xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11 
12 /**
13  * i40e_alloc_xsk_umems - Allocate an array to store per ring UMEMs
14  * @vsi: Current VSI
15  *
16  * Returns 0 on success, <0 on failure
17  **/
18 static int i40e_alloc_xsk_umems(struct i40e_vsi *vsi)
19 {
20 	if (vsi->xsk_umems)
21 		return 0;
22 
23 	vsi->num_xsk_umems_used = 0;
24 	vsi->num_xsk_umems = vsi->alloc_queue_pairs;
25 	vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
26 				 GFP_KERNEL);
27 	if (!vsi->xsk_umems) {
28 		vsi->num_xsk_umems = 0;
29 		return -ENOMEM;
30 	}
31 
32 	return 0;
33 }
34 
35 /**
36  * i40e_add_xsk_umem - Store an UMEM for a certain ring/qid
37  * @vsi: Current VSI
38  * @umem: UMEM to store
39  * @qid: Ring/qid to associate with the UMEM
40  *
41  * Returns 0 on success, <0 on failure
42  **/
43 static int i40e_add_xsk_umem(struct i40e_vsi *vsi, struct xdp_umem *umem,
44 			     u16 qid)
45 {
46 	int err;
47 
48 	err = i40e_alloc_xsk_umems(vsi);
49 	if (err)
50 		return err;
51 
52 	vsi->xsk_umems[qid] = umem;
53 	vsi->num_xsk_umems_used++;
54 
55 	return 0;
56 }
57 
58 /**
59  * i40e_remove_xsk_umem - Remove an UMEM for a certain ring/qid
60  * @vsi: Current VSI
61  * @qid: Ring/qid associated with the UMEM
62  **/
63 static void i40e_remove_xsk_umem(struct i40e_vsi *vsi, u16 qid)
64 {
65 	vsi->xsk_umems[qid] = NULL;
66 	vsi->num_xsk_umems_used--;
67 
68 	if (vsi->num_xsk_umems == 0) {
69 		kfree(vsi->xsk_umems);
70 		vsi->xsk_umems = NULL;
71 		vsi->num_xsk_umems = 0;
72 	}
73 }
74 
75 /**
76  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
77  * @vsi: Current VSI
78  * @umem: UMEM to DMA map
79  *
80  * Returns 0 on success, <0 on failure
81  **/
82 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
83 {
84 	struct i40e_pf *pf = vsi->back;
85 	struct device *dev;
86 	unsigned int i, j;
87 	dma_addr_t dma;
88 
89 	dev = &pf->pdev->dev;
90 	for (i = 0; i < umem->npgs; i++) {
91 		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
92 					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
93 		if (dma_mapping_error(dev, dma))
94 			goto out_unmap;
95 
96 		umem->pages[i].dma = dma;
97 	}
98 
99 	return 0;
100 
101 out_unmap:
102 	for (j = 0; j < i; j++) {
103 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
104 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
105 		umem->pages[i].dma = 0;
106 	}
107 
108 	return -1;
109 }
110 
111 /**
112  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
113  * @vsi: Current VSI
114  * @umem: UMEM to DMA map
115  **/
116 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
117 {
118 	struct i40e_pf *pf = vsi->back;
119 	struct device *dev;
120 	unsigned int i;
121 
122 	dev = &pf->pdev->dev;
123 
124 	for (i = 0; i < umem->npgs; i++) {
125 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
126 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
127 
128 		umem->pages[i].dma = 0;
129 	}
130 }
131 
132 /**
133  * i40e_xsk_umem_enable - Enable/associate an UMEM to a certain ring/qid
134  * @vsi: Current VSI
135  * @umem: UMEM
136  * @qid: Rx ring to associate UMEM to
137  *
138  * Returns 0 on success, <0 on failure
139  **/
140 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
141 				u16 qid)
142 {
143 	bool if_running;
144 	int err;
145 
146 	if (vsi->type != I40E_VSI_MAIN)
147 		return -EINVAL;
148 
149 	if (qid >= vsi->num_queue_pairs)
150 		return -EINVAL;
