1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 /* ethtool support for iavf */
5 #include "iavf.h"
6 
7 #include <linux/uaccess.h>
8 
9 /* ethtool statistics helpers */
10 
11 /**
12  * struct iavf_stats - definition for an ethtool statistic
13  * @stat_string: statistic name to display in ethtool -S output
14  * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
15  * @stat_offset: offsetof() the stat from a base pointer
16  *
17  * This structure defines a statistic to be added to the ethtool stats buffer.
18  * It defines a statistic as offset from a common base pointer. Stats should
19  * be defined in constant arrays using the IAVF_STAT macro, with every element
20  * of the array using the same _type for calculating the sizeof_stat and
21  * stat_offset.
22  *
23  * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
24  * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
25  * the iavf_add_ethtool_stat() helper function.
26  *
27  * The @stat_string is interpreted as a format string, allowing formatted
28  * values to be inserted while looping over multiple structures for a given
29  * statistics array. Thus, every statistic string in an array should have the
30  * same type and number of format specifiers, to be formatted by variadic
31  * arguments to the iavf_add_stat_string() helper function.
32  **/
33 struct iavf_stats {
34 	char stat_string[ETH_GSTRING_LEN];
35 	int sizeof_stat;
36 	int stat_offset;
37 };
38 
39 /* Helper macro to define an iavf_stat structure with proper size and type.
40  * Use this when defining constant statistics arrays. Note that @_type expects
41  * only a type name and is used multiple times.
42  */
43 #define IAVF_STAT(_type, _name, _stat) { \
44 	.stat_string = _name, \
45 	.sizeof_stat = sizeof_field(_type, _stat), \
46 	.stat_offset = offsetof(_type, _stat) \
47 }
48 
49 /* Helper macro for defining some statistics related to queues */
50 #define IAVF_QUEUE_STAT(_name, _stat) \
51 	IAVF_STAT(struct iavf_ring, _name, _stat)
52 
53 /* Stats associated with a Tx or Rx ring */
54 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
55 	IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
56 	IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
57 };
58 
59 /**
60  * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
61  * @data: location to store the stat value
62  * @pointer: basis for where to copy from
63  * @stat: the stat definition
64  *
65  * Copies the stat data defined by the pointer and stat structure pair into
66  * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
67  * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
68  */
69 static void
70 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
71 			  const struct iavf_stats *stat)
72 {
73 	char *p;
74 
75 	if (!pointer) {
76 		/* ensure that the ethtool data buffer is zero'd for any stats
77 		 * which don't have a valid pointer.
78 		 */
79 		*data = 0;
80 		return;
81 	}
82 
83 	p = (char *)pointer + stat->stat_offset;
84 	switch (stat->sizeof_stat) {
85 	case sizeof(u64):
86 		*data = *((u64 *)p);
87 		break;
88 	case sizeof(u32):
89 		*data = *((u32 *)p);
90 		break;
91 	case sizeof(u16):
92 		*data = *((u16 *)p);
93 		break;
94 	case sizeof(u8):
95 		*data = *((u8 *)p);
96 		break;
97 	default:
98 		WARN_ONCE(1, "unexpected stat size for %s",
99 			  stat->stat_string);
100 		*data = 0;
101 	}
102 }
103 
104 /**
105  * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
106  * @data: ethtool stats buffer
107  * @pointer: location to copy stats from
108  * @stats: array of stats to copy
109  * @size: the size of the stats definition
110  *
111  * Copy the stats defined by the stats array using the pointer as a base into
112  * the data buffer supplied by ethtool. Updates the data pointer to point to
113  * the next empty location for successive calls to __iavf_add_ethtool_stats.
114  * If pointer is null, set the data values to zero and update the pointer to
115  * skip these stats.
116  **/
117 static void
118 __iavf_add_ethtool_stats(u64 **data, void *pointer,
119 			 const struct iavf_stats stats[],
120 			 const unsigned int size)
121 {
122 	unsigned int i;
123 
124 	for (i = 0; i < size; i++)
125 		iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
126 }
127 
128 /**
129  * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
130  * @data: ethtool stats buffer
131  * @pointer: location where stats are stored
132  * @stats: static const array of stat definitions
133  *
134  * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
135  * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
136  * ensuring that we pass the size associated with the given stats array.
137  *
138  * The parameter @stats is evaluated twice, so parameters with side effects
139  * should be avoided.
140  **/
141 #define iavf_add_ethtool_stats(data, pointer, stats) \
142 	__iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
143 
144 /**
145  * iavf_add_queue_stats - copy queue statistics into supplied buffer
146  * @data: ethtool stats buffer
147  * @ring: the ring to copy
148  *
149  * Queue statistics must be copied while protected by
150  * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
151  * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
152  * ring pointer is null, zero out the queue stat values and update the data
153  * pointer. Otherwise safely copy the stats from the ring into the supplied
154  * buffer and update the data pointer when finished.
155  *
156  * This function expects to be called while under rcu_read_lock().
157  **/
158 static void
159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
160 {
161 	const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
162 	const struct iavf_stats *stats = iavf_gstrings_queue_stats;
163 	unsigned int start;
164 	unsigned int i;
165 
166 	/* To avoid invalid statistics values, ensure that we keep retrying
167 	 * the copy until we get a consistent value according to
168 	 * u64_stats_fetch_retry_irq. But first, make sure our ring is
169 	 * non-null before attempting to access its syncp.
170 	 */
171 	do {
172 		start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
173 		for (i = 0; i < size; i++)
174 			iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
175 	} while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
176 
177 	/* Once we successfully copy the stats in, update the data pointer */
178 	*data += size;
179 }
180 
181 /**
182  * __iavf_add_stat_strings - copy stat strings into ethtool buffer
183  * @p: ethtool supplied buffer
184  * @stats: stat definitions array
185  * @size: size of the stats array
186  *
187  * Format and copy the strings described by stats into the buffer pointed at
188  * by p.
189  **/
190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
191 				    const unsigned int size, ...)
192 {
193 	unsigned int i;
194 
195 	for (i = 0; i < size; i++) {
196 		va_list args;
197 
198 		va_start(args, size);
199 		vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
200 		*p += ETH_GSTRING_LEN;
201 		va_end(args);
202 	}
203 }
204 
205 /**
206  * iavf_add_stat_strings - copy stat strings into ethtool buffer
207  * @p: ethtool supplied buffer
208  * @stats: stat definitions array
209  *
210  * Format and copy the strings described by the const static stats value into
211  * the buffer pointed at by p.
212  *
213  * The parameter @stats is evaluated twice, so parameters with side effects
214  * should be avoided. Additionally, stats must be an array such that
215  * ARRAY_SIZE can be called on it.
216  **/
217 #define iavf_add_stat_strings(p, stats, ...) \
218 	__iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
219 
220 #define VF_STAT(_name, _stat) \
221 	IAVF_STAT(struct iavf_adapter, _name, _stat)
222 
223 static const struct iavf_stats iavf_gstrings_stats[] = {
224 	VF_STAT("rx_bytes", current_stats.rx_bytes),
225 	VF_STAT("rx_unicast", current_stats.rx_unicast),
226 	VF_STAT("rx_multicast", current_stats.rx_multicast),
227 	VF_STAT("rx_broadcast", current_stats.rx_broadcast),
228 	VF_STAT("rx_discards", current_stats.rx_discards),
229 	VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
230 	VF_STAT("tx_bytes", current_stats.tx_bytes),
231 	VF_STAT("tx_unicast", current_stats.tx_unicast),
232 	VF_STAT("tx_multicast", current_stats.tx_multicast),
233 	VF_STAT("tx_broadcast", current_stats.tx_broadcast),
234 	VF_STAT("tx_discards", current_stats.tx_discards),
235 	VF_STAT("tx_errors", current_stats.tx_errors),
236 };
237 
238 #define IAVF_STATS_LEN	ARRAY_SIZE(iavf_gstrings_stats)
239 
240 #define IAVF_QUEUE_STATS_LEN	ARRAY_SIZE(iavf_gstrings_queue_stats)
241 
242 /* For now we have one and only one private flag and it is only defined
243  * when we have support for the SKIP_CPU_SYNC DMA attribute.  Instead
244  * of leaving all this code sitting around empty we will strip it unless
245  * our one private flag is actually available.
