1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry_irq. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 /* Report the maximum number queues, even if not every queue is 335 * currently configured. Since allocation of queues is in pairs, 336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 337 * at device creation and never changes. 338 */ 339 340 if (sset == ETH_SS_STATS) 341 return IAVF_STATS_LEN + 342 (IAVF_QUEUE_STATS_LEN * 2 * 343 netdev->real_num_tx_queues); 344 else if (sset == ETH_SS_PRIV_FLAGS) 345 return IAVF_PRIV_FLAGS_STR_LEN; 346 else 347 return -EINVAL; 348 } 349 350 /** 351 * iavf_get_ethtool_stats - report device statistics 352 * @netdev: network interface device structure 353 * @stats: ethtool statistics structure 354 * @data: pointer to data buffer 355 * 356 * All statistics are added to the data buffer as an array of u64. 357 **/ 358 static void iavf_get_ethtool_stats(struct net_device *netdev, 359 struct ethtool_stats *stats, u64 *data) 360 { 361 struct iavf_adapter *adapter = netdev_priv(netdev); 362 unsigned int i; 363 364 /* Explicitly request stats refresh */ 365 iavf_schedule_request_stats(adapter); 366 367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 368 369 rcu_read_lock(); 370 /* As num_active_queues describe both tx and rx queues, we can use 371 * it to iterate over rings' stats. 372 */ 373 for (i = 0; i < adapter->num_active_queues; i++) { 374 struct iavf_ring *ring; 375 376 /* Tx rings stats */ 377 ring = &adapter->tx_rings[i]; 378 iavf_add_queue_stats(&data, ring); 379 380 /* Rx rings stats */ 381 ring = &adapter->rx_rings[i]; 382 iavf_add_queue_stats(&data, ring); 383 } 384 rcu_read_unlock(); 385 } 386 387 /** 388 * iavf_get_priv_flag_strings - Get private flag strings 389 * @netdev: network interface device structure 390 * @data: buffer for string data 391 * 392 * Builds the private flags string table 393 **/ 394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 395 { 396 unsigned int i; 397 398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 399 snprintf(data, ETH_GSTRING_LEN, "%s", 400 iavf_gstrings_priv_flags[i].flag_string); 401 data += ETH_GSTRING_LEN; 402 } 403 } 404 405 /** 406 * iavf_get_stat_strings - Get stat strings 407 * @netdev: network interface device structure 408 * @data: buffer for string data 409 * 410 * Builds the statistics string table 411 **/ 412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 413 { 414 unsigned int i; 415 416 iavf_add_stat_strings(&data, iavf_gstrings_stats); 417 418 /* Queues are always allocated in pairs, so we just use 419 * real_num_tx_queues for both Tx and Rx queues. 420 */ 421 for (i = 0; i < netdev->real_num_tx_queues; i++) { 422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 423 "tx", i); 424 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 425 "rx", i); 426 } 427 } 428 429 /** 430 * iavf_get_strings - Get string set 431 * @netdev: network interface device structure 432 * @sset: id of string set 433 * @data: buffer for string data 434 * 435 * Builds string tables for various string sets 436 **/ 437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 438 { 439 switch (sset) { 440 case ETH_SS_STATS: 441 iavf_get_stat_strings(netdev, data); 442 break; 443 case ETH_SS_PRIV_FLAGS: 444 iavf_get_priv_flag_strings(netdev, data); 445 break; 446 default: 447 break; 448 } 449 } 450 451 /** 452 * iavf_get_priv_flags - report device private flags 453 * @netdev: network interface device structure 454 * 455 * The get string set count and the string set should be matched for each 456 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 457 * array. 458 * 459 * Returns a u32 bitmap of flags. 460 **/ 461 static u32 iavf_get_priv_flags(struct net_device *netdev) 462 { 463 struct iavf_adapter *adapter = netdev_priv(netdev); 464 u32 i, ret_flags = 0; 465 466 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 467 const struct iavf_priv_flags *priv_flags; 468 469 priv_flags = &iavf_gstrings_priv_flags[i]; 470 471 if (priv_flags->flag & adapter->flags) 472 ret_flags |= BIT(i); 473 } 474 475 return ret_flags; 476 } 477 478 /** 479 * iavf_set_priv_flags - set private flags 480 * @netdev: network interface device structure 481 * @flags: bit flags to be set 482 **/ 483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 484 { 485 struct iavf_adapter *adapter = netdev_priv(netdev); 486 u32 orig_flags, new_flags, changed_flags; 487 u32 i; 488 489 orig_flags = READ_ONCE(adapter->flags); 490 new_flags = orig_flags; 491 492 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 493 const struct iavf_priv_flags *priv_flags; 494 495 priv_flags = &iavf_gstrings_priv_flags[i]; 496 497 if (flags & BIT(i)) 498 new_flags |= priv_flags->flag; 499 else 500 new_flags &= ~(priv_flags->flag); 501 502 if (priv_flags->read_only && 503 ((orig_flags ^ new_flags) & ~BIT(i))) 504 return -EOPNOTSUPP; 505 } 506 507 /* Before we finalize any flag changes, any checks which we need to 508 * perform to determine if the new flags will be supported should go 509 * here... 510 */ 511 512 /* Compare and exchange the new flags into place. If we failed, that 513 * is if cmpxchg returns anything but the old value, this means 514 * something else must have modified the flags variable since we 515 * copied it. We'll just punt with an error and log something in the 516 * message buffer. 517 */ 518 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 519 dev_warn(&adapter->pdev->dev, 520 "Unable to update adapter->flags as it was modified by another thread...\n"); 521 return -EAGAIN; 522 } 523 524 changed_flags = orig_flags ^ new_flags; 525 526 /* Process any additional changes needed as a result of flag changes. 527 * The changed_flags value reflects the list of bits that were changed 528 * in the code above. 529 */ 530 531 /* issue a reset to force legacy-rx change to take effect */ 532 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 533 if (netif_running(netdev)) { 534 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 535 queue_work(iavf_wq, &adapter->reset_task); 536 } 537 } 538 539 return 0; 540 } 541 542 /** 543 * iavf_get_msglevel - Get debug message level 544 * @netdev: network interface device structure 545 * 546 * Returns current debug message level. 547 **/ 548 static u32 iavf_get_msglevel(struct net_device *netdev) 549 { 550 struct iavf_adapter *adapter = netdev_priv(netdev); 551 552 return adapter->msg_enable; 553 } 554 555 /** 556 * iavf_set_msglevel - Set debug message level 557 * @netdev: network interface device structure 558 * @data: message level 559 * 560 * Set current debug message level. Higher values cause the driver to 561 * be noisier. 