1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/stringify.h>
6 #include <net/xdp_sock_drv.h>
7 #include <net/xdp.h>
8 
9 #include "i40e.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring)
14 {
15 	unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count;
16 
17 	rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL);
18 	return rx_ring->rx_bi_zc ? 0 : -ENOMEM;
19 }
20 
21 void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring)
22 {
23 	memset(rx_ring->rx_bi_zc, 0,
24 	       sizeof(*rx_ring->rx_bi_zc) * rx_ring->count);
25 }
26 
27 static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
28 {
29 	return &rx_ring->rx_bi_zc[idx];
30 }
31 
32 /**
33  * i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a
34  * certain ring/qid
35  * @vsi: Current VSI
36  * @pool: buffer pool
37  * @qid: Rx ring to associate buffer pool with
38  *
39  * Returns 0 on success, <0 on failure
40  **/
41 static int i40e_xsk_pool_enable(struct i40e_vsi *vsi,
42 				struct xsk_buff_pool *pool,
43 				u16 qid)
44 {
45 	struct net_device *netdev = vsi->netdev;
46 	bool if_running;
47 	int err;
48 
49 	if (vsi->type != I40E_VSI_MAIN)
50 		return -EINVAL;
51 
52 	if (qid >= vsi->num_queue_pairs)
53 		return -EINVAL;
54 
55 	if (qid >= netdev->real_num_rx_queues ||
56 	    qid >= netdev->real_num_tx_queues)
57 		return -EINVAL;
58 
59 	err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR);
60 	if (err)
61 		return err;
62 
63 	set_bit(qid, vsi->af_xdp_zc_qps);
64 
65 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
66 
67 	if (if_running) {
68 		err = i40e_queue_pair_disable(vsi, qid);
69 		if (err)
70 			return err;
71 
72 		err = i40e_queue_pair_enable(vsi, qid);
73 		if (err)
74 			return err;
75 
76 		/* Kick start the NAPI context so that receiving will start */
77 		err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
78 		if (err)
79 			return err;
80 	}
81 
82 	return 0;
83 }
84 
85 /**
86  * i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a
87  * certain ring/qid
88  * @vsi: Current VSI
89  * @qid: Rx ring to associate buffer pool with
90  *
91  * Returns 0 on success, <0 on failure
92  **/
93 static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid)
94 {
95 	struct net_device *netdev = vsi->netdev;
96 	struct xsk_buff_pool *pool;
97 	bool if_running;
98 	int err;
99 
100 	pool = xsk_get_pool_from_qid(netdev, qid);
101 	if (!pool)
102 		return -EINVAL;
103 
104 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
105 
106 	if (if_running) {
107 		err = i40e_queue_pair_disable(vsi, qid);
108 		if (err)
109 			return err;
110 	}
111 
112 	clear_bit(qid, vsi->af_xdp_zc_qps);
113 	xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR);
114 
115 	if (if_running) {
116 		err = i40e_queue_pair_enable(vsi, qid);
117 		if (err)
118 			return err;
119 	}
120 
121 	return 0;
122 }
123 
124 /**
125  * i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from
126  * a ring/qid
127  * @vsi: Current VSI
128  * @pool: Buffer pool to enable/associate to a ring, or NULL to disable
129  * @qid: Rx ring to (dis)associate buffer pool (from)to
130  *
131  * This function enables or disables a buffer pool to a certain ring.
132  *
133  * Returns 0 on success, <0 on failure
134  **/
135 int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool,
136 			u16 qid)
137 {
138 	return pool ? i40e_xsk_pool_enable(vsi, pool, qid) :
139 		i40e_xsk_pool_disable(vsi, qid);
140 }
141 
142 /**
143  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
144  * @rx_ring: Rx ring
145  * @xdp: xdp_buff used as input to the XDP program
146  *
147  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
148  **/
149 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
150 {
151 	int err, result = I40E_XDP_PASS;
152 	struct i40e_ring *xdp_ring;
153 	struct bpf_prog *xdp_prog;
154 	u32 act;
155 
156 	/* NB! xdp_prog will always be !NULL, due to the fact that
157 	 * this path is enabled by setting an XDP program.
