1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _I40E_TXRX_H_
5 #define _I40E_TXRX_H_
6 
7 #include <net/xdp.h>
8 
9 /* Interrupt Throttling and Rate Limiting Goodies */
10 #define I40E_DEFAULT_IRQ_WORK      256
11 
12 /* The datasheet for the X710 and XL710 indicate that the maximum value for
13  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
14  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
15  * the register value which is divided by 2 lets use the actual values and
16  * avoid an excessive amount of translation.
17  */
18 #define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
19 #define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
20 #define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
21 #define I40E_ITR_100K		    10	/* all values below must be even */
22 #define I40E_ITR_50K		    20
23 #define I40E_ITR_20K		    50
24 #define I40E_ITR_18K		    60
25 #define I40E_ITR_8K		   122
26 #define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
27 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
28 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
29 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
30 
31 #define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
32 #define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
33 
34 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
35  * the value of the rate limit is non-zero
36  */
37 #define INTRL_ENA                  BIT(6)
38 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
39 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
40 
41 /**
42  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
43  * @intrl: interrupt rate limit to convert
44  *
45  * This function converts a decimal interrupt rate limit to the appropriate
46  * register format expected by the firmware when setting interrupt rate limit.
47  */
48 static inline u16 i40e_intrl_usec_to_reg(int intrl)
49 {
50 	if (intrl >> 2)
51 		return ((intrl >> 2) | INTRL_ENA);
52 	else
53 		return 0;
54 }
55 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
56 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
57 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
58 
59 #define I40E_QUEUE_END_OF_LIST 0x7FF
60 
61 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
62  * registers and QINT registers or more generally anywhere in the manual
63  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
64  * register but instead is a special value meaning "don't update" ITR0/1/2.
65  */
66 enum i40e_dyn_idx_t {
67 	I40E_IDX_ITR0 = 0,
68 	I40E_IDX_ITR1 = 1,
69 	I40E_IDX_ITR2 = 2,
70 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
71 };
72 
73 /* these are indexes into ITRN registers */
74 #define I40E_RX_ITR    I40E_IDX_ITR0
75 #define I40E_TX_ITR    I40E_IDX_ITR1
76 #define I40E_PE_ITR    I40E_IDX_ITR2
77 
78 /* Supported RSS offloads */
79 #define I40E_DEFAULT_RSS_HENA ( \
80 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
81 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
82 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
83 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
84 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
85 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
86 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
87 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
88 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
89 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
90 	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
91 
92 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
93 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
94 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
95 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
96 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
97 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
98 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
99 
100 #define i40e_pf_get_default_rss_hena(pf) \
101 	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
102 	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
103 
104 /* Supported Rx Buffer Sizes (a multiple of 128) */
105 #define I40E_RXBUFFER_256   256
106 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
107 #define I40E_RXBUFFER_2048  2048
108 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
109 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
110 
111 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
112  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
113  * this adds up to 512 bytes of extra data meaning the smallest allocation
114  * we could have is 1K.
115  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
116  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
117  */
118 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
119 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
120 #define i40e_rx_desc i40e_32byte_rx_desc
121 
122 #define I40E_RX_DMA_ATTR \
123 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
124 
125 /* Attempt to maximize the headroom available for incoming frames.  We
126  * use a 2K buffer for receives and need 1536/1534 to store the data for
127  * the frame.  This leaves us with 512 bytes of room.  From that we need
128  * to deduct the space needed for the shared info and the padding needed
129  * to IP align the frame.
130  *
131  * Note: For cache line sizes 256 or larger this value is going to end
132  *	 up negative.  In these cases we should fall back to the legacy
133  *	 receive path.
134  */
135 #if (PAGE_SIZE < 8192)
136 #define I40E_2K_TOO_SMALL_WITH_PADDING \
137 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
138 
139 static inline int i40e_compute_pad(int rx_buf_len)
140 {
141 	int page_size, pad_size;
142 
143 	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
144 	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
145 
146 	return pad_size;
147 }
148 
149 static inline int i40e_skb_pad(void)
150 {
151 	int rx_buf_len;
152 
153 	/* If a 2K buffer cannot handle a standard Ethernet frame then
154 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
155 	 *
156 	 * For a 3K buffer we need to add enough padding to allow for
157 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
158 	 * cache-line alignment.
