1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 /* Report the maximum number queues, even if not every queue is 335 * currently configured. Since allocation of queues is in pairs, 336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 337 * at device creation and never changes. 338 */ 339 340 if (sset == ETH_SS_STATS) 341 return IAVF_STATS_LEN + 342 (IAVF_QUEUE_STATS_LEN * 2 * 343 netdev->real_num_tx_queues); 344 else if (sset == ETH_SS_PRIV_FLAGS) 345 return IAVF_PRIV_FLAGS_STR_LEN; 346 else 347 return -EINVAL; 348 } 349 350 /** 351 * iavf_get_ethtool_stats - report device statistics 352 * @netdev: network interface device structure 353 * @stats: ethtool statistics structure 354 * @data: pointer to data buffer 355 * 356 * All statistics are added to the data buffer as an array of u64. 357 **/ 358 static void iavf_get_ethtool_stats(struct net_device *netdev, 359 struct ethtool_stats *stats, u64 *data) 360 { 361 struct iavf_adapter *adapter = netdev_priv(netdev); 362 unsigned int i; 363 364 /* Explicitly request stats refresh */ 365 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_REQUEST_STATS); 366 367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 368 369 rcu_read_lock(); 370 /* As num_active_queues describe both tx and rx queues, we can use 371 * it to iterate over rings' stats. 372 */ 373 for (i = 0; i < adapter->num_active_queues; i++) { 374 struct iavf_ring *ring; 375 376 /* Tx rings stats */ 377 ring = &adapter->tx_rings[i]; 378 iavf_add_queue_stats(&data, ring); 379 380 /* Rx rings stats */ 381 ring = &adapter->rx_rings[i]; 382 iavf_add_queue_stats(&data, ring); 383 } 384 rcu_read_unlock(); 385 } 386 387 /** 388 * iavf_get_priv_flag_strings - Get private flag strings 389 * @netdev: network interface device structure 390 * @data: buffer for string data 391 * 392 * Builds the private flags string table 393 **/ 394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 395 { 396 unsigned int i; 397 398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 399 snprintf(data, ETH_GSTRING_LEN, "%s", 400 iavf_gstrings_priv_flags[i].flag_string); 401 data += ETH_GSTRING_LEN; 402 } 403 } 404 405 /** 406 * iavf_get_stat_strings - Get stat strings 407 * @netdev: network interface device structure 408 * @data: buffer for string data 409 * 410 * Builds the statistics string table 411 **/ 412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 413 { 414 unsigned int i; 415 416 iavf_add_stat_strings(&data, iavf_gstrings_stats); 417 418 /* Queues are always allocated in pairs, so we just use 419 * real_num_tx_queues for both Tx and Rx queues. 420 */ 421 for (i = 0; i < netdev->real_num_tx_queues; i++) { 422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 423 "tx", i); 424 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 425 "rx", i); 426 } 427 } 428 429 /** 430 * iavf_get_strings - Get string set 431 * @netdev: network interface device structure 432 * @sset: id of string set 433 * @data: buffer for string data 434 * 435 * Builds string tables for various string sets 436 **/ 437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 438 { 439 switch (sset) { 440 case ETH_SS_STATS: 441 iavf_get_stat_strings(netdev, data); 442 break; 443 case ETH_SS_PRIV_FLAGS: 444 iavf_get_priv_flag_strings(netdev, data); 445 break; 446 default: 447 break; 448 } 449 } 450 451 /** 452 * iavf_get_priv_flags - report device private flags 453 * @netdev: network interface device structure 454 * 455 * The get string set count and the string set should be matched for each 456 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 457 * array. 458 * 459 * Returns a u32 bitmap of flags. 460 **/ 461 static u32 iavf_get_priv_flags(struct net_device *netdev) 462 { 463 struct iavf_adapter *adapter = netdev_priv(netdev); 464 u32 i, ret_flags = 0; 465 466 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 467 const struct iavf_priv_flags *priv_flags; 468 469 priv_flags = &iavf_gstrings_priv_flags[i]; 470 471 if (priv_flags->flag & adapter->flags) 472 ret_flags |= BIT(i); 473 } 474 475 return ret_flags; 476 } 477 478 /** 479 * iavf_set_priv_flags - set private flags 480 * @netdev: network interface device structure 481 * @flags: bit flags to be set 482 **/ 483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 484 { 485 struct iavf_adapter *adapter = netdev_priv(netdev); 486 u32 orig_flags, new_flags, changed_flags; 487 int ret = 0; 488 u32 i; 489 490 orig_flags = READ_ONCE(adapter->flags); 491 new_flags = orig_flags; 492 493 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 494 const struct iavf_priv_flags *priv_flags; 495 496 priv_flags = &iavf_gstrings_priv_flags[i]; 497 498 if (flags & BIT(i)) 499 new_flags |= priv_flags->flag; 500 else 501 new_flags &= ~(priv_flags->flag); 502 503 if (priv_flags->read_only && 504 ((orig_flags ^ new_flags) & ~BIT(i))) 505 return -EOPNOTSUPP; 506 } 507 508 /* Before we finalize any flag changes, any checks which we need to 509 * perform to determine if the new flags will be supported should go 510 * here... 511 */ 512 513 /* Compare and exchange the new flags into place. If we failed, that 514 * is if cmpxchg returns anything but the old value, this means 515 * something else must have modified the flags variable since we 516 * copied it. We'll just punt with an error and log something in the 517 * message buffer. 518 */ 519 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 520 dev_warn(&adapter->pdev->dev, 521 "Unable to update adapter->flags as it was modified by another thread...\n"); 522 return -EAGAIN; 523 } 524 525 changed_flags = orig_flags ^ new_flags; 526 527 /* Process any additional changes needed as a result of flag changes. 528 * The changed_flags value reflects the list of bits that were changed 529 * in the code above. 530 */ 531 532 /* issue a reset to force legacy-rx change to take effect */ 533 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 534 if (netif_running(netdev)) { 535 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 536 ret = iavf_wait_for_reset(adapter); 537 if (ret) 538 netdev_warn(netdev, "Changing private flags timeout or interrupted waiting for reset"); 539 } 540 } 541 542 return ret; 543 } 544 545 /** 546 * iavf_get_msglevel - Get debug message level 547 * @netdev: network interface device structure 548 * 549 * Returns current debug message level. 550 **/ 551 static u32 iavf_get_msglevel(struct net_device *netdev) 552 { 553 struct iavf_adapter *adapter = netdev_priv(netdev); 554 555 return adapter->msg_enable; 556 } 557 558 /** 559 * iavf_set_msglevel - Set debug message level 560 * @netdev: network interface device structure 561 * @data: message level 562 * 563 * Set current debug message level. Higher values cause the driver to 564 * be noisier. 