1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry_irq. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 if (sset == ETH_SS_STATS) 335 return IAVF_STATS_LEN + 336 (IAVF_QUEUE_STATS_LEN * 2 * IAVF_MAX_REQ_QUEUES); 337 else if (sset == ETH_SS_PRIV_FLAGS) 338 return IAVF_PRIV_FLAGS_STR_LEN; 339 else 340 return -EINVAL; 341 } 342 343 /** 344 * iavf_get_ethtool_stats - report device statistics 345 * @netdev: network interface device structure 346 * @stats: ethtool statistics structure 347 * @data: pointer to data buffer 348 * 349 * All statistics are added to the data buffer as an array of u64. 350 **/ 351 static void iavf_get_ethtool_stats(struct net_device *netdev, 352 struct ethtool_stats *stats, u64 *data) 353 { 354 struct iavf_adapter *adapter = netdev_priv(netdev); 355 unsigned int i; 356 357 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 358 359 rcu_read_lock(); 360 for (i = 0; i < IAVF_MAX_REQ_QUEUES; i++) { 361 struct iavf_ring *ring; 362 363 /* Avoid accessing un-allocated queues */ 364 ring = (i < adapter->num_active_queues ? 365 &adapter->tx_rings[i] : NULL); 366 iavf_add_queue_stats(&data, ring); 367 368 /* Avoid accessing un-allocated queues */ 369 ring = (i < adapter->num_active_queues ? 370 &adapter->rx_rings[i] : NULL); 371 iavf_add_queue_stats(&data, ring); 372 } 373 rcu_read_unlock(); 374 } 375 376 /** 377 * iavf_get_priv_flag_strings - Get private flag strings 378 * @netdev: network interface device structure 379 * @data: buffer for string data 380 * 381 * Builds the private flags string table 382 **/ 383 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 384 { 385 unsigned int i; 386 387 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 388 snprintf(data, ETH_GSTRING_LEN, "%s", 389 iavf_gstrings_priv_flags[i].flag_string); 390 data += ETH_GSTRING_LEN; 391 } 392 } 393 394 /** 395 * iavf_get_stat_strings - Get stat strings 396 * @netdev: network interface device structure 397 * @data: buffer for string data 398 * 399 * Builds the statistics string table 400 **/ 401 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 402 { 403 unsigned int i; 404 405 iavf_add_stat_strings(&data, iavf_gstrings_stats); 406 407 /* Queues are always allocated in pairs, so we just use num_tx_queues 408 * for both Tx and Rx queues. 409 */ 410 for (i = 0; i < netdev->num_tx_queues; i++) { 411 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 412 "tx", i); 413 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 414 "rx", i); 415 } 416 } 417 418 /** 419 * iavf_get_strings - Get string set 420 * @netdev: network interface device structure 421 * @sset: id of string set 422 * @data: buffer for string data 423 * 424 * Builds string tables for various string sets 425 **/ 426 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 427 { 428 switch (sset) { 429 case ETH_SS_STATS: 430 iavf_get_stat_strings(netdev, data); 431 break; 432 case ETH_SS_PRIV_FLAGS: 433 iavf_get_priv_flag_strings(netdev, data); 434 break; 435 default: 436 break; 437 } 438 } 439 440 /** 441 * iavf_get_priv_flags - report device private flags 442 * @netdev: network interface device structure 443 * 444 * The get string set count and the string set should be matched for each 445 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 446 * array. 447 * 448 * Returns a u32 bitmap of flags. 449 **/ 450 static u32 iavf_get_priv_flags(struct net_device *netdev) 451 { 452 struct iavf_adapter *adapter = netdev_priv(netdev); 453 u32 i, ret_flags = 0; 454 455 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 456 const struct iavf_priv_flags *priv_flags; 457 458 priv_flags = &iavf_gstrings_priv_flags[i]; 459 460 if (priv_flags->flag & adapter->flags) 461 ret_flags |= BIT(i); 462 } 463 464 return ret_flags; 465 } 466 467 /** 468 * iavf_set_priv_flags - set private flags 469 * @netdev: network interface device structure 470 * @flags: bit flags to be set 471 **/ 472 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 473 { 474 struct iavf_adapter *adapter = netdev_priv(netdev); 475 u32 orig_flags, new_flags, changed_flags; 476 u32 i; 477 478 orig_flags = READ_ONCE(adapter->flags); 479 new_flags = orig_flags; 480 481 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 482 const struct iavf_priv_flags *priv_flags; 483 484 priv_flags = &iavf_gstrings_priv_flags[i]; 485 486 if (flags & BIT(i)) 487 new_flags |= priv_flags->flag; 488 else 489 new_flags &= ~(priv_flags->flag); 490 491 if (priv_flags->read_only && 492 ((orig_flags ^ new_flags) & ~BIT(i))) 493 return -EOPNOTSUPP; 494 } 495 496 /* Before we finalize any flag changes, any checks which we need to 497 * perform to determine if the new flags will be supported should go 498 * here... 499 */ 500 501 /* Compare and exchange the new flags into place. If we failed, that 502 * is if cmpxchg returns anything but the old value, this means 503 * something else must have modified the flags variable since we 504 * copied it. We'll just punt with an error and log something in the 505 * message buffer. 506 */ 507 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 508 dev_warn(&adapter->pdev->dev, 509 "Unable to update adapter->flags as it was modified by another thread...\n"); 510 return -EAGAIN; 511 } 512 513 changed_flags = orig_flags ^ new_flags; 514 515 /* Process any additional changes needed as a result of flag changes. 516 * The changed_flags value reflects the list of bits that were changed 517 * in the code above. 518 */ 519 520 /* issue a reset to force legacy-rx change to take effect */ 521 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 522 if (netif_running(netdev)) { 523 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 524 queue_work(iavf_wq, &adapter->reset_task); 525 } 526 } 527 528 return 0; 529 } 530 531 /** 532 * iavf_get_msglevel - Get debug message level 533 * @netdev: network interface device structure 534 * 535 * Returns current debug message level. 536 **/ 537 static u32 iavf_get_msglevel(struct net_device *netdev) 538 { 539 struct iavf_adapter *adapter = netdev_priv(netdev); 540 541 return adapter->msg_enable; 542 } 543 544 /** 545 * iavf_set_msglevel - Set debug message level 546 * @netdev: network interface device structure 547 * @data: message level 548 * 549 * Set current debug message level. Higher values cause the driver to 550 * be noisier. 