1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock.h> 6 #include <net/xdp.h> 7 8 #include "i40e.h" 9 #include "i40e_txrx_common.h" 10 #include "i40e_xsk.h" 11 12 /** 13 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev 14 * @vsi: Current VSI 15 * @umem: UMEM to DMA map 16 * 17 * Returns 0 on success, <0 on failure 18 **/ 19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem) 20 { 21 struct i40e_pf *pf = vsi->back; 22 struct device *dev; 23 unsigned int i, j; 24 dma_addr_t dma; 25 26 dev = &pf->pdev->dev; 27 for (i = 0; i < umem->npgs; i++) { 28 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE, 29 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 30 if (dma_mapping_error(dev, dma)) 31 goto out_unmap; 32 33 umem->pages[i].dma = dma; 34 } 35 36 return 0; 37 38 out_unmap: 39 for (j = 0; j < i; j++) { 40 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 41 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 42 umem->pages[i].dma = 0; 43 } 44 45 return -1; 46 } 47 48 /** 49 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev 50 * @vsi: Current VSI 51 * @umem: UMEM to DMA map 52 **/ 53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem) 54 { 55 struct i40e_pf *pf = vsi->back; 56 struct device *dev; 57 unsigned int i; 58 59 dev = &pf->pdev->dev; 60 61 for (i = 0; i < umem->npgs; i++) { 62 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 63 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 64 65 umem->pages[i].dma = 0; 66 } 67 } 68 69 /** 70 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid 71 * @vsi: Current VSI 72 * @umem: UMEM 73 * @qid: Rx ring to associate UMEM to 74 * 75 * Returns 0 on success, <0 on failure 76 **/ 77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, 78 u16 qid) 79 { 80 struct net_device *netdev = vsi->netdev; 81 struct xdp_umem_fq_reuse *reuseq; 82 bool if_running; 83 int err; 84 85 if (vsi->type != I40E_VSI_MAIN) 86 return -EINVAL; 87 88 if (qid >= vsi->num_queue_pairs) 89 return -EINVAL; 90 91 if (qid >= netdev->real_num_rx_queues || 92 qid >= netdev->real_num_tx_queues) 93 return -EINVAL; 94 95 reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); 96 if (!reuseq) 97 return -ENOMEM; 98 99 xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); 100 101 err = i40e_xsk_umem_dma_map(vsi, umem); 102 if (err) 103 return err; 104 105 set_bit(qid, vsi->af_xdp_zc_qps); 106 107 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 108 109 if (if_running) { 110 err = i40e_queue_pair_disable(vsi, qid); 111 if (err) 112 return err; 113 114 err = i40e_queue_pair_enable(vsi, qid); 115 if (err) 116 return err; 117 118 /* Kick start the NAPI context so that receiving will start */ 119 err = i40e_xsk_async_xmit(vsi->netdev, qid); 120 if (err) 121 return err; 122 } 123 124 return 0; 125 } 126 127 /** 128 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid 129 * @vsi: Current VSI 130 * @qid: Rx ring to associate UMEM to 131 * 132 * Returns 0 on success, <0 on failure 133 **/ 134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) 135 { 136 struct net_device *netdev = vsi->netdev; 137 struct xdp_umem *umem; 138 bool if_running; 139 int err; 140 141 umem = xdp_get_umem_from_qid(netdev, qid); 142 if (!umem) 143 return -EINVAL; 144 145 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 146 147 if (if_running) { 148 err = i40e_queue_pair_disable(vsi, qid); 149 if (err) 150 return err; 151 } 152 153 clear_bit(qid, vsi->af_xdp_zc_qps); 154 i40e_xsk_umem_dma_unmap(vsi, umem); 155 156 if (if_running) { 157 err = i40e_queue_pair_enable(vsi, qid); 158 if (err) 159 return err; 160 } 161 162 return 0; 163 } 164 165 /** 166 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid 167 * @vsi: Current VSI 168 * @umem: UMEM to enable/associate to a ring, or