1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/stringify.h> 6 #include <net/xdp_sock_drv.h> 7 #include <net/xdp.h> 8 9 #include "i40e.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring) 14 { 15 unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count; 16 17 rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL); 18 return rx_ring->rx_bi_zc ? 0 : -ENOMEM; 19 } 20 21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring) 22 { 23 memset(rx_ring->rx_bi_zc, 0, 24 sizeof(*rx_ring->rx_bi_zc) * rx_ring->count); 25 } 26 27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 28 { 29 return &rx_ring->rx_bi_zc[idx]; 30 } 31 32 /** 33 * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a 34 * certain ring/qid 35 * @vsi: Current VSI 36 * @pool: buffer pool 37 * @qid: Rx ring to associate buffer pool with 38 * 39 * Returns 0 on success, <0 on failure 40 **/ 41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi, 42 struct xsk_buff_pool *pool, 43 u16 qid) 44 { 45 struct net_device *netdev = vsi->netdev; 46 bool if_running; 47 int err; 48 49 if (vsi->type != I40E_VSI_MAIN) 50 return -EINVAL; 51 52 if (qid >= vsi->num_queue_pairs) 53 return -EINVAL; 54 55 if (qid >= netdev->real_num_rx_queues || 56 qid >= netdev->real_num_tx_queues) 57 return -EINVAL; 58 59 err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR); 60 if (err) 61 return err; 62 63 set_bit(qid, vsi->af_xdp_zc_qps); 64 65 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 66 67 if (if_running) { 68 err = i40e_queue_pair_disable(vsi, qid); 69 if (err) 70 return err; 71 72 err = i40e_queue_pair_enable(vsi, qid); 73 if (err) 74 return err; 75 76 /* Kick start the NAPI context so that receiving will start */ 77 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); 78 if (err) 79 return err; 80 } 81 82 return 0; 83 } 84 85 /** 86 * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a 87 * certain ring/qid 88 * @vsi: Current VSI 89 * @qid: Rx ring to associate buffer pool with 90 * 91 * Returns 0 on success, <0 on failure 92 **/ 93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid) 94 { 95 struct net_device *netdev = vsi->netdev; 96 struct xsk_buff_pool *pool; 97 bool if_running; 98 int err; 99 100 pool = xsk_get_pool_from_qid(netdev, qid); 101 if (!pool) 102 return -EINVAL; 103 104 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 105 106 if (if_running) { 107 err = i40e_queue_pair_disable(vsi, qid); 108 if (err) 109 return err; 110 } 111 112 clear_bit(qid, vsi->af_xdp_zc_qps); 113 xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR); 114 115 if (if_running) { 116 err = i40e_queue_pair_enable(vsi, qid); 117 if (err) 118 return err; 119 } 120 121 return 0; 122 } 123 124 /** 125 * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from 126 * a ring/qid 127 * @vsi: Current VSI 128 * @pool: Buffer pool to enable/associate to a ring, or NULL to disable 129 * @qid: Rx ring to (dis)associate buffer pool (from)to 130 * 131 * This function enables or disables a buffer pool to a certain ring. 132 * 133 * Returns 0 on success, <0 on failure 134 **/ 135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool, 136 u16 qid) 137 { 138 return pool ? i40e_xsk_pool_enable(vsi, pool, qid) : 139 i40e_xsk_pool_disable(vsi, qid); 140 } 141 142 /** 143 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 144 * @rx_ring: Rx ring 145 * @xdp: xdp_buff used as input to the XDP program 146 * 147 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 148 **/ 149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 150 { 151 int err, result = I40E_XDP_PASS; 152 struct i40e_ring *xdp_ring; 153 struct bpf_prog *xdp_prog; 154 u32 act; 155 156 rcu_read_lock(); 157 /* NB! xdp_prog will always be !NULL, due to the fact that 158 * this path is enabled by setting an XDP program. 159 */ 160 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 161 act = bpf_prog_run_xdp(xdp_prog, xdp); 162 163 if (likely(act == XDP_REDIRECT)) { 164 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 165 if (err) 166 goto out_failure; 167 rcu_read_unlock(); 168 return I40E_XDP_REDIR; 169 } 170 171 switch (act) { 172 case XDP_PASS: 173 break; 174 case XDP_TX: 175 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 176 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 177 if (result == I40E_XDP_CONSUMED) 178 goto out_failure; 179 break; 180 default: 181 bpf_warn_invalid_xdp_action(act); 182 fallthrough; 183 case XDP_ABORTED: 184 out_failure: 185 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 186 fallthrough; /* handle aborts by