551 **/ 552 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 553 { 554 struct iavf_adapter *adapter = netdev_priv(netdev); 555 556 if (IAVF_DEBUG_USER & data) 557 adapter->hw.debug_mask = data; 558 adapter->msg_enable = data; 559 } 560 561 /** 562 * iavf_get_drvinfo - Get driver info 563 * @netdev: network interface device structure 564 * @drvinfo: ethool driver info structure 565 * 566 * Returns information about the driver and device for display to the user. 567 **/ 568 static void iavf_get_drvinfo(struct net_device *netdev, 569 struct ethtool_drvinfo *drvinfo) 570 { 571 struct iavf_adapter *adapter = netdev_priv(netdev); 572 573 strlcpy(drvinfo->driver, iavf_driver_name, 32); 574 strlcpy(drvinfo->fw_version, "N/A", 4); 575 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 576 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 577 } 578 579 /** 580 * iavf_get_ringparam - Get ring parameters 581 * @netdev: network interface device structure 582 * @ring: ethtool ringparam structure 583 * 584 * Returns current ring parameters. TX and RX rings are reported separately, 585 * but the number of rings is not reported. 586 **/ 587 static void iavf_get_ringparam(struct net_device *netdev, 588 struct ethtool_ringparam *ring) 589 { 590 struct iavf_adapter *adapter = netdev_priv(netdev); 591 592 ring->rx_max_pending = IAVF_MAX_RXD; 593 ring->tx_max_pending = IAVF_MAX_TXD; 594 ring->rx_pending = adapter->rx_desc_count; 595 ring->tx_pending = adapter->tx_desc_count; 596 } 597 598 /** 599 * iavf_set_ringparam - Set ring parameters 600 * @netdev: network interface device structure 601 * @ring: ethtool ringparam structure 602 * 603 * Sets ring parameters. TX and RX rings are controlled separately, but the 604 * number of rings is not specified, so all rings get the same settings. 605 **/ 606 static int iavf_set_ringparam(struct net_device *netdev, 607 struct ethtool_ringparam *ring) 608 { 609 struct iavf_adapter *adapter = netdev_priv(netdev); 610 u32 new_rx_count, new_tx_count; 611 612 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 613 return -EINVAL; 614 615 new_tx_count = clamp_t(u32, ring->tx_pending, 616 IAVF_MIN_TXD, 617 IAVF_MAX_TXD); 618 new_tx_count = ALIGN(new_tx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE); 619 620 new_rx_count = clamp_t(u32, ring->rx_pending, 621 IAVF_MIN_RXD, 622 IAVF_MAX_RXD); 623 new_rx_count = ALIGN(new_rx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE); 624 625 /* if nothing to do return success */ 626 if ((new_tx_count == adapter->tx_desc_count) && 627 (new_rx_count == adapter->rx_desc_count)) 628 return 0; 629 630 adapter->tx_desc_count = new_tx_count; 631 adapter->rx_desc_count = new_rx_count; 632 633 if (netif_running(netdev)) { 634 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 635 queue_work(iavf_wq, &adapter->reset_task); 636 } 637 638 return 0; 639 } 640 641 /** 642 * __iavf_get_coalesce - get per-queue coalesce settings 643 * @netdev: the netdev to check 644 * @ec: ethtool coalesce data structure 645 * @queue: which queue to pick 646 * 647 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 648 * are per queue. If queue is <0 then we default to queue 0 as the 649 * representative value. 650 **/ 651 static int __iavf_get_coalesce(struct net_device *netdev, 652 struct ethtool_coalesce *ec, int queue) 653 { 654 struct iavf_adapter *adapter = netdev_priv(netdev); 655 struct iavf_vsi *vsi = &adapter->vsi; 656 struct iavf_ring *rx_ring, *tx_ring; 657 658 ec->tx_max_coalesced_frames = vsi->work_limit; 659 ec->rx_max_coalesced_frames = vsi->work_limit; 660 661 /* Rx and Tx usecs per queue value. If user doesn't specify the 662 * queue, return queue 0's value to represent. 663 */ 664 if (queue < 0) 665 queue = 0; 666 else if (queue >= adapter->num_active_queues) 667 return -EINVAL; 668 669 rx_ring = &adapter->rx_rings[queue]; 670 tx_ring = &adapter->tx_rings[queue]; 671 672 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 673 ec->use_adaptive_rx_coalesce = 1; 674 675 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 676 ec->use_adaptive_tx_coalesce = 1; 677 678 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 679 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 680 681 return 0; 682 } 683 684 /** 685 * iavf_get_coalesce - Get interrupt coalescing settings 686 * @netdev: network interface device structure 687 * @ec: ethtool coalesce structure 688 * 689 * Returns current coalescing settings. This is referred to elsewhere in the 690 * driver as Interrupt Throttle Rate, as this is how the hardware describes 691 * this functionality. Note that if per-queue settings have been modified this 692 * only represents the settings of queue 0. 693 **/ 694 static int iavf_get_coalesce(struct net_device *netdev, 695 struct ethtool_coalesce *ec) 696 { 697 return __iavf_get_coalesce(netdev, ec, -1); 698 } 699 700 /** 701 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 702 * @netdev: netdev to read 703 * @ec: coalesce settings from ethtool 704 * @queue: the queue to read 705 * 706 * Read specific queue's coalesce settings. 707 **/ 708 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 709 struct ethtool_coalesce *ec) 710 { 711 return __iavf_get_coalesce(netdev, ec, queue); 712 } 713 714 /** 715 * iavf_set_itr_per_queue - set ITR values for specific queue 716 * @adapter: the VF adapter struct to set values for 717 * @ec: coalesce settings from ethtool 718 * @queue: the queue to modify 719 * 720 * Change the ITR settings for a specific queue. 721 **/ 722 static void iavf_set_itr_per_queue(struct iavf_adapter *adapter, 723 struct ethtool_coalesce *ec, int queue) 724 { 725 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 726 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 727 struct iavf_q_vector *q_vector; 728 729 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 730 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 731 732 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 733 if (!ec->use_adaptive_rx_coalesce) 734 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 735 736 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 737 if (!ec->use_adaptive_tx_coalesce) 738 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 739 740 q_vector = rx_ring->q_vector; 741 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 742 743 q_vector = tx_ring->q_vector; 744 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 745 746 /* The interrupt handler itself will take care of programming 747 * the Tx and Rx ITR values based on the values we have entered 748 * into the q_vector, no need to write the values now. 749 */ 750 } 751 752 /** 753 * __iavf_set_coalesce - set coalesce settings for particular queue 754 * @netdev: the netdev to change 755 * @ec: ethtool coalesce settings 756 * @queue: the queue to change 757 * 758 * Sets the coalesce settings for a particular queue. 