xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11 
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21 	struct i40e_pf *pf = vsi->back;
22 	struct device *dev;
23 	unsigned int i, j;
24 	dma_addr_t dma;
25 
26 	dev = &pf->pdev->dev;
27 	for (i = 0; i < umem->npgs; i++) {
28 		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29 					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30 		if (dma_mapping_error(dev, dma))
31 			goto out_unmap;
32 
33 		umem->pages[i].dma = dma;
34 	}
35 
36 	return 0;
37 
38 out_unmap:
39 	for (j = 0; j < i; j++) {
40 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42 		umem->pages[i].dma = 0;
43 	}
44 
45 	return -1;
46 }
47 
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55 	struct i40e_pf *pf = vsi->back;
56 	struct device *dev;
57 	unsigned int i;
58 
59 	dev = &pf->pdev->dev;
60 
61 	for (i = 0; i < umem->npgs; i++) {
62 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64 
65 		umem->pages[i].dma = 0;
66 	}
67 }
68 
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78 				u16 qid)
79 {
80 	struct net_device *netdev = vsi->netdev;
81 	struct xdp_umem_fq_reuse *reuseq;
82 	bool if_running;
83 	int err;
84 
85 	if (vsi->type != I40E_VSI_MAIN)
86 		return -EINVAL;
87 
88 	if (qid >= vsi->num_queue_pairs)
89 		return -EINVAL;
90 
91 	if (qid >= netdev->real_num_rx_queues ||
92 	    qid >= netdev->real_num_tx_queues)
93 		return -EINVAL;
94 
95 	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96 	if (!reuseq)
97 		return -ENOMEM;
98 
99 	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100 
101 	err = i40e_xsk_umem_dma_map(vsi, umem);
102 	if (err)
103 		return err;
104 
105 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
106 
107 	if (if_running) {
108 		err = i40e_queue_pair_disable(vsi, qid);
109 		if (err)
110 			return err;
111 
112 		err = i40e_queue_pair_enable(vsi, qid);
113 		if (err)
114 			return err;
115 	}
116 
117 	return 0;
118 }
119 
120 /**
121  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
122  * @vsi: Current VSI
123  * @qid: Rx ring to associate UMEM to
124  *
125  * Returns 0 on success, <0 on failure
126  **/
127 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
128 {
129 	struct net_device *netdev = vsi->netdev;
130 	struct xdp_umem *umem;
131 	bool if_running;
132 	int err;
133 
134 	umem = xdp_get_umem_from_qid(netdev, qid);
135 	if (!umem)
136 		return -EINVAL;
137 
138 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
139 
140 	if (if_running) {
141 		err = i40e_queue_pair_disable(vsi, qid);
142 		if (err)
143 			return err;
144 	}
145 
146 	i40e_xsk_umem_dma_unmap(vsi, umem);
147 
148 	if (if_running) {
149 		err = i40e_queue_pair_enable(vsi, qid);
150 		if (err)
151 			return err;
152 	}
153 
154 	return 0;
155 }
156 
157 /**
158  * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
159  * @vsi: Current VSI
160  * @umem: UMEM associated to the ring, if any
161  * @qid: Rx ring to associate UMEM to
162  *
163  * This function will store, if any, the UMEM associated to certain ring.
164  *
165  * Returns 0 on success, <0 on failure
166  **/
167 int i40e_xsk_umem_query(struct i40e_vsi *vsi, struct xdp_umem **umem,
168 			u16 qid)
169 {
170 	struct net_device *netdev = vsi->netdev;
171 	struct xdp_umem *queried_umem;
172 
173 	if (vsi->type != I40E_VSI_MAIN)
174 		return -EINVAL;
175 
176 	queried_umem = xdp_get_umem_from_qid(netdev, qid);
177 
178 	if (!queried_umem)
179 		return -EINVAL;
180 
181 	*umem = queried_umem;
182 	return 0;
183 }
184 
185 /**
186  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
187  * @vsi: Current VSI
188  * @umem: UMEM to enable/associate to a ring, or NULL to disable
189  * @qid: Rx ring to (dis)associate UMEM (from)to
190  *
191  * This function enables or disables a UMEM to a certain ring.