NULL to disable 169 * @qid: Rx ring to (dis)associate UMEM (from)to 170 * 171 * This function enables or disables a UMEM to a certain ring. 172 * 173 * Returns 0 on success, <0 on failure 174 **/ 175 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, 176 u16 qid) 177 { 178 return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : 179 i40e_xsk_umem_disable(vsi, qid); 180 } 181 182 /** 183 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 184 * @rx_ring: Rx ring 185 * @xdp: xdp_buff used as input to the XDP program 186 * 187 * This function enables or disables a UMEM to a certain ring. 188 * 189 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 190 **/ 191 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 192 { 193 int err, result = I40E_XDP_PASS; 194 struct i40e_ring *xdp_ring; 195 struct bpf_prog *xdp_prog; 196 u32 act; 197 198 rcu_read_lock(); 199 /* NB! xdp_prog will always be !NULL, due to the fact that 200 * this path is enabled by setting an XDP program. 201 */ 202 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 203 act = bpf_prog_run_xdp(xdp_prog, xdp); 204 xdp->handle += xdp->data - xdp->data_hard_start; 205 switch (act) { 206 case XDP_PASS: 207 break; 208 case XDP_TX: 209 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 210 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 211 break; 212 case XDP_REDIRECT: 213 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 214 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 215 break; 216 default: 217 bpf_warn_invalid_xdp_action(act); 218 case XDP_ABORTED: 219 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 220 /* fallthrough -- handle aborts by dropping packet */ 221 case XDP_DROP: 222 result = I40E_XDP_CONSUMED; 223 break; 224 } 225 rcu_read_unlock(); 226 return result; 227 } 228 229 /** 230 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer 231 * @rx_ring: Rx ring 232 * @bi: Rx buffer to populate 233 * 234 * This function allocates an Rx buffer. The buffer can come from fill 235 * queue, or via the recycle queue (next_to_alloc). 236 * 237 * Returns true for a successful allocation, false otherwise 238 **/ 239 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring, 240 struct i40e_rx_buffer *bi) 241 { 242 struct xdp_umem *umem = rx_ring->xsk_umem; 243 void *addr = bi->addr; 244 u64 handle, hr; 245 246 if (addr) { 247 rx_ring->rx_stats.page_reuse_count++; 248 return true; 249 } 250 251 if (!xsk_umem_peek_addr(umem, &handle)) { 252 rx_ring->rx_stats.alloc_page_failed++; 253 return false; 254 } 255 256 hr = umem->headroom + XDP_PACKET_HEADROOM; 257 258 bi->dma = xdp_umem_get_dma(umem, handle); 259 bi->dma += hr; 260 261 bi->addr = xdp_umem_get_data(umem, handle); 262 bi->addr += hr; 263 264 bi->handle = handle + umem->headroom; 265 266 xsk_umem_discard_addr(umem); 267 return true; 268 } 269 270 /** 271 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer 272 * @rx_ring: Rx ring 273 * @bi: Rx buffer to populate 274 * 275 * This function allocates an Rx buffer. The buffer can come from fill 276 * queue, or via the reuse queue. 277 * 278 * Returns true for a successful allocation, false otherwise 279 **/ 280 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring, 281 struct i40e_rx_buffer *bi) 282 { 283 struct xdp_umem *umem = rx_ring->xsk_umem; 284 u64 handle, hr; 285 286 if (!xsk_umem_peek_addr_rq(umem, &handle)) { 287 rx_ring->rx_stats.alloc_page_failed++; 288 return false; 289 } 290 291 handle &= rx_ring->xsk_umem->chunk_mask; 292 293 hr = umem->headroom + XDP_PACKET_HEADROOM; 294 295 bi->dma = xdp_umem_get_dma(umem, handle); 296 bi->dma += hr; 297 298 bi->addr = xdp_umem_get_data(umem, handle); 299 bi->addr += hr; 300 301 bi->handle = handle + umem->headroom; 302 303 xsk_umem_discard_addr_rq(umem); 