759 **/ 760 static int __iavf_set_coalesce(struct net_device *netdev, 761 struct ethtool_coalesce *ec, int queue) 762 { 763 struct iavf_adapter *adapter = netdev_priv(netdev); 764 struct iavf_vsi *vsi = &adapter->vsi; 765 int i; 766 767 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq) 768 vsi->work_limit = ec->tx_max_coalesced_frames_irq; 769 770 if (ec->rx_coalesce_usecs == 0) { 771 if (ec->use_adaptive_rx_coalesce) 772 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); 773 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || 774 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { 775 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 776 return -EINVAL; 777 } else if (ec->tx_coalesce_usecs == 0) { 778 if (ec->use_adaptive_tx_coalesce) 779 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); 780 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || 781 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { 782 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 783 return -EINVAL; 784 } 785 786 /* Rx and Tx usecs has per queue value. If user doesn't specify the 787 * queue, apply to all queues. 788 */ 789 if (queue < 0) { 790 for (i = 0; i < adapter->num_active_queues; i++) 791 iavf_set_itr_per_queue(adapter, ec, i); 792 } else if (queue < adapter->num_active_queues) { 793 iavf_set_itr_per_queue(adapter, ec, queue); 794 } else { 795 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 796 adapter->num_active_queues - 1); 797 return -EINVAL; 798 } 799 800 return 0; 801 } 802 803 /** 804 * iavf_set_coalesce - Set interrupt coalescing settings 805 * @netdev: network interface device structure 806 * @ec: ethtool coalesce structure 807 * 808 * Change current coalescing settings for every queue. 809 **/ 810 static int iavf_set_coalesce(struct net_device *netdev, 811 struct ethtool_coalesce *ec) 812 { 813 return __iavf_set_coalesce(netdev, ec, -1); 814 } 815 816 /** 817 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 818 * @netdev: the netdev to change 819 * @ec: ethtool's coalesce settings 820 * @queue: the queue to modify 821 * 822 * Modifies a specific queue's coalesce settings. 823 */ 824 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 825 struct ethtool_coalesce *ec) 826 { 827 return __iavf_set_coalesce(netdev, ec, queue); 828 } 829 830 /** 831 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 832 * flow type values 833 * @flow: filter type to be converted 834 * 835 * Returns the corresponding ethtool flow type. 836 */ 837 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 838 { 839 switch (flow) { 840 case IAVF_FDIR_FLOW_IPV4_TCP: 841 return TCP_V4_FLOW; 842 case IAVF_FDIR_FLOW_IPV4_UDP: 843 return UDP_V4_FLOW; 844 case IAVF_FDIR_FLOW_IPV4_SCTP: 845 return SCTP_V4_FLOW; 846 case IAVF_FDIR_FLOW_IPV4_AH: 847 return AH_V4_FLOW; 848 case IAVF_FDIR_FLOW_IPV4_ESP: 849 return ESP_V4_FLOW; 850 case IAVF_FDIR_FLOW_IPV4_OTHER: 851 return IPV4_USER_FLOW; 852 case IAVF_FDIR_FLOW_IPV6_TCP: 853 return TCP_V6_FLOW; 854 case IAVF_FDIR_FLOW_IPV6_UDP: 855 return UDP_V6_FLOW; 856 case IAVF_FDIR_FLOW_IPV6_SCTP: 857 return SCTP_V6_FLOW; 858 case IAVF_FDIR_FLOW_IPV6_AH: 859 return AH_V6_FLOW; 860 case IAVF_FDIR_FLOW_IPV6_ESP: 861 return ESP_V6_FLOW; 862 case IAVF_FDIR_FLOW_IPV6_OTHER: 863 return IPV6_USER_FLOW; 864 case IAVF_FDIR_FLOW_NON_IP_L2: 865 return ETHER_FLOW; 866 default: 867 /* 0 is undefined ethtool flow */ 868 return 0; 869 } 870 } 871 872 /** 873 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 874 * @eth: Ethtool flow type to be converted 875 * 876 * Returns flow enum 877 */ 878 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 879 { 880 switch (eth) { 881 case TCP_V4_FLOW: 882 return IAVF_FDIR_FLOW_IPV4_TCP; 883 case UDP_V4_FLOW: 884 return IAVF_FDIR_FLOW_IPV4_UDP; 885 case SCTP_V4_FLOW: 886 return IAVF_FDIR_FLOW_IPV4_SCTP; 887 case AH_V4_FLOW: 888 return IAVF_FDIR_FLOW_IPV4_AH; 889 case ESP_V4_FLOW: 890 return IAVF_FDIR_FLOW_IPV4_ESP; 891 case IPV4_USER_FLOW: 892 return IAVF_FDIR_FLOW_IPV4_OTHER; 893 case TCP_V6_FLOW: 894 return IAVF_FDIR_FLOW_IPV6_TCP; 895 case UDP_V6_FLOW: 896 return IAVF_FDIR_FLOW_IPV6_UDP; 897 case SCTP_V6_FLOW: 898 return IAVF_FDIR_FLOW_IPV6_SCTP; 899 case AH_V6_FLOW: 900 return IAVF_FDIR_FLOW_IPV6_AH; 901 case ESP_V6_FLOW: 902 return IAVF_FDIR_FLOW_IPV6_ESP; 903 case IPV6_USER_FLOW: 904 return IAVF_FDIR_FLOW_IPV6_OTHER; 905 case ETHER_FLOW: 906 return IAVF_FDIR_FLOW_NON_IP_L2; 907 default: 908 return IAVF_FDIR_FLOW_NONE; 909 } 910 } 911 912 /** 913 * iavf_is_mask_valid - check mask field set 914 * @mask: full mask to check 915 * @field: field for which mask should be valid 916 * 917 * If the mask is fully set return true. If it is not valid for field return 918 * false. 919 */ 920 static bool iavf_is_mask_valid(u64 mask, u64 field) 921 { 922 return (mask & field) == field; 923 } 924 925 /** 926 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 927 * @fsp: pointer to ethtool Rx flow specification 928 * @fltr: pointer to Flow Director filter for userdef data storage 929 * 930 * Returns 0 on success, negative error value on failure 931 */ 932 static int 933 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 934 struct iavf_fdir_fltr *fltr) 935 { 936 struct iavf_flex_word *flex; 937 int i, cnt = 0; 938 939 if (!(fsp->flow_type & FLOW_EXT)) 940 return 0; 941 942 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 943 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 944 #define IAVF_USERDEF_FLEX_OFFS_S 16 945 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 946 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 947 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 948 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 949 950 if (!value || !mask) 951 continue; 952 953 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 954 return -EINVAL; 955 956 /* 504 is the maximum value for offsets, and offset is measured 957 * from the start of the MAC address. 