1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/stringify.h>
6 #include <net/xdp_sock_drv.h>
7 #include <net/xdp.h>
8 
9 #include "i40e.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring)
14 {
15 	unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count;
16 
17 	rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL);
18 	return rx_ring->rx_bi_zc ? 0 : -ENOMEM;
19 }
20 
21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring)
22 {
23 	memset(rx_ring->rx_bi_zc, 0,
24 	       sizeof(*rx_ring->rx_bi_zc) * rx_ring->count);
25 }
26 
27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
28 {
29 	return &rx_ring->rx_bi_zc[idx];
30 }
31 
32 /**
33  * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a
34  * certain ring/qid
35  * @vsi: Current VSI
36  * @pool: buffer pool
37  * @qid: Rx ring to associate buffer pool with
38  *
39  * Returns 0 on success, <0 on failure
40  **/
41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi,
42 				struct xsk_buff_pool *pool,
43 				u16 qid)
44 {
45 	struct net_device *netdev = vsi->netdev;
46 	bool if_running;
47 	int err;
48 
49 	if (vsi->type != I40E_VSI_MAIN)
50 		return -EINVAL;
51 
52 	if (qid >= vsi->num_queue_pairs)
53 		return -EINVAL;
54 
55 	if (qid >= netdev->real_num_rx_queues ||
56 	    qid >= netdev->real_num_tx_queues)
57 		return -EINVAL;
58 
59 	err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR);
60 	if (err)
61 		return err;
62 
63 	set_bit(qid, vsi->af_xdp_zc_qps);
64 
65 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
66 
67 	if (if_running) {
68 		err = i40e_queue_pair_disable(vsi, qid);
69 		if (err)
70 			return err;
71 
72 		err = i40e_queue_pair_enable(vsi, qid);
73 		if (err)
74 			return err;
75 
76 		/* Kick start the NAPI context so that receiving will start */
77 		err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
78 		if (err)
79 			return err;
80 	}
81 
82 	return 0;
83 }
84 
85 /**
86  * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a
87  * certain ring/qid
88  * @vsi: Current VSI
89  * @qid: Rx ring to associate buffer pool with
90  *
91  * Returns 0 on success, <0 on failure
92  **/
93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid)
94 {
95 	struct net_device *netdev = vsi->netdev;
96 	struct xsk_buff_pool *pool;
97 	bool if_running;
98 	int err;
99 
100 	pool = xsk_get_pool_from_qid(netdev, qid);
101 	if (!pool)
102 		return -EINVAL;
103 
104 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
105 
106 	if (if_running) {
107 		err = i40e_queue_pair_disable(vsi, qid);
108 		if (err)
109 			return err;
110 	}
111 
112 	clear_bit(qid, vsi->af_xdp_zc_qps);
113 	xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR);
114 
115 	if (if_running) {
116 		err = i40e_queue_pair_enable(vsi, qid);
117 		if (err)
118 			return err;
119 	}
120 
121 	return 0;
122 }
123 
124 /**
125  * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from
126  * a ring/qid
127  * @vsi: Current VSI
128  * @pool: Buffer pool to enable/associate to a ring, or NULL to disable
129  * @qid: Rx ring to (dis)associate buffer pool (from)to
130  *
131  * This function enables or disables a buffer pool to a certain ring.
132  *
133  * Returns 0 on success, <0 on failure
134  **/
135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool,
136 			u16 qid)
137 {
138 	return pool ? i40e_xsk_pool_enable(vsi, pool, qid) :
139 		i40e_xsk_pool_disable(vsi, qid);
140 }
141 
142 /**
143  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
144  * @rx_ring: Rx ring
145  * @xdp: xdp_buff used as input to the XDP program
146  *
147  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
148  **/
149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
150 {
151 	int err, result = I40E_XDP_PASS;
152 	struct i40e_ring *xdp_ring;
153 	struct bpf_prog *xdp_prog;
154 	u32 act;
155 
156 	rcu_read_lock();
157 	/* NB! xdp_prog will always be !NULL, due to the fact that
158 	 * this path is enabled by setting an XDP program.