dropping packet */ 187 case XDP_DROP: 188 result = I40E_XDP_CONSUMED; 189 break; 190 } 191 rcu_read_unlock(); 192 return result; 193 } 194 195 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 196 { 197 u16 ntu = rx_ring->next_to_use; 198 union i40e_rx_desc *rx_desc; 199 struct xdp_buff **bi, *xdp; 200 dma_addr_t dma; 201 bool ok = true; 202 203 rx_desc = I40E_RX_DESC(rx_ring, ntu); 204 bi = i40e_rx_bi(rx_ring, ntu); 205 do { 206 xdp = xsk_buff_alloc(rx_ring->xsk_pool); 207 if (!xdp) { 208 ok = false; 209 goto no_buffers; 210 } 211 *bi = xdp; 212 dma = xsk_buff_xdp_get_dma(xdp); 213 rx_desc->read.pkt_addr = cpu_to_le64(dma); 214 rx_desc->read.hdr_addr = 0; 215 216 rx_desc++; 217 bi++; 218 ntu++; 219 220 if (unlikely(ntu == rx_ring->count)) { 221 rx_desc = I40E_RX_DESC(rx_ring, 0); 222 bi = i40e_rx_bi(rx_ring, 0); 223 ntu = 0; 224 } 225 } while (--count); 226 227 no_buffers: 228 if (rx_ring->next_to_use != ntu) { 229 /* clear the status bits for the next_to_use descriptor */ 230 rx_desc->wb.qword1.status_error_len = 0; 231 i40e_release_rx_desc(rx_ring, ntu); 232 } 233 234 return ok; 235 } 236 237 /** 238 * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer 239 * @rx_ring: Rx ring 240 * @xdp: xdp_buff 241 * 242 * This functions allocates a new skb from a zero-copy Rx buffer. 243 * 244 * Returns the skb, or NULL on failure. 245 **/ 246 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 247 struct xdp_buff *xdp) 248 { 249 unsigned int metasize = xdp->data - xdp->data_meta; 250 unsigned int datasize = xdp->data_end - xdp->data; 251 struct sk_buff *skb; 252 253 /* allocate a skb to store the frags */ 254 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 255 xdp->data_end - xdp->data_hard_start, 256 GFP_ATOMIC | __GFP_NOWARN); 257 if (unlikely(!skb)) 258 goto out; 259 260 skb_reserve(skb, xdp->data - xdp->data_hard_start); 261 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 262 if (metasize) 263 skb_metadata_set(skb, metasize); 264 265 out: 266 xsk_buff_free(xdp); 267 return skb; 268 } 269 270 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring, 271 struct xdp_buff *xdp_buff, 272 union i40e_rx_desc *rx_desc, 273 unsigned int *rx_packets, 274 unsigned int *rx_bytes, 275 unsigned int size, 276 unsigned int xdp_res) 277 { 278 struct sk_buff *skb; 279 280 *rx_packets = 1; 281 *rx_bytes = size; 282 283 if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX) 284 return; 285 286 if (xdp_res == I40E_XDP_CONSUMED) { 287 xsk_buff_free(xdp_buff); 288 return; 289 } 290 291 if (xdp_res == I40E_XDP_PASS) { 292 /* NB! We are not checking for errors using 293 * i40e_test_staterr with 294 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 295 * SBP is *not* set in PRT_SBPVSI (default not set). 296 */ 297 skb = i40e_construct_skb_zc(rx_ring, xdp_buff); 298 if (!skb) { 299 rx_ring->rx_stats.alloc_buff_failed++; 300 *rx_packets = 0; 301 *rx_bytes = 0; 302 return; 303 } 304 305 if (eth_skb_pad(skb)) { 306 *rx_packets = 0; 307 *rx_bytes = 0; 308 return; 309 } 310 311 *rx_bytes = skb->len; 312 i40e_process_skb_fields(rx_ring, rx_desc, skb); 313 napi_gro_receive(&rx_ring->q_vector->napi, skb); 314 return; 315 } 316 317 /* Should never get here, as all valid cases have been handled already. 318 */ 319 WARN_ON_ONCE(1); 320 } 321 322 /** 323 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 324 * @rx_ring: Rx ring 325 * @budget: NAPI budget 326 * 327 * Returns amount of work completed 328 **/ 329 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 330 { 331 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 332 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 333 u16 next_to_clean = rx_ring->next_to_clean; 334 u16 count_mask = rx_ring->count - 1; 335 unsigned int xdp_res, xdp_xmit = 0; 336 bool failure = false; 337 338 while (likely(total_rx_packets < (unsigned int)budget)) { 339 union i40e_rx_desc *rx_desc; 340 unsigned int rx_packets; 341 unsigned int rx_bytes; 342 struct xdp_buff *bi; 343 unsigned int size; 344 u64 qword; 345 346 rx_desc = I40E_RX_DESC(rx_ring, next_to_clean); 347 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 348 349 /* This memory barrier is needed to keep us from reading 350 * any other fields out of the rx_desc until we have 351 * verified the descriptor has been written back. 352 */ 353 dma_rmb(); 354 355 if (i40e_rx_is_programming_status(qword)) { 356 i40e_clean_programming_status(rx_ring, 357 rx_desc->raw.qword[0], 358 qword); 359 bi = *i40e_rx_bi(rx_ring, next_to_clean); 360 xsk_buff_free(bi); 361 next_to_clean = (next_to_clean + 