246  */
247 struct iavf_priv_flags {
248 	char flag_string[ETH_GSTRING_LEN];
249 	u32 flag;
250 	bool read_only;
251 };
252 
253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
254 	.flag_string = _name, \
255 	.flag = _flag, \
256 	.read_only = _read_only, \
257 }
258 
259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
260 	IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
261 };
262 
263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
264 
265 /**
266  * iavf_get_link_ksettings - Get Link Speed and Duplex settings
267  * @netdev: network interface device structure
268  * @cmd: ethtool command
269  *
270  * Reports speed/duplex settings. Because this is a VF, we don't know what
271  * kind of link we really have, so we fake it.
272  **/
273 static int iavf_get_link_ksettings(struct net_device *netdev,
274 				   struct ethtool_link_ksettings *cmd)
275 {
276 	struct iavf_adapter *adapter = netdev_priv(netdev);
277 
278 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
279 	cmd->base.autoneg = AUTONEG_DISABLE;
280 	cmd->base.port = PORT_NONE;
281 	cmd->base.duplex = DUPLEX_FULL;
282 
283 	if (ADV_LINK_SUPPORT(adapter)) {
284 		if (adapter->link_speed_mbps &&
285 		    adapter->link_speed_mbps < U32_MAX)
286 			cmd->base.speed = adapter->link_speed_mbps;
287 		else
288 			cmd->base.speed = SPEED_UNKNOWN;
289 
290 		return 0;
291 	}
292 
293 	switch (adapter->link_speed) {
294 	case VIRTCHNL_LINK_SPEED_40GB:
295 		cmd->base.speed = SPEED_40000;
296 		break;
297 	case VIRTCHNL_LINK_SPEED_25GB:
298 		cmd->base.speed = SPEED_25000;
299 		break;
300 	case VIRTCHNL_LINK_SPEED_20GB:
301 		cmd->base.speed = SPEED_20000;
302 		break;
303 	case VIRTCHNL_LINK_SPEED_10GB:
304 		cmd->base.speed = SPEED_10000;
305 		break;
306 	case VIRTCHNL_LINK_SPEED_5GB:
307 		cmd->base.speed = SPEED_5000;
308 		break;
309 	case VIRTCHNL_LINK_SPEED_2_5GB:
310 		cmd->base.speed = SPEED_2500;
311 		break;
312 	case VIRTCHNL_LINK_SPEED_1GB:
313 		cmd->base.speed = SPEED_1000;
314 		break;
315 	case VIRTCHNL_LINK_SPEED_100MB:
316 		cmd->base.speed = SPEED_100;
317 		break;
318 	default:
319 		break;
320 	}
321 
322 	return 0;
323 }
324 
325 /**
326  * iavf_get_sset_count - Get length of string set
327  * @netdev: network interface device structure
328  * @sset: id of string set
329  *
330  * Reports size of various string tables.
331  **/
332 static int iavf_get_sset_count(struct net_device *netdev, int sset)
333 {
334 	if (sset == ETH_SS_STATS)
335 		return IAVF_STATS_LEN +
336 			(IAVF_QUEUE_STATS_LEN * 2 * IAVF_MAX_REQ_QUEUES);
337 	else if (sset == ETH_SS_PRIV_FLAGS)
338 		return IAVF_PRIV_FLAGS_STR_LEN;
339 	else
340 		return -EINVAL;
341 }
342 
343 /**
344  * iavf_get_ethtool_stats - report device statistics
345  * @netdev: network interface device structure
346  * @stats: ethtool statistics structure
347  * @data: pointer to data buffer
348  *
349  * All statistics are added to the data buffer as an array of u64.
350  **/
351 static void iavf_get_ethtool_stats(struct net_device *netdev,
352 				   struct ethtool_stats *stats, u64 *data)
353 {
354 	struct iavf_adapter *adapter = netdev_priv(netdev);
355 	unsigned int i;
356 
357 	iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
358 
359 	rcu_read_lock();
360 	for (i = 0; i < IAVF_MAX_REQ_QUEUES; i++) {
361 		struct iavf_ring *ring;
362 
363 		/* Avoid accessing un-allocated queues */
364 		ring = (i < adapter->num_active_queues ?
365 			&adapter->tx_rings[i] : NULL);
366 		iavf_add_queue_stats(&data, ring);
367 
368 		/* Avoid accessing un-allocated queues */
369 		ring = (i < adapter->num_active_queues ?
370 			&adapter->rx_rings[i] : NULL);
371 		iavf_add_queue_stats(&data, ring);
372 	}
373 	rcu_read_unlock();
374 }
375 
376 /**
377  * iavf_get_priv_flag_strings - Get private flag strings
378  * @netdev: network interface device structure
379  * @data: buffer for string data
380  *
381  * Builds the private flags string table
382  **/
383 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
384 {
385 	unsigned int i;
386 
387 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
388 		snprintf(data, ETH_GSTRING_LEN, "%s",
389 			 iavf_gstrings_priv_flags[i].flag_string);
390 		data += ETH_GSTRING_LEN;
391 	}
392 }
393 
394 /**
395  * iavf_get_stat_strings - Get stat strings
396  * @netdev: network interface device structure
397  * @data: buffer for string data
398  *
399  * Builds the statistics string table
400  **/
401 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
402 {
403 	unsigned int i;
404 
405 	iavf_add_stat_strings(&data, iavf_gstrings_stats);
406 
407 	/* Queues are always allocated in pairs, so we just use num_tx_queues
408 	 * for both Tx and Rx queues.
409 	 */
410 	for (i = 0; i < netdev->num_tx_queues; i++) {
411 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
412 				      "tx", i);
413 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
414 				      "rx", i);
415 	}
416 }
417 
418 /**
419  * iavf_get_strings - Get string set
420  * @netdev: network interface device structure
421  * @sset: id of string set
422  * @data: buffer for string data
423  *
424  * Builds string tables for various string sets
425  **/
426 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
427 {
428 	switch (sset) {
429 	case ETH_SS_STATS:
430 		iavf_get_stat_strings(netdev, data);
431 		break;
432 	case ETH_SS_PRIV_FLAGS:
433 		iavf_get_priv_flag_strings(netdev, data);
434 		break;
435 	default:
436 		break;
437 	}
438 }
439 
440 /**
441  * iavf_get_priv_flags - report device private flags
442  * @netdev: network interface device structure
443  *
444  * The get string set count and the string set should be matched for each
445  * flag returned.  Add new strings for each flag to the iavf_gstrings_priv_flags
446  * array.
447  *
448  * Returns a u32 bitmap of flags.