159 	 */
160 	if (I40E_2K_TOO_SMALL_WITH_PADDING)
161 		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
162 	else
163 		rx_buf_len = I40E_RXBUFFER_1536;
164 
165 	/* if needed make room for NET_IP_ALIGN */
166 	rx_buf_len -= NET_IP_ALIGN;
167 
168 	return i40e_compute_pad(rx_buf_len);
169 }
170 
171 #define I40E_SKB_PAD i40e_skb_pad()
172 #else
173 #define I40E_2K_TOO_SMALL_WITH_PADDING false
174 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
175 #endif
176 
177 /**
178  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
179  * @rx_desc: pointer to receive descriptor (in le64 format)
180  * @stat_err_bits: value to mask
181  *
182  * This function does some fast chicanery in order to return the
183  * value of the mask which is really only used for boolean tests.
184  * The status_error_len doesn't need to be shifted because it begins
185  * at offset zero.
186  */
187 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
188 				     const u64 stat_err_bits)
189 {
190 	return !!(rx_desc->wb.qword1.status_error_len &
191 		  cpu_to_le64(stat_err_bits));
192 }
193 
194 /* How many Rx Buffers do we bundle into one write to the hardware ? */
195 #define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
196 #define I40E_RX_INCREMENT(r, i) \
197 	do {					\
198 		(i)++;				\
199 		if ((i) == (r)->count)		\
200 			i = 0;			\
201 		r->next_to_clean = i;		\
202 	} while (0)
203 
204 #define I40E_RX_NEXT_DESC(r, i, n)		\
205 	do {					\
206 		(i)++;				\
207 		if ((i) == (r)->count)		\
208 			i = 0;			\
209 		(n) = I40E_RX_DESC((r), (i));	\
210 	} while (0)
211 
212 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
213 	do {						\
214 		I40E_RX_NEXT_DESC((r), (i), (n));	\
215 		prefetch((n));				\
216 	} while (0)
217 
218 #define I40E_MAX_BUFFER_TXD	8
219 #define I40E_MIN_TX_LEN		17
220 
221 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
222  * In order to align with the read requests we will align the value to
223  * the nearest 4K which represents our maximum read request size.
224  */
225 #define I40E_MAX_READ_REQ_SIZE		4096
226 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
227 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
228 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
229 
230 /**
231  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
232  * @size: transmit request size in bytes
233  *
234  * Due to hardware alignment restrictions (4K alignment), we need to
235  * assume that we can have no more than 12K of data per descriptor, even
236  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
237  * Thus, we need to divide by 12K. But division is slow! Instead,
238  * we decompose the operation into shifts and one relatively cheap
239  * multiply operation.
240  *
241  * To divide by 12K, we first divide by 4K, then divide by 3:
242  *     To divide by 4K, shift right by 12 bits
243  *     To divide by 3, multiply by 85, then divide by 256
244  *     (Divide by 256 is done by shifting right by 8 bits)
245  * Finally, we add one to round up. Because 256 isn't an exact multiple of
246  * 3, we'll underestimate near each multiple of 12K. This is actually more
247  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
248  * segment.  For our purposes this is accurate out to 1M which is orders of
249  * magnitude greater than our largest possible GSO size.
