1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
29 
30 /* Interrupt Throttling and Rate Limiting Goodies */
31 
32 #define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K              0x0005
35 #define I40E_ITR_50K               0x000A
36 #define I40E_ITR_20K               0x0019
37 #define I40E_ITR_18K               0x001B
38 #define I40E_ITR_8K                0x003E
39 #define I40E_ITR_4K                0x007A
40 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF            (ITR_REG_TO_USEC(I40E_ITR_20K) | \
42 				    I40E_ITR_DYNAMIC)
43 #define I40E_ITR_TX_DEF            (ITR_REG_TO_USEC(I40E_ITR_20K) | \
44 				    I40E_ITR_DYNAMIC)
45 #define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
46 #define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
47 #define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
48 #define I40E_DEFAULT_IRQ_WORK      256
49 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
50 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
51 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
52 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
53  * the value of the rate limit is non-zero
54  */
55 #define INTRL_ENA                  BIT(6)
56 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
57 /**
58  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
59  * @intrl: interrupt rate limit to convert
60  *
61  * This function converts a decimal interrupt rate limit to the appropriate
62  * register format expected by the firmware when setting interrupt rate limit.
63  */
64 static inline u16 i40e_intrl_usec_to_reg(int intrl)
65 {
66 	if (intrl >> 2)
67 		return ((intrl >> 2) | INTRL_ENA);
68 	else
69 		return 0;
70 }
71 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
72 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
73 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
74 
75 #define I40E_QUEUE_END_OF_LIST 0x7FF
76 
77 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
78  * registers and QINT registers or more generally anywhere in the manual
79  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
80  * register but instead is a special value meaning "don't update" ITR0/1/2.
81  */
82 enum i40e_dyn_idx_t {
83 	I40E_IDX_ITR0 = 0,
84 	I40E_IDX_ITR1 = 1,
85 	I40E_IDX_ITR2 = 2,
86 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
87 };
88 
89 /* these are indexes into ITRN registers */
90 #define I40E_RX_ITR    I40E_IDX_ITR0
91 #define I40E_TX_ITR    I40E_IDX_ITR1
92 #define I40E_PE_ITR    I40E_IDX_ITR2
93 
94 /* Supported RSS offloads */
95 #define I40E_DEFAULT_RSS_HENA ( \
96 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
97 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
98 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
99 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
100 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
101 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
102 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
103 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
104 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
105 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
106 	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
107 
108 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
109 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
110 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
111 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
112 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
113 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
114 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
115 
116 #define i40e_pf_get_default_rss_hena(pf) \
117 	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
118 	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
119 
120 /* Supported Rx Buffer Sizes (a multiple of 128) */
121 #define I40E_RXBUFFER_256   256
122 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
123 #define I40E_RXBUFFER_2048  2048
124 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
125 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
126 
127 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
128  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
129  * this adds up to 512 bytes of extra data meaning the smallest allocation
130  * we could have is 1K.
131  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
132  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
133  */
134 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
135 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
136 #define i40e_rx_desc i40e_32byte_rx_desc
137 
138 #define I40E_RX_DMA_ATTR \
139 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140 
141 /* Attempt to maximize the headroom available for incoming frames.  We
142  * use a 2K buffer for receives and need 1536/1534 to store the data for
143  * the frame.  This leaves us with 512 bytes of room.  From that we need
144  * to deduct the space needed for the shared info and the padding needed
145  * to IP align the frame.
146  *
147  * Note: For cache line sizes 256 or larger this value is going to end
148  *	 up negative.  In these cases we should fall back to the legacy
149  *	 receive path.
150  */
151 #if (PAGE_SIZE < 8192)
152 #define I40E_2K_TOO_SMALL_WITH_PADDING \
153 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
154 
155 static inline int i40e_compute_pad(int rx_buf_len)
156 {
157 	int page_size, pad_size;
158 
159 	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
160 	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
161 
162 	return pad_size;
163 }
164 
165 static inline int i40e_skb_pad(void)
166 {
167 	int rx_buf_len;
168 
169 	/* If a 2K buffer cannot handle a standard Ethernet frame then
170 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
171 	 *
172 	 * For a 3K buffer we need to add enough padding to allow for
173 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
174 	 * cache-line alignment.