449  **/
450 static u32 iavf_get_priv_flags(struct net_device *netdev)
451 {
452 	struct iavf_adapter *adapter = netdev_priv(netdev);
453 	u32 i, ret_flags = 0;
454 
455 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
456 		const struct iavf_priv_flags *priv_flags;
457 
458 		priv_flags = &iavf_gstrings_priv_flags[i];
459 
460 		if (priv_flags->flag & adapter->flags)
461 			ret_flags |= BIT(i);
462 	}
463 
464 	return ret_flags;
465 }
466 
467 /**
468  * iavf_set_priv_flags - set private flags
469  * @netdev: network interface device structure
470  * @flags: bit flags to be set
471  **/
472 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
473 {
474 	struct iavf_adapter *adapter = netdev_priv(netdev);
475 	u32 orig_flags, new_flags, changed_flags;
476 	u32 i;
477 
478 	orig_flags = READ_ONCE(adapter->flags);
479 	new_flags = orig_flags;
480 
481 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
482 		const struct iavf_priv_flags *priv_flags;
483 
484 		priv_flags = &iavf_gstrings_priv_flags[i];
485 
486 		if (flags & BIT(i))
487 			new_flags |= priv_flags->flag;
488 		else
489 			new_flags &= ~(priv_flags->flag);
490 
491 		if (priv_flags->read_only &&
492 		    ((orig_flags ^ new_flags) & ~BIT(i)))
493 			return -EOPNOTSUPP;
494 	}
495 
496 	/* Before we finalize any flag changes, any checks which we need to
497 	 * perform to determine if the new flags will be supported should go
498 	 * here...
499 	 */
500 
501 	/* Compare and exchange the new flags into place. If we failed, that
502 	 * is if cmpxchg returns anything but the old value, this means
503 	 * something else must have modified the flags variable since we
504 	 * copied it. We'll just punt with an error and log something in the
505 	 * message buffer.
506 	 */
507 	if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
508 		dev_warn(&adapter->pdev->dev,
509 			 "Unable to update adapter->flags as it was modified by another thread...\n");
510 		return -EAGAIN;
511 	}
512 
513 	changed_flags = orig_flags ^ new_flags;
514 
515 	/* Process any additional changes needed as a result of flag changes.
516 	 * The changed_flags value reflects the list of bits that were changed
517 	 * in the code above.
518 	 */
519 
520 	/* issue a reset to force legacy-rx change to take effect */
521 	if (changed_flags & IAVF_FLAG_LEGACY_RX) {
522 		if (netif_running(netdev)) {
523 			adapter->flags |= IAVF_FLAG_RESET_NEEDED;
524 			queue_work(iavf_wq, &adapter->reset_task);
525 		}
526 	}
527 
528 	return 0;
529 }
530 
531 /**
532  * iavf_get_msglevel - Get debug message level
533  * @netdev: network interface device structure
534  *
535  * Returns current debug message level.
536  **/
537 static u32 iavf_get_msglevel(struct net_device *netdev)
538 {
539 	struct iavf_adapter *adapter = netdev_priv(netdev);
540 
541 	return adapter->msg_enable;
542 }
543 
544 /**
545  * iavf_set_msglevel - Set debug message level
546  * @netdev: network interface device structure
547  * @data: message level
548  *
549  * Set current debug message level. Higher values cause the driver to
550  * be noisier.
551  **/
552 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
553 {
554 	struct iavf_adapter *adapter = netdev_priv(netdev);
555 
556 	if (IAVF_DEBUG_USER & data)
557 		adapter->hw.debug_mask = data;
558 	adapter->msg_enable = data;
559 }
560 
561 /**
562  * iavf_get_drvinfo - Get driver info
563  * @netdev: network interface device structure
564  * @drvinfo: ethool driver info structure
565  *
566  * Returns information about the driver and device for display to the user.
567  **/
568 static void iavf_get_drvinfo(struct net_device *netdev,
569 			     struct ethtool_drvinfo *drvinfo)
570 {
571 	struct iavf_adapter *adapter = netdev_priv(netdev);
572 
573 	strlcpy(drvinfo->driver, iavf_driver_name, 32);
574 	strlcpy(drvinfo->fw_version, "N/A", 4);
575 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
576 	drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
577 }
578 
579 /**
580  * iavf_get_ringparam - Get ring parameters
581  * @netdev: network interface device structure
582  * @ring: ethtool ringparam structure
583  *
584  * Returns current ring parameters. TX and RX rings are reported separately,
585  * but the number of rings is not reported.
586  **/
587 static void iavf_get_ringparam(struct net_device *netdev,
588 			       struct ethtool_ringparam *ring)
589 {
590 	struct iavf_adapter *adapter = netdev_priv(netdev);
591 
592 	ring->rx_max_pending = IAVF_MAX_RXD;
593 	ring->tx_max_pending = IAVF_MAX_TXD;
594 	ring->rx_pending = adapter->rx_desc_count;
595 	ring->tx_pending = adapter->tx_desc_count;
596 }
597 
598 /**
599  * iavf_set_ringparam - Set ring parameters
600  * @netdev: network interface device structure
601  * @ring: ethtool ringparam structure
602  *
603  * Sets ring parameters. TX and RX rings are controlled separately, but the
604  * number of rings is not specified, so all rings get the same settings.
605  **/
606 static int iavf_set_ringparam(struct net_device *netdev,
607 			      struct ethtool_ringparam *ring)
608 {
609 	struct iavf_adapter *adapter = netdev_priv(netdev);
610 	u32 new_rx_count, new_tx_count;
611 
612 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
613 		return -EINVAL;
614 
615 	new_tx_count = clamp_t(u32, ring->tx_pending,
616 			       IAVF_MIN_TXD,
617 			       IAVF_MAX_TXD);
618 	new_tx_count = ALIGN(new_tx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE);
619 
620 	new_rx_count = clamp_t(u32, ring->rx_pending,
621 			       IAVF_MIN_RXD,
622 			       IAVF_MAX_RXD);
623 	new_rx_count = ALIGN(new_rx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE);
624 
625 	/* if nothing to do return success */
626 	if ((new_tx_count == adapter->tx_desc_count) &&
627 	    (new_rx_count == adapter->rx_desc_count))
628 		return 0;
629 
630 	adapter->tx_desc_count = new_tx_count;
631 	adapter->rx_desc_count = new_rx_count;
632 
633 	if (netif_running(netdev)) {
634 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
635 		queue_work(iavf_wq, &adapter->reset_task);
636 	}
637 
638 	return 0;
639 }
640 
641 /**
642  * __iavf_get_coalesce - get per-queue coalesce settings
643  * @netdev: the netdev to check
644  * @ec: ethtool coalesce data structure
645  * @queue: which queue to pick
646  *
647  * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
648  * are per queue. If queue is <0 then we default to queue 0 as the
649  * representative value.
650  **/
651 static int __iavf_get_coalesce(struct net_device *netdev,
652 			       struct ethtool_coalesce *ec, int queue)
653 {
654 	struct iavf_adapter *adapter = netdev_priv(netdev);
655 	struct iavf_vsi *vsi = &adapter->vsi;
656 	struct iavf_ring *rx_ring, *tx_ring;
657 
658 	ec->tx_max_coalesced_frames = vsi->work_limit;
659 	ec->rx_max_coalesced_frames = vsi->work_limit;
660 
661 	/* Rx and Tx usecs per queue value. If user doesn't specify the
662 	 * queue, return queue 0's value to represent.