304 return true; 305 } 306 307 static __always_inline bool 308 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, 309 bool alloc(struct i40e_ring *rx_ring, 310 struct i40e_rx_buffer *bi)) 311 { 312 u16 ntu = rx_ring->next_to_use; 313 union i40e_rx_desc *rx_desc; 314 struct i40e_rx_buffer *bi; 315 bool ok = true; 316 317 rx_desc = I40E_RX_DESC(rx_ring, ntu); 318 bi = &rx_ring->rx_bi[ntu]; 319 do { 320 if (!alloc(rx_ring, bi)) { 321 ok = false; 322 goto no_buffers; 323 } 324 325 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, 326 rx_ring->rx_buf_len, 327 DMA_BIDIRECTIONAL); 328 329 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); 330 331 rx_desc++; 332 bi++; 333 ntu++; 334 335 if (unlikely(ntu == rx_ring->count)) { 336 rx_desc = I40E_RX_DESC(rx_ring, 0); 337 bi = rx_ring->rx_bi; 338 ntu = 0; 339 } 340 341 rx_desc->wb.qword1.status_error_len = 0; 342 count--; 343 } while (count); 344 345 no_buffers: 346 if (rx_ring->next_to_use != ntu) 347 i40e_release_rx_desc(rx_ring, ntu); 348 349 return ok; 350 } 351 352 /** 353 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers 354 * @rx_ring: Rx ring 355 * @count: The number of buffers to allocate 356 * 357 * This function allocates a number of Rx buffers from the reuse queue 358 * or fill ring and places them on the Rx ring. 359 * 360 * Returns true for a successful allocation, false otherwise 361 **/ 362 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 363 { 364 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 365 i40e_alloc_buffer_slow_zc); 366 } 367 368 /** 369 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers 370 * @rx_ring: Rx ring 371 * @count: The number of buffers to allocate 372 * 373 * This function allocates a number of Rx buffers from the fill ring 374 * or the internal recycle mechanism and places them on the Rx ring. 375 * 376 * Returns true for a successful allocation, false otherwise 377 **/ 378 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count) 379 { 380 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 381 i40e_alloc_buffer_zc); 382 } 383 384 /** 385 * i40e_get_rx_buffer_zc - Return the current Rx buffer 386 * @rx_ring: Rx ring 387 * @size: The size of the rx buffer (read from descriptor) 388 * 389 * This function returns the current, received Rx buffer, and also 390 * does DMA synchronization. the Rx ring. 391 * 392 * Returns the received Rx buffer 393 **/ 394 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring, 395 const unsigned int size) 396 { 397 struct i40e_rx_buffer *bi; 398 399 bi = &rx_ring->rx_bi[rx_ring->next_to_clean]; 400 401 /* we are reusing so sync this buffer for CPU use */ 402 dma_sync_single_range_for_cpu(rx_ring->dev, 403 bi->dma, 0, 404 size, 405 DMA_BIDIRECTIONAL); 406 407 return bi; 408 } 409 410 /** 411 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer 412 * @rx_ring: Rx ring 413 * @old_bi: The Rx buffer to recycle 414 * 415 * This function recycles a finished Rx buffer, and places it on the 416 * recycle queue (next_to_alloc). 417 **/ 418 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring, 419 struct i40e_rx_buffer *old_bi) 420 { 421 struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc]; 422 unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask; 423 u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; 424 u16 nta = rx_ring->next_to_alloc; 425 426 /* update, and store next to alloc */ 427 nta++; 428 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 429 430 /* transfer page from old buffer to new buffer */ 431 new_bi->dma = old_bi->dma & mask; 432 new_bi->dma += hr; 433 434 new_bi->addr = (void *)((unsigned long)old_bi->addr & mask); 435 new_bi->addr += hr; 436 437 new_bi->handle = old_bi->handle & mask; 438 new_bi->handle += rx_ring->xsk_umem->headroom; 