1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry_irq. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 /* Report the maximum number queues, even if not every queue is 335 * currently configured. Since allocation of queues is in pairs, 336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 337 * at device creation and never changes. 338 */ 339 340 if (sset == ETH_SS_STATS) 341 return IAVF_STATS_LEN + 342 (IAVF_QUEUE_STATS_LEN * 2 * 343 netdev->real_num_tx_queues); 344 else if (sset == ETH_SS_PRIV_FLAGS) 345 return IAVF_PRIV_FLAGS_STR_LEN; 346 else 347 return -EINVAL; 348 } 349 350 /** 351 * iavf_get_ethtool_stats - report device statistics 352 * @netdev: network interface device structure 353 * @stats: ethtool statistics structure 354 * @data: pointer to data buffer 355 * 356 * All statistics are added to the data buffer as an array of u64. 357 **/ 358 static void iavf_get_ethtool_stats(struct net_device *netdev, 359 struct ethtool_stats *stats, u64 *data) 360 { 361 struct iavf_adapter *adapter = netdev_priv(netdev); 362 unsigned int i; 363 364 /* Explicitly request stats refresh */ 365 iavf_schedule_request_stats(adapter); 366 367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 368 369 rcu_read_lock(); 370 /* As num_active_queues describe both tx and rx queues, we can use 371 * it to iterate over rings' stats. 372 */ 373 for (i = 0; i < adapter->num_active_queues; i++) { 374 struct iavf_ring *ring; 375 376 /* Tx rings stats */ 377 ring = &adapter->tx_rings[i]; 378 iavf_add_queue_stats(&data, ring); 379 380 /* Rx rings stats */ 381 ring = &adapter->rx_rings[i]; 382 iavf_add_queue_stats(&data, ring); 383 } 384 rcu_read_unlock(); 385 } 386 387 /** 388 * iavf_get_priv_flag_strings - Get private flag strings 389 * @netdev: network interface device structure 390 * @data: buffer for string data 391 * 392 * Builds the private flags string table 393 **/ 394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 395 { 396 unsigned int i; 397 398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 399 snprintf(data, ETH_GSTRING_LEN, "%s", 400 iavf_gstrings_priv_flags[i].flag_string); 401 data += ETH_GSTRING_LEN; 402 } 403 } 404 405 /** 406 * iavf_get_stat_strings - Get stat strings 407 * @netdev: network interface device structure 408 * @data: buffer for string data 409 * 410 * Builds the statistics string table 411 **/ 412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 413 { 414 unsigned int i; 415 416 iavf_add_stat_strings(&data, iavf_gstrings_stats); 417 418 /* Queues are always allocated in pairs, so we just use 419 * real_num_tx_queues for both Tx and Rx queues. 420 */ 421 for (i = 0; i < netdev->real_num_tx_queues; i++) { 422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 423 "tx", i); 424 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 425 "rx", i); 426 } 427 } 428 429 /** 430 * iavf_get_strings - Get string set 431 * @netdev: network interface device structure 432 * @sset: id of string set 433 * @data: buffer for string data 434 * 435 * Builds string tables for various string sets 436 **/ 437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 438 { 439 switch (sset) { 440 case ETH_SS_STATS: 441 iavf_get_stat_strings(netdev, data); 442 break; 443 case ETH_SS_PRIV_FLAGS: 444 iavf_get_priv_flag_strings(netdev, data); 445 break; 446 default: 447 break; 448 } 449 } 450 451 /** 452 * iavf_get_priv_flags - report device private flags 453 * @netdev: network interface device structure 454 * 455 * The get string set count and the string set should be matched for each 456 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 457 * array. 458 * 459 * Returns a u32 bitmap of flags. 460 **/ 461 static u32 iavf_get_priv_flags(struct net_device *netdev) 462 { 463 struct iavf_adapter *adapter = netdev_priv(netdev); 464 u32 i, ret_flags = 0; 465 466 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 467 const struct iavf_priv_flags *priv_flags; 468 469 priv_flags = &iavf_gstrings_priv_flags[i]; 470 471 if (priv_flags->flag & adapter->flags) 472 ret_flags |= BIT(i); 473 } 474 475 return ret_flags; 476 } 477 478 /** 479 * iavf_set_priv_flags - set private flags 480 * @netdev: network interface device structure 481 * @flags: bit flags to be set 482 **/ 483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 484 { 485 struct iavf_adapter *adapter = netdev_priv(netdev); 486 u32 orig_flags, new_flags, changed_flags; 487 u32 i; 488 489 orig_flags = READ_ONCE(adapter->flags); 490 new_flags = orig_flags; 491 492 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 493 const struct iavf_priv_flags *priv_flags; 494 495 priv_flags = &iavf_gstrings_priv_flags[i]; 496 497 if (flags & BIT(i)) 498 new_flags |= priv_flags->flag; 499 else 500 new_flags &= ~(priv_flags->flag); 501 502 if (priv_flags->read_only && 503 ((orig_flags ^ new_flags) & ~BIT(i))) 504 return -EOPNOTSUPP; 505 } 506 507 /* Before we finalize any flag changes, any checks which we need to 508 * perform to determine if the new flags will be supported should go 509 * here... 510 */ 511 512 /* Compare and exchange the new flags into place. If we failed, that 513 * is if cmpxchg returns anything but the old value, this means 514 * something else must have modified the flags variable since we 515 * copied it. We'll just punt with an error and log something in the 516 * message buffer. 517 */ 518 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 519 dev_warn(&adapter->pdev->dev, 520 "Unable to update adapter->flags as it was modified by another thread...\n"); 521 return -EAGAIN; 522 } 523 524 changed_flags = orig_flags ^ new_flags; 525 526 /* Process any additional changes needed as a result of flag changes. 527 * The changed_flags value reflects the list of bits that were changed 528 * in the code above. 529 */ 530 531 /* issue a reset to force legacy-rx change to take effect */ 532 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 533 if (netif_running(netdev)) { 534 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 535 queue_work(iavf_wq, &adapter->reset_task); 536 } 537 } 538 539 return 0; 540 } 541 542 /** 543 * iavf_get_msglevel - Get debug message level 544 * @netdev: network interface device structure 545 * 546 * Returns current debug message level. 547 **/ 548 static u32 iavf_get_msglevel(struct net_device *netdev) 549 { 550 struct iavf_adapter *adapter = netdev_priv(netdev); 551 552 return adapter->msg_enable; 553 } 554 555 /** 556 * iavf_set_msglevel - Set debug message level 557 * @netdev: network interface device structure 558 * @data: message level 559 * 560 * Set current debug message level. Higher values cause the driver to 561 * be noisier. 