565 **/ 566 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 567 { 568 struct iavf_adapter *adapter = netdev_priv(netdev); 569 570 if (IAVF_DEBUG_USER & data) 571 adapter->hw.debug_mask = data; 572 adapter->msg_enable = data; 573 } 574 575 /** 576 * iavf_get_drvinfo - Get driver info 577 * @netdev: network interface device structure 578 * @drvinfo: ethool driver info structure 579 * 580 * Returns information about the driver and device for display to the user. 581 **/ 582 static void iavf_get_drvinfo(struct net_device *netdev, 583 struct ethtool_drvinfo *drvinfo) 584 { 585 struct iavf_adapter *adapter = netdev_priv(netdev); 586 587 strscpy(drvinfo->driver, iavf_driver_name, 32); 588 strscpy(drvinfo->fw_version, "N/A", 4); 589 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 590 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 591 } 592 593 /** 594 * iavf_get_ringparam - Get ring parameters 595 * @netdev: network interface device structure 596 * @ring: ethtool ringparam structure 597 * @kernel_ring: ethtool extenal ringparam structure 598 * @extack: netlink extended ACK report struct 599 * 600 * Returns current ring parameters. TX and RX rings are reported separately, 601 * but the number of rings is not reported. 602 **/ 603 static void iavf_get_ringparam(struct net_device *netdev, 604 struct ethtool_ringparam *ring, 605 struct kernel_ethtool_ringparam *kernel_ring, 606 struct netlink_ext_ack *extack) 607 { 608 struct iavf_adapter *adapter = netdev_priv(netdev); 609 610 ring->rx_max_pending = IAVF_MAX_RXD; 611 ring->tx_max_pending = IAVF_MAX_TXD; 612 ring->rx_pending = adapter->rx_desc_count; 613 ring->tx_pending = adapter->tx_desc_count; 614 } 615 616 /** 617 * iavf_set_ringparam - Set ring parameters 618 * @netdev: network interface device structure 619 * @ring: ethtool ringparam structure 620 * @kernel_ring: ethtool external ringparam structure 621 * @extack: netlink extended ACK report struct 622 * 623 * Sets ring parameters. TX and RX rings are controlled separately, but the 624 * number of rings is not specified, so all rings get the same settings. 625 **/ 626 static int iavf_set_ringparam(struct net_device *netdev, 627 struct ethtool_ringparam *ring, 628 struct kernel_ethtool_ringparam *kernel_ring, 629 struct netlink_ext_ack *extack) 630 { 631 struct iavf_adapter *adapter = netdev_priv(netdev); 632 u32 new_rx_count, new_tx_count; 633 int ret = 0; 634 635 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 636 return -EINVAL; 637 638 if (ring->tx_pending > IAVF_MAX_TXD || 639 ring->tx_pending < IAVF_MIN_TXD || 640 ring->rx_pending > IAVF_MAX_RXD || 641 ring->rx_pending < IAVF_MIN_RXD) { 642 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 643 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 644 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 645 return -EINVAL; 646 } 647 648 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 649 if (new_tx_count != ring->tx_pending) 650 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 651 new_tx_count); 652 653 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 654 if (new_rx_count != ring->rx_pending) 655 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 656 new_rx_count); 657 658 /* if nothing to do return success */ 659 if ((new_tx_count == adapter->tx_desc_count) && 660 (new_rx_count == adapter->rx_desc_count)) { 661 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 662 return 0; 663 } 664 665 if (new_tx_count != adapter->tx_desc_count) { 666 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 667 adapter->tx_desc_count, new_tx_count); 668 adapter->tx_desc_count = new_tx_count; 669 } 670 671 if (new_rx_count != adapter->rx_desc_count) { 672 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 673 adapter->rx_desc_count, new_rx_count); 674 adapter->rx_desc_count = new_rx_count; 675 } 676 677 if (netif_running(netdev)) { 678 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 679 ret = iavf_wait_for_reset(adapter); 680 if (ret) 681 netdev_warn(netdev, "Changing ring parameters timeout or interrupted waiting for reset"); 682 } 683 684 return ret; 685 } 686 687 /** 688 * __iavf_get_coalesce - get per-queue coalesce settings 689 * @netdev: the netdev to check 690 * @ec: ethtool coalesce data structure 691 * @queue: which queue to pick 692 * 693 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 694 * are per queue. If queue is <0 then we default to queue 0 as the 695 * representative value. 696 **/ 697 static int __iavf_get_coalesce(struct net_device *netdev, 698 struct ethtool_coalesce *ec, int queue) 699 { 700 struct iavf_adapter *adapter = netdev_priv(netdev); 701 struct iavf_ring *rx_ring, *tx_ring; 702 703 /* Rx and Tx usecs per queue value. If user doesn't specify the 704 * queue, return queue 0's value to represent. 705 */ 706 if (queue < 0) 707 queue = 0; 708 else if (queue >= adapter->num_active_queues) 709 return -EINVAL; 710 711 rx_ring = &adapter->rx_rings[queue]; 712 tx_ring = &adapter->tx_rings[queue]; 713 714 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 715 ec->use_adaptive_rx_coalesce = 1; 716 717 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 718 ec->use_adaptive_tx_coalesce = 1; 719 720 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 721 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 722 723 return 0; 724 } 725 726 /** 727 * iavf_get_coalesce - Get interrupt coalescing settings 728 * @netdev: network interface device structure 729 * @ec: ethtool coalesce structure 730 * @kernel_coal: ethtool CQE mode setting structure 731 * @extack: extack for reporting error messages 732 * 733 * Returns current coalescing settings. This is referred to elsewhere in the 734 * driver as Interrupt Throttle Rate, as this is how the hardware describes 735 * this functionality. Note that if per-queue settings have been modified this 736 * only represents the settings of queue 0. 737 **/ 738 static int iavf_get_coalesce(struct net_device *netdev, 739 struct ethtool_coalesce *ec, 740 struct kernel_ethtool_coalesce *kernel_coal, 741 struct netlink_ext_ack *extack) 742 { 743 return __iavf_get_coalesce(netdev, ec, -1); 744 } 745 746 /** 747 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 748 * @netdev: netdev to read 749 * @ec: coalesce settings from ethtool 750 * @queue: the queue to read 751 * 752 * Read specific queue's coalesce settings. 753 **/ 754 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 755 struct ethtool_coalesce *ec) 756 { 757 return __iavf_get_coalesce(netdev, ec, queue); 758 } 759 760 /** 761 * iavf_set_itr_per_queue - set ITR values for specific queue 762 * @adapter: the VF adapter struct to set values for 763 * @ec: coalesce settings from ethtool 764 * @queue: the queue to modify 765 * 766 * Change the ITR settings for a specific queue. 