1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry_irq. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 if (sset == ETH_SS_STATS) 335 return IAVF_STATS_LEN + 336 (IAVF_QUEUE_STATS_LEN * 2 * IAVF_MAX_REQ_QUEUES); 337 else if (sset == ETH_SS_PRIV_FLAGS) 338 return IAVF_PRIV_FLAGS_STR_LEN; 339 else 340 return -EINVAL; 341 } 342 343 /** 344 * iavf_get_ethtool_stats - report device statistics 345 * @netdev: network interface device structure 346 * @stats: ethtool statistics structure 347 * @data: pointer to data buffer 348 * 349 * All statistics are added to the data buffer as an array of u64. 350 **/ 351 static void iavf_get_ethtool_stats(struct net_device *netdev, 352 struct ethtool_stats *stats, u64 *data) 353 { 354 struct iavf_adapter *adapter = netdev_priv(netdev); 355 unsigned int i; 356 357 /* Explicitly request stats refresh */ 358 iavf_schedule_request_stats(adapter); 359 360 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 361 362 rcu_read_lock(); 363 for (i = 0; i < IAVF_MAX_REQ_QUEUES; i++) { 364 struct iavf_ring *ring; 365 366 /* Avoid accessing un-allocated queues */ 367 ring = (i < adapter->num_active_queues ? 368 &adapter->tx_rings[i] : NULL); 369 iavf_add_queue_stats(&data, ring); 370 371 /* Avoid accessing un-allocated queues */ 372 ring = (i < adapter->num_active_queues ? 373 &adapter->rx_rings[i] : NULL); 374 iavf_add_queue_stats(&data, ring); 375 } 376 rcu_read_unlock(); 377 } 378 379 /** 380 * iavf_get_priv_flag_strings - Get private flag strings 381 * @netdev: network interface device structure 382 * @data: buffer for string data 383 * 384 * Builds the private flags string table 385 **/ 386 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 387 { 388 unsigned int i; 389 390 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 391 snprintf(data, ETH_GSTRING_LEN, "%s", 392 iavf_gstrings_priv_flags[i].flag_string); 393 data += ETH_GSTRING_LEN; 394 } 395 } 396 397 /** 398 * iavf_get_stat_strings - Get stat strings 399 * @netdev: network interface device structure 400 * @data: buffer for string data 401 * 402 * Builds the statistics string table 403 **/ 404 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 405 { 406 unsigned int i; 407 408 iavf_add_stat_strings(&data, iavf_gstrings_stats); 409 410 /* Queues are always allocated in pairs, so we just use num_tx_queues 411 * for both Tx and Rx queues. 412 */ 413 for (i = 0; i < netdev->num_tx_queues; i++) { 414 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 415 "tx", i); 416 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 417 "rx", i); 418 } 419 } 420 421 /** 422 * iavf_get_strings - Get string set 423 * @netdev: network interface device structure 424 * @sset: id of string set 425 * @data: buffer for string data 426 * 427 * Builds string tables for various string sets 428 **/ 429 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 430 { 431 switch (sset) { 432 case ETH_SS_STATS: 433 iavf_get_stat_strings(netdev, data); 434 break; 435 case ETH_SS_PRIV_FLAGS: 436 iavf_get_priv_flag_strings(netdev, data); 437 break; 438 default: 439 break; 440 } 441 } 442 443 /** 444 * iavf_get_priv_flags - report device private flags 445 * @netdev: network interface device structure 446 * 447 * The get string set count and the string set should be matched for each 448 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 449 * array. 450 * 451 * Returns a u32 bitmap of flags. 452 **/ 453 static u32 iavf_get_priv_flags(struct net_device *netdev) 454 { 455 struct iavf_adapter *adapter = netdev_priv(netdev); 456 u32 i, ret_flags = 0; 457 458 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 459 const struct iavf_priv_flags *priv_flags; 460 461 priv_flags = &iavf_gstrings_priv_flags[i]; 462 463 if (priv_flags->flag & adapter->flags) 464 ret_flags |= BIT(i); 465 } 466 467 return ret_flags; 468 } 469 470 /** 471 * iavf_set_priv_flags - set private flags 472 * @netdev: network interface device structure 473 * @flags: bit flags to be set 474 **/ 475 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 476 { 477 struct iavf_adapter *adapter = netdev_priv(netdev); 478 u32 orig_flags, new_flags, changed_flags; 479 u32 i; 480 481 orig_flags = READ_ONCE(adapter->flags); 482 new_flags = orig_flags; 483 484 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 485 const struct iavf_priv_flags *priv_flags; 486 487 priv_flags = &iavf_gstrings_priv_flags[i]; 488 489 if (flags & BIT(i)) 490 new_flags |= priv_flags->flag; 491 else 492 new_flags &= ~(priv_flags->flag); 493 494 if (priv_flags->read_only && 495 ((orig_flags ^ new_flags) & ~BIT(i))) 496 return -EOPNOTSUPP; 497 } 498 499 /* Before we finalize any flag changes, any checks which we need to 500 * perform to determine if the new flags will be supported should go 501 * here... 502 */ 503 504 /* Compare and exchange the new flags into place. If we failed, that 505 * is if cmpxchg returns anything but the old value, this means 506 * something else must have modified the flags variable since we 507 * copied it. We'll just punt with an error and log something in the 508 * message buffer. 509 */ 510 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 511 dev_warn(&adapter->pdev->dev, 512 "Unable to update adapter->flags as it was modified by another thread...\n"); 513 return -EAGAIN; 514 } 515 516 changed_flags = orig_flags ^ new_flags; 517 518 /* Process any additional changes needed as a result of flag changes. 519 * The changed_flags value reflects the list of bits that were changed 520 * in the code above. 521 */ 522 523 /* issue a reset to force legacy-rx change to take effect */ 524 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 525 if (netif_running(netdev)) { 526 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 527 queue_work(iavf_wq, &adapter->reset_task); 528 } 529 } 530 531 return 0; 532 } 533 534 /** 535 * iavf_get_msglevel - Get debug message level 536 * @netdev: network interface device structure 537 * 538 * Returns current debug message level. 539 **/ 540 static u32 iavf_get_msglevel(struct net_device *netdev) 541 { 542 struct iavf_adapter *adapter = netdev_priv(netdev); 543 544 return adapter->msg_enable; 545 } 546 547 /** 548 * iavf_set_msglevel - Set debug message level 549 * @netdev: network interface device structure 550 * @data: message level 551 * 552 * Set current debug message level. Higher values cause the driver to 553 * be noisier. 