192  *
193  * Returns 0 on success, <0 on failure
194  **/
195 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
196 			u16 qid)
197 {
198 	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
199 		i40e_xsk_umem_disable(vsi, qid);
200 }
201 
202 /**
203  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
204  * @rx_ring: Rx ring
205  * @xdp: xdp_buff used as input to the XDP program
206  *
207  * This function enables or disables a UMEM to a certain ring.
208  *
209  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
210  **/
211 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
212 {
213 	int err, result = I40E_XDP_PASS;
214 	struct i40e_ring *xdp_ring;
215 	struct bpf_prog *xdp_prog;
216 	u32 act;
217 
218 	rcu_read_lock();
219 	/* NB! xdp_prog will always be !NULL, due to the fact that
220 	 * this path is enabled by setting an XDP program.
221 	 */
222 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
223 	act = bpf_prog_run_xdp(xdp_prog, xdp);
224 	xdp->handle += xdp->data - xdp->data_hard_start;
225 	switch (act) {
226 	case XDP_PASS:
227 		break;
228 	case XDP_TX:
229 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
230 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
231 		break;
232 	case XDP_REDIRECT:
233 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
234 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
235 		break;
236 	default:
237 		bpf_warn_invalid_xdp_action(act);
238 	case XDP_ABORTED:
239 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
240 		/* fallthrough -- handle aborts by dropping packet */
241 	case XDP_DROP:
242 		result = I40E_XDP_CONSUMED;
243 		break;
244 	}
245 	rcu_read_unlock();
246 	return result;
247 }
248 
249 /**
250  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
251  * @rx_ring: Rx ring
252  * @bi: Rx buffer to populate
253  *
254  * This function allocates an Rx buffer. The buffer can come from fill
255  * queue, or via the recycle queue (next_to_alloc).
256  *
257  * Returns true for a successful allocation, false otherwise
258  **/
259 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
260 				 struct i40e_rx_buffer *bi)
261 {
262 	struct xdp_umem *umem = rx_ring->xsk_umem;
263 	void *addr = bi->addr;
264 	u64 handle, hr;
265 
266 	if (addr) {
267 		rx_ring->rx_stats.page_reuse_count++;
268 		return true;
269 	}
270 
271 	if (!xsk_umem_peek_addr(umem, &handle)) {
272 		rx_ring->rx_stats.alloc_page_failed++;
273 		return false;
274 	}
275 
276 	hr = umem->headroom + XDP_PACKET_HEADROOM;
277 
278 	bi->dma = xdp_umem_get_dma(umem, handle);
279 	bi->dma += hr;
280 
281 	bi->addr = xdp_umem_get_data(umem, handle);
282 	bi->addr += hr;
283 
284 	bi->handle = handle + umem->headroom;
285 
286 	xsk_umem_discard_addr(umem);
287 	return true;
288 }
289 
290 /**
291  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
292  * @rx_ring: Rx ring
293  * @bi: Rx buffer to populate
294  *
295  * This function allocates an Rx buffer. The buffer can come from fill
296  * queue, or via the reuse queue.