663 	 */
664 	if (queue < 0)
665 		queue = 0;
666 	else if (queue >= adapter->num_active_queues)
667 		return -EINVAL;
668 
669 	rx_ring = &adapter->rx_rings[queue];
670 	tx_ring = &adapter->tx_rings[queue];
671 
672 	if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
673 		ec->use_adaptive_rx_coalesce = 1;
674 
675 	if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
676 		ec->use_adaptive_tx_coalesce = 1;
677 
678 	ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
679 	ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
680 
681 	return 0;
682 }
683 
684 /**
685  * iavf_get_coalesce - Get interrupt coalescing settings
686  * @netdev: network interface device structure
687  * @ec: ethtool coalesce structure
688  *
689  * Returns current coalescing settings. This is referred to elsewhere in the
690  * driver as Interrupt Throttle Rate, as this is how the hardware describes
691  * this functionality. Note that if per-queue settings have been modified this
692  * only represents the settings of queue 0.
693  **/
694 static int iavf_get_coalesce(struct net_device *netdev,
695 			     struct ethtool_coalesce *ec)
696 {
697 	return __iavf_get_coalesce(netdev, ec, -1);
698 }
699 
700 /**
701  * iavf_get_per_queue_coalesce - get coalesce values for specific queue
702  * @netdev: netdev to read
703  * @ec: coalesce settings from ethtool
704  * @queue: the queue to read
705  *
706  * Read specific queue's coalesce settings.
707  **/
708 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
709 				       struct ethtool_coalesce *ec)
710 {
711 	return __iavf_get_coalesce(netdev, ec, queue);
712 }
713 
714 /**
715  * iavf_set_itr_per_queue - set ITR values for specific queue
716  * @adapter: the VF adapter struct to set values for
717  * @ec: coalesce settings from ethtool
718  * @queue: the queue to modify
719  *
720  * Change the ITR settings for a specific queue.
721  **/
722 static void iavf_set_itr_per_queue(struct iavf_adapter *adapter,
723 				   struct ethtool_coalesce *ec, int queue)
724 {
725 	struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
726 	struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
727 	struct iavf_q_vector *q_vector;
728 
729 	rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
730 	tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
731 
732 	rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
733 	if (!ec->use_adaptive_rx_coalesce)
734 		rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
735 
736 	tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
737 	if (!ec->use_adaptive_tx_coalesce)
738 		tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
739 
740 	q_vector = rx_ring->q_vector;
741 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
742 
743 	q_vector = tx_ring->q_vector;
744 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
745 
746 	/* The interrupt handler itself will take care of programming
747 	 * the Tx and Rx ITR values based on the values we have entered
748 	 * into the q_vector, no need to write the values now.
749 	 */
750 }
751 
752 /**
753  * __iavf_set_coalesce - set coalesce settings for particular queue
754  * @netdev: the netdev to change
755  * @ec: ethtool coalesce settings
756  * @queue: the queue to change
757  *
758  * Sets the coalesce settings for a particular queue.
759  **/
760 static int __iavf_set_coalesce(struct net_device *netdev,
761 			       struct ethtool_coalesce *ec, int queue)
762 {
763 	struct iavf_adapter *adapter = netdev_priv(netdev);
764 	struct iavf_vsi *vsi = &adapter->vsi;
765 	int i;
766 
767 	if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq)
768 		vsi->work_limit = ec->tx_max_coalesced_frames_irq;
769 
770 	if (ec->rx_coalesce_usecs == 0) {
771 		if (ec->use_adaptive_rx_coalesce)
772 			netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
773 	} else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
774 		   (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
775 		netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
776 		return -EINVAL;
777 	} else if (ec->tx_coalesce_usecs == 0) {
778 		if (ec->use_adaptive_tx_coalesce)
779 			netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
780 	} else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
781 		   (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
782 		netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
783 		return -EINVAL;
784 	}
785 
786 	/* Rx and Tx usecs has per queue value. If user doesn't specify the
787 	 * queue, apply to all queues.
788 	 */
789 	if (queue < 0) {
790 		for (i = 0; i < adapter->num_active_queues; i++)
791 			iavf_set_itr_per_queue(adapter, ec, i);
792 	} else if (queue < adapter->num_active_queues) {
793 		iavf_set_itr_per_queue(adapter, ec, queue);
794 	} else {
795 		netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
796 			   adapter->num_active_queues - 1);
797 		return -EINVAL;
798 	}
799 
800 	return 0;
801 }
802 
803 /**
804  * iavf_set_coalesce - Set interrupt coalescing settings
805  * @netdev: network interface device structure
806  * @ec: ethtool coalesce structure
807  *
808  * Change current coalescing settings for every queue.
809  **/
810 static int iavf_set_coalesce(struct net_device *netdev,
811 			     struct ethtool_coalesce *ec)
812 {
813 	return __iavf_set_coalesce(netdev, ec, -1);
814 }
815 
816 /**
817  * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
818  * @netdev: the netdev to change
819  * @ec: ethtool's coalesce settings
820  * @queue: the queue to modify
821  *
822  * Modifies a specific queue's coalesce settings.
823  */
824 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
825 				       struct ethtool_coalesce *ec)
826 {
827 	return __iavf_set_coalesce(netdev, ec, queue);
828 }
829 
830 /**
831  * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
832  * flow type values
833  * @flow: filter type to be converted
834  *
835  * Returns the corresponding ethtool flow type.
836  */
837 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
838 {
839 	switch (flow) {
840 	case IAVF_FDIR_FLOW_IPV4_TCP:
841 		return TCP_V4_FLOW;
842 	case IAVF_FDIR_FLOW_IPV4_UDP:
843 		return UDP_V4_FLOW;
844 	case IAVF_FDIR_FLOW_IPV4_SCTP:
845 		return SCTP_V4_FLOW;
846 	case IAVF_FDIR_FLOW_IPV4_AH:
847 		return AH_V4_FLOW;
848 	case IAVF_FDIR_FLOW_IPV4_ESP:
849 		return ESP_V4_FLOW;
850 	case IAVF_FDIR_FLOW_IPV4_OTHER:
851 		return IPV4_USER_FLOW;
852 	case IAVF_FDIR_FLOW_IPV6_TCP:
853 		return TCP_V6_FLOW;
854 	case IAVF_FDIR_FLOW_IPV6_UDP:
855 		return UDP_V6_FLOW;
856 	case IAVF_FDIR_FLOW_IPV6_SCTP:
857 		return SCTP_V6_FLOW;
858 	case IAVF_FDIR_FLOW_IPV6_AH:
859 		return AH_V6_FLOW;
860 	case IAVF_FDIR_FLOW_IPV6_ESP:
861 		return ESP_V6_FLOW;
862 	case IAVF_FDIR_FLOW_IPV6_OTHER:
863 		return IPV6_USER_FLOW;
864 	case IAVF_FDIR_FLOW_NON_IP_L2:
865 		return ETHER_FLOW;
866 	default:
867 		/* 0 is undefined ethtool flow */
868 		return 0;
869 	}
870 }
871 
872 /**
873  * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
874  * @eth: Ethtool flow type to be converted
875  *
876  * Returns flow enum
877  */
878 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
879 {
880 	switch (eth) {
881 	case TCP_V4_FLOW:
882 		return IAVF_FDIR_FLOW_IPV4_TCP;
883 	case UDP_V4_FLOW:
884 		return IAVF_FDIR_FLOW_IPV4_UDP;
885 	case SCTP_V4_FLOW:
886 		return IAVF_FDIR_FLOW_IPV4_SCTP;
887 	case AH_V4_FLOW:
888 		return IAVF_FDIR_FLOW_IPV4_AH;
889 	case ESP_V4_FLOW:
890 		return IAVF_FDIR_FLOW_IPV4_ESP;
891 	case IPV4_USER_FLOW:
892 		return IAVF_FDIR_FLOW_IPV4_OTHER;
893 	case TCP_V6_FLOW:
894 		return IAVF_FDIR_FLOW_IPV6_TCP;
895 	case UDP_V6_FLOW:
896 		return IAVF_FDIR_FLOW_IPV6_UDP;
897 	case SCTP_V6_FLOW:
898 		return IAVF_FDIR_FLOW_IPV6_SCTP;
899 	case AH_V6_FLOW:
900 		return IAVF_FDIR_FLOW_IPV6_AH;
901 	case ESP_V6_FLOW:
902 		return IAVF_FDIR_FLOW_IPV6_ESP;
903 	case IPV6_USER_FLOW:
904 		return IAVF_FDIR_FLOW_IPV6_OTHER;
905 	case ETHER_FLOW:
906 		return IAVF_FDIR_FLOW_NON_IP_L2;
907 	default:
908 		return IAVF_FDIR_FLOW_NONE;
909 	}
910 }
911 
912 /**
913  * iavf_is_mask_valid - check mask field set
914  * @mask: full mask to check
915  * @field: field for which mask should be valid
916  *
917  * If the mask is fully set return true. If it is not valid for field return
918  * false.