151 
152 	if (vsi->xsk_umems) {
153 		if (qid >= vsi->num_xsk_umems)
154 			return -EINVAL;
155 		if (vsi->xsk_umems[qid])
156 			return -EBUSY;
157 	}
158 
159 	err = i40e_xsk_umem_dma_map(vsi, umem);
160 	if (err)
161 		return err;
162 
163 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
164 
165 	if (if_running) {
166 		err = i40e_queue_pair_disable(vsi, qid);
167 		if (err)
168 			return err;
169 	}
170 
171 	err = i40e_add_xsk_umem(vsi, umem, qid);
172 	if (err)
173 		return err;
174 
175 	if (if_running) {
176 		err = i40e_queue_pair_enable(vsi, qid);
177 		if (err)
178 			return err;
179 	}
180 
181 	return 0;
182 }
183 
184 /**
185  * i40e_xsk_umem_disable - Diassociate an UMEM from a certain ring/qid
186  * @vsi: Current VSI
187  * @qid: Rx ring to associate UMEM to
188  *
189  * Returns 0 on success, <0 on failure
190  **/
191 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
192 {
193 	bool if_running;
194 	int err;
195 
196 	if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
197 	    !vsi->xsk_umems[qid])
198 		return -EINVAL;
199 
200 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
201 
202 	if (if_running) {
203 		err = i40e_queue_pair_disable(vsi, qid);
204 		if (err)
205 			return err;
206 	}
207 
208 	i40e_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
209 	i40e_remove_xsk_umem(vsi, qid);
210 
211 	if (if_running) {
212 		err = i40e_queue_pair_enable(vsi, qid);
213 		if (err)
214 			return err;
215 	}
216 
217 	return 0;
218 }
219 
220 /**
221  * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
222  * @vsi: Current VSI
223  * @umem: UMEM associated to the ring, if any
224  * @qid: Rx ring to associate UMEM to
225  *
226  * This function will store, if any, the UMEM associated to certain ring.
227  *
228  * Returns 0 on success, <0 on failure
229  **/
230 int i40e_xsk_umem_query(struct i40e_vsi *vsi, struct xdp_umem **umem,
231 			u16 qid)
232 {
233 	if (vsi->type != I40E_VSI_MAIN)
234 		return -EINVAL;
235 
236 	if (qid >= vsi->num_queue_pairs)
237 		return -EINVAL;
238 
239 	if (vsi->xsk_umems) {
240 		if (qid >= vsi->num_xsk_umems)
241 			return -EINVAL;
242 		*umem = vsi->xsk_umems[qid];
243 		return 0;
244 	}
245 
246 	*umem = NULL;
247 	return 0;
248 }
249 
250 /**
251  * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
252  * @vsi: Current VSI
253  * @umem: UMEM to enable/associate to a ring, or NULL to disable
254  * @qid: Rx ring to (dis)associate UMEM (from)to
255  *
256  * This function enables or disables an UMEM to a certain ring.
257  *
258  * Returns 0 on success, <0 on failure
259  **/
260 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
261 			u16 qid)
262 {
263 	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
264 		i40e_xsk_umem_disable(vsi, qid);
265 }
266 
267 /**
268  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
269  * @rx_ring: Rx ring
270  * @xdp: xdp_buff used as input to the XDP program
271  *
272  * This function enables or disables an UMEM to a certain ring.
273  *
274  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
275  **/
276 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
277 {
278 	int err, result = I40E_XDP_PASS;
279 	struct i40e_ring *xdp_ring;
280 	struct bpf_prog *xdp_prog;
281 	u32 act;
282 
283 	rcu_read_lock();
284 	/* NB! xdp_prog will always be !NULL, due to the fact that
285 	 * this path is enabled by setting an XDP program.