562 **/ 563 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 564 { 565 struct iavf_adapter *adapter = netdev_priv(netdev); 566 567 if (IAVF_DEBUG_USER & data) 568 adapter->hw.debug_mask = data; 569 adapter->msg_enable = data; 570 } 571 572 /** 573 * iavf_get_drvinfo - Get driver info 574 * @netdev: network interface device structure 575 * @drvinfo: ethool driver info structure 576 * 577 * Returns information about the driver and device for display to the user. 578 **/ 579 static void iavf_get_drvinfo(struct net_device *netdev, 580 struct ethtool_drvinfo *drvinfo) 581 { 582 struct iavf_adapter *adapter = netdev_priv(netdev); 583 584 strlcpy(drvinfo->driver, iavf_driver_name, 32); 585 strlcpy(drvinfo->fw_version, "N/A", 4); 586 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 587 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 588 } 589 590 /** 591 * iavf_get_ringparam - Get ring parameters 592 * @netdev: network interface device structure 593 * @ring: ethtool ringparam structure 594 * @kernel_ring: ethtool extenal ringparam structure 595 * @extack: netlink extended ACK report struct 596 * 597 * Returns current ring parameters. TX and RX rings are reported separately, 598 * but the number of rings is not reported. 599 **/ 600 static void iavf_get_ringparam(struct net_device *netdev, 601 struct ethtool_ringparam *ring, 602 struct kernel_ethtool_ringparam *kernel_ring, 603 struct netlink_ext_ack *extack) 604 { 605 struct iavf_adapter *adapter = netdev_priv(netdev); 606 607 ring->rx_max_pending = IAVF_MAX_RXD; 608 ring->tx_max_pending = IAVF_MAX_TXD; 609 ring->rx_pending = adapter->rx_desc_count; 610 ring->tx_pending = adapter->tx_desc_count; 611 } 612 613 /** 614 * iavf_set_ringparam - Set ring parameters 615 * @netdev: network interface device structure 616 * @ring: ethtool ringparam structure 617 * @kernel_ring: ethtool external ringparam structure 618 * @extack: netlink extended ACK report struct 619 * 620 * Sets ring parameters. TX and RX rings are controlled separately, but the 621 * number of rings is not specified, so all rings get the same settings. 622 **/ 623 static int iavf_set_ringparam(struct net_device *netdev, 624 struct ethtool_ringparam *ring, 625 struct kernel_ethtool_ringparam *kernel_ring, 626 struct netlink_ext_ack *extack) 627 { 628 struct iavf_adapter *adapter = netdev_priv(netdev); 629 u32 new_rx_count, new_tx_count; 630 631 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 632 return -EINVAL; 633 634 if (ring->tx_pending > IAVF_MAX_TXD || 635 ring->tx_pending < IAVF_MIN_TXD || 636 ring->rx_pending > IAVF_MAX_RXD || 637 ring->rx_pending < IAVF_MIN_RXD) { 638 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 639 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 640 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 641 return -EINVAL; 642 } 643 644 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 645 if (new_tx_count != ring->tx_pending) 646 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 647 new_tx_count); 648 649 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 650 if (new_rx_count != ring->rx_pending) 651 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 652 new_rx_count); 653 654 /* if nothing to do return success */ 655 if ((new_tx_count == adapter->tx_desc_count) && 656 (new_rx_count == adapter->rx_desc_count)) { 657 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 658 return 0; 659 } 660 661 if (new_tx_count != adapter->tx_desc_count) { 662 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 663 adapter->tx_desc_count, new_tx_count); 664 adapter->tx_desc_count = new_tx_count; 665 } 666 667 if (new_rx_count != adapter->rx_desc_count) { 668 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 669 adapter->rx_desc_count, new_rx_count); 670 adapter->rx_desc_count = new_rx_count; 671 } 672 673 if (netif_running(netdev)) { 674 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 675 queue_work(iavf_wq, &adapter->reset_task); 676 } 677 678 return 0; 679 } 680 681 /** 682 * __iavf_get_coalesce - get per-queue coalesce settings 683 * @netdev: the netdev to check 684 * @ec: ethtool coalesce data structure 685 * @queue: which queue to pick 686 * 687 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 688 * are per queue. If queue is <0 then we default to queue 0 as the 689 * representative value. 690 **/ 691 static int __iavf_get_coalesce(struct net_device *netdev, 692 struct ethtool_coalesce *ec, int queue) 693 { 694 struct iavf_adapter *adapter = netdev_priv(netdev); 695 struct iavf_vsi *vsi = &adapter->vsi; 696 struct iavf_ring *rx_ring, *tx_ring; 697 698 ec->tx_max_coalesced_frames = vsi->work_limit; 699 ec->rx_max_coalesced_frames = vsi->work_limit; 700 701 /* Rx and Tx usecs per queue value. If user doesn't specify the 702 * queue, return queue 0's value to represent. 703 */ 704 if (queue < 0) 705 queue = 0; 706 else if (queue >= adapter->num_active_queues) 707 return -EINVAL; 708 709 rx_ring = &adapter->rx_rings[queue]; 710 tx_ring = &adapter->tx_rings[queue]; 711 712 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 713 ec->use_adaptive_rx_coalesce = 1; 714 715 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 716 ec->use_adaptive_tx_coalesce = 1; 717 718 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 719 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 720 721 return 0; 722 } 723 724 /** 725 * iavf_get_coalesce - Get interrupt coalescing settings 726 * @netdev: network interface device structure 727 * @ec: ethtool coalesce structure 728 * @kernel_coal: ethtool CQE mode setting structure 729 * @extack: extack for reporting error messages 730 * 731 * Returns current coalescing settings. This is referred to elsewhere in the 732 * driver as Interrupt Throttle Rate, as this is how the hardware describes 733 * this functionality. Note that if per-queue settings have been modified this 734 * only represents the settings of queue 0. 735 **/ 736 static int iavf_get_coalesce(struct net_device *netdev, 737 struct ethtool_coalesce *ec, 738 struct kernel_ethtool_coalesce *kernel_coal, 739 struct netlink_ext_ack *extack) 740 { 741 return __iavf_get_coalesce(netdev, ec, -1); 742 } 743 744 /** 745 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 746 * @netdev: netdev to read 747 * @ec: coalesce settings from ethtool 748 * @queue: the queue to read 749 * 750 * Read specific queue's coalesce settings. 751 **/ 752 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 753 struct ethtool_coalesce *ec) 754 { 755 return __iavf_get_coalesce(netdev, ec, queue); 756 } 757 758 /** 759 * iavf_set_itr_per_queue - set ITR values for specific queue 760 * @adapter: the VF adapter struct to set values for 761 * @ec: coalesce settings from ethtool 762 * @queue: the queue to modify 763 * 764 * Change the ITR settings for a specific queue. 