958 */ 959 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 960 flex = &fltr->flex_words[cnt++]; 961 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 962 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 963 IAVF_USERDEF_FLEX_OFFS_S; 964 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 965 return -EINVAL; 966 } 967 968 fltr->flex_cnt = cnt; 969 970 return 0; 971 } 972 973 /** 974 * iavf_fill_rx_flow_ext_data - fill the additional data 975 * @fsp: pointer to ethtool Rx flow specification 976 * @fltr: pointer to Flow Director filter to get additional data 977 */ 978 static void 979 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 980 struct iavf_fdir_fltr *fltr) 981 { 982 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 983 return; 984 985 fsp->flow_type |= FLOW_EXT; 986 987 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 988 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 989 } 990 991 /** 992 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 993 * @adapter: the VF adapter structure that contains filter list 994 * @cmd: ethtool command data structure to receive the filter data 995 * 996 * Returns 0 as expected for success by ethtool 997 */ 998 static int 999 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1000 struct ethtool_rxnfc *cmd) 1001 { 1002 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1003 struct iavf_fdir_fltr *rule = NULL; 1004 int ret = 0; 1005 1006 if (!FDIR_FLTR_SUPPORT(adapter)) 1007 return -EOPNOTSUPP; 1008 1009 spin_lock_bh(&adapter->fdir_fltr_lock); 1010 1011 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1012 if (!rule) { 1013 ret = -EINVAL; 1014 goto release_lock; 1015 } 1016 1017 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1018 1019 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1020 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1021 1022 switch (fsp->flow_type) { 1023 case TCP_V4_FLOW: 1024 case UDP_V4_FLOW: 1025 case SCTP_V4_FLOW: 1026 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1027 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1028 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1029 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1030 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1031 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1032 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1033 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1034 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1035 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1036 break; 1037 case AH_V4_FLOW: 1038 case ESP_V4_FLOW: 1039 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1040 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1041 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1042 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1043 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1044 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1045 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1046 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1047 break; 1048 case IPV4_USER_FLOW: 1049 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1050 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1051 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1052 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1053 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1054 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1055 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1056 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1057 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1058 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1059 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1060 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1061 break; 1062 case TCP_V6_FLOW: 1063 case UDP_V6_FLOW: 1064 case SCTP_V6_FLOW: 1065 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1066 sizeof(struct in6_addr)); 1067 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1068 sizeof(struct in6_addr)); 1069 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1070 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1071 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1072 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1073 sizeof(struct in6_addr)); 1074 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1075 sizeof(struct in6_addr)); 1076 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1077 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1078 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1079 break; 1080 case AH_V6_FLOW: 1081 case ESP_V6_FLOW: 1082 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1083 sizeof(struct in6_addr)); 1084 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1085 sizeof(struct in6_addr)); 1086 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1087 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1088 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1089 sizeof(struct in6_addr)); 1090 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1091 sizeof(struct in6_addr)); 1092 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1093 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1094 break; 1095 case IPV6_USER_FLOW: 1096 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1097 sizeof(struct in6_addr)); 1098 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1099 sizeof(struct in6_addr)); 1100 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1101 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1102 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1103 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1104 sizeof(struct in6_addr)); 1105 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1106 sizeof(struct in6_addr)); 1107 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1108 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1109 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1110 break; 1111 case ETHER_FLOW: 1112 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1113 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1114 