286 	 */
287 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
288 	act = bpf_prog_run_xdp(xdp_prog, xdp);
289 	xdp->handle += xdp->data - xdp->data_hard_start;
290 	switch (act) {
291 	case XDP_PASS:
292 		break;
293 	case XDP_TX:
294 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
295 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
296 		break;
297 	case XDP_REDIRECT:
298 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
299 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
300 		break;
301 	default:
302 		bpf_warn_invalid_xdp_action(act);
303 	case XDP_ABORTED:
304 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
305 		/* fallthrough -- handle aborts by dropping packet */
306 	case XDP_DROP:
307 		result = I40E_XDP_CONSUMED;
308 		break;
309 	}
310 	rcu_read_unlock();
311 	return result;
312 }
313 
314 /**
315  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
316  * @rx_ring: Rx ring
317  * @bi: Rx buffer to populate
318  *
319  * This function allocates an Rx buffer. The buffer can come from fill
320  * queue, or via the recycle queue (next_to_alloc).
321  *
322  * Returns true for a successful allocation, false otherwise
323  **/
324 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
325 				 struct i40e_rx_buffer *bi)
326 {
327 	struct xdp_umem *umem = rx_ring->xsk_umem;
328 	void *addr = bi->addr;
329 	u64 handle, hr;
330 
331 	if (addr) {
332 		rx_ring->rx_stats.page_reuse_count++;
333 		return true;
334 	}
335 
336 	if (!xsk_umem_peek_addr(umem, &handle)) {
337 		rx_ring->rx_stats.alloc_page_failed++;
338 		return false;
339 	}
340 
341 	hr = umem->headroom + XDP_PACKET_HEADROOM;
342 
343 	bi->dma = xdp_umem_get_dma(umem, handle);
344 	bi->dma += hr;
345 
346 	bi->addr = xdp_umem_get_data(umem, handle);
347 	bi->addr += hr;
348 
349 	bi->handle = handle + umem->headroom;
350 
351 	xsk_umem_discard_addr(umem);
352 	return true;
353 }
354 
355 /**
356  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
357  * @rx_ring: Rx ring
358  * @count: The number of buffers to allocate
359  *
360  * This function allocates a number of Rx buffers and places them on
361  * the Rx ring.
362  *
363  * Returns true for a successful allocation, false otherwise
364  **/
365 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
366 {
367 	u16 ntu = rx_ring->next_to_use;
368 	union i40e_rx_desc *rx_desc;
369 	struct i40e_rx_buffer *bi;
370 	bool ok = true;
371 
372 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
373 	bi = &rx_ring->rx_bi[ntu];
374 	do {
375 		if (!i40e_alloc_buffer_zc(rx_ring, bi)) {
376 			ok = false;
377 			goto no_buffers;
378 		}
379 
380 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
381 						 rx_ring->rx_buf_len,
382 						 DMA_BIDIRECTIONAL);
383 
384 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
385 
386 		rx_desc++;
387 		bi++;
388 		ntu++;
389 
390 		if (unlikely(ntu == rx_ring->count)) {
391 			rx_desc = I40E_RX_DESC(rx_ring, 0);
392 			bi = rx_ring->rx_bi;
393 			ntu = 0;
394 		}
395 
396 		rx_desc->wb.qword1.status_error_len = 0;
397 		count--;
398 	} while (count);
399 
400 no_buffers:
401 	if (rx_ring->next_to_use != ntu)
402 		i40e_release_rx_desc(rx_ring, ntu);
403 
404 	return ok;
405 }
406 
407 /**
408  * i40e_get_rx_buffer_zc - Return the current Rx buffer
409  * @rx_ring: Rx ring
410  * @size: The size of the rx buffer (read from descriptor)
411  *
412  * This function returns the current, received Rx buffer, and also
413  * does DMA synchronization.  the Rx ring.
