1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
29 
30 /* Interrupt Throttling and Rate Limiting Goodies */
31 
32 #define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K              0x0005
35 #define I40E_ITR_50K               0x000A
36 #define I40E_ITR_20K               0x0019
37 #define I40E_ITR_18K               0x001B
38 #define I40E_ITR_8K                0x003E
39 #define I40E_ITR_4K                0x007A
40 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF            I40E_ITR_20K
42 #define I40E_ITR_TX_DEF            I40E_ITR_20K
43 #define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
44 #define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45 #define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
46 #define I40E_DEFAULT_IRQ_WORK      256
47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51  * the value of the rate limit is non-zero
52  */
53 #define INTRL_ENA                  BIT(6)
54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
56 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
57 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
58 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
59 
60 #define I40E_QUEUE_END_OF_LIST 0x7FF
61 
62 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
63  * registers and QINT registers or more generally anywhere in the manual
64  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
65  * register but instead is a special value meaning "don't update" ITR0/1/2.
66  */
67 enum i40e_dyn_idx_t {
68 	I40E_IDX_ITR0 = 0,
69 	I40E_IDX_ITR1 = 1,
70 	I40E_IDX_ITR2 = 2,
71 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
72 };
73 
74 /* these are indexes into ITRN registers */
75 #define I40E_RX_ITR    I40E_IDX_ITR0
76 #define I40E_TX_ITR    I40E_IDX_ITR1
77 #define I40E_PE_ITR    I40E_IDX_ITR2
78 
79 /* Supported RSS offloads */
80 #define I40E_DEFAULT_RSS_HENA ( \
81 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
82 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
83 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
84 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
85 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
86 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
87 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
88 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
89 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
90 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
91 	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
92 
93 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
94 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
95 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
96 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
97 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
98 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
99 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
100 
101 #define i40e_pf_get_default_rss_hena(pf) \
102 	(((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
103 	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
104 
105 /* Supported Rx Buffer Sizes (a multiple of 128) */
106 #define I40E_RXBUFFER_256   256
107 #define I40E_RXBUFFER_2048  2048
108 #define I40E_RXBUFFER_3072  3072   /* For FCoE MTU of 2158 */
109 #define I40E_RXBUFFER_4096  4096
110 #define I40E_RXBUFFER_8192  8192
111 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
112 
113 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
114  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
115  * this adds up to 512 bytes of extra data meaning the smallest allocation
116  * we could have is 1K.
117  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
118  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
119  */
120 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
121 #define i40e_rx_desc i40e_32byte_rx_desc
122 
123 /**
124  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
125  * @rx_desc: pointer to receive descriptor (in le64 format)
126  * @stat_err_bits: value to mask
127  *
128  * This function does some fast chicanery in order to return the
129  * value of the mask which is really only used for boolean tests.
130  * The status_error_len doesn't need to be shifted because it begins
131  * at offset zero.
132  */
133 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
134 				     const u64 stat_err_bits)
135 {
136 	return !!(rx_desc->wb.qword1.status_error_len &
137 		  cpu_to_le64(stat_err_bits));
138 }
139 
140 /* How many Rx Buffers do we bundle into one write to the hardware ? */
141 #define I40E_RX_BUFFER_WRITE	16	/* Must be power of 2 */
142 #define I40E_RX_INCREMENT(r, i) \
143 	do {					\
144 		(i)++;				\
145 		if ((i) == (r)->count)		\
146 			i = 0;			\
147 		r->next_to_clean = i;		\
148 	} while (0)
149 
150 #define I40E_RX_NEXT_DESC(r, i, n)		\
151 	do {					\
152 		(i)++;				\
153 		if ((i) == (r)->count)		\
154 			i = 0;			\
155 		(n) = I40E_RX_DESC((r), (i));	\
156 	} while (0)
157 
158 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
159 	do {						\
160 		I40E_RX_NEXT_DESC((r), (i), (n));	\
161 		prefetch((n));				\
162 	} while (0)
163 
164 #define I40E_MAX_BUFFER_TXD	8
165 #define I40E_MIN_TX_LEN		17
166 
167 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
168  * In order to align with the read requests we will align the value to
169  * the nearest 4K which represents our maximum read request size.
170  */
171 #define I40E_MAX_READ_REQ_SIZE		4096
172 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
173 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
174 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
175 
176 /* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is
177  * the value I40E_MAX_DATA_PER_TXD_ALIGNED.  It is needed due to the fact
178  * that 12K is not a power of 2 and division is expensive.  It is used to
179  * approximate the number of descriptors used per linear buffer.  Note
180  * that this will overestimate in some cases as it doesn't account for the
181  * fact that we will add up to 4K - 1 in aligning the 12K buffer, however
182  * the error should not impact things much as large buffers usually mean
183  * we will use fewer descriptors then there are frags in an skb.