765 **/ 766 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 767 struct ethtool_coalesce *ec, int queue) 768 { 769 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 770 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 771 struct iavf_q_vector *q_vector; 772 u16 itr_setting; 773 774 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 775 776 if (ec->rx_coalesce_usecs != itr_setting && 777 ec->use_adaptive_rx_coalesce) { 778 netif_info(adapter, drv, adapter->netdev, 779 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 780 return -EINVAL; 781 } 782 783 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 784 785 if (ec->tx_coalesce_usecs != itr_setting && 786 ec->use_adaptive_tx_coalesce) { 787 netif_info(adapter, drv, adapter->netdev, 788 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 789 return -EINVAL; 790 } 791 792 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 793 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 794 795 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 796 if (!ec->use_adaptive_rx_coalesce) 797 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 798 799 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 800 if (!ec->use_adaptive_tx_coalesce) 801 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 802 803 q_vector = rx_ring->q_vector; 804 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 805 806 q_vector = tx_ring->q_vector; 807 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 808 809 /* The interrupt handler itself will take care of programming 810 * the Tx and Rx ITR values based on the values we have entered 811 * into the q_vector, no need to write the values now. 812 */ 813 return 0; 814 } 815 816 /** 817 * __iavf_set_coalesce - set coalesce settings for particular queue 818 * @netdev: the netdev to change 819 * @ec: ethtool coalesce settings 820 * @queue: the queue to change 821 * 822 * Sets the coalesce settings for a particular queue. 823 **/ 824 static int __iavf_set_coalesce(struct net_device *netdev, 825 struct ethtool_coalesce *ec, int queue) 826 { 827 struct iavf_adapter *adapter = netdev_priv(netdev); 828 struct iavf_vsi *vsi = &adapter->vsi; 829 int i; 830 831 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq) 832 vsi->work_limit = ec->tx_max_coalesced_frames_irq; 833 834 if (ec->rx_coalesce_usecs == 0) { 835 if (ec->use_adaptive_rx_coalesce) 836 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); 837 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || 838 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { 839 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 840 return -EINVAL; 841 } else if (ec->tx_coalesce_usecs == 0) { 842 if (ec->use_adaptive_tx_coalesce) 843 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); 844 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || 845 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { 846 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 847 return -EINVAL; 848 } 849 850 /* Rx and Tx usecs has per queue value. If user doesn't specify the 851 * queue, apply to all queues. 852 */ 853 if (queue < 0) { 854 for (i = 0; i < adapter->num_active_queues; i++) 855 if (iavf_set_itr_per_queue(adapter, ec, i)) 856 return -EINVAL; 857 } else if (queue < adapter->num_active_queues) { 858 if (iavf_set_itr_per_queue(adapter, ec, queue)) 859 return -EINVAL; 860 } else { 861 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 862 adapter->num_active_queues - 1); 863 return -EINVAL; 864 } 865 866 return 0; 867 } 868 869 /** 870 * iavf_set_coalesce - Set interrupt coalescing settings 871 * @netdev: network interface device structure 872 * @ec: ethtool coalesce structure 873 * @kernel_coal: ethtool CQE mode setting structure 874 * @extack: extack for reporting error messages 875 * 876 * Change current coalescing settings for every queue. 877 **/ 878 static int iavf_set_coalesce(struct net_device *netdev, 879 struct ethtool_coalesce *ec, 880 struct kernel_ethtool_coalesce *kernel_coal, 881 struct netlink_ext_ack *extack) 882 { 883 return __iavf_set_coalesce(netdev, ec, -1); 884 } 885 886 /** 887 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 888 * @netdev: the netdev to change 889 * @ec: ethtool's coalesce settings 890 * @queue: the queue to modify 891 * 892 * Modifies a specific queue's coalesce settings. 893 */ 894 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 895 struct ethtool_coalesce *ec) 896 { 897 return __iavf_set_coalesce(netdev, ec, queue); 898 } 899 900 /** 901 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 902 * flow type values 903 * @flow: filter type to be converted 904 * 905 * Returns the corresponding ethtool flow type. 906 */ 907 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 908 { 909 switch (flow) { 910 case IAVF_FDIR_FLOW_IPV4_TCP: 911 return TCP_V4_FLOW; 912 case IAVF_FDIR_FLOW_IPV4_UDP: 913 return UDP_V4_FLOW; 914 case IAVF_FDIR_FLOW_IPV4_SCTP: 915 return SCTP_V4_FLOW; 916 case IAVF_FDIR_FLOW_IPV4_AH: 917 return AH_V4_FLOW; 918 case IAVF_FDIR_FLOW_IPV4_ESP: 919 return ESP_V4_FLOW; 920 case IAVF_FDIR_FLOW_IPV4_OTHER: 921 return IPV4_USER_FLOW; 922 case IAVF_FDIR_FLOW_IPV6_TCP: 923 return TCP_V6_FLOW; 924 case IAVF_FDIR_FLOW_IPV6_UDP: 925 return UDP_V6_FLOW; 926 case IAVF_FDIR_FLOW_IPV6_SCTP: 927 return SCTP_V6_FLOW; 928 case IAVF_FDIR_FLOW_IPV6_AH: 929 return AH_V6_FLOW; 930 case IAVF_FDIR_FLOW_IPV6_ESP: 931 return ESP_V6_FLOW; 932 case IAVF_FDIR_FLOW_IPV6_OTHER: 933 return IPV6_USER_FLOW; 934 case IAVF_FDIR_FLOW_NON_IP_L2: 935 return ETHER_FLOW; 936 default: 937 /* 0 is undefined ethtool flow */ 938 return 0; 939 } 940 } 941 942 /** 943 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 944 * @eth: Ethtool flow type to be converted 945 * 946 * Returns flow enum 947 */ 948 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 949 { 950 switch (eth) { 951 case TCP_V4_FLOW: 952 return IAVF_FDIR_FLOW_IPV4_TCP; 953 case UDP_V4_FLOW: 954 return IAVF_FDIR_FLOW_IPV4_UDP; 955 case SCTP_V4_FLOW: 956 return IAVF_FDIR_FLOW_IPV4_SCTP; 957 case AH_V4_FLOW: 958 return IAVF_FDIR_FLOW_IPV4_AH; 959 case ESP_V4_FLOW: 960 return IAVF_FDIR_FLOW_IPV4_ESP; 961 case IPV4_USER_FLOW: 962 return IAVF_FDIR_FLOW_IPV4_OTHER; 963 case TCP_V6_FLOW: 964 return IAVF_FDIR_FLOW_IPV6_TCP; 965 case UDP_V6_FLOW: 966 return IAVF_FDIR_FLOW_IPV6_UDP; 967 case SCTP_V6_FLOW: 968 return IAVF_FDIR_FLOW_IPV6_SCTP; 969 case AH_V6_FLOW: 970 return IAVF_FDIR_FLOW_IPV6_AH; 971 case ESP_V6_FLOW: 972 return IAVF_FDIR_FLOW_IPV6_ESP; 973 case IPV6_USER_FLOW: 974 return IAVF_FDIR_FLOW_IPV6_OTHER; 975 case ETHER_FLOW: 976 return IAVF_FDIR_FLOW_NON_IP_L2; 977 default: 978 return IAVF_FDIR_FLOW_NONE; 979 } 980 } 981 982 /** 983 * iavf_is_mask_valid - check mask field set 984 * @mask: full mask to check 985 * @field: field for which mask should be valid 986 * 987 * If the mask is fully set return true. If it is not valid for field return 988 * false. 