break; 1115 default: 1116 ret = -EINVAL; 1117 break; 1118 } 1119 1120 iavf_fill_rx_flow_ext_data(fsp, rule); 1121 1122 if (rule->action == VIRTCHNL_ACTION_DROP) 1123 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1124 else 1125 fsp->ring_cookie = rule->q_index; 1126 1127 release_lock: 1128 spin_unlock_bh(&adapter->fdir_fltr_lock); 1129 return ret; 1130 } 1131 1132 /** 1133 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1134 * @adapter: the VF adapter structure containing the filter list 1135 * @cmd: ethtool command data structure 1136 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1137 * 1138 * Returns 0 as expected for success by ethtool 1139 */ 1140 static int 1141 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1142 u32 *rule_locs) 1143 { 1144 struct iavf_fdir_fltr *fltr; 1145 unsigned int cnt = 0; 1146 int val = 0; 1147 1148 if (!FDIR_FLTR_SUPPORT(adapter)) 1149 return -EOPNOTSUPP; 1150 1151 cmd->data = IAVF_MAX_FDIR_FILTERS; 1152 1153 spin_lock_bh(&adapter->fdir_fltr_lock); 1154 1155 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1156 if (cnt == cmd->rule_cnt) { 1157 val = -EMSGSIZE; 1158 goto release_lock; 1159 } 1160 rule_locs[cnt] = fltr->loc; 1161 cnt++; 1162 } 1163 1164 release_lock: 1165 spin_unlock_bh(&adapter->fdir_fltr_lock); 1166 if (!val) 1167 cmd->rule_cnt = cnt; 1168 1169 return val; 1170 } 1171 1172 /** 1173 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1174 * @adapter: pointer to the VF adapter structure 1175 * @fsp: pointer to ethtool Rx flow specification 1176 * @fltr: filter structure 1177 */ 1178 static int 1179 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1180 struct iavf_fdir_fltr *fltr) 1181 { 1182 u32 flow_type, q_index = 0; 1183 enum virtchnl_action act; 1184 int err; 1185 1186 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1187 act = VIRTCHNL_ACTION_DROP; 1188 } else { 1189 q_index = fsp->ring_cookie; 1190 if (q_index >= adapter->num_active_queues) 1191 return -EINVAL; 1192 1193 act = VIRTCHNL_ACTION_QUEUE; 1194 } 1195 1196 fltr->action = act; 1197 fltr->loc = fsp->location; 1198 fltr->q_index = q_index; 1199 1200 if (fsp->flow_type & FLOW_EXT) { 1201 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1202 sizeof(fltr->ext_data.usr_def)); 1203 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1204 sizeof(fltr->ext_mask.usr_def)); 1205 } 1206 1207 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1208 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1209 1210 switch (flow_type) { 1211 case TCP_V4_FLOW: 1212 case UDP_V4_FLOW: 1213 case SCTP_V4_FLOW: 1214 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1215 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1216 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1217 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1218 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1219 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1220 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1221 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1222 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1223 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1224 break; 1225 case AH_V4_FLOW: 1226 case ESP_V4_FLOW: 1227 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1228 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1229 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1230 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1231 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1232 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1233 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1234 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1235 break; 1236 case IPV4_USER_FLOW: 1237 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1238 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1239 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1240 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1241 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1242 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1243 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1244 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1245 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1246 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1247 break; 1248 case TCP_V6_FLOW: 1249 case UDP_V6_FLOW: 1250 case SCTP_V6_FLOW: 1251 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1252 sizeof(struct in6_addr)); 1253 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1254 sizeof(struct in6_addr)); 1255 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1256 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1257 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1258 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1259 sizeof(struct in6_addr)); 1260 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1261 sizeof(struct in6_addr)); 1262 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1263 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1264 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1265 break; 1266 case AH_V6_FLOW: 1267 case ESP_V6_FLOW: 1268 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1269 sizeof(struct in6_addr)); 1270 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1271 sizeof(struct in6_addr)); 1272 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1273 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1274 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1275 sizeof(struct in6_addr)); 1276 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1277 sizeof(struct in6_addr)); 1278 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1279 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1280 break; 1281 case IPV6_USER_FLOW: 1282 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1283 sizeof(struct in6_addr)); 1284 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1285 sizeof(struct in6_addr)); 1286 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1287 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1288 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1289 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1290 sizeof(struct in6_addr)); 1291 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1292 sizeof(struct in6_addr)); 1293 