1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/stringify.h>
6 #include <net/xdp_sock_drv.h>
7 #include <net/xdp.h>
8 
9 #include "i40e.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring)
14 {
15 	unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count;
16 
17 	rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL);
18 	return rx_ring->rx_bi_zc ? 0 : -ENOMEM;
19 }
20 
21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring)
22 {
23 	memset(rx_ring->rx_bi_zc, 0,
24 	       sizeof(*rx_ring->rx_bi_zc) * rx_ring->count);
25 }
26 
27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
28 {
29 	return &rx_ring->rx_bi_zc[idx];
30 }
31 
32 /**
33  * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a
34  * certain ring/qid
35  * @vsi: Current VSI
36  * @pool: buffer pool
37  * @qid: Rx ring to associate buffer pool with
38  *
39  * Returns 0 on success, <0 on failure
40  **/
41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi,
42 				struct xsk_buff_pool *pool,
43 				u16 qid)
44 {
45 	struct net_device *netdev = vsi->netdev;
46 	bool if_running;
47 	int err;
48 
49 	if (vsi->type != I40E_VSI_MAIN)
50 		return -EINVAL;
51 
52 	if (qid >= vsi->num_queue_pairs)
53 		return -EINVAL;
54 
55 	if (qid >= netdev->real_num_rx_queues ||
56 	    qid >= netdev->real_num_tx_queues)
57 		return -EINVAL;
58 
59 	err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR);
60 	if (err)
61 		return err;
62 
63 	set_bit(qid, vsi->af_xdp_zc_qps);
64 
65 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
66 
67 	if (if_running) {
68 		err = i40e_queue_pair_disable(vsi, qid);
69 		if (err)
70 			return err;
71 
72 		err = i40e_queue_pair_enable(vsi, qid);
73 		if (err)
74 			return err;
75 
76 		/* Kick start the NAPI context so that receiving will start */
77 		err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
78 		if (err)
79 			return err;
80 	}
81 
82 	return 0;
83 }
84 
85 /**
86  * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a
87  * certain ring/qid
88  * @vsi: Current VSI
89  * @qid: Rx ring to associate buffer pool with
90  *
91  * Returns 0 on success, <0 on failure
92  **/
93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid)
94 {
95 	struct net_device *netdev = vsi->netdev;
96 	struct xsk_buff_pool *pool;
97 	bool if_running;
98 	int err;
99 
100 	pool = xsk_get_pool_from_qid(netdev, qid);
101 	if (!pool)
102 		return -EINVAL;
103 
104 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
105 
106 	if (if_running) {
107 		err = i40e_queue_pair_disable(vsi, qid);
108 		if (err)
109 			return err;
110 	}
111 
112 	clear_bit(qid, vsi->af_xdp_zc_qps);
113 	xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR);
114 
115 	if (if_running) {
116 		err = i40e_queue_pair_enable(vsi, qid);
117 		if (err)
118 			return err;
119 	}
120 
121 	return 0;
122 }
123 
124 /**
125  * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from
126  * a ring/qid
127  * @vsi: Current VSI
128  * @pool: Buffer pool to enable/associate to a ring, or NULL to disable
129  * @qid: Rx ring to (dis)associate buffer pool (from)to
130  *
131  * This function enables or disables a buffer pool to a certain ring.
132  *
133  * Returns 0 on success, <0 on failure
134  **/
135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool,
136 			u16 qid)
137 {
138 	return pool ? i40e_xsk_pool_enable(vsi, pool, qid) :
139 		i40e_xsk_pool_disable(vsi, qid);
140 }
141 
142 /**
143  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
144  * @rx_ring: Rx ring
145  * @xdp: xdp_buff used as input to the XDP program
146  *
147  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
148  **/
149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
150 {
151 	int err, result = I40E_XDP_PASS;
152 	struct i40e_ring *xdp_ring;
153 	struct bpf_prog *xdp_prog;
154 	u32 act;
155 
156 	/* NB! xdp_prog will always be !NULL, due to the fact that
157 	 * this path is enabled by setting an XDP program.
