1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _I40E_TXRX_H_
5 #define _I40E_TXRX_H_
6 
7 #include <net/xdp.h>
8 #include "i40e_type.h"
9 
10 /* Interrupt Throttling and Rate Limiting Goodies */
11 #define I40E_DEFAULT_IRQ_WORK      256
12 
13 /* The datasheet for the X710 and XL710 indicate that the maximum value for
14  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
15  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
16  * the register value which is divided by 2 lets use the actual values and
17  * avoid an excessive amount of translation.
18  */
19 #define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
20 #define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
21 #define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
22 #define I40E_ITR_20K		    50
23 #define I40E_ITR_8K		   122
24 #define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
25 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
28 
29 #define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
30 #define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
31 
32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
33  * the value of the rate limit is non-zero
34  */
35 #define INTRL_ENA                  BIT(6)
36 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
38 
39 /**
40  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
41  * @intrl: interrupt rate limit to convert
42  *
43  * This function converts a decimal interrupt rate limit to the appropriate
44  * register format expected by the firmware when setting interrupt rate limit.
45  */
46 static inline u16 i40e_intrl_usec_to_reg(int intrl)
47 {
48 	if (intrl >> 2)
49 		return ((intrl >> 2) | INTRL_ENA);
50 	else
51 		return 0;
52 }
53 
54 #define I40E_QUEUE_END_OF_LIST 0x7FF
55 
56 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
57  * registers and QINT registers or more generally anywhere in the manual
58  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
59  * register but instead is a special value meaning "don't update" ITR0/1/2.
60  */
61 enum i40e_dyn_idx {
62 	I40E_IDX_ITR0 = 0,
63 	I40E_IDX_ITR1 = 1,
64 	I40E_IDX_ITR2 = 2,
65 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
66 };
67 
68 /* these are indexes into ITRN registers */
69 #define I40E_RX_ITR    I40E_IDX_ITR0
70 #define I40E_TX_ITR    I40E_IDX_ITR1
71 #define I40E_SW_ITR    I40E_IDX_ITR2
72 
73 /* Supported RSS offloads */
74 #define I40E_DEFAULT_RSS_HENA ( \
75 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
76 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
77 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
78 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
79 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
80 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
81 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
82 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
83 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
84 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
85 	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
86 
87 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
88 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
89 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
90 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
91 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
92 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
93 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
94 
95 #define i40e_pf_get_default_rss_hena(pf) \
96 	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
97 	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
98 
99 /* Supported Rx Buffer Sizes (a multiple of 128) */
100 #define I40E_RXBUFFER_256   256
101 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
102 #define I40E_RXBUFFER_2048  2048
103 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
104 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
105 
106 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
107  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
108  * this adds up to 512 bytes of extra data meaning the smallest allocation
109  * we could have is 1K.
110  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
111  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
112  */
113 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
114 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
115 #define i40e_rx_desc i40e_16byte_rx_desc
116 
117 #define I40E_RX_DMA_ATTR \
118 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
119 
120 /* Attempt to maximize the headroom available for incoming frames.  We
121  * use a 2K buffer for receives and need 1536/1534 to store the data for
122  * the frame.  This leaves us with 512 bytes of room.  From that we need
123  * to deduct the space needed for the shared info and the padding needed
124  * to IP align the frame.
125  *
126  * Note: For cache line sizes 256 or larger this value is going to end
127  *	 up negative.  In these cases we should fall back to the legacy
128  *	 receive path.
129  */
130 #if (PAGE_SIZE < 8192)
131 #define I40E_2K_TOO_SMALL_WITH_PADDING \
132 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
133 
134 static inline int i40e_compute_pad(int rx_buf_len)
135 {
136 	int page_size, pad_size;
137 
138 	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
139 	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
140 
141 	return pad_size;
142 }
143 
144 static inline int i40e_skb_pad(void)
145 {
146 	int rx_buf_len;
147 
148 	/* If a 2K buffer cannot handle a standard Ethernet frame then
149 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
150 	 *
151 	 * For a 3K buffer we need to add enough padding to allow for
152 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
153 	 * cache-line alignment.