175 	 */
176 	if (I40E_2K_TOO_SMALL_WITH_PADDING)
177 		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
178 	else
179 		rx_buf_len = I40E_RXBUFFER_1536;
180 
181 	/* if needed make room for NET_IP_ALIGN */
182 	rx_buf_len -= NET_IP_ALIGN;
183 
184 	return i40e_compute_pad(rx_buf_len);
185 }
186 
187 #define I40E_SKB_PAD i40e_skb_pad()
188 #else
189 #define I40E_2K_TOO_SMALL_WITH_PADDING false
190 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
191 #endif
192 
193 /**
194  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
195  * @rx_desc: pointer to receive descriptor (in le64 format)
196  * @stat_err_bits: value to mask
197  *
198  * This function does some fast chicanery in order to return the
199  * value of the mask which is really only used for boolean tests.
200  * The status_error_len doesn't need to be shifted because it begins
201  * at offset zero.
202  */
203 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
204 				     const u64 stat_err_bits)
205 {
206 	return !!(rx_desc->wb.qword1.status_error_len &
207 		  cpu_to_le64(stat_err_bits));
208 }
209 
210 /* How many Rx Buffers do we bundle into one write to the hardware ? */
211 #define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
212 #define I40E_RX_INCREMENT(r, i) \
213 	do {					\
214 		(i)++;				\
215 		if ((i) == (r)->count)		\
216 			i = 0;			\
217 		r->next_to_clean = i;		\
218 	} while (0)
219 
220 #define I40E_RX_NEXT_DESC(r, i, n)		\
221 	do {					\
222 		(i)++;				\
223 		if ((i) == (r)->count)		\
224 			i = 0;			\
225 		(n) = I40E_RX_DESC((r), (i));	\
226 	} while (0)
227 
228 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
229 	do {						\
230 		I40E_RX_NEXT_DESC((r), (i), (n));	\
231 		prefetch((n));				\
232 	} while (0)
233 
234 #define I40E_MAX_BUFFER_TXD	8
235 #define I40E_MIN_TX_LEN		17
236 
237 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
238  * In order to align with the read requests we will align the value to
239  * the nearest 4K which represents our maximum read request size.
240  */
241 #define I40E_MAX_READ_REQ_SIZE		4096
242 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
243 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
244 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
245 
246 /**
247  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
248  * @size: transmit request size in bytes
249  *
250  * Due to hardware alignment restrictions (4K alignment), we need to
251  * assume that we can have no more than 12K of data per descriptor, even
252  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
253  * Thus, we need to divide by 12K. But division is slow! Instead,
254  * we decompose the operation into shifts and one relatively cheap
255  * multiply operation.
256  *
257  * To divide by 12K, we first divide by 4K, then divide by 3:
258  *     To divide by 4K, shift right by 12 bits
259  *     To divide by 3, multiply by 85, then divide by 256
260  *     (Divide by 256 is done by shifting right by 8 bits)
261  * Finally, we add one to round up. Because 256 isn't an exact multiple of
262  * 3, we'll underestimate near each multiple of 12K. This is actually more
263  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
264  * segment.  For our purposes this is accurate out to 1M which is orders of
265  * magnitude greater than our largest possible GSO size.