158 	 */
159 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
160 	act = bpf_prog_run_xdp(xdp_prog, xdp);
161 
162 	if (likely(act == XDP_REDIRECT)) {
163 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
164 		if (err)
165 			goto out_failure;
166 		return I40E_XDP_REDIR;
167 	}
168 
169 	switch (act) {
170 	case XDP_PASS:
171 		break;
172 	case XDP_TX:
173 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
174 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
175 		if (result == I40E_XDP_CONSUMED)
176 			goto out_failure;
177 		break;
178 	default:
179 		bpf_warn_invalid_xdp_action(act);
180 		fallthrough;
181 	case XDP_ABORTED:
182 out_failure:
183 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
184 		fallthrough; /* handle aborts by dropping packet */
185 	case XDP_DROP:
186 		result = I40E_XDP_CONSUMED;
187 		break;
188 	}
189 	return result;
190 }
191 
192 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
193 {
194 	u16 ntu = rx_ring->next_to_use;
195 	union i40e_rx_desc *rx_desc;
196 	struct xdp_buff **bi, *xdp;
197 	dma_addr_t dma;
198 	bool ok = true;
199 
200 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
201 	bi = i40e_rx_bi(rx_ring, ntu);
202 	do {
203 		xdp = xsk_buff_alloc(rx_ring->xsk_pool);
204 		if (!xdp) {
205 			ok = false;
206 			goto no_buffers;
207 		}
208 		*bi = xdp;
209 		dma = xsk_buff_xdp_get_dma(xdp);
210 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
211 		rx_desc->read.hdr_addr = 0;
212 
213 		rx_desc++;
214 		bi++;
215 		ntu++;
216 
217 		if (unlikely(ntu == rx_ring->count)) {
218 			rx_desc = I40E_RX_DESC(rx_ring, 0);
219 			bi = i40e_rx_bi(rx_ring, 0);
220 			ntu = 0;
221 		}
222 	} while (--count);
223 
224 no_buffers:
225 	if (rx_ring->next_to_use != ntu) {
226 		/* clear the status bits for the next_to_use descriptor */
227 		rx_desc->wb.qword1.status_error_len = 0;
228 		i40e_release_rx_desc(rx_ring, ntu);
229 	}
230 
231 	return ok;
232 }
233 
234 /**
235  * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer
236  * @rx_ring: Rx ring
237  * @xdp: xdp_buff
238  *
239  * This functions allocates a new skb from a zero-copy Rx buffer.
240  *
241  * Returns the skb, or NULL on failure.
242  **/
243 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
244 					     struct xdp_buff *xdp)
245 {
246 	unsigned int metasize = xdp->data - xdp->data_meta;
247 	unsigned int datasize = xdp->data_end - xdp->data;
248 	struct sk_buff *skb;
249 
250 	/* allocate a skb to store the frags */
251 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
252 			       xdp->data_end - xdp->data_hard_start,
253 			       GFP_ATOMIC | __GFP_NOWARN);
254 	if (unlikely(!skb))
255 		goto out;
256 
257 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
258 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
259 	if (metasize)
260 		skb_metadata_set(skb, metasize);
261 
262 out:
263 	xsk_buff_free(xdp);
264 	return skb;
265 }
266 
267 static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring,
268 				      struct xdp_buff *xdp_buff,
269 				      union i40e_rx_desc *rx_desc,
270 				      unsigned int *rx_packets,
271 				      unsigned int *rx_bytes,
272 				      unsigned int size,
273 				      unsigned int xdp_res)
274 {
275 	struct sk_buff *skb;
276 
277 	*rx_packets = 1;
278 	*rx_bytes = size;
279 
280 	if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX)
281 		return;
282 
283 	if (xdp_res == I40E_XDP_CONSUMED) {
284 		xsk_buff_free(xdp_buff);
285 		return;
286 	}
287 
288 	if (xdp_res == I40E_XDP_PASS) {
289 		/* NB! We are not checking for errors using
290 		 * i40e_test_staterr with
291 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
292 		 * SBP is *not* set in PRT_SBPVSI (default not set).