414  *
415  * Returns the received Rx buffer
416  **/
417 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
418 						    const unsigned int size)
419 {
420 	struct i40e_rx_buffer *bi;
421 
422 	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
423 
424 	/* we are reusing so sync this buffer for CPU use */
425 	dma_sync_single_range_for_cpu(rx_ring->dev,
426 				      bi->dma, 0,
427 				      size,
428 				      DMA_BIDIRECTIONAL);
429 
430 	return bi;
431 }
432 
433 /**
434  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
435  * @rx_ring: Rx ring
436  * @old_bi: The Rx buffer to recycle
437  *
438  * This function recycles a finished Rx buffer, and places it on the
439  * recycle queue (next_to_alloc).
440  **/
441 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
442 				    struct i40e_rx_buffer *old_bi)
443 {
444 	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
445 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
446 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
447 	u16 nta = rx_ring->next_to_alloc;
448 
449 	/* update, and store next to alloc */
450 	nta++;
451 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
452 
453 	/* transfer page from old buffer to new buffer */
454 	new_bi->dma = old_bi->dma & mask;
455 	new_bi->dma += hr;
456 
457 	new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
458 	new_bi->addr += hr;
459 
460 	new_bi->handle = old_bi->handle & mask;
461 	new_bi->handle += rx_ring->xsk_umem->headroom;
462 
463 	old_bi->addr = NULL;
464 }
465 
466 /**
467  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
468  * @alloc: Zero-copy allocator
469  * @handle: Buffer handle
470  **/
471 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
472 {
473 	struct i40e_rx_buffer *bi;
474 	struct i40e_ring *rx_ring;
475 	u64 hr, mask;
476 	u16 nta;
477 
478 	rx_ring = container_of(alloc, struct i40e_ring, zca);
479 	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
480 	mask = rx_ring->xsk_umem->chunk_mask;
481 
482 	nta = rx_ring->next_to_alloc;
483 	bi = &rx_ring->rx_bi[nta];
484 
485 	nta++;
486 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
487 
488 	handle &= mask;
489 
490 	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
491 	bi->dma += hr;
492 
493 	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
494 	bi->addr += hr;
495 
496 	bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
497 }
498 
499 /**
500  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
501  * @rx_ring: Rx ring
502  * @bi: Rx buffer
503  * @xdp: xdp_buff
504  *
505  * This functions allocates a new skb from a zero-copy Rx buffer.
506  *
507  * Returns the skb, or NULL on failure.
508  **/
509 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
510 					     struct i40e_rx_buffer *bi,
511 					     struct xdp_buff *xdp)
512 {
513 	unsigned int metasize = xdp->data - xdp->data_meta;
514 	unsigned int datasize = xdp->data_end - xdp->data;
515 	struct sk_buff *skb;
516 
517 	/* allocate a skb to store the frags */
518 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
519 			       xdp->data_end - xdp->data_hard_start,
520 			       GFP_ATOMIC | __GFP_NOWARN);
521 	if (unlikely(!skb))
522 		return NULL;
523 
524 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
525 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
526 	if (metasize)
527 		skb_metadata_set(skb, metasize);
528 
529 	i40e_reuse_rx_buffer_zc(rx_ring, bi);
530 	return skb;
531 }
532 
533 /**
534  * i40e_inc_ntc: Advance the next_to_clean index
535  * @rx_ring: Rx ring
536  **/
537 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
538 {
539 	u32 ntc = rx_ring->next_to_clean + 1;
540 
541 	ntc = (ntc < rx_ring->count) ? ntc : 0;
542 	rx_ring->next_to_clean = ntc;
543 	prefetch(I40E_RX_DESC(rx_ring, ntc));
544 }
545 
546 /**
547  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
548  * @rx_ring: Rx ring
549  * @budget: NAPI budget
550  *
551  * Returns amount of work completed
552  **/
553 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
554 {
555 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
556 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
557 	unsigned int xdp_res, xdp_xmit = 0;
558 	bool failure = false;
559 	struct sk_buff *skb;
560 	struct xdp_buff xdp;
561 
562 	xdp.rxq = &rx_ring->xdp_rxq;
563 
564 	while (likely(total_rx_packets < (unsigned int)budget)) {
565 		struct i40e_rx_buffer *bi;
566 		union i40e_rx_desc *rx_desc;
567 		unsigned int size;
568 		u16 vlan_tag;
569 		u8 rx_ptype;
570 		u64 qword;
571 
572 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
573 			failure = failure ||
574 				  !i40e_alloc_rx_buffers_zc(rx_ring,
575 							    cleaned_count);
576 			cleaned_count = 0;
577 		}
578 
579 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
580 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
581 
582 		/* This memory barrier is needed to keep us from reading
583 		 * any other fields out of the rx_desc until we have
584 		 * verified the descriptor has been written back.