1) & count_mask; 362 continue; 363 } 364 365 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 366 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 367 if (!size) 368 break; 369 370 bi = *i40e_rx_bi(rx_ring, next_to_clean); 371 bi->data_end = bi->data + size; 372 xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool); 373 374 xdp_res = i40e_run_xdp_zc(rx_ring, bi); 375 i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets, 376 &rx_bytes, size, xdp_res); 377 total_rx_packets += rx_packets; 378 total_rx_bytes += rx_bytes; 379 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); 380 next_to_clean = (next_to_clean + 1) & count_mask; 381 } 382 383 rx_ring->next_to_clean = next_to_clean; 384 cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask; 385 386 if (cleaned_count >= I40E_RX_BUFFER_WRITE) 387 failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count); 388 389 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 390 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 391 392 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 393 if (failure || next_to_clean == rx_ring->next_to_use) 394 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 395 else 396 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 397 398 return (int)total_rx_packets; 399 } 400 return failure ? budget : (int)total_rx_packets; 401 } 402 403 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 404 unsigned int *total_bytes) 405 { 406 struct i40e_tx_desc *tx_desc; 407 dma_addr_t dma; 408 409 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 410 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 411 412 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 413 tx_desc->buffer_addr = cpu_to_le64(dma); 414 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP, 415 0, desc->len, 0); 416 417 *total_bytes += desc->len; 418 } 419 420 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 421 unsigned int *total_bytes) 422 { 423 u16 ntu = xdp_ring->next_to_use; 424 struct i40e_tx_desc *tx_desc; 425 dma_addr_t dma; 426 u32 i; 427 428 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 429 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr); 430 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len); 431 432 tx_desc = I40E_TX_DESC(xdp_ring, ntu++); 433 tx_desc->buffer_addr = cpu_to_le64(dma); 434 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | 435 I40E_TX_DESC_CMD_EOP, 436 0, desc[i].len, 0); 437 438 *total_bytes += desc[i].len; 439 } 440 441 xdp_ring->next_to_use = ntu; 442 } 443 444 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts, 445 unsigned int *total_bytes) 446 { 447 u32 batched, leftover, i; 448 449 batched = nb_pkts & ~(PKTS_PER_BATCH - 1); 450 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 451 for (i = 0; i < batched; i += PKTS_PER_BATCH) 452 i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 453 for (i = batched; i < batched + leftover; i++) 454 i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes); 455 } 456 457 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring) 458 { 459 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; 460 struct i40e_tx_desc *tx_desc; 461 462 tx_desc = I40E_TX_DESC(xdp_ring, ntu); 463 tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT); 464 } 465 466 /** 467 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 468 * @xdp_ring: XDP Tx ring 469 * @budget: NAPI budget 470 * 471 * Returns true if the work is finished. 472 **/ 473 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 474 { 475 struct xdp_desc *descs = xdp_ring->xsk_descs; 476 u32 nb_pkts, nb_processed = 0; 477 unsigned int total_bytes = 0; 478 479 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget); 480 if (!nb_pkts) 481 return true; 482 483 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 484 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 485 i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 486 xdp_ring->next_to_use = 0; 487 } 488 489 i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 490 &total_bytes); 491 492 /* Request an interrupt for the last frame and bump tail ptr. */ 493 i40e_set_rs_bit(xdp_ring); 494 i40e_xdp_ring_update_tail(xdp_ring); 495 496 i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes); 497 498 return nb_pkts < budget; 499 } 500 501 /** 502 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 503 * @tx_ring: XDP Tx ring 504 * @tx_bi: Tx buffer info to clean 505 **/ 506 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 507 struct i40e_tx_buffer *tx_bi) 508 { 509 