554 **/ 555 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 556 { 557 struct iavf_adapter *adapter = netdev_priv(netdev); 558 559 if (IAVF_DEBUG_USER & data) 560 adapter->hw.debug_mask = data; 561 adapter->msg_enable = data; 562 } 563 564 /** 565 * iavf_get_drvinfo - Get driver info 566 * @netdev: network interface device structure 567 * @drvinfo: ethool driver info structure 568 * 569 * Returns information about the driver and device for display to the user. 570 **/ 571 static void iavf_get_drvinfo(struct net_device *netdev, 572 struct ethtool_drvinfo *drvinfo) 573 { 574 struct iavf_adapter *adapter = netdev_priv(netdev); 575 576 strlcpy(drvinfo->driver, iavf_driver_name, 32); 577 strlcpy(drvinfo->fw_version, "N/A", 4); 578 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 579 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 580 } 581 582 /** 583 * iavf_get_ringparam - Get ring parameters 584 * @netdev: network interface device structure 585 * @ring: ethtool ringparam structure 586 * 587 * Returns current ring parameters. TX and RX rings are reported separately, 588 * but the number of rings is not reported. 589 **/ 590 static void iavf_get_ringparam(struct net_device *netdev, 591 struct ethtool_ringparam *ring) 592 { 593 struct iavf_adapter *adapter = netdev_priv(netdev); 594 595 ring->rx_max_pending = IAVF_MAX_RXD; 596 ring->tx_max_pending = IAVF_MAX_TXD; 597 ring->rx_pending = adapter->rx_desc_count; 598 ring->tx_pending = adapter->tx_desc_count; 599 } 600 601 /** 602 * iavf_set_ringparam - Set ring parameters 603 * @netdev: network interface device structure 604 * @ring: ethtool ringparam structure 605 * 606 * Sets ring parameters. TX and RX rings are controlled separately, but the 607 * number of rings is not specified, so all rings get the same settings. 608 **/ 609 static int iavf_set_ringparam(struct net_device *netdev, 610 struct ethtool_ringparam *ring) 611 { 612 struct iavf_adapter *adapter = netdev_priv(netdev); 613 u32 new_rx_count, new_tx_count; 614 615 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 616 return -EINVAL; 617 618 if (ring->tx_pending > IAVF_MAX_TXD || 619 ring->tx_pending < IAVF_MIN_TXD || 620 ring->rx_pending > IAVF_MAX_RXD || 621 ring->rx_pending < IAVF_MIN_RXD) { 622 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 623 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 624 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 625 return -EINVAL; 626 } 627 628 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 629 if (new_tx_count != ring->tx_pending) 630 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 631 new_tx_count); 632 633 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 634 if (new_rx_count != ring->rx_pending) 635 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 636 new_rx_count); 637 638 /* if nothing to do return success */ 639 if ((new_tx_count == adapter->tx_desc_count) && 640 (new_rx_count == adapter->rx_desc_count)) { 641 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 642 return 0; 643 } 644 645 if (new_tx_count != adapter->tx_desc_count) { 646 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 647 adapter->tx_desc_count, new_tx_count); 648 adapter->tx_desc_count = new_tx_count; 649 } 650 651 if (new_rx_count != adapter->rx_desc_count) { 652 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 653 adapter->rx_desc_count, new_rx_count); 654 adapter->rx_desc_count = new_rx_count; 655 } 656 657 if (netif_running(netdev)) { 658 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 659 queue_work(iavf_wq, &adapter->reset_task); 660 } 661 662 return 0; 663 } 664 665 /** 666 * __iavf_get_coalesce - get per-queue coalesce settings 667 * @netdev: the netdev to check 668 * @ec: ethtool coalesce data structure 669 * @queue: which queue to pick 670 * 671 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 672 * are per queue. If queue is <0 then we default to queue 0 as the 673 * representative value. 674 **/ 675 static int __iavf_get_coalesce(struct net_device *netdev, 676 struct ethtool_coalesce *ec, int queue) 677 { 678 struct iavf_adapter *adapter = netdev_priv(netdev); 679 struct iavf_vsi *vsi = &adapter->vsi; 680 struct iavf_ring *rx_ring, *tx_ring; 681 682 ec->tx_max_coalesced_frames = vsi->work_limit; 683 ec->rx_max_coalesced_frames = vsi->work_limit; 684 685 /* Rx and Tx usecs per queue value. If user doesn't specify the 686 * queue, return queue 0's value to represent. 687 */ 688 if (queue < 0) 689 queue = 0; 690 else if (queue >= adapter->num_active_queues) 691 return -EINVAL; 692 693 rx_ring = &adapter->rx_rings[queue]; 694 tx_ring = &adapter->tx_rings[queue]; 695 696 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 697 ec->use_adaptive_rx_coalesce = 1; 698 699 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 700 ec->use_adaptive_tx_coalesce = 1; 701 702 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 703 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 704 705 return 0; 706 } 707 708 /** 709 * iavf_get_coalesce - Get interrupt coalescing settings 710 * @netdev: network interface device structure 711 * @ec: ethtool coalesce structure 712 * @kernel_coal: ethtool CQE mode setting structure 713 * @extack: extack for reporting error messages 714 * 715 * Returns current coalescing settings. This is referred to elsewhere in the 716 * driver as Interrupt Throttle Rate, as this is how the hardware describes 717 * this functionality. Note that if per-queue settings have been modified this 718 * only represents the settings of queue 0. 719 **/ 720 static int iavf_get_coalesce(struct net_device *netdev, 721 struct ethtool_coalesce *ec, 722 struct kernel_ethtool_coalesce *kernel_coal, 723 struct netlink_ext_ack *extack) 724 { 725 return __iavf_get_coalesce(netdev, ec, -1); 726 } 727 728 /** 729 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 730 * @netdev: netdev to read 731 * @ec: coalesce settings from ethtool 732 * @queue: the queue to read 733 * 734 * Read specific queue's coalesce settings. 735 **/ 736 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 737 struct ethtool_coalesce *ec) 738 { 739 return __iavf_get_coalesce(netdev, ec, queue); 740 } 741 742 /** 743 * iavf_set_itr_per_queue - set ITR values for specific queue 744 * @adapter: the VF adapter struct to set values for 745 * @ec: coalesce settings from ethtool 746 * @queue: the queue to modify 747 * 748 * Change the ITR settings for a specific queue. 