989 */ 990 static bool iavf_is_mask_valid(u64 mask, u64 field) 991 { 992 return (mask & field) == field; 993 } 994 995 /** 996 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 997 * @fsp: pointer to ethtool Rx flow specification 998 * @fltr: pointer to Flow Director filter for userdef data storage 999 * 1000 * Returns 0 on success, negative error value on failure 1001 */ 1002 static int 1003 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 1004 struct iavf_fdir_fltr *fltr) 1005 { 1006 struct iavf_flex_word *flex; 1007 int i, cnt = 0; 1008 1009 if (!(fsp->flow_type & FLOW_EXT)) 1010 return 0; 1011 1012 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 1013 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 1014 #define IAVF_USERDEF_FLEX_OFFS_S 16 1015 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 1016 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 1017 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 1018 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 1019 1020 if (!value || !mask) 1021 continue; 1022 1023 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1024 return -EINVAL; 1025 1026 /* 504 is the maximum value for offsets, and offset is measured 1027 * from the start of the MAC address. 1028 */ 1029 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1030 flex = &fltr->flex_words[cnt++]; 1031 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1032 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1033 IAVF_USERDEF_FLEX_OFFS_S; 1034 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1035 return -EINVAL; 1036 } 1037 1038 fltr->flex_cnt = cnt; 1039 1040 return 0; 1041 } 1042 1043 /** 1044 * iavf_fill_rx_flow_ext_data - fill the additional data 1045 * @fsp: pointer to ethtool Rx flow specification 1046 * @fltr: pointer to Flow Director filter to get additional data 1047 */ 1048 static void 1049 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1050 struct iavf_fdir_fltr *fltr) 1051 { 1052 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1053 return; 1054 1055 fsp->flow_type |= FLOW_EXT; 1056 1057 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1058 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1059 } 1060 1061 /** 1062 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1063 * @adapter: the VF adapter structure that contains filter list 1064 * @cmd: ethtool command data structure to receive the filter data 1065 * 1066 * Returns 0 as expected for success by ethtool 1067 */ 1068 static int 1069 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1070 struct ethtool_rxnfc *cmd) 1071 { 1072 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1073 struct iavf_fdir_fltr *rule = NULL; 1074 int ret = 0; 1075 1076 if (!FDIR_FLTR_SUPPORT(adapter)) 1077 return -EOPNOTSUPP; 1078 1079 spin_lock_bh(&adapter->fdir_fltr_lock); 1080 1081 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1082 if (!rule) { 1083 ret = -EINVAL; 1084 goto release_lock; 1085 } 1086 1087 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1088 1089 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1090 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1091 1092 switch (fsp->flow_type) { 1093 case TCP_V4_FLOW: 1094 case UDP_V4_FLOW: 1095 case SCTP_V4_FLOW: 1096 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1097 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1098 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1099 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1100 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1101 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1102 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1103 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1104 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1105 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1106 break; 1107 case AH_V4_FLOW: 1108 case ESP_V4_FLOW: 1109 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1110 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1111 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1112 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1113 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1114 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1115 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1116 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1117 break; 1118 case IPV4_USER_FLOW: 1119 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1120 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1121 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1122 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1123 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1124 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1125 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1126 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1127 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1128 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1129 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1130 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1131 break; 1132 case TCP_V6_FLOW: 1133 case UDP_V6_FLOW: 1134 case SCTP_V6_FLOW: 1135 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1136 sizeof(struct in6_addr)); 1137 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1138 sizeof(struct in6_addr)); 1139 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1140 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1141 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1142 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1143 sizeof(struct in6_addr)); 1144 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1145 sizeof(struct in6_addr)); 1146 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1147 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1148 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1149 break; 1150 case AH_V6_FLOW: 1151 case ESP_V6_FLOW: 1152 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1153 sizeof(struct in6_addr)); 1154 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1155 sizeof(struct in6_addr)); 1156 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1157 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1158 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1159 sizeof(struct in6_addr)); 1160 