767 **/ 768 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 769 struct ethtool_coalesce *ec, int queue) 770 { 771 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 772 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 773 struct iavf_q_vector *q_vector; 774 u16 itr_setting; 775 776 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 777 778 if (ec->rx_coalesce_usecs != itr_setting && 779 ec->use_adaptive_rx_coalesce) { 780 netif_info(adapter, drv, adapter->netdev, 781 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 782 return -EINVAL; 783 } 784 785 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 786 787 if (ec->tx_coalesce_usecs != itr_setting && 788 ec->use_adaptive_tx_coalesce) { 789 netif_info(adapter, drv, adapter->netdev, 790 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 791 return -EINVAL; 792 } 793 794 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 795 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 796 797 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 798 if (!ec->use_adaptive_rx_coalesce) 799 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 800 801 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 802 if (!ec->use_adaptive_tx_coalesce) 803 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 804 805 q_vector = rx_ring->q_vector; 806 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 807 808 q_vector = tx_ring->q_vector; 809 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 810 811 /* The interrupt handler itself will take care of programming 812 * the Tx and Rx ITR values based on the values we have entered 813 * into the q_vector, no need to write the values now. 814 */ 815 return 0; 816 } 817 818 /** 819 * __iavf_set_coalesce - set coalesce settings for particular queue 820 * @netdev: the netdev to change 821 * @ec: ethtool coalesce settings 822 * @queue: the queue to change 823 * 824 * Sets the coalesce settings for a particular queue. 825 **/ 826 static int __iavf_set_coalesce(struct net_device *netdev, 827 struct ethtool_coalesce *ec, int queue) 828 { 829 struct iavf_adapter *adapter = netdev_priv(netdev); 830 int i; 831 832 if (ec->rx_coalesce_usecs > IAVF_MAX_ITR) { 833 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 834 return -EINVAL; 835 } else if (ec->tx_coalesce_usecs > IAVF_MAX_ITR) { 836 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 837 return -EINVAL; 838 } 839 840 /* Rx and Tx usecs has per queue value. If user doesn't specify the 841 * queue, apply to all queues. 842 */ 843 if (queue < 0) { 844 for (i = 0; i < adapter->num_active_queues; i++) 845 if (iavf_set_itr_per_queue(adapter, ec, i)) 846 return -EINVAL; 847 } else if (queue < adapter->num_active_queues) { 848 if (iavf_set_itr_per_queue(adapter, ec, queue)) 849 return -EINVAL; 850 } else { 851 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 852 adapter->num_active_queues - 1); 853 return -EINVAL; 854 } 855 856 return 0; 857 } 858 859 /** 860 * iavf_set_coalesce - Set interrupt coalescing settings 861 * @netdev: network interface device structure 862 * @ec: ethtool coalesce structure 863 * @kernel_coal: ethtool CQE mode setting structure 864 * @extack: extack for reporting error messages 865 * 866 * Change current coalescing settings for every queue. 867 **/ 868 static int iavf_set_coalesce(struct net_device *netdev, 869 struct ethtool_coalesce *ec, 870 struct kernel_ethtool_coalesce *kernel_coal, 871 struct netlink_ext_ack *extack) 872 { 873 return __iavf_set_coalesce(netdev, ec, -1); 874 } 875 876 /** 877 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 878 * @netdev: the netdev to change 879 * @ec: ethtool's coalesce settings 880 * @queue: the queue to modify 881 * 882 * Modifies a specific queue's coalesce settings. 883 */ 884 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 885 struct ethtool_coalesce *ec) 886 { 887 return __iavf_set_coalesce(netdev, ec, queue); 888 } 889 890 /** 891 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 892 * flow type values 893 * @flow: filter type to be converted 894 * 895 * Returns the corresponding ethtool flow type. 896 */ 897 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 898 { 899 switch (flow) { 900 case IAVF_FDIR_FLOW_IPV4_TCP: 901 return TCP_V4_FLOW; 902 case IAVF_FDIR_FLOW_IPV4_UDP: 903 return UDP_V4_FLOW; 904 case IAVF_FDIR_FLOW_IPV4_SCTP: 905 return SCTP_V4_FLOW; 906 case IAVF_FDIR_FLOW_IPV4_AH: 907 return AH_V4_FLOW; 908 case IAVF_FDIR_FLOW_IPV4_ESP: 909 return ESP_V4_FLOW; 910 case IAVF_FDIR_FLOW_IPV4_OTHER: 911 return IPV4_USER_FLOW; 912 case IAVF_FDIR_FLOW_IPV6_TCP: 913 return TCP_V6_FLOW; 914 case IAVF_FDIR_FLOW_IPV6_UDP: 915 return UDP_V6_FLOW; 916 case IAVF_FDIR_FLOW_IPV6_SCTP: 917 return SCTP_V6_FLOW; 918 case IAVF_FDIR_FLOW_IPV6_AH: 919 return AH_V6_FLOW; 920 case IAVF_FDIR_FLOW_IPV6_ESP: 921 return ESP_V6_FLOW; 922 case IAVF_FDIR_FLOW_IPV6_OTHER: 923 return IPV6_USER_FLOW; 924 case IAVF_FDIR_FLOW_NON_IP_L2: 925 return ETHER_FLOW; 926 default: 927 /* 0 is undefined ethtool flow */ 928 return 0; 929 } 930 } 931 932 /** 933 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 934 * @eth: Ethtool flow type to be converted 935 * 936 * Returns flow enum 937 */ 938 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 939 { 940 switch (eth) { 941 case TCP_V4_FLOW: 942 return IAVF_FDIR_FLOW_IPV4_TCP; 943 case UDP_V4_FLOW: 944 return IAVF_FDIR_FLOW_IPV4_UDP; 945 case SCTP_V4_FLOW: 946 return IAVF_FDIR_FLOW_IPV4_SCTP; 947 case AH_V4_FLOW: 948 return IAVF_FDIR_FLOW_IPV4_AH; 949 case ESP_V4_FLOW: 950 return IAVF_FDIR_FLOW_IPV4_ESP; 951 case IPV4_USER_FLOW: 952 return IAVF_FDIR_FLOW_IPV4_OTHER; 953 case TCP_V6_FLOW: 954 return IAVF_FDIR_FLOW_IPV6_TCP; 955 case UDP_V6_FLOW: 956 return IAVF_FDIR_FLOW_IPV6_UDP; 957 case SCTP_V6_FLOW: 958 return IAVF_FDIR_FLOW_IPV6_SCTP; 959 case AH_V6_FLOW: 960 return IAVF_FDIR_FLOW_IPV6_AH; 961 case ESP_V6_FLOW: 962 return IAVF_FDIR_FLOW_IPV6_ESP; 963 case IPV6_USER_FLOW: 964 return IAVF_FDIR_FLOW_IPV6_OTHER; 965 case ETHER_FLOW: 966 return IAVF_FDIR_FLOW_NON_IP_L2; 967 default: 968 return IAVF_FDIR_FLOW_NONE; 969 } 970 } 971 972 /** 973 * iavf_is_mask_valid - check mask field set 974 * @mask: full mask to check 975 * @field: field for which mask should be valid 976 * 977 * If the mask is fully set return true. If it is not valid for field return 978 * false. 