1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/stringify.h> 6 #include <net/xdp_sock_drv.h> 7 #include <net/xdp.h> 8 9 #include "i40e.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring) 14 { 15 unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count; 16 17 rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL); 18 return rx_ring->rx_bi_zc ? 0 : -ENOMEM; 19 } 20 21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring) 22 { 23 memset(rx_ring->rx_bi_zc, 0, 24 sizeof(*rx_ring->rx_bi_zc) * rx_ring->count); 25 } 26 27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 28 { 29 return &rx_ring->rx_bi_zc[idx]; 30 } 31 32 /** 33 * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a 34 * certain ring/qid 35 * @vsi: Current VSI 36 * @pool: buffer pool 37 * @qid: Rx ring to associate buffer pool with 38 * 39 * Returns 0 on success, <0 on failure 40 **/ 41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi, 42 struct xsk_buff_pool *pool, 43 u16 qid) 44 { 45 struct net_device *netdev = vsi->netdev; 46 bool if_running; 47 int err; 48 49 if (vsi->type != I40E_VSI_MAIN) 50 return -EINVAL; 51 52 if (qid >= vsi->num_queue_pairs) 53 return -EINVAL; 54 55 if (qid >= netdev->real_num_rx_queues || 56 qid >= netdev->real_num_tx_queues) 57 return -EINVAL; 58 59 err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR); 60 if (err) 61 return err; 62 63 set_bit(qid, vsi->af_xdp_zc_qps); 64 65 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 66 67 if (if_running) { 68 err = i40e_queue_pair_disable(vsi, qid); 69 if (err) 70 return err; 71 72 err = i40e_queue_pair_enable(vsi, qid); 73 if (err) 74 return err; 75 76 /* Kick start the NAPI context so that receiving will start */ 77 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); 78 if (err) 79 return err; 80 } 81 82 return 0; 83 } 84 85 /** 86 * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a 87 * certain ring/qid 88 * @vsi: Current VSI 89 * @qid: Rx ring to associate buffer pool with 90 * 91 * Returns 0 on success, <0 on failure 92 **/ 93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid) 94 { 95 struct net_device *netdev = vsi->netdev; 96 struct xsk_buff_pool *pool; 97 bool if_running; 98 int err; 99 100 pool = xsk_get_pool_from_qid(netdev, qid); 101 if (!pool) 102 return -EINVAL; 103 104 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 105 106 if (if_running) { 107 err = i40e_queue_pair_disable(vsi, qid); 108 if (err) 109 return err; 110 } 111 112 clear_bit(qid, vsi->af_xdp_zc_qps); 113 xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR); 114 115 if (if_running) { 116 err = i40e_queue_pair_enable(vsi, qid); 117 if (err) 118 return err; 119 } 120 121 return 0; 122 } 123 124 /** 125 * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from 126 * a ring/qid 127 * @vsi: Current VSI 128 * @pool: Buffer pool to enable/associate to a ring, or NULL to disable 129 * @qid: Rx ring to (dis)associate buffer pool (from)to 130 * 131 * This function enables or disables a buffer pool to a certain ring. 132 * 133 * Returns 0 on success, <0 on failure 134 **/ 135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool, 136 u16 qid) 137 { 138 return pool ? i40e_xsk_pool_enable(vsi, pool, qid) : 139 i40e_xsk_pool_disable(vsi, qid); 140 } 141 142 /** 143 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 144 * @rx_ring: Rx ring 145 * @xdp: xdp_buff used as input to the XDP program 146 * 147 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 148 **/ 149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 150 { 151 int err, result = I40E_XDP_PASS; 152 struct i40e_ring *xdp_ring; 153 struct bpf_prog *xdp_prog; 154 u32 act; 155 156 rcu_read_lock(); 157 /* NB! xdp_prog will always be !NULL, due to the fact that 158 * this path is enabled by setting an XDP program. 159 */ 160 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 161 act = bpf_prog_run_xdp(xdp_prog, xdp); 162 163 switch (act) { 164 case XDP_PASS: 165 break; 166 case XDP_TX: 167 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 168 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 169 break; 170 case XDP_REDIRECT: 171 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 172 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 173 break; 174 default: 175 bpf_warn_invalid_xdp_action(act); 176 fallthrough; 177 case XDP_ABORTED: 178 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 179 fallthrough; /* handle aborts by dropping packet */ 180 case XDP_DROP: 181 result = I40E_XDP_CONSUMED; 182 break; 183 } 