439 440 old_bi->addr = NULL; 441 } 442 443 /** 444 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations 445 * @alloc: Zero-copy allocator 446 * @handle: Buffer handle 447 **/ 448 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) 449 { 450 struct i40e_rx_buffer *bi; 451 struct i40e_ring *rx_ring; 452 u64 hr, mask; 453 u16 nta; 454 455 rx_ring = container_of(alloc, struct i40e_ring, zca); 456 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; 457 mask = rx_ring->xsk_umem->chunk_mask; 458 459 nta = rx_ring->next_to_alloc; 460 bi = &rx_ring->rx_bi[nta]; 461 462 nta++; 463 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 464 465 handle &= mask; 466 467 bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle); 468 bi->dma += hr; 469 470 bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle); 471 bi->addr += hr; 472 473 bi->handle = (u64)handle + rx_ring->xsk_umem->headroom; 474 } 475 476 /** 477 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer 478 * @rx_ring: Rx ring 479 * @bi: Rx buffer 480 * @xdp: xdp_buff 481 * 482 * This functions allocates a new skb from a zero-copy Rx buffer. 483 * 484 * Returns the skb, or NULL on failure. 485 **/ 486 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 487 struct i40e_rx_buffer *bi, 488 struct xdp_buff *xdp) 489 { 490 unsigned int metasize = xdp->data - xdp->data_meta; 491 unsigned int datasize = xdp->data_end - xdp->data; 492 struct sk_buff *skb; 493 494 /* allocate a skb to store the frags */ 495 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 496 xdp->data_end - xdp->data_hard_start, 497 GFP_ATOMIC | __GFP_NOWARN); 498 if (unlikely(!skb)) 499 return NULL; 500 501 skb_reserve(skb, xdp->data - xdp->data_hard_start); 502 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 503 if (metasize) 504 skb_metadata_set(skb, metasize); 505 506 i40e_reuse_rx_buffer_zc(rx_ring, bi); 507 return skb; 508 } 509 510 /** 511 * i40e_inc_ntc: Advance the next_to_clean index 512 * @rx_ring: Rx ring 513 **/ 514 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 515 { 516 u32 ntc = rx_ring->next_to_clean + 1; 517 518 ntc = (ntc < rx_ring->count) ? ntc : 0; 519 rx_ring->next_to_clean = ntc; 520 prefetch(I40E_RX_DESC(rx_ring, ntc)); 521 } 522 523 /** 524 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 525 * @rx_ring: Rx ring 526 * @budget: NAPI budget 527 * 528 * Returns amount of work completed 529 **/ 530 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 531 { 532 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 533 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 534 unsigned int xdp_res, xdp_xmit = 0; 535 bool failure = false; 536 struct sk_buff *skb; 537 struct xdp_buff xdp; 538 539 xdp.rxq = &rx_ring->xdp_rxq; 540 541 while (likely(total_rx_packets < (unsigned int)budget)) { 542 struct i40e_rx_buffer *bi; 543 union i40e_rx_desc *rx_desc; 544 unsigned int size; 545 u64 qword; 546 547 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 548 failure = failure || 549 !i40e_alloc_rx_buffers_fast_zc(rx_ring, 550 cleaned_count); 551 cleaned_count = 0; 552 } 553 554 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 555 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 556 557 /* This memory barrier is needed to keep us from reading 558 * any other fields out of the rx_desc until we have 559 * verified the descriptor has been written back. 560 */ 561 dma_rmb(); 562 563 bi = i40e_clean_programming_status(rx_ring, rx_desc, 564 qword); 565 if (unlikely(bi)) { 566 i40e_reuse_rx_buffer_zc(rx_ring, bi); 567 cleaned_count++; 568 continue; 569 } 570 571 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 572 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 573 if (!size) 574 break; 575 576 bi = i40e_get_rx_buffer_zc(rx_ring, size); 