979 */ 980 static bool iavf_is_mask_valid(u64 mask, u64 field) 981 { 982 return (mask & field) == field; 983 } 984 985 /** 986 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 987 * @fsp: pointer to ethtool Rx flow specification 988 * @fltr: pointer to Flow Director filter for userdef data storage 989 * 990 * Returns 0 on success, negative error value on failure 991 */ 992 static int 993 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 994 struct iavf_fdir_fltr *fltr) 995 { 996 struct iavf_flex_word *flex; 997 int i, cnt = 0; 998 999 if (!(fsp->flow_type & FLOW_EXT)) 1000 return 0; 1001 1002 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 1003 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 1004 #define IAVF_USERDEF_FLEX_OFFS_S 16 1005 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 1006 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 1007 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 1008 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 1009 1010 if (!value || !mask) 1011 continue; 1012 1013 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1014 return -EINVAL; 1015 1016 /* 504 is the maximum value for offsets, and offset is measured 1017 * from the start of the MAC address. 1018 */ 1019 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1020 flex = &fltr->flex_words[cnt++]; 1021 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1022 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1023 IAVF_USERDEF_FLEX_OFFS_S; 1024 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1025 return -EINVAL; 1026 } 1027 1028 fltr->flex_cnt = cnt; 1029 1030 return 0; 1031 } 1032 1033 /** 1034 * iavf_fill_rx_flow_ext_data - fill the additional data 1035 * @fsp: pointer to ethtool Rx flow specification 1036 * @fltr: pointer to Flow Director filter to get additional data 1037 */ 1038 static void 1039 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1040 struct iavf_fdir_fltr *fltr) 1041 { 1042 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1043 return; 1044 1045 fsp->flow_type |= FLOW_EXT; 1046 1047 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1048 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1049 } 1050 1051 /** 1052 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1053 * @adapter: the VF adapter structure that contains filter list 1054 * @cmd: ethtool command data structure to receive the filter data 1055 * 1056 * Returns 0 as expected for success by ethtool 1057 */ 1058 static int 1059 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1060 struct ethtool_rxnfc *cmd) 1061 { 1062 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1063 struct iavf_fdir_fltr *rule = NULL; 1064 int ret = 0; 1065 1066 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1067 return -EOPNOTSUPP; 1068 1069 spin_lock_bh(&adapter->fdir_fltr_lock); 1070 1071 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1072 if (!rule) { 1073 ret = -EINVAL; 1074 goto release_lock; 1075 } 1076 1077 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1078 1079 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1080 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1081 1082 switch (fsp->flow_type) { 1083 case TCP_V4_FLOW: 1084 case UDP_V4_FLOW: 1085 case SCTP_V4_FLOW: 1086 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1087 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1088 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1089 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1090 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1091 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1092 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1093 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1094 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1095 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1096 break; 1097 case AH_V4_FLOW: 1098 case ESP_V4_FLOW: 1099 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1100 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1101 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1102 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1103 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1104 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1105 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1106 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1107 break; 1108 case IPV4_USER_FLOW: 1109 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1110 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1111 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1112 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1113 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1114 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1115 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1116 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1117 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1118 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1119 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1120 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1121 break; 1122 case TCP_V6_FLOW: 1123 case UDP_V6_FLOW: 1124 case SCTP_V6_FLOW: 1125 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1126 sizeof(struct in6_addr)); 1127 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1128 sizeof(struct in6_addr)); 1129 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1130 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1131 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1132 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1133 sizeof(struct in6_addr)); 1134 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1135 sizeof(struct in6_addr)); 1136 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1137 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1138 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1139 break; 1140 case AH_V6_FLOW: 1141 case ESP_V6_FLOW: 1142 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1143 sizeof(struct in6_addr)); 1144 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1145 sizeof(struct in6_addr)); 1146 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1147 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1148 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1149 sizeof(struct in6_addr)); 1150 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1151 sizeof(struct in6_addr)); 1152 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1153 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1154 break; 1155 case IPV6_USER_FLOW: 1156 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1157 sizeof(struct in6_addr)); 1158 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1159 sizeof(struct in6_addr)); 1160 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1161 