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1294 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1295 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1296 break; 1297 case ETHER_FLOW: 1298 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1299 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1300 break; 1301 default: 1302 /* not doing un-parsed flow types */ 1303 return -EINVAL; 1304 } 1305 1306 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1307 return -EEXIST; 1308 1309 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1310 if (err) 1311 return err; 1312 1313 return iavf_fill_fdir_add_msg(adapter, fltr); 1314 } 1315 1316 /** 1317 * iavf_add_fdir_ethtool - add Flow Director filter 1318 * @adapter: pointer to the VF adapter structure 1319 * @cmd: command to add Flow Director filter 1320 * 1321 * Returns 0 on success and negative values for failure 1322 */ 1323 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1324 { 1325 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1326 struct iavf_fdir_fltr *fltr; 1327 int count = 50; 1328 int err; 1329 1330 if (!FDIR_FLTR_SUPPORT(adapter)) 1331 return -EOPNOTSUPP; 1332 1333 if (fsp->flow_type & FLOW_MAC_EXT) 1334 return -EINVAL; 1335 1336 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1337 dev_err(&adapter->pdev->dev, 1338 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1339 IAVF_MAX_FDIR_FILTERS); 1340 return -ENOSPC; 1341 } 1342 1343 spin_lock_bh(&adapter->fdir_fltr_lock); 1344 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1345 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1346 spin_unlock_bh(&adapter->fdir_fltr_lock); 1347 return -EEXIST; 1348 } 1349 spin_unlock_bh(&adapter->fdir_fltr_lock); 1350 1351 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1352 if (!fltr) 1353 return -ENOMEM; 1354 1355 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 1356 &adapter->crit_section)) { 1357 if (--count == 0) { 1358 kfree(fltr); 1359 return -EINVAL; 1360 } 1361 udelay(1); 1362 } 1363 1364 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1365 if (err) 1366 goto ret; 1367 1368 spin_lock_bh(&adapter->fdir_fltr_lock); 1369 iavf_fdir_list_add_fltr(adapter, fltr); 1370 adapter->fdir_active_fltr++; 1371 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1372 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1373 spin_unlock_bh(&adapter->fdir_fltr_lock); 1374 1375 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1376 1377 ret: 1378 if (err && fltr) 1379 kfree(fltr); 1380 1381 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1382 return err; 1383 } 1384 1385 /** 1386 * iavf_del_fdir_ethtool - delete Flow Director filter 1387 * @adapter: pointer to the VF adapter structure 1388 * @cmd: command to delete Flow Director filter 1389 * 1390 * Returns 0 on success and negative values for failure 1391 */ 1392 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1393 { 1394 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1395 struct iavf_fdir_fltr *fltr = NULL; 1396 int err = 0; 1397 1398 if (!FDIR_FLTR_SUPPORT(adapter)) 1399 return -EOPNOTSUPP; 1400 1401 spin_lock_bh(&adapter->fdir_fltr_lock); 1402 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1403 if (fltr) { 1404 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1405 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1407 } else { 1408 err = -EBUSY; 1409 } 1410 } else if (adapter->fdir_active_fltr) { 1411 err = -EINVAL; 1412 } 1413 spin_unlock_bh(&adapter->fdir_fltr_lock); 1414 1415 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1416 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1417 1418 return err; 1419 } 1420 1421 /** 1422 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1423 * @cmd: ethtool rxnfc command 1424 * 1425 * This function parses the rxnfc command and returns intended 1426 * header types for RSS configuration 1427 */ 1428 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1429 { 1430 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1431 1432 switch (cmd->flow_type) { 1433 case TCP_V4_FLOW: 1434 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1435 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1436 break; 1437 case UDP_V4_FLOW: 1438 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1439 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1440 break; 1441 case SCTP_V4_FLOW: 1442 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1443 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1444 break; 1445 case TCP_V6_FLOW: 1446 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1447 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1448 break; 1449 case UDP_V6_FLOW: 1450 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1451 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1452 break; 1453 case SCTP_V6_FLOW: 1454 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1455 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1456 break; 1457 default: 1458 break; 1459 } 1460 1461 return hdrs; 1462 } 1463 1464 /** 1465 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1466 * @cmd: ethtool rxnfc command 1467 * 1468 * This function parses the rxnfc command and returns intended hash fields for 1469 * RSS configuration 1470 */ 1471 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1472 { 1473 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1474 1475 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1476 switch (cmd->flow_type) { 1477 case TCP_V4_FLOW: 1478 case UDP_V4_FLOW: 1479 case SCTP_V4_FLOW: 1480 if (cmd->data & RXH_IP_SRC) 1481 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1482 if (cmd->data & RXH_IP_DST) 1483 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1484 break; 1485 case TCP_V6_FLOW: 1486 case UDP_V6_FLOW: 1487 case SCTP_V6_FLOW: 1488 if (cmd->data & RXH_IP_SRC) 1489 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1490 if (cmd->data & RXH_IP_DST) 1491 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1492 break; 1493 default: 1494 break; 1495 } 1496 } 1497 1498 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1499 switch (cmd->flow_type) { 1500 case TCP_V4_FLOW: 1501 case TCP_V6_FLOW: 1502 if (cmd->data & RXH_L4_B_0_1) 1503 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1504 if (cmd->data & RXH_L4_B_2_3) 1505 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1506 break; 1507 case UDP_V4_FLOW: 1508 case UDP_V6_FLOW: 1509 if (cmd->data & RXH_L4_B_0_1) 1510 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1511 if (cmd->data & RXH_L4_B_2_3) 1512 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1513 break; 1514 case SCTP_V4_FLOW: 1515 case SCTP_V6_FLOW: 1516 if (cmd->data & RXH_L4_B_0_1) 1517 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1518 if (cmd->data & RXH_L4_B_2_3) 1519 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1520 break; 1521 default: 1522 break; 1523 } 1524 } 1525 1526 return hfld; 1527 } 1528 1529 /** 1530 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1531 * @adapter: pointer to the VF adapter structure 1532 * @cmd: ethtool rxnfc command 1533 * 1534 * Returns Success if the flow input set is supported. 