1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 /* Report the maximum number queues, even if not every queue is 335 * currently configured. Since allocation of queues is in pairs, 336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 337 * at device creation and never changes. 338 */ 339 340 if (sset == ETH_SS_STATS) 341 return IAVF_STATS_LEN + 342 (IAVF_QUEUE_STATS_LEN * 2 * 343 netdev->real_num_tx_queues); 344 else if (sset == ETH_SS_PRIV_FLAGS) 345 return IAVF_PRIV_FLAGS_STR_LEN; 346 else 347 return -EINVAL; 348 } 349 350 /** 351 * iavf_get_ethtool_stats - report device statistics 352 * @netdev: network interface device structure 353 * @stats: ethtool statistics structure 354 * @data: pointer to data buffer 355 * 356 * All statistics are added to the data buffer as an array of u64. 357 **/ 358 static void iavf_get_ethtool_stats(struct net_device *netdev, 359 struct ethtool_stats *stats, u64 *data) 360 { 361 struct iavf_adapter *adapter = netdev_priv(netdev); 362 unsigned int i; 363 364 /* Explicitly request stats refresh */ 365 iavf_schedule_request_stats(adapter); 366 367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 368 369 rcu_read_lock(); 370 /* As num_active_queues describe both tx and rx queues, we can use 371 * it to iterate over rings' stats. 372 */ 373 for (i = 0; i < adapter->num_active_queues; i++) { 374 struct iavf_ring *ring; 375 376 /* Tx rings stats */ 377 ring = &adapter->tx_rings[i]; 378 iavf_add_queue_stats(&data, ring); 379 380 /* Rx rings stats */ 381 ring = &adapter->rx_rings[i]; 382 iavf_add_queue_stats(&data, ring); 383 } 384 rcu_read_unlock(); 385 } 386 387 /** 388 * iavf_get_priv_flag_strings - Get private flag strings 389 * @netdev: network interface device structure 390 * @data: buffer for string data 391 * 392 * Builds the private flags string table 393 **/ 394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 395 { 396 unsigned int i; 397 398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 399 snprintf(data, ETH_GSTRING_LEN, "%s", 400 iavf_gstrings_priv_flags[i].flag_string); 401 data += ETH_GSTRING_LEN; 402 } 403 } 404 405 /** 406 * iavf_get_stat_strings - Get stat strings 407 * @netdev: network interface device structure 408 * @data: buffer for string data 409 * 410 * Builds the statistics string table 411 **/ 412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 413 { 414 unsigned int i; 415 416 iavf_add_stat_strings(&data, iavf_gstrings_stats); 417 418 /* Queues are always allocated in pairs, so we just use 419 * real_num_tx_queues for both Tx and Rx queues. 420 */ 421 for (i = 0; i < netdev->real_num_tx_queues; i++) { 422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 423 "tx", i); 424 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 425 "rx", i); 426 } 427 } 428 429 /** 430 * iavf_get_strings - Get string set 431 * @netdev: network interface device structure 432 * @sset: id of string set 433 * @data: buffer for string data 434 * 435 * Builds string tables for various string sets 436 **/ 437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 438 { 439 switch (sset) { 440 case ETH_SS_STATS: 441 iavf_get_stat_strings(netdev, data); 442 break; 443 case ETH_SS_PRIV_FLAGS: 444 iavf_get_priv_flag_strings(netdev, data); 445 break; 446 default: 447 break; 448 } 449 } 450 451 /** 452 * iavf_get_priv_flags - report device private flags 453 * @netdev: network interface device structure 454 * 455 * The get string set count and the string set should be matched for each 456 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 457 * array. 458 * 459 * Returns a u32 bitmap of flags. 460 **/ 461 static u32 iavf_get_priv_flags(struct net_device *netdev) 462 { 463 struct iavf_adapter *adapter = netdev_priv(netdev); 464 u32 i, ret_flags = 0; 465 466 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 467 const struct iavf_priv_flags *priv_flags; 468 469 priv_flags = &iavf_gstrings_priv_flags[i]; 470 471 if (priv_flags->flag & adapter->flags) 472 ret_flags |= BIT(i); 473 } 474 475 return ret_flags; 476 } 477 478 /** 479 * iavf_set_priv_flags - set private flags 480 * @netdev: network interface device structure 481 * @flags: bit flags to be set 482 **/ 483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 484 { 485 struct iavf_adapter *adapter = netdev_priv(netdev); 486 u32 orig_flags, new_flags, changed_flags; 487 u32 i; 488 489 orig_flags = READ_ONCE(adapter->flags); 490 new_flags = orig_flags; 491 492 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 493 const struct iavf_priv_flags *priv_flags; 494 495 priv_flags = &iavf_gstrings_priv_flags[i]; 496 497 if (flags & BIT(i)) 498 new_flags |= priv_flags->flag; 499 else 500 new_flags &= ~(priv_flags->flag); 501 502 if (priv_flags->read_only && 503 ((orig_flags ^ new_flags) & ~BIT(i))) 504 return -EOPNOTSUPP; 505 } 506 507 /* Before we finalize any flag changes, any checks which we need to 508 * perform to determine if the new flags will be supported should go 509 * here... 510 */ 511 512 /* Compare and exchange the new flags into place. If we failed, that 513 * is if cmpxchg returns anything but the old value, this means 514 * something else must have modified the flags variable since we 515 * copied it. We'll just punt with an error and log something in the 516 * message buffer. 517 */ 518 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 519 dev_warn(&adapter->pdev->dev, 520 "Unable to update adapter->flags as it was modified by another thread...\n"); 521 return -EAGAIN; 522 } 523 524 changed_flags = orig_flags ^ new_flags; 525 526 /* Process any additional changes needed as a result of flag changes. 527 * The changed_flags value reflects the list of bits that were changed 528 * in the code above. 529 */ 530 531 /* issue a reset to force legacy-rx change to take effect */ 532 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 533 if (netif_running(netdev)) { 534 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 535 queue_work(adapter->wq, &adapter->reset_task); 536 } 537 } 538 539 return 0; 540 } 541 542 /** 543 * iavf_get_msglevel - Get debug message level 544 * @netdev: network interface device structure 545 * 546 * Returns current debug message level. 547 **/ 548 static u32 iavf_get_msglevel(struct net_device *netdev) 549 { 550 struct iavf_adapter *adapter = netdev_priv(netdev); 551 552 return adapter->msg_enable; 553 } 554 555 /** 556 * iavf_set_msglevel - Set debug message level 557 * @netdev: network interface device structure 558 * @data: message level 559 * 560 * Set current debug message level. Higher values cause the driver to 561 * be noisier. 