297  *
298  * Returns true for a successful allocation, false otherwise
299  **/
300 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
301 				      struct i40e_rx_buffer *bi)
302 {
303 	struct xdp_umem *umem = rx_ring->xsk_umem;
304 	u64 handle, hr;
305 
306 	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
307 		rx_ring->rx_stats.alloc_page_failed++;
308 		return false;
309 	}
310 
311 	handle &= rx_ring->xsk_umem->chunk_mask;
312 
313 	hr = umem->headroom + XDP_PACKET_HEADROOM;
314 
315 	bi->dma = xdp_umem_get_dma(umem, handle);
316 	bi->dma += hr;
317 
318 	bi->addr = xdp_umem_get_data(umem, handle);
319 	bi->addr += hr;
320 
321 	bi->handle = handle + umem->headroom;
322 
323 	xsk_umem_discard_addr_rq(umem);
324 	return true;
325 }
326 
327 static __always_inline bool
328 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
329 			   bool alloc(struct i40e_ring *rx_ring,
330 				      struct i40e_rx_buffer *bi))
331 {
332 	u16 ntu = rx_ring->next_to_use;
333 	union i40e_rx_desc *rx_desc;
334 	struct i40e_rx_buffer *bi;
335 	bool ok = true;
336 
337 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
338 	bi = &rx_ring->rx_bi[ntu];
339 	do {
340 		if (!alloc(rx_ring, bi)) {
341 			ok = false;
342 			goto no_buffers;
343 		}
344 
345 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
346 						 rx_ring->rx_buf_len,
347 						 DMA_BIDIRECTIONAL);
348 
349 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
350 
351 		rx_desc++;
352 		bi++;
353 		ntu++;
354 
355 		if (unlikely(ntu == rx_ring->count)) {
356 			rx_desc = I40E_RX_DESC(rx_ring, 0);
357 			bi = rx_ring->rx_bi;
358 			ntu = 0;
359 		}
360 
361 		rx_desc->wb.qword1.status_error_len = 0;
362 		count--;
363 	} while (count);
364 
365 no_buffers:
366 	if (rx_ring->next_to_use != ntu)
367 		i40e_release_rx_desc(rx_ring, ntu);
368 
369 	return ok;
370 }
371 
372 /**
373  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
374  * @rx_ring: Rx ring
375  * @count: The number of buffers to allocate
376  *
377  * This function allocates a number of Rx buffers from the reuse queue
378  * or fill ring and places them on the Rx ring.
379  *
380  * Returns true for a successful allocation, false otherwise
381  **/
382 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
383 {
384 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
385 					  i40e_alloc_buffer_slow_zc);
386 }
387 
388 /**
389  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
390  * @rx_ring: Rx ring
391  * @count: The number of buffers to allocate
392  *
393  * This function allocates a number of Rx buffers from the fill ring
394  * or the internal recycle mechanism and places them on the Rx ring.
395  *
396  * Returns true for a successful allocation, false otherwise
397  **/
398 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
399 {
400 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
401 					  i40e_alloc_buffer_zc);
402 }
403 
404 /**
405  * i40e_get_rx_buffer_zc - Return the current Rx buffer
406  * @rx_ring: Rx ring
407  * @size: The size of the rx buffer (read from descriptor)
408  *
409  * This function returns the current, received Rx buffer, and also
410  * does DMA synchronization.  the Rx ring.
411  *
412  * Returns the received Rx buffer
413  **/
414 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
415 						    const unsigned int size)
416 {
417 	struct i40e_rx_buffer *bi;
418 
419 	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
420 
421 	/* we are reusing so sync this buffer for CPU use */
422 	dma_sync_single_range_for_cpu(rx_ring->dev,
423 				      bi->dma, 0,
424 				      size,
425 				      DMA_BIDIRECTIONAL);
426 
427 	return bi;
428 }
429 
430 /**
431  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
432  * @rx_ring: Rx ring
433  * @old_bi: The Rx buffer to recycle
434  *
435  * This function recycles a finished Rx buffer, and places it on the
436  * recycle queue (next_to_alloc).