154 	 */
155 	if (I40E_2K_TOO_SMALL_WITH_PADDING)
156 		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
157 	else
158 		rx_buf_len = I40E_RXBUFFER_1536;
159 
160 	/* if needed make room for NET_IP_ALIGN */
161 	rx_buf_len -= NET_IP_ALIGN;
162 
163 	return i40e_compute_pad(rx_buf_len);
164 }
165 
166 #define I40E_SKB_PAD i40e_skb_pad()
167 #else
168 #define I40E_2K_TOO_SMALL_WITH_PADDING false
169 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
170 #endif
171 
172 /**
173  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
174  * @rx_desc: pointer to receive descriptor (in le64 format)
175  * @stat_err_bits: value to mask
176  *
177  * This function does some fast chicanery in order to return the
178  * value of the mask which is really only used for boolean tests.
179  * The status_error_len doesn't need to be shifted because it begins
180  * at offset zero.
181  */
182 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
183 				     const u64 stat_err_bits)
184 {
185 	return !!(rx_desc->wb.qword1.status_error_len &
186 		  cpu_to_le64(stat_err_bits));
187 }
188 
189 /* How many Rx Buffers do we bundle into one write to the hardware ? */
190 #define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
191 
192 #define I40E_RX_NEXT_DESC(r, i, n)		\
193 	do {					\
194 		(i)++;				\
195 		if ((i) == (r)->count)		\
196 			i = 0;			\
197 		(n) = I40E_RX_DESC((r), (i));	\
198 	} while (0)
199 
200 
201 #define I40E_MAX_BUFFER_TXD	8
202 #define I40E_MIN_TX_LEN		17
203 
204 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
205  * In order to align with the read requests we will align the value to
206  * the nearest 4K which represents our maximum read request size.
207  */
208 #define I40E_MAX_READ_REQ_SIZE		4096
209 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
210 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
211 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
212 
213 /**
214  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
215  * @size: transmit request size in bytes
216  *
217  * Due to hardware alignment restrictions (4K alignment), we need to
218  * assume that we can have no more than 12K of data per descriptor, even
219  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
220  * Thus, we need to divide by 12K. But division is slow! Instead,
221  * we decompose the operation into shifts and one relatively cheap
222  * multiply operation.
223  *
224  * To divide by 12K, we first divide by 4K, then divide by 3:
225  *     To divide by 4K, shift right by 12 bits
226  *     To divide by 3, multiply by 85, then divide by 256
227  *     (Divide by 256 is done by shifting right by 8 bits)
228  * Finally, we add one to round up. Because 256 isn't an exact multiple of
229  * 3, we'll underestimate near each multiple of 12K. This is actually more
230  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
231  * segment.  For our purposes this is accurate out to 1M which is orders of
232  * magnitude greater than our largest possible GSO size.
233  *
234  * This would then be implemented as:
235  *     return (((size >> 12) * 85) >> 8) + 1;
236  *
237  * Since multiplication and division are commutative, we can reorder
238  * operations into:
239  *     return ((size * 85) >> 20) + 1;
240  */
241 static inline unsigned int i40e_txd_use_count(unsigned int size)
242 {
243 	return ((size * 85) >> 20) + 1;
244 }
245 
246 /* Tx Descriptors needed, worst case */
247 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
248 
249 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
250 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
251 #define I40E_TX_FLAGS_TSO		BIT(3)
252 #define I40E_TX_FLAGS_IPV4		BIT(4)
253 #define I40E_TX_FLAGS_IPV6		BIT(5)
254 #define I40E_TX_FLAGS_TSYN		BIT(8)
255 #define I40E_TX_FLAGS_FD_SB		BIT(9)
256 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
257 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
258 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
259 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
260 #define I40E_TX_FLAGS_VLAN_SHIFT	16
261 
262 struct i40e_tx_buffer {
263 	struct i40e_tx_desc *next_to_watch;
264 	union {
265 		struct xdp_frame *xdpf;
266 		struct sk_buff *skb;
267 		void *raw_buf;
268 	};
269 	unsigned int bytecount;
270 	unsigned short gso_segs;
271 
272 	DEFINE_DMA_UNMAP_ADDR(dma);
273 	DEFINE_DMA_UNMAP_LEN(len);
274 	u32 tx_flags;
275 };
276 
277 struct i40e_rx_buffer {
278 	dma_addr_t dma;
279 	struct page *page;
280 	__u32 page_offset;
281 	__u16 pagecnt_bias;