562 **/ 563 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 564 { 565 struct iavf_adapter *adapter = netdev_priv(netdev); 566 567 if (IAVF_DEBUG_USER & data) 568 adapter->hw.debug_mask = data; 569 adapter->msg_enable = data; 570 } 571 572 /** 573 * iavf_get_drvinfo - Get driver info 574 * @netdev: network interface device structure 575 * @drvinfo: ethool driver info structure 576 * 577 * Returns information about the driver and device for display to the user. 578 **/ 579 static void iavf_get_drvinfo(struct net_device *netdev, 580 struct ethtool_drvinfo *drvinfo) 581 { 582 struct iavf_adapter *adapter = netdev_priv(netdev); 583 584 strscpy(drvinfo->driver, iavf_driver_name, 32); 585 strscpy(drvinfo->fw_version, "N/A", 4); 586 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 587 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 588 } 589 590 /** 591 * iavf_get_ringparam - Get ring parameters 592 * @netdev: network interface device structure 593 * @ring: ethtool ringparam structure 594 * @kernel_ring: ethtool extenal ringparam structure 595 * @extack: netlink extended ACK report struct 596 * 597 * Returns current ring parameters. TX and RX rings are reported separately, 598 * but the number of rings is not reported. 599 **/ 600 static void iavf_get_ringparam(struct net_device *netdev, 601 struct ethtool_ringparam *ring, 602 struct kernel_ethtool_ringparam *kernel_ring, 603 struct netlink_ext_ack *extack) 604 { 605 struct iavf_adapter *adapter = netdev_priv(netdev); 606 607 ring->rx_max_pending = IAVF_MAX_RXD; 608 ring->tx_max_pending = IAVF_MAX_TXD; 609 ring->rx_pending = adapter->rx_desc_count; 610 ring->tx_pending = adapter->tx_desc_count; 611 } 612 613 /** 614 * iavf_set_ringparam - Set ring parameters 615 * @netdev: network interface device structure 616 * @ring: ethtool ringparam structure 617 * @kernel_ring: ethtool external ringparam structure 618 * @extack: netlink extended ACK report struct 619 * 620 * Sets ring parameters. TX and RX rings are controlled separately, but the 621 * number of rings is not specified, so all rings get the same settings. 622 **/ 623 static int iavf_set_ringparam(struct net_device *netdev, 624 struct ethtool_ringparam *ring, 625 struct kernel_ethtool_ringparam *kernel_ring, 626 struct netlink_ext_ack *extack) 627 { 628 struct iavf_adapter *adapter = netdev_priv(netdev); 629 u32 new_rx_count, new_tx_count; 630 631 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 632 return -EINVAL; 633 634 if (ring->tx_pending > IAVF_MAX_TXD || 635 ring->tx_pending < IAVF_MIN_TXD || 636 ring->rx_pending > IAVF_MAX_RXD || 637 ring->rx_pending < IAVF_MIN_RXD) { 638 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 639 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 640 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 641 return -EINVAL; 642 } 643 644 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 645 if (new_tx_count != ring->tx_pending) 646 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 647 new_tx_count); 648 649 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 650 if (new_rx_count != ring->rx_pending) 651 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 652 new_rx_count); 653 654 /* if nothing to do return success */ 655 if ((new_tx_count == adapter->tx_desc_count) && 656 (new_rx_count == adapter->rx_desc_count)) { 657 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 658 return 0; 659 } 660 661 if (new_tx_count != adapter->tx_desc_count) { 662 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 663 adapter->tx_desc_count, new_tx_count); 664 adapter->tx_desc_count = new_tx_count; 665 } 666 667 if (new_rx_count != adapter->rx_desc_count) { 668 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 669 adapter->rx_desc_count, new_rx_count); 670 adapter->rx_desc_count = new_rx_count; 671 } 672 673 if (netif_running(netdev)) { 674 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 675 queue_work(adapter->wq, &adapter->reset_task); 676 } 677 678 return 0; 679 } 680 681 /** 682 * __iavf_get_coalesce - get per-queue coalesce settings 683 * @netdev: the netdev to check 684 * @ec: ethtool coalesce data structure 685 * @queue: which queue to pick 686 * 687 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 688 * are per queue. If queue is <0 then we default to queue 0 as the 689 * representative value. 690 **/ 691 static int __iavf_get_coalesce(struct net_device *netdev, 692 struct ethtool_coalesce *ec, int queue) 693 { 694 struct iavf_adapter *adapter = netdev_priv(netdev); 695 struct iavf_ring *rx_ring, *tx_ring; 696 697 /* Rx and Tx usecs per queue value. If user doesn't specify the 698 * queue, return queue 0's value to represent. 699 */ 700 if (queue < 0) 701 queue = 0; 702 else if (queue >= adapter->num_active_queues) 703 return -EINVAL; 704 705 rx_ring = &adapter->rx_rings[queue]; 706 tx_ring = &adapter->tx_rings[queue]; 707 708 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 709 ec->use_adaptive_rx_coalesce = 1; 710 711 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 712 ec->use_adaptive_tx_coalesce = 1; 713 714 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 715 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 716 717 return 0; 718 } 719 720 /** 721 * iavf_get_coalesce - Get interrupt coalescing settings 722 * @netdev: network interface device structure 723 * @ec: ethtool coalesce structure 724 * @kernel_coal: ethtool CQE mode setting structure 725 * @extack: extack for reporting error messages 726 * 727 * Returns current coalescing settings. This is referred to elsewhere in the 728 * driver as Interrupt Throttle Rate, as this is how the hardware describes 729 * this functionality. Note that if per-queue settings have been modified this 730 * only represents the settings of queue 0. 731 **/ 732 static int iavf_get_coalesce(struct net_device *netdev, 733 struct ethtool_coalesce *ec, 734 struct kernel_ethtool_coalesce *kernel_coal, 735 struct netlink_ext_ack *extack) 736 { 737 return __iavf_get_coalesce(netdev, ec, -1); 738 } 739 740 /** 741 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 742 * @netdev: netdev to read 743 * @ec: coalesce settings from ethtool 744 * @queue: the queue to read 745 * 746 * Read specific queue's coalesce settings. 747 **/ 748 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 749 struct ethtool_coalesce *ec) 750 { 751 return __iavf_get_coalesce(netdev, ec, queue); 752 } 753 754 /** 755 * iavf_set_itr_per_queue - set ITR values for specific queue 756 * @adapter: the VF adapter struct to set values for 757 * @ec: coalesce settings from ethtool 758 * @queue: the queue to modify 759 * 760 * Change the ITR settings for a specific queue. 