266  *
267  * This would then be implemented as:
268  *     return (((size >> 12) * 85) >> 8) + 1;
269  *
270  * Since multiplication and division are commutative, we can reorder
271  * operations into:
272  *     return ((size * 85) >> 20) + 1;
273  */
274 static inline unsigned int i40e_txd_use_count(unsigned int size)
275 {
276 	return ((size * 85) >> 20) + 1;
277 }
278 
279 /* Tx Descriptors needed, worst case */
280 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
281 #define I40E_MIN_DESC_PENDING	4
282 
283 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
284 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
285 #define I40E_TX_FLAGS_TSO		BIT(3)
286 #define I40E_TX_FLAGS_IPV4		BIT(4)
287 #define I40E_TX_FLAGS_IPV6		BIT(5)
288 #define I40E_TX_FLAGS_FCCRC		BIT(6)
289 #define I40E_TX_FLAGS_FSO		BIT(7)
290 #define I40E_TX_FLAGS_TSYN		BIT(8)
291 #define I40E_TX_FLAGS_FD_SB		BIT(9)
292 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
293 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
294 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
295 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
296 #define I40E_TX_FLAGS_VLAN_SHIFT	16
297 
298 struct i40e_tx_buffer {
299 	struct i40e_tx_desc *next_to_watch;
300 	union {
301 		struct sk_buff *skb;
302 		void *raw_buf;
303 	};
304 	unsigned int bytecount;
305 	unsigned short gso_segs;
306 
307 	DEFINE_DMA_UNMAP_ADDR(dma);
308 	DEFINE_DMA_UNMAP_LEN(len);
309 	u32 tx_flags;
310 };
311 
312 struct i40e_rx_buffer {
313 	dma_addr_t dma;
314 	struct page *page;
315 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
316 	__u32 page_offset;
317 #else
318 	__u16 page_offset;
319 #endif
320 	__u16 pagecnt_bias;
321 };
322 
323 struct i40e_queue_stats {
324 	u64 packets;
325 	u64 bytes;
326 };
327 
328 struct i40e_tx_queue_stats {
329 	u64 restart_queue;
330 	u64 tx_busy;
331 	u64 tx_done_old;
332 	u64 tx_linearize;
333 	u64 tx_force_wb;
334 };
335 
336 struct i40e_rx_queue_stats {
337 	u64 non_eop_descs;
338 	u64 alloc_page_failed;
339 	u64 alloc_buff_failed;
340 	u64 page_reuse_count;
341 	u64 realloc_count;
342 };
343 
344 enum i40e_ring_state_t {
345 	__I40E_TX_FDIR_INIT_DONE,
346 	__I40E_TX_XPS_INIT_DONE,
347 	__I40E_RING_STATE_NBITS /* must be last */
348 };
349 
350 /* some useful defines for virtchannel interface, which
351  * is the only remaining user of header split
352  */
353 #define I40E_RX_DTYPE_NO_SPLIT      0
354 #define I40E_RX_DTYPE_HEADER_SPLIT  1
355 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
356 #define I40E_RX_SPLIT_L2      0x1
357 #define I40E_RX_SPLIT_IP      0x2
358 #define I40E_RX_SPLIT_TCP_UDP 0x4
359 #define I40E_RX_SPLIT_SCTP    0x8
360 
361 /* struct that defines a descriptor ring, associated with a VSI */
362 struct i40e_ring {
363 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
364 	void *desc;			/* Descriptor ring memory */
365 	struct device *dev;		/* Used for DMA mapping */
366 	struct net_device *netdev;	/* netdev ring maps to */
367 	struct bpf_prog *xdp_prog;
368 	union {
369 		struct i40e_tx_buffer *tx_bi;
370 		struct i40e_rx_buffer *rx_bi;
371 	};
372 	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
373 	u16 queue_index;		/* Queue number of ring */
374 	u8 dcb_tc;			/* Traffic class of ring */
375 	u8 __iomem *tail;
376 
377 	/* high bit set means dynamic, use accessor routines to read/write.
378 	 * hardware only supports 2us resolution for the ITR registers.
379 	 * these values always store the USER setting, and must be converted
380 	 * before programming to a register.
381 	 */
382 	u16 rx_itr_setting;
383 	u16 tx_itr_setting;
384 
385 	u16 count;			/* Number of descriptors */
386 	u16 reg_idx;			/* HW register index of the ring */
387 	u16 rx_buf_len;
388 
389 	/* used in interrupt processing */
390 	u16 next_to_use;
391 	u16 next_to_clean;
392 
393 	u8 atr_sample_rate;
394 	u8 atr_count;
395 
396 	bool ring_active;		/* is ring online or not */
397 	bool arm_wb;		/* do something to arm write back */
398 	u8 packet_stride;
399 
400 	u16 flags;
401 #define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
402 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
403 #define I40E_TXR_FLAGS_XDP			BIT(2)
404 
405 	/* stats structs */
406 	struct i40e_queue_stats	stats;
407 	struct u64_stats_sync syncp;
408 	union {
409 		struct i40e_tx_queue_stats tx_stats;
410 		struct i40e_rx_queue_stats rx_stats;
411 	};
412 
413 	unsigned int size;		/* length of descriptor ring in bytes */
414 	dma_addr_t dma;			/* physical address of ring */
415 
416 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
417 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
418 
419 	struct rcu_head rcu;		/* to avoid race on free */
420 	u16 next_to_alloc;
421 	struct sk_buff *skb;		/* When i40e_clean_rx_ring_irq() must
422 					 * return before it sees the EOP for
423 					 * the current packet, we save that skb
424 					 * here and resume receiving this
425 					 * packet the next time
426 					 * i40e_clean_rx_ring_irq() is called
427 					 * for this ring.