919  */
920 static bool iavf_is_mask_valid(u64 mask, u64 field)
921 {
922 	return (mask & field) == field;
923 }
924 
925 /**
926  * iavf_parse_rx_flow_user_data - deconstruct user-defined data
927  * @fsp: pointer to ethtool Rx flow specification
928  * @fltr: pointer to Flow Director filter for userdef data storage
929  *
930  * Returns 0 on success, negative error value on failure
931  */
932 static int
933 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
934 			     struct iavf_fdir_fltr *fltr)
935 {
936 	struct iavf_flex_word *flex;
937 	int i, cnt = 0;
938 
939 	if (!(fsp->flow_type & FLOW_EXT))
940 		return 0;
941 
942 	for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
943 #define IAVF_USERDEF_FLEX_WORD_M	GENMASK(15, 0)
944 #define IAVF_USERDEF_FLEX_OFFS_S	16
945 #define IAVF_USERDEF_FLEX_OFFS_M	GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
946 #define IAVF_USERDEF_FLEX_FLTR_M	GENMASK(31, 0)
947 		u32 value = be32_to_cpu(fsp->h_ext.data[i]);
948 		u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
949 
950 		if (!value || !mask)
951 			continue;
952 
953 		if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
954 			return -EINVAL;
955 
956 		/* 504 is the maximum value for offsets, and offset is measured
957 		 * from the start of the MAC address.
958 		 */
959 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
960 		flex = &fltr->flex_words[cnt++];
961 		flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
962 		flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
963 			     IAVF_USERDEF_FLEX_OFFS_S;
964 		if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
965 			return -EINVAL;
966 	}
967 
968 	fltr->flex_cnt = cnt;
969 
970 	return 0;
971 }
972 
973 /**
974  * iavf_fill_rx_flow_ext_data - fill the additional data
975  * @fsp: pointer to ethtool Rx flow specification
976  * @fltr: pointer to Flow Director filter to get additional data
977  */
978 static void
979 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
980 			   struct iavf_fdir_fltr *fltr)
981 {
982 	if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
983 		return;
984 
985 	fsp->flow_type |= FLOW_EXT;
986 
987 	memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
988 	memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
989 }
990 
991 /**
992  * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
993  * @adapter: the VF adapter structure that contains filter list
994  * @cmd: ethtool command data structure to receive the filter data
995  *
996  * Returns 0 as expected for success by ethtool
997  */
998 static int
999 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1000 			    struct ethtool_rxnfc *cmd)
1001 {
1002 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1003 	struct iavf_fdir_fltr *rule = NULL;
1004 	int ret = 0;
1005 
1006 	if (!FDIR_FLTR_SUPPORT(adapter))
1007 		return -EOPNOTSUPP;
1008 
1009 	spin_lock_bh(&adapter->fdir_fltr_lock);
1010 
1011 	rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1012 	if (!rule) {
1013 		ret = -EINVAL;
1014 		goto release_lock;
1015 	}
1016 
1017 	fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1018 
1019 	memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1020 	memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1021 
1022 	switch (fsp->flow_type) {
1023 	case TCP_V4_FLOW:
1024 	case UDP_V4_FLOW:
1025 	case SCTP_V4_FLOW:
1026 		fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1027 		fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1028 		fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1029 		fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1030 		fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1031 		fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1032 		fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1033 		fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1034 		fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1035 		fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1036 		break;
1037 	case AH_V4_FLOW:
1038 	case ESP_V4_FLOW:
1039 		fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1040 		fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1041 		fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1042 		fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1043 		fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1044 		fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1045 		fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1046 		fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1047 		break;
1048 	case IPV4_USER_FLOW:
1049 		fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1050 		fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1051 		fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1052 		fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1053 		fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1054 		fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1055 		fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1056 		fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1057 		fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1058 		fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1059 		fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1060 		fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1061 		break;
1062 	case TCP_V6_FLOW:
1063 	case UDP_V6_FLOW:
1064 	case SCTP_V6_FLOW:
1065 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1066 		       sizeof(struct in6_addr));
1067 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1068 		       sizeof(struct in6_addr));
1069 		fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1070 		fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1071 		fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1072 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1073 		       sizeof(struct in6_addr));
1074 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1075 		       sizeof(struct in6_addr));
1076 		fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1077 		fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1078 		fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1079 		break;
1080 	case AH_V6_FLOW:
1081 	case ESP_V6_FLOW:
1082 		memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1083 		       sizeof(struct in6_addr));
1084 		memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1085 		       sizeof(struct in6_addr));
1086 		fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1087 		fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1088 		memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1089 		       sizeof(struct in6_addr));
1090 		memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1091 		       sizeof(struct in6_addr));
1092 		fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1093 		fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1094 		break;
1095 	case IPV6_USER_FLOW:
1096 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1097 		       sizeof(struct in6_addr));
1098 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1099 		       sizeof(struct in6_addr));
1100 		fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1101 		fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1102 		fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1103 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1104 		       sizeof(struct in6_addr));
1105 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1106 		       sizeof(struct in6_addr));
1107 		fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1108 		fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1109 		fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1110 		break;
1111 	case ETHER_FLOW:
1112 		fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1113 		fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1114 		break;
1115 	default:
1116 		ret = -EINVAL;
1117 		break;
1118 	}
1119 
1120 	iavf_fill_rx_flow_ext_data(fsp, rule);
1121 
1122 	if (rule->action == VIRTCHNL_ACTION_DROP)
1123 		fsp->ring_cookie = RX_CLS_FLOW_DISC;
1124 	else
1125 		fsp->ring_cookie = rule->q_index;
1126 
1127 release_lock:
1128 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1129 	return ret;
1130 }
1131 
1132 /**
1133  * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1134  * @adapter: the VF adapter structure containing the filter list
1135  * @cmd: ethtool command data structure
1136  * @rule_locs: ethtool array passed in from OS to receive filter IDs
1137  *
1138  * Returns 0 as expected for success by ethtool
1139  */
1140 static int
1141 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1142 		       u32 *rule_locs)
1143 {
1144 	struct iavf_fdir_fltr *fltr;
1145 	unsigned int cnt = 0;
1146 	int val = 0;
1147 
1148 	if (!FDIR_FLTR_SUPPORT(adapter))
1149 		return -EOPNOTSUPP;
1150 
1151 	cmd->data = IAVF_MAX_FDIR_FILTERS;
1152 
1153 	spin_lock_bh(&adapter->fdir_fltr_lock);
1154 
1155 	list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1156 		if (cnt == cmd->rule_cnt) {