562 **/ 563 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 564 { 565 struct iavf_adapter *adapter = netdev_priv(netdev); 566 567 if (IAVF_DEBUG_USER & data) 568 adapter->hw.debug_mask = data; 569 adapter->msg_enable = data; 570 } 571 572 /** 573 * iavf_get_drvinfo - Get driver info 574 * @netdev: network interface device structure 575 * @drvinfo: ethool driver info structure 576 * 577 * Returns information about the driver and device for display to the user. 578 **/ 579 static void iavf_get_drvinfo(struct net_device *netdev, 580 struct ethtool_drvinfo *drvinfo) 581 { 582 struct iavf_adapter *adapter = netdev_priv(netdev); 583 584 strlcpy(drvinfo->driver, iavf_driver_name, 32); 585 strlcpy(drvinfo->fw_version, "N/A", 4); 586 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 587 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 588 } 589 590 /** 591 * iavf_get_ringparam - Get ring parameters 592 * @netdev: network interface device structure 593 * @ring: ethtool ringparam structure 594 * @kernel_ring: ethtool extenal ringparam structure 595 * @extack: netlink extended ACK report struct 596 * 597 * Returns current ring parameters. TX and RX rings are reported separately, 598 * but the number of rings is not reported. 599 **/ 600 static void iavf_get_ringparam(struct net_device *netdev, 601 struct ethtool_ringparam *ring, 602 struct kernel_ethtool_ringparam *kernel_ring, 603 struct netlink_ext_ack *extack) 604 { 605 struct iavf_adapter *adapter = netdev_priv(netdev); 606 607 ring->rx_max_pending = IAVF_MAX_RXD; 608 ring->tx_max_pending = IAVF_MAX_TXD; 609 ring->rx_pending = adapter->rx_desc_count; 610 ring->tx_pending = adapter->tx_desc_count; 611 } 612 613 /** 614 * iavf_set_ringparam - Set ring parameters 615 * @netdev: network interface device structure 616 * @ring: ethtool ringparam structure 617 * @kernel_ring: ethtool external ringparam structure 618 * @extack: netlink extended ACK report struct 619 * 620 * Sets ring parameters. TX and RX rings are controlled separately, but the 621 * number of rings is not specified, so all rings get the same settings. 622 **/ 623 static int iavf_set_ringparam(struct net_device *netdev, 624 struct ethtool_ringparam *ring, 625 struct kernel_ethtool_ringparam *kernel_ring, 626 struct netlink_ext_ack *extack) 627 { 628 struct iavf_adapter *adapter = netdev_priv(netdev); 629 u32 new_rx_count, new_tx_count; 630 631 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 632 return -EINVAL; 633 634 new_tx_count = clamp_t(u32, ring->tx_pending, 635 IAVF_MIN_TXD, 636 IAVF_MAX_TXD); 637 new_tx_count = ALIGN(new_tx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE); 638 639 new_rx_count = clamp_t(u32, ring->rx_pending, 640 IAVF_MIN_RXD, 641 IAVF_MAX_RXD); 642 new_rx_count = ALIGN(new_rx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE); 643 644 /* if nothing to do return success */ 645 if ((new_tx_count == adapter->tx_desc_count) && 646 (new_rx_count == adapter->rx_desc_count)) 647 return 0; 648 649 adapter->tx_desc_count = new_tx_count; 650 adapter->rx_desc_count = new_rx_count; 651 652 if (netif_running(netdev)) { 653 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 654 queue_work(iavf_wq, &adapter->reset_task); 655 } 656 657 return 0; 658 } 659 660 /** 661 * __iavf_get_coalesce - get per-queue coalesce settings 662 * @netdev: the netdev to check 663 * @ec: ethtool coalesce data structure 664 * @queue: which queue to pick 665 * 666 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 667 * are per queue. If queue is <0 then we default to queue 0 as the 668 * representative value. 669 **/ 670 static int __iavf_get_coalesce(struct net_device *netdev, 671 struct ethtool_coalesce *ec, int queue) 672 { 673 struct iavf_adapter *adapter = netdev_priv(netdev); 674 struct iavf_vsi *vsi = &adapter->vsi; 675 struct iavf_ring *rx_ring, *tx_ring; 676 677 ec->tx_max_coalesced_frames = vsi->work_limit; 678 ec->rx_max_coalesced_frames = vsi->work_limit; 679 680 /* Rx and Tx usecs per queue value. If user doesn't specify the 681 * queue, return queue 0's value to represent. 682 */ 683 if (queue < 0) 684 queue = 0; 685 else if (queue >= adapter->num_active_queues) 686 return -EINVAL; 687 688 rx_ring = &adapter->rx_rings[queue]; 689 tx_ring = &adapter->tx_rings[queue]; 690 691 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 692 ec->use_adaptive_rx_coalesce = 1; 693 694 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 695 ec->use_adaptive_tx_coalesce = 1; 696 697 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 698 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 699 700 return 0; 701 } 702 703 /** 704 * iavf_get_coalesce - Get interrupt coalescing settings 705 * @netdev: network interface device structure 706 * @ec: ethtool coalesce structure 707 * @kernel_coal: ethtool CQE mode setting structure 708 * @extack: extack for reporting error messages 709 * 710 * Returns current coalescing settings. This is referred to elsewhere in the 711 * driver as Interrupt Throttle Rate, as this is how the hardware describes 712 * this functionality. Note that if per-queue settings have been modified this 713 * only represents the settings of queue 0. 714 **/ 715 static int iavf_get_coalesce(struct net_device *netdev, 716 struct ethtool_coalesce *ec, 717 struct kernel_ethtool_coalesce *kernel_coal, 718 struct netlink_ext_ack *extack) 719 { 720 return __iavf_get_coalesce(netdev, ec, -1); 721 } 722 723 /** 724 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 725 * @netdev: netdev to read 726 * @ec: coalesce settings from ethtool 727 * @queue: the queue to read 728 * 729 * Read specific queue's coalesce settings. 730 **/ 731 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 732 struct ethtool_coalesce *ec) 733 { 734 return __iavf_get_coalesce(netdev, ec, queue); 735 } 736 737 /** 738 * iavf_set_itr_per_queue - set ITR values for specific queue 739 * @adapter: the VF adapter struct to set values for 740 * @ec: coalesce settings from ethtool 741 * @queue: the queue to modify 742 * 743 * Change the ITR settings for a specific queue. 