761 **/ 762 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 763 struct ethtool_coalesce *ec, int queue) 764 { 765 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 766 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 767 struct iavf_q_vector *q_vector; 768 u16 itr_setting; 769 770 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 771 772 if (ec->rx_coalesce_usecs != itr_setting && 773 ec->use_adaptive_rx_coalesce) { 774 netif_info(adapter, drv, adapter->netdev, 775 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 776 return -EINVAL; 777 } 778 779 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 780 781 if (ec->tx_coalesce_usecs != itr_setting && 782 ec->use_adaptive_tx_coalesce) { 783 netif_info(adapter, drv, adapter->netdev, 784 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 785 return -EINVAL; 786 } 787 788 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 789 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 790 791 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 792 if (!ec->use_adaptive_rx_coalesce) 793 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 794 795 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 796 if (!ec->use_adaptive_tx_coalesce) 797 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 798 799 q_vector = rx_ring->q_vector; 800 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 801 802 q_vector = tx_ring->q_vector; 803 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 804 805 /* The interrupt handler itself will take care of programming 806 * the Tx and Rx ITR values based on the values we have entered 807 * into the q_vector, no need to write the values now. 808 */ 809 return 0; 810 } 811 812 /** 813 * __iavf_set_coalesce - set coalesce settings for particular queue 814 * @netdev: the netdev to change 815 * @ec: ethtool coalesce settings 816 * @queue: the queue to change 817 * 818 * Sets the coalesce settings for a particular queue. 819 **/ 820 static int __iavf_set_coalesce(struct net_device *netdev, 821 struct ethtool_coalesce *ec, int queue) 822 { 823 struct iavf_adapter *adapter = netdev_priv(netdev); 824 int i; 825 826 if (ec->rx_coalesce_usecs == 0) { 827 if (ec->use_adaptive_rx_coalesce) 828 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); 829 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || 830 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { 831 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 832 return -EINVAL; 833 } else if (ec->tx_coalesce_usecs == 0) { 834 if (ec->use_adaptive_tx_coalesce) 835 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); 836 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || 837 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { 838 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 839 return -EINVAL; 840 } 841 842 /* Rx and Tx usecs has per queue value. If user doesn't specify the 843 * queue, apply to all queues. 844 */ 845 if (queue < 0) { 846 for (i = 0; i < adapter->num_active_queues; i++) 847 if (iavf_set_itr_per_queue(adapter, ec, i)) 848 return -EINVAL; 849 } else if (queue < adapter->num_active_queues) { 850 if (iavf_set_itr_per_queue(adapter, ec, queue)) 851 return -EINVAL; 852 } else { 853 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 854 adapter->num_active_queues - 1); 855 return -EINVAL; 856 } 857 858 return 0; 859 } 860 861 /** 862 * iavf_set_coalesce - Set interrupt coalescing settings 863 * @netdev: network interface device structure 864 * @ec: ethtool coalesce structure 865 * @kernel_coal: ethtool CQE mode setting structure 866 * @extack: extack for reporting error messages 867 * 868 * Change current coalescing settings for every queue. 869 **/ 870 static int iavf_set_coalesce(struct net_device *netdev, 871 struct ethtool_coalesce *ec, 872 struct kernel_ethtool_coalesce *kernel_coal, 873 struct netlink_ext_ack *extack) 874 { 875 return __iavf_set_coalesce(netdev, ec, -1); 876 } 877 878 /** 879 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 880 * @netdev: the netdev to change 881 * @ec: ethtool's coalesce settings 882 * @queue: the queue to modify 883 * 884 * Modifies a specific queue's coalesce settings. 885 */ 886 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 887 struct ethtool_coalesce *ec) 888 { 889 return __iavf_set_coalesce(netdev, ec, queue); 890 } 891 892 /** 893 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 894 * flow type values 895 * @flow: filter type to be converted 896 * 897 * Returns the corresponding ethtool flow type. 898 */ 899 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 900 { 901 switch (flow) { 902 case IAVF_FDIR_FLOW_IPV4_TCP: 903 return TCP_V4_FLOW; 904 case IAVF_FDIR_FLOW_IPV4_UDP: 905 return UDP_V4_FLOW; 906 case IAVF_FDIR_FLOW_IPV4_SCTP: 907 return SCTP_V4_FLOW; 908 case IAVF_FDIR_FLOW_IPV4_AH: 909 return AH_V4_FLOW; 910 case IAVF_FDIR_FLOW_IPV4_ESP: 911 return ESP_V4_FLOW; 912 case IAVF_FDIR_FLOW_IPV4_OTHER: 913 return IPV4_USER_FLOW; 914 case IAVF_FDIR_FLOW_IPV6_TCP: 915 return TCP_V6_FLOW; 916 case IAVF_FDIR_FLOW_IPV6_UDP: 917 return UDP_V6_FLOW; 918 case IAVF_FDIR_FLOW_IPV6_SCTP: 919 return SCTP_V6_FLOW; 920 case IAVF_FDIR_FLOW_IPV6_AH: 921 return AH_V6_FLOW; 922 case IAVF_FDIR_FLOW_IPV6_ESP: 923 return ESP_V6_FLOW; 924 case IAVF_FDIR_FLOW_IPV6_OTHER: 925 return IPV6_USER_FLOW; 926 case IAVF_FDIR_FLOW_NON_IP_L2: 927 return ETHER_FLOW; 928 default: 929 /* 0 is undefined ethtool flow */ 930 return 0; 931 } 932 } 933 934 /** 935 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 936 * @eth: Ethtool flow type to be converted 937 * 938 * Returns flow enum 939 */ 940 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 941 { 942 switch (eth) { 943 case TCP_V4_FLOW: 944 return IAVF_FDIR_FLOW_IPV4_TCP; 945 case UDP_V4_FLOW: 946 return IAVF_FDIR_FLOW_IPV4_UDP; 947 case SCTP_V4_FLOW: 948 return IAVF_FDIR_FLOW_IPV4_SCTP; 949 case AH_V4_FLOW: 950 return IAVF_FDIR_FLOW_IPV4_AH; 951 case ESP_V4_FLOW: 952 return IAVF_FDIR_FLOW_IPV4_ESP; 953 case IPV4_USER_FLOW: 954 return IAVF_FDIR_FLOW_IPV4_OTHER; 955 case TCP_V6_FLOW: 956 return IAVF_FDIR_FLOW_IPV6_TCP; 957 case UDP_V6_FLOW: 958 return IAVF_FDIR_FLOW_IPV6_UDP; 959 case SCTP_V6_FLOW: 960 return IAVF_FDIR_FLOW_IPV6_SCTP; 961 case AH_V6_FLOW: 962 return IAVF_FDIR_FLOW_IPV6_AH; 963 case ESP_V6_FLOW: 964 return IAVF_FDIR_FLOW_IPV6_ESP; 965 case IPV6_USER_FLOW: 966 return IAVF_FDIR_FLOW_IPV6_OTHER; 967 case ETHER_FLOW: 968 return IAVF_FDIR_FLOW_NON_IP_L2; 969 default: 970 return IAVF_FDIR_FLOW_NONE; 971 } 972 } 973 974 /** 975 * iavf_is_mask_valid - check mask field set 976 * @mask: full mask to check 977 * @field: field for which mask should be valid 978 * 979 * If the mask is fully set return true. If it is not valid for field return 980 * false. 