158 	 */
159 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
160 	act = bpf_prog_run_xdp(xdp_prog, xdp);
161 
162 	if (likely(act == XDP_REDIRECT)) {
163 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
164 		if (err)
165 			goto out_failure;
166 		return I40E_XDP_REDIR;
167 	}
168 
169 	switch (act) {
170 	case XDP_PASS:
171 		break;
172 	case XDP_TX:
173 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
174 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
175 		if (result == I40E_XDP_CONSUMED)
176 			goto out_failure;
177 		break;
178 	default:
179 		bpf_warn_invalid_xdp_action(act);
180 		fallthrough;
181 	case XDP_ABORTED:
182 out_failure:
183 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
184 		fallthrough; /* handle aborts by dropping packet */
185 	case XDP_DROP:
186 		result = I40E_XDP_CONSUMED;
187 		break;
188 	}
189 	return result;
190 }
191 
192 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
193 {
194 	u16 ntu = rx_ring->next_to_use;
195 	union i40e_rx_desc *rx_desc;
196 	struct xdp_buff **xdp;
197 	u32 nb_buffs, i;
198 	dma_addr_t dma;
199 
200 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
201 	xdp = i40e_rx_bi(rx_ring, ntu);
202 
203 	nb_buffs = min_t(u16, count, rx_ring->count - ntu);
204 	nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs);
205 	if (!nb_buffs)
206 		return false;
207 
208 	i = nb_buffs;
209 	while (i--) {
210 		dma = xsk_buff_xdp_get_dma(*xdp);
211 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
212 		rx_desc->read.hdr_addr = 0;
213 
214 		rx_desc++;
215 		xdp++;
216 	}
217 
218 	ntu += nb_buffs;
219 	if (ntu == rx_ring->count) {
220 		rx_desc = I40E_RX_DESC(rx_ring, 0);
221 		xdp = i40e_rx_bi(rx_ring, 0);
222 		ntu = 0;
223 	}
224 
225 	/* clear the status bits for the next_to_use descriptor */
226 	rx_desc->wb.qword1.status_error_len = 0;
227 	i40e_release_rx_desc(rx_ring, ntu);
228 
229 	return count == nb_buffs;
230 }
231 
232 /**
233  * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer
234  * @rx_ring: Rx ring
235  * @xdp: xdp_buff
236  *
237  * This functions allocates a new skb from a zero-copy Rx buffer.
238  *
239  * Returns the skb, or NULL on failure.
240  **/
241 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
242 					     struct xdp_buff *xdp)
243 {
244 	unsigned int metasize = xdp->data - xdp->data_meta;
245 	unsigned int datasize = xdp->data_end - xdp->data;
246 	struct sk_buff *skb;
247 
248 	/* allocate a skb to store the frags */
249 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
250 			       xdp->data_end - xdp->data_hard_start,
251 			       GFP_ATOMIC | __GFP_NOWARN);
252 	if (unlikely(!skb))
253 		goto out;
254 
255 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
256 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
257 	if (metasize)
258 		skb_metadata_set(skb, metasize);
259 
260 out:
261 	xsk_buff_free(xdp);
262 	return skb;
263 }
264 
265 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring,
266 				      struct xdp_buff *xdp_buff,
267 				      union i40e_rx_desc *rx_desc,
268 				      unsigned int *rx_packets,
269 				      unsigned int *rx_bytes,
270 				      unsigned int size,
271 				      unsigned int xdp_res)
272 {
273 	struct sk_buff *skb;
274 
275 	*rx_packets = 1;
276 	*rx_bytes = size;
277 
278 	if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX)
279 		return;
280 
281 	if (xdp_res == I40E_XDP_CONSUMED) {
282 		xsk_buff_free(xdp_buff);
283 		return;
284 	}
285 
286 	if (xdp_res == I40E_XDP_PASS) {
287 		/* NB! We are not checking for errors using
288 		 * i40e_test_staterr with
289 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
290 		 * SBP is *not* set in PRT_SBPVSI (default not set).
291 		 */
292 		skb = i40e_construct_skb_zc(rx_ring, xdp_buff);
293 		if (!skb) {
294 			rx_ring->rx_stats.alloc_buff_failed++;
295 			*rx_packets = 0;
296 			*rx_bytes = 0;
297 			return;
298 		}
299 
300 		if (eth_skb_pad(skb)) {
301 			*rx_packets = 0;
302 			*rx_bytes = 0;
303 			return;
304 		}
305 
306 		*rx_bytes = skb->len;
307 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
308 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
309 		return;
310 	}
311 
312 	/* Should never get here, as all valid cases have been handled already.
313 	 */
314 	WARN_ON_ONCE(1);
315 }
316 
317 /**
318  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
319  * @rx_ring: Rx ring
320  * @budget: NAPI budget
321  *
322  * Returns amount of work completed
323  **/
324 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
325 {
326 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
327 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
328 	u16 next_to_clean = rx_ring->next_to_clean;
329 	u16 count_mask = rx_ring->count - 1;
330 	unsigned int xdp_res, xdp_xmit = 0;
331 	bool failure = false;
332 
333 	while (likely(total_rx_packets < (unsigned int)budget)) {
334 		union i40e_rx_desc *rx_desc;
335 		unsigned int rx_packets;
336 		unsigned int rx_bytes;
337 		struct xdp_buff *bi;
338 		unsigned int size;
339 		u64 qword;
340 
341 		rx_desc = I40E_RX_DESC(rx_ring, next_to_clean);
342 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
343 
344 		/* This memory barrier is needed to keep us from reading
345 		 * any other fields out of the rx_desc until we have
346 		 * verified the descriptor has been written back.