744 **/ 745 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 746 struct ethtool_coalesce *ec, int queue) 747 { 748 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 749 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 750 struct iavf_q_vector *q_vector; 751 u16 itr_setting; 752 753 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 754 755 if (ec->rx_coalesce_usecs != itr_setting && 756 ec->use_adaptive_rx_coalesce) { 757 netif_info(adapter, drv, adapter->netdev, 758 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 759 return -EINVAL; 760 } 761 762 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 763 764 if (ec->tx_coalesce_usecs != itr_setting && 765 ec->use_adaptive_tx_coalesce) { 766 netif_info(adapter, drv, adapter->netdev, 767 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 768 return -EINVAL; 769 } 770 771 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 772 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 773 774 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 775 if (!ec->use_adaptive_rx_coalesce) 776 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 777 778 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 779 if (!ec->use_adaptive_tx_coalesce) 780 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 781 782 q_vector = rx_ring->q_vector; 783 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 784 785 q_vector = tx_ring->q_vector; 786 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 787 788 /* The interrupt handler itself will take care of programming 789 * the Tx and Rx ITR values based on the values we have entered 790 * into the q_vector, no need to write the values now. 791 */ 792 return 0; 793 } 794 795 /** 796 * __iavf_set_coalesce - set coalesce settings for particular queue 797 * @netdev: the netdev to change 798 * @ec: ethtool coalesce settings 799 * @queue: the queue to change 800 * 801 * Sets the coalesce settings for a particular queue. 802 **/ 803 static int __iavf_set_coalesce(struct net_device *netdev, 804 struct ethtool_coalesce *ec, int queue) 805 { 806 struct iavf_adapter *adapter = netdev_priv(netdev); 807 struct iavf_vsi *vsi = &adapter->vsi; 808 int i; 809 810 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq) 811 vsi->work_limit = ec->tx_max_coalesced_frames_irq; 812 813 if (ec->rx_coalesce_usecs == 0) { 814 if (ec->use_adaptive_rx_coalesce) 815 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); 816 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || 817 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { 818 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 819 return -EINVAL; 820 } else if (ec->tx_coalesce_usecs == 0) { 821 if (ec->use_adaptive_tx_coalesce) 822 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); 823 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || 824 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { 825 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 826 return -EINVAL; 827 } 828 829 /* Rx and Tx usecs has per queue value. If user doesn't specify the 830 * queue, apply to all queues. 831 */ 832 if (queue < 0) { 833 for (i = 0; i < adapter->num_active_queues; i++) 834 if (iavf_set_itr_per_queue(adapter, ec, i)) 835 return -EINVAL; 836 } else if (queue < adapter->num_active_queues) { 837 if (iavf_set_itr_per_queue(adapter, ec, queue)) 838 return -EINVAL; 839 } else { 840 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 841 adapter->num_active_queues - 1); 842 return -EINVAL; 843 } 844 845 return 0; 846 } 847 848 /** 849 * iavf_set_coalesce - Set interrupt coalescing settings 850 * @netdev: network interface device structure 851 * @ec: ethtool coalesce structure 852 * @kernel_coal: ethtool CQE mode setting structure 853 * @extack: extack for reporting error messages 854 * 855 * Change current coalescing settings for every queue. 856 **/ 857 static int iavf_set_coalesce(struct net_device *netdev, 858 struct ethtool_coalesce *ec, 859 struct kernel_ethtool_coalesce *kernel_coal, 860 struct netlink_ext_ack *extack) 861 { 862 return __iavf_set_coalesce(netdev, ec, -1); 863 } 864 865 /** 866 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 867 * @netdev: the netdev to change 868 * @ec: ethtool's coalesce settings 869 * @queue: the queue to modify 870 * 871 * Modifies a specific queue's coalesce settings. 872 */ 873 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 874 struct ethtool_coalesce *ec) 875 { 876 return __iavf_set_coalesce(netdev, ec, queue); 877 } 878 879 /** 880 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 881 * flow type values 882 * @flow: filter type to be converted 883 * 884 * Returns the corresponding ethtool flow type. 885 */ 886 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 887 { 888 switch (flow) { 889 case IAVF_FDIR_FLOW_IPV4_TCP: 890 return TCP_V4_FLOW; 891 case IAVF_FDIR_FLOW_IPV4_UDP: 892 return UDP_V4_FLOW; 893 case IAVF_FDIR_FLOW_IPV4_SCTP: 894 return SCTP_V4_FLOW; 895 case IAVF_FDIR_FLOW_IPV4_AH: 896 return AH_V4_FLOW; 897 case IAVF_FDIR_FLOW_IPV4_ESP: 898 return ESP_V4_FLOW; 899 case IAVF_FDIR_FLOW_IPV4_OTHER: 900 return IPV4_USER_FLOW; 901 case IAVF_FDIR_FLOW_IPV6_TCP: 902 return TCP_V6_FLOW; 903 case IAVF_FDIR_FLOW_IPV6_UDP: 904 return UDP_V6_FLOW; 905 case IAVF_FDIR_FLOW_IPV6_SCTP: 906 return SCTP_V6_FLOW; 907 case IAVF_FDIR_FLOW_IPV6_AH: 908 return AH_V6_FLOW; 909 case IAVF_FDIR_FLOW_IPV6_ESP: 910 return ESP_V6_FLOW; 911 case IAVF_FDIR_FLOW_IPV6_OTHER: 912 return IPV6_USER_FLOW; 913 case IAVF_FDIR_FLOW_NON_IP_L2: 914 return ETHER_FLOW; 915 default: 916 /* 0 is undefined ethtool flow */ 917 return 0; 918 } 919 } 920 921 /** 922 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 923 * @eth: Ethtool flow type to be converted 924 * 925 * Returns flow enum 926 */ 927 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 928 { 929 switch (eth) { 930 case TCP_V4_FLOW: 931 return IAVF_FDIR_FLOW_IPV4_TCP; 932 case UDP_V4_FLOW: 933 return IAVF_FDIR_FLOW_IPV4_UDP; 934 case SCTP_V4_FLOW: 935 return IAVF_FDIR_FLOW_IPV4_SCTP; 936 case AH_V4_FLOW: 937 return IAVF_FDIR_FLOW_IPV4_AH; 938 case ESP_V4_FLOW: 939 return IAVF_FDIR_FLOW_IPV4_ESP; 940 case IPV4_USER_FLOW: 941 return IAVF_FDIR_FLOW_IPV4_OTHER; 942 case TCP_V6_FLOW: 943 return IAVF_FDIR_FLOW_IPV6_TCP; 944 case UDP_V6_FLOW: 945 return IAVF_FDIR_FLOW_IPV6_UDP; 946 case SCTP_V6_FLOW: 947 return IAVF_FDIR_FLOW_IPV6_SCTP; 948 case AH_V6_FLOW: 949 return IAVF_FDIR_FLOW_IPV6_AH; 950 case ESP_V6_FLOW: 951 return IAVF_FDIR_FLOW_IPV6_ESP; 952 case IPV6_USER_FLOW: 953 return IAVF_FDIR_FLOW_IPV6_OTHER; 954 case ETHER_FLOW: 955 return IAVF_FDIR_FLOW_NON_IP_L2; 956 default: 957 return IAVF_FDIR_FLOW_NONE; 958 } 959 } 960 961 /** 962 * iavf_is_mask_valid - check mask field set 963 * @mask: full mask to check 964 * @field: field for which mask should be valid 965 * 966 * If the mask is fully set return true. If it is not valid for field return 967 * false. 