981 */ 982 static bool iavf_is_mask_valid(u64 mask, u64 field) 983 { 984 return (mask & field) == field; 985 } 986 987 /** 988 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 989 * @fsp: pointer to ethtool Rx flow specification 990 * @fltr: pointer to Flow Director filter for userdef data storage 991 * 992 * Returns 0 on success, negative error value on failure 993 */ 994 static int 995 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 996 struct iavf_fdir_fltr *fltr) 997 { 998 struct iavf_flex_word *flex; 999 int i, cnt = 0; 1000 1001 if (!(fsp->flow_type & FLOW_EXT)) 1002 return 0; 1003 1004 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 1005 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 1006 #define IAVF_USERDEF_FLEX_OFFS_S 16 1007 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 1008 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 1009 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 1010 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 1011 1012 if (!value || !mask) 1013 continue; 1014 1015 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1016 return -EINVAL; 1017 1018 /* 504 is the maximum value for offsets, and offset is measured 1019 * from the start of the MAC address. 1020 */ 1021 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1022 flex = &fltr->flex_words[cnt++]; 1023 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1024 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1025 IAVF_USERDEF_FLEX_OFFS_S; 1026 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1027 return -EINVAL; 1028 } 1029 1030 fltr->flex_cnt = cnt; 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * iavf_fill_rx_flow_ext_data - fill the additional data 1037 * @fsp: pointer to ethtool Rx flow specification 1038 * @fltr: pointer to Flow Director filter to get additional data 1039 */ 1040 static void 1041 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1042 struct iavf_fdir_fltr *fltr) 1043 { 1044 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1045 return; 1046 1047 fsp->flow_type |= FLOW_EXT; 1048 1049 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1050 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1051 } 1052 1053 /** 1054 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1055 * @adapter: the VF adapter structure that contains filter list 1056 * @cmd: ethtool command data structure to receive the filter data 1057 * 1058 * Returns 0 as expected for success by ethtool 1059 */ 1060 static int 1061 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1062 struct ethtool_rxnfc *cmd) 1063 { 1064 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1065 struct iavf_fdir_fltr *rule = NULL; 1066 int ret = 0; 1067 1068 if (!FDIR_FLTR_SUPPORT(adapter)) 1069 return -EOPNOTSUPP; 1070 1071 spin_lock_bh(&adapter->fdir_fltr_lock); 1072 1073 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1074 if (!rule) { 1075 ret = -EINVAL; 1076 goto release_lock; 1077 } 1078 1079 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1080 1081 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1082 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1083 1084 switch (fsp->flow_type) { 1085 case TCP_V4_FLOW: 1086 case UDP_V4_FLOW: 1087 case SCTP_V4_FLOW: 1088 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1089 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1090 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1091 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1092 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1093 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1094 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1095 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1096 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1097 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1098 break; 1099 case AH_V4_FLOW: 1100 case ESP_V4_FLOW: 1101 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1102 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1103 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1104 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1105 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1106 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1107 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1108 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1109 break; 1110 case IPV4_USER_FLOW: 1111 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1112 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1113 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1114 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1115 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1116 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1117 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1118 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1119 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1120 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1121 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1122 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1123 break; 1124 case TCP_V6_FLOW: 1125 case UDP_V6_FLOW: 1126 case SCTP_V6_FLOW: 1127 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1128 sizeof(struct in6_addr)); 1129 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1130 sizeof(struct in6_addr)); 1131 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1132 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1133 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1134 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1135 sizeof(struct in6_addr)); 1136 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1137 sizeof(struct in6_addr)); 1138 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1139 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1140 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1141 break; 1142 case AH_V6_FLOW: 1143 case ESP_V6_FLOW: 1144 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1145 sizeof(struct in6_addr)); 1146 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1147 sizeof(struct in6_addr)); 1148 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1149 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1150 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1151 sizeof(struct in6_addr)); 1152 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1153 sizeof(struct in6_addr)); 1154 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1155 