1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/stringify.h> 6 #include <net/xdp_sock_drv.h> 7 #include <net/xdp.h> 8 9 #include "i40e.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring) 14 { 15 unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count; 16 17 rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL); 18 return rx_ring->rx_bi_zc ? 0 : -ENOMEM; 19 } 20 21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring) 22 { 23 memset(rx_ring->rx_bi_zc, 0, 24 sizeof(*rx_ring->rx_bi_zc) * rx_ring->count); 25 } 26 27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 28 { 29 return &rx_ring->rx_bi_zc[idx]; 30 } 31 32 /** 33 * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a 34 * certain ring/qid 35 * @vsi: Current VSI 36 * @pool: buffer pool 37 * @qid: Rx ring to associate buffer pool with 38 * 39 * Returns 0 on success, <0 on failure 40 **/ 41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi, 42 struct xsk_buff_pool *pool, 43 u16 qid) 44 { 45 struct net_device *netdev = vsi->netdev; 46 bool if_running; 47 int err; 48 49 if (vsi->type != I40E_VSI_MAIN) 50 return -EINVAL; 51 52 if (qid >= vsi->num_queue_pairs) 53 return -EINVAL; 54 55 if (qid >= netdev->real_num_rx_queues || 56 qid >= netdev->real_num_tx_queues) 57 return -EINVAL; 58 59 err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR); 60 if (err) 61 return err; 62 63 set_bit(qid, vsi->af_xdp_zc_qps); 64 65 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 66 67 if (if_running) { 68 err = i40e_queue_pair_disable(vsi, qid); 69 if (err) 70 return err; 71 72 err = i40e_queue_pair_enable(vsi, qid); 73 if (err) 74 return err; 75 76 /* Kick start the NAPI context so that receiving will start */ 77 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); 78 if (err) 79 return err; 80 } 81 82 return 0; 83 } 84 85 /** 86 * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a 87 * certain ring/qid 88 * @vsi: Current VSI 89 * @qid: Rx ring to associate buffer pool with 90 * 91 * Returns 0 on success, <0 on failure 92 **/ 93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid) 94 { 95 struct net_device *netdev = vsi->netdev; 96 struct xsk_buff_pool *pool; 97 bool if_running; 98 int err; 99 100 pool = xsk_get_pool_from_qid(netdev, qid); 101 if (!pool) 102 return -EINVAL; 103 104 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 105 106 if (if_running) { 107 err = i40e_queue_pair_disable(vsi, qid); 108 if (err) 109 return err; 110 } 111 112 clear_bit(qid, vsi->af_xdp_zc_qps); 113 xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR); 114 115 if (if_running) { 116 err = i40e_queue_pair_enable(vsi, qid); 117 if (err) 118 return err; 119 } 120 121 return 0; 122 } 123 124 /** 125 * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from 126 * a ring/qid 127 * @vsi: Current VSI 128 * @pool: Buffer pool to enable/associate to a ring, or NULL to disable 129 * @qid: Rx ring to (dis)associate buffer pool (from)to 130 * 131 * This function enables or disables a buffer pool to a certain ring. 132 * 133 * Returns 0 on success, <0 on failure 134 **/ 135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool, 136 u16 qid) 137 { 138 return pool ? i40e_xsk_pool_enable(vsi, pool, qid) : 139 i40e_xsk_pool_disable(vsi, qid); 140 } 141 142 /** 143 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 144 * @rx_ring: Rx ring 145 * @xdp: xdp_buff used as input to the XDP program 146 * 147 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 148 **/ 149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 150 { 151 int err, result = I40E_XDP_PASS; 152 struct i40e_ring *xdp_ring; 153 struct bpf_prog *xdp_prog; 154 u32 act; 155 156 rcu_read_lock(); 157 /* NB! xdp_prog will always be !NULL, due to the fact that 158 * this path is enabled by setting an XDP program. 159 */ 160 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 161 act = bpf_prog_run_xdp(xdp_prog, xdp); 162 163 if (likely(act == XDP_REDIRECT)) { 164 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 165 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 166 rcu_read_unlock(); 167 return result; 168 } 169 170 switch (act) { 171 case XDP_PASS: 172 break; 173 case XDP_TX: 174 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 175 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 176 break; 177 default: 178 bpf_warn_invalid_xdp_action(act); 179 fallthrough; 180 case XDP_ABORTED: 181 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 182 fallthrough; /* handle aborts by dropping packet */ 183 case XDP_DROP: 184 result = I40E_XDP_CONSUMED; 185 break; 186 } 187 rcu_read_unlock(); 188 return result; 189 } 190 191 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 192 { 193 u16 ntu = rx_ring->next_to_use; 194 union i40e_rx_desc *rx_desc; 195 struct xdp_buff **bi, *xdp; 196 dma_addr_t dma; 197 bool ok = true; 198 199 rx_desc = I40E_RX_DESC(rx_ring, ntu); 200 bi = i40e_rx_bi(rx_ring, ntu); 201 do { 202 xdp = xsk_buff_alloc(rx_ring->xsk_pool); 203 if (!xdp) { 204 ok = false; 205 goto no_buffers; 206 } 207 *bi = xdp; 208 dma = xsk_buff_xdp_get_dma(xdp); 209 rx_desc->read.pkt_addr = cpu_to_le64(dma); 210 rx_desc->read.hdr_addr = 0; 211 212 rx_desc++; 213 bi++; 214 ntu++; 215 216 if (unlikely(ntu == rx_ring->count)) { 217 rx_desc = I40E_RX_DESC(rx_ring, 0); 218 bi = i40e_rx_bi(rx_ring, 0); 219 ntu = 0; 220 } 221 } while (--count); 222 223 no_buffers: 224 if (rx_ring->next_to_use != ntu) { 225 /* clear the status bits for the next_to_use descriptor */ 226 rx_desc->wb.qword1.status_error_len = 0; 227 i40e_release_rx_desc(rx_ring, ntu); 228 } 229 230 return ok; 231 } 232 233 /** 234 * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer 235 * @rx_ring: Rx ring 236 * @xdp: xdp_buff 237 * 238 * This functions allocates a new skb from a zero-copy Rx buffer. 239 * 240 * Returns the skb, or NULL on failure. 241 **/ 242 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 243 struct xdp_buff *xdp) 244 { 245 unsigned int metasize = xdp->data - xdp->data_meta; 246 unsigned int datasize = xdp->data_end - xdp->data; 247 struct sk_buff *skb; 248 249 /* allocate a skb to store the frags */ 250 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 251 xdp->data_end - xdp->data_hard_start, 252 GFP_ATOMIC | __GFP_NOWARN); 253 if (unlikely(!skb)) 254 goto out; 255 256 skb_reserve(skb, xdp->data - xdp->data_hard_start); 257 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 258 if (metasize) 259 skb_metadata_set(skb, metasize); 260 261 out: 262 xsk_buff_free(xdp); 263 return skb; 264 } 265 266 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring, 267 struct xdp_buff *xdp_buff, 268 union i40e_rx_desc *rx_desc, 269 unsigned int *rx_packets, 270 unsigned int *rx_bytes, 271 unsigned int size, 272 unsigned int xdp_res) 273 { 274 struct sk_buff *skb; 275 276 *rx_packets = 1; 277 *rx_bytes = size; 278 279 if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX) 280 return; 281 282 if (xdp_res == I40E_XDP_CONSUMED) { 283 xsk_buff_free(xdp_buff); 284 return; 285 } 286 287 if (xdp_res == I40E_XDP_PASS) { 288 /* NB! We are not checking for errors using 289 * i40e_test_staterr with 290 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 291 * SBP is *not* set in PRT_SBPVSI (default not set). 292 */ 293 skb = i40e_construct_skb_zc(rx_ring, xdp_buff); 294 if (!skb) { 295 rx_ring->rx_stats.alloc_buff_failed++; 296 *rx_packets = 0; 297 *rx_bytes = 0; 298 return; 299 } 300 301 if (eth_skb_pad(skb)) { 302 *rx_packets = 0; 303 *rx_bytes = 0; 304 return; 305 } 306 307 *rx_bytes = skb->len; 308 i40e_process_skb_fields(rx_ring, rx_desc, skb); 309 napi_gro_receive(&rx_ring->q_vector->napi, skb); 310 return; 311 } 312 313 /* Should never get here, as all valid cases have been handled already. 314 */ 315 WARN_ON_ONCE(1); 316 } 317 318 /** 319 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 320 * @rx_ring: Rx ring 321 * @budget: NAPI budget 322 * 323 * Returns amount of work completed 324 **/ 325 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 326 { 327 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 328 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 329 u16 next_to_clean = rx_ring->next_to_clean; 330 u16 count_mask = rx_ring->count - 1; 331 unsigned int xdp_res, xdp_xmit = 0; 332 bool failure = false; 333 334 while (likely(total_rx_packets < (unsigned int)budget)) { 335 union i40e_rx_desc *rx_desc; 336 unsigned int rx_packets; 337 unsigned int rx_bytes; 338 struct xdp_buff *bi; 339 unsigned int size; 340 u64 qword; 341 342 rx_desc = I40E_RX_DESC(rx_ring, next_to_clean); 343 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 344 345 /* This memory barrier is needed to keep us from reading 346 * any other fields out of the rx_desc until we have 347 * verified the descriptor has been written back. 348 */ 349 dma_rmb(); 350 351 if (i40e_rx_is_programming_status(qword)) { 352 i40e_clean_programming_status(rx_ring, 353 rx_desc->raw.qword[0], 354 qword); 355 bi = *i40e_rx_bi(rx_ring, next_to_clean); 356 xsk_buff_free(bi); 357 next_to_clean = (next_to_clean + 1) & count_mask; 358 continue; 359 } 360 361 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 362 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 363 if (!size) 364 break; 365 366 bi = *i40e_rx_bi(rx_ring, next_to_clean); 367 bi->data_end = bi->data + size; 368 xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool); 369 370 xdp_res = i40e_run_xdp_zc(rx_ring, bi); 371 i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets, 372 &rx_bytes, size, xdp_res); 373 total_rx_packets += rx_packets; 374 total_rx_bytes += rx_bytes; 375 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); 376 next_to_clean = (next_to_clean + 1) & count_mask; 377 } 378 379 rx_ring->next_to_clean = next_to_clean; 380 cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask; 381 382 if (cleaned_count >= I40E_RX_BUFFER_WRITE) 383 failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count); 384 385 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 386 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 387 388 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 389 if (failure || next_to_clean == rx_ring->next_to_use) 390 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 391 else 392 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 393 394 return (int)total_rx_packets; 395 } 396 return failure ? budget : (int)total_rx_packets; 397 } 398 399 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 400 unsigned int *total_bytes) 401 { 402 struct i40e_tx_desc *tx_desc; 403 dma_addr_t dma; 404 405 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 406 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 407 408 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 409 tx_desc->buffer_addr = cpu_to_le64(dma); 410 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP, 411 0, desc->len, 0); 412 413 *total_bytes += desc->len; 414 } 415 416 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc, 417 unsigned int *total_bytes) 418 { 419 u16 ntu = xdp_ring->next_to_use; 420 struct i40e_tx_desc *tx_desc; 421 dma_addr_t dma; 422 u32 i; 423 424 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 425 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr); 426 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len); 427 428 tx_desc = I40E_TX_DESC(xdp_ring, ntu++); 429 tx_desc->buffer_addr = cpu_to_le64(dma); 430 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | 431 I40E_TX_DESC_CMD_EOP, 432 0, desc[i].len, 0); 433 434 *total_bytes += desc[i].len; 435 } 436 437 xdp_ring->next_to_use = ntu; 438 } 439 440 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts, 441 unsigned int *total_bytes) 442 { 443 u32 batched, leftover, i; 444 445 batched = nb_pkts & ~(PKTS_PER_BATCH - 1); 446 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 447 for (i = 0; i < batched; i += PKTS_PER_BATCH) 448 i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 449 for (i = batched; i < batched + leftover; i++) 450 i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes); 451 } 452 453 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring) 454 { 455 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; 456 struct i40e_tx_desc *tx_desc; 457 458 tx_desc = I40E_TX_DESC(xdp_ring, ntu); 459 tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT); 460 } 461 462 /** 463 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 464 * @xdp_ring: XDP Tx ring 465 * @budget: NAPI budget 466 * 467 * Returns true if the work is finished. 468 **/ 469 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 470 { 471 struct xdp_desc *descs = xdp_ring->xsk_descs; 472 u32 nb_pkts, nb_processed = 0; 473 unsigned int total_bytes = 0; 474 475 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget); 476 if (!nb_pkts) 477 return true; 478 479 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 480 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 481 i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 482 xdp_ring->next_to_use = 0; 483 } 484 485 i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 486 &total_bytes); 487 488 /* Request an interrupt for the last frame and bump tail ptr. */ 489 i40e_set_rs_bit(xdp_ring); 490 i40e_xdp_ring_update_tail(xdp_ring); 491 492 i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes); 493 494 return nb_pkts < budget; 495 } 496 497 /** 498 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 499 * @tx_ring: XDP Tx ring 500 * @tx_bi: Tx buffer info to clean 501 **/ 502 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 503 struct i40e_tx_buffer *tx_bi) 504 { 505 xdp_return_frame(tx_bi->xdpf); 