428 					 */
429 
430 	struct i40e_channel *ch;
431 } ____cacheline_internodealigned_in_smp;
432 
433 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
434 {
435 	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
436 }
437 
438 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
439 {
440 	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
441 }
442 
443 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
444 {
445 	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
446 }
447 
448 static inline bool ring_is_xdp(struct i40e_ring *ring)
449 {
450 	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
451 }
452 
453 static inline void set_ring_xdp(struct i40e_ring *ring)
454 {
455 	ring->flags |= I40E_TXR_FLAGS_XDP;
456 }
457 
458 enum i40e_latency_range {
459 	I40E_LOWEST_LATENCY = 0,
460 	I40E_LOW_LATENCY = 1,
461 	I40E_BULK_LATENCY = 2,
462 };
463 
464 struct i40e_ring_container {
465 	/* array of pointers to rings */
466 	struct i40e_ring *ring;
467 	unsigned int total_bytes;	/* total bytes processed this int */
468 	unsigned int total_packets;	/* total packets processed this int */
469 	unsigned long last_itr_update;	/* jiffies of last ITR update */
470 	u16 count;
471 	enum i40e_latency_range latency_range;
472 	u16 itr;
473 };
474 
475 /* iterator for handling rings in ring container */
476 #define i40e_for_each_ring(pos, head) \
477 	for (pos = (head).ring; pos != NULL; pos = pos->next)
478 
479 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
480 {
481 #if (PAGE_SIZE < 8192)
482 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
483 		return 1;
484 #endif
485 	return 0;
486 }
487 
488 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
489 
490 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
491 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
492 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
493 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
494 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
495 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
496 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
497 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
498 int i40e_napi_poll(struct napi_struct *napi, int budget);
499 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
500 u32 i40e_get_tx_pending(struct i40e_ring *ring);
501 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
502 bool __i40e_chk_linearize(struct sk_buff *skb);
503 
504 /**
505  * i40e_get_head - Retrieve head from head writeback
506  * @tx_ring:  tx ring to fetch head of
507  *
508  * Returns value of Tx ring head based on value stored
509  * in head write-back location
510  **/
511 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
512 {
513 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
514 
515 	return le32_to_cpu(*(volatile __le32 *)head);
516 }
517 
518 /**
519  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
520  * @skb:     send buffer
521  * @tx_ring: ring to send buffer on
522  *
523  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
524  * there is not enough descriptors available in this ring since we need at least
525  * one descriptor.
526  **/
527 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
528 {
529 	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
530 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
531 	int count = 0, size = skb_headlen(skb);
532 
533 	for (;;) {
534 		count += i40e_txd_use_count(size);
535 
536 		if (!nr_frags--)
537 			break;
538 
539 		size = skb_frag_size(frag++);
540 	}
541 
542 	return count;
543 }
544 
545 /**
546  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
547  * @tx_ring: the ring to be checked
548  * @size:    the size buffer we want to assure is available
549  *
550  * Returns 0 if stop is not needed
551  **/
552 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
553 {
554 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
555 		return 0;
556 	return __i40e_maybe_stop_tx(tx_ring, size);
557 }
558 
559 /**
560  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
561  * @skb:      send buffer
562  * @count:    number of buffers used
563  *
564  * Note: Our HW can't scatter-gather more than 8 fragments to build
565  * a packet on the wire and so we need to figure out the cases where we
566  * need to linearize the skb.
567  **/
568 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
569 {
570 	/* Both TSO and single send will work if count is less than 8 */
571 	if (likely(count < I40E_MAX_BUFFER_TXD))
572 		return false;
573 
574 	if (skb_is_gso(skb))
575 		return __i40e_chk_linearize(skb);
576 
577 	/* we can support up to 8 data buffers for a single send */
578 	return count != I40E_MAX_BUFFER_TXD;
579 }
580 
581 /**
582  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
583  * @ring: Tx ring to find the netdev equivalent of
584  **/
585 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
586 {
587 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
588 }
589 #endif /* _I40E_TXRX_H_ */
590