1157 			val = -EMSGSIZE;
1158 			goto release_lock;
1159 		}
1160 		rule_locs[cnt] = fltr->loc;
1161 		cnt++;
1162 	}
1163 
1164 release_lock:
1165 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1166 	if (!val)
1167 		cmd->rule_cnt = cnt;
1168 
1169 	return val;
1170 }
1171 
1172 /**
1173  * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1174  * @adapter: pointer to the VF adapter structure
1175  * @fsp: pointer to ethtool Rx flow specification
1176  * @fltr: filter structure
1177  */
1178 static int
1179 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1180 			struct iavf_fdir_fltr *fltr)
1181 {
1182 	u32 flow_type, q_index = 0;
1183 	enum virtchnl_action act;
1184 	int err;
1185 
1186 	if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1187 		act = VIRTCHNL_ACTION_DROP;
1188 	} else {
1189 		q_index = fsp->ring_cookie;
1190 		if (q_index >= adapter->num_active_queues)
1191 			return -EINVAL;
1192 
1193 		act = VIRTCHNL_ACTION_QUEUE;
1194 	}
1195 
1196 	fltr->action = act;
1197 	fltr->loc = fsp->location;
1198 	fltr->q_index = q_index;
1199 
1200 	if (fsp->flow_type & FLOW_EXT) {
1201 		memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1202 		       sizeof(fltr->ext_data.usr_def));
1203 		memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1204 		       sizeof(fltr->ext_mask.usr_def));
1205 	}
1206 
1207 	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1208 	fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1209 
1210 	switch (flow_type) {
1211 	case TCP_V4_FLOW:
1212 	case UDP_V4_FLOW:
1213 	case SCTP_V4_FLOW:
1214 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1215 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1216 		fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1217 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1218 		fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1219 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1220 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1221 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1222 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1223 		fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1224 		break;
1225 	case AH_V4_FLOW:
1226 	case ESP_V4_FLOW:
1227 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1228 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1229 		fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1230 		fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1231 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1232 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1233 		fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1234 		fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1235 		break;
1236 	case IPV4_USER_FLOW:
1237 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1238 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1239 		fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1240 		fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1241 		fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1242 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1243 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1244 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1245 		fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1246 		fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1247 		break;
1248 	case TCP_V6_FLOW:
1249 	case UDP_V6_FLOW:
1250 	case SCTP_V6_FLOW:
1251 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1252 		       sizeof(struct in6_addr));
1253 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1254 		       sizeof(struct in6_addr));
1255 		fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1256 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1257 		fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1258 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1259 		       sizeof(struct in6_addr));
1260 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1261 		       sizeof(struct in6_addr));
1262 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1263 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1264 		fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1265 		break;
1266 	case AH_V6_FLOW:
1267 	case ESP_V6_FLOW:
1268 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1269 		       sizeof(struct in6_addr));
1270 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1271 		       sizeof(struct in6_addr));
1272 		fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1273 		fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1274 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1275 		       sizeof(struct in6_addr));
1276 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1277 		       sizeof(struct in6_addr));
1278 		fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1279 		fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1280 		break;
1281 	case IPV6_USER_FLOW:
1282 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1283 		       sizeof(struct in6_addr));
1284 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1285 		       sizeof(struct in6_addr));
1286 		fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1287 		fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1288 		fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1289 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1290 		       sizeof(struct in6_addr));
1291 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1292 		       sizeof(struct in6_addr));
1293 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1294 		fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1295 		fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1296 		break;
1297 	case ETHER_FLOW:
1298 		fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1299 		fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1300 		break;
1301 	default:
1302 		/* not doing un-parsed flow types */
1303 		return -EINVAL;
1304 	}
1305 
1306 	if (iavf_fdir_is_dup_fltr(adapter, fltr))
1307 		return -EEXIST;
1308 
1309 	err = iavf_parse_rx_flow_user_data(fsp, fltr);
1310 	if (err)
1311 		return err;
1312 
1313 	return iavf_fill_fdir_add_msg(adapter, fltr);
1314 }
1315 
1316 /**
1317  * iavf_add_fdir_ethtool - add Flow Director filter
1318  * @adapter: pointer to the VF adapter structure
1319  * @cmd: command to add Flow Director filter
1320  *
1321  * Returns 0 on success and negative values for failure
1322  */
1323 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1324 {
1325 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1326 	struct iavf_fdir_fltr *fltr;
1327 	int count = 50;
1328 	int err;
1329 
1330 	if (!FDIR_FLTR_SUPPORT(adapter))
1331 		return -EOPNOTSUPP;
1332 
1333 	if (fsp->flow_type & FLOW_MAC_EXT)
1334 		return -EINVAL;
1335 
1336 	if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1337 		dev_err(&adapter->pdev->dev,
1338 			"Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1339 			IAVF_MAX_FDIR_FILTERS);
1340 		return -ENOSPC;
1341 	}
1342 
1343 	spin_lock_bh(&adapter->fdir_fltr_lock);
1344 	if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1345 		dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1346 		spin_unlock_bh(&adapter->fdir_fltr_lock);
1347 		return -EEXIST;
1348 	}
1349 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1350 
1351 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1352 	if (!fltr)
1353 		return -ENOMEM;
1354 
1355 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
1356 				&adapter->crit_section)) {
1357 		if (--count == 0) {
1358 			kfree(fltr);
1359 			return -EINVAL;
1360 		}
1361 		udelay(1);
1362 	}
1363 
1364 	err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1365 	if (err)
1366 		goto ret;
1367 
1368 	spin_lock_bh(&adapter->fdir_fltr_lock);
1369 	iavf_fdir_list_add_fltr(adapter, fltr);
1370 	adapter->fdir_active_fltr++;
1371 	fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1372 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1373 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1374 
1375 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1376 
1377 ret:
1378 	if (err && fltr)
1379 		kfree(fltr);
1380 
1381 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1382 	return err;
1383 }
1384 
1385 /**
1386  * iavf_del_fdir_ethtool - delete Flow Director filter
1387  * @adapter: pointer to the VF adapter structure
1388  * @cmd: command to delete Flow Director filter
1389  *
1390  * Returns 0 on success and negative values for failure
1391  */
1392 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1393 {
1394 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1395 	struct iavf_fdir_fltr *fltr = NULL;
1396 	int err = 0;
1397 
1398 	if (!FDIR_FLTR_SUPPORT(adapter))
1399 		return -EOPNOTSUPP;
1400 
1401 	spin_lock_bh(&adapter->fdir_fltr_lock);
1402 	fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1403 	if (fltr) {
1404 		if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1405 			fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1406 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1407 		} else {