184 rcu_read_unlock(); 185 return result; 186 } 187 188 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 189 { 190 u16 ntu = rx_ring->next_to_use; 191 union i40e_rx_desc *rx_desc; 192 struct xdp_buff **bi, *xdp; 193 dma_addr_t dma; 194 bool ok = true; 195 196 rx_desc = I40E_RX_DESC(rx_ring, ntu); 197 bi = i40e_rx_bi(rx_ring, ntu); 198 do { 199 xdp = xsk_buff_alloc(rx_ring->xsk_pool); 200 if (!xdp) { 201 ok = false; 202 goto no_buffers; 203 } 204 *bi = xdp; 205 dma = xsk_buff_xdp_get_dma(xdp); 206 rx_desc->read.pkt_addr = cpu_to_le64(dma); 207 rx_desc->read.hdr_addr = 0; 208 209 rx_desc++; 210 bi++; 211 ntu++; 212 213 if (unlikely(ntu == rx_ring->count)) { 214 rx_desc = I40E_RX_DESC(rx_ring, 0); 215 bi = i40e_rx_bi(rx_ring, 0); 216 ntu = 0; 217 } 218 } while (--count); 219 220 no_buffers: 221 if (rx_ring->next_to_use != ntu) { 222 /* clear the status bits for the next_to_use descriptor */ 223 rx_desc->wb.qword1.status_error_len = 0; 224 i40e_release_rx_desc(rx_ring, ntu); 225 } 226 227 return ok; 228 } 229 230 /** 231 * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer 232 * @rx_ring: Rx ring 233 * @xdp: xdp_buff 234 * 235 * This functions allocates a new skb from a zero-copy Rx buffer. 236 * 237 * Returns the skb, or NULL on failure. 238 **/ 239 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 240 struct xdp_buff *xdp) 241 { 242 unsigned int metasize = xdp->data - xdp->data_meta; 243 unsigned int datasize = xdp->data_end - xdp->data; 244 struct sk_buff *skb; 245 246 /* allocate a skb to store the frags */ 247 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 248 xdp->data_end - xdp->data_hard_start, 249 GFP_ATOMIC | __GFP_NOWARN); 250 if (unlikely(!skb)) 251 goto out; 252 253 skb_reserve(skb, xdp->data - xdp->data_hard_start); 254 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 255 if (metasize) 256 skb_metadata_set(skb, metasize); 257 258 out: 259 xsk_buff_free(xdp); 260 return skb; 261 } 262 263 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring, 264 struct xdp_buff *xdp_buff, 265 union i40e_rx_desc *rx_desc, 266 unsigned int *rx_packets, 267 unsigned int *rx_bytes, 268 unsigned int size, 269 unsigned int xdp_res) 270 { 271 struct sk_buff *skb; 272 273 *rx_packets = 1; 274 *rx_bytes = size; 275 276 if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX) 277 return; 278 279 if (xdp_res == I40E_XDP_CONSUMED) { 280 xsk_buff_free(xdp_buff); 281 return; 282 } 283 284 if (xdp_res == I40E_XDP_PASS) { 285 /* NB! We are not checking for errors using 286 * i40e_test_staterr with 287 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 288 * SBP is *not* set in PRT_SBPVSI (default not set). 289 */ 290 skb = i40e_construct_skb_zc(rx_ring, xdp_buff); 291 if (!skb) { 292 rx_ring->rx_stats.alloc_buff_failed++; 293 *rx_packets = 0; 294 *rx_bytes = 0; 295 return; 296 } 297 298 if (eth_skb_pad(skb)) { 299 *rx_packets = 0; 300 *rx_bytes = 0; 301 return; 302 } 303 304 *rx_bytes = skb->len; 305 i40e_process_skb_fields(rx_ring, rx_desc, skb); 306 napi_gro_receive(&rx_ring->q_vector->napi, skb); 307 return; 308 } 309 310 /* Should never get here, as all valid cases have been handled already. 311 */ 312 WARN_ON_ONCE(1); 313 } 314 315 /** 316 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 317 * @rx_ring: Rx ring 318 * @budget: NAPI budget 319 * 320 * Returns amount of work completed 321 **/ 322 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 323 { 324 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 325 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 326 u16 next_to_clean = rx_ring->next_to_clean; 327 u16 count_mask = rx_ring->count - 1; 328 unsigned int xdp_res, xdp_xmit = 0; 329 bool failure = false; 330 331 while (likely(total_rx_packets < (unsigned int)budget)) { 332 union i40e_rx_desc *rx_desc; 333 unsigned int rx_packets; 334 unsigned int rx_bytes; 335 struct xdp_buff *bi; 336 unsigned int size; 337 u64 qword; 338 339 rx_desc = I40E_RX_DESC(rx_ring, next_to_clean); 340 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 341 342 /* This memory barrier is needed to keep us from reading 343 * any other fields out of the rx_desc until we have 344 * verified the descriptor has been written back. 345 */ 346 dma_rmb(); 347 348 if (i40e_rx_is_programming_status(qword)) { 349 i40e_clean_programming_status(rx_ring, 350 rx_desc->raw.qword[0], 351 qword); 352 bi = *i40e_rx_bi(rx_ring, next_to_clean); 353 xsk_buff_free(bi); 354 next_to_clean = (next_to_clean + 1) & count_mask; 355 continue; 356 } 357 358 