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1162 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1163 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1164 sizeof(struct in6_addr)); 1165 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1166 sizeof(struct in6_addr)); 1167 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1168 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1169 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1170 break; 1171 case ETHER_FLOW: 1172 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1173 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1174 break; 1175 default: 1176 ret = -EINVAL; 1177 break; 1178 } 1179 1180 iavf_fill_rx_flow_ext_data(fsp, rule); 1181 1182 if (rule->action == VIRTCHNL_ACTION_DROP) 1183 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1184 else 1185 fsp->ring_cookie = rule->q_index; 1186 1187 release_lock: 1188 spin_unlock_bh(&adapter->fdir_fltr_lock); 1189 return ret; 1190 } 1191 1192 /** 1193 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1194 * @adapter: the VF adapter structure containing the filter list 1195 * @cmd: ethtool command data structure 1196 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1197 * 1198 * Returns 0 as expected for success by ethtool 1199 */ 1200 static int 1201 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1202 u32 *rule_locs) 1203 { 1204 struct iavf_fdir_fltr *fltr; 1205 unsigned int cnt = 0; 1206 int val = 0; 1207 1208 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1209 return -EOPNOTSUPP; 1210 1211 cmd->data = IAVF_MAX_FDIR_FILTERS; 1212 1213 spin_lock_bh(&adapter->fdir_fltr_lock); 1214 1215 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1216 if (cnt == cmd->rule_cnt) { 1217 val = -EMSGSIZE; 1218 goto release_lock; 1219 } 1220 rule_locs[cnt] = fltr->loc; 1221 cnt++; 1222 } 1223 1224 release_lock: 1225 spin_unlock_bh(&adapter->fdir_fltr_lock); 1226 if (!val) 1227 cmd->rule_cnt = cnt; 1228 1229 return val; 1230 } 1231 1232 /** 1233 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1234 * @adapter: pointer to the VF adapter structure 1235 * @fsp: pointer to ethtool Rx flow specification 1236 * @fltr: filter structure 1237 */ 1238 static int 1239 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1240 struct iavf_fdir_fltr *fltr) 1241 { 1242 u32 flow_type, q_index = 0; 1243 enum virtchnl_action act; 1244 int err; 1245 1246 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1247 act = VIRTCHNL_ACTION_DROP; 1248 } else { 1249 q_index = fsp->ring_cookie; 1250 if (q_index >= adapter->num_active_queues) 1251 return -EINVAL; 1252 1253 act = VIRTCHNL_ACTION_QUEUE; 1254 } 1255 1256 fltr->action = act; 1257 fltr->loc = fsp->location; 1258 fltr->q_index = q_index; 1259 1260 if (fsp->flow_type & FLOW_EXT) { 1261 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1262 sizeof(fltr->ext_data.usr_def)); 1263 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1264 sizeof(fltr->ext_mask.usr_def)); 1265 } 1266 1267 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1268 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1269 1270 switch (flow_type) { 1271 case TCP_V4_FLOW: 1272 case UDP_V4_FLOW: 1273 case SCTP_V4_FLOW: 1274 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1275 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1276 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1277 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1278 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1279 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1280 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1281 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1282 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1283 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1284 fltr->ip_ver = 4; 1285 break; 1286 case AH_V4_FLOW: 1287 case ESP_V4_FLOW: 1288 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1289 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1290 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1291 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1292 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1293 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1294 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1295 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1296 fltr->ip_ver = 4; 1297 break; 1298 case IPV4_USER_FLOW: 1299 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1300 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1301 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1302 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1303 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1304 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1305 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1306 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1307 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1308 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1309 fltr->ip_ver = 4; 1310 break; 1311 case TCP_V6_FLOW: 1312 case UDP_V6_FLOW: 1313 case SCTP_V6_FLOW: 1314 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1315 sizeof(struct in6_addr)); 1316 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1317 sizeof(struct in6_addr)); 1318 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1319 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1320 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1321 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1322 sizeof(struct in6_addr)); 1323 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1324 sizeof(struct in6_addr)); 1325 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1326 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1327 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1328 fltr->ip_ver = 6; 1329 break; 1330 case AH_V6_FLOW: 1331 case ESP_V6_FLOW: 1332 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1333 sizeof(struct in6_addr)); 1334 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1335 sizeof(struct in6_addr)); 1336 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1337 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1338 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1339 sizeof(struct in6_addr)); 1340 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1341 sizeof(struct in6_addr)); 1342 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1343 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1344 fltr->ip_ver = 6; 1345 break; 1346 case IPV6_USER_FLOW: 1347 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1348 sizeof(struct in6_addr)); 1349 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1350 