1408 			err = -EBUSY;
1409 		}
1410 	} else if (adapter->fdir_active_fltr) {
1411 		err = -EINVAL;
1412 	}
1413 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1414 
1415 	if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1416 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1423  * @cmd: ethtool rxnfc command
1424  *
1425  * This function parses the rxnfc command and returns intended
1426  * header types for RSS configuration
1427  */
1428 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1429 {
1430 	u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1431 
1432 	switch (cmd->flow_type) {
1433 	case TCP_V4_FLOW:
1434 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1435 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1436 		break;
1437 	case UDP_V4_FLOW:
1438 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1439 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1440 		break;
1441 	case SCTP_V4_FLOW:
1442 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1443 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1444 		break;
1445 	case TCP_V6_FLOW:
1446 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1447 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1448 		break;
1449 	case UDP_V6_FLOW:
1450 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1451 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1452 		break;
1453 	case SCTP_V6_FLOW:
1454 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1455 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	return hdrs;
1462 }
1463 
1464 /**
1465  * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1466  * @cmd: ethtool rxnfc command
1467  *
1468  * This function parses the rxnfc command and returns intended hash fields for
1469  * RSS configuration
1470  */
1471 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1472 {
1473 	u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1474 
1475 	if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1476 		switch (cmd->flow_type) {
1477 		case TCP_V4_FLOW:
1478 		case UDP_V4_FLOW:
1479 		case SCTP_V4_FLOW:
1480 			if (cmd->data & RXH_IP_SRC)
1481 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1482 			if (cmd->data & RXH_IP_DST)
1483 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1484 			break;
1485 		case TCP_V6_FLOW:
1486 		case UDP_V6_FLOW:
1487 		case SCTP_V6_FLOW:
1488 			if (cmd->data & RXH_IP_SRC)
1489 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1490 			if (cmd->data & RXH_IP_DST)
1491 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1492 			break;
1493 		default:
1494 			break;
1495 		}
1496 	}
1497 
1498 	if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1499 		switch (cmd->flow_type) {
1500 		case TCP_V4_FLOW:
1501 		case TCP_V6_FLOW:
1502 			if (cmd->data & RXH_L4_B_0_1)
1503 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1504 			if (cmd->data & RXH_L4_B_2_3)
1505 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1506 			break;
1507 		case UDP_V4_FLOW:
1508 		case UDP_V6_FLOW:
1509 			if (cmd->data & RXH_L4_B_0_1)
1510 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1511 			if (cmd->data & RXH_L4_B_2_3)
1512 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1513 			break;
1514 		case SCTP_V4_FLOW:
1515 		case SCTP_V6_FLOW:
1516 			if (cmd->data & RXH_L4_B_0_1)
1517 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1518 			if (cmd->data & RXH_L4_B_2_3)
1519 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1520 			break;
1521 		default:
1522 			break;
1523 		}
1524 	}
1525 
1526 	return hfld;
1527 }
1528 
1529 /**
1530  * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1531  * @adapter: pointer to the VF adapter structure
1532  * @cmd: ethtool rxnfc command
1533  *
1534  * Returns Success if the flow input set is supported.
1535  */
1536 static int
1537 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1538 			  struct ethtool_rxnfc *cmd)
1539 {
1540 	struct iavf_adv_rss *rss_old, *rss_new;
1541 	bool rss_new_add = false;
1542 	int count = 50, err = 0;
1543 	u64 hash_flds;
1544 	u32 hdrs;
1545 
1546 	if (!ADV_RSS_SUPPORT(adapter))
1547 		return -EOPNOTSUPP;
1548 
1549 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1550 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1551 		return -EINVAL;
1552 
1553 	hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1554 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1555 		return -EINVAL;
1556 
1557 	rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1558 	if (!rss_new)
1559 		return -ENOMEM;
1560 
1561 	if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1562 		kfree(rss_new);
1563 		return -EINVAL;
1564 	}
1565 
1566 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
1567 				&adapter->crit_section)) {
1568 		if (--count == 0) {
1569 			kfree(rss_new);
1570 			return -EINVAL;
1571 		}
1572 
1573 		udelay(1);
1574 	}
1575 
1576 	spin_lock_bh(&adapter->adv_rss_lock);
1577 	rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1578 	if (rss_old) {
1579 		if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1580 			err = -EBUSY;
1581 		} else if (rss_old->hash_flds != hash_flds) {
1582 			rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1583 			rss_old->hash_flds = hash_flds;
1584 			memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1585 			       sizeof(rss_new->cfg_msg));
1586 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1587 		} else {
1588 			err = -EEXIST;
1589 		}
1590 	} else {
1591 		rss_new_add = true;
1592 		rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1593 		rss_new->packet_hdrs = hdrs;
1594 		rss_new->hash_flds = hash_flds;
1595 		list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1596 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1597 	}
1598 	spin_unlock_bh(&adapter->adv_rss_lock);
1599 
1600 	if (!err)
1601 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1602 
1603 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1604 
1605 	if (!rss_new_add)
1606 		kfree(rss_new);
1607 
1608 	return err;
1609 }
1610 
1611 /**
1612  * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1613  * @adapter: pointer to the VF adapter structure
1614  * @cmd: ethtool rxnfc command
1615  *
1616  * Returns Success if the flow input set is supported.
1617  */
1618 static int
1619 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1620 			  struct ethtool_rxnfc *cmd)
1621 {
1622 	struct iavf_adv_rss *rss;
1623 	u64 hash_flds;
1624 	u32 hdrs;
1625 
1626 	if (!ADV_RSS_SUPPORT(adapter))
1627 		return -EOPNOTSUPP;
1628 
1629 	cmd->data = 0;
1630 
1631 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1632 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1633 		return -EINVAL;
1634 
1635 	spin_lock_bh(&adapter->adv_rss_lock);
1636 	rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1637 	if (rss)
1638 		hash_flds = rss->hash_flds;
1639 	else
1640 		hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1641 	spin_unlock_bh(&adapter->adv_rss_lock);
1642 
1643 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1644 		return -EINVAL;
1645 
1646 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1647 			 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1648 		cmd->data |= (u64)RXH_IP_SRC;
1649 
1650 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1651 			 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1652 		cmd->data |= (u64)RXH_IP_DST;
1653 
1654 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1655 			 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1656 			 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1657 		cmd->data |= (u64)RXH_L4_B_0_1;
1658 
1659 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1660 			 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1661 			 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1662 		cmd->data |= (u64)RXH_L4_B_2_3;
1663 
1664 	return 0;
1665 }
1666 
1667 /**
1668  * iavf_set_rxnfc - command to set Rx flow rules.
1669  * @netdev: network interface device structure
1670  * @cmd: ethtool rxnfc command
1671  *
1672  * Returns 0 for success and negative values for errors
1673  */
1674 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1675 {
1676 	struct iavf_adapter *adapter = netdev_priv(netdev);
1677 	int ret = -EOPNOTSUPP;
1678 
1679 	switch (cmd->cmd) {
1680 	case ETHTOOL_SRXCLSRLINS:
1681 		ret = iavf_add_fdir_ethtool(adapter, cmd);
1682 		break;
1683 	case ETHTOOL_SRXCLSRLDEL:
1684 		ret = iavf_del_fdir_ethtool(adapter, cmd);
1685 		break;
1686 	case ETHTOOL_SRXFH:
1687 		ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1688 		break;
1689 	default:
1690 		break;
1691 	}
1692 
1693 	return ret;
1694 }
1695 
1696 /**
1697  * iavf_get_rxnfc - command to get RX flow classification rules
1698  * @netdev: network interface device structure
1699  * @cmd: ethtool rxnfc command
1700  * @rule_locs: pointer to store rule locations
1701  *
1702  * Returns Success if the command is supported.