968 */ 969 static bool iavf_is_mask_valid(u64 mask, u64 field) 970 { 971 return (mask & field) == field; 972 } 973 974 /** 975 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 976 * @fsp: pointer to ethtool Rx flow specification 977 * @fltr: pointer to Flow Director filter for userdef data storage 978 * 979 * Returns 0 on success, negative error value on failure 980 */ 981 static int 982 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 983 struct iavf_fdir_fltr *fltr) 984 { 985 struct iavf_flex_word *flex; 986 int i, cnt = 0; 987 988 if (!(fsp->flow_type & FLOW_EXT)) 989 return 0; 990 991 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 992 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 993 #define IAVF_USERDEF_FLEX_OFFS_S 16 994 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 995 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 996 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 997 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 998 999 if (!value || !mask) 1000 continue; 1001 1002 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1003 return -EINVAL; 1004 1005 /* 504 is the maximum value for offsets, and offset is measured 1006 * from the start of the MAC address. 1007 */ 1008 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1009 flex = &fltr->flex_words[cnt++]; 1010 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1011 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1012 IAVF_USERDEF_FLEX_OFFS_S; 1013 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1014 return -EINVAL; 1015 } 1016 1017 fltr->flex_cnt = cnt; 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * iavf_fill_rx_flow_ext_data - fill the additional data 1024 * @fsp: pointer to ethtool Rx flow specification 1025 * @fltr: pointer to Flow Director filter to get additional data 1026 */ 1027 static void 1028 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1029 struct iavf_fdir_fltr *fltr) 1030 { 1031 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1032 return; 1033 1034 fsp->flow_type |= FLOW_EXT; 1035 1036 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1037 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1038 } 1039 1040 /** 1041 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1042 * @adapter: the VF adapter structure that contains filter list 1043 * @cmd: ethtool command data structure to receive the filter data 1044 * 1045 * Returns 0 as expected for success by ethtool 1046 */ 1047 static int 1048 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1049 struct ethtool_rxnfc *cmd) 1050 { 1051 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1052 struct iavf_fdir_fltr *rule = NULL; 1053 int ret = 0; 1054 1055 if (!FDIR_FLTR_SUPPORT(adapter)) 1056 return -EOPNOTSUPP; 1057 1058 spin_lock_bh(&adapter->fdir_fltr_lock); 1059 1060 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1061 if (!rule) { 1062 ret = -EINVAL; 1063 goto release_lock; 1064 } 1065 1066 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1067 1068 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1069 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1070 1071 switch (fsp->flow_type) { 1072 case TCP_V4_FLOW: 1073 case UDP_V4_FLOW: 1074 case SCTP_V4_FLOW: 1075 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1076 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1077 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1078 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1079 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1080 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1081 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1082 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1083 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1084 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1085 break; 1086 case AH_V4_FLOW: 1087 case ESP_V4_FLOW: 1088 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1089 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1090 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1091 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1092 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1093 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1094 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1095 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1096 break; 1097 case IPV4_USER_FLOW: 1098 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1099 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1100 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1101 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1102 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1103 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1104 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1105 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1106 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1107 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1108 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1109 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1110 break; 1111 case TCP_V6_FLOW: 1112 case UDP_V6_FLOW: 1113 case SCTP_V6_FLOW: 1114 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1115 sizeof(struct in6_addr)); 1116 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1117 sizeof(struct in6_addr)); 1118 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1119 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1120 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1121 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1122 sizeof(struct in6_addr)); 1123 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1124 sizeof(struct in6_addr)); 1125 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1126 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1127 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1128 break; 1129 case AH_V6_FLOW: 1130 case ESP_V6_FLOW: 1131 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1132 sizeof(struct in6_addr)); 1133 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1134 sizeof(struct in6_addr)); 1135 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1136 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1137 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1138 sizeof(struct in6_addr)); 1139 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1140 sizeof(struct in6_addr)); 1141 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1142 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1143 break; 1144 case IPV6_USER_FLOW: 1145 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1146 sizeof(struct in6_addr)); 1147 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1148 