1535 */ 1536 static int 1537 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1538 struct ethtool_rxnfc *cmd) 1539 { 1540 struct iavf_adv_rss *rss_old, *rss_new; 1541 bool rss_new_add = false; 1542 int count = 50, err = 0; 1543 u64 hash_flds; 1544 u32 hdrs; 1545 1546 if (!ADV_RSS_SUPPORT(adapter)) 1547 return -EOPNOTSUPP; 1548 1549 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1550 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1551 return -EINVAL; 1552 1553 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1554 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1555 return -EINVAL; 1556 1557 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1558 if (!rss_new) 1559 return -ENOMEM; 1560 1561 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1562 kfree(rss_new); 1563 return -EINVAL; 1564 } 1565 1566 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 1567 &adapter->crit_section)) { 1568 if (--count == 0) { 1569 kfree(rss_new); 1570 return -EINVAL; 1571 } 1572 1573 udelay(1); 1574 } 1575 1576 spin_lock_bh(&adapter->adv_rss_lock); 1577 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1578 if (rss_old) { 1579 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1580 err = -EBUSY; 1581 } else if (rss_old->hash_flds != hash_flds) { 1582 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1583 rss_old->hash_flds = hash_flds; 1584 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1585 sizeof(rss_new->cfg_msg)); 1586 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1587 } else { 1588 err = -EEXIST; 1589 } 1590 } else { 1591 rss_new_add = true; 1592 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1593 rss_new->packet_hdrs = hdrs; 1594 rss_new->hash_flds = hash_flds; 1595 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1596 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1597 } 1598 spin_unlock_bh(&adapter->adv_rss_lock); 1599 1600 if (!err) 1601 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1602 1603 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1604 1605 if (!rss_new_add) 1606 kfree(rss_new); 1607 1608 return err; 1609 } 1610 1611 /** 1612 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1613 * @adapter: pointer to the VF adapter structure 1614 * @cmd: ethtool rxnfc command 1615 * 1616 * Returns Success if the flow input set is supported. 1617 */ 1618 static int 1619 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1620 struct ethtool_rxnfc *cmd) 1621 { 1622 struct iavf_adv_rss *rss; 1623 u64 hash_flds; 1624 u32 hdrs; 1625 1626 if (!ADV_RSS_SUPPORT(adapter)) 1627 return -EOPNOTSUPP; 1628 1629 cmd->data = 0; 1630 1631 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1632 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1633 return -EINVAL; 1634 1635 spin_lock_bh(&adapter->adv_rss_lock); 1636 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1637 if (rss) 1638 hash_flds = rss->hash_flds; 1639 else 1640 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1641 spin_unlock_bh(&adapter->adv_rss_lock); 1642 1643 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1644 return -EINVAL; 1645 1646 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1647 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1648 cmd->data |= (u64)RXH_IP_SRC; 1649 1650 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1651 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1652 cmd->data |= (u64)RXH_IP_DST; 1653 1654 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1655 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1656 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1657 cmd->data |= (u64)RXH_L4_B_0_1; 1658 1659 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1660 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1661 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1662 cmd->data |= (u64)RXH_L4_B_2_3; 1663 1664 return 0; 1665 } 1666 1667 /** 1668 * iavf_set_rxnfc - command to set Rx flow rules. 1669 * @netdev: network interface device structure 1670 * @cmd: ethtool rxnfc command 1671 * 1672 * Returns 0 for success and negative values for errors 1673 */ 1674 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1675 { 1676 struct iavf_adapter *adapter = netdev_priv(netdev); 1677 int ret = -EOPNOTSUPP; 1678 1679 switch (cmd->cmd) { 1680 case ETHTOOL_SRXCLSRLINS: 1681 ret = iavf_add_fdir_ethtool(adapter, cmd); 1682 break; 1683 case ETHTOOL_SRXCLSRLDEL: 1684 ret = iavf_del_fdir_ethtool(adapter, cmd); 1685 break; 1686 case ETHTOOL_SRXFH: 1687 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1688 break; 1689 default: 1690 break; 1691 } 1692 1693 return ret; 1694 } 1695 1696 /** 1697 * iavf_get_rxnfc - command to get RX flow classification rules 1698 * @netdev: network interface device structure 1699 * @cmd: ethtool rxnfc command 1700 * @rule_locs: pointer to store rule locations 1701 * 1702 * Returns Success if the command is supported. 