282 	__u32 page_count;
283 };
284 
285 struct i40e_queue_stats {
286 	u64 packets;
287 	u64 bytes;
288 };
289 
290 struct i40e_tx_queue_stats {
291 	u64 restart_queue;
292 	u64 tx_busy;
293 	u64 tx_done_old;
294 	u64 tx_linearize;
295 	u64 tx_force_wb;
296 	u64 tx_stopped;
297 	int prev_pkt_ctr;
298 };
299 
300 struct i40e_rx_queue_stats {
301 	u64 non_eop_descs;
302 	u64 alloc_page_failed;
303 	u64 alloc_buff_failed;
304 	u64 page_reuse_count;
305 	u64 page_alloc_count;
306 	u64 page_waive_count;
307 	u64 page_busy_count;
308 };
309 
310 enum i40e_ring_state {
311 	__I40E_TX_FDIR_INIT_DONE,
312 	__I40E_TX_XPS_INIT_DONE,
313 	__I40E_RING_STATE_NBITS /* must be last */
314 };
315 
316 /* some useful defines for virtchannel interface, which
317  * is the only remaining user of header split
318  */
319 #define I40E_RX_DTYPE_HEADER_SPLIT  1
320 #define I40E_RX_SPLIT_L2      0x1
321 #define I40E_RX_SPLIT_IP      0x2
322 #define I40E_RX_SPLIT_TCP_UDP 0x4
323 #define I40E_RX_SPLIT_SCTP    0x8
324 
325 /* struct that defines a descriptor ring, associated with a VSI */
326 struct i40e_ring {
327 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
328 	void *desc;			/* Descriptor ring memory */
329 	struct device *dev;		/* Used for DMA mapping */
330 	struct net_device *netdev;	/* netdev ring maps to */
331 	struct bpf_prog *xdp_prog;
332 	union {
333 		struct i40e_tx_buffer *tx_bi;
334 		struct i40e_rx_buffer *rx_bi;
335 		struct xdp_buff **rx_bi_zc;
336 	};
337 	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
338 	u16 queue_index;		/* Queue number of ring */
339 	u8 dcb_tc;			/* Traffic class of ring */
340 	u8 __iomem *tail;
341 
342 	/* Storing xdp_buff on ring helps in saving the state of partially built
343 	 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
344 	 * and to resume packet building for this ring in the next call to
345 	 * i40e_clean_rx_ring_irq().
346 	 */
347 	struct xdp_buff xdp;
348 
349 	/* Next descriptor to be processed; next_to_clean is updated only on
350 	 * processing EOP descriptor
351 	 */
352 	u16 next_to_process;
353 	/* high bit set means dynamic, use accessor routines to read/write.
354 	 * hardware only supports 2us resolution for the ITR registers.
355 	 * these values always store the USER setting, and must be converted
356 	 * before programming to a register.
357 	 */
358 	u16 itr_setting;
359 
360 	u16 count;			/* Number of descriptors */
361 	u16 reg_idx;			/* HW register index of the ring */
362 	u16 rx_buf_len;
363 
364 	/* used in interrupt processing */
365 	u16 next_to_use;
366 	u16 next_to_clean;
367 	u16 xdp_tx_active;
368 
369 	u8 atr_sample_rate;
370 	u8 atr_count;
371 
372 	bool ring_active;		/* is ring online or not */
373 	bool arm_wb;		/* do something to arm write back */
374 	u8 packet_stride;
375 
376 	u16 flags;
377 #define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
378 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
379 #define I40E_TXR_FLAGS_XDP			BIT(2)
380 
381 	/* stats structs */
382 	struct i40e_queue_stats	stats;
383 	struct u64_stats_sync syncp;
384 	union {
385 		struct i40e_tx_queue_stats tx_stats;
386 		struct i40e_rx_queue_stats rx_stats;
387 	};
388 
389 	unsigned int size;		/* length of descriptor ring in bytes */
390 	dma_addr_t dma;			/* physical address of ring */
391 
392 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
393 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
394 
395 	struct rcu_head rcu;		/* to avoid race on free */
396 	u16 next_to_alloc;
397 
398 	struct i40e_channel *ch;
399 	u16 rx_offset;
400 	struct xdp_rxq_info xdp_rxq;
401 	struct xsk_buff_pool *xsk_pool;
402 } ____cacheline_internodealigned_in_smp;
403 
404 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
405 {
406 	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
407 }
408 
409 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
410 {
411 	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
412 }
413 
414 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
415 {
416 	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
417 }
418 
419 static inline bool ring_is_xdp(struct i40e_ring *ring)
420 {
421 	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
422 }
423 
424 static inline void set_ring_xdp(struct i40e_ring *ring)
425 {
426 	ring->flags |= I40E_TXR_FLAGS_XDP;
427 }
428 
429 #define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
430 #define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
431 #define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
432 #define I40E_ITR_ADAPTIVE_LATENCY	0x8000