159 	 */
160 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
161 	act = bpf_prog_run_xdp(xdp_prog, xdp);
162 
163 	if (likely(act == XDP_REDIRECT)) {
164 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
165 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
166 		rcu_read_unlock();
167 		return result;
168 	}
169 
170 	switch (act) {
171 	case XDP_PASS:
172 		break;
173 	case XDP_TX:
174 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
175 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
176 		break;
177 	default:
178 		bpf_warn_invalid_xdp_action(act);
179 		fallthrough;
180 	case XDP_ABORTED:
181 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
182 		fallthrough; /* handle aborts by dropping packet */
183 	case XDP_DROP:
184 		result = I40E_XDP_CONSUMED;
185 		break;
186 	}
187 	rcu_read_unlock();
188 	return result;
189 }
190 
191 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
192 {
193 	u16 ntu = rx_ring->next_to_use;
194 	union i40e_rx_desc *rx_desc;
195 	struct xdp_buff **bi, *xdp;
196 	dma_addr_t dma;
197 	bool ok = true;
198 
199 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
200 	bi = i40e_rx_bi(rx_ring, ntu);
201 	do {
202 		xdp = xsk_buff_alloc(rx_ring->xsk_pool);
203 		if (!xdp) {
204 			ok = false;
205 			goto no_buffers;
206 		}
207 		*bi = xdp;
208 		dma = xsk_buff_xdp_get_dma(xdp);
209 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
210 		rx_desc->read.hdr_addr = 0;
211 
212 		rx_desc++;
213 		bi++;
214 		ntu++;
215 
216 		if (unlikely(ntu == rx_ring->count)) {
217 			rx_desc = I40E_RX_DESC(rx_ring, 0);
218 			bi = i40e_rx_bi(rx_ring, 0);
219 			ntu = 0;
220 		}
221 	} while (--count);
222 
223 no_buffers:
224 	if (rx_ring->next_to_use != ntu) {
225 		/* clear the status bits for the next_to_use descriptor */
226 		rx_desc->wb.qword1.status_error_len = 0;
227 		i40e_release_rx_desc(rx_ring, ntu);
228 	}
229 
230 	return ok;
231 }
232 
233 /**
234  * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer
235  * @rx_ring: Rx ring
236  * @xdp: xdp_buff
237  *
238  * This functions allocates a new skb from a zero-copy Rx buffer.
239  *
240  * Returns the skb, or NULL on failure.
241  **/
242 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
243 					     struct xdp_buff *xdp)
244 {
245 	unsigned int metasize = xdp->data - xdp->data_meta;
246 	unsigned int datasize = xdp->data_end - xdp->data;
247 	struct sk_buff *skb;
248 
249 	/* allocate a skb to store the frags */
250 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
251 			       xdp->data_end - xdp->data_hard_start,
252 			       GFP_ATOMIC | __GFP_NOWARN);
253 	if (unlikely(!skb))
254 		goto out;
255 
256 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
257 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
258 	if (metasize)
259 		skb_metadata_set(skb, metasize);
260 
261 out:
262 	xsk_buff_free(xdp);
263 	return skb;
264 }
265 
266 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring,
267 				      struct xdp_buff *xdp_buff,
268 				      union i40e_rx_desc *rx_desc,
269 				      unsigned int *rx_packets,
270 				      unsigned int *rx_bytes,
271 				      unsigned int size,
272 				      unsigned int xdp_res)
273 {
274 	struct sk_buff *skb;
275 
276 	*rx_packets = 1;
277 	*rx_bytes = size;
278 
279 	if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX)
280 		return;
281 
282 	if (xdp_res == I40E_XDP_CONSUMED) {
283 		xsk_buff_free(xdp_buff);
284 		return;
285 	}
286 
287 	if (xdp_res == I40E_XDP_PASS) {
288 		/* NB! We are not checking for errors using
289 		 * i40e_test_staterr with
290 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
291 		 * SBP is *not* set in PRT_SBPVSI (default not set).
292 		 */
293 		skb = i40e_construct_skb_zc(rx_ring, xdp_buff);
294 		if (!skb) {
295 			rx_ring->rx_stats.alloc_buff_failed++;
296 			*rx_packets = 0;
297 			*rx_bytes = 0;
298 			return;
299 		}
300 
301 		if (eth_skb_pad(skb)) {
302 			*rx_packets = 0;
303 			*rx_bytes = 0;
304 			return;
305 		}
306 
307 		*rx_bytes = skb->len;
308 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
309 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
310 		return;
311 	}
312 
313 	/* Should never get here, as all valid cases have been handled already.
314 	 */
315 	WARN_ON_ONCE(1);
316 }
317 
318 /**
319  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
320  * @rx_ring: Rx ring
321  * @budget: NAPI budget
322  *
323  * Returns amount of work completed
324  **/
325 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
326 {
327 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
328 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
329 	u16 next_to_clean = rx_ring->next_to_clean;
330 	u16 count_mask = rx_ring->count - 1;
331 	unsigned int xdp_res, xdp_xmit = 0;
332 	bool failure = false;
333 
334 	while (likely(total_rx_packets < (unsigned int)budget)) {
335 		union i40e_rx_desc *rx_desc;
336 		unsigned int rx_packets;
337 		unsigned int rx_bytes;
338 		struct xdp_buff *bi;
339 		unsigned int size;
340 		u64 qword;
341 
342 		rx_desc = I40E_RX_DESC(rx_ring, next_to_clean);
343 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
344 
345 		/* This memory barrier is needed to keep us from reading
346 		 * any other fields out of the rx_desc until we have
347 		 * verified the descriptor has been written back.