sizeof(struct in6_addr)); 1149 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1150 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1151 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1152 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1153 sizeof(struct in6_addr)); 1154 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1155 sizeof(struct in6_addr)); 1156 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1157 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1158 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1159 break; 1160 case ETHER_FLOW: 1161 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1162 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1163 break; 1164 default: 1165 ret = -EINVAL; 1166 break; 1167 } 1168 1169 iavf_fill_rx_flow_ext_data(fsp, rule); 1170 1171 if (rule->action == VIRTCHNL_ACTION_DROP) 1172 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1173 else 1174 fsp->ring_cookie = rule->q_index; 1175 1176 release_lock: 1177 spin_unlock_bh(&adapter->fdir_fltr_lock); 1178 return ret; 1179 } 1180 1181 /** 1182 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1183 * @adapter: the VF adapter structure containing the filter list 1184 * @cmd: ethtool command data structure 1185 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1186 * 1187 * Returns 0 as expected for success by ethtool 1188 */ 1189 static int 1190 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1191 u32 *rule_locs) 1192 { 1193 struct iavf_fdir_fltr *fltr; 1194 unsigned int cnt = 0; 1195 int val = 0; 1196 1197 if (!FDIR_FLTR_SUPPORT(adapter)) 1198 return -EOPNOTSUPP; 1199 1200 cmd->data = IAVF_MAX_FDIR_FILTERS; 1201 1202 spin_lock_bh(&adapter->fdir_fltr_lock); 1203 1204 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1205 if (cnt == cmd->rule_cnt) { 1206 val = -EMSGSIZE; 1207 goto release_lock; 1208 } 1209 rule_locs[cnt] = fltr->loc; 1210 cnt++; 1211 } 1212 1213 release_lock: 1214 spin_unlock_bh(&adapter->fdir_fltr_lock); 1215 if (!val) 1216 cmd->rule_cnt = cnt; 1217 1218 return val; 1219 } 1220 1221 /** 1222 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1223 * @adapter: pointer to the VF adapter structure 1224 * @fsp: pointer to ethtool Rx flow specification 1225 * @fltr: filter structure 1226 */ 1227 static int 1228 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1229 struct iavf_fdir_fltr *fltr) 1230 { 1231 u32 flow_type, q_index = 0; 1232 enum virtchnl_action act; 1233 int err; 1234 1235 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1236 act = VIRTCHNL_ACTION_DROP; 1237 } else { 1238 q_index = fsp->ring_cookie; 1239 if (q_index >= adapter->num_active_queues) 1240 return -EINVAL; 1241 1242 act = VIRTCHNL_ACTION_QUEUE; 1243 } 1244 1245 fltr->action = act; 1246 fltr->loc = fsp->location; 1247 fltr->q_index = q_index; 1248 1249 if (fsp->flow_type & FLOW_EXT) { 1250 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1251 sizeof(fltr->ext_data.usr_def)); 1252 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1253 sizeof(fltr->ext_mask.usr_def)); 1254 } 1255 1256 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1257 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1258 1259 switch (flow_type) { 1260 case TCP_V4_FLOW: 1261 case UDP_V4_FLOW: 1262 case SCTP_V4_FLOW: 1263 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1264 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1265 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1266 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1267 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1268 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1269 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1270 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1271 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1272 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1273 break; 1274 case AH_V4_FLOW: 1275 case ESP_V4_FLOW: 1276 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1277 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1278 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1279 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1280 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1281 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1282 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1283 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1284 break; 1285 case IPV4_USER_FLOW: 1286 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1287 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1288 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1289 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1290 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1291 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1292 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1293 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1294 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1295 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1296 break; 1297 case TCP_V6_FLOW: 1298 case UDP_V6_FLOW: 1299 case SCTP_V6_FLOW: 1300 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1301 sizeof(struct in6_addr)); 1302 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1303 sizeof(struct in6_addr)); 1304 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1305 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1306 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1307 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1308 sizeof(struct in6_addr)); 1309 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1310 sizeof(struct in6_addr)); 1311 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1312 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1313 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1314 break; 1315 case AH_V6_FLOW: 1316 case ESP_V6_FLOW: 1317 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1318 sizeof(struct in6_addr)); 1319 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1320 sizeof(struct in6_addr)); 1321 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1322 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1323 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1324 sizeof(struct in6_addr)); 1325 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1326 sizeof(struct in6_addr)); 1327 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1328 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1329 break; 1330 case IPV6_USER_FLOW: 1331 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1332 sizeof(struct in6_addr)); 1333 