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 359 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 360 if (!size) 361 break; 362 363 bi = *i40e_rx_bi(rx_ring, next_to_clean); 364 bi->data_end = bi->data + size; 365 xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool); 366 367 xdp_res = i40e_run_xdp_zc(rx_ring, bi); 368 i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets, 369 &rx_bytes, size, xdp_res); 370 total_rx_packets += rx_packets; 371 total_rx_bytes += rx_bytes; 372 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); 373 next_to_clean = (next_to_clean + 1) & count_mask; 374 } 375 376 rx_ring->next_to_clean = next_to_clean; 377 cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask; 378 379 if (cleaned_count >= I40E_RX_BUFFER_WRITE) 380 failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count); 381 382 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 383 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 384 385 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 386 if (failure || next_to_clean == rx_ring->next_to_use) 387 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 388 else 389 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 390 391 return (int)total_rx_packets; 392 } 393 return failure ? budget : (int)total_rx_packets; 394 } 395 396 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 397 unsigned int *total_bytes) 398 { 399 struct i40e_tx_desc *tx_desc; 400 dma_addr_t dma; 401 402 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 403 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 404 405 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 406 tx_desc->buffer_addr = cpu_to_le64(dma); 407 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP, 408 0, desc->len, 0); 409 410 *total_bytes += desc->len; 411 } 412 413 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 414 unsigned int *total_bytes) 415 { 416 u16 ntu = xdp_ring->next_to_use; 417 struct i40e_tx_desc *tx_desc; 418 dma_addr_t dma; 419 u32 i; 420 421 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 422 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr); 423 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len); 424 425 tx_desc = I40E_TX_DESC(xdp_ring, ntu++); 426 tx_desc->buffer_addr = cpu_to_le64(dma); 427 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | 428 I40E_TX_DESC_CMD_EOP, 429 0, desc[i].len, 0); 430 431 *total_bytes += desc[i].len; 432 } 433 434 xdp_ring->next_to_use = ntu; 435 } 436 437 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts, 438 unsigned int *total_bytes) 439 { 440 u32 batched, leftover, i; 441 442 batched = nb_pkts & ~(PKTS_PER_BATCH - 1); 443 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 444 for (i = 0; i < batched; i += PKTS_PER_BATCH) 445 i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 446 for (i = batched; i < batched + leftover; i++) 447 i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes); 448 } 449 450 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring) 451 { 452 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; 453 struct i40e_tx_desc *tx_desc; 454 455 tx_desc = I40E_TX_DESC(xdp_ring, ntu); 456 tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT); 457 } 458 459 /** 460 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 461 * @xdp_ring: XDP Tx ring 462 * @budget: NAPI budget 463 * 464 * Returns true if the work is finished. 465 **/ 466 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 467 { 468 struct xdp_desc *descs = xdp_ring->xsk_descs; 469 u32 nb_pkts, nb_processed = 0; 470 unsigned int total_bytes = 0; 471 472 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget); 473 if (!nb_pkts) 474 return false; 475 476 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 477 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 478 i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 479 xdp_ring->next_to_use = 0; 480 } 481 482 i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 483 &total_bytes); 484 485 /* Request an interrupt for the last frame and bump tail ptr. */ 486 i40e_set_rs_bit(xdp_ring); 487 i40e_xdp_ring_update_tail(xdp_ring); 488 489 i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes); 490 491 return true; 492 } 493 494 /** 495 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 496 * @tx_ring: XDP Tx ring 497 * @tx_bi: Tx buffer info to clean 498 **/ 499 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 500 struct i40e_tx_buffer *tx_bi) 501 { 502 xdp_return_frame(tx_bi->xdpf); 503 