347 		 */
348 		dma_rmb();
349 
350 		if (i40e_rx_is_programming_status(qword)) {
351 			i40e_clean_programming_status(rx_ring,
352 						      rx_desc->raw.qword[0],
353 						      qword);
354 			bi = *i40e_rx_bi(rx_ring, next_to_clean);
355 			xsk_buff_free(bi);
356 			next_to_clean = (next_to_clean + 1) & count_mask;
357 			continue;
358 		}
359 
360 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
361 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
362 		if (!size)
363 			break;
364 
365 		bi = *i40e_rx_bi(rx_ring, next_to_clean);
366 		xsk_buff_set_size(bi, size);
367 		xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool);
368 
369 		xdp_res = i40e_run_xdp_zc(rx_ring, bi);
370 		i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets,
371 					  &rx_bytes, size, xdp_res);
372 		total_rx_packets += rx_packets;
373 		total_rx_bytes += rx_bytes;
374 		xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
375 		next_to_clean = (next_to_clean + 1) & count_mask;
376 	}
377 
378 	rx_ring->next_to_clean = next_to_clean;
379 	cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask;
380 
381 	if (cleaned_count >= I40E_RX_BUFFER_WRITE)
382 		failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count);
383 
384 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
385 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
386 
387 	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
388 		if (failure || next_to_clean == rx_ring->next_to_use)
389 			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
390 		else
391 			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
392 
393 		return (int)total_rx_packets;
394 	}
395 	return failure ? budget : (int)total_rx_packets;
396 }
397 
398 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
399 			  unsigned int *total_bytes)
400 {
401 	struct i40e_tx_desc *tx_desc;
402 	dma_addr_t dma;
403 
404 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
405 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
406 
407 	tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
408 	tx_desc->buffer_addr = cpu_to_le64(dma);
409 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP,
410 						  0, desc->len, 0);
411 
412 	*total_bytes += desc->len;
413 }
414 
415 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
416 				unsigned int *total_bytes)
417 {
418 	u16 ntu = xdp_ring->next_to_use;
419 	struct i40e_tx_desc *tx_desc;
420 	dma_addr_t dma;
421 	u32 i;
422 
423 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
424 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr);
425 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len);
426 
427 		tx_desc = I40E_TX_DESC(xdp_ring, ntu++);
428 		tx_desc->buffer_addr = cpu_to_le64(dma);
429 		tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC |
430 							  I40E_TX_DESC_CMD_EOP,
431 							  0, desc[i].len, 0);
432 
433 		*total_bytes += desc[i].len;
434 	}
435 
436 	xdp_ring->next_to_use = ntu;
437 }
438 
439 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts,
440 				 unsigned int *total_bytes)
441 {
442 	u32 batched, leftover, i;
443 
444 	batched = nb_pkts & ~(PKTS_PER_BATCH - 1);
445 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
446 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
447 		i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
448 	for (i = batched; i < batched + leftover; i++)
449 		i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes);
450 }
451 
452 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring)
453 {
454 	u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
455 	struct i40e_tx_desc *tx_desc;
456 
457 	tx_desc = I40E_TX_DESC(xdp_ring, ntu);
458 	tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT);
459 }
460 
461 /**
462  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
463  * @xdp_ring: XDP Tx ring
464  * @budget: NAPI budget
465  *
466  * Returns true if the work is finished.
467  **/
468 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
469 {
470 	struct xdp_desc *descs = xdp_ring->xsk_descs;
471 	u32 nb_pkts, nb_processed = 0;
472 	unsigned int total_bytes = 0;
473 
474 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget);
475 	if (!nb_pkts)
476 		return true;
477 
478 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
479 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
480 		i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
481 		xdp_ring->next_to_use = 0;
482 	}
483 
484 	i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
485 			     &total_bytes);
486 
487 	/* Request an interrupt for the last frame and bump tail ptr. */
488 	i40e_set_rs_bit(xdp_ring);
489 	i40e_xdp_ring_update_tail(xdp_ring);
490 
491 	i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes);
492 
493 	return nb_pkts < budget;
494 }
495 
496 /**
497  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
498  * @tx_ring: XDP Tx ring
499  * @tx_bi: Tx buffer info to clean
500  **/
501 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
502 				     struct i40e_tx_buffer *tx_bi)
503 {
504 	xdp_return_frame(tx_bi->xdpf);
505 	tx_ring->xdp_tx_active--;
506 	dma_unmap_single(tx_ring->dev,
507 			 dma_unmap_addr(tx_bi, dma),
508 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
509 	dma_unmap_len_set(tx_bi, len, 0);
510 }
511 
512 /**
513  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
514  * @vsi: Current VSI
515  * @tx_ring: XDP Tx ring
516  *
517  * Returns true if cleanup/tranmission is done.