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1156 break; 1157 case IPV6_USER_FLOW: 1158 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1159 sizeof(struct in6_addr)); 1160 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1161 sizeof(struct in6_addr)); 1162 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1163 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1164 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1165 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1166 sizeof(struct in6_addr)); 1167 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1168 sizeof(struct in6_addr)); 1169 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1170 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1171 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1172 break; 1173 case ETHER_FLOW: 1174 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1175 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1176 break; 1177 default: 1178 ret = -EINVAL; 1179 break; 1180 } 1181 1182 iavf_fill_rx_flow_ext_data(fsp, rule); 1183 1184 if (rule->action == VIRTCHNL_ACTION_DROP) 1185 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1186 else 1187 fsp->ring_cookie = rule->q_index; 1188 1189 release_lock: 1190 spin_unlock_bh(&adapter->fdir_fltr_lock); 1191 return ret; 1192 } 1193 1194 /** 1195 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1196 * @adapter: the VF adapter structure containing the filter list 1197 * @cmd: ethtool command data structure 1198 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1199 * 1200 * Returns 0 as expected for success by ethtool 1201 */ 1202 static int 1203 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1204 u32 *rule_locs) 1205 { 1206 struct iavf_fdir_fltr *fltr; 1207 unsigned int cnt = 0; 1208 int val = 0; 1209 1210 if (!FDIR_FLTR_SUPPORT(adapter)) 1211 return -EOPNOTSUPP; 1212 1213 cmd->data = IAVF_MAX_FDIR_FILTERS; 1214 1215 spin_lock_bh(&adapter->fdir_fltr_lock); 1216 1217 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1218 if (cnt == cmd->rule_cnt) { 1219 val = -EMSGSIZE; 1220 goto release_lock; 1221 } 1222 rule_locs[cnt] = fltr->loc; 1223 cnt++; 1224 } 1225 1226 release_lock: 1227 spin_unlock_bh(&adapter->fdir_fltr_lock); 1228 if (!val) 1229 cmd->rule_cnt = cnt; 1230 1231 return val; 1232 } 1233 1234 /** 1235 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1236 * @adapter: pointer to the VF adapter structure 1237 * @fsp: pointer to ethtool Rx flow specification 1238 * @fltr: filter structure 1239 */ 1240 static int 1241 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1242 struct iavf_fdir_fltr *fltr) 1243 { 1244 u32 flow_type, q_index = 0; 1245 enum virtchnl_action act; 1246 int err; 1247 1248 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1249 act = VIRTCHNL_ACTION_DROP; 1250 } else { 1251 q_index = fsp->ring_cookie; 1252 if (q_index >= adapter->num_active_queues) 1253 return -EINVAL; 1254 1255 act = VIRTCHNL_ACTION_QUEUE; 1256 } 1257 1258 fltr->action = act; 1259 fltr->loc = fsp->location; 1260 fltr->q_index = q_index; 1261 1262 if (fsp->flow_type & FLOW_EXT) { 1263 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1264 sizeof(fltr->ext_data.usr_def)); 1265 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1266 sizeof(fltr->ext_mask.usr_def)); 1267 } 1268 1269 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1270 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1271 1272 switch (flow_type) { 1273 case TCP_V4_FLOW: 1274 case UDP_V4_FLOW: 1275 case SCTP_V4_FLOW: 1276 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1277 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1278 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1279 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1280 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1281 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1282 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1283 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1284 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1285 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1286 break; 1287 case AH_V4_FLOW: 1288 case ESP_V4_FLOW: 1289 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1290 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1291 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1292 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1293 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1294 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1295 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1296 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1297 break; 1298 case IPV4_USER_FLOW: 1299 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1300 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1301 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1302 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1303 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1304 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1305 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1306 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1307 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1308 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1309 break; 1310 case TCP_V6_FLOW: 1311 case UDP_V6_FLOW: 1312 case SCTP_V6_FLOW: 1313 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1314 sizeof(struct in6_addr)); 1315 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1316 sizeof(struct in6_addr)); 1317 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1318 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1319 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1320 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1321 sizeof(struct in6_addr)); 1322 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1323 sizeof(struct in6_addr)); 1324 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1325 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1326 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1327 break; 1328 case AH_V6_FLOW: 1329 case ESP_V6_FLOW: 1330 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1331 sizeof(struct in6_addr)); 1332 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1333 sizeof(struct in6_addr)); 1334 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1335 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1336 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1337 sizeof(struct in6_addr)); 1338 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1339 sizeof(struct in6_addr)); 1340 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1341 