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1161 sizeof(struct in6_addr)); 1162 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1163 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1164 break; 1165 case IPV6_USER_FLOW: 1166 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1167 sizeof(struct in6_addr)); 1168 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1169 sizeof(struct in6_addr)); 1170 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1171 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1172 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1173 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1174 sizeof(struct in6_addr)); 1175 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1176 sizeof(struct in6_addr)); 1177 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1178 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1179 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1180 break; 1181 case ETHER_FLOW: 1182 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1183 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1184 break; 1185 default: 1186 ret = -EINVAL; 1187 break; 1188 } 1189 1190 iavf_fill_rx_flow_ext_data(fsp, rule); 1191 1192 if (rule->action == VIRTCHNL_ACTION_DROP) 1193 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1194 else 1195 fsp->ring_cookie = rule->q_index; 1196 1197 release_lock: 1198 spin_unlock_bh(&adapter->fdir_fltr_lock); 1199 return ret; 1200 } 1201 1202 /** 1203 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1204 * @adapter: the VF adapter structure containing the filter list 1205 * @cmd: ethtool command data structure 1206 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1207 * 1208 * Returns 0 as expected for success by ethtool 1209 */ 1210 static int 1211 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1212 u32 *rule_locs) 1213 { 1214 struct iavf_fdir_fltr *fltr; 1215 unsigned int cnt = 0; 1216 int val = 0; 1217 1218 if (!FDIR_FLTR_SUPPORT(adapter)) 1219 return -EOPNOTSUPP; 1220 1221 cmd->data = IAVF_MAX_FDIR_FILTERS; 1222 1223 spin_lock_bh(&adapter->fdir_fltr_lock); 1224 1225 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1226 if (cnt == cmd->rule_cnt) { 1227 val = -EMSGSIZE; 1228 goto release_lock; 1229 } 1230 rule_locs[cnt] = fltr->loc; 1231 cnt++; 1232 } 1233 1234 release_lock: 1235 spin_unlock_bh(&adapter->fdir_fltr_lock); 1236 if (!val) 1237 cmd->rule_cnt = cnt; 1238 1239 return val; 1240 } 1241 1242 /** 1243 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1244 * @adapter: pointer to the VF adapter structure 1245 * @fsp: pointer to ethtool Rx flow specification 1246 * @fltr: filter structure 1247 */ 1248 static int 1249 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1250 struct iavf_fdir_fltr *fltr) 1251 { 1252 u32 flow_type, q_index = 0; 1253 enum virtchnl_action act; 1254 int err; 1255 1256 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1257 act = VIRTCHNL_ACTION_DROP; 1258 } else { 1259 q_index = fsp->ring_cookie; 1260 if (q_index >= adapter->num_active_queues) 1261 return -EINVAL; 1262 1263 act = VIRTCHNL_ACTION_QUEUE; 1264 } 1265 1266 fltr->action = act; 1267 fltr->loc = fsp->location; 1268 fltr->q_index = q_index; 1269 1270 if (fsp->flow_type & FLOW_EXT) { 1271 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1272 sizeof(fltr->ext_data.usr_def)); 1273 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1274 sizeof(fltr->ext_mask.usr_def)); 1275 } 1276 1277 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1278 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1279 1280 switch (flow_type) { 1281 case TCP_V4_FLOW: 1282 case UDP_V4_FLOW: 1283 case SCTP_V4_FLOW: 1284 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1285 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1286 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1287 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1288 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1289 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1290 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1291 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1292 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1293 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1294 break; 1295 case AH_V4_FLOW: 1296 case ESP_V4_FLOW: 1297 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1298 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1299 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1300 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1301 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1302 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1303 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1304 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1305 break; 1306 case IPV4_USER_FLOW: 1307 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1308 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1309 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1310 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1311 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1312 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1313 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1314 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1315 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1316 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1317 break; 1318 case TCP_V6_FLOW: 1319 case UDP_V6_FLOW: 1320 case SCTP_V6_FLOW: 1321 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1322 sizeof(struct in6_addr)); 1323 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1324 sizeof(struct in6_addr)); 1325 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1326 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1327 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1328 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1329 sizeof(struct in6_addr)); 1330 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1331 sizeof(struct in6_addr)); 1332 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1333 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1334 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1335 break; 1336 case AH_V6_FLOW: 1337 case ESP_V6_FLOW: 1338 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1339 sizeof(struct in6_addr)); 1340 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1341 sizeof(struct in6_addr)); 1342 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1343 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1344 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1345 sizeof(struct in6_addr)); 1346 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1347 