293 		 */
294 		skb = i40e_construct_skb_zc(rx_ring, xdp_buff);
295 		if (!skb) {
296 			rx_ring->rx_stats.alloc_buff_failed++;
297 			*rx_packets = 0;
298 			*rx_bytes = 0;
299 			return;
300 		}
301 
302 		if (eth_skb_pad(skb)) {
303 			*rx_packets = 0;
304 			*rx_bytes = 0;
305 			return;
306 		}
307 
308 		*rx_bytes = skb->len;
309 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
310 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
311 		return;
312 	}
313 
314 	/* Should never get here, as all valid cases have been handled already.
315 	 */
316 	WARN_ON_ONCE(1);
317 }
318 
319 /**
320  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
321  * @rx_ring: Rx ring
322  * @budget: NAPI budget
323  *
324  * Returns amount of work completed
325  **/
326 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
327 {
328 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
329 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
330 	u16 next_to_clean = rx_ring->next_to_clean;
331 	u16 count_mask = rx_ring->count - 1;
332 	unsigned int xdp_res, xdp_xmit = 0;
333 	bool failure = false;
334 
335 	while (likely(total_rx_packets < (unsigned int)budget)) {
336 		union i40e_rx_desc *rx_desc;
337 		unsigned int rx_packets;
338 		unsigned int rx_bytes;
339 		struct xdp_buff *bi;
340 		unsigned int size;
341 		u64 qword;
342 
343 		rx_desc = I40E_RX_DESC(rx_ring, next_to_clean);
344 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
345 
346 		/* This memory barrier is needed to keep us from reading
347 		 * any other fields out of the rx_desc until we have
348 		 * verified the descriptor has been written back.
349 		 */
350 		dma_rmb();
351 
352 		if (i40e_rx_is_programming_status(qword)) {
353 			i40e_clean_programming_status(rx_ring,
354 						      rx_desc->raw.qword[0],
355 						      qword);
356 			bi = *i40e_rx_bi(rx_ring, next_to_clean);
357 			xsk_buff_free(bi);
358 			next_to_clean = (next_to_clean + 1) & count_mask;
359 			continue;
360 		}
361 
362 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
363 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
364 		if (!size)
365 			break;
366 
367 		bi = *i40e_rx_bi(rx_ring, next_to_clean);
368 		bi->data_end = bi->data + size;
369 		xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool);
370 
371 		xdp_res = i40e_run_xdp_zc(rx_ring, bi);
372 		i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets,
373 					  &rx_bytes, size, xdp_res);
374 		total_rx_packets += rx_packets;
375 		total_rx_bytes += rx_bytes;
376 		xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
377 		next_to_clean = (next_to_clean + 1) & count_mask;
378 	}
379 
380 	rx_ring->next_to_clean = next_to_clean;
381 	cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask;
382 
383 	if (cleaned_count >= I40E_RX_BUFFER_WRITE)
384 		failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count);
385 
386 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
387 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
388 
389 	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
390 		if (failure || next_to_clean == rx_ring->next_to_use)
391 			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
392 		else
393 			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
394 
395 		return (int)total_rx_packets;
396 	}
397 	return failure ? budget : (int)total_rx_packets;
398 }
399 
400 static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
401 			  unsigned int *total_bytes)
402 {
403 	struct i40e_tx_desc *tx_desc;
404 	dma_addr_t dma;
405 
406 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