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1342 break; 1343 case IPV6_USER_FLOW: 1344 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1345 sizeof(struct in6_addr)); 1346 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1347 sizeof(struct in6_addr)); 1348 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1349 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1350 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1351 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1352 sizeof(struct in6_addr)); 1353 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1354 sizeof(struct in6_addr)); 1355 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1356 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1357 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1358 break; 1359 case ETHER_FLOW: 1360 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1361 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1362 break; 1363 default: 1364 /* not doing un-parsed flow types */ 1365 return -EINVAL; 1366 } 1367 1368 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1369 return -EEXIST; 1370 1371 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1372 if (err) 1373 return err; 1374 1375 return iavf_fill_fdir_add_msg(adapter, fltr); 1376 } 1377 1378 /** 1379 * iavf_add_fdir_ethtool - add Flow Director filter 1380 * @adapter: pointer to the VF adapter structure 1381 * @cmd: command to add Flow Director filter 1382 * 1383 * Returns 0 on success and negative values for failure 1384 */ 1385 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1386 { 1387 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1388 struct iavf_fdir_fltr *fltr; 1389 int count = 50; 1390 int err; 1391 1392 if (!FDIR_FLTR_SUPPORT(adapter)) 1393 return -EOPNOTSUPP; 1394 1395 if (fsp->flow_type & FLOW_MAC_EXT) 1396 return -EINVAL; 1397 1398 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1399 dev_err(&adapter->pdev->dev, 1400 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1401 IAVF_MAX_FDIR_FILTERS); 1402 return -ENOSPC; 1403 } 1404 1405 spin_lock_bh(&adapter->fdir_fltr_lock); 1406 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1407 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1408 spin_unlock_bh(&adapter->fdir_fltr_lock); 1409 return -EEXIST; 1410 } 1411 spin_unlock_bh(&adapter->fdir_fltr_lock); 1412 1413 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1414 if (!fltr) 1415 return -ENOMEM; 1416 1417 while (!mutex_trylock(&adapter->crit_lock)) { 1418 if (--count == 0) { 1419 kfree(fltr); 1420 return -EINVAL; 1421 } 1422 udelay(1); 1423 } 1424 1425 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1426 if (err) 1427 goto ret; 1428 1429 spin_lock_bh(&adapter->fdir_fltr_lock); 1430 iavf_fdir_list_add_fltr(adapter, fltr); 1431 adapter->fdir_active_fltr++; 1432 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1433 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1434 spin_unlock_bh(&adapter->fdir_fltr_lock); 1435 1436 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1437 1438 ret: 1439 if (err && fltr) 1440 kfree(fltr); 1441 1442 mutex_unlock(&adapter->crit_lock); 1443 return err; 1444 } 1445 1446 /** 1447 * iavf_del_fdir_ethtool - delete Flow Director filter 1448 * @adapter: pointer to the VF adapter structure 1449 * @cmd: command to delete Flow Director filter 1450 * 1451 * Returns 0 on success and negative values for failure 1452 */ 1453 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1454 { 1455 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1456 struct iavf_fdir_fltr *fltr = NULL; 1457 int err = 0; 1458 1459 if (!FDIR_FLTR_SUPPORT(adapter)) 1460 return -EOPNOTSUPP; 1461 1462 spin_lock_bh(&adapter->fdir_fltr_lock); 1463 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1464 if (fltr) { 1465 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1466 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1467 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1468 } else { 1469 err = -EBUSY; 1470 } 1471 } else if (adapter->fdir_active_fltr) { 1472 err = -EINVAL; 1473 } 1474 spin_unlock_bh(&adapter->fdir_fltr_lock); 1475 1476 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1477 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1478 1479 return err; 1480 } 1481 1482 /** 1483 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1484 * @cmd: ethtool rxnfc command 1485 * 1486 * This function parses the rxnfc command and returns intended 1487 * header types for RSS configuration 1488 */ 1489 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1490 { 1491 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1492 1493 switch (cmd->flow_type) { 1494 case TCP_V4_FLOW: 1495 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1496 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1497 break; 1498 case UDP_V4_FLOW: 1499 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1500 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1501 break; 1502 case SCTP_V4_FLOW: 1503 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1504 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1505 break; 1506 case TCP_V6_FLOW: 1507 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1508 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1509 break; 1510 case UDP_V6_FLOW: 1511 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1512 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1513 break; 1514 case SCTP_V6_FLOW: 1515 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1516 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1517 break; 1518 default: 1519 break; 1520 } 1521 1522 return hdrs; 1523 } 1524 1525 /** 1526 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1527 * @cmd: ethtool rxnfc command 1528 * 1529 * This function parses the rxnfc command and returns intended hash fields for 1530 * RSS configuration 1531 */ 1532 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1533 { 1534 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1535 1536 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1537 switch (cmd->flow_type) { 1538 case TCP_V4_FLOW: 1539 case UDP_V4_FLOW: 1540 case SCTP_V4_FLOW: 1541 if (cmd->data & RXH_IP_SRC) 1542 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1543 if (cmd->data & RXH_IP_DST) 1544 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1545 break; 1546 case TCP_V6_FLOW: 1547 case UDP_V6_FLOW: 1548 case SCTP_V6_FLOW: 1549 if (cmd->data & RXH_IP_SRC) 1550 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1551 if (cmd->data & RXH_IP_DST) 1552 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1553 break; 