348 		 */
349 		dma_rmb();
350 
351 		if (i40e_rx_is_programming_status(qword)) {
352 			i40e_clean_programming_status(rx_ring,
353 						      rx_desc->raw.qword[0],
354 						      qword);
355 			bi = *i40e_rx_bi(rx_ring, next_to_clean);
356 			xsk_buff_free(bi);
357 			next_to_clean = (next_to_clean + 1) & count_mask;
358 			continue;
359 		}
360 
361 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
362 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
363 		if (!size)
364 			break;
365 
366 		bi = *i40e_rx_bi(rx_ring, next_to_clean);
367 		bi->data_end = bi->data + size;
368 		xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool);
369 
370 		xdp_res = i40e_run_xdp_zc(rx_ring, bi);
371 		i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets,
372 					  &rx_bytes, size, xdp_res);
373 		total_rx_packets += rx_packets;
374 		total_rx_bytes += rx_bytes;
375 		xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
376 		next_to_clean = (next_to_clean + 1) & count_mask;
377 	}
378 
379 	rx_ring->next_to_clean = next_to_clean;
380 	cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask;
381 
382 	if (cleaned_count >= I40E_RX_BUFFER_WRITE)
383 		failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count);
384 
385 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
386 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
387 
388 	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
389 		if (failure || next_to_clean == rx_ring->next_to_use)
390 			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
391 		else
392 			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
393 
394 		return (int)total_rx_packets;
395 	}
396 	return failure ? budget : (int)total_rx_packets;
397 }
398 
399 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
400 			  unsigned int *total_bytes)
401 {
402 	struct i40e_tx_desc *tx_desc;
403 	dma_addr_t dma;
404 
405 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
406 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
407 
408 	tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
409 	tx_desc->buffer_addr = cpu_to_le64(dma);
410 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP,
411 						  0, desc->len, 0);
412 
413 	*total_bytes += desc->len;
414 }
415 
416 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
417 				unsigned int *total_bytes)
418 {
419 	u16 ntu = xdp_ring->next_to_use;
420 	struct i40e_tx_desc *tx_desc;
421 	dma_addr_t dma;
422 	u32 i;
423 
424 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
425 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr);
426 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len);
427 
428 		tx_desc = I40E_TX_DESC(xdp_ring, ntu++);
429 		tx_desc->buffer_addr = cpu_to_le64(dma);
430 		tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC |
431 							  I40E_TX_DESC_CMD_EOP,
432 							  0, desc[i].len, 0);
433 
434 		*total_bytes += desc[i].len;
435 	}
436 
437 	xdp_ring->next_to_use = ntu;
438 }
439 
440 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts,
441 				 unsigned int *total_bytes)
442 {
443 	u32 batched, leftover, i;
444 
445 	batched = nb_pkts & ~(PKTS_PER_BATCH - 1);
446 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
447 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
448 		i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
449 	for (i = batched; i < batched + leftover; i++)
450 		i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes);
451 }
452 
453 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring)
454 {
455 	u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
456 	struct i40e_tx_desc *tx_desc;
457 
458 	tx_desc = I40E_TX_DESC(xdp_ring, ntu);
459 	tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT);
460 }
461 
462 /**
463  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
464  * @xdp_ring: XDP Tx ring
465  * @budget: NAPI budget
466  *
467  * Returns true if the work is finished.
468  **/
469 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
470 {
471 	struct xdp_desc *descs = xdp_ring->xsk_descs;
472 	u32 nb_pkts, nb_processed = 0;
473 	unsigned int total_bytes = 0;
474 
475 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget);
476 	if (!nb_pkts)
477 		return true;
478 
479 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
480 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
481 		i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
482 		xdp_ring->next_to_use = 0;
483 	}
484 
485 	i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
486 			     &total_bytes);
487 
488 	/* Request an interrupt for the last frame and bump tail ptr. */
489 	i40e_set_rs_bit(xdp_ring);
490 	i40e_xdp_ring_update_tail(xdp_ring);
491 
492 	i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes);
493 
494 	return nb_pkts < budget;
495 }
496 
497 /**
498  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
499  * @tx_ring: XDP Tx ring
500  * @tx_bi: Tx buffer info to clean
501  **/
502 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
503 				     struct i40e_tx_buffer *tx_bi)
504 {
505 	xdp_return_frame(tx_bi->xdpf);
506 	tx_ring->xdp_tx_active--;
507 	dma_unmap_single(tx_ring->dev,
508 			 dma_unmap_addr(tx_bi, dma),
509 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
510 	dma_unmap_len_set(tx_bi, len, 0);
511 }
512 
513 /**
514  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
515  * @vsi: Current VSI
516  * @tx_ring: XDP Tx ring
517  *
518  * Returns true if cleanup/tranmission is done.