506 tx_ring->xdp_tx_active--; 507 dma_unmap_single(tx_ring->dev, 508 dma_unmap_addr(tx_bi, dma), 509 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 510 dma_unmap_len_set(tx_bi, len, 0); 511 } 512 513 /** 514 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 515 * @vsi: Current VSI 516 * @tx_ring: XDP Tx ring 517 * 518 * Returns true if cleanup/tranmission is done. 519 **/ 520 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring) 521 { 522 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 523 u32 i, completed_frames, xsk_frames = 0; 524 u32 head_idx = i40e_get_head(tx_ring); 525 struct i40e_tx_buffer *tx_bi; 526 unsigned int ntc; 527 528 if (head_idx < tx_ring->next_to_clean) 529 head_idx += tx_ring->count; 530 completed_frames = head_idx - tx_ring->next_to_clean; 531 532 if (completed_frames == 0) 533 goto out_xmit; 534 535 if (likely(!tx_ring->xdp_tx_active)) { 536 xsk_frames = completed_frames; 537 goto skip; 538 } 539 540 ntc = tx_ring->next_to_clean; 541 542 for (i = 0; i < completed_frames; i++) { 543 tx_bi = &tx_ring->tx_bi[ntc]; 544 545 if (tx_bi->xdpf) { 546 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 547 tx_bi->xdpf = NULL; 548 } else { 549 xsk_frames++; 550 } 551 552 if (++ntc >= tx_ring->count) 553 ntc = 0; 554 } 555 556 skip: 557 tx_ring->next_to_clean += completed_frames; 558 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 559 tx_ring->next_to_clean -= tx_ring->count; 560 561 if (xsk_frames) 562 xsk_tx_completed(bp, xsk_frames); 563 564 i40e_arm_wb(tx_ring, vsi, completed_frames); 565 566 out_xmit: 567 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 568 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 569 570 return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring)); 571 } 572 573 /** 574 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup 575 * @dev: the netdevice 576 * @queue_id: queue id to wake up 577 * @flags: ignored in our case since we have Rx and Tx in the same NAPI. 578 * 579 * Returns <0 for errors, 0 otherwise. 580 **/ 581 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 582 { 583 struct i40e_netdev_priv *np = netdev_priv(dev); 584 struct i40e_vsi *vsi = np->vsi; 585 struct i40e_pf *pf = vsi->back; 586 struct i40e_ring *ring; 587 588 if (test_bit(__I40E_CONFIG_BUSY, pf->state)) 589 return -EAGAIN; 590 591 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 592 return -ENETDOWN; 593 594 if (!i40e_enabled_xdp_vsi(vsi)) 595 return -ENXIO; 596 597 if (queue_id >= vsi->num_queue_pairs) 598 return -ENXIO; 599 600 if (!vsi->xdp_rings[queue_id]->xsk_pool) 601 return -ENXIO; 602 603 ring = vsi->xdp_rings[queue_id]; 604 605 /* The idea here is that if NAPI is running, mark a miss, so 606 * it will run again. If not, trigger an interrupt and 607 * schedule the NAPI from interrupt context. If NAPI would be 608 * scheduled here, the interrupt affinity would not be 609 * honored. 610 */ 611 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 612 i40e_force_wb(vsi, ring->q_vector); 613 614 return 0; 615 } 616 617 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 618 { 619 u16 count_mask = rx_ring->count - 1; 620 u16 ntc = rx_ring->next_to_clean; 621 u16 ntu = rx_ring->next_to_use; 622 623 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 624 struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc); 625 626 xsk_buff_free(rx_bi); 627 } 628 } 629 630 /** 631 * i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown 632 * @tx_ring: XDP Tx ring 633 **/ 634 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 635 { 636 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 637 struct xsk_buff_pool *bp = tx_ring->xsk_pool; 638 struct i40e_tx_buffer *tx_bi; 639 u32 xsk_frames = 0; 640 641 while (ntc != ntu) { 642 tx_bi = &tx_ring->tx_bi[ntc]; 643 644 if (tx_bi->xdpf) 645 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 646 else 647 xsk_frames++; 648 649 tx_bi->xdpf = NULL; 650 651 ntc++; 652 if (ntc >= tx_ring->count) 653 ntc = 0; 654 } 655 656 if (xsk_frames) 657 xsk_tx_completed(bp, xsk_frames); 658 } 659 660 /** 661 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP 662 * buffer pool attached 663 * @vsi: vsi 664 * 665 * Returns true if any of the Rx rings has an AF_XDP buffer pool attached 666 **/ 667 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 668 { 669 struct net_device *netdev = vsi->netdev; 670 int i; 671 672 for (i = 0; i < vsi->num_queue_pairs; i++) { 673 if (xsk_get_pool_from_qid(netdev, i)) 674 return true; 675 } 676 677 return false; 678 } 679