585 		 */
586 		dma_rmb();
587 
588 		bi = i40e_clean_programming_status(rx_ring, rx_desc,
589 						   qword);
590 		if (unlikely(bi)) {
591 			i40e_reuse_rx_buffer_zc(rx_ring, bi);
592 			cleaned_count++;
593 			continue;
594 		}
595 
596 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
597 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
598 		if (!size)
599 			break;
600 
601 		bi = i40e_get_rx_buffer_zc(rx_ring, size);
602 		xdp.data = bi->addr;
603 		xdp.data_meta = xdp.data;
604 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
605 		xdp.data_end = xdp.data + size;
606 		xdp.handle = bi->handle;
607 
608 		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
609 		if (xdp_res) {
610 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
611 				xdp_xmit |= xdp_res;
612 				bi->addr = NULL;
613 			} else {
614 				i40e_reuse_rx_buffer_zc(rx_ring, bi);
615 			}
616 
617 			total_rx_bytes += size;
618 			total_rx_packets++;
619 
620 			cleaned_count++;
621 			i40e_inc_ntc(rx_ring);
622 			continue;
623 		}
624 
625 		/* XDP_PASS path */
626 
627 		/* NB! We are not checking for errors using
628 		 * i40e_test_staterr with
629 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
630 		 * SBP is *not* set in PRT_SBPVSI (default not set).
631 		 */
632 		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
633 		if (!skb) {
634 			rx_ring->rx_stats.alloc_buff_failed++;
635 			break;
636 		}
637 
638 		cleaned_count++;
639 		i40e_inc_ntc(rx_ring);
640 
641 		if (eth_skb_pad(skb))
642 			continue;
643 
644 		total_rx_bytes += skb->len;
645 		total_rx_packets++;
646 
647 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
648 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
649 			   I40E_RXD_QW1_PTYPE_SHIFT;
650 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
651 
652 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
653 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
654 		i40e_receive_skb(rx_ring, skb, vlan_tag);
655 	}
656 
657 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
658 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
659 	return failure ? budget : (int)total_rx_packets;
660 }
661 
662 /**
663  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
664  * @xdp_ring: XDP Tx ring
665  * @budget: NAPI budget
666  *
667  * Returns true if the work is finished.
668  **/
669 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
670 {
671 	struct i40e_tx_desc *tx_desc = NULL;
672 	struct i40e_tx_buffer *tx_bi;
673 	bool work_done = true;
674 	dma_addr_t dma;
675 	u32 len;
676 
677 	while (budget-- > 0) {
678 		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
679 			xdp_ring->tx_stats.tx_busy++;
680 			work_done = false;
681 			break;
682 		}
683 
684 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
685 			break;
686 
687 		dma_sync_single_for_device(xdp_ring->dev, dma, len,
688 					   DMA_BIDIRECTIONAL);
689 
690 		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
691 		tx_bi->bytecount = len;
692 
693 		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
694 		tx_desc->buffer_addr = cpu_to_le64(dma);
695 		tx_desc->cmd_type_offset_bsz =
696 			build_ctob(I40E_TX_DESC_CMD_ICRC
697 				   | I40E_TX_DESC_CMD_EOP,
698 				   0, len, 0);
699 
700 		xdp_ring->next_to_use++;
701 		if (xdp_ring->next_to_use == xdp_ring->count)
702 			xdp_ring->next_to_use = 0;
703 	}
704 
705 	if (tx_desc) {
706 		/* Request an interrupt for the last frame and bump tail ptr. */
707 		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
708 						 I40E_TXD_QW1_CMD_SHIFT);
709 		i40e_xdp_ring_update_tail(xdp_ring);
710 
711 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
712 	}
713 
714 	return !!budget && work_done;
715 }
716 
717 /**
718  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
719  * @tx_ring: XDP Tx ring
720  * @tx_bi: Tx buffer info to clean
721  **/
722 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
723 				     struct i40e_tx_buffer *tx_bi)
724 {
725 	xdp_return_frame(tx_bi->xdpf);
726 	dma_unmap_single(tx_ring->dev,
727 			 dma_unmap_addr(tx_bi, dma),
728 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
729 	dma_unmap_len_set(tx_bi, len, 0);
730 }
731 
732 /**
733  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
734  * @tx_ring: XDP Tx ring
735  * @tx_bi: Tx buffer info to clean
736  *
737  * Returns true if cleanup/tranmission is done.