sizeof(struct in6_addr)); 1348 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1349 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1350 break; 1351 case IPV6_USER_FLOW: 1352 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1353 sizeof(struct in6_addr)); 1354 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1355 sizeof(struct in6_addr)); 1356 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1357 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1358 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1359 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1360 sizeof(struct in6_addr)); 1361 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1362 sizeof(struct in6_addr)); 1363 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1364 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1365 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1366 break; 1367 case ETHER_FLOW: 1368 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1369 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1370 break; 1371 default: 1372 /* not doing un-parsed flow types */ 1373 return -EINVAL; 1374 } 1375 1376 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1377 return -EEXIST; 1378 1379 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1380 if (err) 1381 return err; 1382 1383 return iavf_fill_fdir_add_msg(adapter, fltr); 1384 } 1385 1386 /** 1387 * iavf_add_fdir_ethtool - add Flow Director filter 1388 * @adapter: pointer to the VF adapter structure 1389 * @cmd: command to add Flow Director filter 1390 * 1391 * Returns 0 on success and negative values for failure 1392 */ 1393 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1394 { 1395 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1396 struct iavf_fdir_fltr *fltr; 1397 int count = 50; 1398 int err; 1399 1400 if (!FDIR_FLTR_SUPPORT(adapter)) 1401 return -EOPNOTSUPP; 1402 1403 if (fsp->flow_type & FLOW_MAC_EXT) 1404 return -EINVAL; 1405 1406 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1407 dev_err(&adapter->pdev->dev, 1408 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1409 IAVF_MAX_FDIR_FILTERS); 1410 return -ENOSPC; 1411 } 1412 1413 spin_lock_bh(&adapter->fdir_fltr_lock); 1414 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1415 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1416 spin_unlock_bh(&adapter->fdir_fltr_lock); 1417 return -EEXIST; 1418 } 1419 spin_unlock_bh(&adapter->fdir_fltr_lock); 1420 1421 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1422 if (!fltr) 1423 return -ENOMEM; 1424 1425 while (!mutex_trylock(&adapter->crit_lock)) { 1426 if (--count == 0) { 1427 kfree(fltr); 1428 return -EINVAL; 1429 } 1430 udelay(1); 1431 } 1432 1433 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1434 if (err) 1435 goto ret; 1436 1437 spin_lock_bh(&adapter->fdir_fltr_lock); 1438 iavf_fdir_list_add_fltr(adapter, fltr); 1439 adapter->fdir_active_fltr++; 1440 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1441 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1442 spin_unlock_bh(&adapter->fdir_fltr_lock); 1443 1444 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1445 1446 ret: 1447 if (err && fltr) 1448 kfree(fltr); 1449 1450 mutex_unlock(&adapter->crit_lock); 1451 return err; 1452 } 1453 1454 /** 1455 * iavf_del_fdir_ethtool - delete Flow Director filter 1456 * @adapter: pointer to the VF adapter structure 1457 * @cmd: command to delete Flow Director filter 1458 * 1459 * Returns 0 on success and negative values for failure 1460 */ 1461 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1462 { 1463 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1464 struct iavf_fdir_fltr *fltr = NULL; 1465 int err = 0; 1466 1467 if (!FDIR_FLTR_SUPPORT(adapter)) 1468 return -EOPNOTSUPP; 1469 1470 spin_lock_bh(&adapter->fdir_fltr_lock); 1471 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1472 if (fltr) { 1473 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1474 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1475 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1476 } else { 1477 err = -EBUSY; 1478 } 1479 } else if (adapter->fdir_active_fltr) { 1480 err = -EINVAL; 1481 } 1482 spin_unlock_bh(&adapter->fdir_fltr_lock); 1483 1484 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1485 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1486 1487 return err; 1488 } 1489 1490 /** 1491 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1492 * @cmd: ethtool rxnfc command 1493 * 1494 * This function parses the rxnfc command and returns intended 1495 * header types for RSS configuration 1496 */ 1497 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1498 { 1499 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1500 1501 switch (cmd->flow_type) { 1502 case TCP_V4_FLOW: 1503 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1504 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1505 break; 1506 case UDP_V4_FLOW: 1507 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1508 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1509 break; 1510 case SCTP_V4_FLOW: 1511 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1512 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1513 break; 1514 case TCP_V6_FLOW: 1515 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1516 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1517 break; 1518 case UDP_V6_FLOW: 1519 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1520 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1521 break; 1522 case SCTP_V6_FLOW: 1523 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1524 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1525 break; 1526 default: 1527 break; 1528 } 1529 1530 return hdrs; 1531 } 1532 1533 /** 1534 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1535 * @cmd: ethtool rxnfc command 1536 * 1537 * This function parses the rxnfc command and returns intended hash fields for 1538 * RSS configuration 1539 */ 1540 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1541 { 1542 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1543 1544 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1545 switch (cmd->flow_type) { 1546 case TCP_V4_FLOW: 1547 case UDP_V4_FLOW: 1548 case SCTP_V4_FLOW: 1549 if (cmd->data & RXH_IP_SRC) 1550 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1551 if (cmd->data & RXH_IP_DST) 1552 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1553 break; 1554 case TCP_V6_FLOW: 1555 case UDP_V6_FLOW: 1556 case SCTP_V6_FLOW: 1557 if (cmd->data & RXH_IP_SRC) 1558 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1559 if (cmd->data & RXH_IP_DST) 1560 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1561 