sizeof(struct in6_addr)); 1351 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1352 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1353 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1354 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1355 sizeof(struct in6_addr)); 1356 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1357 sizeof(struct in6_addr)); 1358 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1359 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1360 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1361 fltr->ip_ver = 6; 1362 break; 1363 case ETHER_FLOW: 1364 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1365 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1366 break; 1367 default: 1368 /* not doing un-parsed flow types */ 1369 return -EINVAL; 1370 } 1371 1372 err = iavf_validate_fdir_fltr_masks(adapter, fltr); 1373 if (err) 1374 return err; 1375 1376 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1377 return -EEXIST; 1378 1379 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1380 if (err) 1381 return err; 1382 1383 return iavf_fill_fdir_add_msg(adapter, fltr); 1384 } 1385 1386 /** 1387 * iavf_add_fdir_ethtool - add Flow Director filter 1388 * @adapter: pointer to the VF adapter structure 1389 * @cmd: command to add Flow Director filter 1390 * 1391 * Returns 0 on success and negative values for failure 1392 */ 1393 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1394 { 1395 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1396 struct iavf_fdir_fltr *fltr; 1397 int count = 50; 1398 int err; 1399 1400 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1401 return -EOPNOTSUPP; 1402 1403 if (fsp->flow_type & FLOW_MAC_EXT) 1404 return -EINVAL; 1405 1406 spin_lock_bh(&adapter->fdir_fltr_lock); 1407 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1408 spin_unlock_bh(&adapter->fdir_fltr_lock); 1409 dev_err(&adapter->pdev->dev, 1410 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1411 IAVF_MAX_FDIR_FILTERS); 1412 return -ENOSPC; 1413 } 1414 1415 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1416 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1417 spin_unlock_bh(&adapter->fdir_fltr_lock); 1418 return -EEXIST; 1419 } 1420 spin_unlock_bh(&adapter->fdir_fltr_lock); 1421 1422 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1423 if (!fltr) 1424 return -ENOMEM; 1425 1426 while (!mutex_trylock(&adapter->crit_lock)) { 1427 if (--count == 0) { 1428 kfree(fltr); 1429 return -EINVAL; 1430 } 1431 udelay(1); 1432 } 1433 1434 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1435 if (err) 1436 goto ret; 1437 1438 spin_lock_bh(&adapter->fdir_fltr_lock); 1439 iavf_fdir_list_add_fltr(adapter, fltr); 1440 adapter->fdir_active_fltr++; 1441 if (adapter->link_up) { 1442 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1443 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1444 } else { 1445 fltr->state = IAVF_FDIR_FLTR_INACTIVE; 1446 } 1447 spin_unlock_bh(&adapter->fdir_fltr_lock); 1448 1449 if (adapter->link_up) 1450 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1451 ret: 1452 if (err && fltr) 1453 kfree(fltr); 1454 1455 mutex_unlock(&adapter->crit_lock); 1456 return err; 1457 } 1458 1459 /** 1460 * iavf_del_fdir_ethtool - delete Flow Director filter 1461 * @adapter: pointer to the VF adapter structure 1462 * @cmd: command to delete Flow Director filter 1463 * 1464 * Returns 0 on success and negative values for failure 1465 */ 1466 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1467 { 1468 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1469 struct iavf_fdir_fltr *fltr = NULL; 1470 int err = 0; 1471 1472 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1473 return -EOPNOTSUPP; 1474 1475 spin_lock_bh(&adapter->fdir_fltr_lock); 1476 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1477 if (fltr) { 1478 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1479 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1480 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1481 } else if (fltr->state == IAVF_FDIR_FLTR_INACTIVE) { 1482 list_del(&fltr->list); 1483 kfree(fltr); 1484 adapter->fdir_active_fltr--; 1485 fltr = NULL; 1486 } else { 1487 err = -EBUSY; 1488 } 1489 } else if (adapter->fdir_active_fltr) { 1490 err = -EINVAL; 1491 } 1492 spin_unlock_bh(&adapter->fdir_fltr_lock); 1493 1494 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1495 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1496 1497 return err; 1498 } 1499 1500 /** 1501 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1502 * @cmd: ethtool rxnfc command 1503 * 1504 * This function parses the rxnfc command and returns intended 1505 * header types for RSS configuration 1506 */ 1507 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1508 { 1509 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1510 1511 switch (cmd->flow_type) { 1512 case TCP_V4_FLOW: 1513 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1514 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1515 break; 1516 case UDP_V4_FLOW: 1517 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1518 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1519 break; 1520 case SCTP_V4_FLOW: 1521 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1522 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1523 break; 1524 case TCP_V6_FLOW: 1525 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1526 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1527 break; 1528 case UDP_V6_FLOW: 1529 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1530 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1531 break; 1532 case SCTP_V6_FLOW: 1533 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1534 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1535 break; 1536 default: 1537 break; 1538 } 1539 1540 return hdrs; 1541 } 1542 1543 /** 1544 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1545 * @cmd: ethtool rxnfc command 1546 * 1547 * This function parses the rxnfc command and returns intended hash fields for 1548 * RSS configuration 1549 */ 1550 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1551 { 1552 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1553 1554 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1555 switch (cmd->flow_type) { 1556 case TCP_V4_FLOW: 1557 case UDP_V4_FLOW: 1558 case SCTP_V4_FLOW: 1559 if (cmd->data & RXH_IP_SRC) 1560 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1561 if (cmd->data & RXH_IP_DST) 1562 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1563 break; 1564 case TCP_V6_FLOW: 1565 case UDP_V6_FLOW: 1566 case