184  */
185 static inline unsigned int i40e_txd_use_count(unsigned int size)
186 {
187 	const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED;
188 	const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max;
189 	unsigned int adjust = ~(u32)0;
190 
191 	/* if we rounded up on the reciprocal pull down the adjustment */
192 	if ((max * reciprocal) > adjust)
193 		adjust = ~(u32)(reciprocal - 1);
194 
195 	return (u32)((((u64)size * reciprocal) + adjust) >> 32);
196 }
197 
198 /* Tx Descriptors needed, worst case */
199 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
200 #define I40E_MIN_DESC_PENDING	4
201 
202 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
203 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
204 #define I40E_TX_FLAGS_TSO		BIT(3)
205 #define I40E_TX_FLAGS_IPV4		BIT(4)
206 #define I40E_TX_FLAGS_IPV6		BIT(5)
207 #define I40E_TX_FLAGS_FCCRC		BIT(6)
208 #define I40E_TX_FLAGS_FSO		BIT(7)
209 #define I40E_TX_FLAGS_TSYN		BIT(8)
210 #define I40E_TX_FLAGS_FD_SB		BIT(9)
211 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
212 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
213 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
214 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
215 #define I40E_TX_FLAGS_VLAN_SHIFT	16
216 
217 struct i40e_tx_buffer {
218 	struct i40e_tx_desc *next_to_watch;
219 	union {
220 		struct sk_buff *skb;
221 		void *raw_buf;
222 	};
223 	unsigned int bytecount;
224 	unsigned short gso_segs;
225 
226 	DEFINE_DMA_UNMAP_ADDR(dma);
227 	DEFINE_DMA_UNMAP_LEN(len);
228 	u32 tx_flags;
229 };
230 
231 struct i40e_rx_buffer {
232 	struct sk_buff *skb;
233 	dma_addr_t dma;
234 	struct page *page;
235 	unsigned int page_offset;
236 };
237 
238 struct i40e_queue_stats {
239 	u64 packets;
240 	u64 bytes;
241 };
242 
243 struct i40e_tx_queue_stats {
244 	u64 restart_queue;
245 	u64 tx_busy;
246 	u64 tx_done_old;
247 	u64 tx_linearize;
248 	u64 tx_force_wb;
249 	u64 tx_lost_interrupt;
250 };
251 
252 struct i40e_rx_queue_stats {
253 	u64 non_eop_descs;
254 	u64 alloc_page_failed;
255 	u64 alloc_buff_failed;
256 	u64 page_reuse_count;
257 	u64 realloc_count;
258 };
259 
260 enum i40e_ring_state_t {
261 	__I40E_TX_FDIR_INIT_DONE,
262 	__I40E_TX_XPS_INIT_DONE,
263 };
264 
265 /* some useful defines for virtchannel interface, which
266  * is the only remaining user of header split
267  */
268 #define I40E_RX_DTYPE_NO_SPLIT      0
269 #define I40E_RX_DTYPE_HEADER_SPLIT  1
270 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
271 #define I40E_RX_SPLIT_L2      0x1
272 #define I40E_RX_SPLIT_IP      0x2
273 #define I40E_RX_SPLIT_TCP_UDP 0x4
274 #define I40E_RX_SPLIT_SCTP    0x8
275 
276 /* struct that defines a descriptor ring, associated with a VSI */
277 struct i40e_ring {
278 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
279 	void *desc;			/* Descriptor ring memory */
280 	struct device *dev;		/* Used for DMA mapping */
281 	struct net_device *netdev;	/* netdev ring maps to */
282 	union {
283 		struct i40e_tx_buffer *tx_bi;
284 		struct i40e_rx_buffer *rx_bi;
285 	};
286 	unsigned long state;
287 	u16 queue_index;		/* Queue number of ring */
288 	u8 dcb_tc;			/* Traffic class of ring */
289 	u8 __iomem *tail;
290 
291 	/* high bit set means dynamic, use accessor routines to read/write.
292 	 * hardware only supports 2us resolution for the ITR registers.
293 	 * these values always store the USER setting, and must be converted
294 	 * before programming to a register.
