1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2016 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #ifndef _I40E_TXRX_H_ 28 #define _I40E_TXRX_H_ 29 30 /* Interrupt Throttling and Rate Limiting Goodies */ 31 32 #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */ 33 #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */ 34 #define I40E_ITR_100K 0x0005 35 #define I40E_ITR_50K 0x000A 36 #define I40E_ITR_20K 0x0019 37 #define I40E_ITR_18K 0x001B 38 #define I40E_ITR_8K 0x003E 39 #define I40E_ITR_4K 0x007A 40 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 41 #define I40E_ITR_RX_DEF I40E_ITR_20K 42 #define I40E_ITR_TX_DEF I40E_ITR_20K 43 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 44 #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */ 45 #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */ 46 #define I40E_DEFAULT_IRQ_WORK 256 47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1) 48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC)) 49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1) 50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 51 * the value of the rate limit is non-zero 52 */ 53 #define INTRL_ENA BIT(6) 54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 55 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) 56 #define I40E_INTRL_8K 125 /* 8000 ints/sec */ 57 #define I40E_INTRL_62K 16 /* 62500 ints/sec */ 58 #define I40E_INTRL_83K 12 /* 83333 ints/sec */ 59 60 #define I40E_QUEUE_END_OF_LIST 0x7FF 61 62 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 63 * registers and QINT registers or more generally anywhere in the manual 64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 65 * register but instead is a special value meaning "don't update" ITR0/1/2. 66 */ 67 enum i40e_dyn_idx_t { 68 I40E_IDX_ITR0 = 0, 69 I40E_IDX_ITR1 = 1, 70 I40E_IDX_ITR2 = 2, 71 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 72 }; 73 74 /* these are indexes into ITRN registers */ 75 #define I40E_RX_ITR I40E_IDX_ITR0 76 #define I40E_TX_ITR I40E_IDX_ITR1 77 #define I40E_PE_ITR I40E_IDX_ITR2 78 79 /* Supported RSS offloads */ 80 #define I40E_DEFAULT_RSS_HENA ( \ 81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 84 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 85 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ 86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 90 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ 91 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) 92 93 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ 94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 100 101 #define i40e_pf_get_default_rss_hena(pf) \ 102 (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ 103 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) 104 105 /* Supported Rx Buffer Sizes */ 106 #define I40E_RXBUFFER_512 512 /* Used for packet split */ 107 #define I40E_RXBUFFER_2048 2048 108 #define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */ 109 #define I40E_RXBUFFER_4096 4096 110 #define I40E_RXBUFFER_8192 8192 111 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 112 113 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 114 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 115 * this adds up to 512 bytes of extra data meaning the smallest allocation 116 * we could have is 1K. 117 * i.e. RXBUFFER_512 --> size-1024 slab 118 */ 119 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_512 120 121 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 122 #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */ 123 #define I40E_RX_INCREMENT(r, i) \ 124 do { \ 125 (i)++; \ 126 if ((i) == (r)->count) \ 127 i = 0; \ 128 r->next_to_clean = i; \ 129 } while (0) 130 131 #define I40E_RX_NEXT_DESC(r, i, n) \ 132 do { \ 133 (i)++; \ 134 if ((i) == (r)->count) \ 135 i = 0; \ 136 (n) = I40E_RX_DESC((r), (i)); \ 137 } while (0) 138 139 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ 140 do { \ 141 I40E_RX_NEXT_DESC((r), (i), (n)); \ 142 prefetch((n)); \ 143 } while (0) 144 145 #define i40e_rx_desc i40e_32byte_rx_desc 146 147 #define I40E_MAX_BUFFER_TXD 8 148 #define I40E_MIN_TX_LEN 17 149 #define I40E_MAX_DATA_PER_TXD 8192 150 151 /* Tx Descriptors needed, worst case */ 152 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), I40E_MAX_DATA_PER_TXD) 