749 **/ 750 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 751 struct ethtool_coalesce *ec, int queue) 752 { 753 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 754 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 755 struct iavf_q_vector *q_vector; 756 u16 itr_setting; 757 758 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 759 760 if (ec->rx_coalesce_usecs != itr_setting && 761 ec->use_adaptive_rx_coalesce) { 762 netif_info(adapter, drv, adapter->netdev, 763 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 764 return -EINVAL; 765 } 766 767 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 768 769 if (ec->tx_coalesce_usecs != itr_setting && 770 ec->use_adaptive_tx_coalesce) { 771 netif_info(adapter, drv, adapter->netdev, 772 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 773 return -EINVAL; 774 } 775 776 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 777 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 778 779 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 780 if (!ec->use_adaptive_rx_coalesce) 781 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 782 783 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 784 if (!ec->use_adaptive_tx_coalesce) 785 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 786 787 q_vector = rx_ring->q_vector; 788 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 789 790 q_vector = tx_ring->q_vector; 791 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 792 793 /* The interrupt handler itself will take care of programming 794 * the Tx and Rx ITR values based on the values we have entered 795 * into the q_vector, no need to write the values now. 796 */ 797 return 0; 798 } 799 800 /** 801 * __iavf_set_coalesce - set coalesce settings for particular queue 802 * @netdev: the netdev to change 803 * @ec: ethtool coalesce settings 804 * @queue: the queue to change 805 * 806 * Sets the coalesce settings for a particular queue. 807 **/ 808 static int __iavf_set_coalesce(struct net_device *netdev, 809 struct ethtool_coalesce *ec, int queue) 810 { 811 struct iavf_adapter *adapter = netdev_priv(netdev); 812 struct iavf_vsi *vsi = &adapter->vsi; 813 int i; 814 815 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq) 816 vsi->work_limit = ec->tx_max_coalesced_frames_irq; 817 818 if (ec->rx_coalesce_usecs == 0) { 819 if (ec->use_adaptive_rx_coalesce) 820 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); 821 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || 822 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { 823 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 824 return -EINVAL; 825 } else if (ec->tx_coalesce_usecs == 0) { 826 if (ec->use_adaptive_tx_coalesce) 827 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); 828 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || 829 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { 830 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 831 return -EINVAL; 832 } 833 834 /* Rx and Tx usecs has per queue value. If user doesn't specify the 835 * queue, apply to all queues. 836 */ 837 if (queue < 0) { 838 for (i = 0; i < adapter->num_active_queues; i++) 839 if (iavf_set_itr_per_queue(adapter, ec, i)) 840 return -EINVAL; 841 } else if (queue < adapter->num_active_queues) { 842 if (iavf_set_itr_per_queue(adapter, ec, queue)) 843 return -EINVAL; 844 } else { 845 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 846 adapter->num_active_queues - 1); 847 return -EINVAL; 848 } 849 850 return 0; 851 } 852 853 /** 854 * iavf_set_coalesce - Set interrupt coalescing settings 855 * @netdev: network interface device structure 856 * @ec: ethtool coalesce structure 857 * @kernel_coal: ethtool CQE mode setting structure 858 * @extack: extack for reporting error messages 859 * 860 * Change current coalescing settings for every queue. 861 **/ 862 static int iavf_set_coalesce(struct net_device *netdev, 863 struct ethtool_coalesce *ec, 864 struct kernel_ethtool_coalesce *kernel_coal, 865 struct netlink_ext_ack *extack) 866 { 867 return __iavf_set_coalesce(netdev, ec, -1); 868 } 869 870 /** 871 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 872 * @netdev: the netdev to change 873 * @ec: ethtool's coalesce settings 874 * @queue: the queue to modify 875 * 876 * Modifies a specific queue's coalesce settings. 877 */ 878 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 879 struct ethtool_coalesce *ec) 880 { 881 return __iavf_set_coalesce(netdev, ec, queue); 882 } 883 884 /** 885 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 886 * flow type values 887 * @flow: filter type to be converted 888 * 889 * Returns the corresponding ethtool flow type. 890 */ 891 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 892 { 893 switch (flow) { 894 case IAVF_FDIR_FLOW_IPV4_TCP: 895 return TCP_V4_FLOW; 896 case IAVF_FDIR_FLOW_IPV4_UDP: 897 return UDP_V4_FLOW; 898 case IAVF_FDIR_FLOW_IPV4_SCTP: 899 return SCTP_V4_FLOW; 900 case IAVF_FDIR_FLOW_IPV4_AH: 901 return AH_V4_FLOW; 902 case IAVF_FDIR_FLOW_IPV4_ESP: 903 return ESP_V4_FLOW; 904 case IAVF_FDIR_FLOW_IPV4_OTHER: 905 return IPV4_USER_FLOW; 906 case IAVF_FDIR_FLOW_IPV6_TCP: 907 return TCP_V6_FLOW; 908 case IAVF_FDIR_FLOW_IPV6_UDP: 909 return UDP_V6_FLOW; 910 case IAVF_FDIR_FLOW_IPV6_SCTP: 911 return SCTP_V6_FLOW; 912 case IAVF_FDIR_FLOW_IPV6_AH: 913 return AH_V6_FLOW; 914 case IAVF_FDIR_FLOW_IPV6_ESP: 915 return ESP_V6_FLOW; 916 case IAVF_FDIR_FLOW_IPV6_OTHER: 917 return IPV6_USER_FLOW; 918 case IAVF_FDIR_FLOW_NON_IP_L2: 919 return ETHER_FLOW; 920 default: 921 /* 0 is undefined ethtool flow */ 922 return 0; 923 } 924 } 925 926 /** 927 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 928 * @eth: Ethtool flow type to be converted 929 * 930 * Returns flow enum 931 */ 932 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 933 { 934 switch (eth) { 935 case TCP_V4_FLOW: 936 return IAVF_FDIR_FLOW_IPV4_TCP; 937 case UDP_V4_FLOW: 938 return IAVF_FDIR_FLOW_IPV4_UDP; 939 case SCTP_V4_FLOW: 940 return IAVF_FDIR_FLOW_IPV4_SCTP; 941 case AH_V4_FLOW: 942 return IAVF_FDIR_FLOW_IPV4_AH; 943 case ESP_V4_FLOW: 944 return IAVF_FDIR_FLOW_IPV4_ESP; 945 case IPV4_USER_FLOW: 946 return IAVF_FDIR_FLOW_IPV4_OTHER; 947 case TCP_V6_FLOW: 948 return IAVF_FDIR_FLOW_IPV6_TCP; 949 case UDP_V6_FLOW: 950 return IAVF_FDIR_FLOW_IPV6_UDP; 951 case SCTP_V6_FLOW: 952 return IAVF_FDIR_FLOW_IPV6_SCTP; 953 case AH_V6_FLOW: 954 return IAVF_FDIR_FLOW_IPV6_AH; 955 case ESP_V6_FLOW: 956 return IAVF_FDIR_FLOW_IPV6_ESP; 957 case IPV6_USER_FLOW: 958 return IAVF_FDIR_FLOW_IPV6_OTHER; 959 case ETHER_FLOW: 960 return IAVF_FDIR_FLOW_NON_IP_L2; 961 default: 962 return IAVF_FDIR_FLOW_NONE; 963 } 964 } 965 966 /** 967 * iavf_is_mask_valid - check mask field set 968 * @mask: full mask to check 969 * @field: field for which mask should be valid 970 * 971 * If the mask is fully set return true. If it is not valid for field return 972 * false. 