250  *
251  * This would then be implemented as:
252  *     return (((size >> 12) * 85) >> 8) + 1;
253  *
254  * Since multiplication and division are commutative, we can reorder
255  * operations into:
256  *     return ((size * 85) >> 20) + 1;
257  */
258 static inline unsigned int i40e_txd_use_count(unsigned int size)
259 {
260 	return ((size * 85) >> 20) + 1;
261 }
262 
263 /* Tx Descriptors needed, worst case */
264 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
265 #define I40E_MIN_DESC_PENDING	4
266 
267 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
268 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
269 #define I40E_TX_FLAGS_TSO		BIT(3)
270 #define I40E_TX_FLAGS_IPV4		BIT(4)
271 #define I40E_TX_FLAGS_IPV6		BIT(5)
272 #define I40E_TX_FLAGS_FCCRC		BIT(6)
273 #define I40E_TX_FLAGS_FSO		BIT(7)
274 #define I40E_TX_FLAGS_TSYN		BIT(8)
275 #define I40E_TX_FLAGS_FD_SB		BIT(9)
276 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
277 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
278 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
279 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
280 #define I40E_TX_FLAGS_VLAN_SHIFT	16
281 
282 struct i40e_tx_buffer {
283 	struct i40e_tx_desc *next_to_watch;
284 	union {
285 		struct xdp_frame *xdpf;
286 		struct sk_buff *skb;
287 		void *raw_buf;
288 	};
289 	unsigned int bytecount;
290 	unsigned short gso_segs;
291 
292 	DEFINE_DMA_UNMAP_ADDR(dma);
293 	DEFINE_DMA_UNMAP_LEN(len);
294 	u32 tx_flags;
295 };
296 
297 struct i40e_rx_buffer {
298 	dma_addr_t dma;
299 	struct page *page;
300 	__u32 page_offset;
301 	__u16 pagecnt_bias;
302 };
303 
304 struct i40e_queue_stats {
305 	u64 packets;
306 	u64 bytes;
307 };
308 
309 struct i40e_tx_queue_stats {
310 	u64 restart_queue;
311 	u64 tx_busy;
312 	u64 tx_done_old;
313 	u64 tx_linearize;
314 	u64 tx_force_wb;
315 	int prev_pkt_ctr;
316 };
317 
318 struct i40e_rx_queue_stats {
319 	u64 non_eop_descs;
320 	u64 alloc_page_failed;
321 	u64 alloc_buff_failed;
322 	u64 page_reuse_count;
323 	u64 realloc_count;
324 };
325 
326 enum i40e_ring_state_t {
327 	__I40E_TX_FDIR_INIT_DONE,
328 	__I40E_TX_XPS_INIT_DONE,
329 	__I40E_RING_STATE_NBITS /* must be last */
330 };
331 
332 /* some useful defines for virtchannel interface, which
333  * is the only remaining user of header split
334  */
335 #define I40E_RX_DTYPE_NO_SPLIT      0
336 #define I40E_RX_DTYPE_HEADER_SPLIT  1
337 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
338 #define I40E_RX_SPLIT_L2      0x1
339 #define I40E_RX_SPLIT_IP      0x2
340 #define I40E_RX_SPLIT_TCP_UDP 0x4
341 #define I40E_RX_SPLIT_SCTP    0x8
342 
343 /* struct that defines a descriptor ring, associated with a VSI */
344 struct i40e_ring {
345 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
346 	void *desc;			/* Descriptor ring memory */
347 	struct device *dev;		/* Used for DMA mapping */
348 	struct net_device *netdev;	/* netdev ring maps to */
349 	struct bpf_prog *xdp_prog;
350 	union {
351 		struct i40e_tx_buffer *tx_bi;
352 		struct i40e_rx_buffer *rx_bi;
353 		struct xdp_buff **rx_bi_zc;
354 	};
355 	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
356 	u16 queue_index;		/* Queue number of ring */
357 	u8 dcb_tc;			/* Traffic class of ring */
358 	u8 __iomem *tail;
359 
360 	/* high bit set means dynamic, use accessor routines to read/write.
361 	 * hardware only supports 2us resolution for the ITR registers.
362 	 * these values always store the USER setting, and must be converted
363 	 * before programming to a register.
364 	 */
365 	u16 itr_setting;
366 
367 	u16 count;			/* Number of descriptors */
368 	u16 reg_idx;			/* HW register index of the ring */
369 	u16 rx_buf_len;
370 
371 	/* used in interrupt processing */
372 	u16 next_to_use;
373 	u16 next_to_clean;
374 
375 	u8 atr_sample_rate;
376 	u8 atr_count;
377 
378 	bool ring_active;		/* is ring online or not */
379 	bool arm_wb;		/* do something to arm write back */
380 	u8 packet_stride;
381 
382 	u16 flags;
383 #define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
384 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
385 #define I40E_TXR_FLAGS_XDP			BIT(2)
386 
387 	/* stats structs */
388 	struct i40e_queue_stats	stats;
389 	struct u64_stats_sync syncp;
390 	union {
391 		struct i40e_tx_queue_stats tx_stats;
392 		struct i40e_rx_queue_stats rx_stats;
393 	};
394 
395 	unsigned int size;		/* length of descriptor ring in bytes */
396 	dma_addr_t dma;			/* physical address of ring */
397 
398 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
399 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
400 
401 	struct rcu_head rcu;		/* to avoid race on free */
402 	u16 next_to_alloc;
403 	struct sk_buff *skb;		/* When i40e_clean_rx_ring_irq() must
404 					 * return before it sees the EOP for
405 					 * the current packet, we save that skb
406 					 * here and resume receiving this
407 					 * packet the next time
408 					 * i40e_clean_rx_ring_irq() is called
409 					 * for this ring.