1703 **/ 1704 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1705 u32 *rule_locs) 1706 { 1707 struct iavf_adapter *adapter = netdev_priv(netdev); 1708 int ret = -EOPNOTSUPP; 1709 1710 switch (cmd->cmd) { 1711 case ETHTOOL_GRXRINGS: 1712 cmd->data = adapter->num_active_queues; 1713 ret = 0; 1714 break; 1715 case ETHTOOL_GRXCLSRLCNT: 1716 if (!FDIR_FLTR_SUPPORT(adapter)) 1717 break; 1718 cmd->rule_cnt = adapter->fdir_active_fltr; 1719 cmd->data = IAVF_MAX_FDIR_FILTERS; 1720 ret = 0; 1721 break; 1722 case ETHTOOL_GRXCLSRULE: 1723 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1724 break; 1725 case ETHTOOL_GRXCLSRLALL: 1726 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1727 break; 1728 case ETHTOOL_GRXFH: 1729 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1730 break; 1731 default: 1732 break; 1733 } 1734 1735 return ret; 1736 } 1737 /** 1738 * iavf_get_channels: get the number of channels supported by the device 1739 * @netdev: network interface device structure 1740 * @ch: channel information structure 1741 * 1742 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1743 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1744 **/ 1745 static void iavf_get_channels(struct net_device *netdev, 1746 struct ethtool_channels *ch) 1747 { 1748 struct iavf_adapter *adapter = netdev_priv(netdev); 1749 1750 /* Report maximum channels */ 1751 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1752 1753 ch->max_other = NONQ_VECS; 1754 ch->other_count = NONQ_VECS; 1755 1756 ch->combined_count = adapter->num_active_queues; 1757 } 1758 1759 /** 1760 * iavf_set_channels: set the new channel count 1761 * @netdev: network interface device structure 1762 * @ch: channel information structure 1763 * 1764 * Negotiate a new number of channels with the PF then do a reset. During 1765 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1766 * negative on failure. 1767 **/ 1768 static int iavf_set_channels(struct net_device *netdev, 1769 struct ethtool_channels *ch) 1770 { 1771 struct iavf_adapter *adapter = netdev_priv(netdev); 1772 u32 num_req = ch->combined_count; 1773 1774 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1775 adapter->num_tc) { 1776 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1777 return -EINVAL; 1778 } 1779 1780 /* All of these should have already been checked by ethtool before this 1781 * even gets to us, but just to be sure. 1782 */ 1783 if (num_req > adapter->vsi_res->num_queue_pairs) 1784 return -EINVAL; 1785 1786 if (num_req == adapter->num_active_queues) 1787 return 0; 1788 1789 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1790 return -EINVAL; 1791 1792 adapter->num_req_queues = num_req; 1793 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1794 iavf_schedule_reset(adapter); 1795 return 0; 1796 } 1797 1798 /** 1799 * iavf_get_rxfh_key_size - get the RSS hash key size 1800 * @netdev: network interface device structure 1801 * 1802 * Returns the table size. 1803 **/ 1804 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1805 { 1806 struct iavf_adapter *adapter = netdev_priv(netdev); 1807 1808 return adapter->rss_key_size; 1809 } 1810 1811 /** 1812 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1813 * @netdev: network interface device structure 1814 * 1815 * Returns the table size. 1816 **/ 1817 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1818 { 1819 struct iavf_adapter *adapter = netdev_priv(netdev); 1820 1821 return adapter->rss_lut_size; 1822 } 1823 1824 /** 1825 * iavf_get_rxfh - get the rx flow hash indirection table 1826 * @netdev: network interface device structure 1827 * @indir: indirection table 1828 * @key: hash key 1829 * @hfunc: hash function in use 1830 * 1831 * Reads the indirection table directly from the hardware. Always returns 0. 1832 **/ 1833 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1834 u8 *hfunc) 1835 { 1836 struct iavf_adapter *adapter = netdev_priv(netdev); 1837 u16 i; 1838 1839 if (hfunc) 1840 *hfunc = ETH_RSS_HASH_TOP; 1841 if (!indir) 1842 return 0; 1843 1844 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1845 1846 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1847 for (i = 0; i < adapter->rss_lut_size; i++) 1848 indir[i] = (u32)adapter->rss_lut[i]; 1849 1850 return 0; 1851 } 1852 1853 /** 1854 * iavf_set_rxfh - set the rx flow hash indirection table 1855 * @netdev: network interface device structure 1856 * @indir: indirection table 1857 * @key: hash key 1858 * @hfunc: hash function to use 1859 * 1860 * Returns -EINVAL if the table specifies an inavlid queue id, otherwise 1861 * returns 0 after programming the table. 1862 **/ 1863 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1864 const u8 *key, const u8 hfunc) 1865 { 1866 struct iavf_adapter *adapter = netdev_priv(netdev); 1867 u16 i; 1868 1869 /* We do not allow change in unsupported parameters */ 1870 if (key || 1871 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 1872 return -EOPNOTSUPP; 1873 if (!indir) 1874 return 0; 1875 1876 if (key) 1877 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1878 1879 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1880 for (i = 0; i < adapter->rss_lut_size; i++) 1881 adapter->rss_lut[i] = (u8)(indir[i]); 1882 1883 return iavf_config_rss(adapter); 1884 } 1885 1886 static const struct ethtool_ops iavf_ethtool_ops = { 1887 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1888 ETHTOOL_COALESCE_MAX_FRAMES | 1889 ETHTOOL_COALESCE_MAX_FRAMES_IRQ | 1890 ETHTOOL_COALESCE_USE_ADAPTIVE, 1891 .get_drvinfo = iavf_get_drvinfo, 1892 .get_link = ethtool_op_get_link, 1893 .get_ringparam = iavf_get_ringparam, 1894 .set_ringparam = iavf_set_ringparam, 1895 .get_strings = iavf_get_strings, 1896 .get_ethtool_stats = iavf_get_ethtool_stats, 1897 .get_sset_count = iavf_get_sset_count, 1898 .get_priv_flags = iavf_get_priv_flags, 1899 .set_priv_flags = iavf_set_priv_flags, 1900 .get_msglevel = iavf_get_msglevel, 1901 .set_msglevel = iavf_set_msglevel, 1902 .get_coalesce = iavf_get_coalesce, 1903 .set_coalesce = iavf_set_coalesce, 1904 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1905 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1906 .set_rxnfc = iavf_set_rxnfc, 1907 .get_rxnfc = iavf_get_rxnfc, 1908 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1909 .get_rxfh = iavf_get_rxfh, 1910 .set_rxfh = iavf_set_rxfh, 1911 .get_channels = iavf_get_channels, 1912 .set_channels = iavf_set_channels, 1913 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1914 .get_link_ksettings = iavf_get_link_ksettings, 1915 }; 1916 1917 /** 1918 * iavf_set_ethtool_ops - Initialize ethtool ops struct 1919 * @netdev: network interface device structure 1920 * 1921 * Sets ethtool ops struct in our netdev so that ethtool can call 1922 * our functions. 1923 **/ 1924 void iavf_set_ethtool_ops(struct net_device *netdev) 1925 { 1926 netdev->ethtool_ops = &iavf_ethtool_ops; 1927 } 1928