SCTP_V6_FLOW: 1567 if (cmd->data & RXH_IP_SRC) 1568 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1569 if (cmd->data & RXH_IP_DST) 1570 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1571 break; 1572 default: 1573 break; 1574 } 1575 } 1576 1577 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1578 switch (cmd->flow_type) { 1579 case TCP_V4_FLOW: 1580 case TCP_V6_FLOW: 1581 if (cmd->data & RXH_L4_B_0_1) 1582 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1583 if (cmd->data & RXH_L4_B_2_3) 1584 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1585 break; 1586 case UDP_V4_FLOW: 1587 case UDP_V6_FLOW: 1588 if (cmd->data & RXH_L4_B_0_1) 1589 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1590 if (cmd->data & RXH_L4_B_2_3) 1591 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1592 break; 1593 case SCTP_V4_FLOW: 1594 case SCTP_V6_FLOW: 1595 if (cmd->data & RXH_L4_B_0_1) 1596 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1597 if (cmd->data & RXH_L4_B_2_3) 1598 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1599 break; 1600 default: 1601 break; 1602 } 1603 } 1604 1605 return hfld; 1606 } 1607 1608 /** 1609 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1610 * @adapter: pointer to the VF adapter structure 1611 * @cmd: ethtool rxnfc command 1612 * 1613 * Returns Success if the flow input set is supported. 1614 */ 1615 static int 1616 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1617 struct ethtool_rxnfc *cmd) 1618 { 1619 struct iavf_adv_rss *rss_old, *rss_new; 1620 bool rss_new_add = false; 1621 int count = 50, err = 0; 1622 u64 hash_flds; 1623 u32 hdrs; 1624 1625 if (!ADV_RSS_SUPPORT(adapter)) 1626 return -EOPNOTSUPP; 1627 1628 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1629 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1630 return -EINVAL; 1631 1632 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1633 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1634 return -EINVAL; 1635 1636 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1637 if (!rss_new) 1638 return -ENOMEM; 1639 1640 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1641 kfree(rss_new); 1642 return -EINVAL; 1643 } 1644 1645 while (!mutex_trylock(&adapter->crit_lock)) { 1646 if (--count == 0) { 1647 kfree(rss_new); 1648 return -EINVAL; 1649 } 1650 1651 udelay(1); 1652 } 1653 1654 spin_lock_bh(&adapter->adv_rss_lock); 1655 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1656 if (rss_old) { 1657 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1658 err = -EBUSY; 1659 } else if (rss_old->hash_flds != hash_flds) { 1660 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1661 rss_old->hash_flds = hash_flds; 1662 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1663 sizeof(rss_new->cfg_msg)); 1664 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1665 } else { 1666 err = -EEXIST; 1667 } 1668 } else { 1669 rss_new_add = true; 1670 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1671 rss_new->packet_hdrs = hdrs; 1672 rss_new->hash_flds = hash_flds; 1673 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1674 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1675 } 1676 spin_unlock_bh(&adapter->adv_rss_lock); 1677 1678 if (!err) 1679 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1680 1681 mutex_unlock(&adapter->crit_lock); 1682 1683 if (!rss_new_add) 1684 kfree(rss_new); 1685 1686 return err; 1687 } 1688 1689 /** 1690 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1691 * @adapter: pointer to the VF adapter structure 1692 * @cmd: ethtool rxnfc command 1693 * 1694 * Returns Success if the flow input set is supported. 1695 */ 1696 static int 1697 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1698 struct ethtool_rxnfc *cmd) 1699 { 1700 struct iavf_adv_rss *rss; 1701 u64 hash_flds; 1702 u32 hdrs; 1703 1704 if (!ADV_RSS_SUPPORT(adapter)) 1705 return -EOPNOTSUPP; 1706 1707 cmd->data = 0; 1708 1709 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1710 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1711 return -EINVAL; 1712 1713 spin_lock_bh(&adapter->adv_rss_lock); 1714 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1715 if (rss) 1716 hash_flds = rss->hash_flds; 1717 else 1718 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1719 spin_unlock_bh(&adapter->adv_rss_lock); 1720 1721 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1722 return -EINVAL; 1723 1724 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1725 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1726 cmd->data |= (u64)RXH_IP_SRC; 1727 1728 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1729 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1730 cmd->data |= (u64)RXH_IP_DST; 1731 1732 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1733 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1734 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1735 cmd->data |= (u64)RXH_L4_B_0_1; 1736 1737 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1738 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1739 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1740 cmd->data |= (u64)RXH_L4_B_2_3; 1741 1742 return 0; 1743 } 1744 1745 /** 1746 * iavf_set_rxnfc - command to set Rx flow rules. 1747 * @netdev: network interface device structure 1748 * @cmd: ethtool rxnfc command 1749 * 1750 * Returns 0 for success and negative values for errors 1751 */ 1752 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1753 { 1754 struct iavf_adapter *adapter = netdev_priv(netdev); 1755 int ret = -EOPNOTSUPP; 1756 1757 switch (cmd->cmd) { 1758 case ETHTOOL_SRXCLSRLINS: 1759 ret = iavf_add_fdir_ethtool(adapter, cmd); 1760 break; 1761 case ETHTOOL_SRXCLSRLDEL: 1762 ret = iavf_del_fdir_ethtool(adapter, cmd); 1763 break; 1764 case ETHTOOL_SRXFH: 1765 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1766 break; 1767 default: 1768 break; 1769 } 1770 1771 return ret; 1772 } 1773 1774 /** 1775 * iavf_get_rxnfc - command to get RX flow classification rules 1776 * @netdev: network interface device structure 1777 * @cmd: ethtool rxnfc command 1778 * @rule_locs: pointer to store rule locations 1779 * 1780 * Returns Success if the command is supported. 