973 */ 974 static bool iavf_is_mask_valid(u64 mask, u64 field) 975 { 976 return (mask & field) == field; 977 } 978 979 /** 980 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 981 * @fsp: pointer to ethtool Rx flow specification 982 * @fltr: pointer to Flow Director filter for userdef data storage 983 * 984 * Returns 0 on success, negative error value on failure 985 */ 986 static int 987 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 988 struct iavf_fdir_fltr *fltr) 989 { 990 struct iavf_flex_word *flex; 991 int i, cnt = 0; 992 993 if (!(fsp->flow_type & FLOW_EXT)) 994 return 0; 995 996 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 997 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 998 #define IAVF_USERDEF_FLEX_OFFS_S 16 999 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 1000 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 1001 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 1002 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 1003 1004 if (!value || !mask) 1005 continue; 1006 1007 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1008 return -EINVAL; 1009 1010 /* 504 is the maximum value for offsets, and offset is measured 1011 * from the start of the MAC address. 1012 */ 1013 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1014 flex = &fltr->flex_words[cnt++]; 1015 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1016 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1017 IAVF_USERDEF_FLEX_OFFS_S; 1018 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1019 return -EINVAL; 1020 } 1021 1022 fltr->flex_cnt = cnt; 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * iavf_fill_rx_flow_ext_data - fill the additional data 1029 * @fsp: pointer to ethtool Rx flow specification 1030 * @fltr: pointer to Flow Director filter to get additional data 1031 */ 1032 static void 1033 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1034 struct iavf_fdir_fltr *fltr) 1035 { 1036 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1037 return; 1038 1039 fsp->flow_type |= FLOW_EXT; 1040 1041 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1042 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1043 } 1044 1045 /** 1046 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1047 * @adapter: the VF adapter structure that contains filter list 1048 * @cmd: ethtool command data structure to receive the filter data 1049 * 1050 * Returns 0 as expected for success by ethtool 1051 */ 1052 static int 1053 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1054 struct ethtool_rxnfc *cmd) 1055 { 1056 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1057 struct iavf_fdir_fltr *rule = NULL; 1058 int ret = 0; 1059 1060 if (!FDIR_FLTR_SUPPORT(adapter)) 1061 return -EOPNOTSUPP; 1062 1063 spin_lock_bh(&adapter->fdir_fltr_lock); 1064 1065 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1066 if (!rule) { 1067 ret = -EINVAL; 1068 goto release_lock; 1069 } 1070 1071 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1072 1073 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1074 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1075 1076 switch (fsp->flow_type) { 1077 case TCP_V4_FLOW: 1078 case UDP_V4_FLOW: 1079 case SCTP_V4_FLOW: 1080 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1081 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1082 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1083 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1084 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1085 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1086 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1087 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1088 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1089 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1090 break; 1091 case AH_V4_FLOW: 1092 case ESP_V4_FLOW: 1093 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1094 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1095 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1096 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1097 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1098 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1099 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1100 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1101 break; 1102 case IPV4_USER_FLOW: 1103 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1104 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1105 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1106 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1107 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1108 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1109 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1110 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1111 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1112 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1113 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1114 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1115 break; 1116 case TCP_V6_FLOW: 1117 case UDP_V6_FLOW: 1118 case SCTP_V6_FLOW: 1119 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1120 sizeof(struct in6_addr)); 1121 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1122 sizeof(struct in6_addr)); 1123 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1124 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1125 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1126 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1127 sizeof(struct in6_addr)); 1128 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1129 sizeof(struct in6_addr)); 1130 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1131 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1132 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1133 break; 1134 case AH_V6_FLOW: 1135 case ESP_V6_FLOW: 1136 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1137 sizeof(struct in6_addr)); 1138 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1139 sizeof(struct in6_addr)); 1140 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1141 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1142 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1143 sizeof(struct in6_addr)); 1144 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1145 sizeof(struct in6_addr)); 1146 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1147 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1148 break; 1149 case IPV6_USER_FLOW: 1150 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1151 sizeof(struct in6_addr)); 