518  **/
519 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring)
520 {
521 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
522 	u32 i, completed_frames, xsk_frames = 0;
523 	u32 head_idx = i40e_get_head(tx_ring);
524 	struct i40e_tx_buffer *tx_bi;
525 	unsigned int ntc;
526 
527 	if (head_idx < tx_ring->next_to_clean)
528 		head_idx += tx_ring->count;
529 	completed_frames = head_idx - tx_ring->next_to_clean;
530 
531 	if (completed_frames == 0)
532 		goto out_xmit;
533 
534 	if (likely(!tx_ring->xdp_tx_active)) {
535 		xsk_frames = completed_frames;
536 		goto skip;
537 	}
538 
539 	ntc = tx_ring->next_to_clean;
540 
541 	for (i = 0; i < completed_frames; i++) {
542 		tx_bi = &tx_ring->tx_bi[ntc];
543 
544 		if (tx_bi->xdpf) {
545 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
546 			tx_bi->xdpf = NULL;
547 		} else {
548 			xsk_frames++;
549 		}
550 
551 		if (++ntc >= tx_ring->count)
552 			ntc = 0;
553 	}
554 
555 skip:
556 	tx_ring->next_to_clean += completed_frames;
557 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
558 		tx_ring->next_to_clean -= tx_ring->count;
559 
560 	if (xsk_frames)
561 		xsk_tx_completed(bp, xsk_frames);
562 
563 	i40e_arm_wb(tx_ring, vsi, completed_frames);
564 
565 out_xmit:
566 	if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
567 		xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
568 
569 	return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring));
570 }
571 
572 /**
573  * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
574  * @dev: the netdevice
575  * @queue_id: queue id to wake up
576  * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
577  *
578  * Returns <0 for errors, 0 otherwise.
579  **/
580 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
581 {
582 	struct i40e_netdev_priv *np = netdev_priv(dev);
583 	struct i40e_vsi *vsi = np->vsi;
584 	struct i40e_pf *pf = vsi->back;
585 	struct i40e_ring *ring;
586 
587 	if (test_bit(__I40E_CONFIG_BUSY, pf->state))
588 		return -EAGAIN;
589 
590 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
591 		return -ENETDOWN;
592 
593 	if (!i40e_enabled_xdp_vsi(vsi))
594 		return -ENXIO;
595 
596 	if (queue_id >= vsi->num_queue_pairs)
597 		return -ENXIO;
598 
599 	if (!vsi->xdp_rings[queue_id]->xsk_pool)
600 		return -ENXIO;
601 
602 	ring = vsi->xdp_rings[queue_id];
603 
604 	/* The idea here is that if NAPI is running, mark a miss, so
605 	 * it will run again. If not, trigger an interrupt and
606 	 * schedule the NAPI from interrupt context. If NAPI would be
607 	 * scheduled here, the interrupt affinity would not be
608 	 * honored.
609 	 */
610 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
611 		i40e_force_wb(vsi, ring->q_vector);
612 
613 	return 0;
614 }
615 
616 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
617 {
618 	u16 count_mask = rx_ring->count - 1;
619 	u16 ntc = rx_ring->next_to_clean;
620 	u16 ntu = rx_ring->next_to_use;
621 
622 	for ( ; ntc != ntu; ntc = (ntc + 1)  & count_mask) {
623 		struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc);
624 
625 		xsk_buff_free(rx_bi);
626 	}
627 }
628 
629 /**
630  * i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown
631  * @tx_ring: XDP Tx ring
632  **/
633 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
634 {
635 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
636 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
637 	struct i40e_tx_buffer *tx_bi;
638 	u32 xsk_frames = 0;
639 
640 	while (ntc != ntu) {
641 		tx_bi = &tx_ring->tx_bi[ntc];
642 
643 		if (tx_bi->xdpf)
644 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
645 		else
646 			xsk_frames++;
647 
648 		tx_bi->xdpf = NULL;
649 
650 		ntc++;
651 		if (ntc >= tx_ring->count)
652 			ntc = 0;
653 	}
654 
655 	if (xsk_frames)
656 		xsk_tx_completed(bp, xsk_frames);
657 }
658 
659 /**
660  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP
661  * buffer pool attached
662  * @vsi: vsi
663  *
664  * Returns true if any of the Rx rings has an AF_XDP buffer pool attached
665  **/
666 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
667 {
668 	struct net_device *netdev = vsi->netdev;
669 	int i;
670 
671 	for (i = 0; i < vsi->num_queue_pairs; i++) {
672 		if (xsk_get_pool_from_qid(netdev, i))
673 			return true;
674 	}
675 
676 	return false;
677 }
678