1781 **/ 1782 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1783 u32 *rule_locs) 1784 { 1785 struct iavf_adapter *adapter = netdev_priv(netdev); 1786 int ret = -EOPNOTSUPP; 1787 1788 switch (cmd->cmd) { 1789 case ETHTOOL_GRXRINGS: 1790 cmd->data = adapter->num_active_queues; 1791 ret = 0; 1792 break; 1793 case ETHTOOL_GRXCLSRLCNT: 1794 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1795 break; 1796 spin_lock_bh(&adapter->fdir_fltr_lock); 1797 cmd->rule_cnt = adapter->fdir_active_fltr; 1798 spin_unlock_bh(&adapter->fdir_fltr_lock); 1799 cmd->data = IAVF_MAX_FDIR_FILTERS; 1800 ret = 0; 1801 break; 1802 case ETHTOOL_GRXCLSRULE: 1803 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1804 break; 1805 case ETHTOOL_GRXCLSRLALL: 1806 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1807 break; 1808 case ETHTOOL_GRXFH: 1809 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1810 break; 1811 default: 1812 break; 1813 } 1814 1815 return ret; 1816 } 1817 /** 1818 * iavf_get_channels: get the number of channels supported by the device 1819 * @netdev: network interface device structure 1820 * @ch: channel information structure 1821 * 1822 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1823 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1824 **/ 1825 static void iavf_get_channels(struct net_device *netdev, 1826 struct ethtool_channels *ch) 1827 { 1828 struct iavf_adapter *adapter = netdev_priv(netdev); 1829 1830 /* Report maximum channels */ 1831 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1832 1833 ch->max_other = NONQ_VECS; 1834 ch->other_count = NONQ_VECS; 1835 1836 ch->combined_count = adapter->num_active_queues; 1837 } 1838 1839 /** 1840 * iavf_set_channels: set the new channel count 1841 * @netdev: network interface device structure 1842 * @ch: channel information structure 1843 * 1844 * Negotiate a new number of channels with the PF then do a reset. During 1845 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1846 * negative on failure. 1847 **/ 1848 static int iavf_set_channels(struct net_device *netdev, 1849 struct ethtool_channels *ch) 1850 { 1851 struct iavf_adapter *adapter = netdev_priv(netdev); 1852 u32 num_req = ch->combined_count; 1853 int ret = 0; 1854 1855 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1856 adapter->num_tc) { 1857 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1858 return -EINVAL; 1859 } 1860 1861 /* All of these should have already been checked by ethtool before this 1862 * even gets to us, but just to be sure. 1863 */ 1864 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1865 return -EINVAL; 1866 1867 if (num_req == adapter->num_active_queues) 1868 return 0; 1869 1870 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1871 return -EINVAL; 1872 1873 adapter->num_req_queues = num_req; 1874 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1875 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 1876 1877 ret = iavf_wait_for_reset(adapter); 1878 if (ret) 1879 netdev_warn(netdev, "Changing channel count timeout or interrupted waiting for reset"); 1880 1881 return ret; 1882 } 1883 1884 /** 1885 * iavf_get_rxfh_key_size - get the RSS hash key size 1886 * @netdev: network interface device structure 1887 * 1888 * Returns the table size. 1889 **/ 1890 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1891 { 1892 struct iavf_adapter *adapter = netdev_priv(netdev); 1893 1894 return adapter->rss_key_size; 1895 } 1896 1897 /** 1898 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1899 * @netdev: network interface device structure 1900 * 1901 * Returns the table size. 1902 **/ 1903 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1904 { 1905 struct iavf_adapter *adapter = netdev_priv(netdev); 1906 1907 return adapter->rss_lut_size; 1908 } 1909 1910 /** 1911 * iavf_get_rxfh - get the rx flow hash indirection table 1912 * @netdev: network interface device structure 1913 * @indir: indirection table 1914 * @key: hash key 1915 * @hfunc: hash function in use 1916 * 1917 * Reads the indirection table directly from the hardware. Always returns 0. 1918 **/ 1919 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1920 u8 *hfunc) 1921 { 1922 struct iavf_adapter *adapter = netdev_priv(netdev); 1923 u16 i; 1924 1925 if (hfunc) 1926 *hfunc = ETH_RSS_HASH_TOP; 1927 if (key) 1928 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1929 1930 if (indir) 1931 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1932 for (i = 0; i < adapter->rss_lut_size; i++) 1933 indir[i] = (u32)adapter->rss_lut[i]; 1934 1935 return 0; 1936 } 1937 1938 /** 1939 * iavf_set_rxfh - set the rx flow hash indirection table 1940 * @netdev: network interface device structure 1941 * @indir: indirection table 1942 * @key: hash key 1943 * @hfunc: hash function to use 1944 * 1945 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1946 * returns 0 after programming the table. 1947 **/ 1948 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1949 const u8 *key, const u8 hfunc) 1950 { 1951 struct iavf_adapter *adapter = netdev_priv(netdev); 1952 u16 i; 1953 1954 /* Only support toeplitz hash function */ 1955 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1956 return -EOPNOTSUPP; 1957 1958 if (!key && !indir) 1959 return 0; 1960 1961 if (key) 1962 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1963 1964 if (indir) { 1965 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1966 for (i = 0; i < adapter->rss_lut_size; i++) 1967 adapter->rss_lut[i] = (u8)(indir[i]); 1968 } 1969 1970 return iavf_config_rss(adapter); 1971 } 1972 1973 static const struct ethtool_ops iavf_ethtool_ops = { 1974 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1975 ETHTOOL_COALESCE_USE_ADAPTIVE, 1976 .get_drvinfo = iavf_get_drvinfo, 1977 .get_link = ethtool_op_get_link, 1978 .get_ringparam = iavf_get_ringparam, 1979 .set_ringparam = iavf_set_ringparam, 1980 .get_strings = iavf_get_strings, 1981 .get_ethtool_stats = iavf_get_ethtool_stats, 1982 .get_sset_count = iavf_get_sset_count, 1983 .get_priv_flags = iavf_get_priv_flags, 1984 .set_priv_flags = iavf_set_priv_flags, 1985 .get_msglevel = iavf_get_msglevel, 1986 .set_msglevel = iavf_set_msglevel, 1987 .get_coalesce = iavf_get_coalesce, 1988 .set_coalesce = iavf_set_coalesce, 1989 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1990 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1991 .set_rxnfc = iavf_set_rxnfc, 1992 .get_rxnfc = iavf_get_rxnfc, 1993 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1994 .get_rxfh = iavf_get_rxfh, 1995 .set_rxfh = iavf_set_rxfh, 1996 .get_channels = iavf_get_channels, 1997 .set_channels = iavf_set_channels, 1998 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1999 .get_link_ksettings = iavf_get_link_ksettings, 2000 }; 2001 2002 /** 2003 * iavf_set_ethtool_ops - Initialize ethtool ops struct 2004 * @netdev: network interface device structure 2005 * 2006 * Sets ethtool ops struct in our netdev so that ethtool can call 2007 * our functions. 2008 **/ 2009 void iavf_set_ethtool_ops(struct net_device *netdev) 2010 { 2011 netdev->ethtool_ops = &iavf_ethtool_ops; 2012 } 2013