break; 1562 default: 1563 break; 1564 } 1565 } 1566 1567 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1568 switch (cmd->flow_type) { 1569 case TCP_V4_FLOW: 1570 case TCP_V6_FLOW: 1571 if (cmd->data & RXH_L4_B_0_1) 1572 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1573 if (cmd->data & RXH_L4_B_2_3) 1574 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1575 break; 1576 case UDP_V4_FLOW: 1577 case UDP_V6_FLOW: 1578 if (cmd->data & RXH_L4_B_0_1) 1579 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1580 if (cmd->data & RXH_L4_B_2_3) 1581 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1582 break; 1583 case SCTP_V4_FLOW: 1584 case SCTP_V6_FLOW: 1585 if (cmd->data & RXH_L4_B_0_1) 1586 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1587 if (cmd->data & RXH_L4_B_2_3) 1588 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1589 break; 1590 default: 1591 break; 1592 } 1593 } 1594 1595 return hfld; 1596 } 1597 1598 /** 1599 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1600 * @adapter: pointer to the VF adapter structure 1601 * @cmd: ethtool rxnfc command 1602 * 1603 * Returns Success if the flow input set is supported. 1604 */ 1605 static int 1606 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1607 struct ethtool_rxnfc *cmd) 1608 { 1609 struct iavf_adv_rss *rss_old, *rss_new; 1610 bool rss_new_add = false; 1611 int count = 50, err = 0; 1612 u64 hash_flds; 1613 u32 hdrs; 1614 1615 if (!ADV_RSS_SUPPORT(adapter)) 1616 return -EOPNOTSUPP; 1617 1618 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1619 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1620 return -EINVAL; 1621 1622 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1623 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1624 return -EINVAL; 1625 1626 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1627 if (!rss_new) 1628 return -ENOMEM; 1629 1630 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1631 kfree(rss_new); 1632 return -EINVAL; 1633 } 1634 1635 while (!mutex_trylock(&adapter->crit_lock)) { 1636 if (--count == 0) { 1637 kfree(rss_new); 1638 return -EINVAL; 1639 } 1640 1641 udelay(1); 1642 } 1643 1644 spin_lock_bh(&adapter->adv_rss_lock); 1645 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1646 if (rss_old) { 1647 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1648 err = -EBUSY; 1649 } else if (rss_old->hash_flds != hash_flds) { 1650 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1651 rss_old->hash_flds = hash_flds; 1652 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1653 sizeof(rss_new->cfg_msg)); 1654 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1655 } else { 1656 err = -EEXIST; 1657 } 1658 } else { 1659 rss_new_add = true; 1660 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1661 rss_new->packet_hdrs = hdrs; 1662 rss_new->hash_flds = hash_flds; 1663 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1664 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1665 } 1666 spin_unlock_bh(&adapter->adv_rss_lock); 1667 1668 if (!err) 1669 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1670 1671 mutex_unlock(&adapter->crit_lock); 1672 1673 if (!rss_new_add) 1674 kfree(rss_new); 1675 1676 return err; 1677 } 1678 1679 /** 1680 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1681 * @adapter: pointer to the VF adapter structure 1682 * @cmd: ethtool rxnfc command 1683 * 1684 * Returns Success if the flow input set is supported. 1685 */ 1686 static int 1687 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1688 struct ethtool_rxnfc *cmd) 1689 { 1690 struct iavf_adv_rss *rss; 1691 u64 hash_flds; 1692 u32 hdrs; 1693 1694 if (!ADV_RSS_SUPPORT(adapter)) 1695 return -EOPNOTSUPP; 1696 1697 cmd->data = 0; 1698 1699 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1700 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1701 return -EINVAL; 1702 1703 spin_lock_bh(&adapter->adv_rss_lock); 1704 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1705 if (rss) 1706 hash_flds = rss->hash_flds; 1707 else 1708 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1709 spin_unlock_bh(&adapter->adv_rss_lock); 1710 1711 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1712 return -EINVAL; 1713 1714 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1715 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1716 cmd->data |= (u64)RXH_IP_SRC; 1717 1718 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1719 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1720 cmd->data |= (u64)RXH_IP_DST; 1721 1722 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1723 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1724 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1725 cmd->data |= (u64)RXH_L4_B_0_1; 1726 1727 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1728 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1729 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1730 cmd->data |= (u64)RXH_L4_B_2_3; 1731 1732 return 0; 1733 } 1734 1735 /** 1736 * iavf_set_rxnfc - command to set Rx flow rules. 1737 * @netdev: network interface device structure 1738 * @cmd: ethtool rxnfc command 1739 * 1740 * Returns 0 for success and negative values for errors 1741 */ 1742 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1743 { 1744 struct iavf_adapter *adapter = netdev_priv(netdev); 1745 int ret = -EOPNOTSUPP; 1746 1747 switch (cmd->cmd) { 1748 case ETHTOOL_SRXCLSRLINS: 1749 ret = iavf_add_fdir_ethtool(adapter, cmd); 1750 break; 1751 case ETHTOOL_SRXCLSRLDEL: 1752 ret = iavf_del_fdir_ethtool(adapter, cmd); 1753 break; 1754 case ETHTOOL_SRXFH: 1755 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1756 break; 1757 default: 1758 break; 1759 } 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * iavf_get_rxnfc - command to get RX flow classification rules 1766 * @netdev: network interface device structure 1767 * @cmd: ethtool rxnfc command 1768 * @rule_locs: pointer to store rule locations 1769 * 1770 * Returns Success if the command is supported. 