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1334 sizeof(struct in6_addr)); 1335 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1336 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1337 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1338 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1339 sizeof(struct in6_addr)); 1340 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1341 sizeof(struct in6_addr)); 1342 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1343 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1344 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1345 break; 1346 case ETHER_FLOW: 1347 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1348 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1349 break; 1350 default: 1351 /* not doing un-parsed flow types */ 1352 return -EINVAL; 1353 } 1354 1355 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1356 return -EEXIST; 1357 1358 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1359 if (err) 1360 return err; 1361 1362 return iavf_fill_fdir_add_msg(adapter, fltr); 1363 } 1364 1365 /** 1366 * iavf_add_fdir_ethtool - add Flow Director filter 1367 * @adapter: pointer to the VF adapter structure 1368 * @cmd: command to add Flow Director filter 1369 * 1370 * Returns 0 on success and negative values for failure 1371 */ 1372 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1373 { 1374 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1375 struct iavf_fdir_fltr *fltr; 1376 int count = 50; 1377 int err; 1378 1379 if (!FDIR_FLTR_SUPPORT(adapter)) 1380 return -EOPNOTSUPP; 1381 1382 if (fsp->flow_type & FLOW_MAC_EXT) 1383 return -EINVAL; 1384 1385 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1386 dev_err(&adapter->pdev->dev, 1387 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1388 IAVF_MAX_FDIR_FILTERS); 1389 return -ENOSPC; 1390 } 1391 1392 spin_lock_bh(&adapter->fdir_fltr_lock); 1393 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1394 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1395 spin_unlock_bh(&adapter->fdir_fltr_lock); 1396 return -EEXIST; 1397 } 1398 spin_unlock_bh(&adapter->fdir_fltr_lock); 1399 1400 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1401 if (!fltr) 1402 return -ENOMEM; 1403 1404 while (!mutex_trylock(&adapter->crit_lock)) { 1405 if (--count == 0) { 1406 kfree(fltr); 1407 return -EINVAL; 1408 } 1409 udelay(1); 1410 } 1411 1412 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1413 if (err) 1414 goto ret; 1415 1416 spin_lock_bh(&adapter->fdir_fltr_lock); 1417 iavf_fdir_list_add_fltr(adapter, fltr); 1418 adapter->fdir_active_fltr++; 1419 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1420 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1421 spin_unlock_bh(&adapter->fdir_fltr_lock); 1422 1423 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1424 1425 ret: 1426 if (err && fltr) 1427 kfree(fltr); 1428 1429 mutex_unlock(&adapter->crit_lock); 1430 return err; 1431 } 1432 1433 /** 1434 * iavf_del_fdir_ethtool - delete Flow Director filter 1435 * @adapter: pointer to the VF adapter structure 1436 * @cmd: command to delete Flow Director filter 1437 * 1438 * Returns 0 on success and negative values for failure 1439 */ 1440 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1441 { 1442 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1443 struct iavf_fdir_fltr *fltr = NULL; 1444 int err = 0; 1445 1446 if (!FDIR_FLTR_SUPPORT(adapter)) 1447 return -EOPNOTSUPP; 1448 1449 spin_lock_bh(&adapter->fdir_fltr_lock); 1450 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1451 if (fltr) { 1452 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1453 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1454 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1455 } else { 1456 err = -EBUSY; 1457 } 1458 } else if (adapter->fdir_active_fltr) { 1459 err = -EINVAL; 1460 } 1461 spin_unlock_bh(&adapter->fdir_fltr_lock); 1462 1463 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1464 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1465 1466 return err; 1467 } 1468 1469 /** 1470 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1471 * @cmd: ethtool rxnfc command 1472 * 1473 * This function parses the rxnfc command and returns intended 1474 * header types for RSS configuration 1475 */ 1476 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1477 { 1478 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1479 1480 switch (cmd->flow_type) { 1481 case TCP_V4_FLOW: 1482 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1483 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1484 break; 1485 case UDP_V4_FLOW: 1486 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1487 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1488 break; 1489 case SCTP_V4_FLOW: 1490 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1491 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1492 break; 1493 case TCP_V6_FLOW: 1494 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1495 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1496 break; 1497 case UDP_V6_FLOW: 1498 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1499 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1500 break; 1501 case SCTP_V6_FLOW: 1502 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1503 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1504 break; 1505 default: 1506 break; 1507 } 1508 1509 return hdrs; 1510 } 1511 1512 /** 1513 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1514 * @cmd: ethtool rxnfc command 1515 * 1516 * This function parses the rxnfc command and returns intended hash fields for 1517 * RSS configuration 1518 */ 1519 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1520 { 1521 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1522 1523 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1524 switch (cmd->flow_type) { 1525 case TCP_V4_FLOW: 1526 case UDP_V4_FLOW: 1527 case SCTP_V4_FLOW: 1528 if (cmd->data & RXH_IP_SRC) 1529 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1530 if (cmd->data & RXH_IP_DST) 1531 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1532 break; 1533 case TCP_V6_FLOW: 1534 case UDP_V6_FLOW: 1535 case SCTP_V6_FLOW: 1536 if (cmd->data & RXH_IP_SRC) 1537 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1538 if (cmd->data & RXH_IP_DST) 1539 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1540 break; 1541 default: 1542 break; 1543 } 1544 } 1545 1546 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1547 switch (cmd->flow_type) { 1548 case TCP_V4_FLOW: 