295 	 */
296 	u16 rx_itr_setting;
297 	u16 tx_itr_setting;
298 
299 	u16 count;			/* Number of descriptors */
300 	u16 reg_idx;			/* HW register index of the ring */
301 	u16 rx_buf_len;
302 
303 	/* used in interrupt processing */
304 	u16 next_to_use;
305 	u16 next_to_clean;
306 
307 	u8 atr_sample_rate;
308 	u8 atr_count;
309 
310 	unsigned long last_rx_timestamp;
311 
312 	bool ring_active;		/* is ring online or not */
313 	bool arm_wb;		/* do something to arm write back */
314 	u8 packet_stride;
315 
316 	u16 flags;
317 #define I40E_TXR_FLAGS_WB_ON_ITR	BIT(0)
318 #define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2)
319 
320 	/* stats structs */
321 	struct i40e_queue_stats	stats;
322 	struct u64_stats_sync syncp;
323 	union {
324 		struct i40e_tx_queue_stats tx_stats;
325 		struct i40e_rx_queue_stats rx_stats;
326 	};
327 
328 	unsigned int size;		/* length of descriptor ring in bytes */
329 	dma_addr_t dma;			/* physical address of ring */
330 
331 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
332 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
333 
334 	struct rcu_head rcu;		/* to avoid race on free */
335 	u16 next_to_alloc;
336 } ____cacheline_internodealigned_in_smp;
337 
338 enum i40e_latency_range {
339 	I40E_LOWEST_LATENCY = 0,
340 	I40E_LOW_LATENCY = 1,
341 	I40E_BULK_LATENCY = 2,
342 	I40E_ULTRA_LATENCY = 3,
343 };
344 
345 struct i40e_ring_container {
346 	/* array of pointers to rings */
347 	struct i40e_ring *ring;
348 	unsigned int total_bytes;	/* total bytes processed this int */
349 	unsigned int total_packets;	/* total packets processed this int */
350 	u16 count;
351 	enum i40e_latency_range latency_range;
352 	u16 itr;
353 };
354 
355 /* iterator for handling rings in ring container */
356 #define i40e_for_each_ring(pos, head) \
357 	for (pos = (head).ring; pos != NULL; pos = pos->next)
358 
359 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
360 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
361 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
362 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
363 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
364 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
365 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
366 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
367 int i40e_napi_poll(struct napi_struct *napi, int budget);
368 #ifdef I40E_FCOE
369 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
370 		 struct i40e_tx_buffer *first, u32 tx_flags,
371 		 const u8 hdr_len, u32 td_cmd, u32 td_offset);
372 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
373 			       struct i40e_ring *tx_ring, u32 *flags);
374 #endif
375 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
376 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
377 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
378 bool __i40e_chk_linearize(struct sk_buff *skb);
379 
380 /**
381  * i40e_get_head - Retrieve head from head writeback
382  * @tx_ring:  tx ring to fetch head of
383  *
384  * Returns value of Tx ring head based on value stored
385  * in head write-back location
386  **/
387 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
388 {
389 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
390 
391 	return le32_to_cpu(*(volatile __le32 *)head);
392 }
393 
394 /**
395  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
396  * @skb:     send buffer
397  * @tx_ring: ring to send buffer on
398  *
399  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
400  * there is not enough descriptors available in this ring since we need at least
401  * one descriptor.
402  **/
403 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
404 {
405 	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
406 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
407 	int count = 0, size = skb_headlen(skb);
408 
409 	for (;;) {
410 		count += i40e_txd_use_count(size);
411 
412 		if (!nr_frags--)
413 			break;
414 
415 		size = skb_frag_size(frag++);
416 	}
417 
418 	return count;
419 }
420 
421 /**
422  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
423  * @tx_ring: the ring to be checked
424  * @size:    the size buffer we want to assure is available
425  *
426  * Returns 0 if stop is not needed
427  **/
428 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
429 {
430 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
431 		return 0;
432 	return __i40e_maybe_stop_tx(tx_ring, size);
433 }
434 
435 /**
436  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
437  * @skb:      send buffer
438  * @count:    number of buffers used
439  *
440  * Note: Our HW can't scatter-gather more than 8 fragments to build
441  * a packet on the wire and so we need to figure out the cases where we
442  * need to linearize the skb.
443  **/
444 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
445 {
446 	/* Both TSO and single send will work if count is less than 8 */
447 	if (likely(count < I40E_MAX_BUFFER_TXD))
448 		return false;
449 
450 	if (skb_is_gso(skb))
451 		return __i40e_chk_linearize(skb);
452 
453 	/* we can support up to 8 data buffers for a single send */
454 	return count != I40E_MAX_BUFFER_TXD;
455 }
456 
457 /**
458  * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE
459  * @ptype: the packet type field from Rx descriptor write-back
460  **/
461 static inline bool i40e_rx_is_fcoe(u16 ptype)
462 {
463 	return (ptype >= I40E_RX_PTYPE_L2_FCOE_PAY3) &&
464 	       (ptype <= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER);
465 }
466 
467 /**
468  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
469  * @ring: Tx ring to find the netdev equivalent of
470  **/
471 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
472 {
473 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
474 }
475 #endif /* _I40E_TXRX_H_ */
476