577 xdp.data = bi->addr; 578 xdp.data_meta = xdp.data; 579 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 580 xdp.data_end = xdp.data + size; 581 xdp.handle = bi->handle; 582 583 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); 584 if (xdp_res) { 585 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 586 xdp_xmit |= xdp_res; 587 bi->addr = NULL; 588 } else { 589 i40e_reuse_rx_buffer_zc(rx_ring, bi); 590 } 591 592 total_rx_bytes += size; 593 total_rx_packets++; 594 595 cleaned_count++; 596 i40e_inc_ntc(rx_ring); 597 continue; 598 } 599 600 /* XDP_PASS path */ 601 602 /* NB! We are not checking for errors using 603 * i40e_test_staterr with 604 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 605 * SBP is *not* set in PRT_SBPVSI (default not set). 606 */ 607 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); 608 if (!skb) { 609 rx_ring->rx_stats.alloc_buff_failed++; 610 break; 611 } 612 613 cleaned_count++; 614 i40e_inc_ntc(rx_ring); 615 616 if (eth_skb_pad(skb)) 617 continue; 618 619 total_rx_bytes += skb->len; 620 total_rx_packets++; 621 622 i40e_process_skb_fields(rx_ring, rx_desc, skb); 623 napi_gro_receive(&rx_ring->q_vector->napi, skb); 624 } 625 626 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 627 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 628 return failure ? budget : (int)total_rx_packets; 629 } 630 631 /** 632 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 633 * @xdp_ring: XDP Tx ring 634 * @budget: NAPI budget 635 * 636 * Returns true if the work is finished. 637 **/ 638 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 639 { 640 struct i40e_tx_desc *tx_desc = NULL; 641 struct i40e_tx_buffer *tx_bi; 642 bool work_done = true; 643 dma_addr_t dma; 644 u32 len; 645 646 while (budget-- > 0) { 647 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 648 xdp_ring->tx_stats.tx_busy++; 649 work_done = false; 650 break; 651 } 652 653 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len)) 654 break; 655 656 dma_sync_single_for_device(xdp_ring->dev, dma, len, 657 DMA_BIDIRECTIONAL); 658 659 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; 660 tx_bi->bytecount = len; 661 662 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); 663 tx_desc->buffer_addr = cpu_to_le64(dma); 664 tx_desc->cmd_type_offset_bsz = 665 build_ctob(I40E_TX_DESC_CMD_ICRC 666 | I40E_TX_DESC_CMD_EOP, 667 0, len, 0); 668 669 xdp_ring->next_to_use++; 670 if (xdp_ring->next_to_use == xdp_ring->count) 671 xdp_ring->next_to_use = 0; 672 } 673 674 if (tx_desc) { 675 /* Request an interrupt for the last frame and bump tail ptr. */ 676 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << 677 I40E_TXD_QW1_CMD_SHIFT); 678 i40e_xdp_ring_update_tail(xdp_ring); 679 680 xsk_umem_consume_tx_done(xdp_ring->xsk_umem); 681 } 682 683 return !!budget && work_done; 684 } 685 686 /** 687 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 688 * @tx_ring: XDP Tx ring 689 * @tx_bi: Tx buffer info to clean 690 **/ 691 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 692 struct i40e_tx_buffer *tx_bi) 693 { 694 xdp_return_frame(tx_bi->xdpf); 695 dma_unmap_single(tx_ring->dev, 696 dma_unmap_addr(tx_bi, dma), 697 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 698 dma_unmap_len_set(tx_bi, len, 0); 699 } 700 701 /** 702 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 703 * @tx_ring: XDP Tx ring 704 * @tx_bi: Tx buffer info to clean 705 * 706 * Returns true if cleanup/tranmission is done. 707 **/ 708 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, 709 struct i40e_ring *tx_ring, int napi_budget) 710 { 711 unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; 712 u32 i, completed_frames, frames_ready, xsk_frames = 0; 713 struct xdp_umem *umem = tx_ring->xsk_umem; 