407 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
408 
409 	tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
410 	tx_desc->buffer_addr = cpu_to_le64(dma);
411 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP,
412 						  0, desc->len, 0);
413 
414 	*total_bytes += desc->len;
415 }
416 
417 static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
418 				unsigned int *total_bytes)
419 {
420 	u16 ntu = xdp_ring->next_to_use;
421 	struct i40e_tx_desc *tx_desc;
422 	dma_addr_t dma;
423 	u32 i;
424 
425 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
426 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr);
427 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len);
428 
429 		tx_desc = I40E_TX_DESC(xdp_ring, ntu++);
430 		tx_desc->buffer_addr = cpu_to_le64(dma);
431 		tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC |
432 							  I40E_TX_DESC_CMD_EOP,
433 							  0, desc[i].len, 0);
434 
435 		*total_bytes += desc[i].len;
436 	}
437 
438 	xdp_ring->next_to_use = ntu;
439 }
440 
441 static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts,
442 				 unsigned int *total_bytes)
443 {
444 	u32 batched, leftover, i;
445 
446 	batched = nb_pkts & ~(PKTS_PER_BATCH - 1);
447 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
448 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
449 		i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
450 	for (i = batched; i < batched + leftover; i++)
451 		i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes);
452 }
453 
454 static void i40e_set_rs_bit(struct i40e_ring *xdp_ring)
455 {
456 	u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
457 	struct i40e_tx_desc *tx_desc;
458 
459 	tx_desc = I40E_TX_DESC(xdp_ring, ntu);
460 	tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT);
461 }
462 
463 /**
464  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
465  * @xdp_ring: XDP Tx ring
466  * @budget: NAPI budget
467  *
468  * Returns true if the work is finished.
469  **/
470 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
471 {
472 	struct xdp_desc *descs = xdp_ring->xsk_descs;
473 	u32 nb_pkts, nb_processed = 0;
474 	unsigned int total_bytes = 0;
475 
476 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget);
477 	if (!nb_pkts)
478 		return true;
479 
480 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
481 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
482 		i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
483 		xdp_ring->next_to_use = 0;
484 	}
485 
486 	i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
487 			     &total_bytes);
488 
489 	/* Request an interrupt for the last frame and bump tail ptr. */
490 	i40e_set_rs_bit(xdp_ring);
491 	i40e_xdp_ring_update_tail(xdp_ring);
492 
493 	i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes);
494 
495 	return nb_pkts < budget;
496 }
497 
498 /**
499  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
500  * @tx_ring: XDP Tx ring
501  * @tx_bi: Tx buffer info to clean
502  **/
503 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
504 				     struct i40e_tx_buffer *tx_bi)
505 {
506 	xdp_return_frame(tx_bi->xdpf);
507 	tx_ring->xdp_tx_active--;
508 	dma_unmap_single(tx_ring->dev,
509 			 dma_unmap_addr(tx_bi, dma),
510 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
511 	dma_unmap_len_set(tx_bi, len, 0);
512 }
513 
514 /**
515  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
516  * @vsi: Current VSI
517  * @tx_ring: XDP Tx ring
518  *
519  * Returns true if cleanup/tranmission is done.