xdp_return_frame(tx_bi->xdpf); 510 tx_ring->xdp_tx_active--; 511 dma_unmap_single(tx_ring->dev, 512 dma_unmap_addr(tx_bi, dma), 513 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 514 dma_unmap_len_set(tx_bi, len, 0); 515 } 516 517 /** 518 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 519 * @vsi: Current VSI 520 * @tx_ring: XDP Tx ring 521 * 522 * Returns true if cleanup/tranmission is done. 523 **/ 524 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring) 525 { 526 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 527 u32 i, completed_frames, xsk_frames = 0; 528 u32 head_idx = i40e_get_head(tx_ring); 529 struct i40e_tx_buffer *tx_bi; 530 unsigned int ntc; 531 532 if (head_idx < tx_ring->next_to_clean) 533 head_idx += tx_ring->count; 534 completed_frames = head_idx - tx_ring->next_to_clean; 535 536 if (completed_frames == 0) 537 goto out_xmit; 538 539 if (likely(!tx_ring->xdp_tx_active)) { 540 xsk_frames = completed_frames; 541 goto skip; 542 } 543 544 ntc = tx_ring->next_to_clean; 545 546 for (i = 0; i < completed_frames; i++) { 547 tx_bi = &tx_ring->tx_bi[ntc]; 548 549 if (tx_bi->xdpf) { 550 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 551 tx_bi->xdpf = NULL; 552 } else { 553 xsk_frames++; 554 } 555 556 if (++ntc >= tx_ring->count) 557 ntc = 0; 558 } 559 560 skip: 561 tx_ring->next_to_clean += completed_frames; 562 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 563 tx_ring->next_to_clean -= tx_ring->count; 564 565 if (xsk_frames) 566 xsk_tx_completed(bp, xsk_frames); 567 568 i40e_arm_wb(tx_ring, vsi, completed_frames); 569 570 out_xmit: 571 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 572 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 573 574 return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring)); 575 } 576 577 /** 578 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup 579 * @dev: the netdevice 580 * @queue_id: queue id to wake up 581 * @flags: ignored in our case since we have Rx and Tx in the same NAPI. 582 * 583 * Returns <0 for errors, 0 otherwise. 584 **/ 585 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 586 { 587 struct i40e_netdev_priv *np = netdev_priv(dev); 588 struct i40e_vsi *vsi = np->vsi; 589 struct i40e_pf *pf = vsi->back; 590 struct i40e_ring *ring; 591 592 if (test_bit(__I40E_CONFIG_BUSY, pf->state)) 593 return -EAGAIN; 594 595 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 596 return -ENETDOWN; 597 598 if (!i40e_enabled_xdp_vsi(vsi)) 599 return -ENXIO; 600 601 if (queue_id >= vsi->num_queue_pairs) 602 return -ENXIO; 603 604 if (!vsi->xdp_rings[queue_id]->xsk_pool) 605 return -ENXIO; 606 607 ring = vsi->xdp_rings[queue_id]; 608 609 /* The idea here is that if NAPI is running, mark a miss, so 610 * it will run again. If not, trigger an interrupt and 611 * schedule the NAPI from interrupt context. If NAPI would be 612 * scheduled here, the interrupt affinity would not be 613 * honored. 614 */ 615 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 616 i40e_force_wb(vsi, ring->q_vector); 617 618 return 0; 619 } 620 621 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 622 { 623 u16 count_mask = rx_ring->count - 1; 624 u16 ntc = rx_ring->next_to_clean; 625 u16 ntu = rx_ring->next_to_use; 626 627 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 628 struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc); 629 630 xsk_buff_free(rx_bi); 631 } 632 } 633 634 /** 635 * i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown 636 * @tx_ring: XDP Tx ring 637 **/ 638 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 639 { 640 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 641 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 642 struct i40e_tx_buffer *tx_bi; 643 u32 xsk_frames = 0; 644 645 while (ntc != ntu) { 646 tx_bi = &tx_ring->tx_bi[ntc]; 647 648 if (tx_bi->xdpf) 649 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 650 else 651 xsk_frames++; 652 653 tx_bi->xdpf = NULL; 654 655 ntc++; 656 if (ntc >= tx_ring->count) 657 ntc = 0; 658 } 659 660 if (xsk_frames) 661 xsk_tx_completed(bp, xsk_frames); 662 } 663 664 /** 665 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP 666 * buffer pool attached 667 * @vsi: vsi 668 * 669 * Returns true if any of the Rx rings has an AF_XDP buffer pool attached 670 **/ 671 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 672 { 673 struct net_device *netdev = vsi->netdev; 674 int i; 675 676 for (i = 0; i < vsi->num_queue_pairs; i++) { 677 if (xsk_get_pool_from_qid(netdev, i)) 678 return true; 679 } 680 681 return false; 682 } 683