519  **/
520 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring)
521 {
522 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
523 	u32 i, completed_frames, xsk_frames = 0;
524 	u32 head_idx = i40e_get_head(tx_ring);
525 	struct i40e_tx_buffer *tx_bi;
526 	unsigned int ntc;
527 
528 	if (head_idx < tx_ring->next_to_clean)
529 		head_idx += tx_ring->count;
530 	completed_frames = head_idx - tx_ring->next_to_clean;
531 
532 	if (completed_frames == 0)
533 		goto out_xmit;
534 
535 	if (likely(!tx_ring->xdp_tx_active)) {
536 		xsk_frames = completed_frames;
537 		goto skip;
538 	}
539 
540 	ntc = tx_ring->next_to_clean;
541 
542 	for (i = 0; i < completed_frames; i++) {
543 		tx_bi = &tx_ring->tx_bi[ntc];
544 
545 		if (tx_bi->xdpf) {
546 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
547 			tx_bi->xdpf = NULL;
548 		} else {
549 			xsk_frames++;
550 		}
551 
552 		if (++ntc >= tx_ring->count)
553 			ntc = 0;
554 	}
555 
556 skip:
557 	tx_ring->next_to_clean += completed_frames;
558 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
559 		tx_ring->next_to_clean -= tx_ring->count;
560 
561 	if (xsk_frames)
562 		xsk_tx_completed(bp, xsk_frames);
563 
564 	i40e_arm_wb(tx_ring, vsi, completed_frames);
565 
566 out_xmit:
567 	if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
568 		xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
569 
570 	return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring));
571 }
572 
573 /**
574  * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
575  * @dev: the netdevice
576  * @queue_id: queue id to wake up
577  * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
578  *
579  * Returns <0 for errors, 0 otherwise.
580  **/
581 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
582 {
583 	struct i40e_netdev_priv *np = netdev_priv(dev);
584 	struct i40e_vsi *vsi = np->vsi;
585 	struct i40e_pf *pf = vsi->back;
586 	struct i40e_ring *ring;
587 
588 	if (test_bit(__I40E_CONFIG_BUSY, pf->state))
589 		return -EAGAIN;
590 
591 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
592 		return -ENETDOWN;
593 
594 	if (!i40e_enabled_xdp_vsi(vsi))
595 		return -ENXIO;
596 
597 	if (queue_id >= vsi->num_queue_pairs)
598 		return -ENXIO;
599 
600 	if (!vsi->xdp_rings[queue_id]->xsk_pool)
601 		return -ENXIO;
602 
603 	ring = vsi->xdp_rings[queue_id];
604 
605 	/* The idea here is that if NAPI is running, mark a miss, so
606 	 * it will run again. If not, trigger an interrupt and
607 	 * schedule the NAPI from interrupt context. If NAPI would be
608 	 * scheduled here, the interrupt affinity would not be
609 	 * honored.
610 	 */
611 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
612 		i40e_force_wb(vsi, ring->q_vector);
613 
614 	return 0;
615 }
616 
617 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
618 {
619 	u16 count_mask = rx_ring->count - 1;
620 	u16 ntc = rx_ring->next_to_clean;
621 	u16 ntu = rx_ring->next_to_use;
622 
623 	for ( ; ntc != ntu; ntc = (ntc + 1)  & count_mask) {
624 		struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc);
625 
626 		xsk_buff_free(rx_bi);
627 	}
628 }
629 
630 /**
631  * i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown
632  * @tx_ring: XDP Tx ring
633  **/
634 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
637 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
638 	struct i40e_tx_buffer *tx_bi;
639 	u32 xsk_frames = 0;
640 
641 	while (ntc != ntu) {
642 		tx_bi = &tx_ring->tx_bi[ntc];
643 
644 		if (tx_bi->xdpf)
645 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
646 		else
647 			xsk_frames++;
648 
649 		tx_bi->xdpf = NULL;
650 
651 		ntc++;
652 		if (ntc >= tx_ring->count)
653 			ntc = 0;
654 	}
655 
656 	if (xsk_frames)
657 		xsk_tx_completed(bp, xsk_frames);
658 }
659 
660 /**
661  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP
662  * buffer pool attached
663  * @vsi: vsi
664  *
665  * Returns true if any of the Rx rings has an AF_XDP buffer pool attached
666  **/
667 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
668 {
669 	struct net_device *netdev = vsi->netdev;
670 	int i;
671 
672 	for (i = 0; i < vsi->num_queue_pairs; i++) {
673 		if (xsk_get_pool_from_qid(netdev, i))
674 			return true;
675 	}
676 
677 	return false;
678 }
679