1549 case TCP_V6_FLOW: 1550 if (cmd->data & RXH_L4_B_0_1) 1551 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1552 if (cmd->data & RXH_L4_B_2_3) 1553 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1554 break; 1555 case UDP_V4_FLOW: 1556 case UDP_V6_FLOW: 1557 if (cmd->data & RXH_L4_B_0_1) 1558 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1559 if (cmd->data & RXH_L4_B_2_3) 1560 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1561 break; 1562 case SCTP_V4_FLOW: 1563 case SCTP_V6_FLOW: 1564 if (cmd->data & RXH_L4_B_0_1) 1565 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1566 if (cmd->data & RXH_L4_B_2_3) 1567 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1568 break; 1569 default: 1570 break; 1571 } 1572 } 1573 1574 return hfld; 1575 } 1576 1577 /** 1578 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1579 * @adapter: pointer to the VF adapter structure 1580 * @cmd: ethtool rxnfc command 1581 * 1582 * Returns Success if the flow input set is supported. 1583 */ 1584 static int 1585 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1586 struct ethtool_rxnfc *cmd) 1587 { 1588 struct iavf_adv_rss *rss_old, *rss_new; 1589 bool rss_new_add = false; 1590 int count = 50, err = 0; 1591 u64 hash_flds; 1592 u32 hdrs; 1593 1594 if (!ADV_RSS_SUPPORT(adapter)) 1595 return -EOPNOTSUPP; 1596 1597 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1598 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1599 return -EINVAL; 1600 1601 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1602 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1603 return -EINVAL; 1604 1605 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1606 if (!rss_new) 1607 return -ENOMEM; 1608 1609 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1610 kfree(rss_new); 1611 return -EINVAL; 1612 } 1613 1614 while (!mutex_trylock(&adapter->crit_lock)) { 1615 if (--count == 0) { 1616 kfree(rss_new); 1617 return -EINVAL; 1618 } 1619 1620 udelay(1); 1621 } 1622 1623 spin_lock_bh(&adapter->adv_rss_lock); 1624 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1625 if (rss_old) { 1626 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1627 err = -EBUSY; 1628 } else if (rss_old->hash_flds != hash_flds) { 1629 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1630 rss_old->hash_flds = hash_flds; 1631 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1632 sizeof(rss_new->cfg_msg)); 1633 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1634 } else { 1635 err = -EEXIST; 1636 } 1637 } else { 1638 rss_new_add = true; 1639 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1640 rss_new->packet_hdrs = hdrs; 1641 rss_new->hash_flds = hash_flds; 1642 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1643 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1644 } 1645 spin_unlock_bh(&adapter->adv_rss_lock); 1646 1647 if (!err) 1648 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1649 1650 mutex_unlock(&adapter->crit_lock); 1651 1652 if (!rss_new_add) 1653 kfree(rss_new); 1654 1655 return err; 1656 } 1657 1658 /** 1659 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1660 * @adapter: pointer to the VF adapter structure 1661 * @cmd: ethtool rxnfc command 1662 * 1663 * Returns Success if the flow input set is supported. 1664 */ 1665 static int 1666 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1667 struct ethtool_rxnfc *cmd) 1668 { 1669 struct iavf_adv_rss *rss; 1670 u64 hash_flds; 1671 u32 hdrs; 1672 1673 if (!ADV_RSS_SUPPORT(adapter)) 1674 return -EOPNOTSUPP; 1675 1676 cmd->data = 0; 1677 1678 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1679 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1680 return -EINVAL; 1681 1682 spin_lock_bh(&adapter->adv_rss_lock); 1683 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1684 if (rss) 1685 hash_flds = rss->hash_flds; 1686 else 1687 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1688 spin_unlock_bh(&adapter->adv_rss_lock); 1689 1690 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1691 return -EINVAL; 1692 1693 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1694 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1695 cmd->data |= (u64)RXH_IP_SRC; 1696 1697 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1698 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1699 cmd->data |= (u64)RXH_IP_DST; 1700 1701 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1702 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1703 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1704 cmd->data |= (u64)RXH_L4_B_0_1; 1705 1706 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1707 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1708 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1709 cmd->data |= (u64)RXH_L4_B_2_3; 1710 1711 return 0; 1712 } 1713 1714 /** 1715 * iavf_set_rxnfc - command to set Rx flow rules. 1716 * @netdev: network interface device structure 1717 * @cmd: ethtool rxnfc command 1718 * 1719 * Returns 0 for success and negative values for errors 1720 */ 1721 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1722 { 1723 struct iavf_adapter *adapter = netdev_priv(netdev); 1724 int ret = -EOPNOTSUPP; 1725 1726 switch (cmd->cmd) { 1727 case ETHTOOL_SRXCLSRLINS: 1728 ret = iavf_add_fdir_ethtool(adapter, cmd); 1729 break; 1730 case ETHTOOL_SRXCLSRLDEL: 1731 ret = iavf_del_fdir_ethtool(adapter, cmd); 1732 break; 1733 case ETHTOOL_SRXFH: 1734 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1735 break; 1736 default: 1737 break; 1738 } 1739 1740 return ret; 1741 } 1742 1743 /** 1744 * iavf_get_rxnfc - command to get RX flow classification rules 1745 * @netdev: network interface device structure 1746 * @cmd: ethtool rxnfc command 1747 * @rule_locs: pointer to store rule locations 1748 * 1749 * Returns Success if the command is supported. 