433 #define I40E_ITR_ADAPTIVE_BULK		0x0000
434 
435 struct i40e_ring_container {
436 	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
437 	unsigned long next_update;	/* jiffies value of next update */
438 	unsigned int total_bytes;	/* total bytes processed this int */
439 	unsigned int total_packets;	/* total packets processed this int */
440 	u16 count;
441 	u16 target_itr;			/* target ITR setting for ring(s) */
442 	u16 current_itr;		/* current ITR setting for ring(s) */
443 };
444 
445 /* iterator for handling rings in ring container */
446 #define i40e_for_each_ring(pos, head) \
447 	for (pos = (head).ring; pos != NULL; pos = pos->next)
448 
449 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
450 {
451 #if (PAGE_SIZE < 8192)
452 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
453 		return 1;
454 #endif
455 	return 0;
456 }
457 
458 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
459 
460 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
461 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
462 u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
463 			  struct net_device *sb_dev);
464 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
465 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
466 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
467 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
468 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
469 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
470 int i40e_napi_poll(struct napi_struct *napi, int budget);
471 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
472 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
473 void i40e_detect_recover_hung(struct i40e_vsi *vsi);
474 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
475 bool __i40e_chk_linearize(struct sk_buff *skb);
476 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
477 		  u32 flags);
478 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
479 		     union i40e_rx_desc *rx_desc);
480 
481 /**
482  * i40e_get_head - Retrieve head from head writeback
483  * @tx_ring:  tx ring to fetch head of
484  *
485  * Returns value of Tx ring head based on value stored
486  * in head write-back location
487  **/
488 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
489 {
490 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
491 
492 	return le32_to_cpu(*(volatile __le32 *)head);
493 }
494 
495 /**
496  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
497  * @skb:     send buffer
498  *
499  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
500  * there is not enough descriptors available in this ring since we need at least
501  * one descriptor.
502  **/
503 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
504 {
505 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
506 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
507 	int count = 0, size = skb_headlen(skb);
508 
509 	for (;;) {
510 		count += i40e_txd_use_count(size);
511 
512 		if (!nr_frags--)
513 			break;
514 
515 		size = skb_frag_size(frag++);
516 	}
517 
518 	return count;
519 }
520 
521 /**
522  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
523  * @tx_ring: the ring to be checked
524  * @size:    the size buffer we want to assure is available
525  *
526  * Returns 0 if stop is not needed
527  **/
528 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
529 {
530 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
531 		return 0;
532 	return __i40e_maybe_stop_tx(tx_ring, size);
533 }
534 
535 /**
536  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
537  * @skb:      send buffer
538  * @count:    number of buffers used
539  *
540  * Note: Our HW can't scatter-gather more than 8 fragments to build
541  * a packet on the wire and so we need to figure out the cases where we
542  * need to linearize the skb.
543  **/
544 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
545 {
546 	/* Both TSO and single send will work if count is less than 8 */
547 	if (likely(count < I40E_MAX_BUFFER_TXD))
548 		return false;
549 
550 	if (skb_is_gso(skb))
551 		return __i40e_chk_linearize(skb);
552 
553 	/* we can support up to 8 data buffers for a single send */
554 	return count != I40E_MAX_BUFFER_TXD;
555 }
556 
557 /**
558  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
559  * @ring: Tx ring to find the netdev equivalent of
560  **/
561 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
562 {
563 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
564 }
565 #endif /* _I40E_TXRX_H_ */
566