1152 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1153 sizeof(struct in6_addr)); 1154 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1155 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1156 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1157 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1158 sizeof(struct in6_addr)); 1159 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1160 sizeof(struct in6_addr)); 1161 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1162 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1163 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1164 break; 1165 case ETHER_FLOW: 1166 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1167 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1168 break; 1169 default: 1170 ret = -EINVAL; 1171 break; 1172 } 1173 1174 iavf_fill_rx_flow_ext_data(fsp, rule); 1175 1176 if (rule->action == VIRTCHNL_ACTION_DROP) 1177 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1178 else 1179 fsp->ring_cookie = rule->q_index; 1180 1181 release_lock: 1182 spin_unlock_bh(&adapter->fdir_fltr_lock); 1183 return ret; 1184 } 1185 1186 /** 1187 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1188 * @adapter: the VF adapter structure containing the filter list 1189 * @cmd: ethtool command data structure 1190 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1191 * 1192 * Returns 0 as expected for success by ethtool 1193 */ 1194 static int 1195 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1196 u32 *rule_locs) 1197 { 1198 struct iavf_fdir_fltr *fltr; 1199 unsigned int cnt = 0; 1200 int val = 0; 1201 1202 if (!FDIR_FLTR_SUPPORT(adapter)) 1203 return -EOPNOTSUPP; 1204 1205 cmd->data = IAVF_MAX_FDIR_FILTERS; 1206 1207 spin_lock_bh(&adapter->fdir_fltr_lock); 1208 1209 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1210 if (cnt == cmd->rule_cnt) { 1211 val = -EMSGSIZE; 1212 goto release_lock; 1213 } 1214 rule_locs[cnt] = fltr->loc; 1215 cnt++; 1216 } 1217 1218 release_lock: 1219 spin_unlock_bh(&adapter->fdir_fltr_lock); 1220 if (!val) 1221 cmd->rule_cnt = cnt; 1222 1223 return val; 1224 } 1225 1226 /** 1227 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1228 * @adapter: pointer to the VF adapter structure 1229 * @fsp: pointer to ethtool Rx flow specification 1230 * @fltr: filter structure 1231 */ 1232 static int 1233 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1234 struct iavf_fdir_fltr *fltr) 1235 { 1236 u32 flow_type, q_index = 0; 1237 enum virtchnl_action act; 1238 int err; 1239 1240 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1241 act = VIRTCHNL_ACTION_DROP; 1242 } else { 1243 q_index = fsp->ring_cookie; 1244 if (q_index >= adapter->num_active_queues) 1245 return -EINVAL; 1246 1247 act = VIRTCHNL_ACTION_QUEUE; 1248 } 1249 1250 fltr->action = act; 1251 fltr->loc = fsp->location; 1252 fltr->q_index = q_index; 1253 1254 if (fsp->flow_type & FLOW_EXT) { 1255 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1256 sizeof(fltr->ext_data.usr_def)); 1257 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1258 sizeof(fltr->ext_mask.usr_def)); 1259 } 1260 1261 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1262 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1263 1264 switch (flow_type) { 1265 case TCP_V4_FLOW: 1266 case UDP_V4_FLOW: 1267 case SCTP_V4_FLOW: 1268 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1269 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1270 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1271 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1272 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1273 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1274 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1275 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1276 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1277 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1278 break; 1279 case AH_V4_FLOW: 1280 case ESP_V4_FLOW: 1281 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1282 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1283 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1284 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1285 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1286 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1287 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1288 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1289 break; 1290 case IPV4_USER_FLOW: 1291 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1292 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1293 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1294 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1295 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1296 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1297 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1298 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1299 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1300 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1301 break; 1302 case TCP_V6_FLOW: 1303 case UDP_V6_FLOW: 1304 case SCTP_V6_FLOW: 1305 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1306 sizeof(struct in6_addr)); 1307 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1308 sizeof(struct in6_addr)); 1309 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1310 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1311 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1312 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1313 sizeof(struct in6_addr)); 1314 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1315 sizeof(struct in6_addr)); 1316 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1317 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1318 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1319 break; 1320 case AH_V6_FLOW: 1321 case ESP_V6_FLOW: 1322 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1323 sizeof(struct in6_addr)); 1324 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1325 sizeof(struct in6_addr)); 1326 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1327 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1328 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1329 sizeof(struct in6_addr)); 1330 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1331 sizeof(struct in6_addr)); 1332 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1333 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1334 break; 1335 case IPV6_USER_FLOW: 1336 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1337 