1554 default: 1555 break; 1556 } 1557 } 1558 1559 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1560 switch (cmd->flow_type) { 1561 case TCP_V4_FLOW: 1562 case TCP_V6_FLOW: 1563 if (cmd->data & RXH_L4_B_0_1) 1564 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1565 if (cmd->data & RXH_L4_B_2_3) 1566 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1567 break; 1568 case UDP_V4_FLOW: 1569 case UDP_V6_FLOW: 1570 if (cmd->data & RXH_L4_B_0_1) 1571 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1572 if (cmd->data & RXH_L4_B_2_3) 1573 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1574 break; 1575 case SCTP_V4_FLOW: 1576 case SCTP_V6_FLOW: 1577 if (cmd->data & RXH_L4_B_0_1) 1578 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1579 if (cmd->data & RXH_L4_B_2_3) 1580 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1581 break; 1582 default: 1583 break; 1584 } 1585 } 1586 1587 return hfld; 1588 } 1589 1590 /** 1591 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1592 * @adapter: pointer to the VF adapter structure 1593 * @cmd: ethtool rxnfc command 1594 * 1595 * Returns Success if the flow input set is supported. 1596 */ 1597 static int 1598 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1599 struct ethtool_rxnfc *cmd) 1600 { 1601 struct iavf_adv_rss *rss_old, *rss_new; 1602 bool rss_new_add = false; 1603 int count = 50, err = 0; 1604 u64 hash_flds; 1605 u32 hdrs; 1606 1607 if (!ADV_RSS_SUPPORT(adapter)) 1608 return -EOPNOTSUPP; 1609 1610 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1611 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1612 return -EINVAL; 1613 1614 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1615 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1616 return -EINVAL; 1617 1618 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1619 if (!rss_new) 1620 return -ENOMEM; 1621 1622 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1623 kfree(rss_new); 1624 return -EINVAL; 1625 } 1626 1627 while (!mutex_trylock(&adapter->crit_lock)) { 1628 if (--count == 0) { 1629 kfree(rss_new); 1630 return -EINVAL; 1631 } 1632 1633 udelay(1); 1634 } 1635 1636 spin_lock_bh(&adapter->adv_rss_lock); 1637 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1638 if (rss_old) { 1639 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1640 err = -EBUSY; 1641 } else if (rss_old->hash_flds != hash_flds) { 1642 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1643 rss_old->hash_flds = hash_flds; 1644 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1645 sizeof(rss_new->cfg_msg)); 1646 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1647 } else { 1648 err = -EEXIST; 1649 } 1650 } else { 1651 rss_new_add = true; 1652 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1653 rss_new->packet_hdrs = hdrs; 1654 rss_new->hash_flds = hash_flds; 1655 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1656 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1657 } 1658 spin_unlock_bh(&adapter->adv_rss_lock); 1659 1660 if (!err) 1661 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1662 1663 mutex_unlock(&adapter->crit_lock); 1664 1665 if (!rss_new_add) 1666 kfree(rss_new); 1667 1668 return err; 1669 } 1670 1671 /** 1672 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1673 * @adapter: pointer to the VF adapter structure 1674 * @cmd: ethtool rxnfc command 1675 * 1676 * Returns Success if the flow input set is supported. 1677 */ 1678 static int 1679 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1680 struct ethtool_rxnfc *cmd) 1681 { 1682 struct iavf_adv_rss *rss; 1683 u64 hash_flds; 1684 u32 hdrs; 1685 1686 if (!ADV_RSS_SUPPORT(adapter)) 1687 return -EOPNOTSUPP; 1688 1689 cmd->data = 0; 1690 1691 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1692 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1693 return -EINVAL; 1694 1695 spin_lock_bh(&adapter->adv_rss_lock); 1696 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1697 if (rss) 1698 hash_flds = rss->hash_flds; 1699 else 1700 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1701 spin_unlock_bh(&adapter->adv_rss_lock); 1702 1703 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1704 return -EINVAL; 1705 1706 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1707 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1708 cmd->data |= (u64)RXH_IP_SRC; 1709 1710 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1711 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1712 cmd->data |= (u64)RXH_IP_DST; 1713 1714 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1715 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1716 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1717 cmd->data |= (u64)RXH_L4_B_0_1; 1718 1719 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1720 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1721 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1722 cmd->data |= (u64)RXH_L4_B_2_3; 1723 1724 return 0; 1725 } 1726 1727 /** 1728 * iavf_set_rxnfc - command to set Rx flow rules. 1729 * @netdev: network interface device structure 1730 * @cmd: ethtool rxnfc command 1731 * 1732 * Returns 0 for success and negative values for errors 1733 */ 1734 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1735 { 1736 struct iavf_adapter *adapter = netdev_priv(netdev); 1737 int ret = -EOPNOTSUPP; 1738 1739 switch (cmd->cmd) { 1740 case ETHTOOL_SRXCLSRLINS: 1741 ret = iavf_add_fdir_ethtool(adapter, cmd); 1742 break; 1743 case ETHTOOL_SRXCLSRLDEL: 1744 ret = iavf_del_fdir_ethtool(adapter, cmd); 1745 break; 1746 case ETHTOOL_SRXFH: 1747 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1748 break; 1749 default: 1750 break; 1751 } 1752 1753 return ret; 1754 } 1755 1756 /** 1757 * iavf_get_rxnfc - command to get RX flow classification rules 1758 * @netdev: network interface device structure 1759 * @cmd: ethtool rxnfc command 1760 * @rule_locs: pointer to store rule locations 1761 * 1762 * Returns Success if the command is supported. 