714 u32 head_idx = i40e_get_head(tx_ring); 715 bool work_done = true, xmit_done; 716 struct i40e_tx_buffer *tx_bi; 717 718 if (head_idx < tx_ring->next_to_clean) 719 head_idx += tx_ring->count; 720 frames_ready = head_idx - tx_ring->next_to_clean; 721 722 if (frames_ready == 0) { 723 goto out_xmit; 724 } else if (frames_ready > budget) { 725 completed_frames = budget; 726 work_done = false; 727 } else { 728 completed_frames = frames_ready; 729 } 730 731 ntc = tx_ring->next_to_clean; 732 733 for (i = 0; i < completed_frames; i++) { 734 tx_bi = &tx_ring->tx_bi[ntc]; 735 736 if (tx_bi->xdpf) 737 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 738 else 739 xsk_frames++; 740 741 tx_bi->xdpf = NULL; 742 total_bytes += tx_bi->bytecount; 743 744 if (++ntc >= tx_ring->count) 745 ntc = 0; 746 } 747 748 tx_ring->next_to_clean += completed_frames; 749 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 750 tx_ring->next_to_clean -= tx_ring->count; 751 752 if (xsk_frames) 753 xsk_umem_complete_tx(umem, xsk_frames); 754 755 i40e_arm_wb(tx_ring, vsi, budget); 756 i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); 757 758 out_xmit: 759 xmit_done = i40e_xmit_zc(tx_ring, budget); 760 761 return work_done && xmit_done; 762 } 763 764 /** 765 * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit 766 * @dev: the netdevice 767 * @queue_id: queue id to wake up 768 * 769 * Returns <0 for errors, 0 otherwise. 770 **/ 771 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id) 772 { 773 struct i40e_netdev_priv *np = netdev_priv(dev); 774 struct i40e_vsi *vsi = np->vsi; 775 struct i40e_ring *ring; 776 777 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 778 return -ENETDOWN; 779 780 if (!i40e_enabled_xdp_vsi(vsi)) 781 return -ENXIO; 782 783 if (queue_id >= vsi->num_queue_pairs) 784 return -ENXIO; 785 786 if (!vsi->xdp_rings[queue_id]->xsk_umem) 787 return -ENXIO; 788 789 ring = vsi->xdp_rings[queue_id]; 790 791 /* The idea here is that if NAPI is running, mark a miss, so 792 * it will run again. If not, trigger an interrupt and 793 * schedule the NAPI from interrupt context. If NAPI would be 794 * scheduled here, the interrupt affinity would not be 795 * honored. 796 */ 797 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 798 i40e_force_wb(vsi, ring->q_vector); 799 800 return 0; 801 } 802 803 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 804 { 805 u16 i; 806 807 for (i = 0; i < rx_ring->count; i++) { 808 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 809 810 if (!rx_bi->addr) 811 continue; 812 813 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); 814 rx_bi->addr = NULL; 815 } 816 } 817 818 /** 819 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown 820 * @xdp_ring: XDP Tx ring 821 **/ 822 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 823 { 824 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 825 struct xdp_umem *umem = tx_ring->xsk_umem; 826 struct i40e_tx_buffer *tx_bi; 827 u32 xsk_frames = 0; 828 829 while (ntc != ntu) { 830 tx_bi = &tx_ring->tx_bi[ntc]; 831 832 if (tx_bi->xdpf) 833 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 834 else 835 xsk_frames++; 836 837 tx_bi->xdpf = NULL; 838 839 ntc++; 840 if (ntc >= tx_ring->count) 841 ntc = 0; 842 } 843 844 if (xsk_frames) 845 xsk_umem_complete_tx(umem, xsk_frames); 846 } 847 848 /** 849 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached 850 * @vsi: vsi 851 * 852 * Returns true if any of the Rx rings has an AF_XDP UMEM attached 853 **/ 854 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 855 { 856 struct net_device *netdev = vsi->netdev; 857 int i; 858 859 for (i = 0; i < vsi->num_queue_pairs; i++) { 860 if (xdp_get_umem_from_qid(netdev, i)) 861 return true; 862 } 863 864 return false; 865 } 866