520  **/
521 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring)
522 {
523 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
524 	u32 i, completed_frames, xsk_frames = 0;
525 	u32 head_idx = i40e_get_head(tx_ring);
526 	struct i40e_tx_buffer *tx_bi;
527 	unsigned int ntc;
528 
529 	if (head_idx < tx_ring->next_to_clean)
530 		head_idx += tx_ring->count;
531 	completed_frames = head_idx - tx_ring->next_to_clean;
532 
533 	if (completed_frames == 0)
534 		goto out_xmit;
535 
536 	if (likely(!tx_ring->xdp_tx_active)) {
537 		xsk_frames = completed_frames;
538 		goto skip;
539 	}
540 
541 	ntc = tx_ring->next_to_clean;
542 
543 	for (i = 0; i < completed_frames; i++) {
544 		tx_bi = &tx_ring->tx_bi[ntc];
545 
546 		if (tx_bi->xdpf) {
547 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
548 			tx_bi->xdpf = NULL;
549 		} else {
550 			xsk_frames++;
551 		}
552 
553 		if (++ntc >= tx_ring->count)
554 			ntc = 0;
555 	}
556 
557 skip:
558 	tx_ring->next_to_clean += completed_frames;
559 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
560 		tx_ring->next_to_clean -= tx_ring->count;
561 
562 	if (xsk_frames)
563 		xsk_tx_completed(bp, xsk_frames);
564 
565 	i40e_arm_wb(tx_ring, vsi, completed_frames);
566 
567 out_xmit:
568 	if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
569 		xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
570 
571 	return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring));
572 }
573 
574 /**
575  * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
576  * @dev: the netdevice
577  * @queue_id: queue id to wake up
578  * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
579  *
580  * Returns <0 for errors, 0 otherwise.
581  **/
582 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
583 {
584 	struct i40e_netdev_priv *np = netdev_priv(dev);
585 	struct i40e_vsi *vsi = np->vsi;
586 	struct i40e_pf *pf = vsi->back;
587 	struct i40e_ring *ring;
588 
589 	if (test_bit(__I40E_CONFIG_BUSY, pf->state))
590 		return -EAGAIN;
591 
592 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
593 		return -ENETDOWN;
594 
595 	if (!i40e_enabled_xdp_vsi(vsi))
596 		return -ENXIO;
597 
598 	if (queue_id >= vsi->num_queue_pairs)
599 		return -ENXIO;
600 
601 	if (!vsi->xdp_rings[queue_id]->xsk_pool)
602 		return -ENXIO;
603 
604 	ring = vsi->xdp_rings[queue_id];
605 
606 	/* The idea here is that if NAPI is running, mark a miss, so
607 	 * it will run again. If not, trigger an interrupt and
608 	 * schedule the NAPI from interrupt context. If NAPI would be
609 	 * scheduled here, the interrupt affinity would not be
610 	 * honored.
611 	 */
612 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
613 		i40e_force_wb(vsi, ring->q_vector);
614 
615 	return 0;
616 }
617 
618 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
619 {
620 	u16 count_mask = rx_ring->count - 1;
621 	u16 ntc = rx_ring->next_to_clean;
622 	u16 ntu = rx_ring->next_to_use;
623 
624 	for ( ; ntc != ntu; ntc = (ntc + 1)  & count_mask) {
625 		struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc);
626 
627 		xsk_buff_free(rx_bi);
628 	}
629 }
630 
631 /**
632  * i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown
633  * @tx_ring: XDP Tx ring
634  **/
635 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
636 {
637 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
638 	struct xsk_buff_pool *bp = tx_ring->xsk_pool;
639 	struct i40e_tx_buffer *tx_bi;
640 	u32 xsk_frames = 0;
641 
642 	while (ntc != ntu) {
643 		tx_bi = &tx_ring->tx_bi[ntc];
644 
645 		if (tx_bi->xdpf)
646 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
647 		else
648 			xsk_frames++;
649 
650 		tx_bi->xdpf = NULL;
651 
652 		ntc++;
653 		if (ntc >= tx_ring->count)
654 			ntc = 0;
655 	}
656 
657 	if (xsk_frames)
658 		xsk_tx_completed(bp, xsk_frames);
659 }
660 
661 /**
662  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP
663  * buffer pool attached
664  * @vsi: vsi
665  *
666  * Returns true if any of the Rx rings has an AF_XDP buffer pool attached
667  **/
668 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
669 {
670 	struct net_device *netdev = vsi->netdev;
671 	int i;
672 
673 	for (i = 0; i < vsi->num_queue_pairs; i++) {
674 		if (xsk_get_pool_from_qid(netdev, i))
675 			return true;
676 	}
677 
678 	return false;
679 }
680