153 #define DESC_NEEDED (MAX_SKB_FRAGS + 4) 154 #define I40E_MIN_DESC_PENDING 4 155 156 #define I40E_TX_FLAGS_HW_VLAN BIT(1) 157 #define I40E_TX_FLAGS_SW_VLAN BIT(2) 158 #define I40E_TX_FLAGS_TSO BIT(3) 159 #define I40E_TX_FLAGS_IPV4 BIT(4) 160 #define I40E_TX_FLAGS_IPV6 BIT(5) 161 #define I40E_TX_FLAGS_FCCRC BIT(6) 162 #define I40E_TX_FLAGS_FSO BIT(7) 163 #define I40E_TX_FLAGS_TSYN BIT(8) 164 #define I40E_TX_FLAGS_FD_SB BIT(9) 165 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 166 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 167 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 168 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 169 #define I40E_TX_FLAGS_VLAN_SHIFT 16 170 171 struct i40e_tx_buffer { 172 struct i40e_tx_desc *next_to_watch; 173 union { 174 struct sk_buff *skb; 175 void *raw_buf; 176 }; 177 unsigned int bytecount; 178 unsigned short gso_segs; 179 180 DEFINE_DMA_UNMAP_ADDR(dma); 181 DEFINE_DMA_UNMAP_LEN(len); 182 u32 tx_flags; 183 }; 184 185 struct i40e_rx_buffer { 186 struct sk_buff *skb; 187 void *hdr_buf; 188 dma_addr_t dma; 189 struct page *page; 190 dma_addr_t page_dma; 191 unsigned int page_offset; 192 }; 193 194 struct i40e_queue_stats { 195 u64 packets; 196 u64 bytes; 197 }; 198 199 struct i40e_tx_queue_stats { 200 u64 restart_queue; 201 u64 tx_busy; 202 u64 tx_done_old; 203 u64 tx_linearize; 204 u64 tx_force_wb; 205 u64 tx_lost_interrupt; 206 }; 207 208 struct i40e_rx_queue_stats { 209 u64 non_eop_descs; 210 u64 alloc_page_failed; 211 u64 alloc_buff_failed; 212 u64 page_reuse_count; 213 u64 realloc_count; 214 }; 215 216 enum i40e_ring_state_t { 217 __I40E_TX_FDIR_INIT_DONE, 218 __I40E_TX_XPS_INIT_DONE, 219 __I40E_RX_PS_ENABLED, 220 __I40E_RX_16BYTE_DESC_ENABLED, 221 }; 222 223 #define ring_is_ps_enabled(ring) \ 224 test_bit(__I40E_RX_PS_ENABLED, &(ring)->state) 225 #define set_ring_ps_enabled(ring) \ 226 set_bit(__I40E_RX_PS_ENABLED, &(ring)->state) 227 #define clear_ring_ps_enabled(ring) \ 228 clear_bit(__I40E_RX_PS_ENABLED, &(ring)->state) 229 #define ring_is_16byte_desc_enabled(ring) \ 230 test_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) 231 #define set_ring_16byte_desc_enabled(ring) \ 232 set_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) 233 #define clear_ring_16byte_desc_enabled(ring) \ 234 clear_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) 235 236 /* struct that defines a descriptor ring, associated with a VSI */ 237 struct i40e_ring { 238 struct i40e_ring *next; /* pointer to next ring in q_vector */ 239 void *desc; /* Descriptor ring memory */ 240 struct device *dev; /* Used for DMA mapping */ 241 struct net_device *netdev; /* netdev ring maps to */ 242 union { 243 struct i40e_tx_buffer *tx_bi; 244 struct i40e_rx_buffer *rx_bi; 245 }; 246 unsigned long state; 247 u16 queue_index; /* Queue number of ring */ 248 u8 dcb_tc; /* Traffic class of ring */ 249 u8 __iomem *tail; 250 251 /* high bit set means dynamic, use accessor routines to read/write. 252 * hardware only supports 2us resolution for the ITR registers. 253 * these values always store the USER setting, and must be converted 254 * before programming to a register. 255 */ 256 u16 rx_itr_setting; 257 u16 tx_itr_setting; 258 259 u16 count; /* Number of descriptors */ 260 u16 reg_idx; /* HW register index of the ring */ 261 u16 rx_hdr_len; 262 u16 rx_buf_len; 263 u8 dtype; 264 #define I40E_RX_DTYPE_NO_SPLIT 0 265 #define I40E_RX_DTYPE_HEADER_SPLIT 1 266 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2 267 #define I40E_RX_SPLIT_L2 0x1 268 #define I40E_RX_SPLIT_IP 0x2 269 #define I40E_RX_SPLIT_TCP_UDP 0x4 270 #define I40E_RX_SPLIT_SCTP 0x8 271 272 /* used in interrupt processing */ 273 u16 next_to_use; 274 u16 next_to_clean; 275 276 u8 atr_sample_rate; 277 u8 atr_count; 278 279 unsigned long last_rx_timestamp; 280 281 bool ring_active; /* is ring online or not */ 282 bool arm_wb; /* do something to arm write back */ 283 u8 packet_stride; 284 285 u16 flags; 286 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 287 #define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2) 288 289 /* stats structs */ 290 struct i40e_queue_stats stats; 291 struct u64_stats_sync syncp; 292 union { 293 struct i40e_tx_queue_stats tx_stats; 294 struct i40e_rx_queue_stats rx_stats; 295 }; 296 297 unsigned int size; /* length of descriptor ring in bytes */ 298 dma_addr_t dma; /* physical address of ring */ 299 300 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 301 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 302 303 struct rcu_head rcu; /* to avoid race on free */ 304 } ____cacheline_internodealigned_in_smp; 305 306 enum i40e_latency_range { 307 I40E_LOWEST_LATENCY = 0, 308 I40E_LOW_LATENCY = 1, 309 I40E_BULK_LATENCY = 2, 310 I40E_ULTRA_LATENCY = 3, 311 }; 312 313 struct i40e_ring_container { 314 /* array of pointers to rings */ 315 struct i40e_ring *ring; 316 unsigned int total_bytes; /* total bytes processed this int */ 317 unsigned int total_packets; /* total packets processed this int */ 318 u16 count; 319 enum i40e_latency_range latency_range; 320 u16 itr; 321 }; 322 323 /* iterator for handling rings in ring container */ 324 #define i40e_for_each_ring(pos, head) \ 325 for (pos = (head).ring; pos != NULL; pos = pos->next) 326 327 bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rxr, u16 cleaned_count); 328 bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rxr, u16 cleaned_count); 329 void i40e_alloc_rx_headers(struct i40e_ring *rxr); 330 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 331 void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 332 void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 333 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 334 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 335 void i40e_free_tx_resources(struct i40e_ring *tx_ring); 336 void i40e_free_rx_resources(struct i40e_ring *rx_ring); 337 int i40e_napi_poll(struct napi_struct *napi, int budget); 338 #ifdef I40E_FCOE 339 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 340 struct i40e_tx_buffer *first, u32 tx_flags, 341 const u8 hdr_len, u32 td_cmd, u32 td_offset); 342 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 343 struct i40e_ring *tx_ring, u32 *flags); 344 #endif 345 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 346 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 347 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 348 bool __i40e_chk_linearize(struct sk_buff *skb); 349 350 /** 351 * i40e_get_head - Retrieve head from head writeback 352 * @tx_ring: tx ring to fetch head of 353 * 354 * Returns value of Tx ring head based on value stored 355 * in head write-back location 356 **/ 357 static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 358 { 359 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 360 361 return le32_to_cpu(*(volatile __le32 *)head); 362 } 363 364 /** 365 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 366 * @skb: send buffer 367 * @tx_ring: ring to send buffer on 368 * 369 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 370 * there is not enough descriptors available in this ring since we need at least 371 * one descriptor. 372 **/ 373 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 374 { 375 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 376 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 377 int count = 0, size = skb_headlen(skb); 378 379 for (;;) { 380 count += TXD_USE_COUNT(size); 381 382 if (!nr_frags--) 383 break; 384 385 size = skb_frag_size(frag++); 386 } 387 388 return count; 389 } 390 391 /** 392 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 393 * @tx_ring: the ring to be checked 394 * @size: the size buffer we want to assure is available 395 * 396 * Returns 0 if stop is not needed 397 **/ 398 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 399 { 400 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 401 return 0; 402 return __i40e_maybe_stop_tx(tx_ring, size); 403 } 404 405 /** 406 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 407 * @skb: send buffer 408 * @count: number of buffers used 409 * 410 * Note: Our HW can't scatter-gather more than 8 fragments to build 411 * a packet on the wire and so we need to figure out the cases where we 412 * need to linearize the skb. 413 **/ 414 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 415 { 416 /* we can only support up to 8 data buffers for a single send */ 417 if (likely(count <= I40E_MAX_BUFFER_TXD)) 418 return false; 419 420 return __i40e_chk_linearize(skb); 421 } 422 #endif /* _I40E_TXRX_H_ */ 423