->adminq_task);
3891 
3892 	iavf_free_rss(adapter);
3893 
3894 	if (hw->aq.asq.count)
3895 		iavf_shutdown_adminq(hw);
3896 
3897 	/* destroy the locks only once, here */
3898 	mutex_destroy(&hw->aq.arq_mutex);
3899 	mutex_destroy(&hw->aq.asq_mutex);
3900 
3901 	iounmap(hw->hw_addr);
3902 	pci_release_regions(pdev);
3903 	iavf_free_all_tx_resources(adapter);
3904 	iavf_free_all_rx_resources(adapter);
3905 	iavf_free_queues(adapter);
3906 	kfree(adapter->vf_res);
3907 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 	/* If we got removed before an up/down sequence, we've got a filter
3909 	 * hanging out there that we need to get rid of.
3910 	 */
3911 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 		list_del(&f->list);
3913 		kfree(f);
3914 	}
3915 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 				 list) {
3917 		list_del(&vlf->list);
3918 		kfree(vlf);
3919 	}
3920 
3921 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922 
3923 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 		list_del(&cf->list);
3926 		kfree(cf);
3927 	}
3928 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929 
3930 	free_netdev(netdev);
3931 
3932 	pci_disable_pcie_error_reporting(pdev);
3933 
3934 	pci_disable_device(pdev);
3935 }
3936 
3937 static struct pci_driver iavf_driver = {
3938 	.name     = iavf_driver_name,
3939 	.id_table = iavf_pci_tbl,
3940 	.probe    = iavf_probe,
3941 	.remove   = iavf_remove,
3942 #ifdef CONFIG_PM
3943 	.suspend  = iavf_suspend,
3944 	.resume   = iavf_resume,
3945 #endif
3946 	.shutdown = iavf_shutdown,
3947 };
3948 
3949 /**
3950  * iavf_init_module - Driver Registration Routine
3951  *
3952  * iavf_init_module is the first routine called when the driver is
3953  * loaded. All it does is register with the PCI subsystem.
3954  **/
3955 static int __init iavf_init_module(void)
3956 {
3957 	int ret;
3958 
3959 	pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960 		iavf_driver_version);
3961 
3962 	pr_info("%s\n", iavf_copyright);
3963 
3964 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965 				  iavf_driver_name);
3966 	if (!iavf_wq) {
3967 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968 		return -ENOMEM;
3969 	}
3970 	ret = pci_register_driver(&iavf_driver);
3971 	return ret;
3972 }
3973 
3974 module_init(iavf_init_module);
3975 
3976 /**
3977  * iavf_exit_module - Driver Exit Cleanup Routine
3978  *
3979  * iavf_exit_module is called just before the driver is removed
3980  * from memory.
3981  **/
3982 static void __exit iavf_exit_module(void)
3983 {
3984 	pci_unregister_driver(&iavf_driver);
3985 	destroy_workqueue(iavf_wq);
3986 }
3987 
3988 module_exit(iavf_exit_module);
3989 
3990 /* iavf_main.c */
3991