tx_ring->xdp_tx_active--; 504 dma_unmap_single(tx_ring->dev, 505 dma_unmap_addr(tx_bi, dma), 506 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 507 dma_unmap_len_set(tx_bi, len, 0); 508 } 509 510 /** 511 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 512 * @vsi: Current VSI 513 * @tx_ring: XDP Tx ring 514 * 515 * Returns true if cleanup/tranmission is done. 516 **/ 517 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring) 518 { 519 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 520 u32 i, completed_frames, xsk_frames = 0; 521 u32 head_idx = i40e_get_head(tx_ring); 522 struct i40e_tx_buffer *tx_bi; 523 unsigned int ntc; 524 525 if (head_idx < tx_ring->next_to_clean) 526 head_idx += tx_ring->count; 527 completed_frames = head_idx - tx_ring->next_to_clean; 528 529 if (completed_frames == 0) 530 goto out_xmit; 531 532 if (likely(!tx_ring->xdp_tx_active)) { 533 xsk_frames = completed_frames; 534 goto skip; 535 } 536 537 ntc = tx_ring->next_to_clean; 538 539 for (i = 0; i < completed_frames; i++) { 540 tx_bi = &tx_ring->tx_bi[ntc]; 541 542 if (tx_bi->xdpf) { 543 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 544 tx_bi->xdpf = NULL; 545 } else { 546 xsk_frames++; 547 } 548 549 if (++ntc >= tx_ring->count) 550 ntc = 0; 551 } 552 553 skip: 554 tx_ring->next_to_clean += completed_frames; 555 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 556 tx_ring->next_to_clean -= tx_ring->count; 557 558 if (xsk_frames) 559 xsk_tx_completed(bp, xsk_frames); 560 561 i40e_arm_wb(tx_ring, vsi, completed_frames); 562 563 out_xmit: 564 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 565 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 566 567 return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring)); 568 } 569 570 /** 571 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup 572 * @dev: the netdevice 573 * @queue_id: queue id to wake up 574 * @flags: ignored in our case since we have Rx and Tx in the same NAPI. 575 * 576 * Returns <0 for errors, 0 otherwise. 577 **/ 578 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 579 { 580 struct i40e_netdev_priv *np = netdev_priv(dev); 581 struct i40e_vsi *vsi = np->vsi; 582 struct i40e_pf *pf = vsi->back; 583 struct i40e_ring *ring; 584 585 if (test_bit(__I40E_CONFIG_BUSY, pf->state)) 586 return -EAGAIN; 587 588 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 589 return -ENETDOWN; 590 591 if (!i40e_enabled_xdp_vsi(vsi)) 592 return -ENXIO; 593 594 if (queue_id >= vsi->num_queue_pairs) 595 return -ENXIO; 596 597 if (!vsi->xdp_rings[queue_id]->xsk_pool) 598 return -ENXIO; 599 600 ring = vsi->xdp_rings[queue_id]; 601 602 /* The idea here is that if NAPI is running, mark a miss, so 603 * it will run again. If not, trigger an interrupt and 604 * schedule the NAPI from interrupt context. If NAPI would be 605 * scheduled here, the interrupt affinity would not be 606 * honored. 607 */ 608 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 609 i40e_force_wb(vsi, ring->q_vector); 610 611 return 0; 612 } 613 614 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 615 { 616 u16 count_mask = rx_ring->count - 1; 617 u16 ntc = rx_ring->next_to_clean; 618 u16 ntu = rx_ring->next_to_use; 619 620 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 621 struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc); 622 623 xsk_buff_free(rx_bi); 624 } 625 } 626 627 /** 628 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown 629 * @tx_ring: XDP Tx ring 630 **/ 631 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 632 { 633 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 634 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 635 struct i40e_tx_buffer *tx_bi; 636 u32 xsk_frames = 0; 637 638 while (ntc != ntu) { 639 tx_bi = &tx_ring->tx_bi[ntc]; 640 641 if (tx_bi->xdpf) 642 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 643 else 644 xsk_frames++; 645 646 tx_bi->xdpf = NULL; 647 648 ntc++; 649 if (ntc >= tx_ring->count) 650 ntc = 0; 651 } 652 653 if (xsk_frames) 654 xsk_tx_completed(bp, xsk_frames); 655 } 656 657 /** 658 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP 659 * buffer pool attached 660 * @vsi: vsi 661 * 662 * Returns true if any of the Rx rings has an AF_XDP buffer pool attached 663 **/ 664 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 665 { 666 struct net_device *netdev = vsi->netdev; 667 int i; 668 669 for (i = 0; i < vsi->num_queue_pairs; i++) { 670 if (xsk_get_pool_from_qid(netdev, i)) 671 return true; 672 } 673 674 return false; 675 } 676