410 					 */
411 
412 	struct i40e_channel *ch;
413 	struct xdp_rxq_info xdp_rxq;
414 	struct xdp_umem *xsk_umem;
415 } ____cacheline_internodealigned_in_smp;
416 
417 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
418 {
419 	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
420 }
421 
422 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
423 {
424 	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
425 }
426 
427 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
428 {
429 	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
430 }
431 
432 static inline bool ring_is_xdp(struct i40e_ring *ring)
433 {
434 	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
435 }
436 
437 static inline void set_ring_xdp(struct i40e_ring *ring)
438 {
439 	ring->flags |= I40E_TXR_FLAGS_XDP;
440 }
441 
442 #define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
443 #define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
444 #define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
445 #define I40E_ITR_ADAPTIVE_LATENCY	0x8000
446 #define I40E_ITR_ADAPTIVE_BULK		0x0000
447 #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
448 
449 struct i40e_ring_container {
450 	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
451 	unsigned long next_update;	/* jiffies value of next update */
452 	unsigned int total_bytes;	/* total bytes processed this int */
453 	unsigned int total_packets;	/* total packets processed this int */
454 	u16 count;
455 	u16 target_itr;			/* target ITR setting for ring(s) */
456 	u16 current_itr;		/* current ITR setting for ring(s) */
457 };
458 
459 /* iterator for handling rings in ring container */
460 #define i40e_for_each_ring(pos, head) \
461 	for (pos = (head).ring; pos != NULL; pos = pos->next)
462 
463 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
464 {
465 #if (PAGE_SIZE < 8192)
466 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
467 		return 1;
468 #endif
469 	return 0;
470 }
471 
472 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
473 
474 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
475 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
476 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
477 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
478 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
479 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
480 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
481 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
482 int i40e_napi_poll(struct napi_struct *napi, int budget);
483 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
484 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
485 void i40e_detect_recover_hung(struct i40e_vsi *vsi);
486 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
487 bool __i40e_chk_linearize(struct sk_buff *skb);
488 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
489 		  u32 flags);
490 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring);
491 
492 /**
493  * i40e_get_head - Retrieve head from head writeback
494  * @tx_ring:  tx ring to fetch head of
495  *
496  * Returns value of Tx ring head based on value stored
497  * in head write-back location
498  **/
499 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
500 {
501 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
502 
503 	return le32_to_cpu(*(volatile __le32 *)head);
504 }
505 
506 /**
507  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
508  * @skb:     send buffer
509  * @tx_ring: ring to send buffer on
510  *
511  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
512  * there is not enough descriptors available in this ring since we need at least
513  * one descriptor.
514  **/
515 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
516 {
517 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
518 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
519 	int count = 0, size = skb_headlen(skb);
520 
521 	for (;;) {
522 		count += i40e_txd_use_count(size);
523 
524 		if (!nr_frags--)
525 			break;
526 
527 		size = skb_frag_size(frag++);
528 	}
529 
530 	return count;
531 }
532 
533 /**
534  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
535  * @tx_ring: the ring to be checked
536  * @size:    the size buffer we want to assure is available
537  *
538  * Returns 0 if stop is not needed
539  **/
540 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
541 {
542 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
543 		return 0;
544 	return __i40e_maybe_stop_tx(tx_ring, size);
545 }
546 
547 /**
548  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
549  * @skb:      send buffer
550  * @count:    number of buffers used
551  *
552  * Note: Our HW can't scatter-gather more than 8 fragments to build
553  * a packet on the wire and so we need to figure out the cases where we
554  * need to linearize the skb.
555  **/
556 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
557 {
558 	/* Both TSO and single send will work if count is less than 8 */
559 	if (likely(count < I40E_MAX_BUFFER_TXD))
560 		return false;
561 
562 	if (skb_is_gso(skb))
563 		return __i40e_chk_linearize(skb);
564 
565 	/* we can support up to 8 data buffers for a single send */
566 	return count != I40E_MAX_BUFFER_TXD;
567 }
568 
569 /**
570  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
571  * @ring: Tx ring to find the netdev equivalent of
572  **/
573 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
574 {
575 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
576 }
577 #endif /* _I40E_TXRX_H_ */
578