1763 **/ 1764 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1765 u32 *rule_locs) 1766 { 1767 struct iavf_adapter *adapter = netdev_priv(netdev); 1768 int ret = -EOPNOTSUPP; 1769 1770 switch (cmd->cmd) { 1771 case ETHTOOL_GRXRINGS: 1772 cmd->data = adapter->num_active_queues; 1773 ret = 0; 1774 break; 1775 case ETHTOOL_GRXCLSRLCNT: 1776 if (!FDIR_FLTR_SUPPORT(adapter)) 1777 break; 1778 cmd->rule_cnt = adapter->fdir_active_fltr; 1779 cmd->data = IAVF_MAX_FDIR_FILTERS; 1780 ret = 0; 1781 break; 1782 case ETHTOOL_GRXCLSRULE: 1783 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1784 break; 1785 case ETHTOOL_GRXCLSRLALL: 1786 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1787 break; 1788 case ETHTOOL_GRXFH: 1789 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1790 break; 1791 default: 1792 break; 1793 } 1794 1795 return ret; 1796 } 1797 /** 1798 * iavf_get_channels: get the number of channels supported by the device 1799 * @netdev: network interface device structure 1800 * @ch: channel information structure 1801 * 1802 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1803 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1804 **/ 1805 static void iavf_get_channels(struct net_device *netdev, 1806 struct ethtool_channels *ch) 1807 { 1808 struct iavf_adapter *adapter = netdev_priv(netdev); 1809 1810 /* Report maximum channels */ 1811 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1812 1813 ch->max_other = NONQ_VECS; 1814 ch->other_count = NONQ_VECS; 1815 1816 ch->combined_count = adapter->num_active_queues; 1817 } 1818 1819 /** 1820 * iavf_set_channels: set the new channel count 1821 * @netdev: network interface device structure 1822 * @ch: channel information structure 1823 * 1824 * Negotiate a new number of channels with the PF then do a reset. During 1825 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1826 * negative on failure. 1827 **/ 1828 static int iavf_set_channels(struct net_device *netdev, 1829 struct ethtool_channels *ch) 1830 { 1831 struct iavf_adapter *adapter = netdev_priv(netdev); 1832 u32 num_req = ch->combined_count; 1833 int i; 1834 1835 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1836 adapter->num_tc) { 1837 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1838 return -EINVAL; 1839 } 1840 1841 /* All of these should have already been checked by ethtool before this 1842 * even gets to us, but just to be sure. 1843 */ 1844 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1845 return -EINVAL; 1846 1847 if (num_req == adapter->num_active_queues) 1848 return 0; 1849 1850 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1851 return -EINVAL; 1852 1853 adapter->num_req_queues = num_req; 1854 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1855 iavf_schedule_reset(adapter); 1856 1857 /* wait for the reset is done */ 1858 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 1859 msleep(IAVF_RESET_WAIT_MS); 1860 if (adapter->flags & IAVF_FLAG_RESET_PENDING) 1861 continue; 1862 break; 1863 } 1864 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 1865 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 1866 adapter->num_active_queues = num_req; 1867 return -EOPNOTSUPP; 1868 } 1869 1870 return 0; 1871 } 1872 1873 /** 1874 * iavf_get_rxfh_key_size - get the RSS hash key size 1875 * @netdev: network interface device structure 1876 * 1877 * Returns the table size. 1878 **/ 1879 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1880 { 1881 struct iavf_adapter *adapter = netdev_priv(netdev); 1882 1883 return adapter->rss_key_size; 1884 } 1885 1886 /** 1887 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1888 * @netdev: network interface device structure 1889 * 1890 * Returns the table size. 1891 **/ 1892 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1893 { 1894 struct iavf_adapter *adapter = netdev_priv(netdev); 1895 1896 return adapter->rss_lut_size; 1897 } 1898 1899 /** 1900 * iavf_get_rxfh - get the rx flow hash indirection table 1901 * @netdev: network interface device structure 1902 * @indir: indirection table 1903 * @key: hash key 1904 * @hfunc: hash function in use 1905 * 1906 * Reads the indirection table directly from the hardware. Always returns 0. 1907 **/ 1908 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1909 u8 *hfunc) 1910 { 1911 struct iavf_adapter *adapter = netdev_priv(netdev); 1912 u16 i; 1913 1914 if (hfunc) 1915 *hfunc = ETH_RSS_HASH_TOP; 1916 if (key) 1917 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1918 1919 if (indir) 1920 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1921 for (i = 0; i < adapter->rss_lut_size; i++) 1922 indir[i] = (u32)adapter->rss_lut[i]; 1923 1924 return 0; 1925 } 1926 1927 /** 1928 * iavf_set_rxfh - set the rx flow hash indirection table 1929 * @netdev: network interface device structure 1930 * @indir: indirection table 1931 * @key: hash key 1932 * @hfunc: hash function to use 1933 * 1934 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1935 * returns 0 after programming the table. 1936 **/ 1937 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1938 const u8 *key, const u8 hfunc) 1939 { 1940 struct iavf_adapter *adapter = netdev_priv(netdev); 1941 u16 i; 1942 1943 /* Only support toeplitz hash function */ 1944 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1945 return -EOPNOTSUPP; 1946 1947 if (!key && !indir) 1948 return 0; 1949 1950 if (key) 1951 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1952 1953 if (indir) { 1954 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1955 for (i = 0; i < adapter->rss_lut_size; i++) 1956 adapter->rss_lut[i] = (u8)(indir[i]); 1957 } 1958 1959 return iavf_config_rss(adapter); 1960 } 1961 1962 static const struct ethtool_ops iavf_ethtool_ops = { 1963 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1964 ETHTOOL_COALESCE_USE_ADAPTIVE, 1965 .get_drvinfo = iavf_get_drvinfo, 1966 .get_link = ethtool_op_get_link, 1967 .get_ringparam = iavf_get_ringparam, 1968 .set_ringparam = iavf_set_ringparam, 1969 .get_strings = iavf_get_strings, 1970 .get_ethtool_stats = iavf_get_ethtool_stats, 1971 .get_sset_count = iavf_get_sset_count, 1972 .get_priv_flags = iavf_get_priv_flags, 1973 .set_priv_flags = iavf_set_priv_flags, 1974 .get_msglevel = iavf_get_msglevel, 1975 .set_msglevel = iavf_set_msglevel, 1976 .get_coalesce = iavf_get_coalesce, 1977 .set_coalesce = iavf_set_coalesce, 1978 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1979 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1980 .set_rxnfc = iavf_set_rxnfc, 1981 .get_rxnfc = iavf_get_rxnfc, 1982 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1983 .get_rxfh = iavf_get_rxfh, 1984 .set_rxfh = iavf_set_rxfh, 1985 .get_channels = iavf_get_channels, 1986 .set_channels = iavf_set_channels, 1987 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1988 .get_link_ksettings = iavf_get_link_ksettings, 1989 }; 1990 1991 /** 1992 * iavf_set_ethtool_ops - Initialize ethtool ops struct 1993 * @netdev: network interface device structure 1994 * 1995 * Sets ethtool ops struct in our netdev so that ethtool can call 1996 * our functions. 1997 **/ 1998 void iavf_set_ethtool_ops(struct net_device *netdev) 1999 { 2000 netdev->ethtool_ops = &iavf_ethtool_ops; 2001 } 2002