sizeof(struct in6_addr)); 1338 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1339 sizeof(struct in6_addr)); 1340 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1341 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1342 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1343 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1344 sizeof(struct in6_addr)); 1345 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1346 sizeof(struct in6_addr)); 1347 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1348 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1349 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1350 break; 1351 case ETHER_FLOW: 1352 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1353 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1354 break; 1355 default: 1356 /* not doing un-parsed flow types */ 1357 return -EINVAL; 1358 } 1359 1360 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1361 return -EEXIST; 1362 1363 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1364 if (err) 1365 return err; 1366 1367 return iavf_fill_fdir_add_msg(adapter, fltr); 1368 } 1369 1370 /** 1371 * iavf_add_fdir_ethtool - add Flow Director filter 1372 * @adapter: pointer to the VF adapter structure 1373 * @cmd: command to add Flow Director filter 1374 * 1375 * Returns 0 on success and negative values for failure 1376 */ 1377 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1378 { 1379 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1380 struct iavf_fdir_fltr *fltr; 1381 int count = 50; 1382 int err; 1383 1384 if (!FDIR_FLTR_SUPPORT(adapter)) 1385 return -EOPNOTSUPP; 1386 1387 if (fsp->flow_type & FLOW_MAC_EXT) 1388 return -EINVAL; 1389 1390 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1391 dev_err(&adapter->pdev->dev, 1392 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1393 IAVF_MAX_FDIR_FILTERS); 1394 return -ENOSPC; 1395 } 1396 1397 spin_lock_bh(&adapter->fdir_fltr_lock); 1398 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1399 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1400 spin_unlock_bh(&adapter->fdir_fltr_lock); 1401 return -EEXIST; 1402 } 1403 spin_unlock_bh(&adapter->fdir_fltr_lock); 1404 1405 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1406 if (!fltr) 1407 return -ENOMEM; 1408 1409 while (!mutex_trylock(&adapter->crit_lock)) { 1410 if (--count == 0) { 1411 kfree(fltr); 1412 return -EINVAL; 1413 } 1414 udelay(1); 1415 } 1416 1417 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1418 if (err) 1419 goto ret; 1420 1421 spin_lock_bh(&adapter->fdir_fltr_lock); 1422 iavf_fdir_list_add_fltr(adapter, fltr); 1423 adapter->fdir_active_fltr++; 1424 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1425 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1426 spin_unlock_bh(&adapter->fdir_fltr_lock); 1427 1428 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1429 1430 ret: 1431 if (err && fltr) 1432 kfree(fltr); 1433 1434 mutex_unlock(&adapter->crit_lock); 1435 return err; 1436 } 1437 1438 /** 1439 * iavf_del_fdir_ethtool - delete Flow Director filter 1440 * @adapter: pointer to the VF adapter structure 1441 * @cmd: command to delete Flow Director filter 1442 * 1443 * Returns 0 on success and negative values for failure 1444 */ 1445 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1446 { 1447 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1448 struct iavf_fdir_fltr *fltr = NULL; 1449 int err = 0; 1450 1451 if (!FDIR_FLTR_SUPPORT(adapter)) 1452 return -EOPNOTSUPP; 1453 1454 spin_lock_bh(&adapter->fdir_fltr_lock); 1455 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1456 if (fltr) { 1457 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1458 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1459 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1460 } else { 1461 err = -EBUSY; 1462 } 1463 } else if (adapter->fdir_active_fltr) { 1464 err = -EINVAL; 1465 } 1466 spin_unlock_bh(&adapter->fdir_fltr_lock); 1467 1468 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1469 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1470 1471 return err; 1472 } 1473 1474 /** 1475 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1476 * @cmd: ethtool rxnfc command 1477 * 1478 * This function parses the rxnfc command and returns intended 1479 * header types for RSS configuration 1480 */ 1481 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1482 { 1483 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1484 1485 switch (cmd->flow_type) { 1486 case TCP_V4_FLOW: 1487 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1488 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1489 break; 1490 case UDP_V4_FLOW: 1491 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1492 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1493 break; 1494 case SCTP_V4_FLOW: 1495 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1496 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1497 break; 1498 case TCP_V6_FLOW: 1499 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1500 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1501 break; 1502 case UDP_V6_FLOW: 1503 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1504 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1505 break; 1506 case SCTP_V6_FLOW: 1507 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1508 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1509 break; 1510 default: 1511 break; 1512 } 1513 1514 return hdrs; 1515 } 1516 1517 /** 1518 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1519 * @cmd: ethtool rxnfc command 1520 * 1521 * This function parses the rxnfc command and returns intended hash fields for 1522 * RSS configuration 1523 */ 1524 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1525 { 1526 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1527 1528 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1529 switch (cmd->flow_type) { 1530 case TCP_V4_FLOW: 1531 case UDP_V4_FLOW: 1532 case SCTP_V4_FLOW: 1533 if (cmd->data & RXH_IP_SRC) 1534 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1535 if (cmd->data & RXH_IP_DST) 1536 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1537 break; 1538 case TCP_V6_FLOW: 1539 case UDP_V6_FLOW: 1540 case SCTP_V6_FLOW: 1541 if (cmd->data & RXH_IP_SRC) 1542 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1543 if (cmd->data & RXH_IP_DST) 1544 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1545 break; 1546 default: 1547 break; 1548 } 1549 } 1550 1551 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1552 switch (cmd->flow_type) { 1553 