1771 **/ 1772 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1773 u32 *rule_locs) 1774 { 1775 struct iavf_adapter *adapter = netdev_priv(netdev); 1776 int ret = -EOPNOTSUPP; 1777 1778 switch (cmd->cmd) { 1779 case ETHTOOL_GRXRINGS: 1780 cmd->data = adapter->num_active_queues; 1781 ret = 0; 1782 break; 1783 case ETHTOOL_GRXCLSRLCNT: 1784 if (!FDIR_FLTR_SUPPORT(adapter)) 1785 break; 1786 cmd->rule_cnt = adapter->fdir_active_fltr; 1787 cmd->data = IAVF_MAX_FDIR_FILTERS; 1788 ret = 0; 1789 break; 1790 case ETHTOOL_GRXCLSRULE: 1791 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1792 break; 1793 case ETHTOOL_GRXCLSRLALL: 1794 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1795 break; 1796 case ETHTOOL_GRXFH: 1797 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1798 break; 1799 default: 1800 break; 1801 } 1802 1803 return ret; 1804 } 1805 /** 1806 * iavf_get_channels: get the number of channels supported by the device 1807 * @netdev: network interface device structure 1808 * @ch: channel information structure 1809 * 1810 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1811 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1812 **/ 1813 static void iavf_get_channels(struct net_device *netdev, 1814 struct ethtool_channels *ch) 1815 { 1816 struct iavf_adapter *adapter = netdev_priv(netdev); 1817 1818 /* Report maximum channels */ 1819 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1820 1821 ch->max_other = NONQ_VECS; 1822 ch->other_count = NONQ_VECS; 1823 1824 ch->combined_count = adapter->num_active_queues; 1825 } 1826 1827 /** 1828 * iavf_set_channels: set the new channel count 1829 * @netdev: network interface device structure 1830 * @ch: channel information structure 1831 * 1832 * Negotiate a new number of channels with the PF then do a reset. During 1833 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1834 * negative on failure. 1835 **/ 1836 static int iavf_set_channels(struct net_device *netdev, 1837 struct ethtool_channels *ch) 1838 { 1839 struct iavf_adapter *adapter = netdev_priv(netdev); 1840 u32 num_req = ch->combined_count; 1841 int i; 1842 1843 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1844 adapter->num_tc) { 1845 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1846 return -EINVAL; 1847 } 1848 1849 /* All of these should have already been checked by ethtool before this 1850 * even gets to us, but just to be sure. 1851 */ 1852 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1853 return -EINVAL; 1854 1855 if (num_req == adapter->num_active_queues) 1856 return 0; 1857 1858 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1859 return -EINVAL; 1860 1861 adapter->num_req_queues = num_req; 1862 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1863 iavf_schedule_reset(adapter); 1864 1865 /* wait for the reset is done */ 1866 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 1867 msleep(IAVF_RESET_WAIT_MS); 1868 if (adapter->flags & IAVF_FLAG_RESET_PENDING) 1869 continue; 1870 break; 1871 } 1872 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 1873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 1874 adapter->num_active_queues = num_req; 1875 return -EOPNOTSUPP; 1876 } 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * iavf_get_rxfh_key_size - get the RSS hash key size 1883 * @netdev: network interface device structure 1884 * 1885 * Returns the table size. 1886 **/ 1887 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1888 { 1889 struct iavf_adapter *adapter = netdev_priv(netdev); 1890 1891 return adapter->rss_key_size; 1892 } 1893 1894 /** 1895 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1896 * @netdev: network interface device structure 1897 * 1898 * Returns the table size. 1899 **/ 1900 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1901 { 1902 struct iavf_adapter *adapter = netdev_priv(netdev); 1903 1904 return adapter->rss_lut_size; 1905 } 1906 1907 /** 1908 * iavf_get_rxfh - get the rx flow hash indirection table 1909 * @netdev: network interface device structure 1910 * @indir: indirection table 1911 * @key: hash key 1912 * @hfunc: hash function in use 1913 * 1914 * Reads the indirection table directly from the hardware. Always returns 0. 1915 **/ 1916 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1917 u8 *hfunc) 1918 { 1919 struct iavf_adapter *adapter = netdev_priv(netdev); 1920 u16 i; 1921 1922 if (hfunc) 1923 *hfunc = ETH_RSS_HASH_TOP; 1924 if (key) 1925 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1926 1927 if (indir) 1928 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1929 for (i = 0; i < adapter->rss_lut_size; i++) 1930 indir[i] = (u32)adapter->rss_lut[i]; 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * iavf_set_rxfh - set the rx flow hash indirection table 1937 * @netdev: network interface device structure 1938 * @indir: indirection table 1939 * @key: hash key 1940 * @hfunc: hash function to use 1941 * 1942 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1943 * returns 0 after programming the table. 1944 **/ 1945 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1946 const u8 *key, const u8 hfunc) 1947 { 1948 struct iavf_adapter *adapter = netdev_priv(netdev); 1949 u16 i; 1950 1951 /* Only support toeplitz hash function */ 1952 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1953 return -EOPNOTSUPP; 1954 1955 if (!key && !indir) 1956 return 0; 1957 1958 if (key) 1959 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1960 1961 if (indir) { 1962 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1963 for (i = 0; i < adapter->rss_lut_size; i++) 1964 adapter->rss_lut[i] = (u8)(indir[i]); 1965 } 1966 1967 return iavf_config_rss(adapter); 1968 } 1969 1970 static const struct ethtool_ops iavf_ethtool_ops = { 1971 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1972 ETHTOOL_COALESCE_MAX_FRAMES | 1973 ETHTOOL_COALESCE_MAX_FRAMES_IRQ | 1974 ETHTOOL_COALESCE_USE_ADAPTIVE, 1975 .get_drvinfo = iavf_get_drvinfo, 1976 .get_link = ethtool_op_get_link, 1977 .get_ringparam = iavf_get_ringparam, 1978 .set_ringparam = iavf_set_ringparam, 1979 .get_strings = iavf_get_strings, 1980 .get_ethtool_stats = iavf_get_ethtool_stats, 1981 .get_sset_count = iavf_get_sset_count, 1982 .get_priv_flags = iavf_get_priv_flags, 1983 .set_priv_flags = iavf_set_priv_flags, 1984 .get_msglevel = iavf_get_msglevel, 1985 .set_msglevel = iavf_set_msglevel, 1986 .get_coalesce = iavf_get_coalesce, 1987 .set_coalesce = iavf_set_coalesce, 1988 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1989 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1990 .set_rxnfc = iavf_set_rxnfc, 1991 .get_rxnfc = iavf_get_rxnfc, 1992 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1993 .get_rxfh = iavf_get_rxfh, 1994 .set_rxfh = iavf_set_rxfh, 1995 .get_channels = iavf_get_channels, 1996 .set_channels = iavf_set_channels, 1997 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1998 .get_link_ksettings = iavf_get_link_ksettings, 1999 }; 2000 2001 /** 2002 * iavf_set_ethtool_ops - Initialize ethtool ops struct 2003 * @netdev: network interface device structure 2004 * 2005 * Sets ethtool ops struct in our netdev so that ethtool can call 2006 * our functions. 2007 **/ 2008 void iavf_set_ethtool_ops(struct net_device *netdev) 2009 { 2010 netdev->ethtool_ops = &iavf_ethtool_ops; 2011 } 2012