437  **/
438 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
439 				    struct i40e_rx_buffer *old_bi)
440 {
441 	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
442 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
443 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
444 	u16 nta = rx_ring->next_to_alloc;
445 
446 	/* update, and store next to alloc */
447 	nta++;
448 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
449 
450 	/* transfer page from old buffer to new buffer */
451 	new_bi->dma = old_bi->dma & mask;
452 	new_bi->dma += hr;
453 
454 	new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
455 	new_bi->addr += hr;
456 
457 	new_bi->handle = old_bi->handle & mask;
458 	new_bi->handle += rx_ring->xsk_umem->headroom;
459 
460 	old_bi->addr = NULL;
461 }
462 
463 /**
464  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
465  * @alloc: Zero-copy allocator
466  * @handle: Buffer handle
467  **/
468 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
469 {
470 	struct i40e_rx_buffer *bi;
471 	struct i40e_ring *rx_ring;
472 	u64 hr, mask;
473 	u16 nta;
474 
475 	rx_ring = container_of(alloc, struct i40e_ring, zca);
476 	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
477 	mask = rx_ring->xsk_umem->chunk_mask;
478 
479 	nta = rx_ring->next_to_alloc;
480 	bi = &rx_ring->rx_bi[nta];
481 
482 	nta++;
483 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
484 
485 	handle &= mask;
486 
487 	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
488 	bi->dma += hr;
489 
490 	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
491 	bi->addr += hr;
492 
493 	bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
494 }
495 
496 /**
497  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
498  * @rx_ring: Rx ring
499  * @bi: Rx buffer
500  * @xdp: xdp_buff
501  *
502  * This functions allocates a new skb from a zero-copy Rx buffer.
503  *
504  * Returns the skb, or NULL on failure.
505  **/
506 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
507 					     struct i40e_rx_buffer *bi,
508 					     struct xdp_buff *xdp)
509 {
510 	unsigned int metasize = xdp->data - xdp->data_meta;
511 	unsigned int datasize = xdp->data_end - xdp->data;
512 	struct sk_buff *skb;
513 
514 	/* allocate a skb to store the frags */
515 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
516 			       xdp->data_end - xdp->data_hard_start,
517 			       GFP_ATOMIC | __GFP_NOWARN);
518 	if (unlikely(!skb))
519 		return NULL;
520 
521 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
522 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
523 	if (metasize)
524 		skb_metadata_set(skb, metasize);
525 
526 	i40e_reuse_rx_buffer_zc(rx_ring, bi);
527 	return skb;
528 }
529 
530 /**
531  * i40e_inc_ntc: Advance the next_to_clean index
532  * @rx_ring: Rx ring
533  **/
534 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
535 {
536 	u32 ntc = rx_ring->next_to_clean + 1;
537 
538 	ntc = (ntc < rx_ring->count) ? ntc : 0;
539 	rx_ring->next_to_clean = ntc;
540 	prefetch(I40E_RX_DESC(rx_ring, ntc));
541 }
542 
543 /**
544  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
545  * @rx_ring: Rx ring
546  * @budget: NAPI budget
547  *
548  * Returns amount of work completed
549  **/
550 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
551 {
552 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
553 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
554 	unsigned int xdp_res, xdp_xmit = 0;
555 	bool failure = false;
556 	struct sk_buff *skb;
557 	struct xdp_buff xdp;
558 
559 	xdp.rxq = &rx_ring->xdp_rxq;
560 
561 	while (likely(total_rx_packets < (unsigned int)budget)) {
562 		struct i40e_rx_buffer *bi;
563 		union i40e_rx_desc *rx_desc;
564 		unsigned int size;
565 		u64 qword;
566 
567 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
568 			failure = failure ||
569 				  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
570 								 cleaned_count);
571 			cleaned_count = 0;
572 		}
573 
574 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
575 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
576 
577 		/* This memory barrier is needed to keep us from reading
578 		 * any other fields out of the rx_desc until we have
579 		 * verified the descriptor has been written back.
580 		 */
581 		dma_rmb();
582 
583 		bi = i40e_clean_programming_status(rx_ring, rx_desc,
584 						   qword);
585 		if (unlikely(bi)) {
586 			i40e_reuse_rx_buffer_zc(rx_ring, bi);
587 			cleaned_count++;
588 			continue;
589 		}
590 
591 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
592 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
593 		if (!size)
594 			break;
595 
596 		bi = i40e_get_rx_buffer_zc(rx_ring, size);
597 		xdp.data = bi->addr;
598 		xdp.data_meta = xdp.data;
599 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
600 		xdp.data_end = xdp.data + size;
601 		xdp.handle = bi->handle;
602 
603 		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
604 		if (xdp_res) {
605 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
606 				xdp_xmit |= xdp_res;
607 				bi->addr = NULL;
608 			} else {
609 				i40e_reuse_rx_buffer_zc(rx_ring, bi);
610 			}
611 
612 			total_rx_bytes += size;
613 			total_rx_packets++;
614 
615 			cleaned_count++;
616 			i40e_inc_ntc(rx_ring);
617 			continue;
618 		}
619 
620 		/* XDP_PASS path */
621 
622 		/* NB! We are not checking for errors using
623 		 * i40e_test_staterr with
624 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
625 		 * SBP is *not* set in PRT_SBPVSI (default not set).