case TCP_V4_FLOW: 1554 case TCP_V6_FLOW: 1555 if (cmd->data & RXH_L4_B_0_1) 1556 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1557 if (cmd->data & RXH_L4_B_2_3) 1558 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1559 break; 1560 case UDP_V4_FLOW: 1561 case UDP_V6_FLOW: 1562 if (cmd->data & RXH_L4_B_0_1) 1563 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1564 if (cmd->data & RXH_L4_B_2_3) 1565 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1566 break; 1567 case SCTP_V4_FLOW: 1568 case SCTP_V6_FLOW: 1569 if (cmd->data & RXH_L4_B_0_1) 1570 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1571 if (cmd->data & RXH_L4_B_2_3) 1572 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1573 break; 1574 default: 1575 break; 1576 } 1577 } 1578 1579 return hfld; 1580 } 1581 1582 /** 1583 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1584 * @adapter: pointer to the VF adapter structure 1585 * @cmd: ethtool rxnfc command 1586 * 1587 * Returns Success if the flow input set is supported. 1588 */ 1589 static int 1590 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1591 struct ethtool_rxnfc *cmd) 1592 { 1593 struct iavf_adv_rss *rss_old, *rss_new; 1594 bool rss_new_add = false; 1595 int count = 50, err = 0; 1596 u64 hash_flds; 1597 u32 hdrs; 1598 1599 if (!ADV_RSS_SUPPORT(adapter)) 1600 return -EOPNOTSUPP; 1601 1602 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1603 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1604 return -EINVAL; 1605 1606 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1607 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1608 return -EINVAL; 1609 1610 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1611 if (!rss_new) 1612 return -ENOMEM; 1613 1614 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1615 kfree(rss_new); 1616 return -EINVAL; 1617 } 1618 1619 while (!mutex_trylock(&adapter->crit_lock)) { 1620 if (--count == 0) { 1621 kfree(rss_new); 1622 return -EINVAL; 1623 } 1624 1625 udelay(1); 1626 } 1627 1628 spin_lock_bh(&adapter->adv_rss_lock); 1629 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1630 if (rss_old) { 1631 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1632 err = -EBUSY; 1633 } else if (rss_old->hash_flds != hash_flds) { 1634 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1635 rss_old->hash_flds = hash_flds; 1636 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1637 sizeof(rss_new->cfg_msg)); 1638 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1639 } else { 1640 err = -EEXIST; 1641 } 1642 } else { 1643 rss_new_add = true; 1644 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1645 rss_new->packet_hdrs = hdrs; 1646 rss_new->hash_flds = hash_flds; 1647 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1648 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1649 } 1650 spin_unlock_bh(&adapter->adv_rss_lock); 1651 1652 if (!err) 1653 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1654 1655 mutex_unlock(&adapter->crit_lock); 1656 1657 if (!rss_new_add) 1658 kfree(rss_new); 1659 1660 return err; 1661 } 1662 1663 /** 1664 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1665 * @adapter: pointer to the VF adapter structure 1666 * @cmd: ethtool rxnfc command 1667 * 1668 * Returns Success if the flow input set is supported. 1669 */ 1670 static int 1671 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1672 struct ethtool_rxnfc *cmd) 1673 { 1674 struct iavf_adv_rss *rss; 1675 u64 hash_flds; 1676 u32 hdrs; 1677 1678 if (!ADV_RSS_SUPPORT(adapter)) 1679 return -EOPNOTSUPP; 1680 1681 cmd->data = 0; 1682 1683 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1684 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1685 return -EINVAL; 1686 1687 spin_lock_bh(&adapter->adv_rss_lock); 1688 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1689 if (rss) 1690 hash_flds = rss->hash_flds; 1691 else 1692 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1693 spin_unlock_bh(&adapter->adv_rss_lock); 1694 1695 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1696 return -EINVAL; 1697 1698 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1699 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1700 cmd->data |= (u64)RXH_IP_SRC; 1701 1702 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1703 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1704 cmd->data |= (u64)RXH_IP_DST; 1705 1706 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1707 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1708 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1709 cmd->data |= (u64)RXH_L4_B_0_1; 1710 1711 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1712 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1713 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1714 cmd->data |= (u64)RXH_L4_B_2_3; 1715 1716 return 0; 1717 } 1718 1719 /** 1720 * iavf_set_rxnfc - command to set Rx flow rules. 1721 * @netdev: network interface device structure 1722 * @cmd: ethtool rxnfc command 1723 * 1724 * Returns 0 for success and negative values for errors 1725 */ 1726 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1727 { 1728 struct iavf_adapter *adapter = netdev_priv(netdev); 1729 int ret = -EOPNOTSUPP; 1730 1731 switch (cmd->cmd) { 1732 case ETHTOOL_SRXCLSRLINS: 1733 ret = iavf_add_fdir_ethtool(adapter, cmd); 1734 break; 1735 case ETHTOOL_SRXCLSRLDEL: 1736 ret = iavf_del_fdir_ethtool(adapter, cmd); 1737 break; 1738 case ETHTOOL_SRXFH: 1739 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1740 break; 1741 default: 1742 break; 1743 } 1744 1745 return ret; 1746 } 1747 1748 /** 1749 * iavf_get_rxnfc - command to get RX flow classification rules 1750 * @netdev: network interface device structure 1751 * @cmd: ethtool rxnfc command 1752 * @rule_locs: pointer to store rule locations 1753 * 1754 * Returns Success if the command is supported. 