738  **/
739 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
740 			   struct i40e_ring *tx_ring, int napi_budget)
741 {
742 	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
743 	u32 i, completed_frames, frames_ready, xsk_frames = 0;
744 	struct xdp_umem *umem = tx_ring->xsk_umem;
745 	u32 head_idx = i40e_get_head(tx_ring);
746 	bool work_done = true, xmit_done;
747 	struct i40e_tx_buffer *tx_bi;
748 
749 	if (head_idx < tx_ring->next_to_clean)
750 		head_idx += tx_ring->count;
751 	frames_ready = head_idx - tx_ring->next_to_clean;
752 
753 	if (frames_ready == 0) {
754 		goto out_xmit;
755 	} else if (frames_ready > budget) {
756 		completed_frames = budget;
757 		work_done = false;
758 	} else {
759 		completed_frames = frames_ready;
760 	}
761 
762 	ntc = tx_ring->next_to_clean;
763 
764 	for (i = 0; i < completed_frames; i++) {
765 		tx_bi = &tx_ring->tx_bi[ntc];
766 
767 		if (tx_bi->xdpf)
768 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
769 		else
770 			xsk_frames++;
771 
772 		tx_bi->xdpf = NULL;
773 		total_bytes += tx_bi->bytecount;
774 
775 		if (++ntc >= tx_ring->count)
776 			ntc = 0;
777 	}
778 
779 	tx_ring->next_to_clean += completed_frames;
780 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
781 		tx_ring->next_to_clean -= tx_ring->count;
782 
783 	if (xsk_frames)
784 		xsk_umem_complete_tx(umem, xsk_frames);
785 
786 	i40e_arm_wb(tx_ring, vsi, budget);
787 	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
788 
789 out_xmit:
790 	xmit_done = i40e_xmit_zc(tx_ring, budget);
791 
792 	return work_done && xmit_done;
793 }
794 
795 /**
796  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
797  * @dev: the netdevice
798  * @queue_id: queue id to wake up
799  *
800  * Returns <0 for errors, 0 otherwise.
801  **/
802 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
803 {
804 	struct i40e_netdev_priv *np = netdev_priv(dev);
805 	struct i40e_vsi *vsi = np->vsi;
806 	struct i40e_ring *ring;
807 
808 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
809 		return -ENETDOWN;
810 
811 	if (!i40e_enabled_xdp_vsi(vsi))
812 		return -ENXIO;
813 
814 	if (queue_id >= vsi->num_queue_pairs)
815 		return -ENXIO;
816 
817 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
818 		return -ENXIO;
819 
820 	ring = vsi->xdp_rings[queue_id];
821 
822 	/* The idea here is that if NAPI is running, mark a miss, so
823 	 * it will run again. If not, trigger an interrupt and
824 	 * schedule the NAPI from interrupt context. If NAPI would be
825 	 * scheduled here, the interrupt affinity would not be
826 	 * honored.
827 	 */
828 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
829 		i40e_force_wb(vsi, ring->q_vector);
830 
831 	return 0;
832 }
833