626 		 */
627 		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
628 		if (!skb) {
629 			rx_ring->rx_stats.alloc_buff_failed++;
630 			break;
631 		}
632 
633 		cleaned_count++;
634 		i40e_inc_ntc(rx_ring);
635 
636 		if (eth_skb_pad(skb))
637 			continue;
638 
639 		total_rx_bytes += skb->len;
640 		total_rx_packets++;
641 
642 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
643 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
644 	}
645 
646 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
647 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
648 	return failure ? budget : (int)total_rx_packets;
649 }
650 
651 /**
652  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
653  * @xdp_ring: XDP Tx ring
654  * @budget: NAPI budget
655  *
656  * Returns true if the work is finished.
657  **/
658 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
659 {
660 	struct i40e_tx_desc *tx_desc = NULL;
661 	struct i40e_tx_buffer *tx_bi;
662 	bool work_done = true;
663 	dma_addr_t dma;
664 	u32 len;
665 
666 	while (budget-- > 0) {
667 		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
668 			xdp_ring->tx_stats.tx_busy++;
669 			work_done = false;
670 			break;
671 		}
672 
673 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
674 			break;
675 
676 		dma_sync_single_for_device(xdp_ring->dev, dma, len,
677 					   DMA_BIDIRECTIONAL);
678 
679 		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
680 		tx_bi->bytecount = len;
681 
682 		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
683 		tx_desc->buffer_addr = cpu_to_le64(dma);
684 		tx_desc->cmd_type_offset_bsz =
685 			build_ctob(I40E_TX_DESC_CMD_ICRC
686 				   | I40E_TX_DESC_CMD_EOP,
687 				   0, len, 0);
688 
689 		xdp_ring->next_to_use++;
690 		if (xdp_ring->next_to_use == xdp_ring->count)
691 			xdp_ring->next_to_use = 0;
692 	}
693 
694 	if (tx_desc) {
695 		/* Request an interrupt for the last frame and bump tail ptr. */
696 		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
697 						 I40E_TXD_QW1_CMD_SHIFT);
698 		i40e_xdp_ring_update_tail(xdp_ring);
699 
700 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
701 	}
702 
703 	return !!budget && work_done;
704 }
705 
706 /**
707  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
708  * @tx_ring: XDP Tx ring
709  * @tx_bi: Tx buffer info to clean
710  **/
711 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
712 				     struct i40e_tx_buffer *tx_bi)
713 {
714 	xdp_return_frame(tx_bi->xdpf);
715 	dma_unmap_single(tx_ring->dev,
716 			 dma_unmap_addr(tx_bi, dma),
717 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
718 	dma_unmap_len_set(tx_bi, len, 0);
719 }
720 
721 /**
722  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
723  * @tx_ring: XDP Tx ring
724  * @tx_bi: Tx buffer info to clean
725  *
726  * Returns true if cleanup/tranmission is done.