1703  **/
1704 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1705 			  u32 *rule_locs)
1706 {
1707 	struct iavf_adapter *adapter = netdev_priv(netdev);
1708 	int ret = -EOPNOTSUPP;
1709 
1710 	switch (cmd->cmd) {
1711 	case ETHTOOL_GRXRINGS:
1712 		cmd->data = adapter->num_active_queues;
1713 		ret = 0;
1714 		break;
1715 	case ETHTOOL_GRXCLSRLCNT:
1716 		if (!FDIR_FLTR_SUPPORT(adapter))
1717 			break;
1718 		cmd->rule_cnt = adapter->fdir_active_fltr;
1719 		cmd->data = IAVF_MAX_FDIR_FILTERS;
1720 		ret = 0;
1721 		break;
1722 	case ETHTOOL_GRXCLSRULE:
1723 		ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1724 		break;
1725 	case ETHTOOL_GRXCLSRLALL:
1726 		ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1727 		break;
1728 	case ETHTOOL_GRXFH:
1729 		ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1730 		break;
1731 	default:
1732 		break;
1733 	}
1734 
1735 	return ret;
1736 }
1737 /**
1738  * iavf_get_channels: get the number of channels supported by the device
1739  * @netdev: network interface device structure
1740  * @ch: channel information structure
1741  *
1742  * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1743  * queue pair. Report one extra channel to match our "other" MSI-X vector.
1744  **/
1745 static void iavf_get_channels(struct net_device *netdev,
1746 			      struct ethtool_channels *ch)
1747 {
1748 	struct iavf_adapter *adapter = netdev_priv(netdev);
1749 
1750 	/* Report maximum channels */
1751 	ch->max_combined = adapter->vsi_res->num_queue_pairs;
1752 
1753 	ch->max_other = NONQ_VECS;
1754 	ch->other_count = NONQ_VECS;
1755 
1756 	ch->combined_count = adapter->num_active_queues;
1757 }
1758 
1759 /**
1760  * iavf_set_channels: set the new channel count
1761  * @netdev: network interface device structure
1762  * @ch: channel information structure
1763  *
1764  * Negotiate a new number of channels with the PF then do a reset.  During
1765  * reset we'll realloc queues and fix the RSS table.  Returns 0 on success,
1766  * negative on failure.
1767  **/
1768 static int iavf_set_channels(struct net_device *netdev,
1769 			     struct ethtool_channels *ch)
1770 {
1771 	struct iavf_adapter *adapter = netdev_priv(netdev);
1772 	u32 num_req = ch->combined_count;
1773 
1774 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1775 	    adapter->num_tc) {
1776 		dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1777 		return -EINVAL;
1778 	}
1779 
1780 	/* All of these should have already been checked by ethtool before this
1781 	 * even gets to us, but just to be sure.
1782 	 */
1783 	if (num_req > adapter->vsi_res->num_queue_pairs)
1784 		return -EINVAL;
1785 
1786 	if (num_req == adapter->num_active_queues)
1787 		return 0;
1788 
1789 	if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1790 		return -EINVAL;
1791 
1792 	adapter->num_req_queues = num_req;
1793 	adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1794 	iavf_schedule_reset(adapter);
1795 	return 0;
1796 }
1797 
1798 /**
1799  * iavf_get_rxfh_key_size - get the RSS hash key size
1800  * @netdev: network interface device structure
1801  *
1802  * Returns the table size.
1803  **/
1804 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1805 {
1806 	struct iavf_adapter *adapter = netdev_priv(netdev);
1807 
1808 	return adapter->rss_key_size;
1809 }
1810 
1811 /**
1812  * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1813  * @netdev: network interface device structure
1814  *
1815  * Returns the table size.
1816  **/
1817 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1818 {
1819 	struct iavf_adapter *adapter = netdev_priv(netdev);
1820 
1821 	return adapter->rss_lut_size;
1822 }
1823 
1824 /**
1825  * iavf_get_rxfh - get the rx flow hash indirection table
1826  * @netdev: network interface device structure
1827  * @indir: indirection table
1828  * @key: hash key
1829  * @hfunc: hash function in use
1830  *
1831  * Reads the indirection table directly from the hardware. Always returns 0.
1832  **/
1833 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1834 			 u8 *hfunc)
1835 {
1836 	struct iavf_adapter *adapter = netdev_priv(netdev);
1837 	u16 i;
1838 
1839 	if (hfunc)
1840 		*hfunc = ETH_RSS_HASH_TOP;
1841 	if (!indir)
1842 		return 0;
1843 
1844 	memcpy(key, adapter->rss_key, adapter->rss_key_size);
1845 
1846 	/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1847 	for (i = 0; i < adapter->rss_lut_size; i++)
1848 		indir[i] = (u32)adapter->rss_lut[i];
1849 
1850 	return 0;
1851 }
1852 
1853 /**
1854  * iavf_set_rxfh - set the rx flow hash indirection table
1855  * @netdev: network interface device structure
1856  * @indir: indirection table
1857  * @key: hash key
1858  * @hfunc: hash function to use
1859  *
1860  * Returns -EINVAL if the table specifies an inavlid queue id, otherwise
1861  * returns 0 after programming the table.
1862  **/
1863 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1864 			 const u8 *key, const u8 hfunc)
1865 {
1866 	struct iavf_adapter *adapter = netdev_priv(netdev);
1867 	u16 i;
1868 
1869 	/* We do not allow change in unsupported parameters */
1870 	if (key ||
1871 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1872 		return -EOPNOTSUPP;
1873 	if (!indir)
1874 		return 0;
1875 
1876 	if (key)
1877 		memcpy(adapter->rss_key, key, adapter->rss_key_size);
1878 
1879 	/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1880 	for (i = 0; i < adapter->rss_lut_size; i++)
1881 		adapter->rss_lut[i] = (u8)(indir[i]);
1882 
1883 	return iavf_config_rss(adapter);
1884 }
1885 
1886 static const struct ethtool_ops iavf_ethtool_ops = {
1887 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1888 				     ETHTOOL_COALESCE_MAX_FRAMES |
1889 				     ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
1890 				     ETHTOOL_COALESCE_USE_ADAPTIVE,
1891 	.get_drvinfo		= iavf_get_drvinfo,
1892 	.get_link		= ethtool_op_get_link,
1893 	.get_ringparam		= iavf_get_ringparam,
1894 	.set_ringparam		= iavf_set_ringparam,
1895 	.get_strings		= iavf_get_strings,
1896 	.get_ethtool_stats	= iavf_get_ethtool_stats,
1897 	.get_sset_count		= iavf_get_sset_count,
1898 	.get_priv_flags		= iavf_get_priv_flags,
1899 	.set_priv_flags		= iavf_set_priv_flags,
1900 	.get_msglevel		= iavf_get_msglevel,
1901 	.set_msglevel		= iavf_set_msglevel,
1902 	.get_coalesce		= iavf_get_coalesce,
1903 	.set_coalesce		= iavf_set_coalesce,
1904 	.get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1905 	.set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1906 	.set_rxnfc		= iavf_set_rxnfc,
1907 	.get_rxnfc		= iavf_get_rxnfc,
1908 	.get_rxfh_indir_size	= iavf_get_rxfh_indir_size,
1909 	.get_rxfh		= iavf_get_rxfh,
1910 	.set_rxfh		= iavf_set_rxfh,
1911 	.get_channels		= iavf_get_channels,
1912 	.set_channels		= iavf_set_channels,
1913 	.get_rxfh_key_size	= iavf_get_rxfh_key_size,
1914 	.get_link_ksettings	= iavf_get_link_ksettings,
1915 };
1916 
1917 /**
1918  * iavf_set_ethtool_ops - Initialize ethtool ops struct
1919  * @netdev: network interface device structure
1920  *
1921  * Sets ethtool ops struct in our netdev so that ethtool can call
1922  * our functions.
1923  **/
1924 void iavf_set_ethtool_ops(struct net_device *netdev)
1925 {
1926 	netdev->ethtool_ops = &iavf_ethtool_ops;
1927 }
1928