1750 **/ 1751 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1752 u32 *rule_locs) 1753 { 1754 struct iavf_adapter *adapter = netdev_priv(netdev); 1755 int ret = -EOPNOTSUPP; 1756 1757 switch (cmd->cmd) { 1758 case ETHTOOL_GRXRINGS: 1759 cmd->data = adapter->num_active_queues; 1760 ret = 0; 1761 break; 1762 case ETHTOOL_GRXCLSRLCNT: 1763 if (!FDIR_FLTR_SUPPORT(adapter)) 1764 break; 1765 cmd->rule_cnt = adapter->fdir_active_fltr; 1766 cmd->data = IAVF_MAX_FDIR_FILTERS; 1767 ret = 0; 1768 break; 1769 case ETHTOOL_GRXCLSRULE: 1770 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1771 break; 1772 case ETHTOOL_GRXCLSRLALL: 1773 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1774 break; 1775 case ETHTOOL_GRXFH: 1776 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1777 break; 1778 default: 1779 break; 1780 } 1781 1782 return ret; 1783 } 1784 /** 1785 * iavf_get_channels: get the number of channels supported by the device 1786 * @netdev: network interface device structure 1787 * @ch: channel information structure 1788 * 1789 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1790 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1791 **/ 1792 static void iavf_get_channels(struct net_device *netdev, 1793 struct ethtool_channels *ch) 1794 { 1795 struct iavf_adapter *adapter = netdev_priv(netdev); 1796 1797 /* Report maximum channels */ 1798 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1799 1800 ch->max_other = NONQ_VECS; 1801 ch->other_count = NONQ_VECS; 1802 1803 ch->combined_count = adapter->num_active_queues; 1804 } 1805 1806 /** 1807 * iavf_set_channels: set the new channel count 1808 * @netdev: network interface device structure 1809 * @ch: channel information structure 1810 * 1811 * Negotiate a new number of channels with the PF then do a reset. During 1812 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1813 * negative on failure. 1814 **/ 1815 static int iavf_set_channels(struct net_device *netdev, 1816 struct ethtool_channels *ch) 1817 { 1818 struct iavf_adapter *adapter = netdev_priv(netdev); 1819 u32 num_req = ch->combined_count; 1820 int i; 1821 1822 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1823 adapter->num_tc) { 1824 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1825 return -EINVAL; 1826 } 1827 1828 /* All of these should have already been checked by ethtool before this 1829 * even gets to us, but just to be sure. 1830 */ 1831 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1832 return -EINVAL; 1833 1834 if (num_req == adapter->num_active_queues) 1835 return 0; 1836 1837 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1838 return -EINVAL; 1839 1840 adapter->num_req_queues = num_req; 1841 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1842 iavf_schedule_reset(adapter); 1843 1844 /* wait for the reset is done */ 1845 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 1846 msleep(IAVF_RESET_WAIT_MS); 1847 if (adapter->flags & IAVF_FLAG_RESET_PENDING) 1848 continue; 1849 break; 1850 } 1851 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 1852 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 1853 adapter->num_active_queues = num_req; 1854 return -EOPNOTSUPP; 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * iavf_get_rxfh_key_size - get the RSS hash key size 1862 * @netdev: network interface device structure 1863 * 1864 * Returns the table size. 1865 **/ 1866 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1867 { 1868 struct iavf_adapter *adapter = netdev_priv(netdev); 1869 1870 return adapter->rss_key_size; 1871 } 1872 1873 /** 1874 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1875 * @netdev: network interface device structure 1876 * 1877 * Returns the table size. 1878 **/ 1879 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1880 { 1881 struct iavf_adapter *adapter = netdev_priv(netdev); 1882 1883 return adapter->rss_lut_size; 1884 } 1885 1886 /** 1887 * iavf_get_rxfh - get the rx flow hash indirection table 1888 * @netdev: network interface device structure 1889 * @indir: indirection table 1890 * @key: hash key 1891 * @hfunc: hash function in use 1892 * 1893 * Reads the indirection table directly from the hardware. Always returns 0. 1894 **/ 1895 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1896 u8 *hfunc) 1897 { 1898 struct iavf_adapter *adapter = netdev_priv(netdev); 1899 u16 i; 1900 1901 if (hfunc) 1902 *hfunc = ETH_RSS_HASH_TOP; 1903 if (key) 1904 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1905 1906 if (indir) 1907 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1908 for (i = 0; i < adapter->rss_lut_size; i++) 1909 indir[i] = (u32)adapter->rss_lut[i]; 1910 1911 return 0; 1912 } 1913 1914 /** 1915 * iavf_set_rxfh - set the rx flow hash indirection table 1916 * @netdev: network interface device structure 1917 * @indir: indirection table 1918 * @key: hash key 1919 * @hfunc: hash function to use 1920 * 1921 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1922 * returns 0 after programming the table. 1923 **/ 1924 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1925 const u8 *key, const u8 hfunc) 1926 { 1927 struct iavf_adapter *adapter = netdev_priv(netdev); 1928 u16 i; 1929 1930 /* Only support toeplitz hash function */ 1931 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1932 return -EOPNOTSUPP; 1933 1934 if (!key && !indir) 1935 return 0; 1936 1937 if (key) 1938 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1939 1940 if (indir) { 1941 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1942 for (i = 0; i < adapter->rss_lut_size; i++) 1943 adapter->rss_lut[i] = (u8)(indir[i]); 1944 } 1945 1946 return iavf_config_rss(adapter); 1947 } 1948 1949 static const struct ethtool_ops iavf_ethtool_ops = { 1950 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1951 ETHTOOL_COALESCE_MAX_FRAMES | 1952 ETHTOOL_COALESCE_MAX_FRAMES_IRQ | 1953 ETHTOOL_COALESCE_USE_ADAPTIVE, 1954 .get_drvinfo = iavf_get_drvinfo, 1955 .get_link = ethtool_op_get_link, 1956 .get_ringparam = iavf_get_ringparam, 1957 .set_ringparam = iavf_set_ringparam, 1958 .get_strings = iavf_get_strings, 1959 .get_ethtool_stats = iavf_get_ethtool_stats, 1960 .get_sset_count = iavf_get_sset_count, 1961 .get_priv_flags = iavf_get_priv_flags, 1962 .set_priv_flags = iavf_set_priv_flags, 1963 .get_msglevel = iavf_get_msglevel, 1964 .set_msglevel = iavf_set_msglevel, 1965 .get_coalesce = iavf_get_coalesce, 1966 .set_coalesce = iavf_set_coalesce, 1967 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1968 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1969 .set_rxnfc = iavf_set_rxnfc, 1970 .get_rxnfc = iavf_get_rxnfc, 1971 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1972 .get_rxfh = iavf_get_rxfh, 1973 .set_rxfh = iavf_set_rxfh, 1974 .get_channels = iavf_get_channels, 1975 .set_channels = iavf_set_channels, 1976 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1977 .get_link_ksettings = iavf_get_link_ksettings, 1978 }; 1979 1980 /** 1981 * iavf_set_ethtool_ops - Initialize ethtool ops struct 1982 * @netdev: network interface device structure 1983 * 1984 * Sets ethtool ops struct in our netdev so that ethtool can call 1985 * our functions. 1986 **/ 1987 void iavf_set_ethtool_ops(struct net_device *netdev) 1988 { 1989 netdev->ethtool_ops = &iavf_ethtool_ops; 1990 } 1991