727  **/
728 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
729 			   struct i40e_ring *tx_ring, int napi_budget)
730 {
731 	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
732 	u32 i, completed_frames, frames_ready, xsk_frames = 0;
733 	struct xdp_umem *umem = tx_ring->xsk_umem;
734 	u32 head_idx = i40e_get_head(tx_ring);
735 	bool work_done = true, xmit_done;
736 	struct i40e_tx_buffer *tx_bi;
737 
738 	if (head_idx < tx_ring->next_to_clean)
739 		head_idx += tx_ring->count;
740 	frames_ready = head_idx - tx_ring->next_to_clean;
741 
742 	if (frames_ready == 0) {
743 		goto out_xmit;
744 	} else if (frames_ready > budget) {
745 		completed_frames = budget;
746 		work_done = false;
747 	} else {
748 		completed_frames = frames_ready;
749 	}
750 
751 	ntc = tx_ring->next_to_clean;
752 
753 	for (i = 0; i < completed_frames; i++) {
754 		tx_bi = &tx_ring->tx_bi[ntc];
755 
756 		if (tx_bi->xdpf)
757 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
758 		else
759 			xsk_frames++;
760 
761 		tx_bi->xdpf = NULL;
762 		total_bytes += tx_bi->bytecount;
763 
764 		if (++ntc >= tx_ring->count)
765 			ntc = 0;
766 	}
767 
768 	tx_ring->next_to_clean += completed_frames;
769 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
770 		tx_ring->next_to_clean -= tx_ring->count;
771 
772 	if (xsk_frames)
773 		xsk_umem_complete_tx(umem, xsk_frames);
774 
775 	i40e_arm_wb(tx_ring, vsi, budget);
776 	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
777 
778 out_xmit:
779 	xmit_done = i40e_xmit_zc(tx_ring, budget);
780 
781 	return work_done && xmit_done;
782 }
783 
784 /**
785  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
786  * @dev: the netdevice
787  * @queue_id: queue id to wake up
788  *
789  * Returns <0 for errors, 0 otherwise.
790  **/
791 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
792 {
793 	struct i40e_netdev_priv *np = netdev_priv(dev);
794 	struct i40e_vsi *vsi = np->vsi;
795 	struct i40e_ring *ring;
796 
797 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
798 		return -ENETDOWN;
799 
800 	if (!i40e_enabled_xdp_vsi(vsi))
801 		return -ENXIO;
802 
803 	if (queue_id >= vsi->num_queue_pairs)
804 		return -ENXIO;
805 
806 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
807 		return -ENXIO;
808 
809 	ring = vsi->xdp_rings[queue_id];
810 
811 	/* The idea here is that if NAPI is running, mark a miss, so
812 	 * it will run again. If not, trigger an interrupt and
813 	 * schedule the NAPI from interrupt context. If NAPI would be
814 	 * scheduled here, the interrupt affinity would not be
815 	 * honored.
816 	 */
817 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
818 		i40e_force_wb(vsi, ring->q_vector);
819 
820 	return 0;
821 }
822 
823 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
824 {
825 	u16 i;
826 
827 	for (i = 0; i < rx_ring->count; i++) {
828 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
829 
830 		if (!rx_bi->addr)
831 			continue;
832 
833 		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
834 		rx_bi->addr = NULL;
835 	}
836 }
837 
838 /**
839  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
840  * @xdp_ring: XDP Tx ring
841  **/
842 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
843 {
844 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
845 	struct xdp_umem *umem = tx_ring->xsk_umem;
846 	struct i40e_tx_buffer *tx_bi;
847 	u32 xsk_frames = 0;
848 
849 	while (ntc != ntu) {
850 		tx_bi = &tx_ring->tx_bi[ntc];
851 
852 		if (tx_bi->xdpf)
853 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
854 		else
855 			xsk_frames++;
856 
857 		tx_bi->xdpf = NULL;
858 
859 		ntc++;
860 		if (ntc >= tx_ring->count)
861 			ntc = 0;
862 	}
863 
864 	if (xsk_frames)
865 		xsk_umem_complete_tx(umem, xsk_frames);
866 }
867 
868 /**
869  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
870  * @vsi: vsi
871  *
872  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
873  **/
874 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
875 {
876 	struct net_device *netdev = vsi->netdev;
877 	int i;
878 
879 	for (i = 0; i < vsi->num_queue_pairs; i++) {
880 		if (xdp_get_umem_from_qid(netdev, i))
881 			return true;
882 	}
883 
884 	return false;
885 }
886