1755 **/ 1756 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1757 u32 *rule_locs) 1758 { 1759 struct iavf_adapter *adapter = netdev_priv(netdev); 1760 int ret = -EOPNOTSUPP; 1761 1762 switch (cmd->cmd) { 1763 case ETHTOOL_GRXRINGS: 1764 cmd->data = adapter->num_active_queues; 1765 ret = 0; 1766 break; 1767 case ETHTOOL_GRXCLSRLCNT: 1768 if (!FDIR_FLTR_SUPPORT(adapter)) 1769 break; 1770 cmd->rule_cnt = adapter->fdir_active_fltr; 1771 cmd->data = IAVF_MAX_FDIR_FILTERS; 1772 ret = 0; 1773 break; 1774 case ETHTOOL_GRXCLSRULE: 1775 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1776 break; 1777 case ETHTOOL_GRXCLSRLALL: 1778 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1779 break; 1780 case ETHTOOL_GRXFH: 1781 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1782 break; 1783 default: 1784 break; 1785 } 1786 1787 return ret; 1788 } 1789 /** 1790 * iavf_get_channels: get the number of channels supported by the device 1791 * @netdev: network interface device structure 1792 * @ch: channel information structure 1793 * 1794 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1795 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1796 **/ 1797 static void iavf_get_channels(struct net_device *netdev, 1798 struct ethtool_channels *ch) 1799 { 1800 struct iavf_adapter *adapter = netdev_priv(netdev); 1801 1802 /* Report maximum channels */ 1803 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1804 1805 ch->max_other = NONQ_VECS; 1806 ch->other_count = NONQ_VECS; 1807 1808 ch->combined_count = adapter->num_active_queues; 1809 } 1810 1811 /** 1812 * iavf_set_channels: set the new channel count 1813 * @netdev: network interface device structure 1814 * @ch: channel information structure 1815 * 1816 * Negotiate a new number of channels with the PF then do a reset. During 1817 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1818 * negative on failure. 1819 **/ 1820 static int iavf_set_channels(struct net_device *netdev, 1821 struct ethtool_channels *ch) 1822 { 1823 struct iavf_adapter *adapter = netdev_priv(netdev); 1824 u32 num_req = ch->combined_count; 1825 int i; 1826 1827 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1828 adapter->num_tc) { 1829 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1830 return -EINVAL; 1831 } 1832 1833 /* All of these should have already been checked by ethtool before this 1834 * even gets to us, but just to be sure. 1835 */ 1836 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1837 return -EINVAL; 1838 1839 if (num_req == adapter->num_active_queues) 1840 return 0; 1841 1842 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1843 return -EINVAL; 1844 1845 adapter->num_req_queues = num_req; 1846 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1847 iavf_schedule_reset(adapter); 1848 1849 /* wait for the reset is done */ 1850 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 1851 msleep(IAVF_RESET_WAIT_MS); 1852 if (adapter->flags & IAVF_FLAG_RESET_PENDING) 1853 continue; 1854 break; 1855 } 1856 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 1857 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 1858 adapter->num_active_queues = num_req; 1859 return -EOPNOTSUPP; 1860 } 1861 1862 return 0; 1863 } 1864 1865 /** 1866 * iavf_get_rxfh_key_size - get the RSS hash key size 1867 * @netdev: network interface device structure 1868 * 1869 * Returns the table size. 1870 **/ 1871 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1872 { 1873 struct iavf_adapter *adapter = netdev_priv(netdev); 1874 1875 return adapter->rss_key_size; 1876 } 1877 1878 /** 1879 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1880 * @netdev: network interface device structure 1881 * 1882 * Returns the table size. 1883 **/ 1884 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1885 { 1886 struct iavf_adapter *adapter = netdev_priv(netdev); 1887 1888 return adapter->rss_lut_size; 1889 } 1890 1891 /** 1892 * iavf_get_rxfh - get the rx flow hash indirection table 1893 * @netdev: network interface device structure 1894 * @indir: indirection table 1895 * @key: hash key 1896 * @hfunc: hash function in use 1897 * 1898 * Reads the indirection table directly from the hardware. Always returns 0. 1899 **/ 1900 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1901 u8 *hfunc) 1902 { 1903 struct iavf_adapter *adapter = netdev_priv(netdev); 1904 u16 i; 1905 1906 if (hfunc) 1907 *hfunc = ETH_RSS_HASH_TOP; 1908 if (key) 1909 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1910 1911 if (indir) 1912 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1913 for (i = 0; i < adapter->rss_lut_size; i++) 1914 indir[i] = (u32)adapter->rss_lut[i]; 1915 1916 return 0; 1917 } 1918 1919 /** 1920 * iavf_set_rxfh - set the rx flow hash indirection table 1921 * @netdev: network interface device structure 1922 * @indir: indirection table 1923 * @key: hash key 1924 * @hfunc: hash function to use 1925 * 1926 * Returns -EINVAL if the table specifies an inavlid queue id, otherwise 1927 * returns 0 after programming the table. 1928 **/ 1929 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1930 const u8 *key, const u8 hfunc) 1931 { 1932 struct iavf_adapter *adapter = netdev_priv(netdev); 1933 u16 i; 1934 1935 /* We do not allow change in unsupported parameters */ 1936 if (key || 1937 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 1938 return -EOPNOTSUPP; 1939 if (!indir) 1940 return 0; 1941 1942 if (key) 1943 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1944 1945 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1946 for (i = 0; i < adapter->rss_lut_size; i++) 1947 adapter->rss_lut[i] = (u8)(indir[i]); 1948 1949 return iavf_config_rss(adapter); 1950 } 1951 1952 static const struct ethtool_ops iavf_ethtool_ops = { 1953 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1954 ETHTOOL_COALESCE_MAX_FRAMES | 1955 ETHTOOL_COALESCE_MAX_FRAMES_IRQ | 1956 ETHTOOL_COALESCE_USE_ADAPTIVE, 1957 .get_drvinfo = iavf_get_drvinfo, 1958 .get_link = ethtool_op_get_link, 1959 .get_ringparam = iavf_get_ringparam, 1960 .set_ringparam = iavf_set_ringparam, 1961 .get_strings = iavf_get_strings, 1962 .get_ethtool_stats = iavf_get_ethtool_stats, 1963 .get_sset_count = iavf_get_sset_count, 1964 .get_priv_flags = iavf_get_priv_flags, 1965 .set_priv_flags = iavf_set_priv_flags, 1966 .get_msglevel = iavf_get_msglevel, 1967 .set_msglevel = iavf_set_msglevel, 1968 .get_coalesce = iavf_get_coalesce, 1969 .set_coalesce = iavf_set_coalesce, 1970 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1971 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1972 .set_rxnfc = iavf_set_rxnfc, 1973 .get_rxnfc = iavf_get_rxnfc, 1974 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1975 .get_rxfh = iavf_get_rxfh, 1976 .set_rxfh = iavf_set_rxfh, 1977 .get_channels = iavf_get_channels, 1978 .set_channels = iavf_set_channels, 1979 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1980 .get_link_ksettings = iavf_get_link_ksettings, 1981 }; 1982 1983 /** 1984 * iavf_set_ethtool_ops - Initialize ethtool ops struct 1985 * @netdev: network interface device structure 1986 * 1987 * Sets ethtool ops struct in our netdev so that ethtool can call 1988 * our functions. 1989 **/ 1990 void iavf_set_ethtool_ops(struct net_device *netdev) 1991 { 1992 netdev->ethtool_ops = &iavf_ethtool_ops; 1993 } 1994